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Abstract
This work deals with numerical simulations of a laser beam propagation
through a thermally loaded solid-state 2D medium. At first a brief intro-
duction to basic principles of laser physics is given followed by a simplified
description of thermo-optic effects associated with laser system operation.
Finite element methodology is presented as a practical tool for thermo-
mechanical analysis of two dimensional models of system optical elements. A
procedure is developed to integrate the FEM analysis results and computati-
onal mesh in a numerical algorithm simulating the laser beam propagation.
Laser beam is approximated as a set of rays within this work. The algori-
thm performance is validated for both homogeneous and graded-index media
using comparison method of numerical and analytical solutions. An example
of thermo-optical analysis of a zigzag laser amplifier is also included.

Abstrakt
Tato práce se zabývá numerickými simulacemi š́ı̌reńı laserového svazku te-
pelně zat́ıženým 2D prostřed́ım. Nejprve jsou stručně uvedeny základńı prin-
cipy laserové fyziky následovány zjednodušeným popisem tepelně-optických
jev̊u spojené s provozem pevnolátkových laserových systémů. Metoda
konečných prvk̊u je prezentována jako praktický nátroj pro tepelně mecha-
nickou analýzu optických prvk̊u systému. Je vyvinut postup pro integraci
výsledk̊u analýzy a výpočetńı śıtě metody konečných prvk̊u v numerickém
algoritmu simuluj́ıćım š́ı̌reńı laserového svazku. Laserový svazek je v této
práci aproximován skupinou paprsk̊u. Funkčnost algoritmu je ověřena pro
homogenńı i gradientńı prostřed́ı metodou porovnáńı numerického a analy-
tického řešeńı. Práce zahrnuje i př́ıklad tepelně optické analýzy laserového
zigzag zesilovače.
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Chapter 1

Introduction

This diploma thesis deals with numerical simulations of a laser beam propagation through
a thermally loaded solid-state media. Numerical simulations represents an essential part of
development cycle of optical devices. The cycle covers design, fabrication, characterization
as well as possible redesign. The role of computerized modelling and simulation tools is
important in reducing the time and costs involved in this cycle. The core contribution of the
thesis is design and implementation of a numerical algorithm for simulation of a laser beam
propagation in optical components commonly used in solid-state laser systems. Since the
task is generally non-trial, many simplifications were made within the scope of this work.
Among the most significant ones is a restriction to only two dimensional problems and con-
sideration of a laser beam as of a set of rays. Most widely used optical components such as
lenses, windows or laser crystals meets criteria for the ray approximation.
The thesis starts with a brief introduction to basic principles of laser physics. Laser light
generation based on optical amplification of radiation in interaction with matter is described
as well as the principle parts of an operational laser device. Possible ways of categoriza-
tion of laser systems according to their parameters is also included. Since the laser devices
are nowadays used in a vast number of multidisciplinary applications, their concise laser
overview is given at the end of the first introductory chapter.
Solid-state laser system operation is often limited by thermo-optic effects arisen due to par-
asitic heat generation in all optical components within the system. These effects represents
one of key limiting factors of laser system operation especially when considering high average
powers. A simplified overview of causes and the resulting effects is presented in the third
chapter along with a set of model equations and formulas mainly used for thermo-optical
analysis. The set mainly consists of partial differential equations for which obtaining the
analytical solution is for most of practical cases very tedious or even impossible.
Widely used finite element methodology is shortly presented in the forth chapter as a practi-
cal tool to deal with such a set of partial differential equations. The main idea of the method
is described followed by the main steps in the method implementation. More detailed de-
scription of 2D computational meshes and the shape functions is given since they play a key
role in development of the numerical algorithm.
The next chapter is dedicated to the numerical algorithm design. A procedure is built to
solve the differential ray equation within a discretized 2D finite element domain. The algo-
rithm validity and its performance is then subjected to a detailed investigation. Numerical
results of obtained ray trajectories for both homogeneous and gradient refractive index me-
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CHAPTER 1. INTRODUCTION

dia are presented and compared with derived closed-form solutions. A full thermo-optical
analysis is showed on an illustratory example of wavefront distortions examination in a laser
amplifier with a zigzag geometry.
The thesis is concluded in the final chapter with the most important presented results and
observations as well as with possible future improvements of this work that still needs to be
done.
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Chapter 2

Principles of Laser

Laser physics is an interdisciplinary scientific field containing apart from optics also pho-
tonics, quantum electronics, semiconductor and solid-state physics and many others ([1]).
Hence the laser physics represents a very extensive topic. The goal of this introductory
chapter is certainly not to fully describe the whole problematic but to give at least a rough
introduction to key principles of laser light generation, basic scheme of an operational laser
device as well as possible ways of laser systems classification and applications. For more
detailed information one can search among vast number of great literature (i. e. [1] - [4]).

2.1 Laser light generation

The key principles of laser light generation stands on interaction of radiation with matter.
Matter may be approximated as an atomic systems consisting of a large number of atoms,
ions or moleculs which can exists only in discrete energy states. Transition between the two
energy states is associated with either emission or absorption of a portion of radiation. The
figure 2.1 depicts transition processes between two discrete energy levels E2 and E1. The
frequency f21 of the radiation associated with transition between higher energy state E2 and
lower energy state E1 can be expressed as follows ([1], [2])

E2 − E1 = hf21 , (2.1)

where h is the Planck’s constant. Electromagnetic waves with the frequency f21 correspond-

E2

E1

E2

E1

E2

E1

hf21 hf21 hf21
hf21

hf21

Absorption
Spontaneous

emission

Stimulated

emission

Figure 2.1: Transition processes between two discrete energy levels E2 and E1.
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CHAPTER 2. PRINCIPLES OF LASER

ing to an energy difference according to the equation (2.1) can interact with such atomic
system. At thermal equilibrium, the lower energy levels of a atomic system are more heavily
populated than the higher energy states. A wave interacting with the substance will in this
case raise the atoms from lower energy state to the higher one and thereby experiencing
absorption ([2]). The requirement of the laser operation is that the higher energy level is
more heavily populated than the lower energy level. Such a state may be achieved by an
external energy source. Absorption of the energy from the external energy source causes
population inversion enabling the laser operation.
An electromagnetic wave of appropriate frequency, incident on the material with population
inversion, will be amplified as the incident photons cause the higher energy atoms to drop to
a lower level and emit additional photons. As a result, energy is extracted from the atomic
system and supplied to the radiation field. The release of the stored energy by interaction
with an electromagnetic wave is based on stimulated emission. After all, the acronym laser
stands for Light Amplification by Stimulated Emission of Radiation.
The stimulated emission has the same directional properties, same polarization, phase and
spectral characteristic as the stimulating radiation. As a consequence the degree of coherence
of laser emission can be really high.

2.2 Principal parts of a laser device

Pump

Laser

output

High-re ective

mirror

Semi-re ective

mirror

Gain

medium

Figure 2.2: Simplified scheme of an optical resonator with two parallel mirrors placed around
the gain medium and transversal pumping.

An operational laser device consists of three principal parts. Those parts are the gain
medium, the pump, the optical resonator. Usually another essential part represents a cooling
device.
The gain medium refers to a material in which the population inversion is created using
the external energy source which is called the pump. The type of the pump source can be
various as well as the material of the gain medium. Selection of the gain medium eventually
determines the wavelength of the laser emission.
The optical resonator concentrates the light into the gain medium to stimulate the emission
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of laser radiation. The figure 2.2 shows a simplified scheme of optical resonator formed by
two parallel mirrors placed around the gain medium. In such configuration one of the mirrors
is typically high-reflective for a radiation with laser emission wavelength, whereas the second
mirror is typically semi-reflective. Both mirrors reflect the generated laser radiation back to
the gain medium providing positive feedback. The semi-reflective mirror also transmits a
part of the incident laser radiation out of the resonator forming the laser output.

2.3 Classification of laser systems

Dielectric crystals,

glass

Liquids,

organic dyes

Plasma

Gases 

and 

their

mixtures

Intrinsic and dopped

semiconductors

Solid-state

lasers

Liquid

lasers

Gas

lasers

Plasma

lasers

Semiconductor

lasers

Optical

Flashlamp

Thermodynamic

Chemical reaction

Recombination

Electric current

Electron beam

Gain material Laser class Pumping

Figure 2.3: Classification of lasers ([1]).

Laser systems may be classified according to many different parameters. We may cate-
gorize lasers according to i. e. used gain medium, wavelength of the laser beam, type of the
pump or the operation mode of the laser ([1]). Scheme of such categorization is given in the
figure 2.3. With respect to the gain medium we may distinguish

• Solid-state lasers,

• Semiconductor lasers,

• Gas lasers,

• Liquid lasers,
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• Plasma lasers.

According to the wavelength of the laser beam classification we differentiate

• Infrared lasers,

• Visible-light lasers,

• Ultraviolet lasers,

• X-ray lasers.

With respect to most commonly used types of the pump source let us mention

• Optically-pumped lasers (i.e. Flashlamp-pumped),

• Lasers pumped by a thermodynamic change of the gain medium,

• Chemical reaction pumping,

• Recombination,

• Electrical current or electron beam pumping,

And finally, we may operate the laser in following three modes

• Single-shot,

• Pulsed,

• Continuous wave.

2.4 Laser applications

Ever since the first operational laser was built in 1960 there has been a huge growth of interest
in lasers. Highly collimated, monochromatic and coherence properties of a laser beam has
been found useful in multitude of scientific, industrial, medical, military and commercial
applications ([1], [5]). Among scientific laser applications should be mentioned

• Laser spectroscopy,

• Microscopy,

• Interferometry,

• Nuclear fusion.

In medicine field lasers are used for example in

• Ophthalmology for eye surgeries or diagnostics,

• Dentistry to remove carries,
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• Dermatology for cosmetic surgeries or tissue bio-stimulation.

Military applications of laser cover

• Guidance and targeting of missiles,

• Laser sight for weapons,

• Navigation and location of aircraft.

