

Prague 2014

Vehicle test platform

Master's thesis

Study program: Open informatics

Major: Computer engineering

Supervisor: Doc. Ing. Jiří Novák, Ph.D.

Martin Zeman

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

Department of Control Engineering

I confirm that I've completed this thesis myself and have only used the sources

(including literature, projects and software) listed in the corresponding section.

In Prague 30.12. 2014

 signature

Abstrakt

Tato práce si klade za cíl návrh struktury a implementaci programového vybavení pro

testovací platformu vozidlových komunikačních standardů. Náplň se skládá z vývoje

obslužné aplikace pro platformu PC Windows. Další součástí je firmware řídicího

mikrokontroléru samotné platformy postavený nad operačním systémem reálného času. K

propojení obou části je zapotřebí navrhnout komunikační protokol pro jejich interakci. Systém

musí být schopen vzdálené rekonfigurace hradlového pole, jež je součástí testovací platformy

a obsluhy řadičů standardu FlexRay v něm implementované.

Abstract

This thesis aims to design the structure of and to implement the software component of

a test platform for vehicular communication standards. The task breaks down into two main

areas. The first entails the development of a PC platform-based application responsible for

coordinating all platform functionality. The second part involves the development of firmware

on the platform side. The system is required to run a real-time operating system. In order to

enable interaction between the parts a communication protocol needs to be developed. The

system must be capable of remote reconfiguration of the design in the FPGA, which is a part

of the platform.

Acknowledgements

First and foremost a sincere thank you goes to Doc. Ing. Jiří Novák, Ph.D. I appreciate

his patience and time devoted to helping me succeed. I'm equally grateful for his tolerance for

broken hardware. I'd also like to thank my friend and former classmate Ing. Jiří Blecha, the

author of the platform's hardware, for always taking the time to explain the intricacies of his

design. Last but not least, I express my gratitude to my family who have supported me during

my studies and continue to do so.

Table of contents

Table of contents

Abstrakt ... 2

Abstract ... 2

Acknowledgements ... 3

Table of contents ... 1

List of figures and tables ... 4

1. Introduction .. 1

1.1. Analysis of the assignment ... 1

1.2. Analysis of the solution .. 2

2. FlexRay .. 3

2.1. Brief description ... 3

2.2. Physical layer .. 4

2.3. Link layer .. 8

2.3.1. Architecture of a node .. 9

2.4. Communication cycle ... 10

2.4.1. Microtick – μT ... 11

2.4.2. Macrotick – MT ... 11

2.4.3. Static segment .. 11

2.4.4. Dynamic segment ... 12

2.5. Frame format .. 13

2.6. Clock synchronization .. 14

2.6.1. Measurement .. 14

2.6.2. FTM algorithm ... 14

2.6.3. Rate Correction calculation .. 15

2.6.4. Offset correction calculation .. 16

2.7. Startup mechanism ... 16

3. System architecture .. 18

Table of contents

4. FreeRTOS .. 19

4.1. Port settings .. 19

4.2. Features used .. 20

4.2.1. Tasks .. 20

4.2.2. Queues .. 21

4.2.3. Mutexes, semaphores and binary semaphores ... 21

5. Firmware .. 22

5.1. Porting of the lwIP stack .. 22

5.2. Command processing ... 22

5.3. Task declaration macros ... 24

5.4. TCP server implementation .. 25

5.5. EMIF ... 26

5.6. MCU state machines ... 27

5.6.1. MCU Connection state machine .. 27

5.6.2. MCU FR state machine .. 29

5.6.3. FPGA FR state machine ... 32

6. PC Application ... 34

6.1. State machines .. 34

6.1.1. General state machine .. 34

6.1.2. FPGA State Machine.. 37

6.2. Features ... 38

6.2.1. Monitoring and frame transmission ... 38

6.2.2. Remote reconfiguration of the FPGA .. 42

6.2.3. Remote task control .. 42

6.2.4. Fibex parsing .. 43

6.2.5. FPGA FlexRay controller and Testing ... 46

6.2.6. Target I.P. setting ... 47

6.2.7. ECU Mapping .. 47

Table of contents

6.2.8. Saving and loading of Cluster and MCU parameters 48

6.2.9. Other useful features .. 49

6.3. TCP client implementation ... 51

6.4. Database .. 51

7. Communication protocol ... 55

7.1. Purpose of the protocol ... 55

7.2. Requirements .. 55

7.3. Negotiation of supported functions .. 56

7.4. Message format... 56

7.4.1. PC to MCU ... 57

7.4.2. MCU to PC ... 64

8. Conclusion ... 66

References ... 67

List of figures and tables

List of figures and tables

List of Figures

Figure 2-1: FlexRay transceiver with two channels ... 4

Figure 2-2: Levels of FlexRay's electrical signals .. 5

Figure 2-3: A Bus with two channels ... 6

Figure 2-4: Dual channel single star configuration .. 6

Figure 2-5: Single channel cascaded star configuration ... 6

Figure 2-6: Dual channel cascaded star configuration .. 7

Figure 2-7: Single channel hybrid example .. 7

Figure 2-8: Dual channel hybrid example .. 8

Figure 2-9: Physical layer and link sub-layers .. 9

Figure 2-10: Architecture of a FlexRay node ... 10

Figure 2-11: Communication cycle .. 11

Figure 2-12: FlexRay frame format .. 13

Figure 2-13: An example of FTM calculation for k = 2 ... 15

Figure 3-1: System architecture .. 18

Figure 5-1: Command dispatching ... 23

Figure 5-2: EMIF Settings .. 27

Figure 5-3: MCU Connection state machine .. 28

Figure 5-4: State machine for handling the MCU's FlexRay controller 29

Figure 5-5: Details of message exchange at the end of data definition 31

Figure 5-6: MCU FPGA State machine .. 32

List of figures and tables

Figure 6-1: PC application's main state machine .. 35

Figure 6-2: PC FPGA State machine .. 37

Figure 6-3: How to select a frame to be monitored .. 38

Figure 6-4: Difference between FPGA and MCU frames .. 39

Figure 6-5: Message Editor tab example .. 40

Figure 6-6: Monitoring example ... 41

Figure 6-7: Remote configuration ... 42

Figure 6-8: Task manager window ... 43

Figure 6-9: UML diagram of a FlexRay fibex file ... 44

Figure 6-10: Cluster Setup after loading a fibex file .. 45

Figure 6-11: Cycle settings in the MCU ... 46

Figure 6-12: FGPA Status window ... 47

Figure 6-13: IP Address settings window ... 47

Figure 6-14: ECU Mapping example .. 48

Figure 6-15: Load and Save menu options ... 49

Figure 6-16: Absolute vs relative time ... 50

Figure 6-17: Monitoring record from Figure 6-6 saved as CSV file and displayed in MS

Excel ... 50

Figure 7-1: MCU slot definition message format - first word .. 59

Figure 7-2: MCU slot definition message format - second word 60

Figure 7-3: MCU Tx Data Definition Message Format ... 60

Figure 7-4: MCU Tx Data Update Message Format .. 60

Figure 7-5: FPGA TX frame data definition message format - first word 61

List of figures and tables

Figure 7-6: FPGA TX frame data definition message format - Timestamp - second and

third word ... 62

Figure 7-7: FPGA TX frame data definition message format - Macrotick - second word

 .. 62

Figure 7-8: FPGA TX frame data definition message format - Macrotick and Cycle -

second word .. 62

Figure 7-9: FPGA TX frame data update message format ... 62

Figure 7-10: Send FPGA design message format - bytes 0 to 3 63

Figure 7-11: Send FPGA design message format - bytes 4 to 5 63

Figure 7-12: Send FPGA design data message format ... 63

Figure 7-13: Supported Commands and Version Response message format 65

Figure 7-14: FlexRay Data Message Format .. 65

List of Tables

Table 2-1: An example of measured values .. 14

Table 2-2: Number of entries to eliminate .. 15

Table 6-1: Contents of the ECUs table ... 52

Table 6-2: Contents of the FPGAs table ... 53

Table 6-3: Contents of the Frames table ... 54

Table 6-4: Contents of the Signals table ... 54

Table 6-5: Contents of the Triggers table ... 55

Table 7-1: PC to MCU command table .. 57

Table 7-2: MCU FlexRay parameters ... 59

Table 7-3: FPGA FlexRay parameters .. 61

List of figures and tables

Table 7-4: Trigger Type values .. 62

Table 7-5: MCU to PC response table .. 64

The three bytes in Figure 7-13 are followed by a number of bytes defined in the

"Number of commands" section. Each byte contains a supported command code from Table

7-1. .. 64

Introduction

1

1. Introduction

1.1. Analysis of the assignment

The aim of this thesis is to integrate various projects from a number of authors into a

functional and flexible vehicular testing platform. The integration consists of a development

of a PC-Windows-based application responsible for providing an interface between the testing

platform and the user. The application must be capable of controlling the function of the

FlexRay controller present in the platform's MCU such as defining the outgoing

communication and monitoring of the incoming frames.

Another important feature is the remote reconfiguration of the design in the FPGA. The

application has to be able to send an arbitrary design file from the PC's file system to be

loaded into the FPGA or be capable of loading the default design present in the MCU's flash

memory.

Next, the application needs to provide the functionality to remotely run and suspend

user-defined tasks in the MCU. Said tasks are to be defined at compile time as part of the

MCU's firmware.

The application is also responsible for the management of the FlexRay controllers

implemented in the FPGA. These controllers provide some unique features for the testing of

the parameters of the FlexRay networks. The application's role is to trigger these tests and

present the user with results. Specifically, the application needs to provide an interface in

which to configure and manage all the controllers present in the FPGA separately.

On the hardware side the MCU is required to run a real-time operating system to

provide the programmer with methods of task synchronization and resource protection. The

use of a real-time operating system also offers a higher flexibility in terms of task separation,

better control over timing requirements and an overall richer selection of tools for building

non-trivial systems.

The MCU's firmware acts as the execution centre for all the system's functionality. It

needs to receive and decode requests from the PC application and carry out corresponding

actions. In order to facilitate these functions, it is necessary to develop a protocol for

communication between the PC application and the MCU.

Introduction

2

1.2. Analysis of the solution

From a hardware standpoint the platform provides a TMS570LS3137ZWT

microcontroller from Texas Instruments. This chip has been chosen due to previous

experience with it in which it has proven to be both powerful and cost-efficient. The chip

provides a wide variety of interfaces and modules, as well as a flash memory of sufficient

capacity (3072 KB) for the purposes of the platform.

Another significant advantage of this microcontroller is that Texas Instruments provide

developers with a great tool called Halcogen to generate code for its configuration, initiation

and libraries for all its peripherals, with the exception of the FlexRay interface. This tool is

also capable of generating a port of the freeRTOS real-time operating system specifically for

the TMS570 MCU family.

This makes the choice of the real-time operating systems simple. Our requirements for

the OS are:

 Real-time capability

 Must be lightweight

 Must be able to provide methods of task-synchronization and resource

protection

 Must be able to provide an interface to report defined tasks and run/suspend

them flexibly

 Must be free

 Must be open-sourced with a reasonable license

 Needs to be well-documented

FreeRTOS meets all these requirements and therefore has been selected as the OS for

the platform. Detailed settings of the used port are described in section 4.1.

The firmware can take advantage of a FlexRay library written for the E-Ray controller

by the author of this thesis for a previous project (source [11]). It provides a basic API which

simplifies the handling of the controller's functions.

