
CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF ELECTRICAL ENGINEERING

DEPARTMENT OF CONTROL ENGINEERING

Doctoral Thesis

DATA-EFFICIENT METHODS FOR MODEL
LEARNING AND CONTROL IN ROBOTICS

by Ing. Erik Derner

presented to the Faculty of Electrical Engineering,
Czech Technical University in Prague,

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy (Ph.D.)

Supervisor: Prof. Dr. Ing. Robert Babuška

Study program: Electrical Engineering and Information Technology

Branch of study: Control Engineering and Robotics

February 2022

CONTENTS

Summary vii

Anotace ix

Acknowledgments xi

1 Introduction 1
1.1 Motivation and Challenges . 1

1.1.1 Challenges in Data-Driven Model Learning . 1
1.1.2 Model Learning Challenges in Robotics. 2

1.2 Objectives and Contributions . 3
1.2.1 Symbolic Regression for Robot Model Learning 3
1.2.2 Informative Training Sets . 3
1.2.3 Model Learning with Prior Knowledge . 4
1.2.4 Efficient Robot Localization in Dynamic Environments 4

2 Model Learning Preliminaries 5
2.1 Symbolic Regression . 5
2.2 Single Node Genetic Programming. 6
2.3 Symbolic Regression with Formal Constraints . 7
2.4 Nonlinear Dynamic System Model . 8
2.5 Reinforcement Learning . 9

3 Constructing Parsimonious Analytic Models for Dynamic Systems 11
3.1 Introduction . 12
3.2 Theoretical Background . 13
3.3 Method . 13

3.3.1 Symbolic Regression . 14
3.3.2 Genetic Programming Methods Used . 15
3.3.3 Computational Complexity . 15

3.4 Experimental Results . 16
3.4.1 Mobile Robot . 16
3.4.2 Walking Robot . 19
3.4.3 Inverted Pendulum . 24

3.5 Conclusions . 30

4 Efficient Selection of Informative Samples for Model Learning 33
4.1 Introduction . 34
4.2 Methods. 35

4.2.1 Model Learning Framework. 35
4.2.2 Sample-Selection Methods . 36

iii

iv CONTENTS

4.2.3 Computational Complexity . 38
4.2.4 Discussion and Limitations . 38

4.3 Mobile Robot Experiments . 39
4.3.1 System Description . 39
4.3.2 Data Collection . 39
4.3.3 Model Learning . 40
4.3.4 Control Task . 40
4.3.5 Simulation Results . 41
4.3.6 Results with the Real Mobile Robot . 44

4.4 Drone Experiments . 47
4.4.1 System Description . 47
4.4.2 Data Collection . 47
4.4.3 Model Learning . 47
4.4.4 Results . 48

4.5 Conclusions . 50

5 Physics-Aware Model Learning for Dynamic Systems 51
5.1 Introduction . 52
5.2 Related Work . 52
5.3 Method . 53

5.3.1 Baseline Symbolic Regression . 53
5.3.2 Prior Knowledge. 54

5.4 Experiments . 55
5.4.1 Evaluation Scheme . 55
5.4.2 Method Parameters and Complexity . 56
5.4.3 Mobile Robot . 56
5.4.4 Drone . 61

5.5 Conclusions . 63

6 Change Detection Using Weighted Features for Image-Based Localization 65
6.1 Introduction . 66
6.2 Related Work . 67
6.3 Visual Localization Framework . 69

6.3.1 Building the Visual Database . 69
6.3.2 Weighted Features . 70
6.3.3 Correspondence-Based Localization . 71

6.4 Change Detection Method. 72
6.4.1 Detecting Changes . 72
6.4.2 Weights Update . 73
6.4.3 Long-Term Operation . 73
6.4.4 Limitations . 75

6.5 Evaluation on Our Data Sets. 76
6.5.1 Data Sets . 77
6.5.2 Experimental Setup. 77
6.5.3 Results . 78

CONTENTS v

6.5.4 Discussion . 82
6.6 Evaluation on Public Data Set . 83

6.6.1 Data Set Overview . 83
6.6.2 Method Performance. 84
6.6.3 Adaptive Appearance-Based Map . 85
6.6.4 Localization Using FAB-MAP . 86
6.6.5 Feature Types . 87
6.6.6 Discussion . 89

6.7 Conclusions . 89

7 Conclusions and Future Research 91
7.1 Conclusions . 91
7.2 Future Research . 92

Grants 95

List of Acronyms 97

Bibliography 99

List of Author’s Publications 111

SUMMARY

Constructing mathematical models of dynamic systems is central to many engineering and
science disciplines. Models facilitate simulations, analysis of the system’s behavior, decision
making, and design of automatic control algorithms. Even inherently model-free control tech-
niques such as reinforcement learning have been shown to benefit from the use of models.
However, applying model learning methods to robotics is not straightforward. Obtaining in-
formative data for constructing dynamic models can be difficult, especially when the models
are to be learned during task execution. Despite their increasing popularity, commonly used
model learning methods such as deep neural networks come with drawbacks. They are data-
hungry and require a lot of computational power to learn a large number of parameters in their
complex structure. Their black-box nature does not offer any insight into or interpretation of
the model. Also, configuring these methods to achieve good results is often a difficult task.

The objective of this thesis is to address the present challenges in data-driven model learn-
ing in robotics. Several variants and extensions of symbolic regression are introduced. This
technique, based on genetic programming, is suitable to automatically build compact and ac-
curate models in the form of analytic equations even from small data sets. One of the chal-
lenges is posed by the large amount of data the robots collect during their operation, demand-
ing techniques to select a smaller subset of training samples. To that end, this thesis presents
a novel sample-selection method based on model prediction error and compares it to four al-
ternative approaches. A real-world experimental evaluation on a mobile robot shows that a
model learned from only a few tens of samples selected by the proposed method can be used
to accomplish a motion control task within a reinforcement learning scheme.

Standard data-driven model learning techniques in many cases yield models that violate
the physical constraints of the robot. However, a partial theoretical or empirical model of the
robot is often known. It is shown in this work how symbolic regression can be naturally ex-
tended to include the prior information into the model construction process. An experimental
evaluation on two real-world robotic platforms demonstrates that symbolic regression is able
to automatically build models that are both accurate and physically valid and compensate for
theoretical or empirical model deficiencies.

Efficient methods are needed not only to learn robot models but also to learn models of
the robot’s environment. The thesis is concluded by presenting a novel method for reliable
robot localization in dynamic environments. The proposed approach introduces an environ-
ment representation based on weighted local visual features and a change detection algorithm
that updates the weights as the robot moves around the environment. The core idea of the
method consists in using the weights to distinguish the useful information in stable regions of
the scene from the unreliable information in the regions that are changing. An extensive eval-
uation and comparison to state-of-the-art alternatives show that using the proposed change
detection algorithm improves the localization accuracy.

vii

viii SUMMARY

Keywords: robotics, model learning, symbolic regression, genetic programming, reinforce-
ment learning, robot control, localization.

ANOTACE

Znalost matematických modelů dynamických systémů je klíčová pro celou řadu inženýrských
a vědeckých disciplín. Modely umožňují provádění simulací, analýzu chování systému, rozho-
dování a návrh řídicích algoritmů. Z použití modelů těží i techniky, které z principu fungují bez
modelu, například posilované učení. Využití metod pro učení modelů v robotice má však svá
specifika. Získat informativní data pro učení dynamických modelů může být obtížné, zvláště
během vykonávání dané úlohy. Navzdory rostoucí popularitě mají běžně používané metody
učení modelů, jako jsou hluboké neuronové sítě, své nevýhody. Vyžadují velký objem tréno-
vacích dat a značný výpočetní výkon, aby se naučily velký počet parametrů. Jejich black-box
charakter neumožňuje interpretaci modelu ani vhled do jeho struktury. Také správné nasta-
vení konfigurace pro dosažení dobrých výsledků je u těchto metod často obtížný úkol.

Cílem této disertační práce je navrhnout řešení aktuálních problémů v oblasti učení mo-
delů z dat v robotice. Práce představuje několik variant a rozšíření symbolické regrese. Tato
technika, založená na genetickém programování, je vhodná pro automatické vytváření kom-
paktních a přesných modelů v podobě analytických rovnic i z malých souborů dat. Jedním
z problémů v robotice je velké množství dat, které jsou roboty během provozu shromažd’ovány,
což vyžaduje výběr podmnožiny trénovacích vzorků. Tato práce představuje novou metodu
výběru vzorků založenou na predikční chybě modelu a porovnává ji se čtyřmi alternativními
metodami. Experimentální vyhodnocení na mobilním robotu ukazuje, že model naučený jen
z několika desítek vzorků vybraných navrženou metodou může být využit pro úspěšné vyko-
nání úlohy založené na řízení metodou posilovaného učení.

Běžně používané techniky učení modelů z dat v mnoha případech generují modely, které
nevyhovují fyzikálním omezením robota. Částečný teoretický nebo empirický model robota
je přitom často znám. Tato práce ukazuje, jak lze symbolickou regresi přirozeně rozšířit tak,
aby byly předem známé informace o robotu zahrnuty do procesu učení modelu. Experimen-
tální vyhodnocení na dvou různých robotech ukazuje, že symbolická regrese je schopna au-
tomaticky vytvářet modely, které jsou přesné, vyhovují fyzikálním omezením a kompenzují
nedostatky teoretického nebo empirického modelu.

Efektivní metody jsou třeba nejen k učení modelů robotů, ale také k učení modelů prostředí
robota. Práce je zakončena představením nové metody pro spolehlivou lokalizaci robotů v dy-
namických prostředích. V navrhovaném přístupu se využívá model prostředí založený na vá-
žených lokálních vizuálních příznacích. Algoritmus detekce změn průběžně aktualizuje tyto
váhy během pohybu robota prostředím. Základní myšlenkou metody je na základě těchto vah
rozlišit užitečné informace ve stabilních oblastech scény od nespolehlivých informací v oblas-
tech, které se mění. Rozsáhlé experimentální vyhodnocení a srovnání s alternativními meto-
dami ukazuje, že použití navrženého algoritmu detekce změn zlepšuje přesnost lokalizace.

ix

x ANOTACE

Klíčová slova: robotika, učení modelů, symbolická regrese, genetické programování, posilo-
vané učení, řízení robotů, lokalizace.

ACKNOWLEDGMENTS

I have been honored to be accompanied by many great people on my journey of pursuing
a doctoral degree. Without them, finishing this thesis would not have been possible. In the
following paragraphs, I want to express my gratitude to these valuable and inspiring people.

First of all, I would like to sincerely thank my supervisor, Robert Babuška, for his continuous
support, invaluable advice, and patience. Since the beginning, I have felt like a team member
rather than a student or an employee. Not only his exceptional research skills but also his
leadership skills based on mutual respect and trust have always been a great inspiration to me.
I could not have wished for a better supervisor. Thank you so much for believing in me and
giving me the opportunity to pursue my Ph.D. under your supervision.

I have been fortunate to have Jiří Kubalík as my closest colleague, mentor, and friend. He
had introduced me to the exciting world of biologically inspired algorithms already during my
Master’s studies. Actually, it was him who had made me join the research team and pursue a
Ph.D. degree in this field. He has always been a source of friendly atmosphere, making me feel
comfortable asking whatever question. Many thanks for motivating me to go on even in the
most challenging times through your positive attitude and optimism.

From my colleagues, I would definitely like to mention Jonáš Kulhánek. He joined our team
to work on his Bachelor’s thesis and I was glad to see him quickly grow into a great researcher
thanks to his exceptional skills and contagious enthusiasm. I have learned a lot during our
discussions and working on common projects.

An integral part of my research was carried out in collaboration with the Robotics Lab at
the University Carlos III of Madrid. I would like to thank Ramón Barber for making this col-
laboration possible by welcoming me for a couple of research stays in his team. During this
collaboration, I was privileged to work together with Clara and Alejandra on research that re-
sulted in several joint publications. They have been not only talented colleagues to me but also
great amigas.

I would also like to thank the administrative staff, namely Svatava, Johana, Martin, and Jana,
for dealing with various requests I had. Thank you all for being so helpful and kind. I really
appreciate it as it is something that should not be taken for granted.

Throughout my studies, I have spent most of my free time with the International Student
Club CTU in Prague. This amazing entity, a group of people connected through an inexpress-
ible spirit, has been my second family and therefore deserves its place in the acknowledgments.
In particular, I would like to mention Evča, Terez, Michal, and Carmen. You have been a great
inspiration and support to me throughout the past years.

The list would never be complete without giving thanks to Zdenča, who, despite the chal-
lenges she had to face in her own life, has provided me with unconditional support in the tough
last months. Our endless deep conversations helped me overcome all the troubles and carry
on. I am really glad to have you in my life.

xi

xii ACKNOWLEDGMENTS

I could not conclude this text in another way than by expressing sincere gratitude to my
parents. Their boundless support, motivation, and care have driven me throughout my studies
while I never had to worry about having a place to go whenever I needed. My mom had sup-
ported me to go for a Ph.D. when I was considering what to do next after finishing my Master’s
degree. She has always been interested in whether I am doing well, and I am really grateful for
this.

In life, people come and go, and the period of my doctoral studies was not an exception.
Unfortunately, some people that had a special place in my life no longer form a part of it. At
this place, I would like to thank Anahí, who had been by my side for a large part of my studies.
Even though this is no longer the case when I am finishing my thesis, I am grateful for all the
great moments we spent together.

Finally, let me say a couple of words in honor of my dad. It leaves me with a lot of sadness
that he will not be able to read this thesis. He was a positive and inspiring person, the role
model of my life. He always strived to make people around him happy, and he also gave true
meaning to the definition of reliability. He lost the fight against an insidious disease in 2020.
I would like to dedicate this thesis to him.

1
INTRODUCTION

In robotics, many algorithms rely on an accurate model of the system. Model-based techniques
comprise a wide variety of methods such as model predictive control, time series prediction,
fault detection and diagnosis, or reinforcement learning (RL). While model-free algorithms are
available, the absence of a model has many consequences; from increasing the risk of damage
for the robot to slowing down the convergence of learning algorithms. Therefore, using model-
free methods remains an open topic in robotics, requiring pre-training using a simulator. Even
though using robot models can be advantageous, it comes with certain limitations and chal-
lenges, detailed in Section 1.1. This thesis addresses a number of these challenges, as explained
in Section 1.2.

1.1. MOTIVATION AND CHALLENGES

Physical (first-principle) models are readily available for the robot mechanics, such as robot
arms or mobile ground robots [6, 129]. They are usually given in an analytic form, which makes
them transparent and intuitive, allowing for an insight into the model structure. However, us-
ing physical models comes with considerable limitations. Such models are commonly sim-
plified and do not capture all properties of the real system. Certain phenomena are difficult
to model, for instance, contact dynamics, grasping of deformable objects, aerodynamic phe-
nomena, friction, etc. This yields physical models incomplete, not describing all the parts that
eventually play an important role in controlling the robot. Moreover, the parameters of phys-
ical models are difficult to optimize. Optimization through ad-hoc methods requires a large
amount of data and complete state measurements, which are commonly not available. Finally,
physical models cannot be used to represent the robot’s environment, as it is usually unknown
at the time the robot is designed.

1.1.1. CHALLENGES IN DATA-DRIVEN MODEL LEARNING

To overcome the limitations of physical models, data-driven model learning techniques can
be employed to learn models of the robot’s dynamics using training samples collected from
the robot. An advantage of learning robot models from data is that it allows capturing all the

1

2 1. INTRODUCTION

properties of a particular real robot, which are reflected in the data. Many model-learning ap-
proaches have been developed over the past decades and applied in robotics: time-varying
linear models [95, 147], probabilistic models such as Gaussian processes [40, 146], basis func-
tion expansions [13, 108], regression trees [50, 132], deep neural networks [60, 106], or local
linear regression [10, 49].

Most of these methods need to learn a large number of parameters. For instance, deep
neural networks may need to learn hundreds of thousands of weights in the network structure.
Learning a lot of parameters requires a lot of training samples to obtain an accurate model.
Moreover, complex structures and the high representative power of these models often lead to
overfitting, which substantially decreases the performance of the model on previously unseen
data. In relation to overfitting, data-driven model learning methods exhibit a tendency to pro-
duce models that perform poorly when extrapolating. These methods are also sensitive to an
appropriate configuration, known as hyperparameter tuning in the case of deep neural net-
works. Learning such models comes at the cost of high computational complexity, which leads
to extensive training times. To make the training feasible, expensive hardware such as efficient
graphics cards is needed. Finally, many of the aforementioned model-learning methods yield
black-box models. Such models are not interpretable and do not offer much insight.

1.1.2. MODEL LEARNING CHALLENGES IN ROBOTICS

To apply data-driven model learning approaches to robotics, several challenges need to be
overcome [122]. Techniques for learning models based on data collected during routine robot
operation inevitably have to deal with imperfections of the measured data, such as uneven
sample distribution, limited sensor accuracy, presence of noise, etc.

Data collection is expensive and potentially unsafe, in particular when applying random
control inputs to the robot. It is preferred to collect data during standard robot operation,
using safe control inputs. However, such data are often biased, as they include only a restricted
subset of the state-action space from the problem domain.

The amount of data samples that the robot continuously collects during its deployment
quickly grows in time, which poses a challenge for model-learning algorithms. As the train-
ing set gets too large, using all collected data samples becomes computationally infeasible. To
remedy this issue, a subset of the data must be selected for model learning. However, not all
data samples are equally important, and it is not known a priori which samples will be use-
ful. Moreover, samples from repetitive motions, which prevail in many robotics tasks, often
outweigh other, less frequent but informative samples.

Another important consideration to be taken into account is that a robot model needs to re-
spect the physical constraints of the robot. Common model-learning methods produce models
that violate the physical constraints, such as non-holonomic constraints in mobile robots. A
controller based on such a model may exploit these model deficiencies and lead to meaning-
less control results, such as a wheeled unicycle robot moving sideways.

Data-efficient methods are needed not only to learn the model of the robot’s dynamics, but
also to learn the model of the robot’s environment. Deployment of autonomous mobile robots
in industrial and domestic environments is challenging due to the dynamics of these envi-
ronments. Examples of changes in such environments include moving chairs and items on
tables, altering pictures on computer or TV screens, changing contents of whiteboards and no-

1.2. OBJECTIVES AND CONTRIBUTIONS 3

tice boards, opening or closing doors, adjusting blinds in windows, etc. Such changes happen
often and cause many conventional localization and place detection methods to fail. Advanced
methods exploiting the information about the changes are needed to perform localization and
navigation precisely and reliably, despite the changes occurring in the environment.

1.2. OBJECTIVES AND CONTRIBUTIONS

The objective of this thesis is to address the aforementioned challenges in learning the model of
the robot and its environment. To deal with the challenges in data-driven model learning, the
thesis introduces several variants and extensions of symbolic regression (SR). Symbolic regres-
sion is a technique based on genetic programming. It evolves tree-like structures representing
mathematical expressions in a manner resembling natural evolution, using genetic operators
such as mutation. Given a set of training data samples, it automatically finds models in the
form of analytic equations. Similarly as for physical models, the analytic form of the models
constructed by means of SR allows for their further analysis and facilitates plugging them into
other algorithms. Contrary to deep neural networks, SR learns accurate, parsimonious models
even from very small data sets. The resulting models are typically by several orders of magni-
tude smaller, in terms of the number of parameters, than models represented by deep neural
networks. Moreover, SR does not suffer from the exponential growth of the model complexity
with the dimensionality of the problem.

1.2.1. SYMBOLIC REGRESSION FOR ROBOT MODEL LEARNING

Chapter 2 gives a general introduction to SR-based model learning and presents the SR meth-
ods used in this thesis. Furthermore, it introduces the RL control framework used in the exper-
iments. Chapter 3, based on [43], shows how SR can be applied to find accurate and compact
robot models for systems of varying dimensionality: from a one-degree-of-freedom robot arm
through a mobile robot to a complex bipedal walking robot system. It shows SR as a powerful
tool that overcomes the drawbacks of alternative methods such as deep neural networks. Us-
ing SR reduces the number of training samples and the model complexity by several orders of
magnitude.