From industrial applications we should point out mainly

• Cutting, welding, drilling and marking of materials,

• Amplifiers for optical systems in telecommunication,

• Optical devices in information technologies.

Above mentioned applications are just a few of a vast number used nowadays and more and
more are being found with the technology development.
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Chapter 3

Thermo-optic effects in solid-state
laser systems

Solid-state laser system operation is limited by thermo-optic effects arisen due to parasitic
heat generation in all optical materials including active laser medium. Efficient heat removal
and the reduction of the thermal effects that are caused by the temperature gradients across
the active area of optical elements has to be considered during design of high average power
laser systems ([2], [6] - [12], [15]).

3.1 Thermo-optic effects

The optical pumping in a solid-state laser material is associated with the heat generation
for a number of reasons among the most significant ones are ([2]) :

• The energy difference of the photons between the pump band and the upper laser level
is lost as heat to the host material. Similarly, the energy difference between the lower
laser level and the ground state is also changed into heat. The difference between the
pump and the laser photon energies is the major source of heating in solid-state lasers
and is called quantum defect.

• Nonradiative relaxation from the upper laser level to the ground state and nonradiative
relaxation from the pump band to the ground state will generate heat in active medium
because of concentration quenching.

• In flashlamp-pumped systems, the broad spectral distribution of the pump source
causes a certain amout of background absorption by the host laser material, particularly
in the ultraviolet and infrared regions of the lamp spectrum. Absorption of lamp
radiation by impurity atoms can further increase heating.

the generated temperature gradients as a result of absorption and non-uniform heat removal
lead to various thermo-optic effects. Inhomogeneous temperature field induce inhomoge-
neous refractive index distribution in the material as well as thermal deformations caused
by thermal stress. Further, the stress might even lead to fracture of the material. Below the
stress fracture, thermal lensing and induced birefringence adversely affect the output beam
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CHAPTER 3. THERMO-OPTIC EFFECTS IN SOLID-STATE LASER SYSTEMS

quality ([8] - [11]). Also, because of thermal lensing, the stable operating point of the laser
resonator varies with the input power. Full description of all thermo-optic effects is certainly
worth several books and is behind the scope of this work. Summarizing scheme of causes
and resulting thermo-optic effects is given in the figure 3.1 to get the general idea. For more
information see ([2], [6] - [12], [15]).

Optical pumping

&

absorption

Temperature

change

Refractive index

change
Thermal

deformations

Thermal

stress

Thermal wavefront

abberations
Birefringence

Fracture

Depolarization

Output power

losses

Output beam

quality degradation

Destabilization of

laser resonator

&

Output beam

divergence increase

Figure 3.1: Summarizing scheme of causes and resulting thermo-optic effects.

3.2 Set of model equations and formulas for thermo-

optical analysis

Even considering simplified scheme depicted in the figure 3.1, thermo-optical analysis is
still quite complex. To obtain solution for the temperature field, arisen thermal stress and
induced thermal deformations within the thermally loaded medium one needs to solve set of
partial differential equations. This section is dedicated to presenting set of the main model
equations used for thermo-optical analysis.

3.2.1 Heat transfer equation

The temperature field T (r, t) in thermally loaded isotropic medium is given by the heat
transfer equation ([13])

ρCp
∂T (r, t)

∂t
= ∇ [k∇T (r, t)] +Q(r, t) , (3.1)
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where r is the position vector, t is the time, ρ stands for the material density, Cp is the
specific heat at constant pressure, k is the thermal conductivity and Q(r, t) is the heat
source density. Assuming the steady-state approximation, the temporal dependence of the
temperature vanishes and equation (3.1) becomes

−Q(r, t) = ∇ [k∇T (r, t)] . (3.2)

It should be noted that material parameters thermal conductivity k(r, T ), density ρ(r, T ) and
specific heat Cp(r, T ) are in general temperature and spatial dependent. Spatial dependence
refers to potential material inhomogeneities. Within this work these dependencies will not
be considered.

3.2.2 Thermal stress equations

Change of the temperature in the medium leads to thermal expansion of the material. To-
gether with the inhomogeneity of temperature field the thermal expansion results in arisen
thermal stress which may be for the particular case of isotropic material calculated using
following set of equations ([14],[15])

∂σij
∂xj

+ fi = 0 , (3.3)

σij = δijλεkk + 2µεij − δij(3λ+ 2µ)αT , (3.4)

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (3.5)

where δij stands for the Kronecker symbol, σij denotes the stress tensor, fi stands for the
internal force, εij is the strain tensor, αT is the thermal expansion coefficient and ui stands
for displacement vector. Coefficients λ and µ are given

λ =
νE

(1 + ν)(1− 2ν)
, (3.6)

µ =
E

2(1 + ν)
, (3.7)

where ν is the Poisson’s ration and E stands for the Young’s Modulus.
Set of equations (3.3) represents equilibrium conditions for the isotropic medium, followed
by Duhamel-Hook’s law in equation (3.4) relating stress and strain tensor components. The
last set of equations (3.5) relates strain tensor components with the displacement field.

3.2.3 Refractive index variation

Steady-state inhomogeneous temperature distribution T (r) together with induced thermal
deformations in an active laser material results in inhomogeneous refractive index distribu-
tion expressed as follows

n(r) = n0 + ∆nT (r) + ∆nS(r) , (3.8)

where n0 is the refractive index corresponding to the state of the medium before heating. The
second term on the right hand of equation (3.8) represents temperature dependent change

13
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of refractive index and its linear approximation may be experessed as follows ([2], [7], [15])

∆n(r)|T =
dn

dT
[T (r)− T0] , (3.9)

where dn/dT is termed as the thermo-optic coefficient and is a material parameter.
The second term ∆n(r)|S on the right hand of equation (3.8) represents the stress depen-
dent change of the refractive index. The refractive index of a crystal is specified by the
indicatrix, which is an ellipsoid whose coefficients are components of the relative dielectric
impermeability tensor Bij. A change of refractive index produced by stress is given by a
small changes in shape, size and orientation of the indicatrix ([6]). The change is specified
by the small changes in the coefficients Bij. Neglecting the electro-optic effect, the changes
∆Bij are given by

∆Bij = pijklεkl (i, j, k, l = 1, 2, 3) , (3.10)

where pijkl is a forth rank tensor giving the photo-elastic effect. The element of this tensor are
the elasto-optic coefficients. εkl is a second rank strain tensor. Following steps of derivation of
the stress induced change of refractive index are dependent on the vast amount of additional
parameters (i. e. crystal orientation, crystallographic class of the particular material and
light polarization). Because of this fact, let us express it generally as a function of ∆Bij

without going into a further detail as

∆n(r)|S = f(∆Bij) . (3.11)

In addition, compared to ∆n(r)|T is the stress dependent change of refractive index ∆n(r)|S
relatively small and is often neglected for the sake of simplicity ([6]).

3.2.4 Equation for modelling of beam propagation through ther-
mally loaded medium

To analyse the trajectory of a laser beam propagating through inhomogeneous refractive
index media one have to choose proper laser beam approximation. Careful consideration of
validity of the chosen approximation for the particular goal is always essential.
Considering the fact that the vast majority of the optical elements in solid-state laser sys-
tems meets the criteria for ray-optics approximation1 it is often beneficial to approach to
a laser beam rather as to a set of rays than to a wave. One of the main benefits of such
choice is solving relatively less complicated differential equation compared to solving of the
wave equation. The path of rays in a general graded-index medium is obtained by solving
differential ray equation ([3])

d

ds

[
n(r)

dr

ds

]
= ∇n(r) , (3.12)

where r is the position vector of a point on the ray, n(r) is the refractive index distribution
in the medium and ds is a infinitesimal element of the arc length along the ray.

1Since most of the component are significantly larger than the wavelength of particular laser beam. One
of exceptional case would be analysing beam propagation in optical fibers which will not be considered within
this work.

14



CHAPTER 3. THERMO-OPTIC EFFECTS IN SOLID-STATE LASER SYSTEMS

Ray-optics approach enables analysis of major thermo-optic effects related to operation of
solid-state laser systems such as wavefront distortions, thermal optical path differences or
thermally induced depolarization (see [8]). The wave approach is essential and beneficial
in cases that are beyond the scope of this work. Such case might be for example investi-
gation of thermo-optic effects in optical fibers which do not exactly meet the criteria for
ray-optics approximation. Another example might be frequency domain analysis of a laser
beam propagation.

3.2.5 Change of the optical path

The optical path length of a ray propagating through a medium is defined as ([3])

OP =

∫
L

n(r)ds , (3.13)

where L is the total distance travelled through the medium. The inhomogeneous temperature
field in the medium and the corresponding mechanical stresses and strains cause the refractive
index to vary from point to point and change its shape. These factors results in different
optical path

OPnew =

∫
Lnew

n(r)ds . (3.14)

The optical path difference can be expressed as

OPD = OP0 −OPnew = n0L0 −
∫
Lnew

n(r)ds , (3.15)

where the index 0 refers to the state of non-heated medium. The change of the optical path
of particular rays eventually leads to wavefront distortions of laser beam.
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Chapter 4

Finite element methodology

Finite element methods are numerical methods for solving partial differential equations prob-
lems. The versatility of the method and the ability to produce robust, accurate results for
challenging problems have led to its application in many branches of science and engineering
([16], [17]). The main concept of using finite elements for discretizing a structure is intro-
duced in this section. A flowchart showing the main steps of the finite element method is
presented and basic overview of meshing and shape functions is given.

4.1 The main concept of FEM

The repetitive nature of steps involved in FEM calculations makes the method suitable
for computer implementation for large problem domains. The finite element methodology
primarily involves ([16], [17])

• Representing the structure of interest as a patchwork of smaller elements.

• Expressing the unknown solution by an interpolation of values at nodes of the elements.

• Assembling the resulting equations for each element into global matrix equations.

• Solving the global system of equations.