A decision has been made to use the TCP/IP protocol as a basis for building the

communication protocol between the PC application and the MCU. The main reason for this

decision over the USB, which is in reality the only other candidate, is previous experience

with the lwIP stack. Another factor is TCP's simplicity compared to USB. Its advantage

FlexRay

3

compared to UDP lies in its reliability while maintaining high enough throughputs. This

decision requires the lwIP stack to be ported for the combination of freeRTOS with TMS570.

A couple of possible ways to implement the communication protocol between the PC

application and the MCU were considered. The first option was to opt for a RPC-type

protocol. This category broke down further into binary-based or human-readable protocols,

Bert and Apache Thrift are examples of the former and JSON-RPC or SOAP of the latter. The

alternative to RPC is a custom-made binary protocol. Considering the rather small

computational frequency of the MCU's core (160 MHz) and the number of tasks it has to

perform, the XML or JSON-based options needed to be dismissed due to the difficulty of their

parsing. A custom binary protocol has been selected since it offers the best performance while

maintaining simplicity.

The C# programming language with its .NET framework has proven to be a powerful,

flexible and versatile choice for our projects in the past. It offers an easy-to-use networking

and database API together with a vast variety of GUI components to build an application that

is both user-friendly and visually pleasing. Therefore, it has been chosen for this project as

well.

The FlexRay protocol defines a large number of parameters, which are necessary for a

network to function. The Fieldbus Exchange Format (FIBEX) is a network description

standard defined by the Association for Standardization of Automation and Measuring

Systems (ASAM) which encompasses all common automotive communication standards

including FlexRay. A FIBEX file contains all the information needed to describe an entire on-

board network and has become the standard input file format for commercial software. For

this reason, a decision has been made to use FIBEX as the input format for the PC

application.

2. FlexRay

2.1. Brief description

The FlexRay standard is a communication protocol released by the FlexRay Consortium

in the year 1999. Members of the consortium are leading companies of the automotive

industry such as GM, Bosch, BMW, Motorola, Volkswagen, Freescale, Daimler Chrysler and

others. The standard has been developed primarily for the automotive industry.

FlexRay Physical layer

4

Its intended field of application lies chiefly in safety-critical applications for instance

steer-by-wire or brake-by-wire. In contrast to standards like CAN, TTCAN or LIN it offers

higher bandwidth up to 10 Mbit/s. It is based on the time-division multiplexing (TDMA)

principle the determinism of which is crucial for real-time applications. This also presents its

main advantages over aforementioned standards which use the master/slave (LIN) or

CSMA/CR (CAN) methods of arbitration.

However, FlexRay combines both deterministic and stochastic approaches to

communication which makes it flexible. The standard only defines the physical and the link

layers as defined by the ISO/OSI reference model.

2.2. Physical layer

The physical layer is represented by a transceiver and an unshielded twisted-pair

cabling. The standard also offers the possibility to use optical fibers with optical transceivers.

FlexRay supports the usage of two separate channels (commonly referred to as A and B).

Those can act as completely independent media or can provide redundancy to achieve better

reliability. However, data consistency on redundant channels isn't secured by the controller

intrinsically and thus has to be implemented by the host.

Figure 2-1: FlexRay transceiver with two channels

Source: [1]

FlexRay Physical layer

5

Figure 2-2: Levels of FlexRay's electrical signals

Source: [1]

Furthermore, FlexRay introduces the bus guardian. It is an optional part of the physical

layer. The bus guardian is an element responsible for the protection of the channel from

interference caused by communication that is not in compliance with the cluster's

communication schedule. It is capable of blocking outgoing communication in time slots that

are not assigned to its hosting node. This prevents a potential break down of communication

between all the nodes of a cluster.

There are several approaches to designing a FlexRay cluster depending on its topology.

In addition to pure topologies like a bus or a star, FlexRay also supports their hybrid variants

which are a combination of the two. The number of channels used and their configuration

presents another point of decision. There's a plethora of possibilities. The thing to keep in

mind is the maximum length of a segment between two nodes which is 24 meters. These are

some examples of the possible topologies:

FlexRay Physical layer

6

Figure 2-3: A Bus with two channels

Source: [2]

Figure 2-4: Dual channel single star configuration

Source: [2]

Figure 2-5: Single channel cascaded star configuration

Source: [2]

FlexRay Physical layer

7

Figure 2-6: Dual channel cascaded star configuration

Source: [2]

Figure 2-7: Single channel hybrid example

Source: [2]

FlexRay Link layer

8

Figure 2-8: Dual channel hybrid example

Source: [2]

From a reliability standpoint it is no doubt preferable to use both channels as redundant

media. The bus topology is the simplest option and also the cheapest making it suitable for

simple applications. In this case the bus transmission line represents a weak link. In case of its

severance the whole network goes out of commission due to faulty line termination.

The active star topology enables us to reduce the consequences of a failure which

occurs in a part of the network. Failure of the active star element is nevertheless still a

potential risk. Hybrid topologies combine the advantages of the bus and the active star. Their

weaknesses can be partially made up for through a correct combination of both topologies

(example Figure 2-8).

2.3. Link layer

This layer of the ISO/OSI model is responsible for is the equivalent of a communication

controller and can be sub-divided into three sub-layers. These layers represent the core of the

standard itself and provide an interface to layers below and above. These include:

 Coding/decoding layer - responsible for modifying the data and physical coding of the

transmitted bits.

 Protocol execution layer - implements the core of the protocol, puts data into frames,

controls the media.

 Controller host interface layer - interface between the node and the host.

FlexRay Link layer

9

Figure 2-9: Physical layer and link sub-layers

Source web: http://automatizace.hw.cz/sbernice-komunikace-flexray-nejen-pro-automobily

2.3.1. Architecture of a node

 Host

> Contains the node's firmware

> Sets the parameters of the communication controller

> Enables/disables the usage of the bus guardian (if it is physically present)

 Communication controller

> Implements the protocol's core

> Provides an interface to the host

> Generates interrupts

> Generates the local time base - macrotick (refer to section 2.4.1)

> Synchronizes the local time base with the global time base

> Controls access to media

 Bus driver

> Drives and receives various bus signals

> Detects and reports error states

FlexRay Communication cycle

10

> Provides support for a remote node wakeup triggered by communication on

the bus

> Two independent channels (A and B)

 Bus Guardian

> Provides protection against unauthorized access to the bus

> Optional

Figure 2-10: Architecture of a FlexRay node

Source: [1]

2.4. Communication cycle

The FlexRay protocol divides time into so called communication cycles. The length of a

communication cycle is parameter which needs to be determined by the network-designer.

This length is constant during run-time. One communication cycle then breaks down into four

different segments. These are the static segment, the dynamic segment, the symbol window

and the network idle time.

FlexRay Communication cycle

11

Figure 2-11: Communication cycle

Source: [1]

Only the static segment and the network idle time are compulsory parts of the communication

cycle. The length of the communication cycle and its division into segments must be identical

in all the nodes of the cluster.

2.4.1. Microtick – μT

The microtick represents the smallest and atomic time interval. It is derived from the

controller's oscillator and therefore node-specific. The usual length is equal to the period of

controller's time base. It is not a subject to the global clock synchronization mechanism.

2.4.2. Macrotick – MT

Macrotick is a time interval identical for all the nodes in the cluster. It represents the

common perception of time in the FlexRay network. A macrotick consists of an integral

number of microticks, formally 𝑀𝑇 = 𝜇𝑇 ∙ 𝑘 ; 𝑘 ∈ ℕ, where the constant 𝑘 can differ in

different nodes of the cluster depending on the frequency of their time bases.

2.4.3. Static segment

The communication cycle always starts with the static segment. It is a compulsory part

of the communication cycle. It consists of 𝑛 ;𝑛 ∈ ℕ number of static slots. The maximum

number of static slots is defined by the standard as 1024. Each slots belongs to exactly one

node, however, one node can own multiple slots. The beginning and the end of a static slot is

FlexRay Communication cycle

12

time wise preset and cannot change at run-time according to the payload length transmitted

inside the slot.

The static segment represents the deterministic part of the communication cycle and is

thus suitable for the exchange of time-critical data. The guaranteed latency, however, comes

at the cost of lower utilization of the communication channel.

2.4.4. Dynamic segment

The dynamic segment is an optional part of the communication cycle. It's made up of

𝑚 ;𝑚 ∈ ℕ dynamic slots. Each dynamic slot is then further made up of minislots the number

of which varies depending on the current frame's payload length. The duration of a minislot

must be the same for all nodes in the cluster and it is defined by the number of MT which it

consists of. The length of a dynamic slot is therefore not constant and its beginning and end

cannot be known at network design time.

The slot counter of a communication controller then, as opposed to the static segment,

holds the count for the duration of frame reception or transmission so that all the nodes in the

cluster share the same value of the slot counter. The length of the dynamic segment is

constant, however, for every communication cycle. It is possible for this reason that a frame

assigned to one of the later dynamic slots will not be transmitter and it delayed until the next

cycle (the transmission would cause the frame to overstep the dynamic segment boundary).

This can happen multiple times in a row.

Cluster's behavior in this respect can be influenced by the parameter pLatestTx as

defined by the FlexRay standard v2.1. This parameter sets the time in minislots when a node

is allowed to start transmitting at the latest in the dynamic segment. The communication

controller checks before the transmission of any frame in the dynamic segment if the minislot

counter has exceeded the pLatestTx threshold. If so, then the transmission is suspended until

the next communication cycle.

The dynamic segment represents the non-deterministic part of the communication cycle.

It is therefore most suitable for the exchange of time-noncritical data. Its advantage lies in the

high degree of utilization of communication channel compared to the static segment. For this

reason it can reach a much higher throughput.

FlexRay Frame format

13

2.5. Frame format

A FlexRay frame is made up for three segments. First is the header segment which

begins by the reserved bit and is followed by a series of indicator bits. Frame ID determines

the time slot of the communication cycle in which the frame is being transmitted. It can either

be a static slot or a dynamic slot but no other frames are allowed to have the same Frame ID

in the same communication cycle. The payload length is indicated by a number of half-words

(16 bits). The range is then from 0 to 254 bytes. The header CRC is calculated from the last

two indicator bits, Frame ID and payload length. It serves as a means of verification of the

transmission's correctness. The cycle count denotes the cycle number. It ranges from 0 to 63.

When it reaches its maximum value it starts over from zero again. This is useful mostly for

the so called cycle filtering. Nodes can for instance only transmit data every n-th cycle with a

possible offset. In the same manner, the protocol supports also filtering of received frames.

This practice, however, should not be exploited for sharing slots between nodes despite it

being technically feasible.

Figure 2-12: FlexRay frame format

Source web: http://www.coleparmer.com/TechLibraryArticle/1112

The data segment contains 0 to 254 bytes of payload data. The payload length may vary

in frames with the same Frame ID cycle to cycle. Therefore it's necessary to always read the

payload length field. The CRC segment contains a value calculated over the entire header and

data segments. The presence of two CRCs in a single frame is of the FlexRay's security

FlexRay Clock synchronization

14

features. For details on the generator polynomials and their initialization vectors for the CRC

segment and the header CRC refer to the FlexRay standard (source [2]).

2.6. Clock synchronization

In order to enable the use of TDMA all nodes in a FlexRay cluster must have a common

perception of time with a fairly high precision regardless of their individual oscillator

frequencies. To accomplish this FlexRay introduces the aforementioned global time unit -

macrotick. Nevertheless, real oscillators are imperfect and their frequencies fluctuate with

time. Therefore, it is necessary that all nodes constantly adjust the lengths of their macroticks

(Rate Correction) and the offset of individual cycles (Offset correction).

2.6.1. Measurement

At the beginning of each communication cycle the controller measures the time

deviations between the expected reception time and the actual reception time. This is

performed for every so called synchronization frame of every synchronization node (a node

that transmits a synchronization frame). Measurements are done separately for both channels.

