
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Master’s Thesis

Life-long Visual Localization of a Mobile Robot in Changing
Environments

Bc. Kristýna Kumpánová

Supervisor: Ing. Erik Derner

Study Programme: Cybernetics and Robotics, Master

Field of Study: Systems and Control

May 24, 2018

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

406278Personal ID number:Kumpánová KristýnaStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Systems and ControlBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Life-long Visual Localization of a Mobile Robot in Changing Environments

Master’s thesis title in Czech:

Dlouhodobá vizuální lokalizace mobilního robotu v proměnném prostředí

Guidelines:
The goal of the thesis is to design and implement a method for visual localization of a mobile robot in a changing environment
and evaluate the method on a real mobile robot.
The assignment comprises the following tasks:
1. Prepare a framework for the robot localization task using the widely-used Robot Operating System (ROS).
2. Set up a suitable scene for the experiment, modelling the partially changing environment.
3. Record data sets of images with known locations. To determine the ground truth location of the robot, use an existing
implementation of SLAM or a similar method, e.g., the gmapping package in ROS.
4. Survey the state-of-the-art image descriptors and choose a suitable one for the problem.
5. Design, implement and evaluate a method to detect changes in the scenes and update the stored information used to
localize the robot.

Bibliography / sources:
[1] Tomáš Krajník, Pablo Cristóforis, Keerthy Kusumam, Peer Neubert, and Tom Duckett. Image Features for Visual
Teach-and-Repeat Navigation in Changing Environments. In Robotics and Autonomous Systems 88 (2017), pages 127-141,
Elsevier, 2017.
[2] Daniel L. Silver, Qiang Yang, and Lianghao Li. Lifelong Machine Learning Systems: Beyond Learning Algorithms. In
AAAI Spring Symposium: Lifelong Machine Learning, pages 49-55, Elsevier, 2013.
[3] Cristina Romero-González, Jesus Martínez-Gómez, Ismael García-Varea, and Luis Rodríguez-Ruiz. On Robot Indoor
Scene Classification Based on Descriptor Quality and Efficiency. In Expert Systems With Applications 79 (2017), pages
181-193, 2017.
[4] Relja Arandjelović, Petr Gronát, Akihiko Torii, Tomáš Pajdla and Josef Šivic. NetVLAD: CNN Architecture for Weakly
Supervised Place Recognition. arXiv:1511.07247, 2015.
[5] Zhiyuan Chen and Bing Liu. Lifelong Machine Learning. Morgan & Claypool Publishers, 2016.

Name and workplace of master’s thesis supervisor:

Ing. Erik Derner, Department of Control Engineering, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 25.05.2018Date of master’s thesis assignment: 30.01.2018

Assignment valid until: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Erik Derner
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

vi

vii

Acknowledgements
I would like to thank the supervisor Ing. Erik Derner for the patient guidance, the smooth
cooperation and the invaluable feedback.

viii

ix

Declaration
I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act §60 Zákon č. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Prague on May 24, 2018 .

x

Abstract

This thesis focuses on the development of methods suitable for the localization task in
changing environments using the life-long learning approach. The methods implemented in
this thesis are based on keypoint descriptor distances. The more significant is the change
occurring in the scene, the lower weights are assigned to the descriptors in the changed area.
The life-long learning aspect of the method consists in the weighting of the descriptors. The
weights are being updated during the robot operation. This way the robot learns how to
localize itself in a changing environment.

Three different methods of weighting were implemented: distance vector normalization, past
distance subtraction and global reference value. Two approaches to localization were tested:
matched keypoints and transformed keypoints. The methods were evaluated on experimental
data that have been recorded in an arena constructed for this purpose. The project is
implemented in C++ in the ROS environment.

Abstrakt

Tato práce se zabývá vývojem metod, které jsou vhodné pro lokalizaci v dynamickém prostředí
s využitím life-long learning přístupu. Metody implementované v této práci jsou založeny
na vzdálenosti descriptorů významných bodů. Čím větší změna se ve scéně vyskytne, tím
nižší váhy jsou deskriptorům v této oblasti přiřazeny. Life-long learning aspekt spočívá ve
váhování deskriptorů. Váhy jsou aktualizovány při běhu robotu. Tímto způsobem se robot
učí jak se lokalizovat v dynamickém prostředí.

V rámci této práce byly implementovány 3 metody váhování: normalizace vektoru vzdáleností,
odčítání minulé vzdálenosti a globální referenční hodnota. Dále byly vyzkoušeny dva přís-
tupy k lokalizaci: přiřazování významných bodů a transformování keypointů. Metody byly
ohodnoceny na experimentálních datech, která byla získána nahrávním v aréně sestavené
výhradně pro tento účel. Projekt je implementován v jazyce C++ v prostředí ROS.

xi

xii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Specification . 2
1.3 Structure of this Thesis . 3

2 State of the Art 5
2.1 Mobile Robot Design . 5
2.2 Mobile Robot Environment . 5
2.3 Change Detection . 6
2.4 Feature Detection . 10
2.5 Related Work . 11

3 Framework Preparation 15
3.1 ROS . 15
3.2 Improvised Arena . 15

3.2.1 Recording . 16
3.2.2 Processing . 17

3.2.2.1 Speed of Gmapping . 17
3.2.2.2 Interpolation . 18
3.2.2.3 Angle Interpolation: Interpolated Quaternions and Wrapped

Euler Angles . 18
3.2.2.4 Angle Interpolation: Computed Angle from Interpolated Po-

sitions . 18
3.2.2.5 Angle Interpolation: Continuous Angle Representation 18
3.2.2.6 Angle Interpolation: Decomposition to Sine and Cosine Com-

ponent . 19
3.3 Naive Localization . 21
3.4 SIFT Feature Matching . 23
3.5 Feature Detector and Descriptor Extractor Evaluation 27
3.6 Image Viewpoint Transformation . 32
3.7 Manual Selection of Keypoints . 32
3.8 Size of Images . 33

xiii

xiv CONTENTS

4 Solution Description 37
4.1 Difference Image Change Detection . 37
4.2 Keypoint Descriptor Distance Change Detection 39
4.3 Matched Keypoints Localization . 41

4.3.1 Without Weighting . 41
4.3.2 Weighting Using Distance Vector Normalization 42
4.3.3 Weighing Using Past Values . 42
4.3.4 Weighting Using Global Reference Value 42

4.4 Transformed Keypoints Localization . 43
4.4.1 Keypoints Transformed into the Target Image Viewpoint 43
4.4.2 Target Image Transformed into the Source Image Viewpoint 43

5 Scene Setting and Recording 45
5.1 The Arena Setting . 45
5.2 Arena Recording . 45

6 Results 49
6.1 Matched Keypoints Localization . 49

6.1.1 Without Weighting . 49
6.1.2 Weighting Using Distance Vector Normalization 49
6.1.3 Weighting Using Past Values . 52
6.1.4 Weighting Using Global Reference Value 52

6.2 Transformed Keypoints Localization . 55
6.2.1 Keypoints Transformed into the Target Image Viewpoint 55
6.2.2 Target Image Transformed into the Source Image Viewpoint 55

7 Conclusion 57

A The contents of the enclosed CD 63

List of Figures

1.1 TurtleBot and the Hokuyo laser rangefinder. 2

2.1 Seasonal change in the outdoor environment acquainted from Google Street
View Time Machine. 6

2.2 Difference and ratio images and the change masks obtained from them. 7
2.3 Example of the inconsistent mask (on left) and consistent mask (on right). . . 9
2.4 Common neighborhood systems for square grid in 2D and 3D. 10

3.1 Improvized arena scheme. 16
3.2 Positions extracted from the rosbag files recorded in the improvised arena. . . 17
3.3 Screenshot cutout from gmapping wikipage http://wiki.ros.org/gmapping.

Parameter of the node. 18
3.4 rtq_graph of the nodes and topics during rosbag replay. 18
3.5 Interpolated positions (on left) and faultily interpolated angles (on right). . . 19
3.6 Interpolated angles for quaternion interpolation (top, left), computation of

angle from interpolated positions (top, right), continuous angle representation
(bottom, left) and sinus decomposition (bottom, right) methods. 20

3.7 Resulting position estimates for the first dataset (in the upper row) and the
second dataset(in the bottom row). 22

3.8 Example of SIFT feature matching on a shelf. 24
3.9 Example of SIFT feature matching on a box. 24
3.10 Process of creating BoW descriptor. 25
3.11 Results for the first dataset (on left) and the second dataset (on right) using

the BoW descriptor trained with SIFT descriptors. 26
3.12 Pairs of images used to evaluate combinations of feature detectors and descrip-

tor extractors. 29
3.13 Absolute number of inliers in descending order. 30
3.14 Relative number of inliers in descending order. 30
3.15 Absolute number of inliers in descending order. 31
3.16 Relative number of inliers in descending order. 32
3.17 Pixels transformation process. 32
3.18 An example of manually selected keypoints on ARENA pair of images. 33
3.19 Zoomed in manual selection of a keypoint. 34

xv

xvi LIST OF FIGURES

3.20 Statistics for best-performing settings of feature detectors on small images
sorted from the longest processing time to the shortest. Average of all pairs of
images. 35

3.21 Transformation with FAST(20,true). 36

4.1 Difference image from the DOOR image pair. 38
4.2 Difference image from the CHANGE image pair. 39
4.3 Keypoint distance change detection method showed on indoor enviroment

picture. The source and target images are shown in the left column. 40
4.4 Structure of the descriptor and the position files for the localization task. . . . 41
4.5 Example of correctly (on the left) and incorrectly (on the right) transformed

keypoints. Homography matrix is non-singular in the first case and singular in
the latter. 44

5.1 Cardboard arena used for localization data recording. 45
5.2 Arena scheme. 46
5.3 Posters that are being switched to introduce change into dataset. 47

6.1 The true and predicted positions with only the clockwise loop as the training
dataset, only the counter-clockwise loop as the training dataset and both
clockwise and counter-clockwise loops as the training dataset. The test dataset
is the half-way run. All used records are from the second set. 50

6.2 The true and the predicted positions for the second record (counter-clockwise)
from the third set. Without weighting. 51

6.3 The true and the predicted positions for the second record (counter-clockwise)
from the third set with the weighting parameters γ = 0.95 and ref = 500.
Global reference method. 54

Chapter 1

Introduction

1.1 Motivation

Today, robots are widely used for minimization of human labor. The environment and the
tasks, where the robots are mainly used these days, are structured and static. For example,
manufacturing robots stay in one place and do the same job all over and over again. Their
surrounding is adapted to the robot, so that, for example, there are no people and no other
objects that could cause collision with the robot.