The main concept of FEM lies in breaking up a complex domain into smaller elements
and finding suitable approximating functions in each element. The unknown solution ϕ, is
approximated by a function in the equation to be solved. This interpolating function takes
the values of ϕ at the element nodes and is used to obtain values of the unknown field at
any point inside the element. Each element has its own independent interpolation function.
For each element we can express the unknown field as

ϕe =

Nnp∑
i=1

Niϕi, (4.1)

whereNnp is the total number of nodes in a given element andNi is the interpolation function.
In general, higher orders of the interpolation functions yields solutions closer to the actual
field. As the function is required to be continuous everywhere inside the element, the solution
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yields the explicit functional form, from which we can compute the value of ϕ at any point
in the element. Further, because the field is an interpolation of values at the vertices, if two
elements share vertices due to a common boundary, the field will be continuous across the
boundary. Therefore, continuity of physical quantities can be translated smoothly into the
FEM implementation.
The finite elements form a mesh that can be irregular and therefore computationally efficient
(with finer elements where required and larger elements elsewhere). The nature of mesh
elements and order of the interpolation functions can also be chosen, i. e. rectilinear elements
which have straight edges and higher order functions requiring more nodal points per element.
In the FEM approach, interpolating functions satisfy the governing differential equation or
the variational expression in each element. It is therefore possible to solve the problem
in each element separately and literally stitch together the solution. The global solution
to the problem is assembled from all the elements in a global matrix equation system.
The obtained solution then satisfies the requirements inside every element and is continuous
across elements. Therefore it is possible to break down the requirements on an approximation
function from global continuity to piecewise continuity within each element and express these
in matrix form. The global matrices generated may be sparse, and the entries relating to
nodes shared between elements can reduce the matrix order.

4.2 Main steps in implementation of FEM

Start

Create mesh and

choose basis functions

Construct element

 matrices

Construct global 

matrices

Solve system of 

equations

Check if error < tolerance

Stop

Yes No

Figure 4.1: Implementation of finite element method as a flow chart.

Implementation of FEM can be illustrated as a flow chart algorithm which is convenient
for such step-by-step methods (see figure 4.1). Since we are about to develop a ray tracing
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algorithm for finite element discreticized volume, more detailed insight to meshing and shape
functions is needed and is a topic to the next section.
More explanation for the other parts of FEM algorithm illustrated in flow chart can be found
in [16] and [17] and will not be presented in this work.

4.3 Meshing domain with finite elements

As announced in previous section one of the most important step in the FEM implementa-
tion is representing the structure with smaller elements. The field values ϕ at the element
nodes are used in the interpolation functions to approximate the unknown field as expressed
in equation (4.1). By choosing different shapes and sizes of elements one can choose the
number of nodes where the field is sampled. The chosen shape of elements plays a key role
in determination of accuracy of structure details as well as the resolution of boundary rep-
resentation.
By selecting the shape functions Ni, we are choosing the approximation of the field inside
each element. Therefore, the approximation (most usually polynomial) is then fit to the
values at the nodes and its coefficients determined in every element for the best fit. For
example, if first-order shape functions are chosen, then a polynomial of the type a+ bx+ cy
can be used to represent the field in 2D triangular element. Coefficients to be determined
are in this case a, b, c. Strong relationship is between the choice of the mesh elements and
the shape function.
In a mesh, the elements do not overlap and there can not be an empty space between the
elements. The elements fit together smoothly to form a connected set of small domains
resembling the original structure. Resulting mesh often consists of a large number of differ-
ently sized elements. Elements that are adjacent share some nodes and may have a common
boundary. A scheme needs to be developed in order to uniquely identify each node. Inside ev-
ery element the nodes are numbered with i = 1, 2, · · · , Nnp and each node has corresponding
local coordinates. Each node is also assigned a global node number and has corresponding
global (physical) coordinates, i.e. (xi, yi) for 2D Cartesian space.
There are several cathegories of most commonly used finite elements ([17]):

• Straight edges elements. These include shapes such as rectilinear ones - triangular,
rectangular, quadrilateral. For higher order of discretization the edges remains straight,
only the number of nodes increases as shown in figure 4.2.

• Iso-parametric elements. These elements are defined by coordinate transformation
using shape functions from global coordinate system into local coordinate system. In
local coordinate system geometry of these elements is unit-normalized (see figure 4.3).

• Infinite elements to simulate open or unbounded problems.

4.4 Two dimensional iso-parametric elements and shape

functions

The choice of the element type is dependent on the solved problem. In this work we will use
most common straight-edged elements for 2D space - first order quadrilateral and triangular
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Figure 4.2: Most commonly used finite elements in 2D space.

elements. The iso-parametric version of these elements forms a fundamental part of devel-
oped ray-tracing algorithm.
Figure 4.3 shows iso-parametric first-order quadrilateral element. Local coordinates of the
element ξ and η vary between −1 and 1. Local node numbering starts from lower left corner
and continues in clockwise direction. Shape functions for this element with the defined node
numbering scheme have the following form

N1 =
1

4
(1− ξ)(1− η), (4.2)

N2 =
1

4
(1− ξ)(1 + η), (4.3)

N3 =
1

4
(1 + ξ)(1 + η), (4.4)

N4 =
1

4
(1 + ξ)(1− η). (4.5)

Figure 4.3 also shows iso-parametric first-order triangular element. Local coordinates of the
element ξ and η in this case vary between 0 and 1. Local node numbering again starts from
lower left corner and continues in clockwise direction. Shape functions for this element with
the defined node numbering scheme have the following form

N1 = 1− ξ − η, (4.6)

N2 = η, (4.7)

N3 = ξ. (4.8)

4.5 Deformed mesh for ray tracing of two dimensional

thermally loaded optical elements

The two dimensional iso-parametric elements described in previous section play an impor-
tant role in derivation of the ray-tracing algorithm procedure which will be given in following
chapter. As stated earlier, the algorithm should be capable of taking into account the in-
duced thermal deformations. Recall the previous chapter dedicated to thermo-optic effects
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Figure 4.3: Iso-parametric elements in 2D space.

and their simplified scheme given in the figure 3.1. The deformations truly influence perfor-
mance of optical systems. In this section we will describe the approach chosen to define a
deformed finite element mesh.
The approach stands on translation of 2D mesh nodes (xi, yi) i = 1, 2, . . . , N of non-deformed
mesh consisting of total N nodes. In the steady-state the nodes are shifted according to the
displacement field D(r) = (u(x, y), v(x, y)) arisen due to the thermal strain of an investigated
domain resulting in a new set of nodes (xi + u(xi, yi), yi + vi(xi, yi)), i = 1, 2, . . . , N . The
steady-state displacement field D(r) = (u(x, y), v(x, y)) is obtained by solving the thermal
stress model equations (3.3) to (3.5) and represents an optional input for the implemented
ray-tracing algorithm. An important remark concerning thermo-mechanical analysis using
FEM should be made here. The remark concerns about proper kinematical description of
the deforming material under consideration. Such a choice determines the relationship be-
tween the deforming domain and the finite element mesh and strongly conditions the ability
of the numerical method to deal with large distortions and provide an accurate solution.
The kinematical description is associated with Lagrangian, Eulerian and possibly Arbitrary
Lagrangian-Eulerian algorithms ([18]).
The Lagrangian algorithms, in which each individual node of the computational mesh follows
the associated material particle during deforming, are mainly used in structural mechanics.
The Lagrangian description allows an easy tracking of the free surfaces and interfaces be-
tween different materials. Its weakness is its inability to follow large distortions of the
computational domain without recourse to frequent re-meshing operations.
The Eulerian algorithms are widely used in fluid dynamics. Here the computational mesh is
fixed and the continuum moves with respect to the grid. In the Eulerian description, large
distortions in the continuum can be handled with relative ease, but generally at the expense
of precise interface definition and the resolution of flow details.
Because of the shortcomings of purely Lagrangian and Eulerian descriptions, a technique
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has been developed that succeeds, to a certain extent, in combining the best features of
both the Lagrangian and the Eulerian approaches. Such a technique is known as Arbitrary
Eulerian-Lagrangian description abbreviated as ALE. In the ALE description, the nodes of
the computational mesh may be moved with the continuum in normal Lagrangian fashion,
or be held fixed as in Eulerian manner, or be moved in some arbitrarily specified way to
give a continuous rezoning capability. Because of this freedom in moving the mesh offered
by the ALE description, greater distortions of the continuum can be handled than would be
allowed by purely Langrangian approach, and with more resolution than that afforded by a
pure Eulerian approach.
Within to scope of this work we deal with the optical components most widely used in
solid-state laser systems. Since the thermally induced deformations are in vast majority of
such cases relatively small, the Lagrangian approach is the most suitable description here.
However, in the particular example of thermo-mechanical analysis of some very thin optical
components, adding the ALE codes into the set of equations solved with FEM is obligatory
to achieve accurate results.

4.6 Examples of finite element meshes in COMSOL

Multiphysics

Multitude of simulation programs and utilities implements finite element method for model-
ing and simulating physics-based problems. One of the most widely used is professional soft-
ware COMSOL Multiphysics. Using COMSOL Multiphysics provides a significant amount
of physics modeling functionality, including multiphysics ability. One of the target tasks of
the thesis was to implement a script in MATLAB to import finite element mesh generated
in COMSOL environment. Mesh designed in COMSOL is fully described with nodal coor-
dinates and nodal connectivity array. A MATLAB script was implemented to import the
useful mesh data. for purposes of ray-tracing. The script forms a structure MESH which
content are nodal coordinates and nodal connectivity array which both form inputs for the
ray-tracing algorithm.
For illustrative purposes, a two dimensional discretized rectangle domain made of fused silica
glass with dimensions of 15 x 5 cm was created in COMSOL and meshed with quadrilateral
elements as shown in the figure 4.4. Figure 4.5 shows the generated mesh plotted from
imported data in MATLAB environment including proper nodal (black) and element ID
numbers (red). For a modified example of triangular mesh the results are depicted in figures
4.6 and 4.7.
Another example is concerned about deformed meshes. We have considered heating of the
rectagular domain from the previous example with 10 W of total heat dissipated in the area.
Constant temperature of 293.15 K and fixed (no deformation) constraints were assumed
along both longer edges of the rectangle. The shorter edges of the rectangle were considered
to be thermally isolated and free to deform. The steady-state thermo-mechanical simulation
results in buckling of both rectangle shorter edges. The resulting displacement field was
exported from COMSOL and contributed to the exported meshes to form a deformed mesh
as described in the previous section. One of deformed shorter edges of the rectangle after
zoom is depicted in the figure 4.8 for the case of quadrilateral mesh and in the figure 4.9 for
the case of triangular mesh. It is worth noting how the mesh density as well as the chosen
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geometrical type of finite elements influences precision of the deformed boundary represen-
tation. This fact already presented in previous sections will become crucial important in
ray-tracing validation chapter.