The measured values for the last two cycles are stored.

 Even cycle Odd cycle

∆T of channel A

[µT]

∆T of channel B

[µT]

∆T of channel A

[µT]

∆T of channel B

[µT]

Node

1
5 13 25 32

Node

2
11 10 14 13

...

Node

n
35 30 41 29

Table 2-1: An example of measured values

2.6.2. FTM algorithm

The input for the Fault Tolerant Midpoint algorithm is a list of integral values. Those

values are first sorted in descending order. Depending on the number of entries we eliminate k

highest and lowest values. From the remaining values we chose the highest and the lowest

ones. Their arithmetical mean is the output of the FTM algorithm.

FlexRay Clock synchronization

15

Number of entries k

1-2 0

3-7 1

> 7 2

Table 2-2: Number of entries to eliminate

Source: [2]

Figure 2-13: An example of FTM calculation for k = 2

Source: [2]

2.6.3. Rate Correction calculation

The value of Rate Correction is calculated during the network idle time of every odd

cycle from two consecutive measurements. Even cycles borrow values from their previous

odd cycles. First we calculate the difference of deviations for even and odd cycles separately

for channels A and B. We then take their arithmetic mean. The result is a single table of

values which is then used as an input for the FTM algorithm. The FTM's output is

consequently a subject to the pClusterDriftDamping parameter (range of insensitivity). Let's

denote the result of which as g. The final value for Rate Correction is then saturated by min

(g, pRateCorrectionOut) where the second argument represents the maximum admissible

value for Rate Correction.

The final output of RC is an integral value which denotes by how many microticks

should the next communication cycle be adjusted. Positive values represent extension and

negative values shortening. The change is applied to the next two consecutive cycles and is

evenly distributed over macroticks so that no two consequent macroticks differ by more than

one microtick.

FlexRay Startup mechanism

16

2.6.4. Offset correction calculation

The Offset Correction value is computed in each cycle. First the minimum value for

each row is taken from the table of deviations. This produces a list of values as an input for

the FTM algorithm. Subsequently, we denote the FTM's output as g. The resulting value is

then saturated by min (g, pOffsetCorrectionOut) where the second argument represents the

maximum admissible value for Offset Correction.

2.7. Startup mechanism

All nodes in a FlexRay cluster need to set up a common perception of time in order to

be able to stick to their scheduled time slots and be able to receive from others. The startup

mechanism thus has to perform an initialization of the time base. This is done by so called

coldstart nodes. To startup a FlexRay network at least two coldstart nodes are required. One

of the two becomes a leading coldstart node and the other a following coldstart node.

Prior to the startup all the nodes must be in the ready state meaning that they already

need to be configured and if required also woken up. As the startup commences all nodes

enter the coldstart-listen state. Each node stays in this state for a random amount of time

during which it listens to the communication channel. The first node to leave this state

transmits its CAS (Collision Avoidance Symbol). By doing so it becomes the leading coldstart

node. Other coldstart nodes assume the roles of following coldstart nodes.

It can occur that two nodes transmit their CAS at the same time. For this reason a

leading coldstart node always transitions to the collision resolution stage after transmitting the

CAS. During this phase the leading coldstart node transmits a startup frame in four

consecutive cycles and listens for possible collisions. In case a collision occurs all nodes have

to recognize this and return to the coldstart-listen state and the startup process is repeated

while each node decreases its counter of remaining coldstart attempts. The coldstart-listen

state may only be entered if the number of remaining coldstart attempts is greater than zero.

If there are no conflicts detected then just after two cycles are the following coldstart

nodes able to determine the correctness of the time schedule by computing the time interval

between the startup frames. All nodes must know the schedule beforehand. They merely

verify its correctness. The other two cycles are essential to perform rate and offset corrections.

Following the four cycles all other coldstart nodes proceed to transmit their startup frames.

The leading coldstart node enters the coldstart consistency check stage in which it checks

whether the frames transmitted by following coldstart nodes comply with its schedule. This

FlexRay Startup mechanism

17

again takes four cycles. At the end of the fourth cycle, if not interrupted by consistency check

errors, the cluster is successfully started and other non-coldstart nodes can join starting with

the next cycle.

System architecture

18

3. System architecture

The platform is to serve as a flexible and unique tool for monitoring and testing of

vehicular networks. In its current state it is capable of monitoring FlexRay clusters by using

the integrated FlexRay controller as one of the cluster's nodes. The FPGA is a key part of the

system since it's responsible for the mapping of all communication outputs from the MCU to

their respective drivers. But equally important are the FlexRay controllers contained within.

Their number can be changed by loading a different design into the FPGA. However, the

system reacts flexibly to this and reads the number from the FPGA's special register. Both the

firmware and the PC application then recognize this number and provide control to the user of

each controller without the need to recompile. The latest hardware version offers two physical

FlexRay drivers (2 x 2 channels) to which either controller type (MCU or FPGA) can be

mapped. At the time of development the mapping was static.

Figure 3-1: System architecture

All FlexRay controllers in the FPGA are capable of non-standard operations when

compared to commercially available controllers. Those capabilities are aimed at the testing of

the parameters of FlexRay networks. The ability to change node's parameters at runtime

represents the core principal behind the tests. The MCU partakes in the tests by executing sets

of commands responsible for coordinating the tests and reading the results. FlexRay

FreeRTOS

19

controllers in the FPGA are taken from source [14] and stand as a key component which this

thesis integrates into a complex testing system.

Apart from FlexRay the target board is also equipped with CAN and LIN drivers. Their

utilization is not within the scope of this thesis but they are ready for future applications.

Their usage can either be added to all components of the system meaning the PC application,

the communication protocol and the firmware. Or they can be controlled purely from custom

tasks which are described in more detail in section 5.3.

4. FreeRTOS

FreeRTOS is an open source real time operating system targeted at microcontrollers and

small microprocessors. It has been largely successful over its 12 years of existence. A vibrant

community has been formed around freeRTOS providing free professional-level support. The

kernel has a very small binary image. The exact size varies depending on the components

used. Despite being free freeRTOS has successfully made it into commercial applications and

is known to be reliable. Such a track-record combined with the fact that a port for our chosen

architecture can be easily generated with the Halcogen tool made freeRTOS a clear choice for

this platform over its only considered competitor – RTEMS.

4.1. Port settings

The Halcogen tool from Texas Instruments offers an easy way of generating a

freeRTOS port with the desired parameters. Here is a list of chosen settings:

 Tick Rate – 1000 Hz, that means one tick equals one millisecond

 Minimum Stack Size – 128 words

 Preemption – Enabled

 Number of Priorities – 3, despite only two being actually used. Wasting of

processor time is prevented by tasks blocking while waiting for resources. While

not being blocked tasks share processor time equally. The remaining priority is

provided for possible future use.

 Heap Size – 32 768 bytes, this current setting may be adjusted according to

need. For instance additional heap space might be needed if a large number of

user tasks were defined. More about user tasks in section 5.3.

FreeRTOS

20

 Memory sections – are not adjustable by the Halcogen‟s GUI but can be

considered part of port settings. However, as of now memory sections are

irrelevant for this project since the memory protection unit (MPU) of freeRTOS

is disabled. Though they do need to be considered if that were to change as the

project expands.

4.2. Features used

The features of the real-time operating system that were used to build the firmware are

listed in this section. These include tasks, queues and mutexes. All of these elements have to

be dynamically allocated and therefore can fail to be created. It is a good practice to check the

handler after allocation to see whether it has been successful. This can save a lot of time

debugging for any programmer expanding the firmware with new features (such as the

planned CAN and LIN).

4.2.1. Tasks

A task in freeRTOS just as in any other operating system represents a small program in

and of itself. There are two basic ways of creating tasks in freeRTOS depending whether we

take advantage of the MPU or not. The two functions to create tasks are

xTaskCreateRestricted and xTaskCreate respectively. Since the MPU is not utilized in this

project only the latter function is used. Here is a list of tasks used in this thesis:

 Command_dispatcher – stack size = 128 words, function =

commandDispatcher, priority = 1, parameters = none

 Mcu_controller_task – stack size = 128 words, function =

mcuStateMachineTask, priority = 1, parameters = none

 Fpga_controller_task – stack size = 128 words, function =

fpgaStateMachineTask, priority = 1, parameters = index of the controller, the

number of these tasks is determined by the value read from the FPGA. One task

for each FlexRay controller is created up to a maximum defined by the macro

MAX_FPGA_FR_CONTROLLERS.

 Lwip_server_task – stack size = 2048 words, function = lwipTask, priority = 1

(later lowered to 0), parameters = none

 Tcp_send_task – stack size = 128 words, function = tcpSenderTask, priority =

2, parameters = none

 User defined tasks –refer to section 5.3.

FreeRTOS

21

4.2.2. Queues

Queues are a means of passing data between tasks and can also serve as a way of

synchronization since queues in freeRTOS are capable of blocking for a certain period of time

or indefinitely. When inserting data into a queue or when retrieving it the data is always

copied. Therefore, special care must be taken when dealing with large data structures. In such

a situation it is advised to design the program‟s architecture in such a way that only pointers

are stored in the queue. This approach is not used in scope of this project because the largest

queued data structure is 263 bytes long and it happens very sparsely. This size has been

chosen because it is required to accommodate data of largest possible FleRay payload (254

bytes). However, most commands are much shorter than that so only the required number of

bytes is copied. Here is a list of used queues:

 commandQueue – element size = 263 bytes, number of elements = 3

 mcuFrControllerQueue – element size = 263 bytes, number of elements = 2

 fpgaFrControllerQueue – element size = 263 bytes, number of elements = 2,

the number of these tasks is determined by the value read from the FPGA. One

task for each FlexRay controller is created up to a maximum defined by the

macro MAX_FPGA_FR_CONTROLLERS.

 tcpSendQueue - element size = 2 bytes, number of elements =1

4.2.3. Mutexes, semaphores and binary semaphores

Mutexes, semaphores and binary semaphores in freeRTOS all use the same handler type

xSemaphoreHandle. The way to distinguish them is through the method called to initialize

them. Mutex is a binary semaphore that employs the priority inheritance mechanism. Mutexes

are suitable for mutual exclusion. Semaphores and binary semaphores are very similar to

mutexes but they do not include priority inheritance. Binary semaphores can same as mutexes

only be either taken or free (not-taken, unlocked, etc.). A regular (counting) semaphore

contains a counter which determines how many times it can be taken without releasing it.

Both semaphore types are best suited for synchronization. Mutex named tcpSendProtection

is used in the firmware. It is created as the binary semaphore type and is responsible for the

synchronization of requests to send data from multiple state machines (both MCU and FR).

Specifically, it protects the access to the TX buffer which is shared by all tasks. The mutex is

released as soon as the data is written to the EMAC buffers.

Firmware

22

5. Firmware

5.1. Porting of the lwIP stack

In order to build a protocol based on TCP between the PC application and the MCU an

IP stack needs to be ported for the combination of the architecture and the real-time operating

system. This can be done in many ways. For example one of the decisions that need to be

made is what kind of API we want to use. LwIP offers three layers from which we can

choose.

 BSD socket API – the primary advantage is its portability to other stacks. It is

sequential which means that it requires threading to operate it. One thread uses

the API and the second thread runs the stack itself (takes care of timers,

incoming packets etc.)

 Netconn API – not portable to other stacks, sequential

 Raw API – not portable to other stacks, uses callbacks, best performance since it

doesn‟t have to deal with thread switching

First two options are more complicated to implement and require a deeper knowledge of

the lwIP stack. Also, issues with performance might arise if more user tasks were defined.

