CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering
Department of Control Engineering

Vehicle test platform

Master's thesis

Study program Open informatics
Major: Computer engineering
Supervisor Doc.IngJi S2 Nov&k, Ph.D.

Martin Zeman

Prague 2014

| confirm that I've completed this thesis myself and have only used the sources
(including literature, projects and software) listedhe corresponding section.

In Prague 30.12014

signature

Abstrakt

Tato pr8ce si kl ade za «c¢2I ng8§vrh struktur
testovac?2 platformu vozidINEwl Rh skomukli &h§ n 2
obslugn® aplikace proDaplge?t f somb8sRCc?Viendb vt
mi krokontrol ® u samotn®abhamfseymy ®memt awe&h n
propojen2 obou | §sti je zapoa Seej2i cha virrhtneorua k
mus2 blt schopen vzd8len® rekonfi gutfoanye hr ad
a obsluhy Sadi |l T standardu FlexRay v nDm i mp

Abstract

This thesisaimsto designthe structure of and to implemethie software component of
a test platform for vehicular communication standards. The task breaks down into two main
areas. The first entails the development of a PC platfmsed application responsible for
coordinating all platform functionalityrhe scond part involves the development of firmware
on the platform side. The system is required to run atireal operating system. In order to
enable interaction between the patsommunication protocol needs to be developed. The
system must be capable reimote reconfiguration of the design in the FR@#ich is a part

of the platform.

Acknowledgements

First and foremost a sincetfeankyou goeso Doc Ing. J i S 2 , PhdM &pfreciate
his patience and time devoted to helping mesed. I'm equallgrateful for his tolerance for
broken hardwar e. l"d also |i ke to thank my
author of the platform's hardware, for always taking the time to explain the intricacies of his
design. Last but not leadtexpres my gratitude to my family who have supported me during

my studies and continue to do so.

Table of contents

Table of contents

ADSIFAKL ...ttt e e e e a e e 2
ADSTTACT ... eeeee ettt reee e ermt e e e e e e e e e e e e e 2
ACKNOWIEAGEMENTS......uiii i eeeee e e e e s emnrnnnnes 3
Table Of CONLENES.......ieeiieee e s smme e 1
List of figures and tables..........ccooo o i 4
L. INEOQUCTION. ...ttt e e et e e e e e e e e e e ammmreeeeeeeas 1
1.1. Analysis Of he aSSIgNMENL........cooviiiiiiiiiiii e 1
1.2. Analysis Of the SOIULION.........ccoiiiiii e e 2
2. FIEXRAY e et e e e ettt e e e e e e e e s 3
2.1, Brief deSCrPION......uuiiiiiiiiiiii ittt 3
2.2, PRYSICAl [AYEL...ccoiiiieieeeeeeee e 4
2.3, LINK LAY ..cciiiiieeeeeeeee el 8
2.3.1. Architecture of @ NOOE...........uuiiiiiiiii e 9

2.4. COomMMUNICALION CYCIE....ccceiiiieei et 10
2.4.1. MICIOUCK T € Tourreiiiiiiiiiiiii et eeee et me e e 11
2.4.2. MACIOLICKT MT ..o 11
2.4.3. SHAIC SEOMENL.... oo i 11
2.4.4. DYNAMIC SEQMENL....cuiiiiiiiiiie e e e e e e ceeer s e e e e e e e e e e e e e aeeer e e e e e e e aaaaeaes 12
2.5, Frame fOrMaL.........coooeiiiiiiiiii e 13
2.6. ClOCK SYICNIONIZALION.uuiiiiiiiiiiiiiiice ettt 14
2.6.1. MEASUIEMENT......oiiiiitiiiiie i eeet e e e e et e et ereee e e e e e e e e e eeeeeeeennnne 14
2.6.2. FTM @Algorithm........coooiiiiiiiiiee e 14
2.6.3. Rate Correction calculation..............oooooiiiiiiicce e 15
2.6.4. Offset correction calCulatiQn..............ccvvviiiiiiieeeiiiiee e 16
2.7. Startup MECNANISIL.......ciiiiiiiiiiiie e 16
3. SyStem arChiteCIULE......cooee e 18

Table of contents

4. FIEERTOS. .. e e 19
4.1, PO SEIINGS. . ciiieieeeeee e eree e eeeeas bbb e e e e e e e e eeans 19
4.2, FEALUIMNES USEM.....oiiiiiiiiiiiiiie et 20

.21, TASKS. ..ot 20
A.2.2. QUEBUEBS ... ittt e e ettt e e e e ettt bt ee e e e e e eeba e e e e e eesannmeeees 21
4.2.3. Mutexes, semaphores and binary semaphores............ccccevvveeeeennn. 21

5. FIIMWANE ...t ne e s 22
5.1. Porting of theWIP Stack...........ccccooiiiiiiiiiiiieeeiic e 22
5.2. ComMmMaNnd PrOoCESSING....ccceeieeeeeeiiiiieiiiieieeeeeeeeeeeeeeeeeaeaaea i mmmreeeeeeesraanaa 22
5.3. Task declaration MacCrOS............ueuieeiiiiiiimemiiiee e seeee s 24
5.4. TCP server implementation................ccieiiiiieceeriiiiiie e e e e e eeeeseees 25
0. 0. EMIF e 26
5.6. MCU state MacChINES.uuuuuiiiiiiiiieeeiiiiiiiie e eeeere e 27

5.6.1. MCU Connection state Machine...............eeeeeiiiiieeeiinireieieiiieeeeeeeeeens 27
5.6.2. MCU FR state machine............oooooiiime e 29
5.6.3. FPGA FR state machine............ccccuuuiiiiimemiiiiiiiiiieeeeeeee e 32

T O Y o] o] o= 11 o] o WO PP PP PP PP TP P 34

6.1. State MACHINESuiiiiiiiiiii e 34
6.1.1. General state Machine..............ooeieiiiiiiemii e 34
6.12. FPGA State MaChiNe.........coovviiiiiiiiiii et 37

6.2, FRAIUIES... .ottt 38
6.2.1. Monitoring and frame tranSMISSION............uuveeeviiiiiimmeiiie e 38
6.2.2. Remote reconfiguration of the FPGA.............coooiiiiiiiceein 42
6.2.3. Remote task CONrol............oooiiiiiiiiee e 42
6.2.4. FIDEX PAISING ..cuvuuieeiiiiiiie e e e et emme ettt e e e e et e e e e e e aenne e s et e e e e eeaaaaeead 43
6.2.5. FPGA FlexRay controller and Testing..........ccccvvvveveviiicesvieeeeeeeene... 46
6.2.6. Target L.P. SettiNg........ccceeeiiiiiiiieeeececeiciciee e eeeeeeeeeevevieene e e e e eeenenn AT

2 G =L O 1Y/ =T o] o] o SO 47

Table of contents

6.2.8. Saving and loading of Cluster and MCU parameters.......................48
6.2.9. Other useful fEAtUIES.........coviiiiiii e 49

6.3. TCP client implementation..............evviiiiiiiiieeeieeeeee e 51
6.4, DaAtADASE.......ccciiiiiiii e 51
7. CommuniCation ProtOCOL.........uviiiiiiiiiiii i 55
7.1. Purpose of the ProtoCOL............uvuuuiiiiii i 55
7.2, REQUIFEMENIS....cuiiiiiiiiiiiee e e e e e e eeeeies s s e e e e e e e e e e e eeeeeaneeaaeaaaeeeeaeeeeeessnsnnnnans 55
7.3. Negotiation of supported functions...............ooovviiiiiccci e, 56
7.4, MeSSAQe fOrMaAL......uuueiii i 56
T.4.1. PCIOMCU. ... et e e e 57
T.4.2. MCU IO PGt e e e e enennan 64

8. CONCIUSION ...ttt e 66

R BT EIEINCES. . ..o et ee e e e et e e e e e e e e aamm e e aans 67

List of figures and tables

List of figures and tables

List of Figures

Figure 21: FlexRay transceiver witlivo channels...............cccccvviiiiicemeiiiiiiiiiieeee, 4
Figure 22: Levels of FlexRay's electrical Signals..............eeeveiiiiicemiiiiiiiiiiiiieeeeeenn 5
Figure 23: A Bus With two Channels................ouueiiiie e 6
Figure 24: Dual channel single star configuration..................ccooovieeeiiiii e, 6
Figure 25: Single channel cascaded star configuratian.................cccoeeeeeieieeeeenn.n. 6
Figure 26: Dual channel cascaded star configuratian................cccooeeeeevvvvncceennnn
Figure 27: Single channel hybrid example.............cccoorriiiieee e, 7
Figure 28: Dual channel hybrid example.............ooiiiiieeeee 8
Figure 29: Physical layer and [INk SHRYEIS.............uuiiiiiiiiiiiiieeeiiieeeeeeeee e 9
Figure 210: Architecture of a FlexRay NOde.............ccoooiiiiiimmmnieeiiiiieee 10
Figure 211: COMMUNICALION CYCIE........uuiiiiiiiiiiiiiiee et 11
Figure 212: FlexRay frame fOrmMat..............uuueiiiiiiiieeeiiiiiiiiiieeeeeeee e 13
Figure 213: An example of FTM calculation for K =.2..........ccccvvviiiiiiiceciniiiiienen. 15
Figure 31: System arChit@CIUIE.couvuiii e eeee e 18
Figure 51: Command diSPatCRiNgG..........ccovviiiiiiiiiieeee e ereer e 23
Figure 52: EMIF SettiNgS........uuiiiiiiiiiiii et eeeer e e s 27
Figure5-3: MCU Connection state maching..............ccoooviiiiceeiii e 28
Figure 54: State machine for handling the MCU's FlexRay controller................ 29
Figure 55: Details of message exchange at the end of data definition............... 31

Figure 56: MCU FPGA State Machine..............cceeiiiiiiieceeiiiciiies e e e e e eneenee s 32