Figure 4.4: Example of quadrilateral mesh generated in COMSOL Multiphysics.
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Figure 4.5: Quadrilateral mesh generated in COMSOL Multiphysics imported into MAT-
LAB.
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Figure 4.6: Example of triangular mesh generated in COMSOL Multiphysics.
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Figure 4.7: Triangular mesh generated in COMSOL Multiphysics imported into MATLAB.
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Chapter 5

Ray tracing algorithm

Numerical approach presented here fully integrates the finite-element methodology to enable
tracing rays directly within a discretized volume. Refractive index distribution in the volume
is assumed to vary continuously between exact values at nodal positions using shape functions
to interpolate values at intermediate points. Generalized gradient-index ray-trace equations
are transformed into the local coordinate system of an finite element. Shape functions of the
element are then used to calculate local refractive index gradient, and the resulting system of
equations is cast into state-space notation suitable for numerical solving. The main relevant
references referring to the chosen numerical approach are [19] - [21].

5.1 State-space ray-tracing equations in gradient-index

medium

As stated before, the path of rays in a graded-index medium is obtained by solving differential
ray equation (3.12)

d

ds

[
n(r)

dr

ds

]
= ∇n(r) . (5.1)

Recall, that r is the position vector of a point on the ray, n(r) denotes the refractive index
distribution in the medium and ds is a infinitesimal element of the arc length along the ray.
We may introduce a change of variable t =

∫
ds/n, dt = ds/n in equation (5.1) to obtain

form ([19])

d2r

dt2
= n∇n =

1

2

[
∂n2

∂x
∂n2

∂y

]
, (5.2)

which dropped explicit dependence of refractive index on position. This dependency is
now implied by the gradient operator. Formulation (5.2) is used to enable an abstracted
concept of the ray trajectory based on Newtonian dynamics approach ([21]). One may
abstract the concept of t as an independent ”pseudo-time” variable and in this context the
equation (5.2) represents ”pseudo-acceleration” of a point r on the ray. This abstraction
allows assembly of these ”equations of motion” into a state-space system of equations, from
which an elementary coordinate transformation can be derived to enable direct application
within the finite-element domain. If we define a state vector for the use in 2D cartesian
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space as

x̄ =

[
x, y,

dx

dt
,
dy

dt

]
(5.3)

we may obtain full state-space representation of the differential equations of motion for a
point that lies on the ray

d

dt
x̄ =

[
02 I2
02 02

]
x̄ +

[
02

I2

]
1

2
∇n2 , (5.4)

where 02 denotes a square zero matrix 2x2 and I2 is identity matrix of dimension 2. In equa-
tion (5.4) gradient of refractive index acts as a ”force” that imparts a ”pseudo-acceleration”
on the ray as it propagates through a medium.
If we integrate the set of equations (5.4) with respect to t variable we obtain ray trajec-
tory in a standard 2D cartesian space. To be able to integrate knowledge of gradient of
refractive index as a function of position is required. Finite element methodology shortly
introduced in previous section provides a useful framework to interpolate gradient-index
within a discretized volume. This methodology is applied in following section in order to
cast equation (5.4) into local element coordinate frame introducing more suitable form for
ray-trace algorithm.

5.2 Ray-race equations in local coordinate frame

To cast the ray-trace equations into the local finite element coordinate frame transformation
of equations (5.4) needs to be performed. Beginning with the gradient of the squared refrac-
tive index the transformation is accomplished via the Jacobian matrix J of the element as
follows ([21])

J∇n2 = J

[
∂n2

∂x
∂n2

∂y

]
=

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

][
∂n2

∂x
∂n2

∂y

]
=

[
∂n2

∂ξ
∂n2

∂η

]
. (5.5)

Derivation of Jacobian matrix is accomplished by applying finite element methodology in
which we use shape functions to interpolate nodal parameters. In the case physical coordi-
nates (x, y)

x(ξ, η) =

Nnp∑
i=1

Ni(ξ, η)xi, (5.6)

y(ξ, η) =

Nnp∑
i=1

Ni(ξ, η)yi, (5.7)

where Ni is the i-th shape function in node numbering scheme of the particular element, xi
and yi are x and y coordinates of i-th element node and Nnp is number of element nodes. It
should be remainded that the number of element nodes Nnp and the node numbering scheme
depends on geometrical shape of the element as well as on the order of discretization. To
proceed with Jacobian matrix form derivation it is suitable to first rewrite equations (5.6)
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and (5.7) into matrix notation

[
x y

]
=
[
N1 N2 · · · NNnp

]


x1 y1
x2 y2
...

...
xNnp yNnp

 . (5.8)

And in this form it is obvious that the only components that have dependency on (ξ, η)
are the shape functions Ni since nodal positions (xi, yi) are constant. The Jacobian matrix
becomes

J =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
=

[
∂N1

∂ξ
∂N2

∂ξ
· · · ∂NNnp

∂ξ
∂N1

∂η
∂N2

∂η
· · · ∂NNnp

∂η

]
x1 y1
x2 y2
...

...
xNnp yNnp

 . (5.9)

Note that J is dependent on local coordinates, i. e. J = J(ξ, η).
Next step is to transform the ”pseudo-velocity” and ”pseudo-acceleration” vector. Starting
with ”pseudo-velocity” vector we may use a similar approach as in Jacobian matrix derivation
and obtain [

dx
dt
dy
dt

]
=

[
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

] [
dξ
dt
dη
dt

]
= JT

[
dξ
dt
dη
dt

]
. (5.10)

”Pseudo-acceleration” vector is then obtained by differentiation of (5.10) with respect to t
variable.[

d2x
dt2
d2y
dt2

]
=

d

dt

[
dx
dt
dy
dt

]
=

d

dt

{
JT
[

dξ
dt
dη
dt

]}
=
dJT

dt

[
dξ
dt
dη
dt

]
+ JT

[
d2ξ
dt2
d2η
dt2

]
. (5.11)

After substitution of expressions (5.5), (5.10) and (5.11) into equation (5.4) and rearrange-
ment we obtain equation in terms of local coordinate frame as follows[

d2ξ
dt2
d2η
dt2

]
= J−T

{
1

2
J−1

[
∂n2

∂ξ
∂n2

∂η

]
− dJT

dt

[
dξ
dt
dη
dt

]}
, (5.12)

where J−T stands for transposed inverse of Jacobian matrix. Apart from the Jacobian
matrix J equation (5.12) also requires the derivative with respect to t variable dJ/dt. This
is accomplished by extending the approach in equation (5.9), namely

dJ

dt
=

d

dt

[
∂N1

∂ξ
∂N2

∂ξ
· · · ∂NNnp

∂ξ
∂N1

∂η
∂N2

∂η
· · · ∂NNnp

∂η

]
x1 y1
x2 y2
...

...
xNnp yNnp

 , (5.13)

where nodal positions are constant, so the time derivative applies only to the matrix of shape
function derivatives. After applying the chain rule and rearrangement we obtain following
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form of Jacobian matrix time derivative

dJ

dt
=



[
dξ
dt
dη
dt

]T [ ∂2N1

∂ξ2
∂2N2

∂ξ2
· · · ∂2NNnp

∂ξ2

∂2N1

∂ξ∂η
∂2N2

∂ξ∂η
· · · ∂2NNnp

∂ξ∂η

]
[

dξ
dt
dη
dt

]T [ ∂2N1

∂η∂ξ
∂2N2

∂η∂ξ
· · · ∂2NNnp

∂η∂ξ

∂2N1

∂η2
∂2N2

∂η2
· · · ∂2NNnp

∂η2

]



x1 y1
x2 y2
...

...
xNnp yNnp

 . (5.14)

It is worth noting that for finite element with first-order shape functions, the second deriva-
tives are zero and therefore dJ/dt is also zero.
The last part in equation (5.12) that needs to be evaluated is gradient of squared refractive
index. Applying the similar procedure as before we get

[
∂n2

∂ξ
∂n2

∂η

]
=

[
∂N1

∂ξ
∂N2

∂ξ
· · · ∂NNnp

∂ξ
∂N1

∂η
∂N2

∂η
· · · ∂NNnp

∂η

]
n2
1

n2
2
...

n2
Nnp

 . (5.15)

This can be applied to any parameter p with values defined in nodal points such as temper-
ature, displacements, etc.
Let us summarise what has been done so far. We have introduced differential ray equation
(5.2) and applied finite element methodology to use this equation in discretized volume. In
this manner we have obtained equation (5.12). Let us put equations (5.2) and (5.12) for a
moment next to each other to realise some important aspects of this approach.[

d2x
dt2
d2y
dt2

]
=

1

2

[
∂n2

∂x
∂n2

∂y

]
(5.16)[

d2ξ
dt2
d2η
dt2

]
= J−T

{
1

2
J−1

[
∂n2

∂ξ
∂n2

∂η

]
− dJT

dt

[
dξ
dt
dη
dt

]}
. (5.17)