The most of the real-life environments are not static and can’t be adapted to the robot.
The robot needs to be able to navigate in this dynamic environment. However, even simple
localization task is not that simple in the dynamic scene. The robot can remember there is a
table with four chairs in the kitchen, but if somebody were to take the chairs out? How does
the robot recognize it to be the same room? How can the "essence" of the particular room
be defined to the robot?

There are various methods for path planning in the static environment. The robot observes
the scene. It finds the path. It follows the path. If the area is known in advance and static,
one could also program the robot to follow the pre-defined path, without searching for it.
But what if there are people walking around the place? The robot can not blindly continue
following the previously found path.

For the robot to be universal, it has to be aware of changes. If we want to have one universal
robot and be able to deploy it in different buildings, or places in general, it needs to be
able to adapt to the new environment and be able to function no matter what changes the
environment presents to it.

The whole new area of development is human-robot cooperation. Robot has to be able to
recognize which object is a human, has to pay attention to the human’s movement, has to
predict the human’s trajectory and has to know how to behave safely and pleasantly around
the human [1].

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: TurtleBot and the Hokuyo laser rangefinder.

Not just robots can benefit from algorithms detecting changes. More and more people
depend on online maps and navigation systems for their car rides. Many have the unpleasant
experience with the map being out-dated. Algorithms detecting the changes in the world and
automatically updating the map would be a welcomed technology.

Other areas utilizing change detection algorithms are for example video surveillance [2],
remote sensing [3] or medical diagnosis [4].

1.2 Problem Specification

This thesis focuses on the problem of mobile robot localization in a dynamic indoor envi-
ronment. The idea is that a mobile robot will have the knowledge of its environment. A
map of the building, or areas, where it can move around. The environment is said to be
dynamic, that means the robot has to know its position in the map, even though its current
measurements are inconsistent with the map.

One of the considered approaches might be following: First, the robot segments the image
from the camera input. After it recognizes objects in the scene, it decides which objects are
irrelevant for the task of localization. Typically objects that tend to move and change a lot.
The robot compares its current measurement with the map while excluding the notoriously
changing objects from this procedure. The robot learns which objects were moved or changed
so that it can exclude them the next time. The learning which objects to exclude might be
based on updating weights or model parameters;

In this thesis the chosen approach focuses on individual features in the scene, rather than
whole objects, therefore no segmentation is needed. The methods are described in Chapter 4
in more detail.

1.3. STRUCTURE OF THIS THESIS 3

The approach will be tested in a custom arena, that will consist of narrow corridors simulating
the usual indoor environments.

For the implementation TurtleBot robot (see Figure 1.1) will be used. The robot has one
RGB camera mounted in the front and the Hokuyo laser rangefinder. The laser will be
used to obtain the ground truth map of the arena. Only the camera will be the source of
information for the localization task.

1.3 Structure of this Thesis

In Chapter 3 the preparation of the framework is documented and software choices are
explained. In Chapter 2 the theory is explained and the state of the art is discussed. In
Chapter 4 a principle of implemented methods are explained. In Chapter 5 the experiment set
up and recorded data are described. In Chapter 6 the results of the evaluation are presented
and discussed. Chapter 7 sums up the results of this thesis and presents suggestions for
improvement.

4 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

2.1 Mobile Robot Design

One of the obvious applications of mobile robots is logistics in warehouses. Transporting
material, documents or products is labor intensive, mundane work. There are companies
focusing on producing robots for this exact application (inVia Robotics, Fetch Robotics, Locus
and many others). There are also public competitions held to motivate academic robotics
community come up with solution for this task (such as the Amazon Picking Challenge [5]
within the RoboCup@Work competition).

Robots used for warehouse logistics usually use RGB-D camera and laser. The laser can scan
the area in a high range, but only in one plane, therefore it might miss objects that can cause
a collision with the robot. On the contrary, the camera can see the whole scene in front of
the robot, but is inefficient in scanning distant objects.

In the Amazon Picking Challenge, teams were supposed to come up with a robot, which is
able to pick objects of various shapes from the shelf. Commonly used manipulator solution
are manipulators based on suction, two-finger gripper, 3-finger hand, spatula and custom
gripper [5].

Standard solution of mobile robot design for warehouse logistics also contain RFID reader,
which even organizers of RoboCup@Work plan to involve in competitions [6].

2.2 Mobile Robot Environment

When designing a mobile robot, it is crucial to determine the kind of environment where
the robot is supposed to work. Not only mechanical solution needs to be adjusted to the
environment, but software as well. Sensors and the algorithms used for indoor and outdoor
environments will differ. A solution for static and dynamic environments will differ. A
solution for environments with people will differ from the one without the constraints of

5

6 CHAPTER 2. STATE OF THE ART

Figure 2.1: Seasonal change in the outdoor environment acquainted from Google Street View
Time Machine.

being safe around people. If we desire to make a robot for one specific place, for example, a
warehouse, we can also adjust the environment to the robot. Such as adding QR codes on
the floor or the ceiling.

The outdoor environment changes differently than the indoor environment. For example in
the outdoor environment, the season and the weather will have a significant impact on the
appearance. The example of such change is depicted in Figure 2.1. In the outdoor environ-
ment, we can expect cars, people and animals to be constantly moving objects. Buildings are
most stable objects but can change color, or there might be a poster glued to the wall. We
can also expect changes in lighting throughout the day.

In the indoor environment, there are usually some static objects like tables and shelves, but
chairs will get moved, doors will be opened and closed, boards on the wall will change the
content, and possibly people will occupy the space and move around.

2.3 Change Detection

The change detection survey [7] gives a general idea of this research area. In order to
compare two images for change detection, it is necessary to perform certain pre-processing
steps. For example eliminate differences between images in illumination, sensor calibration or
atmospheric absorption. In video surveillance application the camera might be fixed, but for
other applications, it is needed to include registration in the pre-processing, and depending
on the application, precise coordinate frame alignment might be needed.

There are many methods for dealing with illumination aspect of an image. The intensity of a
pixel depends on the light source (illumination), surface reflectance and surface orientation [8].
With certain assumptions this problem can be tackled by intensity normalization, filtering the
illumination component out of the image, illumination modeling, intensity transformations or
averaging.

2.3. CHANGE DETECTION 7

Figure 2.2: Difference and ratio images and the change masks obtained from them.

Likewise, there are many approaches to the change detection algorithm. The simplest
approaches are image differencing and image ratioing, see Figure 2.2. In the image differencing
method a signed difference image D(x) is obtained using (2.1), where Ii(x) is the intensity
of the pixel x in the image i. The image ratioing is faster method in which the ratio image
R(x) is obtained using (2.2). In both cases certain, experimentally found, threshold θ is
applied to the difference/ratio image, to decide which pixels represent a change and thus
create change mask B(x) using (2.3).

D(x) = I2(x)− I1(x) (2.1)

R(x) =
I2(x)

I1(x)
(2.2)

B(x) =

{
1 for D(x) > θ

0 otherwise
(2.3)

Another approach is the hypothesis testing, where the image pair (I1(x),I2(x)) are considered
the random vector and their conditional joint probability density functions p(I1(x), I2(x)|H0)
and p(I1(x), I2(x)|H1) provide the information about the most suitable hypothesis. The null
hypothesis H0 represents the scenario where there was no change. The alternative hypothesis
H1 represents the scenario where there has been a change. The decision made in an individual

8 CHAPTER 2. STATE OF THE ART

pixel is also based on the decision made in the neighboring pixels.

Combining the statistical and the simplest approach the significance test S(x) can be used on
difference image D(x) to see how consistent it is with the null hypothesis, see (2.4), where τ
is some significance threshold. Similarly can be used likelihood ratio test L(x), as seen in
(2.5). The threshold can be computed to produce desired false alarm rate and include costs
associated with each decision.

S(x) = p(D(x)|H0) > τ (2.4)

L(x) =
p(D(x)|H1)

p(D(x)|H0)
(2.5)

The next group of approaches to mention are predictive models. One of the ideas is to fit
the intensity values of each block consisting of several pixels to a polynomial function of the
pixel coordinates. The null hypothesis in this case is – the corresponding blocks are best fit
by the same polynomial function. The alternative hypothesis is – the corresponding blocks
are best fit by different functions.

Another predictive model is based on a Gaussian distribution of pixel intensity in time, and
the decision is made by likelihood ratio testing. A similar approach uses Wiener filter to
predict the intensity value of the pixel based on its previous values. In this case, if the
prediction error is several times worse than expected, the pixel is classified as changed. And
lastly, a neural network can be used for unsupervised learning of parameters of a non-linear
predictor. Pixels, for which the predictor performs poorly, are classified as changed.

Mostly in the context of the video surveillance, another group of methods called Background
Modeling is used. It is specific for the video surveillance applications that there is a large
amount of video data available, containing images taken only few seconds apart. The whole
sequence is typically used to make the decision. The camera might be fixed. Those are
the constraints in which video surveillance applications and, for example, remote sensing
applications differ. In the video surveillance application, it might be desired to implement
some semantic interpretation of the data. For example, a person enters a room or a truck
drives down a road.

The background is usually represented by a Gaussian distribution of the pixel intensity or
by a mixture of Gaussian distributions if the background is dynamic (for example, there are
swaying branches in the background). The foreground pixels lie some number of standard
deviations from the mean of the background and are clustered into objects.

2.3. CHANGE DETECTION 9

Figure 2.3: Example of the inconsistent mask (on left) and consistent mask (on right).