List of figures and tables

Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:

Figure 610

Figure 611:
Figure 612:
Figure 613:
Figure 614:
Figure 615:
Figure 616:

Figure 617:

Figure 71:
Figure 72:
Figure 73:
Figure 74:

Figure 7#5:

PC application's main state machine.................ccccomniiiiiiiiiii, 35
PC FPGA State maching...........ccoooiiiiiiiieee e 37
How to select a frame to be monitored.............cccvvvviieec e, 38
Difference between FPGA and MCU frames..........cccccovuvvvieecneeeeenn, 39
Message Editor tab example.............cooooiiiiiiieeee e 40
MONItONING EXAMPIE.....coiiieiieeiiitee e erern e 41
Remote configuratian..........cccooooeeeiiiiiieeeiie e 42
Task manager WiNAOM..........cceeeeeiiiiiiiiieeeie e e eeeeeeeeeeeeeaevmmme e e eeeaneees 43
UML diagram of a FlexRay fibex file.........ccccoorniiiiiiiiicce e 44
: Cluster Setup after loading a fibex file............cccccciieeniicnnnn 45
Cycle settings in the MCU............uuiiiiiiiiiiceee e 46
FGPA STatuS WINGOM.uuuiiiiiiiiiiiiii ittt 47
IP Address Settings WINAOMooooiiiiiiiieeee e eeeeees 47
ECU Mapping eXample..........ooovriiiiiiiiimmee e eannannaaes 48
Load and Save Menu OPtioNS..........ceieiiiieeeeeceeeiieee e eeeeeeen, 49
Absolute VS relative time..........coooiiiiiieeiiee e 50

... 50
MCU slot defimtion message formatfirst word................ccooviiiiivieenn.n. 59
MCU slot definition message formasecond word.................cccevvvnnnne. 60
MCU Tx Data Definition Message Format..............cccooeeeiveeeeeeeeeeennnnn, 60
MCU Tx Data Update Message Format............cccccceeeiiieeeneeecceinnnnnnnn, 60

FPGA TX frame data definition message forafaist word....................] 61

List of figures and tables

Figure 76: FPGA TX frame data definition message form@tmestamp- second and
L0010 IR0 o PRSP 62

Figure Z7: FPGA TX frame data definition message formitacrotick - second word

Figure 78: FPGA TX frame data definition message form&acrotick and Cycle

S{=Tolo] 00 IV 1Yo] (o FE PP PP PP PPPPPRPY 62
Figure 79: FPGA TX frame data update message format.................cccvveeeeeennn. 62
Figure 710: Send FPGA design message forafattes 0 to 3..........ccccceeeieiieeeeicennes 63
Figure 711: Send FPGA design message forafattes 4 to0 S...........ccccvvvvvviiiiiieens 63
Figure 712: Send FPGA design data message format..........ccccceeevieemnieeeeennnnnn. 63

Figure 713: Supported Commands and Version Response message.format....65

Figure 714: FlexRay Data Message FOrmal............ccoooooviiiicce e 65
List of Tables
Table 21: An example of measured Values.............ccceeeiiiiiecciiiiiiiiiec e 14
Table 22: Number of entries to eliminate............ccoocviiiiieeei e 15
Table 61: Contents of the ECUS table............ccuiiiiiiiiiccr e 52
Table 62: Contents of the FPGAS table............oooiiicce e 53
Table 63: Contents of the Frames table...............ooo e 54
Table 64: Contents of the Signals table..............ooooicce e 54
Table 65: Contents of the Triggers table...........cooiiiiiiecc e, 55
Table 71: PC to MCU command table.............ooiiiiiiimeeee 57
Table 72: MCU FlexRay parameterS. ... eeeeeee e 59

Table 73: FPGA FleXRay parametersS.......ccccuiiiieieeeeieceeeieiee e eeeeeavenne e e 61

List of figures and tables

Table 74: Trigger TYPE VAIUES...........uuuuiiiiiiiiii et erenssn e 62
Table 75: MCU to PC response table........ccooovviiiiiiiiieeeii e 64

The three bytes in Figure-I3 are folowed by a number of bytes defined in the
"Number of commands" section. Each byte contains a supported command code from Table

Introduction

1. Introduction

1.1. Analysis of the assignment

The aim of this thesis is to integrate various projects from a number of arttma
functional and flexible vehidar testing platform. The integration consistsaafevelopment
of a PGWindowsbased applicatioresponsible for providing an interface between the testing
platform and the user. The applicatiorust be capable of controlling the function of the
FlexRay controller present in the platform's MCU such as definitige outgoing

communication and monitoring of the incoming frames.

Another important feature is the remote reconfiguration of the design in the FPGA. The
application has to be able to sendabitray design file from the PC's file system to be
loaded into the FPGA dre capable olbading thedefaultdesign presenh the MCU's flash

memory.

Next, the application needs to provide the functionality to remotely run and suspend
userdefined tasks in #n MCU. Said tasks are to be defined at compile time as part of the

MCU's firmware.

The application is also responsible fie management ahe FlexRay controllers
implemented in the FPGA. These controllers provide some unique featuths testingof
the parameters ofhe FlexRay networks. The appation's role is to trigger tlse tests and
present the user with results. Specifically, the application needs to provide an interface

whichto configure anagnanageall the controllers present in the FPG@Aparately

On the hardware side the MCU is required to run a-tnee operating system to
provide the programmer witmethods of task synchronization and resource protection. The
use of a realime operating sysite also offers anigherflexibility in terms of task separatipn
better control over timing requiremsrdnd a overall richer selection of tools for building

nontrivial systems.

The MCU's firmwareactsas the execution centre for all the system's funatign It
needs to receive and decode requests from the PC application and caroyresponding
actions In order to facilitatethese functionsjt is necessaryto develop a protocol for

communication between the PC application and the MCU.

Introduction

1.2. Analysis ofthe solution

From a hardware standpoint the platform provides a TMS57@%E3BAT
microcontroller from Texas hstrumers. This chip has been chosen due to previous
experience with it in which it has proven to be bptiwerful and cosefficient The chip
providesa wide variety of interfaces and modyles well asa flash memory of suffient

capacity(3072 KB)for the purposes of the platform.

Another significantadvantage of this microcontroller is thBexas Instruments provide
developers witta greattool calledHalcogento generate code for its configuratjonitiation
andlibraries for all its peripheralsvith the exception of the FlexRay interface. Ttasl is
also capable of generating a poftthe fredRTOS realtime operating systerspecificdly for
the TMS570 MCU family.

This makes the choice of the réfthe operating systemsmple Our requirementor
the OS are:

1 Realtime capability
Must be lightweight
Must be ableto provide methods of tasdynchronization and resource
protection

1 Must be ableto provide an interface to report defined tasks and run/suspend
them flexibly

1 Mustbe free
Must beopensourcea with a reasonable license

Needs to be wellocumented

FreeRTOS meets all these requirements and therefore has been selected as the OS for

the platform. Detailed settings of the used port are described in sédtion

The firmware can take advantage of a FlexRay libvenitten for the ERay controller
by the author of this thesis for a previous projsource[11]). It provides a basic API which

simplifies the handling of the controller's functions.

A decision hasbeenmade to use the TCP/IP protocol adasis for building the
communication protocol between the PC application and the MCU. The main reason for this
decision overthe USB, which isin reality theonly other candidatds previous experience
with the WP stack. Another factois TCP's simplicity compared to USB. Its advantage

2

FlexRay

compared to UDP lies in iteeliability while maintaininghigh enough throughpsit This
decision requires the IwIP stack to be ported forctirabination ofreeRTOSwith TMS57Q

A couple of possible ways to implement the communication protocol between the PC
application and the MCU were considered. The first option was to opt for atypeC
protocol. This categorproke down furtheinto binarybased or humameadable protocols,

Bert and Apache Thrifareexamples of the former and JSENPC or SOAP of the latter. The
alternative to RPC is a custemade binary protocol. Considering the rather small
computational frequency of the MCU's core (160 MHz) and the number of tasks it has to
perform, the XML or JSOMbased options needed to be dismissed dtieetdifficulty of their
parsing.A custom binary protocol has been selected since it offers the best performance while

maintaining simplicity.

The C# programming language with its .NE&rfrework has proven to be a powerful,
flexible and versatile choice for our projects in the past. It offersagyto-use networking
and database API together with a vast variety of GUI components to build an application that
is both usefriendly and visally pleasing. Therefore, it has been chosen for this project as

well.

The FlexRay protocol defines a large number of parametdish are necessary for a
network to function. The Fieldbus Exchange Format (FIBEX) isetwork description
standard definedoy the Association forStandardizationof Automation and Measuring
Systems (ASAM) whichencompassesall common automotive communication standards
including FlexRayA FIBEX file contans all the information needed to describe an entire on
board network andhas become the stderd input file format for commercial software. For
this reason, a decision has been made to use FIBEX as the input format for the PC

application.

2. FlexRay

2.1. Brief description

The FlexRay standard is a communication protocol released by the FlexRay Consortium
in the year 1999. Members of the consortium are leading companies of the automotive
industry such as GM, BoschMBV, Motorola, Volkswagen, Freescale, Daimler Chrysler and

others. The standard has been developed primarily for the automotive industry.

FlexRay Physical layer

Its intended field of application lies chiefly imafety-critical applicationsfor instance
steerby-wire or brakeby-wire. In contrast to standards like CAN, TTCAN or LIN it offers
higher bandwidth up to 10 Mbit/s. It is based on the {@lvésion multiplexing (TDMA)
principle the determinism of which is crucial for réi@ahe applications. This also presents its
main advatages over aforementioned standards which use the master/slave (LIN) or
CSMA/CR (CAN) methods of arbitration.

However, FlgRay combines bothdeterministic and stochastic approaches to
communication which makes it flexible. The standard only defines thsiqath and the link

layers as defined by the ISO/OSI reference model.