Equation (5.17) is the analog of equation (5.16) cast in the (ξ, η) domain. However, if we
compare them, it is obvious that on right side of equation (5.16) there is only one term,
whereas in equation (5.17) there are two. The left-most bracketed term in equation (5.17)
is proportional to the gradient of n2 in the (ξ, η) domain. This term is obvious analog of
the term on the right side of equation (5.16) in the physical domain. However, the right-
most bracketed component in equation (5.17) seems to have no apparent analog in physical
domain.
This additive term depending on both velocity and the rate of change of the Jacobian, can
be understood by considering mapping the ray trajectory from physical into local coordinate
space ([21]). For a homogeneous medium the gradient of n2 in the physical domain is equal
to zero and the ray trajectory within this medium remains linear. However, if we consider
mapping of some skew aspect of the element (i. e. mesh deformations as a consequence of
thermal stress) from physical domain into local domain the space within the element becomes
in general curvilinear. In other word linear ray trajectory in physical domain is generally
curved in local coordinate system. And this particular aspect of mapping is represented
in equation (5.17) by the second term dependent on velocity and the rate of change of the
Jacobian.
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5.3 Transition between two elements within the vol-

ume

For the purposes of tracing rays through a finite element domain we have derived equation
(5.12) which integrated with respect to t variable through the volume provides solution for
the ray trajectory. However, procedure to deal with transition between the local coordinate
frames of intersected elements still needs to be established. One may consider transforma-
tion from terminal element local frame into physical domain frame and then transformation
into the local coordinate frame of the entrance element. This approach is correct but it
is beneficial to obtain one step transformation to reduce computational demands and ac-
cumulation of numerical errors. One step transformation was developed for the transition
between two element of the same type, i. e. transition between two quadrilateral elements
or between two triangular elements. For a transition between two different types of finite
elements no computationally effective method was developed so far and therefore it stands
on general transformation from terminal element local frame into physical domain frame and
then transformation into the local coordinate frame of the entrance element.

5.3.1 Transition between two quadrilateral elements

First discussed will be the case of transition between two quadrilateral elements. In the
plane of transition which is shared by two elements, the ray coordinates maintain the same
absolute values in both local coordinate systems. Coordinates are transformed by relative
rotation of the axes [

ξ2
η2

]
= T

[
ξ1
η1

]
, (5.18)

where T is the transformation matrix. To obtain the transformation matrix we first collect
local coordinates of the nodes contained in common transition face. Basis is then formed
from vectors derived from these local coordinates as follows

v1a = mean

(
ξ
η

)
EL1

, (5.19)

v2a = mean

(
ξ
η

)
EL2

. (5.20)

The remaining vectors v1b and v2b to form the basis are orthogonal to derived ones as shown
on an illustrative example on figure 5.1. The transformation matrix is then

T =
[
v1a v1b

] [
v2a v2b

]−1
. (5.21)

Apart from the ray coordinates we need to transform the ray directions. Using equation
(5.10) we deduce that [

dx
dt
dy
dt

]
= JT1

[
dξ1
dt
dη1
dt

]
= JT2

[
dξ2
dt
dη2
dt

]
, (5.22)

from which after rearrangement yields[
dξ2
dt
dη2
dt

]
= J−T

2 JT1

[
dξ1
dt
dη1
dt

]
. (5.23)
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Figure 5.1: Examples of possible transition between two iso-parametric quadrilateral ele-
ments.

5.3.2 Transition between two triangular elements

The second procedure presented will be for the case of transition between two triangular
elements. Transformation of the ray directions remains the same as in the case of transition
between quadrilateral elements. Using equation (5.23) we may obtain the ray directions
with respect to the entrance element. To transform terminal point coordinates into local
coordinate frame of the entrance element there is no need of forming transformation matrix
as in the previous case. We may consider the fact that there are only several possibilities
for two triangles sharing common edge. Figure 5.2 shows two out of these nine possible
configurations. The most left scheme depicts transition of ray from edge number (3) in
the terminal element into edge number (1) in the entrance element, whereas the most right
scheme depicts transition of ray from edge number (2) in the terminal element into the edge
with the same number in the entrance element. If we proceed through all configurations, we
may obtain 9 simple formulas for the coordinate transformation between two local coordinate
frames of triangular elements,

(1) → (1) [ξ, η]→ [0, 1− η] (5.24)

(1) → (2) [ξ, η]→ [1− η, η] (5.25)

(1) → (3) [ξ, η]→ [η, 0] (5.26)

(2) → (1) [ξ, η]→ [0, η] (5.27)

(2) → (2) [ξ, η]→ [η, ξ] (5.28)

(2) → (3) [ξ, η]→ [ξ, 0] (5.29)

(3) → (1) [ξ, η]→ [0, ξ] (5.30)

(3) → (2) [ξ, η]→ [ξ, 1− ξ] (5.31)

(3) → (3) [ξ, η]→ [1− ξ, 0] (5.32)
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Figure 5.2: Examples of possible configurations for transition between two triangular ele-
ments.

5.4 Physical coordinates to local coordinate frame trans-

formation

As presented before, finite-element methodology provides a direct method to interpolate
physical coordinates within a certain finite element using shape functions and local coor-
dinates (equations (5.6) and (5.7)). This conversion is typically nonlinear in nature and
inverting the transformation to find local coordinates for a given set of physical coordinates
can be ill posed and introduce errors into the derived local coordinates.
Therefore more robust method based on gradient-descent approach was implemented in order
to increase ray tracing algorithm reliability. We define a cost function as error squared be-
tween original physical coordinates (x, y) subjected to transformation and their interpolation
using shape functions, namely

c(x, y, ξ, η) = |err|2 = errT ∗ err, (5.33)

where

err =

[
x
y

]
−
[
x1 x2 · · · xNnp

y1 y2 · · · yNnp

]
N1(ξ, η)
N2(ξ, η)

...
NNnp(ξ, η)

 . (5.34)

The gradient of the cost function c is derived as follows

∇c(x, y, ξ, η) = 2(∇err) ∗ err = −2J ∗ err. (5.35)

Formulas (5.33) and (5.35) can be subjected to any gradient-descent algorithm. We have
used conjugate-gradient minimization algorithm ([22]).
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5.5 Ray tracing algorithm

So far we have introduced mathematical basis for tracing rays in gradient-index medium, we
have integrated finite element methodology to apply introduced mathematical phenomena on
discretized finite element volume and finally we have established procedure for ray transition
between two finite elements within the volume. Previous sections form a basis for ray tracing
algorithm which will be described now in detail.
Before launching the algorithm a basic set of assumptions about algorithm inputs must be
fulfilled.

• The incoming ray definition is available in the form of a vector [xr, yr, αr]
T , where

– xr, yr are coordinates of the starting point of the ray in physical coordinate frame

– αr is the angle between the ray and the positive half axis x in physical coordinate
frame.

• Full set of finite-element mesh nodes of the investigated discrete volume is available
with corresponding properties such as

– ID number of a node ,

– position of a node in physical coordinate frame ,

– value of n2 in a node,

– any other parameter values relevant for ray-tracing, i. e. displacement of a node
if we consider deformations of the medium etc.

• Full set of finite-element volume vertices with corresponding nodal ID numbers is
available.

• Full set of finite-element volume edges is available.

• Full set of finite-element mesh elements is available with corresponding properties such
as

– ID number of an element ,

– the node ID numbers of nodes related to the element .

• Global numerical tolerance value is set to reduce accumulating of numerical errors.

Once all the assumptions are fulfilled the ray trace algorithm may start and proceed in fol-
lowing step-by-step manner. The algorithm is quite complex, hence its flow chart is depicted
in figure 5.4 for the sake of lucidity.

1. Localization of the finite-element which the incoming ray strikes first.

(a) Estimate the ray incidence point by calculating intersection between the ray and
the finite volume. Since this algorithm is restricted into two dimensional space
the finite volume is generally a polygon. Full set of finite-element volume vertices
is one of the inputs to the algorithm, hence the estimated ray incidence point
(xRO, yRO) is a result of ray-polygon intersection problem which is widely utilized
in the field of ray tracing.
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(b) The next step is to find k nearest nodes1 to (xRO, yRO) from the set of finite-
element volume edges. A brute-force search was implemented in this case al-
though some more advanced algorithms are certainly available and could provide
more efficient solution to this problem. Once the k nearest nodes are discovered,
set of elements is searched to find the finite element containing discovered nodes.
However, this ”element-candidate” might not be the correct one as depicted in
figure 5.3 and therefore we need to check by subjecting the ”element-candidate”
again to ray-polygon intersection calculation. If we obtain a solution for inter-
section (xRE, yRE) which is not located on the edge of finite-volume or the ray
simply does not strike the ”element-candidate” we have to search for the correct
incident element among the elements neighboring to the ”element-candidate”.

Ray Intersection

Two nearest nodes
Wrongly detected 

intersected element

True element

Figure 5.3: Example of wrongly detected intersection element.

2. Once the correct intersection point (xRE, yRE) is known we transform its physical
coordinates into local coordinate coordinates (ξ0, η0) of the intersected element using
approach presented in section 5.4.

3. Determine ray refraction at the incident point and prepare initial values for numerical
integration.

(a) Interpolate the refractive index n0 of the incident element at the point of inter-
section using expression (5.15).

(b) Calculate surface normal at the point of incidence.

(c) Determine ray direction α0 of refracted ray using calculated surface normal, am-
bient index of refraction na, interpolated refractive index and initial ray direction
αr .

(d) Determine initial ray ”pseudo-velocity” in local coordinate frame of the intersected
element using equation (5.10)[

dξ
dt
dη
dt

]
ξ0,η0

= J−T
[

dx
dt
dy
dt

]
xRE ,yRE

= J−Tn

[
cos(α0)
sin(α0)

]
. (5.36)

1The parameter k was set to equal to 2 in order to detect the first-intersected edge.
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4. Integrate the ray trajectory through the intersected element using equation (5.12) until
it intersects one of element edges (value of ξ or η is equal to ±1).

5. Is the terminal edge on the edge of the finite volume ?

(a) If it is not, search for a neighbour finite element to which the terminal edge
belongs. Perform the transition between the old element and the new one and
then proceed with numerical integration according to the step 4.