Since the porting of the lwIP stack is not the objective of this thesis but only means to an end

a decision has been made to use the raw API.

5.2. Command processing

Figure 5-1 depicts the flow of command processing in the MCU. Whenever a TCP

packet is received a callback function is invoked. The callback does not interpret the data. Its

only job is to copy the received data into the command queue and signal the reception of data

to the lwIP stack.

Considering the frequency of incoming commands it is not expected that there should

be more than one element in the queue at any time. However, the queue is set to a capacity of

three to allow for extreme cases.

Data from the command queue is read by the Command_dispatcher task. It is set to

wait indefinitely so it doesn‟t waste any processing time when there is no command to be

processed. Upon successful retrieval of a command from the queue the dispatcher reads the

command type coded in the first byte. Depending on the command type it has three options. It

Firmware

23

can process the command itself, pass it to the Mcu_controller_task or pass to one of the

Fpga_controller_tasks identified by the index in the second byte.

Figure 5-1: Command dispatching

Commands that do not belong to any FlexRay controllers are processed immediately by

the dispatcher. For example when the PC application requests the number of FlexRay

Firmware

24

controllers in the FPGA. This information is has already been stored during initialization so

the dispatcher simply replies with the value. Another example would be the request for the list

of available user tasks.

5.3. Task declaration macros

One of the required features is the possibility for a programmer to define arbitrary tasks

and to be able to run or suspend these tasks from the PC application. To make the definition

of user tasks easier a macro has been written which serves as a sort of a task declaration API

which wraps the freeRTOS task declaration API with additional code. This way the

programmer doesn‟t need to understand exactly how the management of user tasks is

implemented.

To declare a user task the programmer has to look for a section bounded by /*----USER

TASK DECLARATION----*/ and /*----END OF USER TASK DECLARATION----*/. All the user

tasks are supposed to be declared within this area using the following macro:

DECLARE_TASK_MANAGER_TASK(function, name, stack, params, priority, handle)

The passed arguments are:

 Function – a pointer to a function which the task is going to perform. The

function must never exit.

 Name - const char * const type variable that is going to be displayed in the PC

application as the name of the task. The programmer must avoid using the „|‟

character in the name since it is used as a separation character in the

communication protocol.

 Stack – A value that represents the size of the stack in words that the operating

system has to allocate for the task.

 Params – parameters that will be passed to the task

 Priority of the task – it is recommended to use 1 but if a higher number is

chosen, the programmer needs to make sure that the task either blocks or yields

often enough not to starve other tasks.

 Handle – here the programmer has to put in taskManager[x] where x is the

index to the taskManager array. This value should be ascending for every

declared task going from 0 to SIZE_OF_TASK_MANAGER - 1.

Firmware

25

Here is an example of a correct user task declaration area:

uint32 ledTimeOne = 1000;
uint32 ledTimeTwo = 3000;
uint32 sciTime = 2000;
uint32 stack = configMINIMAL_STACK_SIZE;
…
…
…
/*----USER TASK DECLARATION----*/
 DECLARE_TASK_MANAGER_TASK(ledTask, "led_flash_one", stack, ledTimeOne, 1,
taskManager[0])

 DECLARE_TASK_MANAGER_TASK(ledTask, "led_flash_two", stack, ledTimeTwo, 1,
taskManager[1])

 DECLARE_TASK_MANAGER_TASK(consoleTask, "console_task", stack, sciTime, 1,
taskManager[2])

/*----END OF USER TASK DECLARATION----*/

When passing parameters to tasks it is the programmer‟s responsibility to cast them

correctly in the task function since they are always being passed as pointers to the void type.

5.4. TCP server implementation

The server part of the system is implemented in the MCU. Upon power up or reset the

MCU initializes all necessary peripherals. This happens before starting the scheduler in all

cases except the EMAC. The initialization of EMAC and the lwIP stack is performed by the

Lwip_server_task before entering the endless loop every freeRTOS task is required to have.

The last function called by this task is server_init which allocates the struct tcp_pcb

variable. After that it lowers its own priority to that of the idle task and enters an infinite loop.

Packet reception is then handled through callbacks.

It is done this way because all the components of the lwip used in this project are

designed to pass around a pointer to the pcb. The pcb variable needs to be kept valid, which

means we cannot allow the stack space to be freed. It would require a lot of extra time and

effort to rewrite the lwip which also invites a number of potential errors.

Packet transmission is handled by a special task (tcpSenderTask). Whenever a task

wants to send data over the TCP it has to acquire the tcpSendProtection mutex which protects

access to the TX buffer. After writing the data into the buffer the task has to enqueue the data

length into tcpSendQueue. This causes the tcpSenderTask to immediately preempt any other

running task since it has the highest priority. And it writes the requested amount of data into

the EMAC buffers. Consequently, it releases the tcpSendProtection mutex. The queue can

Firmware

26

only hold one element at a time. There is no point making this queue any bigger because no

other task can acquire the tcpSendProtection mutex until the tcpSenderTask releases it.

5.5. EMIF

The External Memory Interface (EMIF) is a controller integrated in the

TMS570LS3137ZWT chip. The purpose of EMIF is to provide a means for the MCU's core to

connect to a variety of external devices including SDRAMs or asynchronous devices such as

NOR Flash and SRAM. In case of this project it is used to interface to the FPGA's registers.

The registers are mapped to CPU's address space and can be accessed simply by reading from

and writing to an address using pointers. The following macros are provided to facilitate the

access:

#define READ_CONTROLLER_VALUE(BASE, CONTROLLER_INDEX, OFFSET) \
(*((volatile unsigned int *) ((BASE) + ((CONTROLLER_INDEX)*(FPGA_FR_CONTROLLER_LENGTH)) +
(OFFSET))))

#define WRITE_CONTROLLER_VALUE(BASE, CONTROLLER_INDEX, OFFSET, VALUE) \
(*((volatile unsigned int *) ((BASE) + ((CONTROLLER_INDEX)*(FPGA_FR_CONTROLLER_LENGTH)) +
(OFFSET))) = (VALUE))

#define READ_VALUE_8BIT(BASE, OFFSET) \
(*((volatile unsigned char *) ((BASE) + (OFFSET))))

#define WRITE_VALUE_8BIT(BASE, OFFSET, VALUE) \
(*((volatile unsigned char *) ((BASE) + (OFFSET))) = (VALUE))

#define READ_VALUE_32BIT(BASE, OFFSET) \
(*((volatile unsigned int *) ((BASE) + (OFFSET))))

#define WRITE_VALUE_32BIT(BASE, OFFSET, VALUE) \
(*((volatile unsigned int *) ((BASE) + (OFFSET))) = (VALUE))

It should be noted that tasks in freeRTOS normally only allow access to their own stack

and to the heap. Other memory regions are accessible according to the setting of MPU

regions. The MPU is not needed in this project so it is left uninitialized. Otherwise either the

memory region access right would have to be changed or a special restricted type of task

would have to be used instead (using xTaskCreateRestricted). Restricted tasks are an

unnecessary over complication. Leaving the MPU off allows for the use of regular tasks even

when accessing the EMIF memory regions.

Communication constants of the EMIF controller have to be set in mutual compliance

with the FPGA's EMIF module. It is configured for asynchronous access. Here are the

parameters used:

Firmware

27

Figure 5-2: EMIF Settings

5.6. MCU state machines

All state machines in the MCU are event-driven. That means they can only perform

actions on edges i.e. while receiving a command.

5.6.1. MCU Connection state machine

This state machine is the simplest in the MCU. Its only purpose is to track the

connection state of the protocol. The state of the connection has three phases. First one is

IDLE, which is the initial state. Upon receiving a request for the number of FlexRay

controllers in the FPGA the dispatcher task sends the response and transitions to the

FPGA_READOUT_SENT state. Here it remains until the PC application requests the

firmware version together with a list of supported commands. It then sends the needed answer

and finally transitions to the PAIRED state. At this point it is allowed to pass commands to

their respective FlexRay state machines.

Firmware

28

Figure 5-3: MCU Connection state machine

Firmware

29

5.6.2. MCU FR state machine

Figure 5-4: State machine for handling the MCU's FlexRay controller

State machine depicted in Figure 5-4 is responsible for implementing the parts of the

communication protocol that concern the FlexRay controller in the MCU. It starts with the

PAIRED state which is where the connection state machine left off and started passing

commands to FlexRay state machines. The states can be divided into two phases -

configuration and operation. Configuration includes the PAIRED, PARAMS_RECEIVED

and SLOT_DEF_RECEIVED states. Upon receiving the following constants:

Firmware

30

 pKeySlotusedForStartup

 pKeySlotUsedForSync

 gColdStartAttempts

 pAllowPassiveToActive

 pWakeupChannel

 pSingleSlotEnabled

 pAllowHaltDueToClock

 pChannels

 pdListenTimeOut

 gListenNoise

 gMaxWithoutClockCorrectionPassive

 gMaxWithoutClockCorrectionFatal

 gNetworkManagementVectorLength

 gdTSSTransmitter

 gdCASRxLowMax

 gdSampleClockPeriod

 pSamplesPerMicrotick

 gdWakeupSymbolRxWindow

 pWakeupPattern

 gdWakeupSymbolRxIdle

 gdWakeupSymbolRxLow

 gdWakeupSymbolTxIdle

 gdWakeupSymbolTxLow

 gPayloadLengthStatic

 pLatestTx

 pMicroPerCycle

 gMacroPerCycle

 gSyncNodeMax

 pMicroInitialOffset[A]

 pMicroInitialOffset[B]

 pMacroInitialOffset[A]

 pMacroInitialOffset[B]

 gdNIT

 gOffsetCorrectionStart

 pDelayCompensation[A]

 pDelayCompensation[B]

 pClusterDriftDamping

 pDecodingCorrection

 pdAcceptedStartupRange

 pdMaxDrift

 gdStaticSlot

 gNumberOfStaticSlots

 gdMinislot

 gNumberOfMinislots

 gdActionPointOffset

 gdMinislotActionPointOffset

 gdDynamicSlotIdlePhase

 pOffsetCorrectionOut

 pRateCorrectionOut

 pExternOffsetCorrection

 pExternRateCorrectio

Along with additional information about channel usage, startup and synchronization the

state machine writes them into the FlexRay controller. Subsequently, the state advances to

PARAMS_RECEIVED. In this state the information about RX and TX frames is expected.

The order of buffers is important. RX frames go first and TX frames second. This is necessary

to make the firmware much simpler and more elegant. This information is stored and the

firmware uses it to calculate pointers to the FlexRay message RAM for all the message

buffers. RX buffers are configured right away since they don't require any payload data.

Afterwards, the machine shifts to the SLOT_DEF_RECEIVED state. Here it receives the data

that is to be transmitted out of the TX buffers. The order of the buffers has to follow the same

order in which the frames were defined in the previous stage. For example if the following

four frames were defined:

 slotID = 12, RX

 slotID = 2, RX

Firmware

31

 slotID 5, TX

 slotID 23, TX

Then the first TX data must be for the frame transmitted in slot 5 and the second in slot

23. At the end of data definition a double acknowledge mechanism is used. See Figure 5-5 for

better descriptiveness.

Figure 5-5: Details of message exchange at the end of data definition

When the MCU receives the MCU_GO_TO_READY command it can finally transition

to the READY state. Now, the FlexRay controller can optionally perform a cluster wakeup.

Other than that, it waits until it is instructed to either coldstart or to join a running network.