2.2. Physical layer

The physical layer is represented by a transceiver and an unshielded -paisted
cabling. The standard alsdfersthe possibility to useoptical fibers with optical trasteivers.
FlexRay supportshe usage of two separate channels (commonly referred to as A and B).
Those can act as completely independent media or can provide redundancy to achieve better
reliability. However, data consistency on redundant channelssitiired by the controller

intrinsically and thus has to be implemented by the host.

Transceiver
Transmitter BP

<_ Channel A Ugp
Receiver oM Uem

GND

Transmitter BP

<_ Channel B

_ BM

Receiver

Figure 2-1: FlexRay transceiver with two channels

Source: 1]

FlexRay Physical layer

UA
IDLE
LP IDLE Log.1 Log.0
1,8-3,2
V Ugp - Ugm
Uge 12V
Ugm

Figure 2-2: Levels of FlexRay's electrical signals

Source: {]

Furthermore, FlexRay introduces the bus guardian. It is an optional part of the physical
layer. The bus guardian is an element responsibleéh®protection of the channel from
interference caused yb communication that is not in compliance with the cluster's
communication schedule. It is capable of blocking outgoing communication in time slots that
are not assigned to its hosting node. This prevents a potential break down of communication

between althe nodes of a cluster.

There are several approaches to designiRp@Raycluster depending on its topology.
In addition to pure topologies like a bus or a star, FlexRay also supports their hybrid variants
which are a combination of the tw®he numberof channels used and their configuration
presents another point of decisidrhere's a plethora of possibilities. The thing to keep in
mind is the maximum length of a segment between two nodes which is 24 nibegs.are

some examples of the possibipologies

FlexRay Physical layer

Node 1 Node 2 Node 3 Node 4 Node 5
Channel &
o o o L
Channel B
Figure 2-3: A Bus with two channels
Source: P]
Node 1 Node 2 Node 3 Node 4 Node 5 ‘
Figure 2-4: Dual channel single star configuration
Source: P]
Node 5
Mode 1 |
Node &
S {/_ /
<
| star 18 - /\
I Node 7
Node 3 {

Hade 2

Nade 4

Figure 2-5: Single channel cascaded star configuration

Source: P]

FlexRay Physical layer
Node &
Figure 2-6: Dual channel cascaded staconfiguration
Source: P]
Node B Node ©
Node A Star 1A Star 28 Node D

Figure 2-7: Single channel hybrid example

Source: P]

FlexRay Link layer

‘ Node 1 ‘ Hode 2 Node 3 ‘ Node 4 ‘ Node 5

Channel A

| Star 1B
{
L 4
Figure 2-8: Dual channel hybrid example

Source: g]

From a reliability standpoint it is no doubt preferable to use both chamsetedundant
media. The bus topology is the simplest option and also the cheapest making it suitable for
simple applications. In this case the bus transmission line represents a weak link. In case of its

severance the whole network goes out of commissiertal faulty line termination.

The active star topology enables us to reduce the consequences of a failure which
occurs in a part of the network. Failure of the active star element is nevertheless still a
potential risk. Hybrid topologies combine thdvantages of the bus and the active star. Their
weaknesses can be partially made up for through a correct combinatimthatopologies

(exampleFigure2-8).

2.3. Link layer
This layer of the ISO/OSI model is responsible for is the equivalent of a communication
controller and can be stdivided into three sulayers. These layers represent the adrithe
standard itself and provide an interface to layers below and above. These include:
1 Coding/decoding layerresponsible for modifying the dadad physical coding of the
transmitted bits
1 Protocol execution layerimplements the core of the protocpluts data into frames,
controls the media.

1 Controller host interface layeinterface between the node and the host.

FlexRay Link layer

Interface to application processes executed on the host

Controller hast
HI ;i
CHlssuiicas interface layer
L C =T
E““TQUHI'“" —|, (Protoced related frame data | ~— Controd & status data
=
[E Pratocal
MP.G *" FES% *'égg {7 FaP) exacution
W A b ' i 4 layer
—I I _| —t= Frame data | [
= = 2 ! =" Coding /
CODEC decading
[— 3 d_.___._r | layer
[: Eema . Physical
Bus drivers, BG, Physical interconnections | | Layer

CHI ... Controller hest interface
CSP ... Clock sync processing
C85 ... Clock sync starfup

FSP ... Frame [symbol processing
MAC .. Media access cantrol

MTG ... Macrolick generation

FOC .. Protocol operation control

Figure 2-9: Physical layer and link sublayers

Source webhttp://automatizace.hw.cz/sbernikemunikaceflexray-nejerpro-automobily

2.3.1. Architecture of a node

1 Host
> Contains the node's firmware
> Sets the parameters of the communication controller
> Enables/disables the usage of the bus guardian (if it is phygicafgnt
1 Communication controller
> Implements the protocol's core
> Provides an interface to the host
> Generates interrupts
> Generates the local time basmaaotick (refer to sectior2.4.])
> Synchronizes the local time base with the global time base
> Controls access to media
1 Busdriver
> Drives and receives various bus signals

> Detects and reports error states

FlexRay Communication cycle

> Provides support for a remote node wakeup triggerecdymunication on
the bus
> Two independent channgl& and B)
1 Bus Guardian
> Provides protection against unauthorized access to the bus

> Optional
Node 1 Link layer
Application layer - ~ Cammunizatian contrallar
i [
F
HOST Transceiver | Physical
- - + layer
Bus Guardian ¥
Transceiver
- > +
Bus Guardian Node 2 Node 3
Channel A i 1 l
FlexRay bus
Channel B L & >—

Figure 2-10: Architecture of a FlexRay node

Source: 1]

2.4. Communication cycle

The FlexRay protocol divides time into so called communication cycledehg#of a
communication cycle is parameter which needs to be determined by the ndesaker.
This length is constant during rtime. One communication clgcthen breaks down into four
different segments. These are the static segment, the dynamic setmesymbol window

and the network idle time.

10

FlexRay Communication cycle

Static segment Dynamic segment Symbol NIT
{2 - 1023 slots) (O - T98E6 minislots) Window
Deterministic Non-deterministic Symbel
— | transmission
Static slot1 |-+ .| Static sletn Dmamsie |, esees Dynamic CAS
slat 1 slat m
B MTS
ird Ml Mirl Miri
slot sl slot slok

Figure 2-11: Communication cycle

Source: 1]

Only thestatic segment and the network idle time are compulsory parts of the communication
cycle. The length of the communication cycle and its division into segments must be identical

in all the nodes of the cluster.
2.4.1. MicrotickT & T

The microtick represents thmmallest and atomic time interval. It is derived from the
controller's oscillator and therefore nesjgecific. The usual length is equal to the period of
controller's time base. It is not a subject to the global clock synchronization mechanism.

2.4.2. Macrotick i MT

Macrotick is a time interval identical for all the nodes in the cluster. It represents the
common perception of time in the FlexRay network. A macrotick consists of an integral
number of microticksformally0 "Y= *"YJQ QN w, wherethe constanfQcan differ in

different nodes of the cluster depending on the frequency of their time bases.
2.4.3. Static segment

The communication cycle always starts with the static segment. It is a compulsory part
of the communication cycle. It consists©f& N = number of static slots. The maximum
number of static slots defined by the standard &4824. Each slots belongs to exactly one
node, however, one node can own multiptess The beginning and the end of a static slot is

11

FlexRay Communication cycle

time wise preset and cannot chganat ruatime according to the payload length transmitted
inside the slot.

The static segment represents the deterministic part of the communication cycle and is
thus suitable for the exchange of thtritical data.The guaranteed latenclgpwever comes

at the cost of lower utilization of the communication channel.
2.4.4. Dynamic segment

The dynamic segment is an optional part of the communication cycle. It's made up of
& ;& N = dynamic slots. Each dynamic slot is then further made up of minislots the number
of which varies depending on the current frame's payload length. The duration of a minislot
must be the same for all nodes in the cluster and it is defined by the number of MT which it
consists of. The length of a dynamic slot is therefore not constantsapelginning and end

cannot be known at network design time.

The slot counteof a communication controllehen, as opposed to the static segment,
holds the count for the duration of frame reception or transmission so that all the nodes in the
cluster dare the same value of the slot counfEne length of the dynamic segment is
constant, however, for every communication cycle. It is possible for this reason that a frame
assigned to one of the later dynamic slots will not be transmitter and it delayetieinext
cycle (the transmission would cause the frame to overstep the dynamic segment boundary).

This can happen multiple times in a row.

Cluster's behavior in this respect can be influenced by the parapiettrstTxas
defined by the FlexRay standav2.1. This parameter sdtge time in minislots whea node
is allowed tostart transmitting at the latest in the dynamic segment. The communication
controller checks before the transmission of any frame in the dynamic segment if the minislot
counter has exceeded thkeatestTxthreshold. If so, then the transmission is suspenoteil

the next communication cycle.

The dynamic segment represents the-deterministic part of the communication cycle.
It is therefore most suitable ftine exchange of tim@oncritical data. Its advantage lies in the
high degree of utilization of comunication channel compared to the static segment. For this

reason it can reach a much higher throughput.

12

FlexRay Frame format

2.5. Frame format

A FlexRay frame is made up for three segments. First is the header segment which
begins by the reserved bit and is followed by a sefieésdicator bits. Frame ID determines
the time slot of the communication cycle in which the frasneeing transmitted. It cagither
be a static slot or a dymic slot but no other frames alowed to have the same Frame ID
in the same communication dgcThe payload length is indicated by a number of-Walfds
(16 bits). The range is then from 0 to 254 bytes. The header CRC is calculated from the last
two indicator bits, Frame ID and payload length. It servea mgansof verification of the
transmision's correctness. The cycle count denotes the cycle number. It ranges from O to 63.
When it reaches its maximum value it starts over from zero again. This is useful mostly for
theso called cycle filtering. Nodes can for instance only transmit data exérgycle with a
possible offset. In the same manner, the protocol supports also filtering of received frames.
This practice, however, should not be exploited for sharing slots between nodes despite it

being technically feasible.