(b) If it is, first use the element shape functions to interpolate refractive index ne at
the terminal point (ξe, ηe), then calculate the exiting ray direction as follows[

cos(α0)
sin(α0)

]
=

1

ne
JT
[

dξ
dt
dη
dt

]
ξe,ηe

(5.37)

and finally determine the ray refraction of the exiting ray as in the step 3c.
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Figure 5.4: Ray tracing algorithm as a flow chart.
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Chapter 6

Validation of the implemented ray
tracing algorithm

Ray tracing algorithm described in the previous chapter was implemented in MATLAB
environment. This section is dedicated to a several numerical simulations which demonstrates
validity of the implemented algorithm. Performance verification proceeds in step-by-step
manner from simulations investigating rays propagation in homogeneous refractive index
media to ray propagation in graded-index field.

6.1 Homogeneous refractive index media

6.1.1 Rectangular glass domain with normal and skew incidence
rays

(a) Quadrilateral mesh. (b) Triangular mesh.

Figure 6.1: Two dimensional discretized rectangle fused silica glass domain with dimensions
of 15 x 5 cm.

Two dimensional discretized rectangular fused silica glass domain with dimensions of 15
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x 5 cm used in section 4.6 will be used in the first set of demonstrative simulations. The
domain was meshed with a) 75 (15 x 5) quadrilateral elements and with b) 188 triangular
elements in order to test the algorithm behavior for both considered types of mesh (see figure
6.1a and 6.1b).
The first presented simulation will be the case of tracing 10 rays with normal incidence to
one of the edges of the domain. The obtained ray trajectories are shown on figures 6.2a and
6.2b for the case of quadrilateral mesh and on figures 6.3a and 6.3b for the triangular mesh
respectfully. As expected rays propagate linearly through the medium and then terminates
it without any change in direction.

(a) Propagation from the left edge to the right. (b) Propagation from the bottom edge to the top.

Figure 6.2: Results for tracing rays with normal incidence to one of the edges of the domain,
quadrilateral mesh.

(a) Propagation from the left edge to the right. (b) Propagation from the bottom edge to the top.

Figure 6.3: Results for tracing rays with normal incidence to one of the edges of the domain,
triangular mesh.

The second numerical simulation is a slight modification of the previous one. Now we will
consider skew incidence and simulate travelling of several rays with 10 and 45 degree angle of
incidence to one of the edges of the domain. Indeed, the direction angle of out-coming rays
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should remain the same after propagating through a constant refractive index domain. The
resulting ray trajectories are shown on figures 6.4a and 6.4b for the case of quadrilateral mesh
and on figures 6.5a and 6.5b for the triangular mesh. The calculated RMS error between

(a) 10 degree incidence. (b) 45 degree incidence.

Figure 6.4: Results for tracing skew rays incident with one of the edges of the domain,
quadrilateral mesh.

(a) 10 degree incidence. (b) 45 degree incidence.

Figure 6.5: Results for tracing skew rays incident with one of the edges of the domain,
triangular mesh.

the input and output ray direction angles of simulated ray trajectories had for both mesh
types and for both considered incident angles order of 10−16 which is of the same order as
the floating-point relative accuracy on simulating computer station.

6.1.2 Thin lens spherical abberation

Although the above mentioned simulations suggest a proper functionality of the algorithm
for homogeneous refractive index media, more detailed investigation of valid refraction on
domain boundaries was done on an example of thin lens with spherical abberation.
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Spherical abberation is an optical effect which cause that monochromatic rays from a point
source do not converge to a single image point image after being refracted by a lens. Rays
that strike the lens near to its edge are focused closer in comparision with those that strike
nearer the centre (paraxial rays) ([3]).
For a thin lens of very small aperture, and for objects very near the axis of the lens, the
relation between the object distance u and image distance v may be expressed as ([23])

1

u
+

1

v
=

1

f0
, (6.1)

where f0 is the paraxial focal length of the lens, which is given by following equation ([23],
[24])

1

f0
= (n− 1)

[
1

R1

− 1

R2

+
(n− 1)d

nR1R2

]
, (6.2)

where R1 and R2 denotes radii of curvature of spherical surfaces of the lens, n is refractive
index and d stands the distance along the lens axis between the two surface vertices (the
lens thickness). For a thin lens approximation d << R1 or d << R2 has to be guaranteed.
The difference ∆f between the focal length for paraxial rays f0 and rays being incident with
the lens at distance h from the optical axis is approximately given by

∆f = f0 − f(h) ≈ 1

2
Kh2 . (6.3)

The parameter K is a characteristic measure of the spherical aberration of the focusing
element. For a thin spherical lens it can be written ([23], [24])

K =
1

4f0n(n− 1)

[
n+ 2

n− 1
q2 + 4(n+ 1)qp+ (3n+ 2)(n− 1)p2 +

n3

n− 1

]
, (6.4)

where q = (1−R1/R2)/(1+R1/R2) is called the shape factor and p = 2f/u−1 = 1−2f/v =
(1− u/v)/(1 + u/v) denotes the position factor.
For the particular values of R1 = R2 = 0.25 m, d = 1 cm, n = 1.45 a fused silica glass domain
was created in COMSOL environment, meshed with 1762 triangular elements and imported
to MATLAB. We have considered p = −1 corresponding to a object placed in u =∞ imaged
in distance v = f0. The ray tracing results from the MATLAB algorithm are depicted in
the figure 6.6a1. Rays with the same colour are incident with the lens in the same distance
h from the optical axis. The spherical abberations are more obvious if we zoom a little bit
the focal point area (see figure 6.6b) to clearly see that rays that strike the lens near to
its edge are focused closer (red rays) in comparison with those that strike nearer the centre
(violet rays). We may plot the focal point f(h) as a function of h using equations (6.3) and
(6.4) and compare with numerical results. The graph showing the comparison as well as the
relative error between analytical and numerical solution is depicted in the figure 6.7. The
relative error is growing up to 1.4% for this particular configuration. The main cause consist
in limitations of analytical model which holds only for an infinitely thin lens. Hence, even
though the ratio d/R = 0.04 is significantly less than 1 and therefore the assumption of thin
lens approximation is relevantly reasonable, the error is relatively high.

1The lens appears to be non-transparent because the plot also contains high-density mesh.
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Let us consider different configuration with lower d/R ratio and observe if the relative error
would be less than in the previous case. For the values of R1 = R2 = 1.25m and d = 0.5mm
we get approximately ten times less ratio d/R = 0.004 and if we plot and compare analytical
and numerical results2 for the focal point f(h) we may observe, that the relative error is in
this new configuration much lower (approximately 60 times lower) than in the previous one
(see figure 6.8). Based on this observation we may conclude that as d/R→ 0 the numerical
solution approaches to the analytical solution.
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Figure 6.6: Results for tracing rays through a thin lens.
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Figure 6.7: Focal point simulation results compared to analytical model, d/R = 0.04.

2The computational mesh was generated with the same parameters as in the previous case.
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Figure 6.8: Focal point simulation results compared to analytical model, d/R = 0.004.

6.2 Inhomogeneous refractive index media

On the example of rectangular glass domain incident with set of normal and skew rays and
on the example of thin lens we have so far verified the implemented algorithm for simulations
of ray propagation in homogeneous refractive index media. The next step is to validate the
performance for inhomogeneous refractive index media which is more general case. As in the
thin lens example we will use comparison approach which stands on comparing a closed-form
solution with the numerical results. To obtain the analytical formula for the ray trajectory
in particular graded index medium, one has to solve the differential ray equation (3.12).
The task is generally not trivial and therefore it is convenient to consider simplifications.
The inhomogeneity of the refractive index will be assumed only as a result of non-uniform
temperature distribution. Effect of thermal deformations will be neglected for the sake of
simplicity.
Another simplification outcomes from considering a cylindrical geometry which is widely
used within the solid-state laser systems for both active media and other optical elements.
When investigating thermo-optical effects in the medium with cylindrical geometry one can
in certain cases take advantage of geometrical symmetry and treat the medium as a two di-
mensional axial-symmetric domain. In our examined case we will consider axial-symmetric
glass rod for which hold that the height (or length) of the cylinder is greater than its di-
ameter. Second widely used cylindrical geometry used in solid-state laser systems is an
axial-symmetric disc (cylinder diameter is greater than its height). Because of the geometric
analogy between the disc and the rod geometry the derived solutions for a rod holds also
for a disc3. Based on this fact model equations for axial-symmetric cylindrical geometry are
presented first and then only the rod geometry is examined for particular parameters.

3For the same set of assumptions and considered simplifications during the solution derivation.

44



CHAPTER 6. VALIDATION OF THE IMPLEMENTED RAY TRACING ALGORITHM

6.2.1 Axially symmetric cylindrical geometry

The heat generated within a cylinder by a pump-light absorption is considered to be removed
by a coolant flowing along the cylindrical surface. With the assumption of uniform internal
heat generation and thermal isolation of top and bottom faces of the rod, we may neglect
the small variation of coolant temperature in the axial direction and end effects ([2]). The
heat flow becomes strictly radial. The steady-state radial temperature distribution T (r) in a
cylindrical domain with the constant thermal conductivity k, in which the heat is generated
uniformly at a rate Q per unit volume, may be obtained from the following one-dimensional
heat equation ([2])

d2T (r)

dr2
+

1

r

dT (r)

dr
− Q

k
= 0 . (6.5)

The above equation can be derived from general heat equation (3.2) ([2], [13], [14]). The
solution gives the steady-state temperature distribution at any point along a radius r. With
the boundary condition T (r0) for r = r0, where T (r0) is the temperature at the cylinder
surface and r0 is the radius of the cylinder, it follows that

T (r) = T (r0) +
Q

4k
(r20 − r2) . (6.6)

The temperature profile is parabolic, with the highest temperature at the centre of the
cylinder. The heat generated per unit volume can be expressed as

Q =
Ph

πr02L
, (6.7)

where L is the cylinder height and Ph is the total heat dissipated by the rod.