The startup procedure may fail. The result is reported to the PC application. In case of success

the controller now finds itself in the ACTIVE state. In case of failure it remains in the

READY state. Then a new startup command may be issued by the PC application. Details

about the message format can be found in section 7.4.

Firmware

32

5.6.3. FPGA FR state machine

Figure 5-6: MCU FPGA State machine

Each Fpga_controller_task (section 4.2.1) manages a state machine shown in Figure

5-6. In addition to what can be seen in the figure each state also has an edge to the PAIRED

Firmware

33

state as a reaction an internal reset command which is issued every time a new configuration

is loaded into the FPGA. With the exception of this internal command the state machine takes

action exclusively in reaction to commands passed to it by the command dispatcher. When an

action is finished the task blocks on its receive queue waiting for a new command. This way it

doesn't consume any CPU time when it's not needed.

First the state machine expects cluster and node parameters in the format which is

detailed in section 7.4. After receiving the first definition of a TX frame it transitions to the

CONFIGURED WITH FRAMES state. Other TX frames sent by the client are processed in

this state. However, there is a limit to the number of TX frames that can be defined in a single

FPGA FlexRay controller. The current number is 4. This constant can be adjusted in the

VHDL code of the controller. If the client tries to define more frames than that the state

machine responds with an error message.

The PARAMS RECEIVED state is intended for the future implementation of running

tests. Configuring TX or RX buffers is usually included in the tests themselves. Only

FlexRay parameters need to be set. That is why PARAMS RECEIVED is the correct

launching state and not CONFIGURED WITH FRAMES.

PC Application

34

6. PC Application

6.1. State machines

Just like in the case of MCU the state machines in the PC application are edge oriented.

Only, in this case, they can react not only to received frames over TCP but also to user

interactions. In addition to what can be seen in the figures, each state possesses an edge to the

IDLE state in case of an unexpected action (state machine error). Those edges were left out to

keep the graphs neatly arranged.

The PC application manages only two state machines. The first one is solely responsible

for managing the connection to the board, keeping track whether the fibex file has been

loaded and the MCU's FlexRay controller itself. It also spawns the instances of state machines

responsible for the FPGA controllers. The decision to merge all these functions into one state

machine has been made for several reasons:

 It saves lines of code

 It avoids having to coordinate more state machines with one another

 It makes it clearer (which might of course be subjective)

So the state machine contains all the functionality that could reasonably possible be fit

in. However, it was not feasible to include the FPGA state machines since there are multiple

instances of those and the number of them is not known beforehand. And even if it were the

resulting states would be a Cartesian product of all the states starting at a certain point. This

would unacceptably inflate the number of states.

6.1.1. General state machine

At the beginning the state machine splits into two branches (see Figure 6-1). One of

them is where the fibex file is loaded before connecting to the board and the other one after. A

fibex file is a compulsory input for this application. It has been chosen as the standard way of

describing FlexRay networks in the industry. However, the user is still allowed to edit the

parameters even after loading the fibex. This gives the user freedom to experiment without

having to edit the fibex file itself but it can also compromise the ability of controllers to

integrate into a cluster. There is no mechanism in place which would check whether the new

parameters are still compatible with the originally loaded fibex. A user with at least basic

knowledge of the FlexRay standard is assumed.

PC Application

35

Figure 6-1: PC application's main state machine

PC Application

36

Once the machine reaches the PAIRED or the PAIRED AND FIBEX LOADED state

the "FPGA Status" window (see 6.2.5) can be opened. This spawns one FPGA state machine

(see 6.1.2) for each controller in the FPGA. These state machines are managed through the

UI of this window.

Next comes the configuration phase which practically mirrors the state machine in

5.6.2. The MCU_FR_CONFIGURED state is entered once a confirmation from the MCU is

received that setting of the cluster constants is finished. Without any user interaction the state

machine then proceeds to send details about monitored frames followed by frames added in

the Message Editor tab. As mentioned previously, the order of frames matters! Then again

without any user interaction, provided no errors were detected, the state machine starts

sending data for the TX frames defined in the previous step (in the same order). This data is

stored in their corresponding message buffers in the FlexRay controller and will be scheduled

for transmission as soon as the node comes online. For the double acknowledgement

mechanism which follows this data exchange refer back to Figure 5-5.

Now the UI enables the user to perform a wakeup of the cluster or select one of the

startup options. After sending a command to perform a coldstart or to integrate itself to a

running network the application waits for a confirmation from the MCU that the startup was

successful. Monitoring is automatically triggered in case of successful startup. Issuing a halt

or freeze command will set it back to PAIRED_AND_FIBEX_LOADED state and a new

configuration can be used. If the startup fails the state machine transitions back to

WAKEUP_POSSIBLE and the user can repeat the attempt.

PC Application

37

6.1.2. FPGA State Machine

Figure 6-2: PC FPGA State machine

This state machine is practically a mirror copy to its MCU counterpart (see Figure 5-6).

It has a separate state for testing since it's not in charge of the test's execution and has to wait

for the server to report that the test is finished. In the meantime the state machine is not

allowed to do anything else. State transition with the exception of sending a halt command is

in all cases driven by receiving a confirmation for a successful transition on the server side.

PC Application

38

6.2. Features

6.2.1. Monitoring and frame transmission

The primary purpose of the platform is to monitor communication of a FlexRay bus and

to be able to transmit frames of its own. In order to monitor a frame it needs to be selected as

a monitored frame in the Cluster Setup tab as seen in Figure 6-3.

Figure 6-3: How to select a frame to be monitored

The next step is to define the outgoing communication. In the Message Editor tab the

user can take advantage of the "Copy from Cluster Setup" button. In order to do that the user

must first setup controller mapping. In Cluster Setup in the "MCU⟶Local Settings" menu

choose one of the available ECUs in the "ECU Mapping" combo box. This also copies all the

parameters from the ECU to the Local Settings panel. The same kind of mapping can be

performed for the FPGA Controllers. Only the application must first be connected to the

board (Actions⟶Connect to Board). This is necessary because the application must first find

out how many FlexRay controllers are actually present in the FPGA. Once the mapping is

done the button "Copy from Cluster Setup" will add all frames from the Cluster Setup, that

belong to ECUs to which a physical controller is mapped. This way is much preferable to

adding frames manually which is also supported.

The application distinguishes between two types of frames - MCU frames and FPGA

frames. The difference can be noticed when clicking on frames of both types in the Message

Editor tab. It is also shown in Figure 6-4.

PC Application

39

Figure 6-4: Difference between FPGA and MCU frames

These differences are needed due to different capabilities of said controllers to trigger

frame's transmission. The FPGA controller offers more options. However, the MCU has the

upper hand when it comes to periodicity. The cycle code is capable of expressing periods

ranging from 1 to 64 cycles with offsets from 0 to 63. As opposed to the FPGA which can

only send ever cycle or every even cycle.

An important thing to note is that if the user wants to see the frames transmitted by the

MCU or one of the FPGA controllers he still needs to mark those frames as monitored.

Having them in Message Editor is not enough. Figure 6-5 shows an example of the Message

Editor tab with the MCU mapped to an ECU which transmits thirteen different frames and a

FPGA controller which only has one frame. In order to coldstart a network one of the frames

belonging to the coldstart node must be defined as "Startup & Sync". There may only be one

such or "Sync" frame per node. The application takes care of this and doesn't allow the user to

define more.

PC Application

40

Figure 6-5: Message Editor tab example

Monitoring is automatically activated by coldstarting a network or joining one. It can be

paused and started again at any time while the cluster is running. To change data being sent,

select a frame from the combo box in the bottom panel of the Monitoring tab. Now the data

can be adjusted. The controller is notified of the change by clicking on the green arrow. The

selection in the combo boxes is filled automatically by frames belonging to the MCU or the

FPGA. In case of the MCU frames this happens as it transitions into the

WAKEUP_POSSIBLE state. As for the FPGA frames, all frames belonging to a particular

FPGA controller are added to the selection when the application receives a confirmation of

the "Configure Frames" action in the "FPGA Status" window. Those frames are also removed

when the node leaves the active state.

PC Application

41

Figure 6-6: Monitoring example

Internally, the frame reception is handled by a combination of callbacks and a dedicated

thread. First a callback function of the TCP client is invoked upon frame reception. It then

calls the state machine which in the MCU_FR_ACTIVE state extracts the data from the

incoming packet and enqueues it in a buffer. While monitoring is active a dedicated thread

dequeues the data from the buffer and adds it into the monitoring UI. It has to be done this

way because the UI add method cannot keep up with the rate at which the data flows in.

Addition of new data can fail and most importantly the responsiveness of the application

suffers. A dedicated thread solves this problem by adding the messages at a pace the UI can

handle.

PC Application

42

6.2.2. Remote reconfiguration of the FPGA

Figure 6-7: Remote configuration

After power up or reset the board's firmware automatically configures the FPGA over

serial interface with a design stored in the MCU's flash memory. However, the FPGA can be

reconfigured using the PC application by selecting "Actions⟶FPGA - Send Config File".

This opens up a dialog window to select a .rbf file containing the FPGA's new configuration.

This file is then sent to the board and loaded into the FPGA.

The default configuration from MCU's flash can always be restored by selecting

"Actions⟶FPGA - Load Config from Flash". Every time a new design is loaded, the new

number of FlexRay controllers is read from the FPGA. Afterwards, all tasks in the firmware

managing those controllers are reset to their default state. PC application's UI is also adjusted

to the new number and all its FPGA FlexRay state machines are reverted to their initial state.

6.2.3. Remote task control

One of the key features of the whole system is the ability to define and run custom user

tasks in the MCU. These tasks represent a flexible way for a programmer to expand the

functionality of the system without having to adjust the communication protocol and without

deeper understanding of the MCU's firmware. The macro API for the user task definition on

the MCU side is described in chapter 5.3.

Once the tasks are present in the MCU they will be reported to the application when

selecting "Actions ⟶ MCU - Task Manager". The UI lists all available tasks as is shown in

Figure 6-8. Task is activated by selecting it in the list and clicking "Run". Only one task may

run at a time. In case another task had already been active it is now suspended and the

PC Application

43

selected task becomes the active one. The currently running task is highlighted in the UI. A

task may also be suspended without having to run another task. When the active task is

selected the "Run" button becomes a "Suspend" button. The decision to only allow one active

user task was a design decision and can easily be changed by a small change to the firmware

if desired.

Even when this window is closed and reopened the request for available tasks is not

repeated. The same list of tasks will be presented again.

Figure 6-8: Task manager window

6.2.4. Fibex parsing

A fibex file describing the target FlexRay cluster is required to use any functionality of

the platform. Fibex is a XML-based format and has been established in the industry as the

standard way of defining automotive networks. The application parses only the data that is

relevant for the purposes of its functionality with the exception of signals. The parsing is

conveniently designed to report any missing cluster parameters. The UML diagram for the

FlexRay fibex format can be seen in Figure 6-9.

PC Application

44

Figure 6-9: UML diagram of a FlexRay fibex file

Source: [10]

Figure 6-10 shows an example of Cluster Setup tab after parsing a fibex file. Each

frame displays its source ECU (this is important for the Message Editor) and signals it

contains. Also each signal shows all the frames in which it is transmitted (multiple may be

defined).

However, some of the fibex files available during the development didn't comply with

the UML diagram exactly. For instance one of them had placed SIGNAL-INSTANCES right

inside a FRAME. The correct way would be to have PDU-INSTANCES in a FRAME and

through a reference in a PDU-INSTACE it is possible to reach a PDU which contains the

SIGNAL-INSTANCES. Some files omitted certain important information about frames. This

situation is reported to the user to avoid confusion since default values are used instead. Other

files were missing entire sections like frames or signals altogether. This is not reported to the

user as their absence is obvious.