Whenever the decision is made for an individual pixel, the result is noisy. There might be
few pixels representing a changed object, which has been classified as unchanged. To address
this issue, the decision can be made for the whole area rather than individual pixels. This
problem is referred to as the Change Mask Consistency, see Figure 2.3.

The simple approach is to use a median filter to remove the small groups of pixels with a
different label than their neighbors. The unsupervised clustering of regions with homogeneous
intensity can be used to detect objects. The decision is then made for the whole object.
Which is basically a segmentation.

In a task of segmentation, we want to assign labels to pixels according to what object they
are representing. Widely used approach to segmentation of an image in spatial context
are Gibbs-Markov random fields [9]. Pixels are considered nodes of an undirected graph
connected only with pixels in its neighborhood, defined by the used neighborhood system,
see Figure 2.4. The label assigned to a node (pixel) can only be influenced by its neighbors.

The segmentation prior to the change detection was used, for example, in the paper [10]
evaluating different approaches to change detection over a satellite image of the New Burg
El-Arab city from 1990 and 2000. In this approach, the author first segmented the images
into classes "soil", "vegetation" and "urban" and then compared the bitmaps of the two
images. Pixels that were labeled differently than the corresponding pixels in the image taken
at the different time were considered changed. Moreover, the author gained information
about the type of the change at every pixel. This approach is referred to as Post-Classification.

Another method used for change detection is the Principal Component Analysis [9]. It is
an eigenvector-based analysis utilizing the information about the variance between images.
Resulting principal components are uncorrelated (covariance matrix is diagonal) and most of
the variance of the data is concentrated in the first principal component [11]. Thus the first
principal component contains most information about differences between images.

10 CHAPTER 2. STATE OF THE ART

Figure 2.4: Common neighborhood systems for square grid in 2D and 3D.

2.4 Feature Detection

Widely used approach to an image processing is detecting individual points (features) in the
image, which are easily recognizable in the scene even if the image was taken from another
viewpoint, distance and under different conditions (illumination, for example). Localization
is usually carried out by matching features found in both images. Images that have a large
number of the same features are displaying the same scene. Another application is panorama
stitching, where the software finds corresponding features and stitches the images at those
points.

To match the features, each feature needs its descriptor. Descriptor should describe the
appearance of the feature in such a way, that the same feature has the same descriptor even
if the feature has a different scale, rotation, affine transformation, if the image has different
lighting conditions or additional noise [12]. There is a number of methods that aspire to do
this. For example SIFT, SURF, MSER or FAST, to name some of the most widely used.

Scale Invariant Feature Transform [13] (SIFT) searches at different scales for feature location
candidates using the difference-of-Gaussian function. The local image gradient is computed,
and its orientation is assigned to the feature. The descriptor is created based on the scale
and the orientation of the feature. The descriptor consists of values of orientation histogram
of the feature. The histograms with 8 orientation bins are computed in 4 × 4 subregions
which creates descriptor of dimension 128.

Speeded Up Robust Features [14] (SURF) detector is based on Hessian matrix. The ori-
entation is obtained from Haar-wavelet responses. The descriptor consists of Haar-wavelet
responses. The descriptor has a dimension of 64.

2.5. RELATED WORK 11

Maximally Stable Extremal Regions [15] (MSER) uses connected components as a function
of intensity to find maximally stable extremal regions. Thresholding an image at different
levels produces regions (connected components) with intensity lower than the threshold. If
an area in one image (for example a letter on a poster) creates a connected component under
a certain threshold, it is very probable, that it will create a connected component under some
threshold also in other images no matter what scale, rotation or illumination differences there
are between the images.

Features from Accelerated Segment Test [16] (FAST) is simple and fast corner detector. FAST
considers a circle of 16 pixels around a corner candidate p and decides the point p is a corner
if there is a continuous set of 12 pixels in that circle that are all brighter or darker than p by
a certain offset. This offset is called threshold.

2.5 Related Work

Mobile robotics has been gaining popularity in the past decades and lot of work has been
done in this field. Many papers have been published, that brought new approaches or tested
the best utilization of the existing ones. There is a continuous discussion going on about
drawbacks of the existing methods and how to overcome them. Lastly, many research teams
focus on specific practical applications of the mobile robotics in the current world.

In the paper [17] the research team propose a method of dynamic maps in which the map
consists of multiple maps that are being updated with different frequency. They called it the
short-term memory map and the long-term memory map. The algorithm is randomly picking
samples that are to be replaced with the new measurement data. It is a process of forgetting.
The samples from short-term memory map gets replaced in a shorter period, therefore gets
forget sooner. This way the map is able to reliably represent a dynamic environment.

In the paper [18] the research team proposed a method to detect changes in architecture and
the appearance of streets and update the map accordingly. First, the 3D model of an area,
for example, city, is reconstructed. Then with new imagery, the algorithm decides which
changes are substantial and based on this decision, the 3D model gets updated. For the
reconstruction it is important to ignore changes like people appearing in the street, a tree
losing its leaves or a new poster being glued to a wall.

This research is motivated by services like GoogleEarth or StreetView. The idea is that
the new imagery can be obtained from civilian devices, such as onboard cameras of service
vehicles. Therefore the 3D model can always be up-to-date.

The method is based on assumption, that only sparse and low-resolution imagery might be
available for the model update. The research team argues that the intuitive approach of
comparing 3D model reconstructed from the new imagery to the original 3D model relies on
the quality of the reconstruction and therefore is not ideal for this scenario.

12 CHAPTER 2. STATE OF THE ART

When the correspondences of an image with the 3D model are found, the algorithm computes
the transformation between the coordinate system of the image and coordinate system of
the 3D model. There might be a problem when changes cover a significant part of an
image, and therefore sufficient amount of correspondences cannot be found. The method
addresses the problem by computing transformations between coordinate systems of images
with respect to each other. Then when one image has enough correspondences with the 3D
model, transformations for the rest of the images can be computed as well.

The 3D model is divided into 3D regions. Each 3D region consists of voxels. Those voxels are
put into a graph as vertices (similar to Gibbs-Markov random fields approach see section 2.3).
Two vertices are connected (are neighbors), when the two corresponding voxels touch in a
corner (26-connected, see Figure 2.4). To decide whether a voxel has changed, a pair of
images with a sufficient overlap in the scene are chosen. One is the source image, and the
other is the target image. Pixels from the source image are projected onto 3D region. Then
the colors are projected from the 3D region to the target image. If there is no change in
geometry of the scene, the pixels from source image are correctly projected into the target
image. If there is a change, however, the inconsistency between the projected image and
the target image will occur. The decision, whether a change occurred, is dependent also on
decisions made in neighboring voxels.

The algorithm uses a probabilistic framework with the semantic knowledge of the environment.
The semantic knowledge is used in following way: There are r mutually exclusive classes of
objects {0, 1, 2, · · · , r − 1}, where only the class 0 are objects relevant to the task. For every
source image, a probability of each pixel belonging to the class 0 is computed and projected
into the target image the same way as described previously. If either the pixel of the target
image or corresponding projected pixel has low probability of belonging to the class 0, the
corresponding voxel is considered to be irrelevant to geometric changes in the environment.
The acquisition of the semantic knowledge is not discussed in this paper.

In [19], the research team argued that two places are best to compare when viewed from
similar viewpoints. Their approach was to transform an image into the viewpoint of the other
image. To find which images capture the same scene, dense VLAD descriptors are compared.
Sparse descriptors showed significantly worse performance during the experiments.

In the task of people detection, [20] explored the possibility of combining RGB image, depth
image and optical flow to detect people in various conditions – such as in the dark or on long
distance – by adaptively assigning weights to information from those images based on the
said conditions. They used a mixture of convolutional neural network experts. Each expert
is trained for specific type of images (i.e. RGB image, depth image or optical flow). The
Gating network is trained to assign weights to outputs of the experts. In their experiments,
the multi-modal approach consistently outperforms the single-modal approach.

In an effort to increase the performance of convolutional neural networks (CNNs), [21] de-
veloped a training procedure based on weakly supervised ranking loss to learn parameters
of their CNN architecture. As a dataset, they used images from Google Street View Time

2.5. RELATED WORK 13

Machine. The work was focused on recognizing places despite changes in illumination during
the day or seasonal changes. The new CNN structure was named NetVLAD and was shown
to outperform the off-the-shelf CNN models.

In the study [22] the research team focused on long-term visual navigation. The team argues
that from the long-term navigation perspective, the viewpoint and scale robustness is not as
important as the robustness to variable lighting and seasonal changes. They evaluated some
of the existing methods for their suitability in a changing environment. They also proposed
the GRIEF descriptor, that scored high in their evaluation experiment.

One of the difficulties in place recognition pose repeated structures. When repeated structures
are present in the scene, like windows on a building, tiles or decorative patterns, commonly
used place recognition methods fail. [23] addressed this problem and proposed useful repre-
sentation of repeated structures and geometric verification method taking advantage of this
representation.

The study [24] focused on finding factors influencing the performance of classifiers in indoor
place recognition. Since CNN is computationally demanding, the team uses SIFT descriptor
and OISVM classifier and use spatial pyramid for obtaining the set of initial descriptors. All
that with the emphasis on real-world scenarios. They found that for indoor scene classification,
the horizontal pyramid division is more appropriate than the vertical one. For the real-time
classification, the size of the descriptors is crucial. The team estimated the optimal size of
the descriptor at 400. They found that large-size descriptors perform with similar accuracy
to middle-size descriptors.

14 CHAPTER 2. STATE OF THE ART

Chapter 3

Framework Preparation

3.1 ROS

The Robotic Operating System [25] is an open source framework that offers tools and libraries
for robotic systems development. The processes running within ROS are called nodes. Nodes
are defined inside so-called packages, which is a collection of source codes, make files and
other configuration files needed to compile and run a project.

ROS, while running, maintains a list of topics that individual nodes can subscribe to and
publish to. Subscribing to a topic means, that the node will get every message that is being
published to the topic. Publishing means that the node can send a message to the topic.
This way the processes (nodes) in ROS communicate. Each topic has its message type that
the publishing nodes have to respect. Another type of file in a package is launch. Launch
contains nodes that are to be started up after running the launch file. In the launch file, node
parameters can be set.