Rod

In the examined case of a rod we have assumed Ph = 0.1 W total heat dissipated in a rod
with dimensions L = 5 cm and r0 = 0.5 cm made of fused silica glass with constant thermal
conductivity k = 1.38 W/(m · K). We have assumed that the coolant flowing along the
cylindrical rod surface guarantees constant temperature T (r0) = 293.15K.
The steady-state radial temperature distribution T (r) results in radial refractive index dis-
tribution n(r) in the rod which may be for a fused silica glass expressed as follows ([25],
assuming wavelength 1µm)

n(r) = pT2T (r)2 + pT1T (r) + pT0 , (6.8)

where pT2 = 1.375 · 10−8 [1/K2], pT1 = 6.644 · 10−7 [1/K], pT0 = 1.449 [−]. If we substitute
for the temperature T from the expression (6.6) and expand we obtain

n(r) = pr4r
4 + pr2r

2 + pr0 , (6.9)

where

pr4 = pT2
Q2

16k2

[
1

m4

]
(6.10)

pr2 = −pT2
Q2r20
8k2

− pT1
Q

4k
− pT2

QT (r0)

2k

[
1

m2

]
(6.11)

pr0 = pT2
Q2r40
16k2

+ pT1
Qr20
4k

+ pT2
QT (r0)r

2
0

2k
+ pT0 + pT1T (r0) + pT2T (r0)

2 [−] .(6.12)
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Both radial temperature and refractive index distribution are plotted in the figure 6.9. The
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Figure 6.9: Radial temperature T (r) and refractive index n(r) distribution w. r. t. radial
distance r in the rod, z = L/2.

radial refractive index distribution (6.9) is a forth order polynomial function. Obtaining the
closed-form solution of the differential ray equation (3.12) would be quite tedious for this
particular radial distribution, therefore it is advantageous to consider some simplifications.
One approach to solve the differential equation (3.12) is to describe the ray trajectory by two
functions x(z) and y(z), for the infinitesimal element of the arc length along the ray write
ds =

√
1 + (dx/dz)2 + (dy/dz)2, and substitute into equation (3.12) to obtain two partial

differential equations for x(z) and y(z). The paraxial approximation for which ds ≈ dz
simplifies considerably the algebra of the solution ([4]). The equations (3.12) become

d

dz

(
n
dx

dz

)
≈ ∂n

∂x
(6.13)

d

dz

(
n
dy

dz

)
≈ ∂n

∂y
(6.14)

In the rod under consideration the refractive index n = n(r) is constant in azimuthal ϕ
and longitudinal z-direction and varies continuously only in the radial r-direction. The
trajectories of paraxial rays in the r-z plane are described by the paraxial ray equation

d2r

dz2
=

1

n

dn

dr
. (6.15)

Given n(r) and the initial conditions r and dr/dz at z = 0 equation (6.15) can be solved for
the function r(z), which describes the ray trajectories.
To simplify the solution even more, the radial distribution n(r) expressed in (6.9) was re-
fitted with a following function ([4])

n(r) = n0(1− α2r2)1/2 , (6.16)
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Figure 6.10: Comparison of refractive index n(r) distributions (6.9) and (6.16), z = L/2.

where n0 = 1.45 and α = 0.05526 1/m with a negligible RMSE error of 2 · 10−12 (see figure
6.10 for comparison of refractive index distributions). Refractive index distribution (6.16)
represents a widely used distribution known as SELFOC. The main advantage of switching
to a SELFOC index distribution is that for α2r2 << 1 the distribution (6.16) may be
approximated as a parabolic distribution

n(r) = n0(1−
1

2
α2r2) . (6.17)

Further, because n(r) − n0 << n0, the fractional change of the refractive index is very
small. Taking the derivative of (6.17), the right-hand side of equation (6.15) is 1/n dn/dr =
−(n0/n)2α2r ≈ −α2r, so that equation (6.15) becomes

d2r

dz2
= −α2r . (6.18)

The solution of this differential equation are harmonic functions

r(z) = r0 cosαz +
θ0
α

sinαz , (6.19)

where r0 = r(0) and θ0 is the initial slope dr/dz at z = 0.
The rod geometry with specified dimensions was created in COMSOL and meshed with

1. quadrilateral mesh consisting of 250 elements (10 x 25 elements in r-axis x z-axis
direction),

2. triangular mesh consisting of the same number of elements 250 in order to compare
the results.

Both mesh configurations were imported into MATLAB and together with n(r) distribu-
tion specified according to (6.17) subjected to the ray tracing algorithm. We have con-
sidered NR = 5 rays propagating from the points [ri,−1, 0] , i = 1, 2, · · · , 5, where ri =
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r0
NR+1

, 2r0
NR+1

, · · · , NRr0
NR+1

resulting in 5 normal incident rays uniformly distributed along the
radial distance r at z = 0. Resulting ray trajectories and with respectful mesh under consid-
eration are depicted in figures 6.11 and 6.12. Because of relatively small induced refractive
index gradient along the r-axis bending of the incident rays is not clearly visible in the
presented figures. To further analyse the numerical solution we have compared it with the
closed-form solution from equation (6.19). Comparison of analytical and numerical solutions
for both considered meshes as well as the calculated absolute errors for respectful rays are
depicted in the figure 6.13.
It is worth to remark a few aspects we may observe in the figure 6.13 with presented results.
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Figure 6.11: Resulting ray trajectories in thermally loaded axial symmetric glass rod.
Quadrilateral mesh consisting of 250 elements.
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Figure 6.12: Resulting ray trajectories in thermally loaded axial symmetric glass rod. Tri-
angular mesh consisting of 250 elements.

The absolute error apparently has an increasing trend as the rays propagates through a fi-
nite element discreticized medium. The resulting character of absolute error is exponential
likewise and which is in good agreement with results presented in other papers ([19], [20],
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[21]). The exponential growth of the error may generate relatively large errors for a thicker
optical components and longer optical path lengths. This aspect should be always reminded
when using the implemented ray tracing algorithm.
Further, it can be observed, that the absolute error is for all traced rays larger when the
domain is discreticized with triangular elements. However, if we take a closer look at the
meshes used in this particular case (figures 6.11 and 6.12) we may observe that in the r-axis
direction the quadrilateral mesh consists of 10 layers of elements, whereas the tringular mesh
the r-axis refractive index is approximated with only 4. This results in more poor approxi-
mation of radial gradient index field in the case of triangular mesh. Important observation
which can be made here is that not only the total number, but also the shape of finite ele-
ments used for domain discretization greatly influences how accurate the gradient index field
is approximated. For instance, extremely severe gradient fields should be discreticized with
larger number of elements so that the gradient field is minimized across all the contained
elements ([21]).
To acknowledge this theory the glass rod was remeshed with

1. quadrilateral mesh consisting larger number of elements - 7500 (150 x 50 elements in
r-axis x z-axis direction),

2. triangular mesh consisting of the same number of elements 7500 with approximately
the same number of layers 145 in r-axis direction as in the case of quadrilateral mesh.

Using the same radial refractive index distribution and set of rays the ray tracing was
repeated. The resulting ray trajectories for more dense mesh along with the absolute error
between analytical and numerical solutions are depicted in the figure 6.14. Note that the
while the increasing trend remained the maximal error is now maintained within a few
nanometers which is compared to the assumed wavelength of 1µm below 1%.
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Figure 6.13: Comparison of analytical and numerical solutions for ray trajectories in ther-
mally loaded axial symmetric glass rod. Both meshes consisted of 250 elements.
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Figure 6.14: Comparison of analytical and numerical solutions for ray trajectories in ther-
mally loaded axial symmetric glass rod. Both meshes consisted of 7500 elements.
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Chapter 7

Ray tracing of a zigzag slab geometry

In the previous chapter the implemented ray tracing algorithm performance was validated
in detail for both homogeneous and inhomogeneous refractive index media. The topic for
a current chapter will be another possible usage of the implemented algorithm. We will
investigate optical paths differences of a larger set of rays propagating in a optically pumped
zigzag laser amplifier. A zigzag laser amplifier represents one of most widely used amplifier
geometries. Simplified scheme in the figure 7.1 depicts the main idea of laser light amplifi-
cation in an illustrative amplifier with zigzag geometry. The incident light is refracted on a
skew boundary and propagates through the amplifier experiencing multiple total reflections.
The goal of this procedure is to maximize the travelled distance of light through an active
area experiencing amplification for a longer time. Compared to this illustrative scheme the
geometric parameters as well as amplifier gain material differ according to the particular
laser system.

Pump

Laser

input

Amplified

laser

output
Gain

medium

Figure 7.1: Simplified scheme of laser light amplification in an illustrative amplifier with
zigzag geometry.