1.2.2. INFORMATIVE TRAINING SETS

To deal with the large amount of data obtained during robot operation and the bias that is
often present in such data collections, a suitable subset of the data needs to be selected for
model learning. Approaches to selecting informative samples from large data collections are
discussed in Chapter 4, based on [47]. Intuitively, samples can be selected sequentially or at
random. Other techniques include choosing the training samples based on certain criteria im-
posed on the data or intermediate models. Therefore, data samples can be chosen to evenly
cover the problem domain [128]. Alternatively, techniques based on model disagreement mea-
sured by the model output variance [20] can be employed. Next to these methods from the
literature, this thesis introduces a novel approach based on the model prediction error, over-
coming certain limitations of the available techniques. A comparison of various approaches
to sample selection is demonstrated on a framework using SR for model learning. As SR can

4 1. INTRODUCTION

be time-consuming for large data sets, selecting a suitable small training set of informative
samples makes it very well usable in practice.

1.2.3. MODEL LEARNING WITH PRIOR KNOWLEDGE

Standard SR may produce models that are accurate, but do not comply with the physics, such
as with the non-holonomic constraints of a robot. A partial information about the robot model
is often known, such as a theoretical or empirical model, and can be exploited in model learn-
ing. In its standard form, SR allows to incorporate the prior knowledge about the robot (sys-
tem) into the model construction process by specifying the set of elementary functions that
can be used to build the analytic models. However, prior knowledge about the particular robot
can be included also in the form of formal constraints or partial models. Chapter 5, based on
[46], shows that SR allows to naturally incorporate the prior knowledge into the model con-
struction process. Using formal constraints leads to a multi-objective optimization based on
two optimization criteria: the root-mean-square error on the training data and the formal con-
straint violation error. The knowledge of prior physical or empirical models (or their parts)
allows to include them in the form of building blocks into the model construction process. The
proposed method automatically finds accurate and physically valid robot models by comple-
menting training data with information capturing the desired properties of the model sought.

1.2.4. EFFICIENT ROBOT LOCALIZATION IN DYNAMIC ENVIRONMENTS

With the increasing availability of affordable hardware components including cameras, many
vision-based methods can be applied in robotics. One of the main challenges is the ability of
robot self-localization in dynamic environments. In the last part of the thesis, Chapter 6, a
novel approach to change detection based on local features and descriptors [42] is introduced.
A mobile robot is equipped with a camera as its only sensor. The robot moves through its en-
vironment and detects changes that have occurred with respect to an initial mapping session.
Once the robot detects a change, it captures the change by decreasing weights assigned to the
corresponding features stored in the environment representation. By contrast, stable features
that have been detected during multiple visits to the same place are given higher importance
through increasing their weights. The method is evaluated on public data as well as on our own
long-term localization data set and compared to alternative methods from the literature. The
advantages of the proposed method are its fast learning, low computational resources demand,
data efficiency, and low requirements on the sensor hardware.

2
MODEL LEARNING PRELIMINARIES

This chapter gives a general introduction to symbolic regression (SR) in Section 2.1. A variant of
SR used in this thesis, Single Node Genetic Programming (SNGP), is explained in Section 2.2.
An extension to SR that allows to include prior knowledge in the form of constrains into the
model search process is described in Section 2.3. Section 2.4 defines nonlinear dynamic system
models and explains how SR is applied to automatically construct them from data. Section 2.5
provides preliminaries of model-based reinforcement learning (RL), which is used for robot
control in the experiments.

2.1. SYMBOLIC REGRESSION

Symbolic regression is a type of regression analysis that searches the space of analytic expres-
sions to find a model that fits the best the given training data set. The structure of the model
is not given in advance. Instead, it is learned automatically together with its parameters. This
makes the search space very large, which leads to extensive learning times. Similarly as for
other regression methods, the objective function is defined as an error observed on the train-
ing data. A typical example of an objective function is the root-mean-square error (RMSE).

SR is commonly performed through genetic programming (GP). GP is an evolutionary-
based metaheuristic that typically operates on candidate solutions represented by tree-like
structures, which is a natural way to encode analytic expressions. GP does not require the
model structure to be specified beforehand; it only needs the set of elementary functions used
to construct the analytic expressions. Also, parameters defining upper bounds on the model
complexity are to be given in order to prevent generating excessively large models. An advan-
tage of GP is that it can find accurate solutions in a reasonable time. Another benefit of applying
GP to solve the SR problem is that it works with a population of candidate solutions, yielding
a pool of well-fit models at the end of the optimization process. A schematic overview of SR
solved by means of GP is shown in Figure 2.1. Many GP variants have been developed, includ-
ing the original tree-based GP [84], and others, such as Grammatical Evolution [124], Carte-
sian GP [105], Gene Expression Programming [55], Single Node Genetic Programming (SNGP)
[70, 71], and Multi-Gene Genetic Programming (MGGP) [127, 145]. The last two variants are
used in this work to learn robot models from data.

5

6 2. MODEL LEARNING PRELIMINARIES

Figure 2.1: Overview of the symbolic regression algorithm principle. The population of individuals is represented
by a set of tree-like structures encoding mathematical expressions. The algorithm automatically evolves a model
in the form of an analytic expression by successively applying genetic operators to the population to fit a data set
of N -dimensional inputs and one-dimensional outputs as accurately as possible.

2.2. SINGLE NODE GENETIC PROGRAMMING

The baseline SR algorithm used in this thesis is based on Single Node Genetic Programming
(SNGP) [70, 71]. It is a graph-based GP technique evolving a population of individuals orga-
nized in a linear array, where each array element represents a single program node, see Fig-
ure 2.2.

Figure 2.2: A simplified structure of the standard SNGP population [87], consisting of constants, variables, func-
tion nodes, and identity nodes. Each element of the array represents a program node. Each program node has an
associated function (including constants and variables) and link(s) to its successor(s).

Each function node represents a root of an expression that can be constructed recursively
by traversing its successors. It can only take nodes to its left in the population as its successors,
i.e., operands. Constants and variables are leaf nodes. For example, the node with id = 4 rep-
resents addition of the outputs of the nodes with id = 1 and id = 2, forming the mathematical
expression 2+x1.

The final model is a weighted sum of multiple features. These features are expressions
rooted in the nodes that are successors of the identity nodes. In the example given in Fig-
ure 2.2, two features are used: the first feature is the expression rooted at the node with id = 7

2.3. SYMBOLIC REGRESSION WITH FORMAL CONSTRAINTS 7

and the second one is the expression rooted at the node with id = 3. The features are formed
through an evolutionary process, while their coefficients are found by linear least squares, see
Section 2.4.

The main parameters of SNGP are:

• Population size – the total number of individuals in the population.

• Maximum number of features – the number of identity nodes.

• Maximum expression tree depth – the maximum number of levels between the expres-
sion root and its deepest leaf node. This upper bound is applied to each function node
in the population.

• Maximum number of generations – the number of iterations of the evolutionary pro-
cess.

• Elementary function set – the set of functions used in the function nodes, e.g., addition,
multiplication, square, sine, cosine.

The evolution is an iterative process where in each iteration, a new population is derived
from the current one by means of a single operator called successor mutation. In each iteration,
one node in the population is selected either randomly or using some selection operator. Then,
one successor of the node is replaced by a randomly chosen new one. This operation must not
violate the constraints imposed on the maximum expression depth and the SNGP rule that the
successor nodes need to be to the left of a given node. The new population will replace the
current one if and only if the mutation operation did not worsen the model’s fitness. For a
more detailed description of the SNGP variant used in this work please refer to [87].

2.3. SYMBOLIC REGRESSION WITH FORMAL CONSTRAINTS

Standard SR optimizes the model according to a single objective, typically the RMSE on the
training data set. It yields models that are accurate with respect to the training data, but often
ignore the physical constraints of the system (robot). However, prior knowledge about the sys-
tem is often available. This prior knowledge captures important high-level characteristics of
the system’s physical laws, without requiring deep and exact knowledge of the physical model.
It can be expressed as formal constraints imposed on the model parameters or function values,
but also as a description of the steady-state behavior of the robot, as the velocity and accelera-
tion trends under certain inputs, etc.

To that end, [89] proposes a SR extension to use bi-objective optimization that finds models
fitting well the training data and complying with the specified constraints at the same time. The
constraints are represented by auxiliary data samples capturing the desired behavior. In this
way, the extent to which the candidate models violate the constraints can be quantified. The
two optimization criteria are formally defined by the following objectives:

• Minimize the RMSE on the training data set. The training data set consists of data tuples
in the form (xk ,uk ,xk+1), where xk represents the current state vector, uk is the current
input, and xk+1 denotes the next state vector at the next time step after applying the
input uk (see also Section 2.4).

8 2. MODEL LEARNING PRELIMINARIES

• Minimize the RMSE on the training constraint set. This measure captures how well the
model complies with the prior knowledge through the error on the auxiliary data samples
generated for the user-specified formal constraints.

The multi-objective SNGP proposed in [88] works with a population of models, where each
individual is a model represented by a baseline SNGP population. The population of models is
evolved using the domination-based multi-objective evolutionary algorithm NSGA-II [39]. The
domination principle is defined as follows: A solution s1 dominates another solution s2 if s1 is
not worse than s2 in either objective and s1 is strictly better than s2 in at least one objective. For
more details on the bi-objective SR with formal constraints please refer to [89].

2.4. NONLINEAR DYNAMIC SYSTEM MODEL

The dynamic system model is described in discrete time by the following nonlinear difference
equation:

xk+1 = f(xk ,uk) (2.1)

with n-dimensional state xk = (x1
k , x2

k , . . . , xn
k)> and m-dimensional input uk = (u1

k ,u2
k , . . . ,um

k)>,
where k denotes the discrete time step. While the actual process can be stochastic (e.g., when
the sensor readings are corrupted by noise), in this work, we construct a deterministic model.

For model learning, we define the model f(xk ,uk) as a vector of models f j (xk ,uk), each

producing a prediction of a single state variable x j
k+1, with j = 1, . . . ,n:

f(xk ,uk) = (
f 1(xk ,uk), f 2(xk ,uk), . . . , f n(xk ,uk)

)>
. (2.2)

In the sequel, we drop the superscripts to simplify the notation. The generic term f (xk ,uk) cor-
responds to a model of a single state variable, while the model of the whole system is denoted
by f(xk ,uk). Similarly, xk refers to a single generic state variable, whereas xk represents the full
state vector.

To find a concise model of the nonlinear system dynamics, we use SNGP to form the func-
tion f (xk ,uk) for each state variable as a linear combination of evolved nonlinear functions
fi (xk ,uk):

f (xk ,uk) =β0 +
n f∑

i=1
βi fi (xk ,uk) . (2.3)

The SNGP algorithm builds the functions fi (xk ,uk), called features, from a user-defined set of
elementary functions F . The features are represented as directed acyclic graphs and evolved
using standard evolutionary operations such as mutation. The function set can be broad to let
SR choose the appropriate functions, but the user can also specify a narrower set of elementary
functions to speed up the evolution by utilizing prior knowledge about the system. The evolu-
tion is driven by the minimization of the mean-square error calculated over the training data
set. The coefficients β are estimated by least squares. To avoid over-fitting, the complexity of
the regression model is limited by two parameters: the maximum number of features n f and
the maximum feature depth d . To perform bi-objective optimization taking into account also
prior knowledge in the form of formal constraints, as explained in Section 2.3, NSGA-II [39] is
applied to a population of individuals represented by the baseline SNGP described here.

2.5. REINFORCEMENT LEARNING 9

We assume that the states are measured, but the method also applies to input–output mod-
els of the form yk+1 = g(yk ,yk−1, . . . ,uk ,uk−1, . . .), where the state is represented by the vector of
past outputs and inputs, see Section 3.2 and [45].

2.5. REINFORCEMENT LEARNING

The system for which an optimal control strategy is to be learned is described by a nonlin-
ear state-space model (2.1) or by a nonlinear input–output model. In the sequel, we describe
reinforcement learning for the state-space model.

The reward function assigns a scalar reward rk+1 ∈R to the state transition from xk to xk+1,
under action uk :

rk+1 = ρ(xk ,uk ,xk+1) . (2.4)

The reward function ρ specifies the control goal, typically as the distance of the current state
to a given goal state.

Based on the model (2.1), we compute the optimal control policy π : X → U such that in
each state it selects a control action so that the expected cumulative discounted reward over
time, called the return, is maximized:

Rπ = E
{ ∞∑

k=0
γkρ

(
xk ,π(xk),xk+1

)}
. (2.5)

Here γ ∈ (0,1) is a discount factor and the initial state x0 is drawn from the state space domain
X or its subset. Over the whole state space, the return is captured by the value function V π :
X →R defined as:

V π(x) = E
{ ∞∑

k=0
γkρ

(
xk ,π(xk),xk+1

)∣∣∣x0 = x
}

. (2.6)

An approximation of the optimal V-function, denoted by V̂ ∗(x), can be computed by solving
the Bellman optimality equation

V̂ ∗(x) = max
u∈U

[
ρ
(
x,u, f(x,u)

)+γV̂ ∗(
f(x,u)

)]
. (2.7)

In this thesis, the function f(x,u) is represented by the model found by means of SR.
To simplify the notation, we drop the superscripts; V (x) therefore denotes an approxima-

tion of the optimal V-function. Based on V (x), the corresponding approximately optimal con-
trol action is found as the one that maximizes the right-hand side of (2.7):

u = argmax
u′∈U

[
ρ(x,u′, f(x,u′))+γV (f(x,u′))

]
. (2.8)

In this work, the above equation is used online as the control policy π with a set of discretized
inputs U , so that the near-optimal control action can be found by enumeration.

3
CONSTRUCTING PARSIMONIOUS ANALYTIC

MODELS FOR DYNAMIC SYSTEMS

Developing mathematical models of dynamic systems is central to many disciplines of engineer-
ing and science. Models facilitate simulations, analysis of the system’s behavior, decision mak-
ing and design of automatic control algorithms. Even inherently model-free control techniques
such as reinforcement learning (RL) have been shown to benefit from the use of models, typically
learned online. Any model construction method must address the tradeoff between the accu-
racy of the model and its complexity, which is difficult to strike. In this chapter, we propose to
employ symbolic regression (SR) to construct parsimonious process models described by analy-
tic equations. We have equipped our method with two different state-of-the-art SR algorithms
which automatically search for equations that fit the measured data: Single Node Genetic Pro-
gramming (SNGP) and Multi-Gene Genetic Programming (MGGP). In addition to the standard
problem formulation in the state-space domain, we show how the method can also be applied
to input–output models of the NARX (nonlinear autoregressive with exogenous input) type. We
present the approach on three simulated examples with up to 14-dimensional state space: an in-
verted pendulum, a mobile robot, and a bipedal walking robot. A comparison with deep neural
networks and local linear regression shows that SR in most cases outperforms these commonly
used alternative methods. We demonstrate on a real pendulum system that the analytic model
found enables an RL controller to successfully perform the swing-up task, based on a model con-
structed from only 100 data samples.

This chapter is an adapted version of the journal paper [43].

11

12 3. CONSTRUCTING PARSIMONIOUS ANALYTIC MODELS FOR DYNAMIC SYSTEMS

3.1. INTRODUCTION

Numerous methods rely on an accurate model of the system. Model-based techniques com-
prise a wide variety of methods such as model predictive control [104, 121], time series predic-
tion [102], fault detection and diagnosis [61, 142], or reinforcement learning (RL) [107, 137].

Even though model-free algorithms are available, the absence of a model slows down con-
vergence and leads to extensive learning times [65, 80, 119]. Various model-based methods
have been proposed to speed up learning [58, 68, 75, 92, 136]. To that end, many model-
learning approaches are available: time-varying linear models [95, 98], Gaussian processes [19,
40] and other probabilistic models [113], basis function expansions [27, 108], regression trees
[50], deep neural networks [37, 38, 67, 93, 97, 106, 107] or local linear regression [10, 64, 96].

All the above approaches suffer from drawbacks induced by the use of the specific approx-
imation technique, such as a large number of parameters (deep neural networks), local nature
of the approximator (local linear regression), computational complexity (Gaussian processes),
etc. In this chapter, we propose another way to capture the system dynamics: using analytic
models constructed by means of the symbolic regression method (SR). Symbolic regression is
based on genetic programming and it has been used in nonlinear data-driven modeling, often
with quite impressive results [24, 125, 133, 144, 145].

Symbolic regression appears to be quite unknown to the machine learning community as
only a few works have been reported on the use of SR for control of dynamic systems. For in-
stance, modeling of the value function by means of genetic programming is presented in [118],
where analytic descriptions of the value function are obtained based on data sampled from
the optimal value function. Another example is the work [3], where SR is used to construct an
analytic function, which serves as a proxy to the value function and a continuous policy can be
derived from it. A multi-objective evolutionary algorithm was proposed in [23], which is based
on interactive learning of the value function through inputs from the user. SR is employed to
construct a smooth analytic approximation of the policy in [86], using the data sampled from
the interpolated policy. To our best knowledge, there have been no reports in the literature on
the use of symbolic regression for constructing a process model in model-based control meth-
ods. We argue that the use of SR for model learning is a valuable element missing from the
current nonlinear control schemes and we demonstrate its usefulness.

In this chapter, we extend our previous work [44, 45], which indicated that SR is a suitable
tool for this task. It does not require any basis functions defined a priori and contrary to (deep)
neural networks it learns accurate, parsimonious models even from very small data sets. Sym-
bolic regression can handle also high-dimensional problems and it does not suffer from the
exponential growth of the computational complexity with the dimensionality of the problem,
which we demonstrate on an enriched set of experiments including a complex bipedal walking
robot system. In this work, we extend the use of the method to the class of input–output mod-
els, which are suitable in cases when the full state vector cannot be measured. By testing our
method with two different state-of-the-art genetic programming algorithms, we demonstrate
that the method is not dependent on the particular choice of the SR algorithm.

The chapter is organized as follows. Sections 3.2 and 3.3 present the relevant context for
model learning and the proposed method. The experimental evaluation of the method is re-
ported in Section 3.4 and the conclusions are drawn in Section 3.5.

3.2. THEORETICAL BACKGROUND 13

3.2. THEORETICAL BACKGROUND

The discrete-time nonlinear state-space process model is described as

xk+1 = f(xk ,uk) (3.1)

with the state xk ,xk+1 ∈ X ⊂ Rn and the input uk ∈ U ⊂ Rm . Note that the actual process can
be stochastic (typically when the sensor readings are corrupted by noise), but in this work we
aim at constructing a deterministic process model (3.1).

The full state vector cannot be directly measured for a vast majority of processes and a
state estimator would have to be used. In the absence of an accurate process model, such a
reconstruction is inaccurate and has a negative effect on the overall performance of the con-
trol algorithm on the real system. Note that this problem has not been explicitly addressed
in the literature, as most results are demonstrated on simulation examples in which the state
information is available.

Therefore, next to state-space models, we also investigate the use of dynamic input–output
models of the NARX (nonlinear autoregressive with exogenous input) type. The NARX model
establishes a relation between the past input–output data and the predicted output:

yk+1 = g
(
yk ,yk−1, . . . ,yk−ny+1,uk ,uk−1, . . . ,uk−nu+1

)
, (3.2)

where ny and nu are user-defined integer parameters based on the expected system’s order,
and g is a static function, different from the function f used in the state-space model (3.1).

For the ease of notation, we group the lagged outputs and inputs into one vector:

ϕk =
(
yk ,yk−1 . . . ,yk−ny+1,uk−1, . . . ,uk−nu+1

)
(3.3)

and write model (3.2) as:
yk+1 = g

(
ϕk ,uk

)
. (3.4)

Analogously to the state-space models, we will use y to denote the entire vector of variables
and y for a single generic variable (see also Section 2.4). Note that in this setting, the model
function and also the control policy are found from data samples which live in a space that
is very different from the state space. The lagged outputs yk , yk−1, . . . , yk−ny+1 are highly cor-
related and therefore span a deformed space. This presents a problem for many types of ap-
proximators. For instance, basis functions defined by the Cartesian product of the individual
lagged variables will cover the whole product space yk ×yk−1×. . .×yk−ny+1, while data samples
only span a small, diagonally oriented part of the space, as illustrated in Figure 3.1. The SR
approach described in this work does not suffer from such drawbacks.