The first part of this work was to learn how to use ROS with the turtlebot robot. Turtlebot
software publishes odometry information in form of nav_msgs/Odometry message into the
/odom topic. The Hokuyo laser rangefinder mounted on the robot publishes sensor_msgs/
LaserScan messages into the /scan topic. The position from odometry can be read right
away from the nav_msgs/Odometry message, however, the sensor_msgs/LaserScan message
only publishes its measurements and does not make sense of them. The gmapping node [26]
was used for generating the map and keeping track of the robot’s position in that map, as a
new laser data are being published.

For obtaining images from camera mounted on the turtlebot, the pylon_camera package [27]
was used.

3.2 Improvised Arena

To further develop the framework and to get better accustomed to the turtlebot robot, the
improvised arena has been built. Few chairs and boxes were laid down to create a circular

15

16 CHAPTER 3. FRAMEWORK PREPARATION

Figure 3.1: Improvized arena scheme.

corridor. The layout can be seen in the scheme in Figure 3.1. The measurements has been
recorded using tools from the rosbag package [28].

3.2.1 Recording

Three runs have been recorded. During all of them, the robot followed the corridor in a
counter-clockwise direction closing the loop. The computer mounted on turtlebot robot was
connected to WiFi and running a screen sharing service TeamViewer [29]. Via the TeamViewer
application, the robot was controlled wirelessly from a laptop.

The turtlebot computer was running a minimal.launch launch from the turtlebot_bringup
package [30] that turns on and controls the turtlebot base and enables it to move and track
odometry. For manual control of the robot’s movement, the keyboard_teleop.launch launch
file from the turtlebot_teleop package [31] was used. A communication with the Hokuyo
laser rangefinder ensured the hokuyo_node node from the hokuyo_node package [32]. For the
map generation, as stated above, slam_gmapping node from gmapping package [26] was used.
The tf_remap node from the tf package [33] was used to get transformation between the
base_link frame and the base_laser frame. Lastly, the camera.launch launch file from
the camera_node package [34] was used to access the camera information.

3.2. IMPROVISED ARENA 17

Figure 3.2: Positions extracted from the rosbag files recorded in the improvised arena.

3.2.2 Processing

To extract odometry and gmapping positions from the rosbag file, a node data_recorder has
been created. The data_recorder node subscribes to the /odom, /map and frontCamera/
image topics. The extracted position data are shown in Figure 3.2. As discovered during
data processing, the gmapping positions were acquired with the period of 5 seconds (see the
rtq_graph in Figure 3.4) which is not suitable for further work.

3.2.2.1 Speed of Gmapping

There is a gmapping node parameter map_update_interval (see figure 3.3), which is set to
5 seconds by default. This parameter needs to be adjusted before recording. It has not been
done before recording in the improvised arena. Therefore some kind of position interpolation
was needed to fill data between the map update intervals.

18 CHAPTER 3. FRAMEWORK PREPARATION

Figure 3.3: Screenshot cutout from gmapping wikipage http://wiki.ros.org/gmapping. Pa-
rameter of the node.

Figure 3.4: rtq_graph of the nodes and topics during rosbag replay.

3.2.2.2 Interpolation

For the x, y position interpolation spline library [35] has been used. The results for
the positions are good. The angle interpolation, however, cannot be done without any
further processing. The interpolation of position and angle are shown in Figure 3.5. The
representation of an angle in ROS is a quaternion, which can be easily transformed into
wrapped Euler angle, but neither of those representations is suitable for the interpolation, as
shown below.

3.2.2.3 Angle Interpolation: Interpolated Quaternions and Wrapped Euler An-
gles

The quaternion interpolation has been tested as well as the Euler angle interpolation. The
results are the same and are shown in Figure 3.6 for interpolated quaternions specifically.

3.2.2.4 Angle Interpolation: Computed Angle from Interpolated Positions

One of the solutions to this problem might be to compute the angle between a pair of following
positions and assign it to the earlier position. That would mean completely ignoring the angle
data from gmapping. The angle will not be precise, because the robot moves along curves, not
along lines, from one point to the other. Moreover, if the robot rotates around at one position,
the information will be lost. The interpolated angles with this method are shown in Figure 3.6.

3.2.2.5 Angle Interpolation: Continuous Angle Representation

The idea is to convert the angle values into a continuous representation, unwrapping the
angles, before interpolating. After interpolation, the values are converted back into the

3.2. IMPROVISED ARENA 19

Figure 3.5: Interpolated positions (on left) and faultily interpolated angles (on right).

standard angle representation (Euler angles). Resulting interpolated directions can be seen
in Figure 3.6. This approach produces the best results, and this method was chosen for the
angle interpolation.

3.2.2.6 Angle Interpolation: Decomposition to Sine and Cosine Component

Another considered approach was decomposing the angle to its sine and cosine component,
interpolating the components and then compose the angle back. Results are seen in Figure 3.6.

20 CHAPTER 3. FRAMEWORK PREPARATION

Figure 3.6: Interpolated angles for quaternion interpolation (top, left), computation of angle
from interpolated positions (top, right), continuous angle representation (bottom, left) and
sinus decomposition (bottom, right) methods.

3.3. NAIVE LOCALIZATION 21

3.3 Naive Localization

With the use of the data gathered from the improvised arena recordings and preprocessed as
described above, the naive localization method has been implemented. The method works
following way:

1. Load an image

2. Make a gray-scale version of the image

3. Scale the image down to 100x100 pixels

4. Put columns of the image pixels into a vector

5. Compute the distance between images

Two cost function have been used to compute the distance d between images: d = |I1 − I2|
and d = (I1−I2)2, where Ii represents the i-th image as a matrix of pixels. The data has been
divided into two training and test datasets. For the first dataset, the positions from the first
and the second run are put together as the training dataset. The positions from the third run
are used as the test dataset. For the second dataset, every third position from all runs are put
into the test dataset and all of the remaining positions (every first and second position) are
put into the training dataset. Resulting estimations for both datasets can be seen in Figure 3.7.

The error of the estimation was computed as (3.1) describes, where xi is the true i-th position,
and x̂i is the estimate of the i-th position, and N is the number of positions. The errors for
both datasets and both cost functions are shown in Table 3.1.

e =

∑N
i |xi − x̂i|
N

(3.1)

error_x error_y angle error distance

1st dataset abs(I1 − I2) 0.0932 0.1806 0.9259 0.2032
(I1 − I2)2 0.0955 0.2596 1.0761 0.2766

2nd dataset abs(I1 − I2) 0.0993 0.1652 0.6601 0.1927
(I1 − I2)2 0.1131 0.2253 0.9695 0.2521

Table 3.1: Errors computed as differences between the true position and the predicted position
for every coordinate individually and average distance between the true and the estimated
position for naive localization method.

22 CHAPTER 3. FRAMEWORK PREPARATION

Figure 3.7: Resulting position estimates for the first dataset (in the upper row) and the
second dataset(in the bottom row).

3.4. SIFT FEATURE MATCHING 23

error_x error_y angle error distance
first dataset 0.1369 0.3661 1.1912 0.3909

second dataset 0.0825 0.1614 0.6346 0.1813

Table 3.2: Errors computed as differences between the true position and the predicted position
for every coordinate individually and average distance between the true and the estimated
position for BoW localization method trained with SIFT descriptors.

3.4 SIFT Feature Matching

The OpenCV 2 library [36] has been used to detect SIFT features and extract SIFT descriptors.
The used SIFT detector setting is shown in (3.2). For matching the keypoints the FLANN
matcher was used. The results of matching can be seen in Figures 3.8 and 3.9.

nOctaveLayers = 4

contrastThreshold = 0.03

edgeThreshold = 5

sigma = 1.6

(3.2)

A Bag of Words trainer was created to simplify image registration. The SIFT descriptors
of the training dataset were quantized into Bags of Words. Each bag is a vector of zeros
and ones. A bag of an image contains a number one on the position, that is assigned to a
SIFT descriptor of a feature that is present in the image. For both the training and the test
dataset are then created Bags of Words. Those can be used to find the closest image among
database images to the query image. The procedure is depicted in Figure 3.10.

The same two datasets as in Section 3.3 were used. Results for both datasets are shown in
Figure 3.11.The distance between two images is computed as the Euclidean distance dL2

between the BoW descriptors δBoW,x as show in (3.3). The average distances between the
true and the predicted positions are shown in Table 3.2.

dL2 =
√∑

(δBoW,1 − δBoW,2)2 (3.3)

24 CHAPTER 3. FRAMEWORK PREPARATION

Figure 3.8: Example of SIFT feature matching on a shelf.

Figure 3.9: Example of SIFT feature matching on a box.

3.4. SIFT FEATURE MATCHING 25

Figure 3.10: Process of creating BoW descriptor.

26 CHAPTER 3. FRAMEWORK PREPARATION

Figure 3.11: Results for the first dataset (on left) and the second dataset (on right) using the
BoW descriptor trained with SIFT descriptors.