PC Application

45

All mentioned files were either examples distributed with the fibex standard (by the

BMW group) or generated by third party software (such as NI-XNET Database Editor from

National Instruments). Despite their incorrectness it is still useful to be able to parse them so

the parsing algorithm is designed to handle such cases.

Figure 6-10: Cluster Setup after loading a fibex file

Constants gdSymbolWindow and gdNIT in the "Cycle Segments" section are parsed

from the fibex file. However, the MCU's FlexRay controller requires a value according to

Figure 6-11. That means that for the sake of setting it correctly a derived value of the gdNIT

parameter needs to be calculated. This value is displayed next to the regular one for

convenience and represents what is actually loaded into the MCU. Moreover, the application

checks for the correctness of all cycle parameters. Following equation must hold true:

𝑔𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆𝑡𝑎𝑡𝑖𝑐𝑆𝑙𝑜𝑡𝑠 ∗ 𝑔𝑑𝑆𝑡𝑎𝑡𝑖𝑐𝑆𝑙𝑜𝑡 + 𝑑𝑦𝑚𝑎𝑛𝑖𝑐𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑂𝑓𝑓𝑠𝑒𝑡 + 𝑔𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑀𝑖𝑛𝑖𝑠𝑙𝑜𝑡𝑠

∗ 𝑔𝑑𝑀𝑖𝑛𝑖𝑠𝑙𝑜𝑡 − 1 + 𝑔𝑑𝑆𝑦𝑚𝑏𝑜𝑙𝑊𝑖𝑛𝑑𝑜𝑤 + 𝑔𝑑𝑁𝐼𝑇 = 𝑔𝑀𝑎𝑐𝑟𝑜𝑃𝑒𝑟𝐶𝑦𝑐𝑙𝑒

where 𝑑𝑦𝑚𝑎𝑛𝑖𝑐𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑂𝑓𝑓𝑠𝑒𝑡 = 𝑔𝑑𝐴𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑂𝑓𝑓𝑠𝑒𝑡 − 𝑔𝑑𝑀𝑖𝑛𝑖𝑠𝑙𝑜𝑡𝐴𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑂𝑓𝑓𝑠𝑒𝑡

or zero if the value is negative. The application lets the user know if this equation is

violated.

PC Application

46

Figure 6-11: Cycle settings in the MCU

6.2.5. FPGA FlexRay controller and Testing

FlexRay controllers of the FPGA are managed from the separate window. This window

can be opened after the connection with the target board has been established by selecting

"Action⟶Show FPGA Manager". Upon connecting to the board the FPGA controllers also

appear in the Cluster Setup. It is necessary to map a controller to an ECU in Cluster Setup

before trying to configure its parameters. Similarly, frames for transmission need to be

defined in the Message Editor before loading them into the controller (option Configure

Frames).

The "FPGA Status" window lets the user select a FlexRay controller and execute

actions related to that controller. These include parameters configuration, frame configuration,

coldstarting, joining a running cluster, halting and running a test. The last option is out of the

scope of this thesis and will be supported in the future. Once a FPGA controller is in the

NORMAL_ACTIVE state it takes part in the communication according to the trigger settings

of its frames. The payload of the frames can be updates in the Monitoring tab of the main

window. Doing so also refreshes the flag which tells the FPGA's TX buffers to transmit the

frame. This is relevant for frames that are only sent once since their flags don't automatically

reset after transmission.

PC Application

47

Figure 6-12: FGPA Status window

6.2.6. Target I.P. setting

Figure 6-13 shows the UI responsible for setting the target IP address and port. Those

need to be input correctly before attempting to connect to the target board. The default values

match the values statically set in the MCU's firmware. The application checks for validity of

the input and won't allow for any violations of the IP address format.

Figure 6-13: IP Address settings window

6.2.7. ECU Mapping

The mapping feature is a means of pairing a physical FlexRay controller with an ECU

defined by the fibex file. All the ECUs of a cluster will appear in the ECUs section of the

Cluster Setup tab as well as in the “ECU Mapping” combo boxes of the MCU and all FPGA

controllers. By selecting a mapping all the node-specific parameters are automatically copied

from the corresponding ECU to the controller's UI. Not all required parameters may be

present in the ECUs section simply because they might not be defined by the fibex file. Those

are highlighted upon selection to notify the user that they need his attention and must be filled

PC Application

48

manually. There is no mechanism that would prevent the user from mapping two physical

controllers to the same ECU as this might be his intention.

Figure 6-14: ECU Mapping example

6.2.8. Saving and loading of Cluster and MCU parameters

Apart from loading the parameters of a cluster from a fibex file it is also possible to

save them into an xml file using serialization and load them when needed. Loading such a file

does not have the same effect as loading a fibex file. It doesn't add Frames, Signals and ECUs

defined in the network. It merely sets the values of the cluster parameters and settings for the

FlexRay controller in the MCU. This can be useful for instance when the user wants to

experiment with the cluster or node settings but wants to keep all the elements and parameters

defined by the fibex. In this case the fibex file would be loaded first and the xml file with the

alterations afterwards.

PC Application

49

Figure 6-15: Load and Save menu options

6.2.9. Other useful features

The application offers a handful of other useful features for user convenience. Not all

are listed since some of the minor features will never be observed by the user because they

only manifest in special cases such as an incorrect input.

Relative and absolute time

This function belongs to the Monitoring interface. It simply switches between what kind

of a timestamp is displayed in the monitoring window. The resolution of time is in

milliseconds. It uses the stopwatch class of the .NET platform which is the most accurate way

of measuring time it offers. The time can either be absolute measured roughly from MCU's

successful integration into the cluster (or a coldstart) or from the last reset (using the Reset

time button). Or it can be relative. In which case, each frame gets a value relative to the

reception time of the previous frame. The timestamp marks the point in time when the frame

was processed by the application so there may be significant fluctuations and deviations from

cycle periodicity.

PC Application

50

Figure 6-16: Absolute vs relative time

Saving of the monitoring log

Any software dealing with communication monitoring must have a feature to save the

communication log for future reference and offline inspection. The application offers to save

the records from the Monitoring tab to a CSV file. This simple format can easily be open by a

vast number of software tools and viewed in a table form. These tools can also effortlessly

convert it into different format of choice.

Figure 6-17: Monitoring record from Figure 6-6 saved as CSV file and displayed in MS Excel

Resetting of monitoring time

As mentioned, the monitoring time-base can be manually reset by clicking on the "Reset

time" button of the top panel in the Monitoring tab. The time-base is also reset with each new

integration of the MCU FlexRay controller into a cluster.

PC Application

51

Resizing

The graphical user interface strives to accommodate users with various screen

resolutions. Therefore it is paramount that all the UI elements resize correctly to maintain

their usefulness. This is ensured through a proper setting of anchors which are a feature

provided by the Windows Forms API of the .NET platform.

6.3. TCP client implementation

The PC application implements the client side of the platform. A combination of threads

and callbacks is used to provide a simple API to the rest of the application. Specifically, the

Client class is made up of two partial classes - the Receiver and the Sender along with a

method to register a callback. Instances of both of these classes are created while creating the

client Class instance.

The Sender class contains a thread which constantly checks for new data to send. It

provides the SendData(byte[] data) method which is used by the state machine to send data.

Importantly, the Nagle algorithm is disabled in the client so the data is sent immediately.

Otherwise it would be buffered and sent only after filling the buffers to reduce network

traffic. This behavior is undesirable in case of our platform since it would disrupt the

communication protocol.

The receiver class also runs a thread. It continuously checks for incoming packets. Each

received frame is then converted into a small Command class instance which separates the

command type from the rest of the data. The received invokes the registered callback with the

command as an argument. The function registered as the callback then separates the only

state-machine-independent command AVAILABLE_TASK_RESPONSE from others and

forwards those to their intended destination which is either the main state machine or one of

the FPGA state machines.

6.4. Database

The WPF graphical subsystem natively supports the separation of data and presentation.

This is not the case with Windows Forms used in this project. That's why a database has to be

used in order to provide a similar experience. Windows Forms were selected as an already

familiar technology. WPF have a rather steep learning curve and having to get familiar with it

would delay the project. Nevertheless, Windows Forms combined with a database provide a

completely sufficient solution for the purposes of this platform. The database is contained in a

PC Application

52

MDF file which basically is a SQL server data file. It is named FlexRayDB.mdf and has to be

distributed with the binary of the application. It holds the following tables:

ECUs

Name Data Type Allow Nulls Default

Id int no none

pMicroPerCycle int no none

pAllowPassiveToActive int no none

pdListenTimeout int no none

pWakeupPattern int no none

pMicroInitialOffsetA int no none

pMicroinitialOffsetB int no none

pMacroInitialOffsetA int no none

pMacroInitialOffsetB int no none

pOffsetCorrectionOut int no none

pRateCorrectionOut int no none

pExternOffsetCorrection int no none

pExternRateCorrection int no none

pClusterDriftDamping int no none

pDecodingCorrection int no none

pdAcceptedStartupRange int no none

pdMaxDrift int no none

pDelayCompensationA int no none

pDelayCompensationB int no none

pLatestTx int no none

Table 6-1: Contents of the ECUs table

This table is responsible for storing the values of node constants for all ECUs. It is first

loaded with values parsed from the fibex file. Changes made through the GUI are also saved.

FPGAs

Name Data Type Allow Nulls Default

Id int no none

pMicroPerCycle int no none

InterfaceMapping int no none

pAllowPassiveToActive int no none

PC Application

53

pdListenTimeout int no none

pdCASRxLowMax int no none

pWakeupPattern int no none

pMicroInitialOffsetA int no none

pMicroinitialOffsetB int no none

pMacroInitialOffsetA int no none

pMacroInitialOffsetB int no none

pOffsetCorrectionOut int no none

pRateCorrectionOut int no none

pExternOffsetCorrection int no none

pExternRateCorrection int no none

pClusterDriftDamping int no none

pDecodingCorrection int no none

pdAcceptedStartupRange int no none

pdMaxDrift int no none

pDelayCompensationA int no none

pDelayCompensationB int no none

Table 6-2: Contents of the FPGAs table

This table contains all the information about parameter values for every FPGA FlexRay

controller. When selecting a FPGA controller the data is fetched from the table and filled into

the UI.

PC Application

54

Frames

Name Data Type Allow Nulls Default

Id int no none

ShortName nvarchar(50) no none

FrameType nvarchar(50) no none

ByteLength int no none

SlotId int no none

SourceECU nvarchar(50) no none

CyclePeriod int no none

BaseCycle int no none

Mapping nvarchar(50) no "None"

MappingType nvarchar(50) no none

Monitored nvarchar(50) no "No"

ExtendedFrame nvarchar(50) no none

Channel nvarchar(50) no none

Table 6-3: Contents of the Frames table

The Frames table is filled by values parsed from the fibex file. Additional parameters

are set from the UI such as Mapping, MappingType and Monitored.

Signals

Name Data Type Allow Nulls Default

Id int no none

ShortName nvarchar(50) no none

FrameName nvarchar(50) no none

BitLength int no none

BitPosition int no none

Coding nvarchar(50) no none

Table 6-4: Contents of the Signals table

The FrameName value from the Signals table is used to identify all signals belonging to

a certain frame.

Communication protocol

55

Triggers

Name Data Type Allow Nulls Default

Id int no none

FrameName nvarchar(50) no none

TriggerType nvarchar(50) no none

Timestamp bigint yes none

Macrotick int yes none

Cycle int yes none

Table 6-5: Contents of the Triggers table

The Triggers table specifically relates to the FPGA TX frames. The decision to store

this information in a database rather than in the Message Editor table was made to keep the

Message Editor neatly arranged. Including this information would require the addition of

extra columns that would be irrelevant for MCU frames. The Timestamp entry necessitates

the use of bigint due to its size (64 bits).