In this work, we use reinforcement learning as the control method of choice. Please refer to
Section 2.5 for details on the RL method used.

3.3. METHOD

In this section, we explain the principle of our method, briefly describe two variants of genetic
programming algorithms used in this work, and discuss the computational complexity of our
approach.

14 3. CONSTRUCTING PARSIMONIOUS ANALYTIC MODELS FOR DYNAMIC SYSTEMS

-4 -2 0 2 4
-20

-10

0

10

20

-4 -2 0 2 4
-4

-2

0

2

4

Figure 3.1: An example of trajectory samples obtained from the real inverted pendulum (see Section 3.4.3) in the
original state space (a), and in the space formed by the current and previous output (b).

3.3.1. SYMBOLIC REGRESSION

Symbolic regression is employed to approximate the unknown state transition function f in
the state-space model (3.1) or g in the input–output model (3.2). Note that each state variable
is modeled individually, see Section 2.4. The analytic expressions describing the process to
be controlled are constructed through genetic programming. SR methods were reported in
the literature to work faster when using a linear combination of evolved nonlinear functions
instead of evolving the whole analytic expression at once [7, 8]. Therefore, we define the class
of analytic state-space models as:

f (x,u) =β0 +
n f∑

i=1
βi fi (x,u) (3.5)

and the class of analytic input–output (NARX) models as:

g (ϕ,u) =β0 +
n f∑

i=1
βi gi (ϕ,u) . (3.6)

The nonlinear functions fi (x,u) or gi (ϕ,u), called features, are constructed from a set of user-
defined elementary functions. These functions can be nested and are evolved by means of
standard evolutionary algorithm operations, such as mutation, so that the mean-square error
calculated over the training data set is minimized. No a priori knowledge on the structure of
the nonlinear model is needed. The set of elementary functions may be broad to let the SR
algorithm select functions that are most suitable for fitting the given data. However, it is also
possible to provide the algorithm with a partial knowledge about the problem. A narrower se-
lection of elementary functions restricts the search space and speeds up the evolution process.

To avoid over-fitting, we control the complexity of the regression model by imposing a limit
on the number of features n f and the maximum depth d of the tree representation of the fea-
tures. The coefficients βi are estimated by least squares.

3.3. METHOD 15

3.3.2. GENETIC PROGRAMMING METHODS USED

To demonstrate that our method is not dependent on the particular choice of the SR algorithm,
we test our approach with two different genetic programming methods: a modified version of
Single Node Genetic Programming (SNGP) [70, 71, 87] and a modified version of Multi-Gene
Genetic Programming (MGGP) [145]. Both methods have been successfully used for symbolic
regression, with several applications in the RL and robotics domains [44, 45, 86, 88].

SNGP is a graph-based genetic programming technique that evolves a population of nodes
organized in the form of an ordered linear array. The nodes can be of various types depending
on the particular problem. In the context of SR, the node can either be a terminal, i.e., a con-
stant or a variable, or some operator or function chosen from a set of functions defined by the
user for the problem at hand. The individuals are interconnected in the left-to-right manner,
meaning that an individual can act as an input operand only of those individuals which are po-
sitioned to its right in the population. Thus, the whole population represents a graph structure
with multiple expressions rooted in the individual nodes. Expressions rooted in the function
nodes can represent nonlinear symbolic functions of various complexity. The population is
evolved through a local search procedure using a single reversible mutation operator.

MGGP is a tree-based genetic programming algorithm utilizing multiple linear regression.
The main idea behind MGGP is that each individual is composed of multiple independent
expression trees, called genes, which are put together by a linear combination to form a sin-
gle final expression. The parameters of this top-level linear combination are computed using
multiple linear regression where each gene acts as an independent feature. In this chapter, we
build upon a particular implementation of MGGP – GPTIPS2 [127]. This particular instance of
MGGP uses two crossover operators: (i) high-level crossover that combines gene sets of two
parents; (ii) low-level crossover which is a classical Koza-style [84] subtree crossover operating
on corresponding pairs of parental genes. Also, there are two mutation operators: (i) subtree
mutation, which is a classical Koza-style subtree mutation; (ii) constant mutation, which al-
ters the numerical values of leaves representing constants. Both the crossover and mutation
operators are chosen stochastically.

Detailed explanation of these algorithms and their parameters is beyond the scope of this
work and we refer the interested reader to [87] and [145].

3.3.3. COMPUTATIONAL COMPLEXITY

The computational complexity of the symbolic regression algorithms used in this work in-
creases linearly with the size of the training data set as well as with the dimensionality of the
problem. For example, considering a problem with one-dimensional state, one-dimensional
input, one-dimensional output, and a data set of 1000 samples, a single run of the SNGP or
MGGP algorithm with the default configuration takes about 3 minutes on a single core of a
standard desktop PC. For a system with a 14-dimensional regressor and a 6-dimensional in-
put, a single run takes up to 20 minutes.

16 3. CONSTRUCTING PARSIMONIOUS ANALYTIC MODELS FOR DYNAMIC SYSTEMS

3.4. EXPERIMENTAL RESULTS

We have carried out experiments with three nonlinear systems: a mobile robot, a 1-DOF in-
verted pendulum and a bipedal walking robot. The data, the codes and the detailed configura-
tion of the experiments is available in our repository1.

The simulation experiment with the mobile robot illustrates the use of the presented method,
showing the precision and compactness of the models found in the case where the ground
truth is known (Section 3.4.1). We show that the method is not dependent on the particu-
lar choice of the SR algorithm by comparing the performance of two SR methods, SNGP and
MGGP. The subsequent experiment with the walking robot presents a more complex example
and shows the performance of the method in a high-dimensional space (Section 3.4.2). With
this example, we demonstrate the ability of the method to construct standard state-space mod-
els as well as input–output (NARX) models and we show how the method performs compared
to two deep neural networks with different architectures. We conclude our set of experiments
with the inverted pendulum system (Section 3.4.3). Similarly as in the experiment with the mo-
bile robot, we evaluate the method with SNGP and MGGP, and we compare the results to two
alternative approaches: neural networks and local linear regression. In addition to measuring
the model prediction error, we perform real-time closed-loop control experiments with a lab
setup to evaluate the performance of the algorithm in real-world conditions.

3.4.1. MOBILE ROBOT

The state of a two-wheel mobile robot, see Figure 3.2 and [52], is described by x = (xpos , ypos ,φ)>,
with xpos and ypos the position coordinates andφ the heading. The control input is u = (v f , va)>,
where v f represents the forward velocity and va the angular velocity of the robot.

(a) (b)

Figure 3.2: Mobile robot schematic (a) and photograph (b).

The continuous-time dynamic model of the robot is:

ẋpos = v f cos(φ),

ẏpos = v f sin(φ),

φ̇= va .

(3.7)

1https://github.com/erik-derner/symbolic-regression

https://github.com/erik-derner/symbolic-regression

3.4. EXPERIMENTAL RESULTS 17

DATA SETS

We generated a noise-free data set by using the Euler method to simulate the differential equa-
tions (3.7). With a sampling period Ts = 0.05 s, the discrete-time approximation of (3.7) be-
comes:

xpos,k+1 = xpos,k +0.05 v f ,k cos(φ),

ypos,k+1 = ypos,k +0.05 v f ,k sin(φ),

φk+1 =φk +0.05 va,k .

(3.8)

We generated training data sets of different sizes ns . The initial state x0 and the control
input uk for the whole simulation were randomly chosen from the ranges:

xpos ∈ [−1,1]m,

ypos ∈ [−1,1]m,

φ ∈ [−π,π]rad,

v f ∈ [−1,1]m · s−1,

va ∈
[
−π

2
,
π

2

]
rad · s−1.

(3.9)

A test data set was generated in order to assess the quality of the analytic models on data
different from the training set. The test data set entries were sampled on a regular grid with 11
points spanning evenly each state and action component domain, as defined by (3.9). These
samples were stored together with the next states calculated by using the Euler approximation.

EXPERIMENT SETUP

The purpose of this experiment was to test the ability of the SNGP and MGGP algorithms to re-
cover from the data the analytic process model described by a known state-transition function.
In order to assess the performance depending on the size of the data set and the complexity of
the model, different combinations of the number of features n f and the size of the training set
ns were tested. As the used algorithms only allow modeling one output at a time, they were run
independently for each of the state components xpos,k+1, ypos,k+1 and φk+1.

The size of the SNGP population was set to 500 individuals and the evolution duration to
30000 generations. The set of elementary functions was defined as F = {∗, +, −, sin, cos}. The
maximum depth d of the evolved nonlinear functions was set to 7 and the number of features
was n f ∈ {1,2,10}. To ensure a fair evaluation, the parameters of the MGGP algorithm were
set similarly to provide both methods with a comparable amount of computational resoruces,
taking into account the conceptual differences between the two algorithms.

RESULTS

The models found by symbolic regression were evaluated by calculating the RMSE median on
the test data set over 30 independent runs of the SR algorithm. Note that each run yields a dif-
ferent model because the evolution process is guided by a unique sequence of random num-
bers. The results are listed in Table 3.1.

18 3. CONSTRUCTING PARSIMONIOUS ANALYTIC MODELS FOR DYNAMIC SYSTEMS

Table 3.1: Comparison of analytic process models for the experiment with the mobile robot. The table shows the
RMSE medians over 30 runs of the SNGP (grey) and MGGP (white) algorithm for different numbers of features n f

and different numbers of training samples ns .

Variable n f
Number of training samples ns

20 50 100 200 500 1000

xpos

1
1.77×10−1 1.37×10−1 9.98×10−2 7.88×10−1 3.25×10−2 2.87×10−2

9.03×10−1 7.66×10−1 6.97×10−1 9.16×10−1 3.88×10−2 3.29×10−2

2
6.44×10−8 3.19×10−9 2.05×10−9 3.55×10−9 5.93×10−9 1.53×10−9

2.21×10−9 5.64×10−10 5.15×10−6 1.11×10−2 1.30×10−10 1.37×10−10

10
3.78×10−5 2.29×10−7 1.09×10−7 1.45×10−7 5.21×10−9 2.68×10−9

2.37×10−5 1.39×10−7 8.50×10−9 5.54×10−9 2.70×10−9 5.26×10−10

ypos

1
9.06×10−1 4.34×10−1 1.39×10−1 1.74×10−1 3.21×10−2 3.16×10−2

8.74×10−1 9.47×10−1 7.75×10−1 7.33×10−1 3.31×10−2 3.16×10−2

2
4.87×10−1 1.81×10−8 1.18×10−8 4.09×10−9 1.93×10−8 2.39×10−8

3.39×10−1 3.38×10−2 2.89×10−10 2.76×10−10 2.68×10−10 2.14×10−2

10
4.48×10−4 2.04×10−7 4.11×10−7 1.91×10−7 1.60×10−8 1.25×10−8

9.32×10−5 1.16×10−7 7.54×10−9 6.45×10−9 2.34×10−9 8.33×10−10

φ

1
9.81×10−2 2.60×10−2 6.44×10−4 6.57×10−5 6.79×10−4 5.55×10−3

3.38×100 3.19×100 2.49×10−2 1.34×10−3 5.51×10−5 5.48×10−5

2
7.05×10−8 1.36×10−8 6.16×10−9 3.78×10−8 7.78×10−9 5.16×10−8

1.47×10−9 5.08×10−10 4.16×10−10 4.02×10−10 4.00×10−10 4.01×10−10

10
5.35×10−6 1.85×10−6 2.09×10−6 4.01×10−8 6.00×10−9 3.69×10−8

6.45×10−8 9.34×10−9 2.87×10−9 1.35×10−9 4.07×10−10 4.00×10−10

An example of a process model found by running SNGP with the parameters n f = 2 and
ns = 100 is:

x̂pos,k+1 = 1.0 xpos,k +0.0499998879 v f ,k cos(φk) ,

ŷpos,k+1 = 1.000000023 ypos,k +0.0500000056 v f ,k sin(φk)+0.0000000191,

φ̂k+1 = 0.9999982931φk +0.0500000536 va,k −0.0000059844.

(3.10)

The coefficients are rounded to 10 decimal digits in order to demonstrate the magnitude of the
error compared to the original Euler approximation (3.8). The results show that even with a
small training data set, a precise, parsimonious analytic process model can be found based on
noise-free data.

The results also demonstrate how the number of features n f plays an important role in
the setting of the experiment parameters. In general, the RMSE decreases with an increasing
number of features, whereas the complexity naturally grows by adding more features to the
final model (3.5). The higher RMSE error when using only one feature is caused mainly by the
fact that all parameters have to be evolved by the genetic algorithm, which is hard. On the other
hand, when using more features, the least squares method can quickly and accurately find the
coefficients of the features. These results support our choice to define the class of analytic
models as a linear combination of features, as explained in Section 3.3.1. As a corollary, if the
outline of the model structure is known in advance, it is recommended to set the number of

3.4. EXPERIMENTAL RESULTS 19

features at least equal to the number of terms expected in the underlying function. Otherwise,
it is advisable to set the number of features large enough, e.g. n f = 10.

3.4.2. WALKING ROBOT

The robot LEO is a 2D bipedal walking robot [126], see Figure 3.3. It has 7 actuators: two in
the ankles, knees and hips and one in its shoulder that allows the robot to stand up after a fall.
LEO is connected to a boom with a parallelogram construction. This keeps the hip axis always
horizontal, which makes it effectively a 2D robot and thus eliminates the sideways stability
problem.

(a) (b)

Figure 3.3: The walking robot LEO: photograph (a) and simulation model rendering (b). [83].

The state vector of LEO x = (ψ,ψ̇)> consists of 14 components, where

ψ= (ψT RS ,ψLH ,ψRH ,ψLK ,ψRK ,ψL A,ψR A)> (3.11)

represents the angles of the torso, left and right hip, the knee and the ankle. Likewise,

ψ̇= (ψ̇T RS ,ψ̇LH ,ψ̇RH ,ψ̇LK ,ψ̇RK ,ψ̇L A,ψ̇R A)> (3.12)

are the angular velocities of the torso, hips, knees and ankles. The action space of LEO com-
prises the voltage inputs to the seven joint actuators.

DATA SETS

In order to apply symbolic regression, the walking robot LEO was modeled using the Rigid
Body Dynamics Library [54] and the data sets were generated using the Generic Reinforcement
Learning Library [30], which allowed us to record trajectories while the robot was learning to
walk.

We split the data set into two disjoint subsets: a training set and a test set. Both subsets are
composed of consecutive samples from the simulation, which was run with a sampling period
Ts = 0.03 s.

20 3. CONSTRUCTING PARSIMONIOUS ANALYTIC MODELS FOR DYNAMIC SYSTEMS

EXPERIMENT SETUP

The experiment was designed to evaluate the performance of our method on a more complex,
high-dimensional example and to construct input–output (NARX) models in addition to the
standard state-space models. We chose to use only the SNGP algorithm for this experiment
and the main parameters were configured as follows. The population size was set to 500 and the
number of generations to 30000. The depth limit d was fixed to 5 and the number of features
was n f ∈ {1,5,10}. The elementary function set was F = {∗,+,−, sin,cos,square,cube}.

During the simulation used to obtain the data sets, the shoulder was not actuated. There-
fore, the input vector had only 6 components, one for each actuator. As in the case of the
mobile robot, SNGP was run separately for each of the 14 state components.

In Experiment B1, we used SR to generate standard state-space models. In Experiment B2,
we generated input–output models with the regression vector defined asϕ= (ψk ,ψk−1,uk−1)>.

RESULTS

In order to evaluate the ability of SNGP to approximate the state-transition function, we calcu-
lated the RMSE medians over 30 runs of the algorithm on the test data set. The results for the
state-space models are reported in Table 3.2 and for the input–output models in Table 3.3.

The results show the expected trend, which can be seen in all experiments: the quality of
the models improves with the size of the training data set. However, it is noteworthy that the
difference between the RMSE for models trained on 100 samples and for those trained on 5000
samples are in most cases negligible. This confirms our earlier observation that SR can be used
to find accurate analytic process models on batches of data as small as 100 samples [44] even
for high-dimensional systems.

The results for the input–output models are generally just slightly worse than those for the
state-space models, with the benefit of speeding up the algorithm by reducing the number of
modeled variables to a half.

COMPARISON WITH ALTERNATIVE METHODS

Deep neural networks are widely used to model an unknown system. In order to compare
our method to alternative state-of-the-art methods, we have constructed two different neural
networks:

• Deep neural network DNN-A was implemented in PyTorch. It consists of an input linear
layer of size 20× 200, followed by three linear layers with the size of 200× 200, with a
ReLU activation function used after each linear layer. The output layer has 200×14 units.
The batch size was set to 32. The SGD algorithm [78] was used with the learning rate of
8.5×10−4.

• Deep neural network DNN-B was implemented in TensorFlow. It is a fully connected net-
work with 1 hidden layer, consisting of 512 units with ELU nonlinearity and 50% dropout.
The batch size was set to 8. The Adam optimizer [79] was used with a learning rate of 10−3

and early stopping.

3.4. EXPERIMENTAL RESULTS 21

Table 3.2: Comparison of the state-space analytic process models for the walking robot LEO in Experiment B1.
The table shows the RMSE medians over 30 runs of the SNGP algorithm for varying number of features n f and
number of training samples ns .