3.5. FEATURE DETECTOR AND DESCRIPTOR EXTRACTOR EVALUATION 27

3.5 Feature Detector and Descriptor Extractor Evaluation

OpenCV offers various feature detectors [37] and descriptor extractors [38]. To find the best
combination, tests have been conducted. The tested feature detectors were following:

• SiftFeatureDetector

• SurfFeatureDetector

• StarFeatureDetector

• MserFeatureDetector

• FastFeatureDetector

The tested descriptor extractors were following:

• SiftDescriptorExtractor

• SurfDescriptorExtractor

• BriefDescriptorExtractor

For the test dataset of 6 pairs of images were used. The dataset is shown in Figure 3.12. The
used setting of feature detectors:

SIFT:

nFeatures = 0;

nOctaveLayers = 4;

contrastThreshold = 0.03;

edgeThreshold = 3;

sigma = 1.6;

(3.4)

SURF:

hessianThreshold = 400;

octaves = 1;

octaveLayers = 8;

(3.5)

STAR:

maxSize = 30;

responseThreshold = 12;

lineThresholdProjected = 10;

lineThresholdBinarized = 20;

suppressNonmaxSize = 10;

(3.6)

28 CHAPTER 3. FRAMEWORK PREPARATION

MSER:

delta = 5;

minArea = 60;

maxArea = 14400;

maxVariation = 0.8;

minDiversity = 0.3;

maxEvolution = 300;

areaThreshold = 1.01;

minMargin = 0.003;

edgeBlurSize = 3;

(3.7)

FAST:

threshold = 13;

nonmaxSuppression = true;
(3.8)

The evaluation was conducted following way:

1. Load the source and the target image (cv::imread)

2. Detect keypoints in both images (cv::FeatureDetector::detect)

3. Extract descriptors from both images (cv::DescriptorExtractor::compute)

4. Find matches between keypoints (cv::DescriptorMatcher::match)

5. Convert keypoints from std::vector<cv::KeyPoint> to std::vector<cv::Point2f>

6. Compute homography using RANSAC and get the inlier mask (cv::findHomography)

7. Sum the element in the inlier mask to get number of inliers

Graphs in figures 3.13 and 3.14 shows the statistics. Generally can be said, that, in the
sense of the number of inliers, the SIFT feature detector works best with the SIFT descriptor
extractor, SURF feature detector works best with the SURF descriptor extractor and the
rest of the feature detectors works best with the SIFT descriptor extractor.

The combination of the FAST feature detector and the SIFT descriptor extractor gains the
biggest number of inliers due to detecting a large number of features. The MSER detects
very few features, but those are the good features, that end up to be inliers often.

Various settings of each feature detector were tested to find the optimal setting. Each feature
detector was used with the most suitable descriptor extractor as described above. Results
were observed, and the following conclusion has been drawn.

3.5. FEATURE DETECTOR AND DESCRIPTOR EXTRACTOR EVALUATION 29

Figure 3.12: Pairs of images used to evaluate combinations of feature detectors and descriptor
extractors.

The SIFT feature detector evaluation of was run on 864 settings. The used setting proved to
perform optimally. Effect of contrastThreshold value on number of detected features can
be seen in table 3.3. The bigger the value of edgeTheshold the more features are detected,
but above the value of 3, the relative number of inliers stays about the same. Around the
value of 3, the number of features (in the image of resolution 1280x960) is in thousands.
sigma of 1.6 is also the best compromise between the number of detected features and inliers.

The bigger hessianThreshold in SURF setting, the fewer features is detected and the bigger
the relative number of inliers is. At the value of 400, the number of detected features (in
the image of resolution 1280x960) is around thousands. The octaveLayers values show a
tendency to cause the maximum relative number of inliers between values 5 and 9. Otherwise
the bigger octaveLayers the more detected features. At those values of octaveLayers, the
maximum relative number of inliers is produced with octaves value of 4. The evaluation has
been run on about 380 settings.

The STAR detector has a lot of parameters.The evaluation has been run on 2250 settings. The
bigger the maxSize value is, the better performance. The responseThreshold at value of 8

30 CHAPTER 3. FRAMEWORK PREPARATION

Figure 3.13: Absolute number of inliers in descending order.

Figure 3.14: Relative number of inliers in descending order.

detects in a 1280x960 image around 1000. The higher this parameter is, the lower number of
inliers it detects. The lineThresholdProjected and lineThresholdBinarized show direct
proportional correlation with the number of detected features. The supressNonmaxSize

3.5. FEATURE DETECTOR AND DESCRIPTOR EXTRACTOR EVALUATION 31

Figure 3.15: Absolute number of inliers in descending order.

contrastThreshold #features
> 1 0
0.5-1 100s
0.1-0.5 1000s

Table 3.3: Effect of contrastThreshold value on number of detected features.

shows reverse correlation. Absolute and relative number of inliers taken into consideration,
the best performing setting seems to be STAR(30,5,16,25,8).

For the MSER detector 120 settings have been tested. The maxEvolution, areaThreshold,
minMargin and edgeBlurSize seem to have no effect on the result. The optimal setting seems
to be MSER(5,40,14400,1,.1,300,1.01,.003,3), with those uninfluential parameters left
to default.

The FAST detector parameter threshold above 8 causes a quick decrease in found features.
However, the value of 13 makes the detector to find ten thousands of features. With the
value of 20, there are still thousands of features found. With the value of 8 and above
the relative number of inliers significantly increases. The parameter nonmaxSuppression
disables detecting features too close to other feature. This sounds useful, but even though
the detector with enabled suppression detects 10 times fewer features, the relative number
of inliers is also smaller than when the suppression is disabled. The evaluation has been
run on 16 settings. For the following analysis FAST(false,20) and FAST(true,13) were used.

Using the settings described above, the absolute and the relative number of inliers is shown
in Figures 3.15 and 3.16. The FAST detector with the suppression disabled (FASTf) has the
highest relative and the absolute number of inlier of all the detectors. The FAST detector with
the suppression enabled (FASTt) still finds hundreds of inliers and scores second. After this
analysis, FAST and SURF feature detectors could be considered the best options, however,
after adding time measurements to the evaluation, SURF detector proved to be the one of
the slowest.

32 CHAPTER 3. FRAMEWORK PREPARATION

Figure 3.16: Relative number of inliers in descending order.

3.6 Image Viewpoint Transformation

Aside of number of inliers, the quality of the transformation might be a valuable information.
One of the possible approaches might be transforming all pixels px from the source image
img_src into the viewpoint of the target image img_dst and sum the euclidean distance
of each pair of pixel as 1

n

∑n
x (img_dst(px,tf)− img_tf(px,tf))

2, excluding those pixels of
target image, that does not have a representation in the transformed image. The process is
depicted in Figure 3.17. This approach has been tested but the method didn’t discriminate
worse transformations consistently.

Figure 3.17: Pixels transformation process.

3.7 Manual Selection of Keypoints

An error calculation method that uses only manually selected points in the image instead of
all pixels was implemented. While the pixel method did not show very reliable results, the
manually selected point transformation method works well.

3.8. SIZE OF IMAGES 33

The manual keypoint selection has following steps:

• A window with the source and the target image is shown

• A person clicks on 10 selected keypoints in both images in the same order

• Windows with the source and the target image zoomed in on the selected keypoint are
shown for every keypoint

• A person adjusts the position of the keypoint in both images

• The keypoints are stored into a file

The zoomed in keypoint selection is shown in Figure 3.19. The example of manually selected
keypoints in a pair of images is shown in figures 3.18 on the arena pair of images.

The keypoints are loaded from the file, and the source image keypoints are transformed
into the target image’s viewpoint. The error is then computed as the distance between
corresponding keypoints in the target and the transformed image as described in 3.9.√∑

(pdst(i)− ptf (i))2 (3.9)

where pdst(i) is the i-th keypoint position in the target image and ptf (i) is the i-th keypoint
position in the transformed image.

Figure 3.18: An example of manually selected keypoints on ARENA pair of images.

3.8 Size of Images

Another parameter that might affect results is the size of the image. Smaller images should
be processed faster. The question is whether using smaller images will result in a bigger

34 CHAPTER 3. FRAMEWORK PREPARATION

Figure 3.19: Zoomed in manual selection of a keypoint.

error and whether the different configuration of feature detector might be more successful.
Comparison of the number of detected features, number of inliers, the relative number of
inliers and computation time on 2 sets of image pairs were made. The first set contained the
big images with the resolution of 1280x960 and the second set contained the small images
with the resolution of 640x480.

The small images get processed 4 times faster and have a larger relative number of inliers.
Moreover, the small images have a higher number of successful transformations. Statistics for
the set of small images are shown in Figure 3.20

The FAST(false,20) seems to be the best performing setting for small images. The most
similarly performing SIFT setting is SIFT(0,4,.02,10,1.2), which is about 200 milliseconds
slower, has a similar number of inliers, but a twice lower relative number of inliers.
The statistics of FAST detector show same tendencies for the small and big images in every
aspect. The FAST detector without suppression detects too many keypoints, and their
processing is too slow. The FAST detector with the threshold of 30 has a bigger error than
a FAST detector with lower values of the threshold.

On the set with the small images the FAST(20, true) has duration 0.16 s on average, while
the fastest SIFT has duration around 0.3 s. The errors are the same, but the duration is 2
times shorter for FAST. The transformations when using FAST(20,true) detector are shown
in Figure 3.21

3.8. SIZE OF IMAGES 35

Figure 3.20: Statistics for best-performing settings of feature detectors on small images sorted
from the longest processing time to the shortest. Average of all pairs of images.

36 CHAPTER 3. FRAMEWORK PREPARATION

Figure 3.21: Transformation with FAST(20,true).

Chapter 4

Solution Description

First, the difference image change detection method (as discussed in Section 2.3) was
implemented in C++ using the OpenCV library. The change detection was supposed to
better the localization in cases where there is a change in the scene. The chosen approach is
to assign weights to descriptors. The weight of the descriptors in the area that changes a lot
will gradually decrease leaving the descriptor insignificant to the localization task.

4.1 Difference Image Change Detection

This method was supposed to localize the areas of changes. The process of change detection
consists of following steps:

• Load source and target images in B&W

• Resize images to 640x480 (cv::resize)

• Blur the images

• Normalize images to 0-255 values (cv::normalize)

• Find homography matrix H (cv::findHomography)

• Transform the source image to target image viewpoint (cv::warpPerspective)

• Normalize the transformed image to 0-255 values (cv::normalize)

• Create mask for pixels of the target image that are not represented in the transformed
image

• Multiply the mask and the target image, so that only pixels represented in both target
and transformed image are being processed (cv::multiply)

• Create difference image by subtracting the target and the transformed image (cv::absdiff)

• Normalize the difference image to 0-255 values (cv::normalize)

• Blur the difference image (to soften edges)

37

38 CHAPTER 4. SOLUTION DESCRIPTION

• Apply the threshold to get the change mask

Results for the DOOR and CHANGE pairs are shown in Figures 4.1 and 4.2 respectively.
This algorithm is able to detect significant changes (as bold black tape on the white door),
but all the fine details are lost. It is observable that in the DOOR pair the method detects a
piece of column exposed after opening the door, but the box behind the door itself is too
similar to the color of the door and stays undetected.