In our case a modification of zigzag laser amplifier presented in [26] will be considered. Com-
pared to the article our considered zigzag amplifier will have different geometry parameters
labeled according to the figure 7.2. The gain material is a commonly used laser crystal YAG
(Yttrium Alluminium Garnet) doped with neodymium ions in central part of the amplifier
with length LNd (see figure 7.2). The amplifier is optically pumped on both ends using
radiation on wavelength 808 nm. The pump radiation is assumed to be absorbed only in
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Laser

input

Right pump with

 input intensity I0

Laser

output
0.6 % Nd:YAGUndopped 

YAG

Undopped 

YAG

Left pump with

 input intensity I0

Lw

LNd

h

LYAG

β

β

Figure 7.2: Zigzag amplifier geometry under consideration.

the active (dopped) area1 according to a Beer-Lambert’s law

I(x) = I0e
−αx , (7.1)

where the intensity of the pump radiation I(x) lowers exponentially with the distance trav-
elled in x-axis direction. The parameter α denotes the absorption coefficient which is in
general both wavelength and temperature dependent. In our case we will neglect the tem-
perature dependence for the sake of simplicity. The heat load distribution results from
Beer-Lambert’s absorption of two counter-propagating pump radiations with equal input
intensities I0.
A two dimensional model of the zigzag amplifier with dimensions labelled according to the
figure 7.2 was created in COMSOL environment. The specific values of geometry and simu-
lation parameters are listed in table 7.1. Material properties of a YAG crystal were assumed
to be constant with temperature (see table 7.2). A simplified heat removal scheme for the

Parameter Value Description

Lw 59.2 mm slab length
LNd 33 mm dopped area length
LY AG 13.1 mm undopped area length
h 10 mm slab height
β π/4 rad angle of skew edges
h0 4000 W/(m2 ·K) heat transfer coefficient
P0 100 W pump source power
wp 6 mm pump square beam width
wl 8 mm laser square beam width
I0 6.66 · 105 W/m2 input pump intensity
T0 293.15 K coolant temperature

Table 7.1: Simulation parameters.

thermo-mechanical simulations will be considered. Along the longer edges of the amplifier
we will consider a convective heat flux q0 boundary condition which may be expressed as

q0 = h0(T0 − T ), (7.2)

where h0 denotes the heat transfer coefficient and T0 stands for the coolant temperature.
The longer edges were also assumed to be fixed (non-deformable). The remaining skew edges

1Absorption of the pump radiation in the undopped part of the amplifier (pure Y AG crystal) is compared
to the absorption in the active area negligible.
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Parameter Value Description

ρ 4.55 g/cm3 density
Cp 590 J/(kg ·K) heat capacity at constant pressure
k 11.2 W/(m ·K) thermal conductivity
αT 6.14 · 10−6 1/K thermal expansion coefficient
n0 1.82 refractive index at initial temperature

dn/dT 7.3 · 10−6 · 10−6 1/K thermo-optic coefficient for Nd:YAG (@1064 nm)
α 1.8 1/cm absorption coefficient for Nd:YAG (@808 nm)

Table 7.2: Material properties of a YAG crystal ([26], [27]).

of the geometry are assumed to be thermally isolated and free to deform. Both quadrilateral
and triangular mesh was generated for comparison reasons likewise to the simulations in the
previous chapter dedicated to the algorithm validation.
The resulting temperature and displacement fields (see the figures 7.3 to 7.5) were along with
the computational meshes imported into the MATLAB environment. For the ray tracing

Figure 7.3: Zigzag amplifier temperature field.

algorithm we will consider 100 rays propagating in the x-axis direction defined as [xri, yri, αri],
i = 1, 2, . . . , 100, where xri = −1, yri is uniformly distributed in range

〈
h
2
− wl

2
, h
2

+ wl

2

〉
and

αri = 0. The ray trajectories were obtained for three different refractive index distributions
within the domain.

1. Homogeneous constant refractive index field n(x, y) = n0 to simulate the propagation
in non-pumped amplifier.

2. Inhomogeneous refractive index field n(x, y) = f(T (x, y)) varying only with tempera-
ture T (x, y) according to the equation (3.9).

3. Inhomogeneous refractive index field on deformed mesh n(x, y) = g(T (x, y), d(x, y))
where the refractive index n(x, y) is dependent on both temperature T (x, y) and dis-
placement field d(x, y).
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Figure 7.4: Zigzag amplifier displacement field, x-component.

Figure 7.5: Zigzag amplifier displacement field, y-component.

Figures 7.6 and 7.7 shows the obtained trajectories for the first and second considered re-
fractive index distribution2.Only five out of a hundred trajectories were plotted to retain
readability.
Optical paths defined according to the equation (3.13) were calculated for all obtained tra-
jectories starting at the beginning point [xri, yri, αri] and ending at the point where the
respectful ray intersect the vertical line at x = 0.06 m (right behind the amplifier). From
the resulting optical paths the minimum value was subtracted in order to get the optical path
difference which was then normalized to a laser emission wavelength of Nd:YAG 1064 nm.
The optical path differences are plotted in the figure 7.8 with respect to the y-coordinate of
the intersection of respectful output rays with the vertical line at x = 0.06.
The presented result is well demonstrating the influence of thermo-optic effects introduced
in the third chapter. Notice that while the rays propagating through the non-pumped am-
plifier have travelled the same optical path, the rays propagated through the pump-heated
amplifier have travelled each different optical path. Difference between the minimal and
maximal optical path travelled reaches up to more than 2.5 multiple of the wavelength for
the case where n(x, y) = f(T (x, y)) and more than 1.5 multiple of the wavelength for the
case of n(x, y) = g(T (x, y), d(x, y)). This truly refers to thermal wavefront abberations

2Plot for the third considered case would be visually the same as the plot in the figure 7.7 since the
deformations are of order 10−6
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Figure 7.6: Obtained trajectories for the constant refractive index field within the modeled
zigzag amplifier.
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Figure 7.7: Obtained trajectories for the inhomogeneous refractive index field within the
modeled zigzag amplifier.

which eventually cause output beam quality degradation (see again the thermo-optic effects
scheme in the third chapter). The influence of considering the thermal deformation is also
worth noting. Even a few micrometers deformed skew edges of the computational domain
caused a slightly different shape of OPD. However, its magnitude is comparable to the case
in which only the temperature dependent variation of refractive index was considered. With
this observation we may refer to the earlier presented fact that the temperature dependent
refractive index variation is often dominant compared to the stress dependent refractive in-
dex variation. This definitely holds also for our examined case of the zigzag amplifier, but
for a different case (i. e. investigation of wavefront distortions in some thin optical compo-
nents) neglecting the stress dependent refractive index variation would cause a large error
in simulated results.
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Figure 7.8: The resulting optical paths differences normalized by laser beam wavelength
1064 nm. Comparison of computational meshes.
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Chapter 8

Conclusions and future work

This work deals with numerical simulations of a laser beam propagation through a thermally
loaded solid-state media. The particular media of interest are commonly used optical com-
ponents in solid-state laser systems. An operation of a laser system is always associated with
thermo-optic effects arisen due to a parasitic power absorption in all optical components.
Untreated thermal effects may result in output power loses, beam quality degradation, laser
system destabilization and eventually even in a fracture of optical components. This be-
comes more serious problem especially in high-average-power laser systems. Therefore, a
reduction of the thermal effects has to be considered during the system design. The core
task of the thesis was to design and implement a numerical algorithm for simulation of a
laser beam propagation in optical components commonly used in solid-state laser systems.
The algorithm may be used in development process and for thermo-optic analysis of optical
components. Within the work only two dimensional problems were considered and a laser
beam was approximated as a set of rays.
In order to built the mathematical base for the algorithm the set of model equations used for
thermo-optical analysis of an isotropic medium was presented in the third chapter. The set
mainly consists of partial differential equations for which obtaining analytical solution is in
most cases very tedious or even impossible. Therefore the finite element method was briefly
introduced in following chapter as a tool to solve a set of PDEs. Main implementation steps
were mentioned and more detailed insight into key concepts of FEM (2D meshing and linear
shape functions) was given in the forth chapter.
The numerical algorithm was then built on the mathematical basis of FEM to enable numeri-
cal solving of differential ray equation within a general 2D discretized graded-index deformed
medium.
The algorithm was implemented in MATLAB environment. Its performance was compre-
hensively validated on several illustrative simulation examples. The first examined case was
the case of constant refractive index glass domain incident with a set of normal and oblique
rays. The proper refraction on domain boundaries was verified.
More detailed investigation of refraction was done in simulation of a lens spherical abber-
ations. In this case the numerical results were presented for focal point f(h) varying with
the ray intersection distance h from the optical axis. It has been shown that the numerical
solution obtained for f(h) approach to the presented thin lens analytical solution as the
investigated lens becomes more thin. The obtained relative error of numerical solution was
for the ratio between the lens thickness and radius of curvature d/R = 0.004 below 0.03 %.
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The next simulation example was dedicated to algorithm validation for a graded-index me-
dia. Widely used axially symmetric rod geometry was considered assuming strictly radial
refractive index variation as a result of parasitic heating. The thermal deformation were ne-
glected for the sake of simplicity and only the temperature dependent variation of refractive
index was considered. Numerical solutions for trajectories of 5 normal incident rays were
presented and compared with the analytical solution of corresponding paraxial ray equation.
It has been observed that the geometrical shape of disretizing elements as well as their total
number influences greatly the accuracy of the numerical solution. In order to obtain more
accurate solution, the computational mesh should be designed in such a way that the index
gradients are almost constant within the finite element. This theory was confirmed by a
repeated simulation with using mesh consisting of larger number of mesh elements. The
absolute error of the numerical solution was in this case under 0.5% compared to the con-
sidered wavelength 1 µm of incident rays.
In the final chapter an illustrative case of calculation of optical path differences for a set of
100 rays propagating through a zigzag laser amplifier was presented. Three refractive index
fields were considered within the simulation. 1) Constant, 2) Temperature varying only and
3) Temperature varying with thermal deformations of the medium included. The main goal
was to show how the thermal effects strongly influence the output beam quality. The numer-
ical results confirmed that while the rays propagating through the constant refractive index
domain have travelled the same optical path, the rays propagating through the graded-index
field have travelled each different optical path. Difference between the minimal and maximal
optical path travelled reached up to more than 2.5 multiple of the considered wavelength
for the case 2) and more than 1.5 multiple of considered wavelength for the case 3). This
result suggest that in this case the stress dependent variation of refractive index is not com-
pared to the temperature variation significant since the magnitude of obtained optical path
differences is for both filds 2) and 3) comparable. However it should be reminded, that for a
different case neglecting the stress dependent refractive index variation would cause a large
error in simulated results. Such a case could be calculation of OPD for a very thin optical
component.
No significant difference in terms of solution accuracy or computational efficiency was found
between the triangular and quadrilateral computational meshes within this work. In all
simulations in which both considered meshes were used the accuracy of obtained numerical
solutions was comparable as well as the time of computation.
The next planned step for this work is extension of the algorithm into a 3D space enabling
more advanced thermo-optic effects modelling. Apart from that, taking into account the
material anisotropy is also a challenging.
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