Variable n f
Number of training samples ns

100 200 500 1000 2000 5000

ψT RS

1 4.09×10−2 1.72×10−2 4.15×10−2 5.38×10−2 5.46×10−2 5.68×10−2

5 1.90×10−2 1.55×10−2 1.46×10−2 1.40×10−2 1.39×10−2 1.38×10−2

10 2.01×10−2 1.62×10−2 1.44×10−2 1.32×10−2 1.29×10−2 1.25×10−2

ψLH

1 2.99×10−2 2.99×10−2 3.60×10−2 2.24×10−2 2.34×10−2 8.81×10−2

5 2.78×10−2 2.38×10−2 2.15×10−2 2.07×10−2 2.02×10−2 2.01×10−2

10 2.99×10−2 2.53×10−2 2.20×10−2 2.06×10−2 1.95×10−2 1.92×10−2

ψRH

1 1.05×10−1 9.16×10−2 4.01×10−2 3.71×10−2 3.36×10−2 2.84×10−2

5 3.81×10−2 3.19×10−2 2.69×10−2 2.71×10−2 2.61×10−2 2.56×10−2

10 4.15×10−2 3.54×10−2 2.65×10−2 2.65×10−2 2.46×10−2 2.46×10−2

ψLK

1 5.52×10−2 8.01×10−2 2.43×10−2 2.35×10−2 2.40×10−2 2.28×10−2

5 3.10×10−2 2.68×10−2 2.29×10−2 2.15×10−2 2.06×10−2 2.07×10−2

10 3.43×10−2 2.87×10−2 2.22×10−2 2.10×10−2 1.97×10−2 1.89×10−2

ψRK

1 2.82×10−2 2.36×10−2 2.31×10−2 2.31×10−2 2.15×10−2 2.13×10−2

5 2.77×10−2 2.28×10−2 2.01×10−2 2.01×10−2 2.01×10−2 1.90×10−2

10 3.08×10−2 2.45×10−2 1.96×10−2 1.87×10−2 1.86×10−2 1.77×10−2

ψL A

1 9.31×10−2 1.11×10−1 1.10×10−1 1.10×10−1 7.07×10−2 5.74×10−2

5 5.18×10−2 4.00×10−2 3.11×10−2 2.95×10−2 2.80×10−2 2.81×10−2

10 5.66×10−2 4.31×10−2 3.16×10−2 2.92×10−2 2.73×10−2 2.62×10−2

ψR A

1 4.65×10−2 4.51×10−2 4.24×10−2 4.54×10−2 4.33×10−2 7.37×10−2

5 4.98×10−2 4.49×10−2 3.77×10−2 3.66×10−2 3.65×10−2 3.52×10−2

10 5.35×10−2 4.70×10−2 3.84×10−2 3.65×10−2 3.50×10−2 3.39×10−2

ψ̇T RS

1 8.91×10−1 8.51×10−1 8.19×10−1 7.99×10−1 7.94×10−1 7.84×10−1

5 1.07×100 8.72×10−1 7.78×10−1 7.19×10−1 6.92×10−1 6.86×10−1

10 1.20×100 9.27×10−1 7.93×10−1 7.00×10−1 6.67×10−1 6.41×10−1

ψ̇LH

1 1.44×100 1.23×100 1.16×100 1.15×100 1.14×100 1.14×100

5 2.22×100 1.41×100 1.17×100 1.15×100 1.11×100 1.08×100

10 2.07×100 1.48×100 1.20×100 1.16×100 1.10×100 1.06×100

ψ̇RH

1 1.49×100 1.32×100 1.31×100 1.28×100 1.25×100 1.24×100

5 1.92×100 1.47×100 1.38×100 1.25×100 1.17×100 1.14×100

10 1.97×100 1.57×100 1.52×100 1.27×100 1.17×100 1.12×100

ψ̇LK

1 1.59×100 1.25×100 1.14×100 1.11×100 1.10×100 1.09×100

5 1.79×100 1.47×100 1.15×100 1.09×100 1.05×100 9.94×10−1

10 1.90×100 1.57×100 1.20×100 1.11×100 1.08×100 9.87×10−1

ψ̇RK

1 1.02×100 9.35×10−1 9.18×10−1 9.24×10−1 9.16×10−1 9.05×10−1

5 1.13×100 9.98×10−1 9.40×10−1 9.29×10−1 8.64×10−1 8.32×10−1

10 1.24×100 1.07×100 9.83×10−1 9.63×10−1 8.73×10−1 8.20×10−1

ψ̇L A

1 1.76×100 1.52×100 1.32×100 1.31×100 1.28×100 1.26×100

5 2.01×100 1.63×100 1.29×100 1.24×100 1.14×100 1.10×100

10 2.18×100 1.67×100 1.35×100 1.25×100 1.15×100 1.10×100

ψ̇R A

1 1.69×100 1.64×100 1.60×100 1.58×100 1.58×100 1.58×100

5 1.84×100 1.75×100 1.52×100 1.48×100 1.43×100 1.38×100

10 1.92×100 1.86×100 1.62×100 1.51×100 1.43×100 1.35×100

22 3. CONSTRUCTING PARSIMONIOUS ANALYTIC MODELS FOR DYNAMIC SYSTEMS

Table 3.3: Comparison of the input–output analytic process models for the walking robot LEO in Experiment B2.
The table shows the RMSE medians over 30 runs of the SNGP algorithm for varying number of features n f and
number of training samples ns .

Variable n f
Number of training samples ns

100 200 500 1000 2000 5000

ψT RS

1 5.78×10−2 5.77×10−2 5.71×10−2 5.58×10−2 5.60×10−2 5.69×10−2

5 3.84×10−2 3.60×10−2 3.15×10−2 2.65×10−2 2.45×10−2 2.33×10−2

10 4.07×10−2 3.36×10−2 2.88×10−2 2.48×10−2 2.09×10−2 2.06×10−2

ψLH

1 6.75×10−2 6.57×10−2 6.57×10−2 5.90×10−2 1.07×10−1 6.67×10−2

5 3.80×10−2 2.97×10−2 2.62×10−2 2.71×10−2 2.56×10−2 2.53×10−2

10 3.85×10−2 3.15×10−2 2.65×10−2 2.64×10−2 2.46×10−2 2.40×10−2

ψRH

1 8.04×10−2 8.57×10−2 6.62×10−2 1.14×10−1 1.06×10−1 7.03×10−2

5 4.92×10−2 3.81×10−2 3.29×10−2 3.20×10−2 3.11×10−2 3.04×10−2

10 5.40×10−2 4.01×10−2 3.25×10−2 3.08×10−2 2.88×10−2 2.85×10−2

ψLK

1 8.06×10−2 5.52×10−2 8.22×10−2 7.52×10−2 7.52×10−2 5.77×10−2

5 3.66×10−2 2.95×10−2 2.46×10−2 2.31×10−2 2.20×10−2 2.10×10−2

10 3.96×10−2 3.09×10−2 2.44×10−2 2.21×10−2 2.09×10−2 2.04×10−2

ψRK

1 8.69×10−2 3.65×10−2 2.99×10−2 2.56×10−2 8.88×10−2 3.83×10−2

5 3.20×10−2 2.62×10−2 2.36×10−2 2.26×10−2 2.20×10−2 2.18×10−2

10 3.49×10−2 2.76×10−2 2.24×10−2 2.16×10−2 2.08×10−2 2.01×10−2

ψL A

1 7.50×10−2 1.07×10−1 4.41×10−2 1.03×10−1 5.85×10−2 1.03×10−1

5 5.44×10−2 4.22×10−2 3.27×10−2 3.00×10−2 2.89×10−2 2.79×10−2

10 5.94×10−2 4.62×10−2 3.26×10−2 2.96×10−2 2.75×10−2 2.66×10−2

ψR A

1 1.19×10−1 1.20×10−1 9.65×10−2 9.63×10−2 1.02×10−1 5.11×10−2

5 5.10×10−2 4.45×10−2 3.79×10−2 3.69×10−2 3.65×10−2 3.60×10−2

10 5.51×10−2 4.49×10−2 3.79×10−2 3.59×10−2 3.44×10−2 3.38×10−2

We chose the RMSE medians of SNGP with ns = 1000 and n f = 10 as the benchmark con-
figuration. State-space models were used in this scenario. The training and test sets were the
same for all compared methods. Figure 3.4 shows an overview of the performance of the two
variants of DNN compared to the SNGP algorithm and detailed results are presented in Ta-
ble 3.4. The results show that the SNGP algorithm is able to find substantially better models
than the neural networks for the angles, while the performance on the angular velocities is
comparable among all the tested methods.

3.4. EXPERIMENTAL RESULTS 23

Table 3.4: Comparison of the RMSE of the state-space process models calculated on the test data set for the walk-
ing robot LEO using two variants of a deep neural network (DNN-A and DNN-B) and SNGP. The reference config-
uration of SNGP used for this comparison was n f = 10 and ns = 1000.

Variable
Method

DNN-A DNN-B SNGP

ψT RS 1.33×10−1 9.27×10−2 1.32×10−2

ψLH 1.86×10−1 1.54×10−1 2.06×10−2

ψRH 2.08×10−1 1.23×10−1 2.65×10−2

ψLK 2.24×10−1 1.37×10−1 2.10×10−2

ψRK 2.02×10−1 1.10×10−1 1.87×10−2

ψL A 1.62×10−1 1.24×10−1 2.92×10−2

ψR A 1.54×10−1 9.36×10−2 3.65×10−2

ψ̇T RS 7.39×10−1 6.38×10−1 7.00×10−1

ψ̇LH 1.13×100 1.12×100 1.16×100

ψ̇RH 1.22×100 1.20×100 1.27×100

ψ̇LK 1.08×100 1.06×100 1.11×100

ψ̇RK 9.49×10−1 8.68×10−1 9.63×10−1

ψ̇L A 1.23×100 1.23×100 1.25×100

ψ̇R A 1.54×100 1.42×100 1.51×100

Angle Angular velocity
0

0.2

0.4

0.6

0.8

1

1.2

R
M

S
E

DNN-A

DNN-B

SNGP

Figure 3.4: Comparison of two DNN variants with the SNGP algorithm on the walking robot example. The bars
show the mean RMSE over the 7 angles and over the 7 angular velocities on the test data set.

24 3. CONSTRUCTING PARSIMONIOUS ANALYTIC MODELS FOR DYNAMIC SYSTEMS

3.4.3. INVERTED PENDULUM

The inverted pendulum system consists of a weight of mass m attached to an actuated link
which rotates in the vertical plane, see Figure 3.5a. The state vector is x = (α, α̇)>, where α
is the angle and α̇ is the angular velocity of the link. The control input is the voltage u. The
continuous-time model of the pendulum dynamics is:

α̈= 1

J
·
(

K

R
u −m g l sin(α)−b α̇− K 2

R
α̇− c sign(α̇)

)
(3.13)

with J = 1.7937×10−4 kg ·m2, m = 0.055kg, g = 9.81m · s−2, l = 0.042m, K = 0.0536N ·m ·A−1,
b = 1.94×10−5 N ·m · s · rad−1, R = 9.5Ω and c = 8.5×10−4 kg ·m2·s−2. The angle is α = 0rad or
α= 2πrad for the pendulum pointing down and α=π for the pendulum pointing up.

(a) (b)

Figure 3.5: Inverted pendulum schematic (a) and the real inverted pendulum system (b).

The reward function used in the RL experiments was defined as follows:

ρ(xk ,uk , xk+1) =−0.5|αr −αk |−0.01|α̇r − α̇k |−0.05|uk |, (3.14)

where (αr , α̇r)> is a constant reference (goal) state.

DATA COLLECTION

As we will present an experiment with the inverted pendulum performing a control task, we
start this section by a short overview of the data collection methods used. Two different situa-
tions can be distinguished: initial model learning and model learning under a given policy.

Initial Model Learning. At the beginning, when the control policy is not yet available, the
system can be excited by a test signal in order to obtain a sufficiently rich data set. Various
methods for designing suitable test signals are described in the literature, such as the general-
ized binary noise sequence [139]. The important parameters to be selected are the input signal
amplitude, the way the random signal is generated (e.g., the ‘switching’ probability) and the
experiment duration.

3.4. EXPERIMENTAL RESULTS 25

Model Learning Under a Given Policy. Once an acceptable control policy has been learned,
the system can be controlled to execute the required task. Data can be collected while per-
forming the control task and used to further improve the model. As the information captured
in the data under steady operating conditions might not be sufficient in certain situations, the
control input can be adjusted by adding a test signal in this case as well. The characteristics of
this test signal are usually different from the one used for initial model learning; for instance, it
typically has a lower amplitude.

DATA SETS

We used both simulated and real measured data in the experiments with the inverted pendu-
lum. In all experiments, the discrete-time sampling period used was Ts = 0.05 s.

At first, we generated a noise-free data set for Experiment C1 by using the Euler method to
simulate the differential equation (3.13):

αk+1 =αk +0.05 α̇k ,

α̇k+1 = 0.9102924564 α̇k −0.2369404025sign(α̇k)

+1.5727561084uk −6.3168590065 sin(αk).

(3.15)

The data set for Experiment C2 was created by integrating (3.13) by using the fourth-order
Runge-Kutta method and adding Gaussian noise. The transformation from the original states
x = (α, α̇)> to the states with Gaussian noise xn = (αn , α̇n)> is defined as

αn =α+πλrn,1 ,

α̇n = α̇+40λrn,2 ,
(3.16)

where rn,1, rn,2 are random numbers drawn from a normal distribution with zero mean and a
standard deviation of 1. The constant λ ∈ {0,0.01,0.05,0.1} controls the amount of noise and
the constants π and 40 make sure that the added noise is approximately proportional to the
range of each variable.

In both Experiments C1 and C2, the initial state was α= 0, α̇= 0 and the control input was
chosen randomly at each time step k from the range uk ∈ [−5,5]V.

The test data sets were created similarly as in Section 3.4.1. The samples were generated
on a regular grid of 31×31×31 points, spanning the state and action domain: α ∈ [−π,π]rad,
α̇ ∈ [−40,40]rad · s−1 and u ∈ [−5,5]V. For all samples, the next states in the test set for Exper-
iment C1 were calculated using the Euler approximation. In Experiment C2, we generated a
noise-free test set by applying the fourth-order Runge-Kutta method to all samples on the grid.

The real data for Experiment C3 were measured on the real inverted pendulum system
shown in Figure 3.5b. At first, the system was excited by applying a uniformly distributed ran-
dom control input uk within the range [−5,5]V at each time step k. The random interaction
with the system lasted for 5 seconds and the recorded data set comprised 100 samples. The
data are shown in Figure 3.6. The data set was later enriched by samples recorded while ap-
plying the control policy (2.8) to perform the swing-up task on the real system, which will be
described in the following section.

The sequences recorded for Experiment C3 were split into training and test subsets. Every
third sample was used for the test set, while the remaining samples formed the training set. In
all experiments, the reported RMSE values were calculated on the respective test data set.

26 3. CONSTRUCTING PARSIMONIOUS ANALYTIC MODELS FOR DYNAMIC SYSTEMS

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-20

-10

0

10

A
n
g
le

 [
ra

d
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-40

-20

0

20
V

el
o
ci

ty
 [

ra
d
/s

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

-5

0

5

C
o
n
tr

o
l

in
p
u
t

[V
]

Figure 3.6: Initial data set obtained on the real inverted pendulum system as a response to the random input
shown in the bottom panel.

EXPERIMENT SETUP

Similarly as in the experiment with the mobile robot, the SNGP and MGGP algorithms were first
employed in Experiment C1 to test the ability of SR to generate precise models for the inverted
pendulum system using a data set generated by the Euler method. The experiment serves to
evaluate how the training data set size ns and the number of features n f influence the quality
of the model.

Experiment C2 demonstrates how the analytic process models are evolved using the Runge-
Kutta simulation data set with noise. The maximum number of features n f in the symbolic
regression algorithms was set to 10 in order to facilitate the evolution of models capturing the
more complex underlying function. This experiment tests the behavior of the method in envi-
ronments with noisy measurements.

We conclude the experiments with Experiment C3, which shows the intended use of the
method within RL on the example of the underactuated swing-up task, performed on a real
inverted pendulum system. The control goal is to stabilize the pendulum in the unstable equi-
librium xr = (αr , α̇r)> = (π,0)>. As the input is limited to the range u ∈ [−2,2] V, the available
torque is insufficient to push the pendulum directly up from the majority of initial states, and
therefore it has to be first swung back and forth to gather energy. At first, we constructed 30 ana-
lytic models using the data set recorded under random input and then selected the model with
the lowest RMSE on the test set. This initial model was employed to calculate the policy for
the swing-up task, see Section 2.5. To find an approximation of the optimal value function,
we used the fuzzy V-iteration algorithm [26]. We applied the policy to the real system in four
independent runs, starting at the initial state x0 = (0,0)>. In addition, we performed other four
swing-ups with exploration noise added to the control input. The exploration noise was nor-
mally distributed with the standard deviation ranging from 0.2 to 0.5 V. All eight sequences,
each consisting of approximately 50 measurements, were added to the initial data set recorded
under random input. Using this extended data set, 30 refined analytic process models were

3.4. EXPERIMENTAL RESULTS 27

Table 3.5: Comparison of analytic process models for the inverted pendulum system in Experiment C1. The table
shows the RMSE medians over 30 runs of the SNGP (grey) and MGGP (white) algorithm for varying number of
features n f and varying number of training samples ns .

Variable n f
Number of training samples ns

20 50 100 200 500 1000

α

1
9.19×10−4 3.80×10−4 2.45×10−2 2.28×10−3 1.89×10−3 2.38×10−3

5.51×10−1 3.33×10−1 4.46×10−1 3.15×10−1 2.44×10−1 3.25×10−1

2
2.09×10−7 2.39×10−7 1.06×10−7 1.82×10−9 1.94×10−8 4.60×10−9

3.94×10−10 3.78×10−10 3.77×10−10 3.76×10−10 3.76×10−10 3.76×10−10

10
5.03×10−9 4.44×10−7 4.41×10−9 1.35×10−9 8.45×10−10 4.56×10−10

4.29×10−10 3.87×10−10 3.87×10−10 3.80×10−10 3.77×10−10 3.76×10−10

α̇

1
7.97×10−1 3.17×10−1 2.51×10−1 2.61×10−1 2.34×10−1 5.11×10−1

9.21×10−1 3.64×10−1 2.42×10−1 1.52×10−1 3.42×10−1 2.14×10−1

4
1.12×10−6 5.61×10−7 1.19×10−6 1.61×10−6 8.17×10−7 6.75×10−7

1.73×10−9 1.64×10−9 1.56×10−9 1.55×10−9 1.51×10−9 1.50×10−9

10
5.16×10−7 1.83×10−7 2.64×10−7 4.40×10−7 5.15×10−7 2.66×10−6

1.90×10−9 1.66×10−9 1.60×10−9 1.56×10−9 1.54×10−9 1.53×10−9

learned and the model with the lowest error on the test set was chosen as the final refined
model. Like in Experiment C2, the number of features was set to n f = 10 to facilitate modeling
the more complex state-transition function.

In all experiments, the size of the SNGP population was set to 500 and the evolution was
limited to 30000 generations. The elementary function set was F = {∗, +, −, sin, cos, sign}. The
maximum depth d was set to 7. In Experiment C1, various numbers of features were tested:
n f ∈ {1,2,10} for α and n f ∈ {1,4,10} for α̇. The parameters of the MGGP algorithm in Experi-
ment C1 and C2 were set similarly, taking into account the conceptual differences between the
two algorithms to allow for a fair comparison.

RESULTS

The results of Experiment C1 are summarized in Table 3.5 for the SNGP and MGGP algorithm.
Similarly as in the previous examples, the results indicate that the precision of the models in-
creases with increasing number of features. The overall performance of both SR algorithms is
comparable.

An example of an analytic process model found with the parameters n f = 2 forα, n f = 4 for
α̇ and ns = 20 is:

α̂k+1 =αk +0.05 α̇k −0.0000000001,
ˆ̇αk+1 = 0.9102924745 α̇k −0.2369403835sign(α̇k)+1.5727561072uk

− 6.3168589936 sin(αk)+0.0000000013.

(3.17)

The error of the analytic model w.r.t. the Euler approximation (3.15) is very small. These
results confirm that the proposed method can find precise models even on small data sets.

The results of Experiment C2 presented in Table 3.6 show that the analytic models are able
to approximate the state-transition function well even on data with a reasonable amount of

28 3. CONSTRUCTING PARSIMONIOUS ANALYTIC MODELS FOR DYNAMIC SYSTEMS

Table 3.6: Comparison of analytic process models for the inverted pendulum system in Experiment C2. The ta-
ble shows the comparison of the RMSE medians over 30 runs of the SNGP (grey) and MGGP (white) algorithm
depending on the Gaussian noise standard deviation coefficient λ and the number of training samples ns .

Variable λ
Number of training samples ns

20 100 1000

α

0
9.58×10−2 1.79×10−2 6.11×10−3

8.13×10−2 1.05×10−2 1.36×10−2

0.01
3.95×10−1 1.45×10−1 2.80×10−2

3.96×10−1 1.37×10−1 2.85×10−2

0.05
1.15×100 4.89×10−1 1.43×10−1

8.69×10−1 5.01×10−1 1.42×10−1

0.1
1.90×100 7.61×10−1 3.54×10−1

2.26×100 8.22×10−1 3.59×10−1

α̇

0
4.56×100 7.65×10−1 5.04×10−1

3.89×100 7.56×10−1 5.38×10−1

0.01
4.22×100 2.28×100 8.13×10−1

4.71×100 2.75×100 8.18×10−1

0.05
7.89×100 6.07×100 3.14×100

7.39×100 6.75×100 2.76×100

0.1
1.26×101 9.61×100 6.65×100

1.26×101 8.99×100 6.53×100

noise. The use of the Runge-Kutta method to generate data sets leads to substantially more
complicated models than when using the data generated by using the Euler method. Again,
the performance of the SNGP and MGGP algorithm is comparable.

In Experiment C3, we have shown that SR is able to find analytic process models using data
collected on the real system. Already after a short (5 s) interaction under the random input,
an analytic process model is found which enables RL to perform the swing-up, see Figure 3.7a.
Performing the swing-up task allows to collect more data in important parts of the state space
around the trajectory to the goal state. Figure 3.7b shows that the performance of the model
further improves after adding data collected while performing the swing-up task with the initial
model. Figure 3.8 compares the swing-up response with the initial and the refined model.
The histogram in Figure 3.9 and a two-sample t-test with unpooled variance applied to the
discounted return show that the performance improvement between the policy based on the
initial and the refined analytic process model is statistically significant (p = 2× 10−22). The
RMSE medians over 30 runs of the SNGP algorithm were 1.70×10−2 for α and 6.03×10−1 for α̇
in case of the initial model and 1.16× 10−2 for α and 3.35× 10−1 for α̇ in case of the refined
model.