7. Communication protocol

7.1. Purpose of the protocol

Since the testing platform is composed of a target board and a PC application it is

essential to have a form of communication in place between the two parts. All of the

platform's functions are controlled from the PC application which then manages the platform

using the communication protocol.

7.2. Requirements

First and foremost the protocol must be based on a standard capable of a throughput

high enough to handle reporting of FlexRay frames in real-time. The maximum throughput of

FlexRay is 20 Mbit/s taking into consideration the two independent channels (10 Mbit/s per

channel). This basically leaves two interfaces that a standard PC has - USB and Ethernet.

TCP/IP has been opted for due to previous experience with a high-quality, lightweight open-

source TCP/IP stack for embedded systems - the lwIP stack. This choice also opens a lot of

potential options to choose from in the area of RPC protocols.

The architecture dictates that the MCU assumes the role of a server and the application

acts as a client. Only a single client is required. The protocol is responsible for configuring

Communication protocol

56

MCU's peripherals, managing user tasks, reporting received frames etc. A new FPGA design

can be loaded into the FPGA from the application through the MCU.

Taking into account that the frequency of the MCU's core is rather low (160MHz) a

protocol with an overhead as little as possible is preferred. Bearing in mind that the system is

likely to be extended in the future, all of the RCP protocols were rejected. Protocols such as

SOAP bring too much of a parsing overhead. JSON-RPC was a serious candidate but no good

open-source embedded server implementation was found. Another downside of JSON-RPC is

that the communication is always initiated by the client. This presents an issue since in case of

this platform the server needs to retransmit the FlexRay frames as they come. To work around

this the server would have to be regularly polled by the client. Such a solution is clumsy at

best. This leaves binary-based alternatives. Since the protocol has to be binary anyway a

decision has been made to design a custom protocol instead of using an existing standard

which would require porting of a third-party code.

A vital point is to design the protocol as simple as possible while keeping it extensible.

A compromise has been found between the simplicity of parsing and the efficiency of channel

utilization. To keep the protocol extensible the command type is coded into one byte which

leaves a plenty of free values to use in the future. Extensibility is also considered in the sense

of adding support for other interfaces than FlexRay. This can easily be achieved in the same

way that the FPGA FlexRay controllers are differentiated from the MCU FlexRay controllers

by spawning separate state machines in the PAIRED_AND FIBEX_LOADED state.

7.3. Negotiation of supported functions

It has been requested that the protocol should be capable of enabling the server to report

its release version and also its supported functionality. This is implemented by the

SUPPORTED_COMMANDS_AND_VERSION_REQUEST and SUPPORTED_COMMANDS_AND_VERSION_RESPONSE

commands during pairing of the devices. See 7.4 Message format section for details.

7.4. Message format

This section describes the message format of the communication protocol in detail. The

endianness of the two platform's parts needs to be taken into account. The PC application uses

little endian and the MCU uses big endian. This is irrelevant when assembling the commands

byte by byte but it comes into effect when examining any larger data types by bytes. An

example of this would be the MCU_FR_CONFIG message.

Communication protocol

57

Each command starts with a command type coded in the first byte. This first byte is

implicit and won't be depicted. Table 7-1 shows all command codes and Table 7-5 all

response codes. Some commands and responses contain only the first byte which codes the

meaning of it. Others have data following after. This is expressed in the table. Only

commands and responses with additional data are described in the following section in detail.

7.4.1. PC to MCU

Command type Code value Contains Data

CONFIG_READOUT_REQUEST 0x01 No

SUPPORTED_COMMANDS_AND_VERSION_REQUEST 0x02 No

MCU_FR_CONFIG 0x03 Yes

MCU_SLOT_DEFINITION 0x04 Yes

MCU_TX_DATA_DEFINITION 0x05 Yes

MCU_TX_DATA_DEFINITION_DONE 0x06 No

MCU_GO_TO_READY 0x07 No

MCU_SEND_WAKEUP 0x08 No

MCU_TX_FRAME_DATA_UPDATE 0x09 Yes

MCU_COLDSTART 0x0A No

MCU_JOIN 0x0B No

MCU_HALT 0x0C No

MCU_FREEZE 0x0D No

FPGA_FR_CONFIG 0x0E Yes

FPGA_TX_FRAME_DATA_DEFINITION 0x0F Yes

FPGA_TX_FRAME_DATA_UPDATE 0x10 Yes

FPGA_COLDSTART 0x11 Yes

FPGA_JOIN 0x12 Yes

FPGA_HALT 0x13 Yes

FPGA_RUN_TEST 0x14 Yes

AVAILABLE_TASKS_REQUEST 0x15 No

RUN_TASK 0x16 Yes

SUSPEND_TASK 0x17 Yes

SEND_FPGA_DESIGN 0x18 Yes

LOAD_FPGA_DESIGN_FROM_FLASH 0x19 No

Table 7-1: PC to MCU command table

Communication protocol

58

MCU_FR_CONFIG

Parameter Bit field Bit position Range Units

pKeySlotusedForStartup SUCC1.TXST 8 0/1 -

pKeySlotUsedForSync SUCC1.TXSY 9 0/1 -

gColdStartAttempts SUCC1.CSA(4-0) 15.11 2.31 -

pAllowPassiveToActive SUCC1.PTA(4-0) 20-16 0-31 -

pChannels SUCC1.CCHA 26 0/1 -

 SUCC1.CCHB 27 0/1 -

pdListenTimeOut SUCC2.LT(20-0) 20-0 1284- 1283846 µT

gListenNoise SUCC2.LTN(3-0) 27-24 2.15 µT

gMaxWithoutClockCorrectionPassive SUCC3.WCP(3-0) 3-0 1.15 -

gMaxWithoutClockCorrectionFatal SUCC3.WCF(3-0) 7.4 1.15 -

gNetworkManagementVectorLength NEMC.NML(3-0) 3-0 0-12 Bytes

gdTSSTransmitter PRTC1.TSST(3-0) 3-0 3.15 Bit times

gdCASRxLowMax PRTC1.CASM(6-0) 10.4 67-99 Bit times

gdSampleClockPeriod PRTC1.BRP(1-0) 15-14 0-3 -

pSamplesPerMicrotick PRTC1.BRP(1-0)

0-3 -

gdWakeupSymbolRxWindow PRTC1.RXW(8-0) 24-16 76-301 Bit times

pWakeupPattern PRTC1.RWP(5-0) 31-26 2.63 -

gdWakeupSymbolRxIdle PRTC2.RXI(5-0) 5-0 14-55 Bit times

gdWakeupSymbolRxLow PRTC2.RXL(5-0) 13.8 10.55 Bit times

gdWakeupSymbolTxIdle PRTC2.TXI(7-0) 23-16 45-180 Bit times

gdWakeupSymbolTxLow PRTC2.TXL(5-0) 29-24 15-60 Bit times

gPayloadLengthStatic MHDC.SFDL(6-0) 6-0 0-127 16bit

pLatestTx MHDC.SLT(12-0) 28-16 0- 7981 minislots

pMicroPerCycle GTUC1.UT(19-0) 19-0 640- 640000 µT

gMacroPerCycle GTUC2.MPC(13-0) 13-0 10-16000 MT

gSyncNodeMax GTUC2.SNM(3-0) 19-16 2.15 Frames

pMicroInitialOffset[A] GTUC3.UIOA(7-0) 7-0 0-240 µT

pMicroInitialOffset[B] GTUC3.UIOB(7-0) 15.8 0-240 µT

pMacroInitialOffset[A] GTUC3.MIOA(6-0) 22-16 2.72 MT

pMacroInitialOffset[B] GTUC3.MIOB(6-0) 30-24 2.72 MT

gdNIT GTUC4.NIT(13-0) 13-0 7- 15997 MT

gOffsetCorrectionStart GTUC4.OCS(13-0) 29-16 8- 15998 MT

pDelayCompensation[A] GTUC5.DCA(7-0) 7-0 0-200 µT

pDelayCompensation[B] GTUC5.DCB(7-0) 15.8 0-200 µT

pClusterDriftDamping GTUC5.CDD(4-0) 20-16 0-20 µT

pDecodingCorrection GTUC5.DEC(7-0) 31-24 14-143 µT

pdAcceptedStartupRange GTUC6.ASR(10-0) 10-0 0-1875 µT

pdMaxDrift GTUC6.MOD(10-0) 26-16 2.23 µT

Communication protocol

59

gdStaticSlot GTUC7.SSL(9-0) 9-0 4-659 MT

gNumberOfStaticSlots GTUC7.NSS(9-0) 25-16 2-1023 -

gdMinislot GTUC8.MSL(5-0) 5-0 2.63 MT

gNumberOfMinislots GTUC8.NMS(12-0) 28-16 0- 7986 -

gdActionPointOffset GTUC9.APO(5-0) 5-0 1.63 MT

gdMinislotActionPointOffset GTUC9.MAPO(4-0) 12.8 1.31 MT

gdDynamicSlotIdlePhase GTUC9.DSI(1-0) 17-16 0-2 minislots

pOffsetCorrectionOut GTUC10.MOC(13-0) 13-0 5-15266 µT

pRateCorrectionOut GTUC10.MRC(10-0) 26-16 2.23 µT

pExternOffsetCorrection GTUC11.EOC(2-0) 18-16 0-7 µT

pExternRateCorrection GTUC11.ERC(2-0) 26-24 0-7 µT

Segment borders MRC.FDB(7-0) 0-7 0-128+ -

 MRC.FFB(7-0) 15.8 0-128+ -

 MRC.LCB(7-0) 23-16 0-128+ -

FIFO Settings FRF.CH(1-0) 1-0 0-3 -

 FRF.FID(10-0) 12.2 0-2047 -

 FRF.CYF(6-0) 22-16

-

 FRF.RSS 23 0/1 -

 FRF.RNF 24 0/1 -

 FRFM.MFID(10-0) 12.2 0-2047 -

Table 7-2: MCU FlexRay parameters

Table 7-2 shows the parameters sent in this command type. The "Bit field" column tells

us where in the controller's registers are the parameters saved. The format of this message is

these 21 32-bit registers put in sequence in the same order as in the table.

MCU_SLOT_DEFINITION

The slot definition command has two types of words. The first one is in Figure 7-1 and

appears only once at the beginning (right after the command code). The second word (Figure

7-2) is repeated as many times as there are slots to be defined. RX slots have to go first

followed by TX slots. The order of TX slots is also important and must be kept exactly in the

MCU_TX_DATA_DEFINITION.

Figure 7-1: MCU slot definition message format - first word

Communication protocol

60

Figure 7-2: MCU slot definition message format - second word

MCU_TX_DATA_DEFINITION

1 = Periodic, 0 = Single

The two bytes are followed by the payload data as an array of bytes.

Figure 7-3: MCU Tx Data Definition Message Format

MCU_TX_FRAME_DATA_UPDATE

The Slot ID and Cycle code are necessary to identify the exact frame to update because

there may be multiple frames with the same Slot ID but different Cycle codes.