Reserved bit

~ Peyloed preamble indicator
Null frame indicator

=1 Sync frame indicator
L=ty e Raicuton:

—
[— |
'\.

Frame Payload Header Cycle Data 0 Data 1 Data 2 Datan
D length CRC count
11bits | 7bits | 1ibits | 6bits 0...258 bytes S
AANRR <« re re P >« >
Header segment Data segment CRC segment

FlexRay frame 5+ (0 ... 254) + 3 bytes

A
v

Figure 2-12 FlexRay frame format

Source webhttp://www.coleparmer.com/TechLibmgArticle/1112

The data segment contains 0 to 254 bytes of payload data. The payload length may vary
in frames with the same Frame ID cycle to cycle. Therefore it's necessary to always read the
payload length field. The CRC segment contains a value calculated ovetitedeader and

data segments. The presence of two CRCs in a single frame is of the FlexRay's security

13

FlexRay Clock synchronization

features. For details on the generator polynomials and their initialization vectors for the CRC
segment and the header CRC refer to the FlexRay stafsdande2]).

2.6. Clock synchronization

In order to enable the use of TDMA all nodes in a FlexRay cluster must have a common
perception of time with a fairly high precision regardless of their individual oscillator
frequencies. To accomplish this FlexRay idtroes the aforementioned global timeit -
macrotick. Nevertheless, real oscillators are imperfect and their frequencies fluctuate with
time. Therefore, it is necessary that all nodes constantly adjust the lengths of their macroticks

(Rate Correction) antthe offset of individual cycles (Offset correction).

2.6.1. Measurement

At the beginning of each communication cycle the controller measures tke tim
deviations between the expecteeception time and the actual reception time. This is
performed for every so datl synchronization frame of every synchronization node (a node
that transmits a synchronization frame). Measurements are done separately for both channels.

The measured values for the last two cycles are stored.

Even cycle Odd cycle
YT of channelA YT of channeB YT of channelA YT of channeB
[OT] [OT] [OT] [OT]
Nide 5 13 25 32
N%de 11 10 14 13
N‘;de 35 30 41 29

2.6.2. FTM algorithm

Table 2-1: An example of measured values

The input for the Fault Tolerant Midpoint algorithm is a list of integral values. Those
values are first sorted in descending order. Depending on the number of entries we éliminate
highest and lowest values. From the remaining values we chose the laigidbe lowest

ones. Their arithmeticaheanis the output of the FTM algorithm.

14

FlexRay Clock synchronization

Number of entrie§ k
1-2 0
37 1
>7 2
Table 2-2: Number of entries to eliminate

Source: 2]

5

=&

1

++17/2=8

e

-

=5

Figure 2-13: An example of FTM calculation for k = 2

Source: g]

2.6.3. Rate Correction calculation

The value of Rate Correction is calculated during the network idle time of every odd
cycle from two consecutive measurements. Even cymbesow values fromheir previous
odd cycles. First we calculate the difference of deviations for even and odd cycles separately
for channels A and B. We then take their arithmetic mean.réhalt isa single table of
values which is then used as an ingat the FTM algorithm. The FTM's output is
consequentha subject to thepClusterDriftDampingparameter (range of insensitiy). Let's
denote the result of which as The final value for Rate Correction is then saturatednbyy
(g, pRateCorrectionOutwhere the second argument represents the maximum admissible

value for Rate Correction.

The final output of RC is an integral value which denotes by how many microticks
should the next communication cycle be adjusted. Positive values represent extadsion a
negative values shortening. The change is applied to the next two consecutive cycles and is
evenly distributed over macroticks so that no two consequent macroticks differ by more than

one micotick.

15

FlexRay Startup mechanism

2.6.4. Offset correction calculation

The Offset Correction Vae is computed in each cycle. First the minimum value for
each row is taken from the table of deviations. This produces a list of values as an input for
the FTM algorithm. Subsequentlwe denote the FTM's output &s The resulting value is
then saturaté by min (g, pOffsetCorrectionOutyvhere the second argument represents the

maximum admissible value for Offset Correction.

2.7. Startup mechanism

All nodes in a FlexRay cluster need to set up a common perception of time in order to
be able to stick to their beduled time slots and be able to receive from others. The startup
mechanism thus has to perform an initialization of the time base. This is done by so called
coldstart nodes. To startup a FlexRay network at least two coldstart sn@desqquired. One

of the two becomes a leading coldstart node and the other a following coldstart node.

Prior to the startup all the nodes must be inrdealy state meaning that they already
need to be configured and if required also woken up. As the startup commences all nodes
enter thecoldstartlisten state. Each node stays in this state for a random amount of time
during which it listens to the communicatichannel. The first node to leave this state
transmits its CASollision Avoidance SymbolBy doing so it becomes the leading coldstart

node. Other coldstart nodes assume the roles of following coldstart nodes.

It can occur that two nodes transmit the€AS at the same time. For this reason a
leading coldstart node always transitions todbkision resolution stagafter transmitting the
CAS. During this phase the leading coldstart node transmits a startup frame in four
consecutive cycles and listerm possible collisions. In case a collision occurs all nbdes
to recognize this andeturn to thecoldstartlisten state and the startup process is repeated
while each node decreases its counter of remaining coldstart attdrptsoldstartlisten

stae may only be entered if the number of remaining coldstart attempts is greater than zero.

If there are no conflicts detected then just after two cycles are the following coldstart
nodes able to determine the correctness of the time schedule by compettimge interval
between the startup frames. All nodes must know the schedule beforehand. They merely
verify its correctness. The other two cycles are essential to perform rate and offset corrections.
Following the four cycles all other coldstart nodescpex to transmit their startup frames.

The leading coldstart node erdehe coldstart consistency cheaftage in which it checks

whether the frames transmitted by following coldstart nodes comply with its schedule. This
16

FlexRay Startup mechanism

again takes four cycles. At the eofithe fouth cycle if not interrupted by consistency check
errors the cluster is successfully started and otherewdstart nodes can join starting with

the next cycle.

17

System architecture

3. System architecture

The platform is to serve as a flexible andiquetool for monitoring and testing of
vehicular networks. In its current statdstcapable of monitoringlexRay clusters by using
the integrated FlexRay controller as one of the cluster's nddes=PGA is a key part of the
system since it's responsible for tin@pping ofall communicatioroutputs from the MCU to
their respective drivers. But equally impamt are the FlexRay controllers contained within.
Their number carbe change by loading a different design into the FPGA. However, the
system reacts flexibly to this and reads the number from the FPGA's special register. Both the
firmware and the PC apphtionthenrecognize this number and provide control to the ae
each controller without the need to recompile. The latest hardware version offers two physical
FlexRay drivers (2 x 2 channels) to whielther controller type (MCU or FPGA) can be

mappedAt the time of development the mapping was static.

MCU

— Q TARGET BOARD
FPGA DESIGN FILE IN \\‘"

-- A FLASH MEMORY \LA FPGA
e

WINDOWS freeRTOS

FLEXRAY
CONTROLLERS

—

APPLICATION N)
. < >\I| LoGic < P STACK » r LIERARIES
“ q)
3

417%“"(\Lj
[|

MAPPING TO V|
PHYSICAL
INTERFACES

=

/N

APPLICATION LOGIC

PHYSICAL DRIVERS

A DESIGN FILE FIBEX LOCAL DATABASE

Figure 3-1: System architecture

All FlexRay controllers in the FPGA areapable of norstandardoperationswhen
compared to commercially available controlleFhose capabilities are aimedtlat testingof
the parameters of FlexRay networks. The ability to change node's parameters at runtime
represents the core principal behind tibsts. The MCU partakes the testdy executing sets
of commands responsibléor coordinating the tests anckading the resultsFlexRay

18

FreeRTOS

controllers in the FPGA are taken fraaurce[14] and stand as a key component which this

thesis integrates into a complex testing system.

Apart from FlexRay the target board is also equipped with CAN and LIN drivers. Their
utilization is not within the scope of this thesis but they are ready for future applications.
Their usage can either be added to all components of the system meaningaai€adion,
the communication protocol and the firmware. Or they can be controlled purely from custom

tasks which are described in more detadéation5.3.

4. FreeRTOS

FreeRTOS is an open source real time operating sytsig@ted at microcontrollers and
small microprocessors. It has been largely successful over its 12 years of existence. A vibrant
community has been formed around freeRTOS providing free professeeerasupportThe
kernelhas a very small binary imag&he exact size varies depending on the components
used.Despite being free freeRTOS has successfully ntadé commercial applications and
is known to be reliable. Such a tradcord combined ith the fact that a port for our chosen
architecture can be easily generated with the Halcogen tool made freeRTOS a clear choice for

this platformover its only considered competiioRTEMS.

4.1. Port settings
The Halcogen toolfrom Texas Instruments offers an easy way of generating a

freeRTOS port witlthedesired parameters. Here is a list of chosen settings:

1 Tick Ratei 1000 Hz that means one tick equals one millisecond

 Minimum Stack Sizei 128 words

1 Preemptioni Enabled

1 Number of Priorities 7 3, despie only twobeing actually used. Wasting of

processor time is prevented by tasks blocking while waiting for resources. While

not being blocked tasks share processor time equdily.remaining prioritys

provided for possible futeruse.

1 Heap Szei 32768 bytes this current setting may be adjusted according to
need. For instance additional heap space nbghtheededf a large number of

user tasks were defined. More about user tasksdtion5.3.

19

FreeRTOS

1 Memory sectionsi ar e not adjustable by the
considered part of port settings. However, as of now memory sections are
irrelevant for this project since the memory protection (MRU) of freeRTOS
is disabled Though they do need to be consideffetthat were to change as the

project expands.