3.4. EXPERIMENTAL RESULTS 29

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-4

-2

0

2

4

A
n
g
le

 [
ra

d
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

-2

-1

0

1

2

C
o
n
tr

o
l

in
p
u
t

[V
]

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-4

-2

0

2

4

A
n
g
le

 [
ra

d
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

-2

-1

0

1

2

C
o
n
tr

o
l

in
p
u
t

[V
]

(b)

Figure 3.7: A typical real swing-up experiment with the initial model (a) and the refined model (b).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

-4

-2

0

2

4

A
n

g
le

 [
ra

d
]

Desired angle (upright position)

Swing-up with initial model

Swing-up with refined model

Figure 3.8: Comparison of the real swing-up response with the initial model, learned from the random data, and
the refined model, learned from the random data merged with additional data from eight real swing-up experi-
ments.

-22 -21.5 -21 -20.5 -20 -19.5 -19 -18.5 -18 -17.5 -17

Discounted return

0

10

20

30

40

50

N
u

m
b

er
 o

f
ex

p
er

im
en

ts

 Initial model

 Refined model

Figure 3.9: Histograms of 50 real experiments with the initial model and the refined model measured by the dis-
counted return. The performance improvement is statistically significant (p = 2×10−22).

30 3. CONSTRUCTING PARSIMONIOUS ANALYTIC MODELS FOR DYNAMIC SYSTEMS

COMPARISON WITH ALTERNATIVE METHODS

We compared our modeling results with local linear regression (LLR) [10]. We selected the
Runge-Kutta data set with 1000 samples and zero noise as a reference training set and the reg-
ular grid as a test set (see Section 3.4.3 for details). The LLR memory contained 1000 samples
and the number of nearest neighbors was set to 10. The RMSE achieved by LLR was 1.73×10−1

forα and 6.93×100 for α̇. In both cases, the SNGP algorithm achieved a better RMSE by at least
one order of magnitude (6.11×10−3 for α and 5.04×10−1 for α̇).

We also compared the results of our method to a neural network. Given the relative sim-
plicity of the problem, the network had one hidden layer, consisting of 40 neurons, and it was
trained using the Levenberg-Marquardt algorithm. The number of neurons in the hidden layer
was tuned by testing networks with 5 to 100 neurons and choosing the one that performed best
on the test data. The RMSE achieved on the aforementioned reference data set was 6.82×10−2

forα and 2.59×100 for α̇. Again, compared to the RMSE values achieved by our method (stated
at the end of the previous paragraph), symbolic regression finds substantially better models in
terms of RMSE compared to those found by the neural network.

3.5. CONCLUSIONS

We showed that symbolic regression is a very effective method for constructing dynamic pro-
cess models from data. It generates parsimonious models in the form of analytic expressions,
which makes it a good alternative to black-box models, especially in problems with limited
amounts of data. Prior knowledge on the type of nonlinearities and model complexity can eas-
ily be included in the symbolic regression procedure. Despite the technique is not yet broadly
used in the field of robotics and dynamic systems, we believe that it will become a standard
tool for system identification.

The experiments with the walking robot demonstrate that symbolic regression can be used
to construct precise process models even for high-dimensional systems. We have confirmed
empirically that the computational complexity of the algorithm grows linearly with the dimen-
sionality of the system. It is also worth mentioning that the complexity of the analytic models
does not grow significantly with the complexity of the system.

The real-world experiment with the inverted pendulum shows that already after 5 seconds
of interaction with the system, an initial analytic process model is found, which not only ac-
curately predicts the process behavior, but also serves as a reliable model for the design of an
RL controller. By collecting the data during several executions of the swing-up task using the
initial analytic model and adding them to the data set used by SR to learn the model, the per-
formance on the swing-up task further improves.

Our evaluation shows that two distinct symbolic regression algorithms, SNGP and MGGP,
perform comparably well on the evaluated systems. This indicates that the proposed method
is not dependent on the particular choice of the symbolic regression method. We compared
the performance of symbolic regression with alternative state-of-the-art methods, in particu-
lar with neural networks and with local linear regression. The results show that the proposed
method performs in most cases significantly better than the alternatives.

Another important outcome is that SR can be used to find both state-space and input–
output models. The use of input–output models is beneficial because it does not require the

3.5. CONCLUSIONS 31

observations of the full state vector and it also makes the algorithm faster because of modeling
a reduced number of variables.

We have identified several possibilities for future extensions of this work. The main ob-
jective is to apply SR methods within the entire RL scheme, i.e., also for approximating the V-
function, and also to use analytic models in combination with actor-critic online RL. In some
cases, especially when using many features, analytic models tend to be unnecessarily complex.
In our future work, we will investigate systematic reduction of analytic models.

4
EFFICIENT SELECTION OF INFORMATIVE

SAMPLES FOR MODEL LEARNING

Continual model learning for nonlinear dynamic systems, such as autonomous robots, presents
several challenges. First, it tends to be computationally expensive as the amount of data collected
by the robot quickly grows in time. Second, the model accuracy is impaired when data from
repetitive motions prevail in the training set and outweigh scarcer samples that also capture
interesting properties of the system. It is not known in advance which samples will be useful for
model learning. Therefore, effective methods need to be employed to select informative training
samples from the continuous data stream collected by the robot. Existing literature does not give
any guidelines as to which of the available sample-selection methods are suitable for such a task.
In this chapter, we compare five sample-selection methods, including a novel method using the
model prediction error. We integrate these methods into a model learning framework based on
symbolic regression, which allows for learning accurate models in the form of analytic equations.
Unlike the currently popular data-hungry deep learning methods, symbolic regression is able to
build models even from very small training data sets. We demonstrate the approach on two
real robots: the TurtleBot mobile robot and the Parrot Bebop drone. The results show that an
accurate model can be constructed even from training sets as small as 24 samples. Informed
sample-selection techniques based on prediction error and model variance clearly outperform
uninformed methods, such as sequential or random selection.

This chapter is an adapted version of the journal paper [47].

33

34 4. EFFICIENT SELECTION OF INFORMATIVE SAMPLES FOR MODEL LEARNING

4.1. INTRODUCTION

To effectively control nonlinear dynamic systems, such as autonomous robots, one needs ac-
curate models. These models can be learned and adapted by using data samples that the robot
continuously collects during its deployment. As the amount of such data quickly grows with
time, using all the collected samples for model learning soon becomes computationally infea-
sible, and a subset of data must be selected. However, not all data samples are equally impor-
tant, and it is not known a priori which samples will be useful and which not. This problem
is compounded by the presence of data samples from repetitive motions, which are typical
for most tasks in robotics. Such data do not contain any additional information, and without
precautions, they outweigh the relatively small amount of other informative samples.

Data samples for model learning can be chosen in an uninformed way or in an informed
way. Most prominent among the uninformed approaches are the recursive methods [99, 112]
used in classical system identification. They process data sequentially, use every sample only
once to update the model parameters and then throw it away. This makes them data-inefficient
and unable to address the issue with repetitive samples. Another widely used uninformed ap-
proach is the random selection of training samples [38, 128], which also does not solve the
problem with repetitive samples.

Informed methods usually work with a set of models. A typical representative of this class is
the variance approach [20]. The key idea of this method is that the most informative sample is
the one that causes the largest disagreement among the models found. Related methods have
also been developed in the field of active learning [128], known mostly for applications in clas-
sification [51, 69, 150], but also applied to regression [28, 77, 149]. Active learning starts with
a small number of labeled training samples and then iteratively requests labels for additional
samples. The labels are obtained from an oracle, often a human expert, which makes labeling
expensive. In model learning, the labels are the measured system outputs. The problem here is
that the output for an arbitrary sample cannot be obtained from a real dynamic system, as the
system would have to be brought to the required state, which is often undesired or impossible.

An alternative to the approaches that require a set of models are methods that do not rely
on the learned models’ outputs. A representative of these methods is the problem domain cov-
erage [128]. This approach iteratively adds new samples to evenly cover the problem domain,
thus saving the computational costs of learning multiple models.

In addition to the informed methods based on the model variance [20] and on the domain
coverage [128], we propose a novel approach based on the model prediction error. In contrast
to the variance method, the new sample added to the training set is the one with the highest
error averaged over the current set of models. The motivation is to deal with cases when the
set of models yields a low variance for a given sample, but the models’ outputs on that sam-
ple are all wrong. Such a sample would be disregarded by the variance method, though it is
clearly worth adding to the training data set. This happens, for example, in case the function
(model) sought has some unexpected property on a small part of its domain, which has not
been covered by the samples from the previous iterations. Contrary to the variance method,
the prediction error method can also work with a single model.

To compare the above approaches to sample selection, we introduce a framework using
symbolic regression (SR) for model learning. SR has proven to be suitable for modeling non-

4.2. METHODS 35

linear system dynamics even from very small data sets [43]. The advantage of using SR is that
it constructs parsimonious models in the form of analytic equations, which facilitates their
use within other algorithms. Symbolic regression allows to optionally incorporate prior knowl-
edge in the model construction process by specifying the set of elementary functions that can
be used to build the analytic models. In addition to its data efficiency, SR also requires fewer
parameters to build an accurate model when compared to alternative methods such as deep
neural networks [38, 67, 107, 120]. As SR can be time-consuming for large data sets, selecting a
suitable small training set makes it very well usable in practice.

This chapter makes the following two main contributions:

• We present a comparative study of five methods for selecting data samples from a larger
sample collection recorded during the robot deployment. Such a comparison has been
so far missing in the literature. Three informed and two uninformed methods are eval-
uated within the SR framework on data both from a simulated and a real mobile robot
TurtleBot 2, and on data from a real drone Parrot Bebop 2.

• A new sample-selection method is introduced. It is based on adding samples that yield
the largest model prediction error. The practical merit of the proposed method is demon-
strated in an experiment with the real mobile robot.

The rest of the chapter is organized as follows. The model learning framework is described
in Section 4.2. Sections 4.3 and 4.4 present the experimental results and Section 4.5 concludes
the chapter.

4.2. METHODS

The definition of the nonlinear dynamic models and the theoretical background of SNGP is
given in Chapter 2. The model learning procedure is explained in Section 4.2.1 and the sample-
selection methods evaluated in this chapter are described in Section 4.2.2.

4.2.1. MODEL LEARNING FRAMEWORK

During its deployment, the system (robot) continuously collects samples in the form sk =
(xk ,uk ,xk+1)>. The data samples are stored in a buffer from which a subset of samples for
training is selected. To evaluate the performance of the method and its ability to generalize, a
small portion of the collected samples is diverted to the test set instead of becoming a part of
the buffer. There are different ways how the test samples can be selected, e.g., by periodically
or randomly choosing new samples for the test set to maintain a user-specified ratio between
the buffer and test set size.

SR is run periodically on the training data set selected from the buffer to find the state
transition function of the system. As outlined in Section 2.4, symbolic regression constructs
a model for each state variable individually. In the following text, we describe the learning pro-
cedure for a generic state variable. Sample selection is also performed per state variable, i.e.,
each variable has its own instance of the training set and the buffer.

An overview of the method is presented in Algorithm 1. The algorithm starts with an initial
training data set composed of a small number of samples n0. There are various ways how to

36 4. EFFICIENT SELECTION OF INFORMATIVE SAMPLES FOR MODEL LEARNING

choose the initial samples. For example, they can be chosen randomly among the samples
available in the buffer. In this work, we apply a sequential approach, starting with the first n0

samples in the buffer.

The method builds the models iteratively, where by an iteration, we denote the process of
constructing nr analytic models and choosing a set of ns samples from the buffer to be added
to the training data set. A small value of ns yields fine-grained sample selection and will be
used when aiming at small but highly informative training data sets on which SR can be run
often and with low computational costs per run. Larger values of ns allow the training set size
to grow faster, where SR will be run less often, but with higher computational costs per run.

In each iteration, symbolic regression runs in nr identically configured instances to find
models fitting the training data. Since evolution is guided by a distinct sequence of random
numbers in each of the runs r , we obtain nr different analytic models fr (xk ,uk). The model f ∗

with the lowest root-mean-square error (RMSE) of the one-step-ahead prediction on the test
set is chosen as the final model for that iteration. The set of nr models also serves to determine
the informative samples, as described in Section 4.2.2.

The iterative process terminates once a given stopping criterion is met or once the maxi-
mum number of iterations ni is reached. For example, the stopping criterion can be based on
a threshold on the error measures or on the performance of the system on a given control task.

Algorithm 1 Model Learning with Sample Selection.
Input: sample-selection method, Buffer, TestSet, n0, ns , ni

i ← 0
TrainingSet ← Sn0 (first n0 samples in Buffer)
Buffer ← Buffer \ Sn0

repeat
i ← i +1
for each state variable do

run nr instances of SR to construct models fr

f ∗ ← fr with the lowest RMSE on TestSet
S ← ns samples from Buffer,

chosen by the sample-selection method
TrainingSet ← TrainingSet ∪ S
Buffer ← Buffer \ S

end for
until i = ni or termination condition on model quality is met

4.2.2. SAMPLE-SELECTION METHODS

Sample selection is important to efficiently construct accurate models. The following text
presents three informed sample-selection methods, followed by two uninformed methods used
as a baseline for the performance analysis.

4.2. METHODS 37

MAXIMUM VARIANCE

A common state-of-the-art informed sample-selection method is based on the maximum vari-
ance between the model outputs [20, 41, 128]. For a given training set, nr models are generated
and the outputs of these models are calculated for all data samples in the buffer. The data sam-
ples with the highest variance in model outputs are added to the training set. The method is
based on the hypothesis that the samples with the highest variance come from a subset of the
problem domain that is not sufficiently represented in the current training set. Including such
samples is expected to improve the model consistency and accuracy.

MAXIMUM OUTPUT DOMAIN COVERAGE

In this approach, the training set is constructed by iteratively adding samples from the buffer
to cover the output domain as well as possible. For each sample in the buffer, the method cal-
culates its distance in the output space to all samples in the current training set and stores the
minimum of these distances. The buffer sample with the largest minimum distance is added
to the training set.

A similar approach has been used in [128] for the input domain. The approach to cover
the output domain instead of the input domain is advantageous because it circumvents the
issues connected to the normalization of the input space components. Unlike the maximum
variance approach, the maximum output domain coverage method does not need any models
to be built for sample selection and therefore, it is computationally less demanding.

MAXIMUM PREDICTION ERROR (PERMIT)

In addition to the two previous informed sample-selection methods, we propose a novel method
that selects the samples on which the analytic models yield on average the largest error. In the
sequel, we will refer to our method by its acronym PERMIT (Prediction ERror method for Model
ImprovemenT).

The selection procedure is performed for each state variable individually. The models
fr (x`,u`), r = 1,2, . . . ,nr , are used to calculate the output for all samples s` in the buffer. We
select the sample s`∗ that yields the largest prediction error averaged over the set of nr models:

`∗ = argmax
`∈{1,...,N }

1

nr

nr∑
r=1

(
fr (x`,u`)− z`

)2 , (4.1)

where N is the current buffer size and nr ≥ 1. Recall that each sample s` has the form
(xk ,uk ,xk+1)>. The term z` in (4.1) refers to the component of xk+1 corresponding to the mod-
eled variable.

In contrast to the variance method, which requires a set of models to calculate the variance,
PERMIT can select new training samples using only a single model. However, averaging over a
set of models improves the method’s robustness.

SEQUENTIAL ADDITION

A common uninformed sample-selection approach is to build the model from samples added
in the order as they are logged [112]. The most straightforward implementation of this method
is using the queue data structure. During the operation of the system, the recorded data sam-
ples are added at the tail of the queue. New samples for model learning are taken from the

38 4. EFFICIENT SELECTION OF INFORMATIVE SAMPLES FOR MODEL LEARNING

queue head. Therefore, the data in the buffer are processed in the first-in, first-out (FIFO)
manner.

RANDOM APPROACH

This approach selects the samples at random. The training samples are drawn from the buffer
with a uniform probability. This method has been used as a reference also in [128]. While
the method works well for buffers with a majority of informative samples, its performance de-
grades if the available data samples have been recorded mostly from repetitive motions and
rich data form only a small portion of the collected data set.

4.2.3. COMPUTATIONAL COMPLEXITY

The computational complexity of symbolic regression grows linearly with the number of sam-
ples. The complexity of the sample-selection method grows linearly with the buffer size and
also linearly with the number of parameters in the analytic model.

To provide an idea on the actual computation time, we have measured the time needed
to finish a single SR run for different sample sizes. We have used a standard laptop computer
with Intel Core i7-4610M (3.00 GHz) and 16 GB of RAM, running the computation on a single
core. Consider a problem with a three-dimensional state and a two-dimensional input, such
as the mobile robot described in Section 4.3. The time used by SR to find a model of the system
is approximately 28 seconds for a training set of 20 samples, 75 seconds for a training set of
100 samples, and 240 seconds for a training set of 500 samples. The sample-selection method
itself takes a negligible amount of time (< 50 ms) for nr = 10 models and buffers containing
thousands of samples. The advantage of using a suitable sample-selection method to reduce
the number of training samples is therefore substantial.

4.2.4. DISCUSSION AND LIMITATIONS

We consider a scenario in which the system (robot) performs a given task, e.g., transporting
objects between specified locations, and we can not alter its behavior in any way. Often, this
leads to unevenly covered state and input domains. The majority of samples span a small sub-
set of the state and input domain and only a small portion of samples are spread across other
parts of the domain. A different situation would arise if we had full control over the system op-
eration and we could design a task yielding samples evenly and densely covering the state and
input space. These two scenarios are closely related to the classical exploration-exploitation
dilemma. While the first scenario corresponds to exploitation, the second one represents ex-
ploration. We focus in this work on the first scenario, which is characteristic for the operation
in regular task execution. The strength of the informative sample selection manifests in partic-
ular in that case, as the choice of the right samples is crucial for the modeling performance.

The proposed method is designed to work with any system and does not make any prior
assumptions. The only requirement is that the dynamics are excited during the task execution
in at least a small portion of the collected data samples (approx. 10–20 %, depending on the
task). This ensures a training data set sufficiently rich in informative samples capturing the
properties of the system. It is generally satisfied for highly dynamic tasks (rapid motions of
robots), but it may not be satisfied for stationary tasks (e.g., a quadcopter hovering above a fixed

4.3. MOBILE ROBOT EXPERIMENTS 39

location), in the absence of external disturbances.
Finally, we assume that the buffer does not contain a large amount of corrupted data (out-

liers). We have empirically evaluated that the method is robust to a small number of erroneous
records (less than 10 %) present in the training set.

4.3. MOBILE ROBOT EXPERIMENTS

We have chosen a mobile robot as a suitable benchmark for our method. We have carried out
experiments both in simulations and with a real mobile robot TurtleBot 2.

4.3.1. SYSTEM DESCRIPTION

We consider a two-wheeled mobile robot shown in Figure 4.1. Its model is described by the
state vector x = (xpos , ypos ,φ)>, where xpos and ypos are the position coordinates of the robot
andφ is its heading. The forward velocity v f and the angular velocity va are the control inputs,
forming the input vector u = (v f , va)>.

(a) (b)

Figure 4.1: Mobile robot: a) schematic, b) photo of the TurtleBot used in the experiments.

The theoretical continuous-time model of the mobile robot is:

ẋpos = v f cos(φ),

ẏpos = v f sin(φ),

φ̇= va ,

(4.2)

neglecting the dynamics caused by the robot’s inertia and actuators. This model is only used
for simulations in Section 4.3.5. In our experiments, the inputs are limited to the domain v f ∈
[0,0.3] m · s−1 and va ∈ [−1,1] rad · s−1, which substantiates the use of the sampling period Ts =
0.2 s.