Figure 7-4: MCU Tx Data Update Message Format

FPGA_FR_CONFIG

Parameter Offset Value Range

gdActionPointOffset 0x02 0 to 63

gdStaticSlot 0x06 0 to 661

gMacroPerCycle 0x0A 0 to 16000

gNumberOfStaticSlots 0x0E 0 to 1023

gOffsetCorrectionStart 0x13 0 to 15999

pDecodingCorrection 0x17 0 to 143

pdMaxDrift 0x1B 0 to 1923

pMacroInitialOffsetA 0x1F 0 to 68

pMacroInitialOffsetB 0x24 0 to 68

pMicroPerCycle 0x28 0 to 640000

pOffsetCorrectionOut 0x2C 0 to 15567

pRateCorrectionOut 0x31 0 to 1923

gdSampleClockPeriod 0x35 0 to 7

pClusterDriftDamping 0x39 0 to 20

Communication protocol

61

gdTssTransmitter 0x3D 0 to 15

pMicroInitialOffsetA 0x42 0 to 239

pMicroInitialOffsetB 0x46 0 to 239

pdAcceptedStartupRange 0x4A 0 to 1875

pDelayCompensationA 0x4E 0 to 200

pDelayCompensationB 0x53 0 to 200

pSamplesPerMacrotick 0x57 1 to 7

gdCasrxLowMax 0x5B 0 to 99

gdWakeupSymbolTxLow 0x5F 0 to 6

gdWakeupSymbolTxIdle 0x64 0 to 180

gdWakeupSymbolRxLow 0x68 0 to 60

gdWakeupSymbolRxIdle 0x6C 0 to 180

gdWakeupSymbolRxWindow 0x71 0 to 301

pWakeupPattern 0x75 0 to 63

pdListenTimeout 0x79 1284 to 1283846

vColdstartAttempts 0x7D 2 to 31

gMaxWithoutClockCorrectionPassive 0x82 1 to 15

gMaxWithoutClockCorrectionFatal 0x86 1 to 15

pAllowPassiveToActive 0x8A 1 to 31

externRateControl 0x8E 0 to 15567

externOffsetControl 0x93 0 to 1923

Table 7-3: FPGA FlexRay parameters

 All commands related to the FPGA FlexRay controllers begin with the

command code in the first byte followed by the controller index in the second byte. Table 7-3

shows how the parameters are put into the packet following the index. Each parameter is sent

as a 4-byte word.

FPGA_TX_FRAME_DATA_DEFINITION

A command of this type is sent for each frame that a FPGA controller is supposed to

transmit. In every case such a command starts with the word (first after command type and

controller index) in Figure 7-5.

Figure 7-5: FPGA TX frame data definition message format - first word

The value of the Trigger Type field determines the format of the rest of the frame

according to this table:

Communication protocol

62

Trigger Type value Meaning Followed by

0 Single message Data

1 Every Cycle Data

2 Every Odd Cycle Data

3 Every Even Cycle Data

4 Timestamp Timestamp low and high (Figure 7-6)
and then data

5 Macrotick Macrotick word (Figure 7-7)
and then data

6 Macrotick and cycle Macrotick and cycle word (Figure 7-8)
and then data

Table 7-4: Trigger Type values

Figure 7-6: FPGA TX frame data definition message format - Timestamp - second and third word

Figure 7-7: FPGA TX frame data definition message format - Macrotick - second word

Figure 7-8: FPGA TX frame data definition message format - Macrotick and Cycle - second word

FPGA_TX_FRAME_DATA_UPDATE

The Slot ID is needed to identify the TX buffer in the FPGA in which we want to

update the data

Figure 7-9: FPGA TX frame data update message format

FPGA_COLDSTART, FPGA_JOIN and FPGA_FREEZE

All of these commands only have one other index byte which identifies the target FPGA

controller.

Communication protocol

63

FPGA_RUN_TEST

This feature is not yet supported. The platform is prepared for this feature to be

implemented in the future.

RUN_TASK and SUSPEND_TASK

Either command carries only one byte with the index of the task to run or suspend.

SEND_FPGA_DESIGN_START

By sending this command the application signalizes the start of sending a new FPGA

configuration. First the command type is followed by a uint32 value of the design's total

length in bytes. Afterwards comes the number of packets in which is the data going to be

fragmented.

Figure 7-10: Send FPGA design message format - bytes 0 to 3

Figure 7-11: Send FPGA design message format - bytes 4 to 5

SEND_FPGA_DESIGN_DATA

The command code is followed by a uint16 value of an ordinal number. The MCU

checks this number upon reception whether it is equal to the previous one increased by one.

The data as an array of bytes comes after.

Figure 7-12: Send FPGA design data message format

Communication protocol

64

7.4.2. MCU to PC

Response type Code value Contains

Data

CONFIG_READOUT_RESPONSE 0x01 Yes

SUPPORTED_COMMANDS_AND_VERSION_RESPONSE 0x02 Yes

MCU_FR_CONFIG_FAIL 0x03 No

MCU_FR_PARAM_CONFIRMATION 0x04 No

MCU_FR_SLOT_INFO_CONFIRMATION 0x05 No

MCU_FR_FRAMES_PARTIAL_CONFIRMATION 0x06 No

MCU_FR_FRAMES_DONE_CONFIRMATION 0x07 No

FPGA_FR_CONFIG_CONFIRMATION 0x08 Yes

AVAILABLE_TASKS_RESPONSE 0x09 Yes

FPGA_DESIGN_CONFIRMATION 0x0A No

FPGA_DESIGN_FROM_FLASH_CONFIRMATION 0x0B No

FR_DATA 0x0C Yes

STATE_MACHINE_ERROR 0x0D No

CONSOLE_DATA 0x0E Yes

FPGA_TEST_FINISHED 0x0F Yes

MCU_STARTUP_SUCCESS 0x10 No

MCU_STARTUP_FAIL 0x11 No

FPGA_STARTUP_SUCCESS 0x12 Yes

FPGA_STARTUP_FAIL 0x13 Yes

FPGA_TEST_STARTED 0x14 Yes

FPGA_DESIGN_FAILED 0x15 No

FPGA_NEW_READOUT 0x16 Yes

FPGA_BUFF_CONFIG_CONF 0x17 Yes

Table 7-5: MCU to PC response table

CONFIG_READOUT_RESPONSE

The response has only one byte with the number of FlexRay controllers in the FPGA.

SUPPORTED_COMMANDS_AND_VERSION_RESPONSE

The three bytes in Figure 7-13 are followed by a number of bytes defined in the

"Number of commands" section. Each byte contains a supported command code from Table

7-6.

Communication protocol

65

Figure 7-13: Supported Commands and Version Response message format

AVAILABLE_TASKS_RESPONSE

This response contains a list of available tasks as an array of characters. Tasks are

separated by the '|' character. It is therefore forbidden from being used in task's name. Here is

an example with three tasks:

"Task1|Task2|Task3|"

Each character is ASCII coded in one byte.

FR_DATA

The word in Figure 7-14 is followed by 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (
𝑃𝐿𝑅

2
) bytes of data. This message

reports received FlexRay frames to the application.

Figure 7-14: FlexRay Data Message Format

CONSOLE_DATA

This feature is not yet supported. The platform is prepared for this feature to be

implemented in the future to display the messages during testing.

FPGA_NEW_READOUT

A message with the new number of FlexRay controllers in the FPGA is sent right after

the last FPGA_FR_CONFIG_CONFIRMATION. The new number of the only payload byte.

Conclusion

66

FPGA Responses

All these commands contain only one byte identifying the source FPGA controller:

 FPGA_TEST_FINISHED

 FPGA_TEST_STARTED

 FPGA_STARTUP_SUCCESS

 FPGA_STARTUP_FAIL

 FPGA_FR_CONFIG_CONFIRMATION

 FPGA_BUFF_CONFIG_CONF

8. Conclusion

The objective of this thesis was to develop firmware and software for a platform custom

designed for the testing of automotive communication networks. Specifically, this thesis only

focuses on the FlexRay standard. From a hardware perspective the platform is, however,

capable of communicating over CAN and LIN as well.

The system as a whole had to enable a remote management of tasks. Additionally, the

possibility to remotely reconfigure the FPGA‟s design was required. The target platform of

the control application is MS Windows. The application is responsible for managing the

functionality of the whole platform. This includes the ability to monitor communication in a

FlexRay cluster as well as to transmit arbitrary frames of data. Moreover, it was required that

the application could manage FlexRay controllers in the FPGA.

On the firmware side a real-time operating system was to be used. The firmware had to

be designed to support all the platform‟s features and acted as a server for the client Windows

application.

All the components from various projects were successfully integrated into the

platform. Namely, the FlexRay controllers from [14] wrapped in a design from [16].

Hardware of the platform [12] has proven to be fully functional. Performance of the entire

system met expectations. However, shortcomings of the TMS570 microcontroller were

discovered during the development of this thesis. Its extreme sensitivity caused multiple

samples to malfunction. It would therefore be advisable not to use this particular

microcontroller in the future.

References

67

FreeRTOS was chosen as the real-time operating system for this project. Ultimately,

this was a satisfactory choice. FreeRTOS was capable of providing the exact set of features to

fulfill the platform‟s needs. It also met all requirements performance-wise.

A decision was made to use TCP as the basis for communication between the server

(firmware) and the client (Windows application) of the system. TCP was selected for its

throughput, reliability and simplicity. The open-source lwIP stack used in this thesis was

successfully ported for this purpose and met our requirements. A custom binary-based

communication protocol was designed between the server and the client.

The Windows application offered a number of additional features for user‟s

convenience. It utilized the .NET platform which limited the portability of the code.

Nevertheless, it offered a rich API that facilitated the parsing of fibex files and provided an

easy access to the local database file.

During the development of this thesis a couple of ideas for future improvement

presented themselves. First of all, it was found that the platform could be ready for the

implementation of testing sequences for which the FlexRay controllers in the FPGA were

specifically designed. The tests were, however, out of the scope of this thesis. Moreover, the

option to trigger on certain conditions could be added Monitoring tab. The task management

feature could be expanded by adding configurable priorities and by the possibility to pass user

data to the tasks through queues.

References

[1] Malinský, J.: Intrusive Tests in FlexRay Standard, doktorská disertační práce ČVUT

2009

[2] FlexRay Consortium, FlexRay Protocol Specification V2.1 Rev. A, 2005

[3] IEEE standard 802.3 – 2008

[4] Texas Instruments Inc., TMS570LS31x/21x 16/32-Bit RISC Flash Microcontroller,

Technical Reference Manual, 2011

[5] Robert Bosch GmbH, E-Ray FlexRay IP Module, Application Note AN002 Startup,

2007

[6] FlexRay Consortium, FlexRay Protocol Specification V2.1 – errata sheet, 2005

[7] FlexRay Consortium, FlexRay Electrical Physical Layer Specification V2.1, 2005

References

68

[8] Pokorný V.: Metody měření vybraných parametrů komunikačního standardu FlexRay a

jejich implementace, diplomová práce ČVUT 2007

[9] Richard Barry, Using The freeRTOS Real Time Kernel, A practical guide, PIC32

Edition, 2009

[10] Association for Standardisation of Automation and Measuring Systems, Field Bus

Exchange Format, Version 3.0, 2008

[11] Zeman M.: Firmware of Ethernet/FlexRay Gateway ,bachelor's thesis CTU Faculty of

Electrical Engineering 2012

[12] Blecha J.: Programmable test platform, master's thesis CTU 2014

[13] lwIP stack documentation, http://lwip.wikia.com/wiki/LwIP_Wiki

[14] Paták M.: Methods for Testing of the FlexRay Startup Mechanism, master's thesis CTU

Faculty of Electrical Engineering 2012

[15] Schäuffele, J., Zurawka, T.: Automotive Software Engineering, SAE International 2005,

ISBN 0-7680-1490-5

[16] Ille, O.: Programové vybavenie testovacej platformy, bakalářská práce CTU Faculty of

Electrical Engineering, 2014