Figure 4.1: Difference image from the DOOR image pair.

4.2. KEYPOINT DESCRIPTOR DISTANCE CHANGE DETECTION 39

Figure 4.2: Difference image from the CHANGE image pair.

4.2 Keypoint Descriptor Distance Change Detection

In this section a concept of a change detection using descriptor distances is explained. The
process consists of following steps:

• Load source (src) and target (dst) images in B&W

• Resize images to 640x480 (cv::resize)

• Blur the images

• Normalize images to 0-255 values (cv::normalize)

• Detect the keypoints kpsrc and kpdst with the FAST(13,true) feature detector
(cv::cv::FeatureDetector::detect)

• Extract the descriptors δsrc and δdst using the SIFT descriptor extractor
(cv::DescriptorExtractor::compute)

• Find homography matrix H (cv::findHomography)

40 CHAPTER 4. SOLUTION DESCRIPTION

• Transform the source image into the viewpoint of the target image (cv::warpPerspective)

• Extract descriptors from the transformed image at the kpdst

• For every keypoint kpdst(i) compute Euclidean distance between descriptors of the
target and the transformed image

The distance of the descriptors is showed in Figure 4.3 as the radius of the circles. The
process is described in one direction only, but the detection is needed to be done also from
the target image to the source image to detect changes in areas, there the source image didn’t
have any keypoints.

Figure 4.3: Keypoint distance change detection method showed on indoor enviroment picture.
The source and target images are shown in the left column.

4.3. MATCHED KEYPOINTS LOCALIZATION 41

4.3 Matched Keypoints Localization

The localization method has been implemented using FAST feature detector and SIFT
descriptor extractor. The first prototype was without weighting. Following methods adopted
weighting. There were 3 methods with weighing implemented each of which presents a
different way of weights update.

4.3.1 Without Weighting

This method works the following way. Images from the database are all processed into the
descriptor and position files. The raw SIFT descriptors of each database image are stored
into a file in the form of a matrix with an index in the first column to denote which image
does the group of descriptors belong to. The descriptor matrix is 128 + 1 columns wide and∑N

i=1 ni rows deep, where N is number of images and ni is number of features (descriptors)
of the image i. The position file consists of N ×3 matrix with the x coordinate in the first col-
umn, the y coordinate in the second column and the angle in the third column (see Figure 4.4).

Figure 4.4: Structure of the descriptor and the position files for the localization task.

The query image gets processed into a matrix of SIFT descriptors just as every individual
database image. Then the query image descriptors are matched to descriptors of every
database image by Brute Force matcher. The Brute Force matcher finds the pairs of
descriptors that are the closest to each other. The resulting distance of an image di is an
average distance of those pairs of closest descriptors between the query and the database
image. (4.1) describes the distance computation. The δdbj is the j-th descriptor of the
database image, and the δqj is the respective descriptor of the query image. The query image
is assigned the position of the closest database image.

di =

∑n
j=1

√
(δqj − δdbj)2

n
(4.1)

42 CHAPTER 4. SOLUTION DESCRIPTION

4.3.2 Weighting Using Distance Vector Normalization

The difference between the method without weighting and this method is that at the point
when distances of the descriptors are being summed into the image distance di, every descriptor
distance is multiplied by its weight as described by (4.2).

di =

∑n
j=1wj

√
(δqj − δdbj)2

n
(4.2)

The weights get updated during every image distance computation. The update step is
described by (4.3). The factor γ determines how much can a weight change from the previous
weight. The estimate of a new weight ŵ is obtained by normalizing the distances of all
descriptor pairs of the current pair of images (the query and the database image) to the
interval < 0, 1 > and inverting the value by subtracting the normalized vector from the vector
of ones. This way the pair of descriptors with the smallest distance gets assigned the weight
of value 1 and the pair of descriptors with the largest distance gets assigned the weight of
value 0.

w(t+ 1) = γw(t) + (1− γ)ŵ(t+ 1) (4.3)

4.3.3 Weighing Using Past Values

This method keeps track of the previous value of distances. The current and the previous
distance are subtracted and the difference is used as the feedback to adjust weights. (4.4)
shows the update. The l(i) is the descriptor distance at iteration i. The α is some scaling
parameter. The resulting errors are in Table 6.7. If a weight is desired to be decreased by
0.1 and γ = 0.9, for example, the scaled difference of distances should be around 1. That
would require α of a value of the difference. Maximum difference occurring during the test
was around 300.

w(i+ 1) = γw(i) + (1− γ)(l(i+ 1)− l(i))α (4.4)

4.3.4 Weighting Using Global Reference Value

A global reference value could be used to scale down the distance between descriptors that
could be directly used as the new weight estimate ŵ. The weight estimate computation is
described by (4.5), where li is the distance of the i-th descriptor. The update is computed
the same way as in (4.3). The maximum distances are typically around 430. This number
can be used as an anchor to decide for the global ref value.

ŵ =

{
1− li

ref for li
ref ≤ 1

0 otherwise
(4.5)

4.4. TRANSFORMED KEYPOINTS LOCALIZATION 43

4.4 Transformed Keypoints Localization

4.4.1 Keypoints Transformed into the Target Image Viewpoint

This method uses keypoints detected in the database image, transforms them into the view-
point of the query image and computes their descriptor distance.

The method works following way:

1. Load database image descriptors δdb

2. Compute query image descriptors δq

3. Find matches (cv::DescriptorMatcher::match)

4. Find homography matrix H with the matched keypoints

5. Transform database keypoints into viewpoint of the query image ktf = Hkdb

6. Compute descriptors δtf in the query image at the ktf

7. For ktf within the image bounds compute distance between δdb and δtf

8. Repeat for all database images. Assign to the query image the position of the closest
database image.

The SIFT feature descriptor is scale invariant, rotation invariant and is robust to change in
viewpoint [13], therefore the descriptor of the feature should be the same in the query image
and the database image even though the viewpoint and scale differs.

Some modifications have been made to better the results. Firstly, the relative number of
inliers is computed, and the image pairs whose relative number of inliers is lower than some
threshold (0.2 in this case) is assigned infinity distance. Second, the determinant of the
homography matrix H is computed, and image pairs that produce homography with determi-
nant close to zero (lower than 0.2 in this case) are assigned infinity distance. The reason is
to discard transformations that were unsuccessful. The sets of images discarded by those two
modifications overlap, since most of the transformations with close to singular homography
matrix also produce little inliers, but some cases are only caught by one of those modifications.

Figure 4.5 shows the correct keypoint transformation with non-singular homography matrix
and the incorrect keypoint transformation with the homography matrix close to singular.

4.4.2 Target Image Transformed into the Source Image Viewpoint

This methods consists of following steps:

1. Load database image descriptors δdb and keypoint kdb

44 CHAPTER 4. SOLUTION DESCRIPTION

Figure 4.5: Example of correctly (on the left) and incorrectly (on the right) transformed
keypoints. Homography matrix is non-singular in the first case and singular in the latter.

2. Compute query image descriptors δq

3. Find matches (cv::DescriptorMatcher::match)

4. Find homography matrix H with the matched keypoints

5. Transform query image into viewpoint of the database image

6. Compute descriptors δtf within the transformed image at the database keypoints.

7. For all kdb compute distance between δdb and δtf

Chapter 5

Scene Setting and Recording

5.1 The Arena Setting

The arena built for the robot had a circular shape. It was built out of cupboard boxes.
Posters were glued to the walls to add distinctive features. There was one poster that has
been changed during the measurements and small cardboard doors that have been closed at
the beginning of the recording and were opened during the recording. Those represent the
change in the dataset.

Figure 5.1: Cardboard arena used for localization data recording.

Pictures of the arena are shown in Figure 5.1. The scheme of the arena is depicted in
Figure 5.2

5.2 Arena Recording

The recording setting was the same as described in Section 3.2.1. In the default, arena layout
is a poster #1 glued to the wall and door is closed. In the layout with the change, the poster

45

46 CHAPTER 5. SCENE SETTING AND RECORDING

Figure 5.2: Arena scheme.

#1 is replaced with the poster #2 and door are open. Picture of the posters is in Figure 5.3

Three sets of measurements were conducted, each consisting of three measurements. The
first set was recorded with the default arena layout. After this measurement, the robot was
restarted. The gmapping node lost its previous information and started building a new map.
Therefore gmapping map of the first and the second set differ. The second set was recorded
with the default arena layout after few minutes of driving around the arena for the robot to
build up a new map. The third set was recorded within the same map as the second set but
with the changed layout.

The first record of a set was recorded while the robot drove around the arena in the clockwise
direction. The second record is the counter-clockwise loop. The third measurement is the
record of a robot driving to the other side of the arena, turning around and driving back the
same way. Table 5.1 gives an overview of the records.

5.2. ARENA RECORDING 47

set map change measurement direction

1st #1 NO
1st clockwise
2nd counter-clockwise
3rd half way

2nd #2 NO
1st clockwise
2nd counter-clockwise
3rd half way

3rd #2 YES
1st clockwise
2nd counter-clockwise
3rd half way

Table 5.1: Overview of arena measurements.

(a) poster #1 (b) poster #2

Figure 5.3: Posters that are being switched to introduce change into dataset.

48 CHAPTER 5. SCENE SETTING AND RECORDING

Chapter 6

Results

In this chapter, the results of the implemented methods described in Chapter 4 are presented.

6.1 Matched Keypoints Localization

6.1.1 Without Weighting

The matched keypoints localization method without weighing was tested on three training
datasets with the same test dataset. The test dataset was the 3rd record from the 2nd set.
The first training dataset was only the 1st record from the 2nd set, the second training
dataset was only the 2nd record from the 2nd set and the third training dataset was both
1st and 2nd records from the second set. Since the 3rd record captures half of the clockwise
loop and half of the counter-clockwise loop, the best results should be gained by the third
training dataset. The errors are in Table 6.1 and estimates in Figure 6.1.