4.3.2. DATA COLLECTION

The data sets both in simulations and in the experiments with the real robot are composed
of short sequences such as moving forward with the maximal forward velocity, turning on the

40 4. EFFICIENT SELECTION OF INFORMATIVE SAMPLES FOR MODEL LEARNING

spot with the maximal angular velocity, turning in a circle with the maximal forward and an-
gular velocity, or waiting on the spot for a new command. Approximately 20 % of the data are
sequences with random inputs within the domain for v f and va . The first two thirds in each of
these sequences form the buffer (a total of 500 samples), while the last third enters the test set
(250 samples).

The data samples have the following form:

sk = (xpos,k , ypos,k ,φk , v f ,k , va,k , xpos,k+1, ypos,k+1,φk+1) , (4.3)

where k denotes the time step, see (2.1). Odometry measurements were used to record the
samples in the experiments with the real robot.

4.3.3. MODEL LEARNING

The model learning algorithm starts with a training data set of n0 = 5 first samples in the buffer.
The initial training data set is identical for all three state variables. The aim is to select a small
subset of training data that will capture the robot’s dynamics as accurately as possible. In each
iteration, nr = 50 analytic models are constructed. At the end of each iteration, we add ns = 1
sample to the training set. We limit the number of iterations to ni = 50. We have deliberately
chosen extremely low values of the parameters n0 and ns to show that even very small data sets
can serve to build accurate models of the robot. In practice, higher values of these parameters
could be used to reduce the number of initial iterations in which we do not yet expect the
models to be sufficiently accurate.

The analytic models were constructed by using SNGP with up to n f = 10 features having
a maximum depth of d = 7. The set of elementary functions for symbolic regression was F =
{×,+,−, sin,cos,square,cube}.

We have evaluated the five sample-selection methods described in Section 4.2.2. We use
the one-step-ahead RMSE calculated on the test data set to evaluate the quality of the analytic
models found by SR in each iteration. It compares the output of the model fr (xk ,uk) with the
known next state component for the given variable xk+1, which is stored with the test sample.
Median RMSE values are calculated over all nr models in each iteration. Due to the random-
ness factor in SR, the sample-selection process is stochastic. Therefore, the results shown rep-
resent one particular realization of a stochastic process. Using 50 repetitions of the experiment,
we have empirically validated that these results are representative for the performance of the
methods.

4.3.4. CONTROL TASK

In addition to the RMSE measure, we evaluate the performance of the analytic models on a
control task. The robot has to reach the reference (goal) state xr from a given initial state x0

as fast as possible. Fuzzy V-iteration is employed to find an approximation of the V-function
in a model-based reinforcement learning (RL) scheme. The description of the RL algorithm
is beyond the scope of this work; for details, please refer to [26]. We set the discount factor γ
to 0.99. The reward function is equal to zero if the robot is within ±0.01 m in xpos , ±0.01 m in
ypos , and ±0.02 rad in φ from the reference state xr . Otherwise, the reward is −1. This leads to

4.3. MOBILE ROBOT EXPERIMENTS 41

minimum-time optimal control from an initial pose to the specified neighborhood of the goal
pose.

An analytic model f ∗ with the lowest RMSE on the test data set is selected for each vari-
able in each iteration to be used within RL. For the control task, we limit the state domain
to xpos ∈ [0,1] m, ypos ∈ [0,1] m, and φ ∈ (−π,π] rad. We set the reference state to the center:
xr = (xpos,r , ypos,r ,φr)> = (0.5,0.5,0)>. The control input is selected from a set of 11 values
spanning evenly the range v f ∈ [0,0.2] m · s−1 and from 21 values spanning evenly the range
va ∈ [−0.5,0.5] rad · s−1.

We introduce two control performance measures. The mean distance from the refer-
ence state is calculated as the mean of the Euclidean distances between (xpos,k , ypos,k)> and
(xpos,r , ypos,r)> for all steps k = 1,2, . . . ,nk . Furthermore, it is averaged over all experiments ex-
ecuted from various initial states. This measure captures the underlying goal to transit from
the initial state to the reference state as efficiently as possible. In addition, the mean error in
the final state is calculated as the mean Euclidean distance between the final state xnk and the
reference state xr , averaged over experiments from all initial states. Note that the latter mea-
sure includes the robot heading φ and the error for φ is normalized to the same range as for
xpos and ypos .

To evaluate the control task, we start the simulation experiments from a grid of 64 initial
states spanning the state domain. The duration of each simulation is 20 seconds, which corre-
sponds to nk = 100 steps (excluding the initial state). In the case of the real robot, the control
task is executed every five iterations from four initial states (0,0,0)>, (0.1,0.9,0)>, (0.8,0.8,0)>,
and (0.8,0.2,0)>.

4.3.5. SIMULATION RESULTS

At first, we have performed a set of simulation experiments. We simulate the mobile robot
by applying the fourth-order Runge-Kutta integration method [29] to the equations of motion
(4.2). Note that the simulation model does not constitute a part of our method; it only serves
to generate the data samples.

Table 4.1 summarizes the results in two quantitative measures: the mean of the median
RMSE and the mean difference between the RMSE of the best and the worst model in each iter-
ation. The median RMSE is calculated over nr = 50 models in each iteration and both measures
are averaged over all iterations. These measures allow for evaluating how accurate models can
the sample-selection methods construct from small data sets. All the sample-selection meth-
ods would converge to models of the same accuracy when using all samples from the buffer.

The results in Table 4.1 and in Figure 4.2 show that the informative sample-selection meth-
ods allow for constructing accurate analytic models using substantially fewer training samples
as compared to the sequential and random approach. While the PERMIT method and the vari-
ance method have similar overall performance, they both slightly outperform the maximum
output domain coverage method. Note that all methods start with the initial training set com-
posed of only the first five samples in the buffer, resulting in highly overfitted models yielding
large errors on the test set. Therefore, the mean values in Table 4.1 may appear relatively large,
which is induced by the large errors in the first iterations. However, the generalization abil-
ity of the models constructed using the informed sample-selection methods rapidly improves
with the increasing size of the training set, as illustrated in Figure 4.2. For instance, the median

42 4. EFFICIENT SELECTION OF INFORMATIVE SAMPLES FOR MODEL LEARNING

Figure 4.2: Evaluation of the sample-selection methods for modeling all variables in the experiment with the
simulated mobile robot. The number of training samples starts at five in the first iteration and increases by one in
each iteration.

4.3. MOBILE ROBOT EXPERIMENTS 43

Table 4.1: Comparison of the sample-selection methods on all variables in the experiments with the mobile robot.
The RMSE median and the RMSE spread are averaged over all iterations of the sample-selection procedure. The
RMSE spread is calculated as the difference between the maximum and minimum error among the models in
each iteration.

Selection Simulation Real robot

method xpos [m] ypos [m] φ [rad] xpos [m] ypos [m] φ [rad]

variance 2.52×101 3.16×101 9.58×100 4.13×101 3.82×100 3.21×101

Average
coverage 5.71×101 4.04×101 1.36×101 7.07×101 4.59×100 7.14×101

RMSE median
PERMIT 2.52×101 3.16×101 8.68×100 4.09×101 3.86×100 3.51×101

sequential 6.21×102 5.30×102 5.92×102 1.65×103 5.27×102 1.93×103

random 2.02×102 8.14×101 8.37×101 1.76×102 6.73×101 1.25×102

variance 9.18×105 9.32×1015 6.38×105 3.38×1015 2.02×1013 5.51×1012

Average
coverage 1.90×107 4.26×1021 2.34×1027 1.59×1011 6.17×1010 8.08×1033

RMSE spread
PERMIT 9.18×105 9.32×1015 6.27×105 3.38×1015 2.02×1013 5.51×1012

sequential 4.80×1035 1.31×1028 1.13×1030 2.55×1033 1.18×1058 6.86×1030

random 7.59×1021 3.71×1014 1.58×1011 8.33×1013 2.53×1021 6.70×1026

Figure 4.3: Evaluation of the control task executions performed with the simulated mobile robot.

44 4. EFFICIENT SELECTION OF INFORMATIVE SAMPLES FOR MODEL LEARNING

RMSE for xpos drops to approx. 0.1 m with 16 training samples (12th iteration) and further to
approx. 0.01 m with 20 training samples (16th iteration) for the PERMIT method and for the
variance method.

The results of the control task simulations are presented in Figure 4.3. After a few initial iter-
ations, the informed sample-selection methods clearly outperform the sequential and random
method. The random method reaches an acceptable performance around the 30th iteration,
but its performance in the following iterations oscillates. In contrast, the informed methods
steadily construct well-performing models. Note that the performance of the sequential ap-
proach is very poor. This is because the first 54 samples in the buffer do not contain informa-
tion that would help to improve the accuracy of the model. Such a situation is encountered in
many real scenarios.

4.3.6. RESULTS WITH THE REAL MOBILE ROBOT

We have performed lab experiments with TurtleBot 2, see Figure 4.1b. The robot has collected
the data samples as described in Section 4.3.2, yielding 500 samples in the buffer and 250 sam-
ples in the test set.

Figure 4.4: Evaluation of the control task executions performed with the real mobile robot.

4.3. MOBILE ROBOT EXPERIMENTS 45

Figure 4.5: Evaluation of the sample-selection methods for modeling all variables in the experiment with the real
mobile robot. The number of training samples starts at five in the first iteration and increases by one in each
iteration.

46 4. EFFICIENT SELECTION OF INFORMATIVE SAMPLES FOR MODEL LEARNING

Figure 4.6: Execution of the control task performed on the real robot with an analytic model trained on a data set
of only 24 data samples, selected by the PERMIT method. The plot shows the trajectory of the robot (solid black
circles) with its orientation (red markers). The reference state is marked by a green cross.

The quality of the models measured by RMSE on the test data set throughout the execution
of the model learning algorithm is shown in Figure 4.5 and the quantitative results are summa-
rized in Table 4.1.

Similar conclusions as for the simulated mobile robot can be drawn. The PERMIT method
and the variance method perform the best, followed by the coverage method. The informed
sample-selection methods substantially outperform the sequential and random method.

Measures of the control task performance are shown in Figure 4.4. On the control task
with the real mobile robot, the PERMIT method is among the fastest ones to achieve a good
performance. The variance method performs also very well, followed by the coverage method.
The random method only achieves an acceptable performance at the end of the experiment,
using 54 training samples. The sequential method performs the worst.

An example of the control task execution on the real robot is shown in Figure 4.6. The RL
controller is based on an analytic model trained on only 24 data samples, which were selected
by the PERMIT method. The results show that the model constructed by the proposed method
allows to build an RL-based controller that performs the control task well. The lab experiment
is captured in the video attachment, also available at our GitHub repository1.

1https://github.com/erik-derner/sample-selection/blob/main/TurtleBot_ModelLearning.mp4

https://github.com/erik-derner/sample-selection/blob/main/TurtleBot_ModelLearning.mp4

4.4. DRONE EXPERIMENTS 47

4.4. DRONE EXPERIMENTS

We have selected the Parrot Bebop 2 drone to demonstrate the performance of the method on
higher-dimensional problems.

4.4.1. SYSTEM DESCRIPTION

The output variables are the translational velocities vx , vy , and vz (measured by the OptiTrack
motion-capture system in the fixed world frame) and the body angles θ, ϕ andψ, denoting the
pitch, roll, and yaw, respectively. The drone is controlled by θc , ϕc , ωc , vzc , which denote the
desired roll, pitch, yaw rate, and vertical velocity, respectively. Figure 4.7 shows a schematic
and a photo of the drone.

vx

vz vy

(a) (b)

Figure 4.7: Parrot Bebop Drone: a) schematic, b) photo of the quadcopter used in the experiments.

In the experiments, we use the sampling period Ts = 0.05 s. We have chosen a smaller sam-
pling period than for the mobile robot in order to capture the faster movement of the drone.

4.4.2. DATA COLLECTION

We have collected 1722 data samples by teleoperating the drone to follow a given trajectory.
This data set was divided into a training set and a test set in the ratio 2:1 by moving every third
sample to the test set.

The models in the input–output form yk+1 = g(yk ,yk−1, . . . ,uk ,uk−1, . . .) are constructed for
each state variable, where y denotes the vector of output variables and u are the control inputs.
We use a first-order model for the translational velocities vx , vy and a second-order model for
all the other variables.

4.4.3. MODEL LEARNING

The model learning algorithm starts with a training data set of n0 = 5 first samples in the buffer.
As there are 1148 samples in the buffer, the aim is to select a small subset of data that will
capture the robot’s dynamics as well as possible. In each iteration, nr = 10 analytic models are
constructed for each variable with the same SNGP configuration as for the mobile robot. Only
ns = 1 sample is added in each iteration to the training data set for each variable. The number
of iterations is limited to ni = 25.

48 4. EFFICIENT SELECTION OF INFORMATIVE SAMPLES FOR MODEL LEARNING

Table 4.2: Comparison of performance of the sample-selection methods on all variables in the experiment with
the drone. The RMSE median and the RMSE spread are averaged over all iterations of the sample-selection pro-
cedure. The RMSE spread is calculated as the difference between the maximum and minimum error among the
models in each iteration.

Selection
vx

[
m · s−1

]
vy

[
m · s−1

]
vz

[
m · s−1

]
θ [rad] ϕ [rad] ψ [rad]

method

variance 2.41×101 1.06×101 8.22×101 4.48×10−1 3.39×10−1 5.91×10−1

Average coverage 1.60×101 3.29×101 8.07×101 5.51×10−1 3.90×10−1 6.91×10−1

RMSE PERMIT 7.03×100 1.16×101 8.61×101 3.87×10−1 2.99×10−1 5.86×10−1

median sequential 3.42×106 2.83×104 1.11×103 1.76×100 1.64×100 1.81×100

random 1.44×101 2.21×101 7.80×101 4.84×10−1 4.18×10−1 6.45×10−1

variance 7.04×106 3.64×104 2.93×105 6.60×10−1 5.74×10−1 4.82×10−1

Average coverage 3.25×104 1.02×107 1.68×1018 8.67×10−1 8.20×10−1 7.53×10−1

RMSE PERMIT 5.24×103 3.56×104 2.93×105 6.14×10−1 6.27×10−1 5.95×10−1

spread sequential 1.28×1065 4.55×1022 4.27×1027 9.43×10−1 1.31×100 6.03×10−1

random 2.39×106 7.56×104 2.93×105 7.53×10−1 9.26×10−1 7.66×10−1

4.4.4. RESULTS

The performance of the five sample-selection methods of Section 4.2.2 is shown in Figure 4.8.
The quantitative measures are summarized in Table 4.2. All angles and their differences have
been wrapped to the domain (−π,π] rad.

The results show that for modeling vx , vy , and vz , the PERMIT method and the variance
method achieve the best performance. The coverage method and the random method are
slightly worse. The difference between the first two and the latter two methods increases for
the variables θ, ϕ, and ψ. The sequential method performs the worst for all variables, which
is due to the absence of a sufficient number of informative samples at the beginning of the
recorded sequence. On the other hand, the whole buffer contains a larger amount of informa-
tive samples than in the case of the mobile robot, which makes the random method perform
better compared to the results in Section 4.3. Overall, the results show that using informed
sample selection allows SR to find accurate models from small batches of data (20–25 samples)
also on a higher-dimensional problem.

4.4. DRONE EXPERIMENTS 49

Figure 4.8: Evaluation of the sample-selection methods for modeling all variables in the experiment with the
drone. The number of training samples starts at five in the first iteration and increases by one in each iteration.

50 4. EFFICIENT SELECTION OF INFORMATIVE SAMPLES FOR MODEL LEARNING

4.5. CONCLUSIONS

The selection of training samples is essential to efficiently construct accurate nonlinear dy-
namic models from the vast amount of collected data. Not all data samples are equally infor-
mative: some carry unique information about the system, while others are redundant. To that
end, we have proposed an approach for constructing compact training data sets that serve as
an input to a model learning method. For model learning, we have chosen symbolic regression
thanks to its ability to construct accurate models in the form of analytic equations even from
small data sets.

Sample-selection methods can be classified into uninformed and informed methods. As a
baseline, we have included two uninformed methods that select the training samples sequen-
tially and randomly. Informed methods in contrast select the training samples based on prede-
fined criteria with the aim to capture the important properties of the system and so to achieve a
better modeling accuracy. We have evaluated two state-of-the-art informed sample-selection
methods, based on the model variance and on the output domain coverage. In addition, we
have proposed a novel sample-selection method based on the model prediction error, called
PERMIT.

We have evaluated the methods on data from three dynamic systems: a simulated mo-
bile robot, a real mobile robot TurtleBot 2, and a real Parrot Bebop drone. All three informed
sample-selection techniques clearly outperform the two baseline uninformed methods: they
quickly select a small subset of important samples from a large data buffer. While PERMIT
and the variance method achieve the best performance, the results of the coverage method are
slightly worse in the overall evaluation. For the PERMIT method, we have shown that an ana-
lytic model found by symbolic regression on a training data set with as few as 24 samples can
already be used to design a near-optimal RL controller for the real mobile robot.

In our future work, we will conduct a real-world, long-term autonomy experiment to eval-
uate how the sample-selection methods perform in a setting where unexpected events can
occur, including data loss, sensor faults, etc. Even though the proposed method is robust to a
small number of outliers in the training data set, the accuracy of the models will be affected
if the amount of erroneous data is too large. To address this, we will also investigate meth-
ods for automated data set maintenance, including removal of data samples that diminish the
accuracy of the models.

5
PHYSICS-AWARE MODEL LEARNING FOR

DYNAMIC SYSTEMS

Virtually all robot control methods benefit from the availability of an accurate mathematical
model of the robot. However, obtaining a sufficient amount of informative data for construct-
ing dynamic models can be difficult, especially when the models are to be learned during robot
deployment. Under such circumstances, standard data-driven model learning techniques often
yield models that do not comply with the physics of the robot. We extend a symbolic regression
algorithm based on Single Node Genetic Programming by including the prior model information
into the model construction process. In this way, symbolic regression automatically builds mod-
els that compensate for theoretical or empirical model deficiencies. We experimentally demon-
strate the approach on two real-world systems: the TurtleBot 2 mobile robot and the Parrot Be-
bop 2 drone. The results show that the proposed model-learning algorithm produces realistic
models that fit well the training data even when using small training sets. Passing the prior
model information to the algorithm significantly improves the model accuracy while speeding
up the search.

This chapter is an adapted version of the conference paper [46].

51

52 5. PHYSICS-AWARE MODEL LEARNING FOR DYNAMIC SYSTEMS

5.1. INTRODUCTION

To guarantee long-term robot autonomy, methods are needed to automatically build and up-
date dynamic models of robots and their environments. Techniques for learning models from
data samples collected during routine robot operation inevitably have to deal with imperfec-
tions of the measured data, such as uneven sample distribution, limited sensor accuracy, pres-
ence of noise, etc. However, some partial information about the robot model is often known,
such as a theoretical or empirical model.

A range of techniques can be employed to learn a nonlinear model of the robot dynamics,
as presented in the surveys [114, 130, 134]. Many of the popular methods such as deep neu-
ral networks [107] and locally weighted learning [143] are black-box, require a large amount of
high-quality training data, and do not allow for the use of prior knowledge in the form of partial
models or constraints. In general, obtaining appropriate training sets is difficult and often not
even possible [151], in particular during the robot deployment. To this end, symbolic regres-
sion (SR) allows to naturally incorporate the prior knowledge and it is able to learn from very
small training sets. SR evolves models in the form of analytic expressions by combining user-
defined elementary functions. Although SR has not yet been widely adopted by the robotics
community, its potential has already been demonstrated [43, 125, 144].

In this chapter, we extend our previous work [43, 88] by including building blocks in the
form of physical or empirical models (or their parts) into the model construction process. The
proposed method automatically finds accurate and physically valid robot models by comple-
menting training data with information capturing the desired properties of the model sought.
This chapter presents the following three main contributions:

• We adapt a SR method based on Single Node Genetic Programming (SNGP) by including
a prior model to efficiently construct accurate parsimonious analytic models from small
training data sets supported by the prior information.