4.2. Featuresused

Thefeatures of the redalme operating system that were used to build the firmwaeze
listed in this sectionThese include tasks, queues and mutexes. All of these elements have to
be dynamicall allocated and therefore can fail to be created. It is a good practice to check the
handler after allocatiomo seewhether it has been successful. This can save a lot of time
debugging for any programmer expanding the firmware with new features (sutle as
planned CAN and LIN).

4.2.1. Tasks

A task in freeRTOS just as in any other operating system represents a small program in
and of itself. There are two basic ways of creating tasks in freeRTOS depending whether we
take advantage of the MPU or noffThe two funtions to create tasks are
xTaskCreateRestricteand xTaskCreataespectively. Since the MPU is not utilized in this
project only the latter function is used. Here is a list of tasksingéds thesis

1 Command_dispatcher 1 stack size = 128 words, function=

commandDispatcher, priority = 1, parameters = none

1 Mcu_controller task T stack size = 128 words, function

mcuStateMachineTask, priority = 1, parameters = none

1 Fpga_controller_task 1 stack size = 128 words, function
fpgaStateMachineTask, priority 5 parameters = index of the contro]léne
number of these tasks is determined by the value read from the FPGA. One task
for each FlexRay controller is created up to a maximum defined by the macro
MAX_FPGA_FR_CONTROLLERS.

1 Lwip_server_taski stack size 2048 wordsfunction = lwipTask, priority = 1
(later lowered to 0), parameters = none

1 Tcp_send taski stack size = 128 words, function = tcpSafi@esk, priority =
2, parameters none

1 User defined taskd refer tosection5.3.

20

Ha

FreeRTOS

4.2.2. Queues

Queues area means of passing data between tasks and can also serve as a way of
synchronization since queues in freeRTOS are capable of blocking for a certain period of time
or indefinitdy. When inserting data into a queoe when retrieving it the data is always
copied. Therefore, special care must be taken when dealing with large data structures. In such
a situation it is advised to desimnymointeilse pr 0O
are stored in the queue. This approach is not used in scope of this project beckugeghe
queued data structure is 268tes long andtihappensvery sparselyThis size has been
chosen because it is required to accommodate data o$tlgrgssible FleRay payload (254
bytes).However, most commasdire much shorter than that so only the required number of
bytes is copiedHere is a list of used queues:

commandQueue element size =&3 bytes, number of elements = 3
mcuFrControllerQueue i element size =&3 bytes, number of elements = 2

1 fpgaFrControllerQueue 1 element size = &3 bytes, number of elements 5 2
the number of these tasks is determined by the value read from the FPGA. One
task for each FlexRay controller is created up toaimum defined by the
macro MAX_FPGA_FR_CONTROLLERS.

1 tcpSendQueue element size = 2 bytes, number of elements =1
4.2.3. Mutexes semaphores and binary semaphores

Mutexes, semaphores and binary semaphores in freeRTOS all use the same handler type
xSemaphoreHandleThe way to distinguish them is through the methdtedao initialize
them. Mutexis a binary semaphore that empladlys priority inheritance mechanisnviutexes
are suitable for mutual exclusion. Semaphores and binary semaphores are very similar to
mutexes but they do not include priority inheritance. Binary semaphores can same as mutexes
only be either taken or freghot-taken, unlocked, ef). A regular (counting) semaphore
contains a counter which determines how many times it can be taken with@asinglé.
Both semaphore types are best suited for synchroniziotex namedcpSendProtection
is used in the firmware. It is created as lheary semaphorg/pe and isesponsible fothe
synchronization of requesto send data from multiple stateaohines(both MCU and FR)
Specifically, it protects the access to the TX buffer which is shared by all tasks. The mutex is

released as soon as the data is written t& MAC buffers.

21

Firmware

5. Firmware

5.1. Porting of the IwIP stack

In order to build a protocdlased a TCP between the PC application and the MCU an
IP stack needs to be ported for the combinatioth@architecture and the reaime operating
system. This can be done in many ways. For example one of the decisions that need to be
made is what kind of APl we want to use. LwIP offers three lafrera which we can

choose.

1 BSD socket APIi the primary advatage is its portability to other stacks. It is
sequential which means thiatrequires threading to operate it. Oitheead uses
the APl and the second thread runs the stack itself (takes care of, timers
incoming packets efr.
Netconn APIi not portable tather stacks, sequential

1 Raw APIi not portable to other stacks, uses callbacks, best performance since it

doesnot have to deal with thread switcht

First two options are more complicated to implement and require a deeper knowledge of
the IwlP stack. Alspissues with performance might arise if more user taske defined.
Since the porting athelwIP stack is not the objective of this thesis but only means to an end
a decision has been made to use the raw API.

5.2. Command processing

Figure 5-1 depicts the flow of command processing in the MCU. Whenever a TCP
packet is received a callback function is invoked. The callback does not interpret the data. Its
only job is to opy the received data into the command queue and signal the reception of data

to the IwlP stack.

Considering the frequency of incoming commands it is not expected that there should
be more than one element in the queue at any time. However, the qudue & sapacity of

three to allow for extreme cases.

Data from the command queue is read by@oenmand_dispatchertask. It is set to
wai t i ndefinitely s oingtime whenelene &tho comnsanhddde any p
procesed Upon successful retrieval of a command from the queue the dispatelusthe

command type coded in the first byte. Depending on the command type it has three options. It

22

Firmware

can process the command itself, pass it toMloe_controller_task or pass to onefahe
Fpga_controller_tasksidentified by the index in the second byte.

TCP RECEIVE
INTERRUPT

COMMAND
DISPATCHER
THREAD

DIRECT
PROCESSING

FPGA FPGA
QUEUE 1 QUEUEN

CU QUEUE

MCUFR
CONTROLLER STATE
MACHINE

FPGA CONTROLLER FPGA CONTROLLER
1 STATE MACHINE N State MACHINE

Figure 5-1: Command dispatching

Commands that do not belong to dflgxRay controllers are processed immediately by
the dispatcher. For example when the PC application requests the number of FlexRay

23

Firmware

controllers in the FPGA. This information is has already been stored during initialization so
the dispatcher simply repliegith the value. Another exmple would be the request for tiss

of available user tasks.

5.3. Task declaration macros

One of the required features is the possibility for a programmer to define arbitrary tasks
and to be able to run or suspend these tasks thien?C application. To make the definition
of user tasks easier a macro has been written which serves as a sort of a task declaration API
which wraps the freeRTOS task declaration API with additional cddes way the
programmer d o e s n 0 texactle 0@ thémanagemedteof gseér aaskd is

implementé.

To declare a user taske programmer has to look for a sectmmundedoy /* ---- USER
TASK DECLARATIGN * and /* ---- END OF USER TASK DECLARATION */ . All the user

tasks are supposed to teclared within this area using the following macro:
DECLARE_TASK_MANAGER_TASK(function, name, stack, params, priority, handle)

The passed argumerase

1 Function 7 a pointer toa function which the task is going to perform. The
function must never exit.

1 Name- const char * const type variable that is going to be displayed in the PC
application as the name of thetask The pr ogr ammer must a\
character inthe name since it is used as a separation character in the
communication protocol.

1 Stacki A value that represents the size of the stack in witralthe operating
system has to allocate for the task.

1 Paramsi parameters that will be passed to the task

1 Priority of the task i it is recommended to use 1 hiéita higher number is
chosenthe programmer needs to make sure that the task either blocks or yields
often enough not to starve other tasks.

1 Handle i here the programmer has to putté#skManager[x] Wwherex is the
index to the taskManager array. This value should enang for evey
declared tasgoing from 0 toSIZE_OF_TASK_MANAGERL.

24

Firmware

Here is an example of a correct user task declaration area:

uint32 ledTimeOne = 1000;
uint32 | edTimeTwo = 3000;
uint32 sciTime = 2000;
uint32 stack = configMINIMAL_STACK_SIZE;
A
A
A
[* ---- USERTASK DECLARATIGN */
DECLARE_TASK_MANAGER_TASK(ledTa%lked flash_one" , stack, ledTimeOne, 1,
taskManager[0])

DECLARE_TASK_MANAGER_TASK(ledTa%ked flash_two" , stack, ledTimeTwo, 1,
taskManager[1])

DECLARE_TASK_MANAGER_TASK(consoleTaskpn sole_task" , stack, sciTime, 1,
taskManager[2])

[* ---- END OF USER TASK DECLARATION */

When passing parameters to tasks it i s

correctly in the task function since they are always being passed as poitiensdid type

5.4. TCP server implementation

The server part of the system is implemented in the MCU. Upon power up or reset the
MCU initializes all necessary peripherals. This happens before starting the scheduler in all
cases except the EMAC. The initialimat of EMAC and the IwlIP stack is performed by the
Lwip_server_task before entering the endless loeperyfreeRTOS task is required to have.
The last function called by this task ssrver_init which allocates thetruct tcp_pcb
variable.After that it lowers its own priority to that of the idle task and enters an infinite loop.

Packet reception ihen handled through callbacks.

It is done this way because all the components of the Iwip used in this project are
designed to pass around airger to the pcb. The pcb variable needs to be kept valid, which
means we cannot allow the stack space to be freed. It would require a lot of extra time and

effort to rewrite the Iwip which also invites a number of potential errors.

Packet transmission isandled by a special taskcffSenderTagk Whenever a task
wants to send data over the TCP it has to acquireeffgendProtectiomutex which protects
access to the TX buffer. After writing the data into the buffer the task lraxjteeue theata
lengthinto tcpSendQueu€This causes theepSenderTasto immediately preempt any other
running task since it has the highest priority. Andrites the requested amount of data into

the EMAC buffers. Consequently, it releases ttgSendProtectiomutex. The queue can

25

Firmware

only hold one element at a time. There is no point making this queue any bigger because no
other task can acquire thgpSendProtectiomutex until thecpSenderTasieleases it.