Next test was made on a training dataset of all 3 records from the 2nd set, and test dataset
were all the remaining records. The estimated and the true positions for the 2nd record from
the 3rd set are in Figure 6.2. The errors and distances of this dataset are shown in Table 6.2.

training dataset errorx errory errorθ distance
clockwise 0.426 0.471 0.897 0.6351
counter-clockwise 0.349 0.228 0.880 0.4169
both loops 0.117 0.130 0.655 0.1749

Table 6.1: Error in x and y coordinate, error in angle and the average distance. Testing
dataset is the 3rd record from the 2nd set. Without weighting

6.1.2 Weighting Using Distance Vector Normalization

Resulting errors for different values of γ are printed in Tables 6.3, 6.4, 6.5 and 6.6.
The weighted method for the γ = 0.95 had average distance between the true and the
estimated positions in the 2nd and 3rd record shorter than the method without weighting,

49

50 CHAPTER 6. RESULTS

Figure 6.1: The true and predicted positions with only the clockwise loop as the training
dataset, only the counter-clockwise loop as the training dataset and both clockwise and
counter-clockwise loops as the training dataset. The test dataset is the half-way run. All
used records are from the second set.

6.1. MATCHED KEYPOINTS LOCALIZATION 51

Test dataset errorx errory errorθ distance

1st set
clockwise 0.2679 0.1580 0.4132 0.3110
counter-clockwise 0.3085 0.2411 0.6791 0.3915
third measurement 0.2792 0.1660 0.4518 0.3248

3rd set
clockwise 0.0917 0.0980 0.1623 0.1342
counter-clockwise 0.1609 0.3087 0.3923 0.3481
third measurement 0.1462 0.3360 0.7448 0.3664

Table 6.2: Error in x and y coordinate, error in angle and the average distance. Training
dataset is the 2nd set. Without weighting.

Figure 6.2: The true and the predicted positions for the second record (counter-clockwise)
from the third set. Without weighting.

but larger in the 1st record, where the robot does not face directly any of the changes. Ideally,
the results in a nonchanging environment should stay the same as without weighting and
only in case of an often changing area the results should improve. The normalization across
the current descriptor distances puts some weights estimates on zero even if all the distances
are small (the images are the same, and no change has occurred). That might be the reason
of the worse results.

52 CHAPTER 6. RESULTS

Test dataset errorx errory errorθ distance

3rd set
clockwise 0.1081 0.1074 0.1357 0.1524
counter-clockwise 0.2019 0.2466 0.5013 0.3187
third measurement 0.1347 0.3185 0.4734 0.3458

Table 6.3: Error in x and y coordinate, error in angle and the average distance. Training
dataset is the 2nd set. Weighted with γ = 0.95

Test dataset errorx errory errorθ distance

3rd set
clockwise 0.1272 0.1196 0.2670 0.1746
counter-clockwise 0.2032 0.2570 0.7501 0.3276
third measurement 0.2090 0.3612 0.6268 0.4173

Table 6.4: Error in x and y coordinate, error in angle and the average distance. Training
dataset is the 2nd set. Weighted with γ = 0.90

Test dataset errorx errory errorθ distance

3rd set
clockwise 0.1965 0.1818 0.5589 0.2677
counter-clockwise 0.2792 0.3115 0.6235 0.4183
third measurement 0.1925 0.3523 0.6801 0.4015

Table 6.5: Error in x and y coordinate, error in angle and the average distance. Training
dataset is the 2nd set. Weighted with γ = 0.80

Test dataset errorx errory errorθ distances

3rd set
clockwise 0.1908 0.1994 0.5571 0.2760
counter-clockwise 0.3061 0.3621 0.8620 0.4741
third measurement 0.2573 0.4171 0.8591 0.4901

Table 6.6: Error in x and y coordinate, error in angle and the average distance. Training
dataset is the 2nd set. Weighted with γ = 0.70

6.1.3 Weighting Using Past Values

For the values of α of 700 and higher the average distance between the true and the estimated
positions is shorter than with the method without weighting and with weighting by distance
vector normalization for the same γ value.

6.1.4 Weighting Using Global Reference Value

The errors for the different values of ref can be seen in Table 6.8. For the ref of 450 and higher
the results are better than the original without weighting and all the other weighting methods.

Estimated positions for the parameter ref of 500 can be seen in Figure 6.3. The two positions
where the robot is looking toward the open door got estimated correctly with this method,

6.1. MATCHED KEYPOINTS LOCALIZATION 53

α errorx errory errorθ distance
30 0.3554 0.8336 2.1256 0.9062
50 0.1913 0.4303 0.8834 0.4709
100 0.1843 0.3667 0.8463 0.4104
200 0.1592 0.2787 0.7590 0.3210
300 0.1592 0.2787 0.7590 0.3210
500 0.1580 0.2746 0.7586 0.3883
700 0.1580 0.2746 0.7586 0.3168
800 0.1577 0.2737 0.6092 0.3159
1000 0.1577 0.2737 0.6092 0.3159

Table 6.7: Error in x and y coordinate, error in angle and average error from all coordinates
combined and the average distance. Training dataset is the 2nd set. The test dataset is the
3rd record from the 3rd set. Weighted with γ = 0.95. Past values method

but were estimated incorrectly with the method without weighting.

The errors for the second record from the 3rd set for different values of γ are shown in
Table 6.9. Decreasing the γ caused worse performance.

This weighting method is among the all implemented methods the one that showed the most
significant decrease in estimate error.

ref errorx errory errorθ distance
370 0.2490 0.2946 0.5436 0.3857
400 0.1961 0.2416 0.4023 0.3112
430 0.1647 0.2233 0.4310 0.2775
450 0.1457 0.1939 0.4278 0.2425
500 0.1346 0.1653 0.4190 0.2132

Table 6.8: Error in x and y coordinate, error in angle and average error from all coordinates
combined and the average distance. Training dataset is the 2nd set. The test dataset is the
2nd record from the 3rd set. Weighted with γ = 0.95. Global reference method.

γ errorx errory errorθ distance
0.9 0.1527 0.1962 0.4239 0.2486
0.8 0.1732 0.2350 0.4493 0.2919
0.7 0.1802 0.2852 0.3820 0.3374
0.6 0.1891 0.3852 0.3789 0.4291

Table 6.9: Error in x and y coordinate, error in angle and the average distance. The training
dataset is the second set. The test dataset is the 2nd record from the 3rd set. Global reference
method. ref = 500.

54 CHAPTER 6. RESULTS

Figure 6.3: The true and the predicted positions for the second record (counter-clockwise)
from the third set with the weighting parameters γ = 0.95 and ref = 500. Global reference
method.

6.2. TRANSFORMED KEYPOINTS LOCALIZATION 55

6.2 Transformed Keypoints Localization

6.2.1 Keypoints Transformed into the Target Image Viewpoint

Results of this method without weighting are shown in Table 6.10. Results for weighting are
shown in Tables 6.11 (γ = 0.9) and 6.12 (γ = 0.98). This method doesn’t result in shorter
distances between the estimated and the true positions.

record errorx errory errorθ distance
1 0.2624 0.3024 0.5688 0.4004
2 0.2005 0.3106 0.5758 0.3697
3 0.2063 0.4952 0.5280 0.5365

Table 6.10: The errors and distance. The test dataset is the third set. Keypoint transformation
method without weighting.

ref rocord 1 rocord 2 rocord 3
200 0.4124 0.3599 0.5600
300 0.4256 0.3479 0.6230
400 0.4385 0.4060 0.6258
500 0.4783 0.4631 0.6410
600 0.3718 0.3754 0.6069
700 0.5122 0.4619 0.7397

Table 6.11: The distance between the estimated and the true positions.. The test dataset is
the third set. Keypoint transformation method with weighting. γ = 0.90.

ref rocord 1 rocord 2 rocord 3
200 0.3718 0.3819 0.6081
300 0.3899 0.4072 0.5952
400 0.3507 0.4254 0.6773
500 0.3709 0.4358 0.6787
700 0.3499 0.4813 0.7454

Table 6.12: The distance between the estimated and the true positions. The test dataset is
the third set. Keypoint transformation method with weighting. γ = 0.98.

6.2.2 Target Image Transformed into the Source Image Viewpoint

The results of this approach without weighting are shown in Table 6.13. The results are
slightly better than for the keypoint transformation approach. Results for the weighting are
in Table 6.14.

56 CHAPTER 6. RESULTS

The image transformation method shows better results than the keypoint transformation
method. However, even the image transformation method is worse than keypoint matching
methods discussed above. Addition of weighting does not achieve better results than the
keypoint matching method.

measurement errorx errory errorθ distance
1 0.2050 0.2141 0.5823 0.2964
2 0.1888 0.2620 0.5840 0.3229
3 0.1832 0.4879 0.5427 0.5212

Table 6.13: The errors and distance. The test dataset is the third set. The image transforma-
tion method without weighting.

ref record 1 record 2 record 3
100 0.2994 0.3072 0.5406
200 0.3073 0.3109 0.5488
300 0.3058 0.3114 0.5546
400 0.2728 0.3069 0.5397
600 0.3073 0.3311 0.5354
800 0.2956 0.3119 0.5463
1000 0.3019 0.3119 0.5445

Table 6.14: The distance. The test dataset is the third set. Image transformation weighted
method. γ = 0.98.

Chapter 7

Conclusion

Chapter 3 explains the usage of ROS, how the data for experiments were obtained. It
describes an error computation that is used later on during the whole work on this thesis.
In that chapter various feature detector configuration are tested. For the evaluation, sev-
eral metrics were considered. Among the absolute number of inliers, the relative number
of inliers, processing time or transformation error. From those tests the FAST feature de-
tector with threshold of 20 and nonmaxSuppression set on true was chosen and used later on.

The effect of image size was examined for resolutions 1280× 960 and 640× 480. The lower
resolution images were processed 4 times faster and resulted in successful transformation
more often. Therefore this resolution was chosen. At this point, more resolutions could be
tested. Maybe yet lower resolution would give even better results.