• The benefits of employing empirical or theoretical models are evaluated against two
other SR variants – baseline SR that does not use prior knowledge in any form [43], and
SR using formal constraints [88].

• We illustrate on two examples of real robots that the method efficiently compensates for
deficiencies in real data and yields models that are both accurate and physically plausi-
ble.

The remainder of the chapter is organized as follows: Section 5.2 gives an overview of the
related work. The model construction method is described in Section 5.3. Section 5.4 presents
the results of the experimental evaluation and Section 5.5 concludes the chapter.

5.2. RELATED WORK

In its basic form, SR allows to incorporate prior knowledge by selecting the set of elementary
functions that are used in the inner nodes of the tree-based model representations [71]. In
grammar-based approaches, prior knowledge can be included into the grammar describing the

5.3. METHOD 53

set of available structure elements from which the models are built. An example of a grammar-
based approach is the tree adjoining grammar GP [76]. Some SR approaches take into account
prior knowledge in the form of formal constraints [18, 88]. Another recent SR approach named
AI Feynman [140] exploits known properties of the function sought, such as physical units for
dimensional analysis, or symmetry with respect to some of its variables.

Methods for incorporating prior knowledge also exist for neural networks, such as [63], in-
spired by Hamiltonian mechanics. A neural network is trained to learn and follow the basic
laws of physics. Gaussian processes [81, 115] and Koopman operators [1, 25, 103] also allow
for incorporating prior knowledge to the model construction process. Gaussian processes are
non-parametric and the Koopman operator methods require in theory an infinitely large set
of bases, in practice orders of magnitude larger than the number of regressors. In contrast to
these methods, we aim at constructing parsimonious nonlinear models.

The literature on including partial empirical or theoretical models in data-driven robot
model construction is limited. It has been addressed mainly in the context of local model-
ing [72, 109]. However, these techniques require a human expert to define validity regions for
the individual submodels and as such are unsuitable for automated procedures required by the
application to long-term robot autonomy.

In our previous work [88], we have shown that the model construction process can be
guided towards a physically meaningful model through formal constraints. In this work, we
suggest another approach to incorporate known robot properties in the form of a partial model.
In most cases, the theoretical or empirical model of the robot is known in advance and it can
be naturally plugged into the SR-driven model construction process as a building block which
allows to find more accurate models faster. The apriori model information can be used both in
standard SR [43] as well as in SR with formal constraints [88].

5.3. METHOD

In this section, we first present a brief overview of the baseline SR and then we extend it to
include prior knowledge.

5.3.1. BASELINE SYMBOLIC REGRESSION

Symbolic regression uses genetic programming to build from data nonlinear models in the
following form:

y = f (ξ) , (5.1)

where ξ ∈X ⊂Rn is the model input and y ∈Y ⊂R is its output. The method can be applied to
both discrete-time and continuous-time dynamic models. In this chapter, we adapt the model
definition described in Chapter 2 to state-space models in continuous time

ẋ = f(x,u) (5.2)

with the state x ∈S ⊂Rs , the control input u ∈U ⊂Rm , and the state derivative ẋ. Continuous-
time models allow to naturally incorporate prior knowledge based on physics, which will be
demonstrated in Section 5.4. Note that we use SR to model the individual state derivative com-
ponents independently. In the sequel, a model for a generic state derivative component ẋ will

54 5. PHYSICS-AWARE MODEL LEARNING FOR DYNAMIC SYSTEMS

be denoted as ˆ̇x = f (x,u). In some cases, the state derivatives can be directly measured, while
in other cases they need to be approximated using a difference operator on the discrete-time
state measurements.

We use an adapted version of the SNGP algorithm, originally described in [71]. SNGP stores
functions represented as tree structures in a single linear array, where each element of the array
corresponds to one node. The array of nodes represents a population. A node may be either
an elementary function, such as addition or multiplication, or a terminal, i.e., a variable or a
constant. Nodes representing functions may only take as their arguments nodes that appear
earlier in the array.

Instead of evolving the model as a single function, we adopt the approach presented in [7]
and construct the model as a composition of genetically evolved nonlinear functions fi , called
features:

f (ξ) =β0 +
n f∑

i=1
βi fi (ξ) , (5.3)

where the coefficients βi , i = 0,1, . . . ,n f are estimated by least squares. The features fi rep-
resent mathematical expressions composed of elementary functions and terminals. They are
evolved through an iterative process using a mutation operator. The main user-defined param-
eters include the elementary function set F , the population size ni , the number of generations
ng , the maximum number of features n f , and the maximum depth d of the trees representing
the features. The evolution is driven by a fitness function minimizing the root-mean-square
error (RMSE) on the training data set, denoted etrain

d . For more details on the SNGP implemen-
tation used in this work, please refer to [87].

5.3.2. PRIOR KNOWLEDGE

Prior knowledge of the model’s properties can be included in the model construction process
as a partial model or as formal constraints. First, we describe how to represent prior knowledge
in the form of a partial model.

An approximate or partial theoretical or empirical model of the robot is often known. This
information can be included in the model structure as prior features:

f (ξ) =β0 +
np∑
i=1

βi f̄i (ξ)︸ ︷︷ ︸
prior features

+
n f∑

i=np+1
βi fi (ξ)︸ ︷︷ ︸

evolved features

. (5.4)

Features f̄i (ξ) encode the prior knowledge in the form of fixed functions specified by the user
in advance, while features fi (ξ) are evolved by genetic programming to compensate for the
prior features’ deficiency manifested by an error in fitting the training data. All the coefficients
βi , i ∈ {0, . . . ,n f }, are estimated using least squares, i.e., both for f̄i (ξ) and fi (ξ). In many cases,
the apriori model information will be stored in only one prior feature f̄1, np = 1. However,
the above formulation allows for decomposing the theoretical or empirical model into several
features. In this way, some of its inner parameters can also be tuned.

5.4. EXPERIMENTS 55

Prior knowledge can also be given through formal constraints. Desired model properties,
such as monotonicity or symmetry, can be written as equality and inequality constraints:

cE
i (ξ) = 0 ∀ ξ ∈C E

i ⊂X (5.5)

with i ∈ {1, . . . ,nE
c }, and

c I
i (ξ) ≤ 0 ∀ ξ ∈C I

i ⊂X (5.6)

with i ∈ {1, . . . ,n I
c }. For each constraint, a given number of samples is randomly drawn from a

uniform distribution over the specified constraint domain C E
i and C I

i . This yields two sets of
samples: DE

i containing samples for each equality constraint cE
i (ξ) and D I

i with samples for
each inequality constraint c I

i (ξ). The constraint violation error, denoted ec , takes into account
both types of constraints. We refer the interested reader to [88] for details.

The above formal constraints are incorporated in the model search in the form of multi-
objective optimization. The bi-objective SNGP simultaneously optimizes the model with re-
spect to a) the RMSE on the training data set etrain

d , and b) the RMSE on the training constraint
set etrain

c .
Among the generated models, the user can select the desired trade-off between the accu-

racy of fitting the data and the constraint satisfaction. In this work, we determine the best
model as the one that minimizes the training data error etrain

d among all the models that have
the constraint satisfaction error etrain

c below a given threshold γ.

5.4. EXPERIMENTS

We have selected two robotic benchmarks to evaluate our method: a mobile robot TurtleBot 2
and a drone Parrot Bebop 2. These two robots were chosen to assess the performance of the
proposed method on systems with different dynamics, complexity, and types of nonlinearities.

5.4.1. EVALUATION SCHEME

We consider two scenarios: baseline SNGP and SNGP with formal constraints. The former fits
the data minimizing the error etrain

d , while the latter performs a multi-objective optimization
including formal constraints and also minimizing the error etrain

c .
In both scenarios, we compare a variant of SNGP without prior features and including prior

features. This allows to measure the benefit of including prior features, while the total number
of features as well as other SNGP parameters remain the same, see Section 5.4.2.

We use the following data sets for training and evaluation:

TRAINING AND TEST DATA SETS

The training and test data sets are two disjoint sets collected during the robot operation. The
training set is used only for learning the model, while the test set serves to measure the error
etest

d , capturing how well the model fits previously unseen data.

TRAINING AND TEST CONSTRAINT SETS

A set of training constraint samples is drawn from a uniform distribution for each of the defined
constraints to evaluate the constraint violation error etrain

c in the multi-objective model search.

56 5. PHYSICS-AWARE MODEL LEARNING FOR DYNAMIC SYSTEMS

Table 5.1: Main SNGP parameters used in the experiments.

Parameter Symbol Value

Elementary function set F
{+, −, ×, Square,

Cube, Sine, Cosine}

Population size ni 500

Number of generations ng 60 000

Maximum number of features n f 10

Maximum tree depth d 7

The test constraint set is drawn from the same distribution to measure how well the model
satisfies the required formal constraints on data different from the training samples.

We report the median errors etest
d and etest

c on the test data set and on the test constraint set,
respectively. The median errors are calculated over 50 runs of SNGP.

A comparison of the SNGP performance with alternative modeling methods such as neural
networks or local linear regression has been presented in our previous work [43, 44] and is
beyond the scope of this work.

5.4.2. METHOD PARAMETERS AND COMPLEXITY

We use the default configuration for all experiments. The main parameters of all variants of
SNGP evaluated in the experiments are summarized in Table 5.1. Note that the prior features
also count towards the maximum number of features n f to ensure a fair comparison.

We have empirically observed across various data sets that the computational complex-
ity of symbolic regression grows linearly with the number of samples and with the number of
generations. A single run of SNGP takes 2–7 minutes on a standard PC1 for the experiments
described in this section, depending on the training data set size.

5.4.3. MOBILE ROBOT

We have recorded the training and test data sets on a real robot TurtleBot 2, see Figure 4.1 in
Chapter 4. For convenience, we repeat here that the state of the two-wheeled mobile robot is
defined as x = (xpos , ypos ,φ)>, where xpos and ypos are the position coordinates of the robot
andφ is its heading. The forward velocity v f and the angular velocity va are the control inputs,
forming the input vector u = (v f , va)>.

The theoretical continuous-time model of the robot is:

ẋpos = v f cosφ , (5.7)

ẏpos = v f sinφ , (5.8)

φ̇= va . (5.9)

1Intel Core i7-4610M @ 3.00 GHz, 16 GB RAM

5.4. EXPERIMENTS 57

We are interested in finding the continuous-time model of ẋpos and ẏpos fitting the measured
data:

ˆ̇xpos = f ẋpos (xpos , ypos ,φ, v f , va) , (5.10)

ˆ̇ypos = f ẏpos (xpos , ypos ,φ, v f , va) . (5.11)

Modeling of φ̇ is omitted from this work for its simplicity. We use a data set of 130 samples
both for ẋpos and ẏpos . The data set was divided in the ratio 2:1 into 87 training samples and 43
test samples. The discrete-time data samples were recorded with a sampling period Ts = 0.2 s
while the robot was moving along a random trajectory. Given the samples composed of the
current state xk , current input uk , and the next state xk+1, we used the forward difference to
approximate the state derivatives.

Note that in (5.10) and (5.11), all the state and input variables are available to SR, even
though they are not needed according to the theoretical models (5.7), (5.8). SR automatically
chooses the variables that are useful to capture the properties of the function fitting the data.

PRIOR KNOWLEDGE

The theoretical models (5.7) and (5.8) are used as the prior features f̄1, ḡ1 in learning the models
ˆ̇xpos and ˆ̇ypos , respectively. Symbolic regression allows for modeling imperfections that are not
captured in the theoretical models, such as friction, and it can also compensate for sensor
inaccuracies.

We define three formal constraints for modeling ẋpos :

1. The robot must have a zero velocity along the x-axis if the linear velocity v f is zero:
xpos ∈ [−10,10] m, ypos ∈ [−10,10] m, φ ∈ (−π,π] rad, v f = 0 m · s−1, va ∈ [−π,π] rad · s−1

→ ẋpos = 0 m · s−1.

2. The robot must have a zero velocity along the x-axis if it is moving in the positive direc-
tion of the y-axis and not rotating at the same time: xpos ∈ [−10,10] m, ypos ∈ [−10,10] m,
φ=π/2 rad, v f ∈ [−0.6,0.6] m · s−1, va = 0 rad · s−1 → ẋpos = 0 m · s−1.

3. The robot must have a zero velocity along the x-axis if it is moving in the negative direc-
tion of the y-axis and not rotating at the same time: xpos ∈ [−10,10] m, ypos ∈ [−10,10] m,
φ=−π/2 rad, v f ∈ [−0.6,0.6] m · s−1, va = 0 rad · s−1 → ẋpos = 0 m · s−1.

Similarly, we define three additional constraints for modeling ẏpos , with the only difference
in setting φ = 0 rad in the second constraint and φ = π rad in the third constraint. All three
additional constraints yield zero ẏpos .

For both ẋpos and ẏpos , we have generated 50 training constraint samples and 50 test con-
straint samples for each of the three constraints.

To select the best model among the models generated by SNGP with formal constraints, we
consider models with etrain

c below the threshold γ = 5×10−2 m · s−1 and we choose the model
with the lowest etrain

d among them. The value of γ was chosen empirically and it serves to set
the trade-off between the two criteria of the multi-objective optimization.

58 5. PHYSICS-AWARE MODEL LEARNING FOR DYNAMIC SYSTEMS

Table 5.2: Median error over 50 runs of SNGP on the test data set etest
d and on the test constraint set etest

c for the
mobile robot experiment.

Scenario Prior feature
Median etest

d Median etest
c(

m · s−1
) (

m · s−1
)

ˆ̇xpos

Baseline
Not included 5.920×10−3 4.015×101

Included 5.562×10−3 3.744×101

Constrained
Not included 5.273×10−3 1.589×10−2

Included 4.973×10−3 1.806×10−2

ˆ̇ypos

Baseline
Not included 6.414×10−3 5.464×100

Included 5.455×10−3 1.574×101

Constrained
Not included 6.492×10−3 2.457×10−2

Included 6.010×10−3 2.431×10−2

Figure 5.1: Comparison of models from 50 baseline SNGP runs in the mobile robot experiment, sorted by RMSE
on the test data set etest

d .

5.4. EXPERIMENTS 59

Figure 5.2: Comparison of models from 50 runs of SNGP with constraints in the mobile robot experiment, sorted
by RMSE on the test data set etest

d .

RESULTS AND DISCUSSION

The results for all cases are summarized in Table 5.2. A comparison of the error on the test data
set etest

d for a variant with the prior feature and without it is shown in Figure 5.1 for baseline
SNGP and in Figure 5.2 for SNGP with formal constraints. The error of the prior feature itself is
shown as a reference.

Using the prior feature yields results superior to the variant without the prior feature in
terms of etest

d . This holds for the baseline SNGP as well as for SNGP with formal constraints,
both for ˆ̇xpos and ˆ̇ypos . We used the Wilcoxon rank-sum test [62] to evaluate the statistical
significance of the improvement. The improvement is statistically significant with p = 3.798×
10−4 for the baseline method and with p = 5.763×10−3 for SNGP with constraints, both values
reported for ˆ̇xpos . Even a more significant improvement is achieved for ˆ̇ypos with p = 3.671×
10−6 for the baseline method and with p = 6.357×10−4 for constrained SNGP.

60 5. PHYSICS-AWARE MODEL LEARNING FOR DYNAMIC SYSTEMS

SNGP with constraints achieves a better error etest
c than the baseline SNGP for both ˆ̇xpos

and ˆ̇ypos by several orders of magnitude. The results also demonstrate the capability of the
method to learn accurate models from very small data sets, as the models were learned on only
87 training samples.

An example of an analytic model for ˆ̇xpos and ˆ̇ypos , found using SNGP with formal con-
straints and with the prior feature included, has been algebraically simplified using Matlab’s
Symbolic Math Toolbox to the following form:

ˆ̇xpos = 8.5×10−1v f cos(φ)−1.2×10−2 sin(sin(xpos))

+1.3×10−2 sin(xpos)2 −7.7×10−3 cos(φ)3

+3.7×10−3(φ+ va)+2.8×10−3 ypos cos(φ+ va)

−3.2×10−3(v f +2)(sin(sin(φ))−cos(φ)3 cos(xpos))

−1.9×10−3(φ+ va)2 +1.8×10−3 cos(xpos)(φ−3.1)

+5.5×10−4 ypos −4.8×10−4v f −3.1×10−4 ,

(5.12)

ˆ̇ypos = 8.6×10−1v f sin(φ)−2.3×10−1 cos(1.4v f)

−9.0×10−2v f sin(cos(v2
f))−8.3×10−3 cos(φ−2.8v f)4

+5.5×10−3(φ+ va)+7.6×10−4xpos −1.6×10−16 y18
pos

−3.0×10−3 sin(xpos)2 −5.2×10−3 cos(va)9

−6.4×10−4(φ−2.8v f)2(ypos − sin(xpos))

+6.1×10−5(ypos − sin(xpos))3 +2.4×10−1 .

(5.13)

For both variables, the first term is the prior feature with its coefficient close to one. The co-
efficient is approximately 15 % smaller than in the prior model, which may be explained by
the following two reasons. First, the actual forward velocity achieved by the robot is lower than
the command velocity v f . Second, other terms in the model, evolved by combining elementary
functions, compensate for inaccuracies of the prior model. This result confirms our hypothesis
that the method uses the prior feature as the main building block and constructs the remaining
components in the final model to fit the training data.

5.4. EXPERIMENTS 61

5.4.4. DRONE

We have performed experiments with the Parrot Bebop 2 drone, see Figure 4.7 in Chapter 4.
The state vector of the drone is x = (x, y, z, vx , vy , vz ,θ,ϕ,ψ)>, where x, y , and z denote its posi-
tion, vx , vy , and vz are the translational velocities measured by the OptiTrack motion-capture
system in the fixed world frame, and θ, ϕ, and ψ are the body angles, denoting the pitch, roll,
and yaw, respectively. The drone is controlled by the input vector u = (θc , ϕc , ωc , ωzc)>, where
its components correspond to the desired pitch, roll, and yaw rates and the vertical velocity,
respectively. The most complex empirical models are given for v̇x and v̇y :

v̇x = g cosψ
tanθ

cosϕ
+ g sinψ tanϕ−kD vx , (5.14)

v̇y = g sinψ
tanθ

cosϕ
− g cosψ tanϕ−kD vy , (5.15)

where the gravitational acceleration g = 9.81 m · s−2 and the drag constant kD = 0.28 s have
been estimated empirically. Therefore, we will evaluate our method on modeling these two
most challenging variables. We employ SR to build the models of v̇x and v̇y from the data in
the following form:

ˆ̇vx = f v̇x (vx ,θ,ϕ,ψ) , (5.16)
ˆ̇vy = f v̇y (vy ,θ,ϕ,ψ) . (5.17)

We have recorded the training data set of 160 samples by steering the real drone to follow an
eight-shaped trajectory. The test data set of 251 samples was captured on a square-shaped
trajectory. The discrete-time data set for both variables v̇x and v̇y was recorded with a sampling
period Ts = 0.05 s. Same as for the mobile robot, we used the forward difference to approximate
the derivatives.

PRIOR KNOWLEDGE

The theoretical models (5.14) and (5.15) are used as the prior features f̄1, ḡ1 in learning the
models ˆ̇vx and ˆ̇vy , respectively. As the empirical models are composed of three separate terms,
alternatively, three prior features can be formulated for v̇x :

f̄1 = g cosψ tanθ/cosϕ ,

f̄2 = g sinψ tanϕ , (5.18)

f̄3 =−kD vx

and analogously for v̇y :

ḡ1 = g sinψ tanθ/cosϕ ,

ḡ2 =−g cosψ tanϕ , (5.19)

ḡ3 =−kD vy .

This enables the method to tune also the coefficients of the empirical model components
through least squares, see Section 5.3.2.

62 5. PHYSICS-AWARE MODEL LEARNING FOR DYNAMIC SYSTEMS

We define four formal constraints for modeling v̇x :

1. Given a zero velocity along the x-axis, zero pitch, yaw orienting the drone in the positive
direction of the x-axis, and a non-zero roll, the acceleration in the direction of the x-axis
has to be zero: vx = 0 m · s−1, θ = 0 rad, ϕ ∈ [−π/15,π/15] rad, ψ= 0 rad → v̇x = 0 m · s−2.