5.5. EMIF

The External Memory Interface (EMIF) is a conteoll integrated in the
TMS570LS3137ZWT chipThe purpose dEMIF is to provide a means for the MCU's core to
connect to a variety of external devices including SDRAMs or asynchronous dewateas
NOR Flash and SRAMIn case of this project it is used tuarface to the FPGA's registers.
The registers are mapped to CPU's address space and can bedstcgsy by readingrom
and writing to an address using pointdrke following macros are provided to facilitate the

access:

#define READ_CONTROLLER_VALUE(BASE, CONTROLLER_INDEX, ORFSET)

(*((volatle unsigned int *) ((BASE) + ((CONTROLLER_INDEX)*(FPGA_FR_CONTROLLER_LENGTH)) +
(OFFSET))))

#define WRITE_CONTROLLER_VALUE(BASE, CONTROLLER_INDEX, OFFSET, VALUE)

(*((volatle unsigned int *) ((BASE) + (CONTROLLER_INDEX)*(FPGA_FR_CONTROLLER_LENGTH)) +
(OFFSET))) = (VALUE))

#define READ_VALUE_8BIT(BASE, OFFSET)
(*((volatile unsigned char *) ((BASE) + (OFFSET))))

#define WRITE_VALUE_8BIT(BASE, OFFSET, VALUE)
(*((volatile unsigned char *) ((BASE) + (OFFSET))) = (VALUE))

#define READ_VALUE_32BIT(BASE, OFFSET)
(*((volatile unsigned int *) (BASE) + (OFFSET))))

#define WRITE_VALUE_32BIT(BASE, OFFSET, VALUE)
(*((volatile unsigned int *) ((BASE) + (OFFSET))) = (VALUE))

It should benoted that tasks in freeRTQ®rmallyonly allow access to their own stack
and to the heapOther memory regions are accessible according to the setting of MPU
regions.The MPU is not needed in this project so it is left uninitialized. Otherwise either the
memory region access right would have to be changedspeaial restricted type of task
would have to be used instead (usir@jaskCreateRestrict¢d Restricted tasksra an
unnecessary over complication. Leaving the MPU off allows for the@fussgular tasks even

when accessing the EMIF memory regions.

Communication constants of the EMIF calligr have to be set in mutuedbmpliance
with the FPGA's EMIF module. It isonfigured for asynchronous access. Here are the

parameters used:

26

Firmware

— EMIF: ASYNCT Config

Select Strobe Mode Page Mode
MOR Fash Page Delay: g Cycles
Extended Wait Page Size: 4 words -
— EMIF: ASYMNC1 Timings
W_SETUF: |1 Cycles ASIZE: 16.bt | -
W_STROBE: |10 Cycles ASYNCIWAIT [0 |-
W_HOLD: |1 Cycles
R_SETUP: |1 Cycles
R_STROBE: 9 Cycles
R_HOLD: 1 Cycles
TA: 1 Cycles

Figure 5-2: EMIF Settings

5.6. MCU state machines

All state machines in the MCU are ewelniven. That means they can only perform

actions oredges i.e. while receiving a command.

5.6.1. MCU Connectionstate machine

This state machine is the simplest in the MCU. Its only purpose is to track the
connection state of the protocdlhe state of the connection has three phdsest one is
IDLE, which is te initial state. Upon receiving a request for the number of FlexRay
controllers in the FPGA the dispatcher task sends the response and transitions to the
FPGA_READOUT_SENT state. Here it remains until the PC application requests the
firmware version togéter with a list of supported commands. It then sendsg¢lded answer
and finally transitions to the PAIRED state. At this point it is allowed to pass commands to

their respective FlexRay state machines.

27

Firmware

STATE MACHINE ERROR

J

CONFIG_READOUT_REQUEST received
and
CONFIG_READOUT_RESPOMNSE sent

FPGA
READCOUT d
SENT

SUPPORTED_COMMANDS_AMND_VERSION_RECQUEST
received and
SUPPORTED_COMMANDS_AND_VERSIOMN_RESPONSE
Sent

FAIRED d

Figure 5-3: MCU Connection state machine

28

Firmware

5.6.2. MCU FR state machine

FR PARAQIS FAILURE

FR PARAMS SUCCESS

SLOT INF@ FAILURE

PARAMS

RECEIVED
STATE MACHINE ERROR

SLOT INFO SUCCESS

STATE MACHINE ERROR

SLOT DEF
RECEIVED

GO TO READY

COLDSTART or JOIN

FREEZE

COLDSTART
FAIL

TX DATADEF SUCCHSS

or HALT

OR JOIN

TX DATA UPDATE

SUCCESS

Y

ACTIVE

Figure 5-4. State machine for handling the MCU's FlexRay controller

State machine depicted Higure 5-4 is responsible for implementing the parts of the
communication protocol that concern the FlexRay controller in the MCstarts with the
PAIRED state which is where the connection state hingcleft off and started passing
commands to FlexRay state machin@$ie states can be divided into two phases
configuration and operation. Configuration includes the PAIRED, PARAMS_ RECEIVED

and SLOT_DEF_RECEIVED states. Upon receiving the followingtzmts:

29

Firmware

pKeySlotusedForStartup
pKeySlotUsedForSync
gColdStartAttempts
pAllowPassiveToActive
pWakeupChannel
pSingleSlotEnabled
pAllowHaltDueToClock
pChannels

pdListenTimeOut

gListenNoise
gMaxWithoutClockCorrectionPassive
gMaxWithoutClockCorrectionFatal
gNetworkManagementVectorLength
gdTSSTransmitter
gdCASRxLowMax
gdSampleClockPeriod
pSamplesPerMicrotick
gdWakeupSymbolRxWindow
pWakeupPattern
gdWakeupSymbolRxIdle
gdWakeupSymbolRxLow
gdWakeupSymbolTxIdle
gdWakeupSymbolTxLow
gPayloadLengthStatic

pLatestTx

pMicroPerCycle

= =4 =4 4 48 -4 -8 -8 -8 -2 _9 -9 _a _2 -9 -9 -2 -9 -9 -9 -9 -9 -9 -9 -92 -9

= =4 =4 4 4 -4 -8 8 4 -4 8 8 -8 -8 -9 -4 -9 -4 -9 -8 -9 -9 -9 -9 -9

gMacroPerCycle
gSyncNodeMax
pMicrolnitialOffset[A]
pMicrolnitialOffset[B]
pMacrolnitialOffset[A]
pMacrolnitialOffset[B]
gdNIT
gOffsetCorrectionStart
pDelayCompensation[A]
pDelayCompensation[B]
pClusterDriftDamping
pDecodingCorrection
pdAcceptedStartupRange
pdMaxDrift

gdStaticSlot
gNumberOfStaticSlots
gdMinislot
gNumberOfMinislots
gdActiorPointOffset
gdMinislotActionPointOffset
gdDynamicSlotldlePhase
pOffsetCorrectionOut
pRateCorrectionOut
pExternOffsetCorrection
pExternRateCorrectio

Along with additioral information about channel usage, startup and synchronizagon

state machine writes them into the FlexRay controller. Subsequently, the state advances to
PARAMS_ RECEIVED. In this state the information ab&}) and TX framesis expected.
The order of butrs is important. RX frames go first and TX frames sec®hds is necessary

to makethe firmware much simpler and more elegamhis information is stored and the

firmware uses it to calculate pointers to the FlexRay message RAM for all the message

buffers. RX buffers are configured riglatway since they don't require any payload data.
Afterwards, the machine shifts to the SLOT_DEF_RECEIVED state. Here it receives the data
that is to be transmitted out of the TX buffers. The order of the buffers hdtote floee same

order in which the frames were defined in the previous stage. For example if the following

four frames were defined:

1 slotiID =12, RX
{1 slotlD =2, RX

30

Firmware

M slotID 5, TX
M slotlD 23, TX

Then the first TX data must be for the frame transmitted in sdotdSthe second in slot
23. At the end of data definition a double acknowledgechanism is used. Seigure5-5 for
better descriptiveness.

PC BOARD

Figure 5-5: Details of message exchange at the end of data definition

When the MCU receivsthe MCU_GO_TO_READY command it can finally transition
to the READY state. Now, the FlexRay controller can optionally perform a clustesuwak
Other than thatit waits until it is instructed to either coldstarttorjoin a running network.
The startup procedure may fdilhe resulis reported to the PC application. In case of success
the controller now finds itself in the ACTIVE state. In case of failureerhains in the
READY state. Then a new startup command may be issued by the PC appliDatiaiis

about thanessage formatan be found irsection7.4.

31

Firmware

5.6.3. FPGA FR state machine

FPGA_FR_CONFIG
RECEIVED

()
FPGA_RUMN_TEST FPGA_FR_CONFIG
RECEIVED RECEIVED

PARAMS
RECEIVED

HALT

FPGA_TX_FRAME_DATA_DEFINITION RECEIVED

RECEIVED

STARTUP
FAILED

|

FPGA_TX_FRAME_DATA_DEFIMITION
RECEIVED
CONFIGURED J
WITH

FRAMES

FPGA_COLDSTART or
FPGA_JOIN RECEIVED
AND STARTUP SUCCEEDED

ACTIVE

FPGA_TX_FRAME_DATA_UPDATE
RECEIVED

Figure 5-6: MCU FPGA State machine

EachFpga_controller_task (section4.2.]) manages state machine shown kgure

5-6. In addition towhat can be seen in the figure each state also has an edge to the PAIRED

32

Firmware

state as a reaction an internal reset command which is issued every time a new configuration
IS loaded into the FPGAVIth the exception of this internal command the state machkes ta

action exclusively in reaction to commands passed to it by the command dispatcher. When an
action is finished the task blocks on its receive queue waiting for a new command. This way it

doesn't consume any CPU time when it's not needed.