In Chapter 4 a principle of a change detection using keypoint descriptors was introduced
and explained. Several methods of weighting were discussed: the weighting using distance
vector normalization, the weighting using past distance value, and weighting using a global
reference value; In Chapter 6 are provided results of the evaluation. The method of weighting
using a global reference value was most successful. To get the best out of all of the methods,
tuning of parameters should help. Aside of localization using matched keypoints, transformed
keypoints localization method was introduced in Chapter 4. The results of evaluations in
Chapter 6 shows that this method is suboptimal.

According to the definition of the life-long machine learning (LML) [39], the characteristics
of LML are continuous learning, knowledge accumulation and its maintenance, and the
ability to use the past knowledge to help future learning. All of the implemented methods
(with weighting) are accumulating and maintaining knowledge by updating weights and show
continuous learning by applying those weights. Using past knowledge to help future learning
might be found in the weighting using past values method, where the past distance value
actively determines how to update the weight.

57

58 CHAPTER 7. CONCLUSION

Bibliography

[1] Dimitrios Karageorgos. “Human-Aware Autonomous Navigation of a Care Robot in
Domestic Environments”. MA thesis. Delft University of Technology, 2017.

[2] Pierre-Luc St-Charles, Guillaume-Alexandre Bilodeau, and Robert Bergevin. “Sub-
sense: A universal change detection method with local adaptive sensitivity”. In: IEEE
Transactions on Image Processing 24.1 (2015), pp. 359–373.

[3] Sicong Liu et al. “Hierarchical unsupervised change detection in multitemporal hy-
perspectral images”. In: IEEE Transactions on Geoscience and Remote Sensing 53.1
(2015), pp. 244–260.

[4] Ali Can et al. “A feature-based, robust, hierarchical algorithm for registering pairs of
images of the curved human retina”. In: IEEE transactions on pattern analysis and
machine intelligence 24.3 (2002), pp. 347–364.

[5] Nikolaus Correll et al. “Analysis and observations from the first amazon picking chal-
lenge”. In: IEEE Transactions on Automation Science and Engineering (2016).

[6] RoboCup@Work - Rules. 2018. url: http://www.robocupatwork.org/rules.html.

[7] Richard J Radke et al. “Image change detection algorithms: a systematic survey”. In:
IEEE transactions on image processing 14.3 (2005), pp. 294–307.

[8] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image Processing, Analysis, and Machine
Vision. Thomson Learning, 2008.

[9] Morton J Canty. Image analysis, classification and change detection in remote sensing:
with algorithms for ENVI/IDL and Python. Crc Press, 2010.

[10] Hafez A Afify. “Evaluation of change detection techniques for monitoring land-cover
changes: a case study in new Burg El-Arab area”. In: Alexandria engineering journal
50.2 (2011), pp. 187–195.

[11] S Baronti et al. “Principal component analysis for change detection on polarimetric
multitemporal SAR data”. In: Geoscience and Remote Sensing Symposium, 1994.
IGARSS’94. Surface and Atmospheric Remote Sensing: Technologies, Data Analysis
and Interpretation., International. Vol. 4. IEEE. 1994, pp. 2152–2154.

[12] Richard Szeliski. Computer vision: algorithms and applications. Springer Science &
Business Media, 2010.

[13] David G Lowe. “Distinctive image features from scale-invariant keypoints”. In: Interna-
tional journal of computer vision 60.2 (2004), pp. 91–110.

59

http://www.robocupatwork.org/rules.html

60 BIBLIOGRAPHY

[14] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “Surf: Speeded up robust features”.
In: European conference on computer vision. Springer. 2006, pp. 404–417.

[15] Jiri Matas et al. “Robust wide-baseline stereo from maximally stable extremal regions”.
In: Image and vision computing 22.10 (2004), pp. 761–767.

[16] Edward Rosten and Tom Drummond. “Machine learning for high-speed corner detection”.
In: European conference on computer vision. Springer. 2006, pp. 430–443.

[17] Peter Biber, Tom Duckett, et al. “Dynamic maps for long-term operation of mobile
service robots”. In: Robotics: science and systems. 2005, pp. 17–24.

[18] Aparna Taneja, Luca Ballan, and Marc Pollefeys. “Image based detection of geometric
changes in urban environments”. In: Computer Vision (ICCV), 2011 IEEE International
Conference on. IEEE. 2011, pp. 2336–2343.

[19] Akihiko Torii et al. “24/7 place recognition by view synthesis”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2015, pp. 1808–1817.

[20] Oier Mees, Andreas Eitel, and Wolfram Burgard. “Choosing smartly: Adaptive multi-
modal fusion for object detection in changing environments”. In: Intelligent Robots and
Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE. 2016, pp. 151–
156.

[21] Relja Arandjelovic et al. “NetVLAD: CNN architecture for weakly supervised place
recognition”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2016, pp. 5297–5307.

[22] Tomas Krajnik et al. “Image features for visual teach-and-repeat navigation in changing
environments”. In: Robotics and Autonomous Systems 88 (2017), pp. 127–141.

[23] Akihiko Torii et al. “Visual Place Recognition with Repetitive Structures”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 37.11 (2015), pp. 2346–2359.

[24] Cristina Romero-Gonzalez et al. “On robot indoor scene classification based on descriptor
quality and efficiency”. In: Expert Systems with Applications 79 (2017), pp. 181–193.

[25] ROS. May 2018. url: http://www.ros.org.

[26] ROS - gmapping package. May 2018. url: http://wiki.ros.org/gmapping.

[27] ROS - pylon camera package. May 2018. url: http://wiki.ros.org/pylon_camera.

[28] ROS - rosbag package. May 2018. url: http://wiki.ros.org/rosbag.

[29] TeamViewer. May 2018. url: https://www.teamviewer.com/en/.

[30] ROS - Turtlebot bringup package. May 2018. url: http://wiki.ros.org/turtlebot_
bringup.

[31] ROS - Turtlebot teleop package. May 2018. url: http://wiki.ros.org/turtlebot_
teleop.

[32] ROS - Hokuyo node package. May 2018. url: http://wiki.ros.org/hokuyo_node.

[33] ROS - tf package. May 2018. url: http://wiki.ros.org/tf.

[34] Matej Beranek, Martin Novotny, and Martin Zakovec. “ROS - camera node”. Unpub-
lished ROS package.

http://www.ros.org
http://wiki.ros.org/gmapping
http://wiki.ros.org/pylon_camera
http://wiki.ros.org/rosbag
https://www.teamviewer.com/en/
http://wiki.ros.org/turtlebot_bringup
http://wiki.ros.org/turtlebot_bringup
http://wiki.ros.org/turtlebot_teleop
http://wiki.ros.org/turtlebot_teleop
http://wiki.ros.org/hokuyo_node
http://wiki.ros.org/tf

BIBLIOGRAPHY 61

[35] Tino Kluge. Cubic Spline interpolation in C++. C++ library. 2011-2014. url: http:
//kluge.in-chemnitz.de/opensource/spline/.

[36] OpenCV 2. May 2018. url: https://opencv.org/opencv-2-4-8.html.

[37] OpenCV FeatureDetector Class Reference. May 2018. url: http://physics.nyu.edu/
grierlab/manuals/opencv/classcv_1_1FeatureDetector.html.

[38] OpenCV DescriptorExtractor Class Reference. May 2018. url: http://physics.nyu.
edu/grierlab/manuals/opencv/classcv_1_1DescriptorExtractor.html.

[39] Zhiyuan Chen and Bing Liu. Lifelong machine learning. Morgan & Claypool, 2016.

http://kluge.in-chemnitz.de/opensource/spline/
http://kluge.in-chemnitz.de/opensource/spline/
https://opencv.org/opencv-2-4-8.html
http://physics.nyu.edu/grierlab/manuals/opencv/classcv_1_1FeatureDetector.html
http://physics.nyu.edu/grierlab/manuals/opencv/classcv_1_1FeatureDetector.html
http://physics.nyu.edu/grierlab/manuals/opencv/classcv_1_1DescriptorExtractor.html
http://physics.nyu.edu/grierlab/manuals/opencv/classcv_1_1DescriptorExtractor.html

62 BIBLIOGRAPHY

Appendix A

The contents of the enclosed CD

The CD includes:

• Text of this document

• Developed ROS package

• MATLAB scripts used for visualization and evaluation

63

	Introduction
	Motivation
	Problem Specification
	Structure of this Thesis

	State of the Art
	Mobile Robot Design
	Mobile Robot Environment
	Change Detection
	Feature Detection
	Related Work

	Framework Preparation
	ROS
	Improvised Arena
	Recording
	Processing
	Speed of Gmapping
	Interpolation
	Angle Interpolation: Interpolated Quaternions and Wrapped Euler Angles
	Angle Interpolation: Computed Angle from Interpolated Positions
	Angle Interpolation: Continuous Angle Representation
	Angle Interpolation: Decomposition to Sine and Cosine Component

	Naive Localization
	SIFT Feature Matching
	Feature Detector and Descriptor Extractor Evaluation
	Image Viewpoint Transformation
	Manual Selection of Keypoints
	Size of Images

	Solution Description
	Difference Image Change Detection
	Keypoint Descriptor Distance Change Detection
	Matched Keypoints Localization
	Without Weighting
	Weighting Using Distance Vector Normalization
	Weighing Using Past Values
	Weighting Using Global Reference Value

	Transformed Keypoints Localization
	Keypoints Transformed into the Target Image Viewpoint
	Target Image Transformed into the Source Image Viewpoint

	Scene Setting and Recording
	The Arena Setting
	Arena Recording

	Results
	Matched Keypoints Localization
	Without Weighting
	Weighting Using Distance Vector Normalization
	Weighting Using Past Values
	Weighting Using Global Reference Value

	Transformed Keypoints Localization
	Keypoints Transformed into the Target Image Viewpoint
	Target Image Transformed into the Source Image Viewpoint

	Conclusion
	The contents of the enclosed CD