First the statemachine expects cluster and node parameters in the format which is
detailed insection7.4. After receiving the first definition of a TX frame it transitionsthe
CONFIGURED WITH FRAMES state. Other TX frames sent by the client are processed in
this state. Howevethere is a limit to the number of TX frames that can be defined in a single
FPGA FlexRay controller. The current number is 4. This constant can bsteztjin the
VHDL code of the controller. If the client tries to define more frames than that the state

machine responds with an error message.

The PARAMS RECEIVED state is intended for the future img@etation of running
tests. Configuring TX or RX buéfs is usually included in the tests themselves. Only
FlexRay parameters need to be set. That is why PARAMS RECEIVED is the correct
launching state and not CONFIGURED WITH FRAMES.

33

PC Application

6. PC Application

6.1. State machine

Just like in the case of MCU the stat@chines in the PC application are edge oriented.
Only, in this casethey can react not only to received frames ov€PTbut also to user
interactions In addition to what can be seen in the figussh state Esesses an edge to the
IDLE statein caseof an unexpected action (state machine eridnipse edges were left out to

keep the graphs neatly arranged.

The PC application manages only two state machines. The first solelisresponsible
for managing the connection to the bqakéepingtrack whether the fibexfile has been
loaded and thCU's FlexRay controlleitself. It also spawns the instances of state machines
responsible for the FPGA controllers. The decision to merge all these functions into one state
machine has been made for severadoea:

1 It saves lines of code
1 It avoids having to coordinate more state machines with one another

1 It makes itcleaer (which might of course be subjective)

So the state machine contains all the functionality ¢batd reasonably possiblee fit
in. However it was not feasible to include the FPGA state mactsimee there are multiple
instances of those and the numbeth&mis not known beforehand. And even if it were the
resulting states would be a Cartesian product of all thessiging at a ceria point. This
would unacceptably inflate the number of states.

6.1.1. General state machine

At the beginning the state machine spimto two branches (sdégure 6-1). One of
them is where the fibex file is loaded before connecting to the board and the other one after. A
fibex file isa compulsorynput forthis application. It has been chosen as thedstahway of
describing FlexRay networks in the industry. However, the user is still allowed to edit the
parameters even after loading the fibex. This gives the user freedom to experiment without
having to edit the fibex file itselbut it can also compromse the ability of camollers to
integrate into aluster. There is no mechanism in place which would check whether the new
parameters are still compatible with the originally loaded fibex. A user with at least basic

knowledge of the FlexRay standard iswased.

34

PC Application

FIBEX LOADED FPGA READOUT REQUEST SENT

AWAITING

FIBEX
FPGA

LOADED READOUT

FIBEX LOADED

FPGA READOUT REQUEST SENT
l

IBEX LOADED

COMMAND REQUEST SENT

AWAITING
FPGA CONF
+ FIBEX AWATTING
FIBEX LOADED

SUPPORTED
COMMANDS

COMMAND REQUEST SENT

FIBEX LOADED

I
SUFPPORTED COMMANDS RECEIVED

AWAITING
SUPPORTED
COMMANDS
+FIBEX

FIBEX LOADED

SUPPORTED COMMANDS RECEIVED FIBEX LOADED

PAIRED AND
FIBEX
LOADED

1
SPAWN FPGA STATE MACHINE
- —»

CONFIG CONFIRMATION RECEIVED

MCUFR
CONFIGURE
D

SLOT DEFINITON SENT AND
CONFIRMATION RECEIVED

AWAITING
PARTIAL
CONF

SENT TX DATA

RECEIVED PARTIAL
CONF (sends next b data)

NO TX FRAMES

HALT or FREEZE
RECEIVED FRAMES

DONE CONFIRMATION

WAKEUP
POSSIBLE

Y

STARTUP FAILED

COLDSTART or JOIN

STARTUP
SUCCESSFUL

Figure 6-1: PC application's main state machine

35

PC Application

Once the machine reaches RAIRED orthe PAIRED AND FIBEXLOADED state
the"FPGA Status” windowsee6.2.95 can be opened. This spaswwne FPGA state machine
(seeb6.1.2 for each controller in the FPGA. &be state machines are managed through the

Ul of this window

Next comes the configuration phase which practically mirrors the state machine in
5.6.2 The MCU_FR_QGONFIGURED stateis entered once a confirmation from the MCU is
received that setting of the cluster constants is finished. Without any user interaction the state
machine then proceeds to send details about monitored frames followed by frames added in
the Message Htbr tab. As mentioned previously, the order of frameatters! Then again
without any user interaction, provided no errors were detected, the state machine starts
sending data for the TX frames defined in the previous step (in the same ordedatBhis
stored in their corresponding message buffers in the FlexRay controller and will be scheduled
for transmission as soon as the node comes onkpe.the double acknowledgement

mechanism which follows this tlaexchange refer back kagure5-5.

Now the Ul enablethe user to perform a wakeup of the cluster or select one of the
startup options. After sending a command to perform a coldstart or to integrate itself to a
running network thepplication waits fola confirmation from the MCU that the startup was
succeskl. Monitoring is automatically triggered in case of successful staltgping a halt
or freeze command will set it back to PAIRED_AND_FIBEX LOADED state and a new
configuration can be usedf the startup fails the state machine transitions back to
WAKEUP_POSSIBLE and the user can repeat the attempt.

36

PC Application

6.1.2. FPGA State Machine

FPGA_FR_CONFIG_CONFIRMATION
RECEIVED

FPGA TEST_FINISHED
RECEIVED

\

RECEIVED

PARAMS
COMNFIGURED

FPGA_TEST_STARTED
RECEIVED

FPGA_BUFF_CONFIG_COMNFR
RECEIVED

\
FPGA_BUFF_CONFIG_CONFR
RECEIVED

r

FPGA_STARTUP_FAIL
RECEIVED

CONFIGURING
TX BUFFERS

FPGA_STARTUP_SUCCESS
RECEIVED

ACTIVE

FPGA_FR_CONFIG_CONFIRMATION

HALT

SENT

Figure 6-2: PC FPGA State machine

This state machine is practically a mirror copy to its MCU counterpaegure5-6).

It has a separate state for testing since it's not in charge of the test's execution and has to wait
for the server to report that the test is finished. In the meantime the state machine is not
allowed to do anything else. State transition with the a@i@epf sending a halt command is

in all cases driven by receiving a confirmation for a successful transition on the server side.

37

PC Application

6.2. Features

6.2.1. Monitoring and frame transmission

The primary purpose of the platform is to monitor communication of a FlexRay us an
to be able to transmit frarmef its own. In order to monitor a frame it needs to be selected as

a monitored frame in the Glter Setup tab as seerFigure6-3.

Cluster Setup | FPGA Tests | MessageEditor | Monitoring

+-33 Cluster
- MCU _
m FPGA Caortrallers Frame Monitored

— : Frames
. frame346_S[40]_B[0]_P[Z]

frame347_S[121]_B[3]_P[4] Short Name
frame348_S[121]_B[1]_P[4] frame346
----- frame345_S[121]_B[0]_P[Z]

Figure 6-3: How to select a frame to be monitored

The rext step is to define the outgoing communication. In the Message Editor tab the
user can take advantage of the "Copy from Cluster Setup” buttordénto do that the user
must first setup controller mapping. In Cluster Setup in the "MQlécal Settings" menu
choose one of the available ECUs in the "ECU Mapping" comboTdog.also copies all the
parameters from the ECU to the Local Settings panel. The same kind of mapping can be
performed for the FPGA Controllers. Only the application must first be connected to the
board (Actions Connect to Board). This is necessary beeailne application must first find
out how many FlexRay controllers are actually present in the FPGAcethe mapping is
done the button "Copy from Cluster Setup” will add all frames from the Cluster, Sedtip
belong to ECUs to which a physical conkeolis mapped. This way is much preferable to

adding frames manually which is also supported.

The application distinguishes between two types of frad€U frames and FPGA
frames. The difference can be noticed when clickindgrames of both types in thdessage

Editor tab. It is also shown Rigure6-4.

38

PC Application

Transmit mode
Frame Name Startup/Sync Channel . .
Framel) T . T ” o Continuous Cycle Period Base Cycle
() One-shet 1 v |0

Slot ID Dynamic Length [B] Data [Hex]

i} No 2 ABCD
Trigger options
- Slot ID Frame Name Startup/Sync Channel
() Timestamp () Ewery Even Cycle /oyt
() Macrotick () Immediatefy 1 FrameT bio e Eal) he
(®) Macrotick and Cycle Dynamic Length [B] Data
) Every Cycle] Macratick |0 Cycle Ne 2 ABCD
() Every Odd Cycle Source Controller

FPGA - Mone]

Figure 6-4: Difference between FPGA and MCU frames

These differences ameededdue to different capabilities of said controllers to trigger
frame's transmission. The FP@Antroller offers more options.dwever, the MCU has the
upper hand when it comes to periodicity. The cycle code is capable of emgrpssiods
ranging from 1 to 64 cycles with offset®m 0 to 63. As opposed to the FPGA which can
only send ever cycle or eveeyen cycle.

An important thing to note is that if the user wants to see the frames transmitted by the
MCU or one of the FPGA ctrollers he still needs to mark those frames as monitored.
Having them in Message Editor is not enougigure 6-5 showsan example of the Message
Editor tab with the MCU mapped to an ECU which transmits thirteen different frames and a
FPGA controller which only has one fram.order to coldstart a nebwk one of the frames
belonging to the coldstart node must be defined as "Startup & Sync". There may only be one

such or "Sync" frame per node. The application takes care of this and doesn't allow the user to
define more.

39

PC Application

Cluster Setup | FPGA Tests | MessageEditor | Monitoring

Transmit Frames

‘ "% | Copy from Cluster Setup l# Add & MCU Frame %" | Adda FPGA Frame K | Delete Selected Frame
Frame Mame Source Slot 1D Channel Base Cycle Cycle Period Startup/Sync Dynamic Length [B] Data
frame346_S[400_B[O] P[2] MCU 40 Bath 0 2 Mo Mo 2
frame347_S[121]_B[3]_P[4] MCU 121 Both 3 4 Mo Yes 2
frame348_S[121]_BI1_P[4] MCU 121 Both 1 4 Mo Yes 2
frame343_S[121]_B[O]_P[2] MCU 121 Both] 2 Mo Yes 2
frame358_S[1]_B0]_P[1] MCuU 1 Both] 1 Startup & Sync Mo 2
frame358_S[74]_B[O]_P[1] MCU 74 Both] 1 Mo Mo 2
frame€24_S[40]_B[1]_P[4] MCU 40 Both 1 4 Mo Mo 4
frame1000_S[224]_B[0]_P[8] MCU 224 Both] 2 Mo Yes 5
frameAB_S[13]_B[1]_P[4] MCU 13 Both 1 4 Mo Mo 5
frameA_S[12]_B[0]_P[2] MCU 13 Both] 2 Mo No 2
frameA_S[12]_B[3]_P[4] MCU 13 Both 3 4 Mo No 2
frame_25_5[2]_B[0]_P[1] MCU 2 Both] 1 Mo No 2
frame_25_S[75]_B[DL_P[1] MCU 7 Beth 0 1 No No 2z
frame397_S[88]_B[D]_P[1] FGPA_Cortroller] 88 Beth 0 1 No No 2z

Figure 6-5: Message Editor tab example

Monitoring is automaticallyactivatedby coldstarting a network or joining onecan be
paused and started again at any time while the cluster is running. To change data being sent
select a framdérom the combo box in the bottom panel of the Monitoring tab. Now the data
can be adjusted. Theontrolleris notified of the change bglicking on the green arrow. The
selection in the combo bexis filled automatically by frames belonging to the MCUtloe
FPGA In case of the MCU frames this happens as it transitions into the
WAKEUP_POSSIBLE state. As for the FPGA frames, all frames belonging to a particular
FPGA controller are added to the selection when the application receives a confirmation of
the "Configure Frames" action in the "FPGA Status" window. Those frames are also removed

when the node leaves the active state.

40

PC Application

Cluster Setup | FPGA Tests | MessageEditor | Monitering

‘ Pause @ Absalute time K | Deleterecond 44| Resettime B | Save
Time [ms] Cycle Slot ID Channel Startup Sync Dynamic Length [B] Data [l
2 0 9 A Yes Yes No 32 d7692090d588 1b0d8166a637c3437200c0F 72 77002 4edeF7254b 6cechi22h)
3 0 8 A Yes Yes No 32 T34debladfefc2a8allc2b657d4466% cee 067c Tadedebl 94457 12050762 37
13 1 9 A Yes Yes No 32 d769a090d98281b0d8166a637c3437200cf 72 77c 00 2ededef 7254b6eech22b
13 1 8 A Yes Yes No 32 134ebladfefc?2a8allc2b657d4466% coe 067 7adedebf 94457 12090762 37
k1] 2 9 A Yes Yes No 32 d7695090d988 1b0d8166a637c3437200c0F 7 77c 00 2e 4edef 7254b6cec5225
3 2 8 A Yes Yes No 32 {34eb0adfefc2a8allc 2b657d4466% cee 0670 Tadedebf 944570 12090762 37
50 3 9 A Yes Yes No 32 d7692090d588 16048 166a637c3437200c U 72 77 M02e dedef 72540 6cech225
50 3 8 A Yes Yes No 32 T34ebladfefc2alallc 2b657d4466% cea 067c Taledebf 944570 12090762 37
62 4 5 A Yes Yes No 32 d7652050d588 1b0d8166a637c3437200c K 72 77c002e 4dedef 7254b 6oech225
62 4 8 A Yes Yes No 32 T34debladfefc2a8allc2b657d4466% cee 067c Tadedebl 94457 12050762 37
80 5 9 A Yes Yes No 2 d769a090d49881b0d8166a637c 34372000 72 77c 00 2e dedef 7254b6eech225
80 5 8 A Yes Yes No 32 134ebladfefc?2a8allc2b657d4466% coe 067 7adedebf 94457 12090762 37
52 6 9 A Yes Yes No 32 d7695090d982 1b0d8166a637c3437200c0F 7 7700022 4edef 7254b6cech 225
52 6 8 A Yes Yes No 32 {34eb0adfefc2a8allc 2b657d4466% cee 0670 Tadedebf 944570 12090762 37
110 7 9 A Yes Yes No 32 d7692090d5988 1b0d8 1662637034 37200 72 77c002e 4edef 7254b 6cach225
110 7 8 A Yes Yes No 32 T34ebladiefc2aBallc2b657d4466% coa 067c Tadedebl 94457 1205076 37
122 8 5 A Yes Yes No 32 d76592050d5881b0d8166a637c 3437200 72 77 002e dede 7254b 6cec5225
122 8 8 A Yes Yes No 2 f34ebladfefc2a8allc2b657d4466 % cce 06 7c Tadedebf 94457 12090762 37
140 9 9 A Yes Yes No 32 d769a090d9881b0d8166a637c3437200cf 72 77c 00 2e dedelf 7254bboech225
140] 8 A Yes Yes No 32 f34ebladfefc2a8a00c2b657d4466 oo 067 Tadedebf 94457 12080762 37
158 0 8 A Yes Yes No 32 {34eb0adfefc2a8allc 2b657d4466% cee 0670 Tadedebf 944570 12090762 37
158 10 9 A Yes Yes No 32 76920904988 1b0d81662637c3437200c (X 72 77c 0022 4edelf 7254b6cach2?s v
< >

Figure 6-6: Monitoring example

Internally, the frame reception is handledebgombination ofcallbacls anda dedicated

thread.First a callback function of the TCP client israked upon frame reception. It then
calls the state machine which in the MCU_FR_ACTIVE state extracts the datatifeom
incoming packet and enqueues it inwfer. While monitoring is active a dedicated thread
degueues the data from the bufend adds it into the monitoring Ul. It has to be done this
way because the Ul add method cannot keepvitip the rate at which the data flows in.
Addition of new data aa fail and most importantlghe responsiveness of the application

suffers. A dedicated thread solves this problem by adding the nessatgpace the Ul can

handle.

41

PC Application

6.2.2. Remote reconfiguration of the FPGA

File | Actions | Help

Cluster Config Target L.P. and Port
1 Cennect To Board

: : Show FPGA Manager Sei

MCU - Task Manager 1- 6 [us] (Informative value. It's derived from other parameters in the devices)
MU - Cenfigure FlexRay Controller rCyc ointOf
MCU - Coldstart . . .

i _ Sending File. Please Wait...

MCU - Join nsmiti

MCU - Halt
MCU - Freeze

~ . tk outClockuorrecuonrassive
MCU - Send Wakeup

FPGA - Send Config File
FPGA - Lead Config from Flash

M

pintC

Figure 6-7: Remote configuration

After power up or reset the board's firmware automatically configures the FPGA over
serial interface with a design stored in the MCU's flash memory. However, the FPGA can be
reconfigured usinghe PC application by selectiigctions FPGA - Send Config File".

This opens up a dialog window to select a .rbf file containing the FPGA's new configuration.
This file is then sent to the board and loaded into the FPGA.

The default configuration from MCU's flash can always be resttmedselecting
"Actions FPGA - Load Config from Flash". Every time a new design is loadee new
number of FlexRay controllers is read from the FPGA. Afterwards, all tasks in the firmware
managing thoseontrollers are reset to their default st&€ apfication's Ul is also adjusted
to the new numbeand allits FPGAFlexRaystate machines are reverted to their initial state.

6.2.3. Remote task control

One of the key features of the whole system is the ability to define and run custom user
tasks in the MCU. Tése tasks represent a flexible way for a programmer to expand the
functionality of the system without having to adjust the communication protocol and without
deeper understanding of the MCU's firmware. The macro API for the user task definition on
the MCUside is described ichapter5.3.

Once the tasks are present in the MCU they will be reported to the application when
selecting "Actions MCU - Task Manager". Th&l lists all available tasks as shown in
Figure6-8. Task is activated by selecting it in the list and clicking "Run”. Only one task may

run at a time. In case ather task had already been active it is now suspended and the
42

PC Application

selected task becomes the active drfee arrently running task is highlighted in the UIl. A

task may also be suspended without having to run another task. When the active task is
selected théRun" button becomes a "Suspend" butt®éhe decision to only allow one active

user task was a design decision and can easily be changed by a small change to the firmware

if desired.

Even when this window is closed and reopened the request for availsikdeiganot
repeated. The same list of tasks will be presented again.

Example task 2
i Example tagk 3

Figure 6-8: Task manager window

6.2.4. Fibex parsing

A fibex file describing the target FlexRay clusierequired to use any functionality o
the platform.Fibex is a XML:-based format antias been established in the industry as the
standard way of defining automotive networks. The application parses only the data that is
relevant for the purposes of its functionality with the exception ofasgiThe parsing is
convenientlydesigned to report any missing cluster paramelére.UML diagram for the

FlexRay fibex formatan be seen iRigure6-9.

43

PC Application

Figure 6-9: UML diagram of a FlexRay fibex file

Source: 10]

Figure 6-10 shows an example of Cluster Setup tab after parsifigea file. Each
frame displays its source ECU (this is important for the Message Editor) andssignal
contains. Also each signahows all the frames in which it is transmitted (multiple may be
defined).

However, some of the fibex filemvailableduring the developmentidn't comply with
the UML diagram exactly. For instance one of them had placed SIGNALANCES right
inside a FRAME. The correct way would be to have PBNSTANCES in a FRAME and
througha reference ira PDUINSTACE it is possibleto reach aPDU which containghe
SIGNAL-INSTANCES Some files omitted certain important information about frames. This
situation is reported to the user to avoid confusion since default values are used Otbierad.
files weremissing entire sections kkframes or signals altogeth@&his is not reported to the

user as their absence is obvious.

44