2. Given a zero velocity along the x-axis, zero pitch, yaw orienting the drone in the negative
direction of the x-axis, and a non-zero roll, the acceleration in the direction of the x-axis
has to be zero: vx = 0 m · s−1, θ = 0 rad, ϕ ∈ [−π/15,π/15] rad, ψ=π rad → v̇x = 0 m · s−2.

3. With a zero velocity along the x-axis, zero roll, yaw orienting the drone in the positive
direction of the y-axis, and a non-zero pitch, the acceleration in the direction of the x-
axis has to be zero: vx = 0 m · s−1, θ ∈ [−π/15,π/15] rad, ϕ = 0 rad, ψ = π/2 rad → v̇x =
0 m · s−2.

4. With a zero velocity along the x-axis, zero roll, yaw orienting the drone in the negative
direction of the y-axis, and a non-zero pitch, the acceleration in the direction of the x-
axis has to be zero: vx = 0 m · s−1, θ ∈ [−π/15,π/15] rad, ϕ = 0 rad, ψ = −π/2 rad → v̇x =
0 m · s−2.

Analogously, we define four formal constraints for modeling v̇y , with the exception that the
roles of θ and ϕ are swapped. All four constraints are then expected to yield zero v̇y .

For both v̇x and v̇y , we have generated 50 training constraint samples and 50 test constraint
samples for each of the four constraints.

To select the best model among the models generated by SNGP with formal constraints, we
consider models with etrain

c below γ= 5×10−2 m · s−2 and we choose the model with the lowest
etrain

d .

RESULTS AND DISCUSSION

The results for zero, one, and three prior features for SR without and with formal constraints
and for both modeled variables are summarized in Table 5.3. In three of four scenarios, the
variants with prior features outperform the variant with no prior feature in terms of the median
etest

d . In the baseline SNGP for ˆ̇vy , the variants with prior features perform slightly worse than
the variant without the prior feature. However, the constrained SNGP clearly benefits from
including the prior features. The variant with three prior features outperforms all other variants
in the constrained SNGP scenarios for both variables. This result indicates that splitting the
empirical model into more prior features is beneficial in certain cases.

There is no statistical difference at the significance level of 5 % between the data fitting
performance etest

d of the baseline SNGP with prior features and without them. However, in-
corporating the prior features into SNGP with formal constraints leads to significantly better
results. In the case of ˆ̇vx , the improvement is substantial: the Wilcoxon rank-sum test returns
p = 2.383×10−9 for the case with one prior feature and p = 1.520×10−10 for the case with three
prior features, both compared to the case without any prior feature. Also for ˆ̇vy , a significant
improvement is achieved with p = 2.284×10−3 for one prior feature and p = 1.040×10−5 for
three prior features, compared to the case with no prior feature.

5.5. CONCLUSIONS 63

Table 5.3: Median error over 50 runs of SNGP on the test data set etest
d and on the test constraint set etest

c for the
drone experiment.

Scenario Empirical model
Median etest

d Median etest
c(

m · s−2
) (

m · s−2
)

ˆ̇vx

Baseline
Not included 7.508×10−1 2.309×103

1 prior feature 6.877×10−1 2.804×103

3 prior features 7.237×10−1 8.125×102

Constrained
Not included 1.153×100 3.207×10−2

1 prior feature 2.245×10−1 4.385×10−2

3 prior features 1.980×10−1 4.269×10−2

ˆ̇vy

Baseline
Not included 6.803×10−1 2.266×102

1 prior feature 8.536×10−1 1.899×103

3 prior features 8.260×10−1 5.282×102

Constrained
Not included 1.987×10−1 3.986×10−2

1 prior feature 1.727×10−1 4.643×10−2

3 prior features 1.639×10−1 4.439×10−2

Similarly as for the mobile robot, it can be clearly seen that the constraint satisfaction error
etest

c on the test constraint samples is by several orders of magnitude better for the models
learned by SNGP with formal constraints.

5.5. CONCLUSIONS

We have proposed a method for robot model learning based on symbolic regression that allows
to incorporate prior knowledge to the model search and use it along with the training data
to evolve an accurate robot model in the form of analytic equations. The prior knowledge is
given to the method by specifying partially known model components, such as theoretical or
empirical models, in the form of prior features. An advantage is the ability to learn from small
batches of data and combining the prior features with formal constraints.

The experimental evaluation on two systems from the robotics domain has shown that in-
cluding the prior knowledge improves the model accuracy and the compliance with the physi-
cal limitations of the robot, as compared to the baseline SNGP. An overall improvement in data
fitting accuracy was achieved by including the prior features both for the baseline SNGP and
for SNGP with constraints.

In the future work, we will evaluate the method on higher-dimensional problems and test
the performance of the models in a control loop. We will also evaluate the impact of the training
set size on the method performance. Further research will also involve structure and parameter
tuning within the prior features. In addition, we aim at conducting a thorough comparison of
the proposed approach with alternative model learning methods.

6
CHANGE DETECTION USING WEIGHTED

FEATURES FOR IMAGE-BASED LOCALIZATION

Autonomous mobile robots are becoming increasingly important in many industrial and domes-
tic environments. Dealing with unforeseen situations is a difficult problem that must be tackled
to achieve long-term robot autonomy. In vision-based localization and navigation methods, one
of the major issues is the scene dynamics. The autonomous operation of the robot may become
unreliable if the changes occurring in dynamic environments are not detected and managed.
Moving chairs, opening and closing doors or windows, replacing objects and other changes make
many conventional methods fail. To deal with these challenges, we present a novel method for
change detection based on weighted local visual features. The core idea of the algorithm is to
distinguish the valuable information in stable regions of the scene from the potentially mislead-
ing information in the regions that are changing. We evaluate the change detection algorithm
in a visual localization framework based on feature matching by performing a series of long-
term localization experiments in various real-world environments. The results show that the
change detection method yields an improvement in the localization accuracy, compared to the
baseline method without change detection. In addition, an experimental evaluation on a public
long-term localization data set with more than 10 000 images reveals that the proposed method
outperforms two alternative localization methods on images recorded several months after the
initial mapping.

This chapter is an adapted version of the journal paper [42].

65

66 6. CHANGE DETECTION USING WEIGHTED FEATURES FOR IMAGE-BASED LOCALIZATION

6.1. INTRODUCTION

Deployment of autonomous mobile robots in industrial and domestic environments is chal-
lenging due to the dynamics of these environments. Advanced methods are needed to per-
form localization and navigation precisely and reliably, despite the changes occurring in the
environment.

In this work, we present a novel approach to change detection based on local features and
their descriptors. A robot equipped with a camera moves through its environment and detects
changes that have occurred with respect to an initial mapping session. Once the robot detects
a change, it captures it by decreasing weights assigned to the corresponding features stored
in the environment representation. At the same time, stable features that have been detected
during subsequent visits to the same place are given higher importance through increasing
their weights.

Examples of changes that we consider in our work are moving chairs and items on tables,
pictures on computer or TV screens, changing contents of whiteboards and notice boards,
opening or closing doors, adjusting blinds in the windows, etc. These changes occur every
day in various industrial, domestic, and office environments, as illustrated in Figure 6.1.

Figure 6.1: Examples of changes that can be detected by the proposed algorithm. Handling these changes appro-
priately allows for more accurate localization.

The change detection method can be used for robot localization based on place detection,
which can be further used to perform more complex tasks such as navigation. It allows the
robot to recognize its surroundings more reliably and therefore to perform these tasks more
precisely. The advantages of the proposed method are its short learning time, low demand for
computational resources, its data efficiency and the low requirements on the sensor hardware.

The chapter is organized as follows. Section 6.2 presents the related research in the field
of change detection and localization in dynamic environments. A baseline visual localization
framework is introduced in Section 6.3 and the proposed change detection method in Sec-
tion 6.4, along with its incorporation into the localization framework. Sections 6.5 and 6.6 de-
scribe the experimental evaluation. The conclusions and future work are given in Section 6.7.

6.2. RELATED WORK 67

6.2. RELATED WORK

Dynamically changing environments present a challenge in most robotic navigation contexts.
In order to perform stable localization and path-planning, robots must take into account these
changes [4]. Change detection and localization in dynamic environments has attracted the
interest of many authors and various approaches have been proposed, as surveyed for example
in [59] and [101].

Most change detection algorithms are based on object detection and tracking in long-term
operation [17, 22, 66, 91]. In [22], a robot patrols an indoor environment and detects mov-
able objects by change detection and temporal reasoning. The objective is to determine how
many movable objects are there in the environment and to track their position. The Rao-
Blackwellized particle filter and the expectation-maximization algorithm are used to track the
objects and to learn the parameters of the environment dynamics. In [91], a service robot is
deployed in various indoor environments and a hierarchical map of the environment is main-
tained that takes into account the changes in the object positions by comparing current object
detections to the mapped ones. In [17], the change detection problem is treated through rea-
soning about observations. Observations are classified considering long-term, short-term, and
dynamic features, which correspond to mapped static objects, unmapped static objects, and
unmapped dynamic objects, respectively. Short-term features produce local adjustments to
the belief about the trajectory of the robot, while long-term features yield global adjustments.

Other works detect changes via correspondences between robot views or images [5, 9, 15,
21, 48, 53, 56, 82, 148]. Full RGB-D views are used in [56] to build a map of the robot world.
Changes between successive views are computed to discover the objects (moved areas) and
to learn them. Similarly, in [53], a Truncated Signed Distance Function (TSDF) grid and a 3D
reconstruction of the environment are maintained. New observations are aligned with the pre-
vious ones and included in the new reconstruction. The new reconstruction is compared to the
previous one in order to identify dynamic clusters between both reconstructions. Image views
are used in [48] to detect changes using Gaussian Mixture Models (GMMs). As GMMs have
long computational times, Vertical Surface Normal Histograms provide main plane areas that
are discarded in the search for changes. Change detection is accomplished as the difference in
the Gaussians generated for two images.

Pointclouds from a LiDAR are compared to an octree-based occupancy map in [148] to
obtain a set of changes. Change candidates are computed using the Mahalanobis distance
and filtered to eliminate outliers. Authors in [21] proposed a 2D LiDAR-based framework for
long-term indoor localization on prior floor plans. The system combines graph-based map-
ping techniques and Bayes filtering to detect significant changes in the environment. The au-
thors use an iterative closest point-based scan matching to determine the probability that a
LiDAR scan related to a trajectory pose corresponds to the currently observable environment.
This probability is used to improve the trajectory estimation through the update of the previous
nodes.

An approach for mapping and localization dealing with sensor inaccuracies and dynamic
environments was presented in [5]. The method based on Extended Kalman Filtering incor-
porates the measurements of landmark strength in the map. The landmarks between the map
and the scene are matched in each step and the landmark strength is updated. Weak landmarks

68 6. CHANGE DETECTION USING WEIGHTED FEATURES FOR IMAGE-BASED LOCALIZATION

are pruned, while newly observed landmarks are added. A system of visual mapping using an
input from a stereo camera was presented in [82]. The method builds and continually updates
a metric map of views, represented as a graph. In [9], a method for life-long visual localization
using binary sequences from images is proposed. The approach is based on using sequences of
images instead of single images for recognizing places. Features are extracted using global LDP
descriptors to obtain the binary codes of each image. These binary descriptors are efficiently
matched by computing the Hamming distance.

Change detection has also been broadly studied for outdoor environments [2, 111, 117].
Structural change detection from street-view images is performed in [2]. Multisensor fusion
SLAM, deep deconvolution networks and fast 3D reconstruction are used to determine the
changing regions between pairs of images. In [117], a Bayesian filter is proposed to model fea-
ture persistence of road and traffic elements. Single-feature and neighboring-feature informa-
tion are used to detect changes in feature-based maps and estimate feature persistence. Many
works have been devoted to overcoming seasonal changes for outdoor environment naviga-
tion [32, 110, 135, 141]. In [110], HOG features and deep convolutional networks are used to
compare and match the newly acquired image with a database of images independently of the
weather and seasonal conditions. The approach presented in [141] compares different variants
of SIFT and SURF feature detectors in the frame of an appearance-based topological localiza-
tion on panoramic images capturing seasonal changes. Visual words from local features have
been used in [73] and [74] to determine the best candidate image given a query image. Visual
words are built from the co-occurrence of SIFT features at each location at different times of
the day or year. Spatial words (spatial relations between features) are used to verify candidate
visual words.

Only a limited number of works have been devoted to long-term localization based on local
features in indoor environments [12, 31, 34, 36]. In [31], SURF features are applied to training
images in order to learn a new descriptor that is more robust to changes in both indoor and
outdoor environments. The work [34] presents an approach based on experiences. An obser-
vation is compared with all stored experiences and matched against the most similar one.

The approaches [12] and [36] are inspired by the Atkinson and Shiffrin human memory
model [11]. They adopt the concepts of short-term memory (STM) and long-term memory
(LTM) to deal with changing environments in long-term localization. In [36], the STM and LTM
are represented as finite state machines. Each new feature gets first to the STM and needs to be
repetitively detected to be moved to LTM. Features are removed from STM and LTM if they are
not detected in successive visits to the same place. In [12], the authors introduce a Feature Sta-
bility Histogram (FSH) that registers local feature stability over time through a voting scheme.
Both methods employ their own mechanisms to update the respective feature containers. In
[36], only LTM is used for matching. In [12], both LTM and STM is used for matching within
the FSH and the feature strength is considered. Both approaches use omnidirectional images
for experiments, even though the algorithms do not seem to be specifically dependent on that
type of images.

Many of the aforementioned algorithms need computationally demanding learning pro-
cesses and a vast amount of training data [31] or heavy maintenance of 3D map reconstruc-
tions [2, 56], while other methods build on spatio-temporal relations [73, 74]. On the contrary,
the approach proposed in this chapter relies on local feature detection and matching, which al-

6.3. VISUAL LOCALIZATION FRAMEWORK 69

lows it to run in real time on low-cost hardware platforms. It does not require any data-hungry,
computationally challenging learning stage to build an initial map of the environment first and
then continuously update it during the long-term operation of the robot. No further assump-
tions need to be made regarding periodic repetitiveness of changes, similar speed of the robot
following given trajectories, etc.

Among the two related methods [12] and [36], the proposed method is closest to [36] thanks
to a comparable relative simplicity of the approach. However, we do not use the short-term
and long-term memory concepts. Instead, we assign weights to the features that capture their
stability and therefore also their importance. The feature weights are updated proportionally to
the similarity of the feature descriptors, which grants a smoother way of capturing the feature
significance than [36].

6.3. VISUAL LOCALIZATION FRAMEWORK

The change detection method proposed in this work can be used for localization or place de-
tection with various algorithms based on local features. In this section, we present a visual
localization framework that will serve as a baseline and that will be later extended with the
proposed change detection method.

An overview of the method is presented in Figure 6.2. For now, we assume that the change
detection module is not active and we introduce the baseline localization framework.

At first, a robot equipped with a camera builds a discrete representation of the environ-
ment in the form of a visual database, where images are stored together with the robot pose.
Note that a robot featuring a self-localization capability in a static environment needs to be
employed to build the visual database. The location of the robot can be estimated using e.g.
wheel encoders, laser rangefinder readings, inertial measurements, visual odometry, or a com-
bination of these sources.

During the long-term deployment, the robot continuously localizes itself in the environ-
ment, based solely on the visual information by using feature matching against the previously
built visual database. The matching procedure will be described in detail in Section 6.3.3.

6.3.1. BUILDING THE VISUAL DATABASE

A mobile robot equipped with a camera moves around the environment and records images
together with the corresponding robot poses. The visual database consists of records ri , i =
1, . . . , N , which have the following structure:

• a grayscale image Ii , captured by the camera mounted on the robot,

• a set of features Fi detected in the image Ii , where Fi = (f 1
i , f 2

i , . . . , f mi
i),

• a set of descriptors Di of the features Fi , where Di = (d 1
i ,d 2

i , ...,d mi
i) and the indices

1,2, . . . ,mi match the descriptors with the corresponding features,

• a set of weights Wi of the features Fi , where Wi = (w 1
i , w 2

i , . . . , w mi
i) and the indices

1,2, . . . ,mi match the weights with the corresponding features,

• the coordinates ci = (xi , yi ,ϕi) representing the pose of the robot.

70 6. CHANGE DETECTION USING WEIGHTED FEATURES FOR IMAGE-BASED LOCALIZATION

Figure 6.2: Overview of the visual localization framework. The long-term localization uses a previously built visual
database. Query images from the robot are matched against the visual database and the closest match determines
the pose of the robot. The change detection module monitors the changes in the matched images and updates
the visual database when it detects a difference.

A robust feature detector and descriptor need to be employed to detect the features and cal-
culate their compact representation. The feature detector and descriptor can be selected by the
user. As suggested in [12] and [36], we have chosen Speeded-Up Robust Features (SURF) [14].
To verify this choice, an experimental evaluation of different features is given in Section 6.6.5.

6.3.2. WEIGHTED FEATURES

The weights Wi of features Fi are introduced to capture the importance of individual features

in each database record ri . All weights are in the range w j
i ∈ [0,1]. The weights are initialized at

0.5 for all features that have not been assigned any weight so far.
In the baseline localization method, the weights retain their initial values throughout the

algorithm runtime. When updating the visual database based on change detection, the weights
capture the stability and therefore also the reliability of the feature – the features with the high-
est weights are the most stable and reliable ones.

6.3. VISUAL LOCALIZATION FRAMEWORK 71

The weights capture the information whether the image patch represented by the feature
(and its descriptor) is still present in the scene. This is also why the initial weight of a feature is
set to the half of the interval of possible values – at first, it is not known whether the feature is
stable (important) or not. The weight update process through change detection will be detailed
in Section 6.4.

6.3.3. CORRESPONDENCE-BASED LOCALIZATION

Using the previously constructed visual database, the robot can localize itself using a real-time
feed of images from its camera that we refer to as the query images. The following steps are
performed to localize the robot:

1. Capture a grayscale image Iq – the query image.

2. Run a feature detector and descriptor on the query image. The set of descriptors on the
query image Iq is denoted as Dq = {d 1

q,d 2
q, . . . ,d

mq
q }.

3. Match the set of descriptors Dq found in the query image against the sets of descriptors
Di corresponding to each database record ri using a standard matching algorithm [100].

4. Report the pose of the robot as the pose ci∗ stored with the database record ri∗ ,
which achieved the highest weighted correspondences ratio among all records ri in the
database.

The index i∗ of the database record ri∗ with the highest weighted correspondences ratio is
determined by the following equation:

i∗ = argmax
i

∑mi
j=1 p j

q,i w j
i∑mi

j=1 w j
i

 , (6.1)

where the binary variable p j
q,i captures whether the feature f j

i from Fi appears in the tentative
matches between the query image Iq and the database image Ii . Tentative matches refer to
a preliminary matching of descriptors [100] that can be verified through a model estimation
method such as RANSAC [57]. This means that we are searching for a database record that has
the largest proportion of feature descriptors matched with the feature descriptors found in the
query image, giving more importance to the features with higher weights.

We chose to keep the baseline localization method as simple as possible to clearly demon-
strate the impact of using weighted features within change detection. However, the proposed
method can be plugged into more sophisticated methods as well. For instance, even though
we use linear search for simplicity, more advanced techniques can be employed, such as k-d
trees to store feature descriptors, allowing for a substantial speed-up for large databases [36].
Other approaches, e.g. visual vocabulary [131] or hierarchical k-means [116], can be used to
further improve the performance.

72 6. CHANGE DETECTION USING WEIGHTED FEATURES FOR IMAGE-BASED LOCALIZATION

6.4. CHANGE DETECTION METHOD

We propose a method for change detection that improves the long-term autonomy of mobile
robots through maintaining an accurate, up-to-date representation of the environment. The
essence of the method is in learning the scene regions that are stable, distinguishing them
from regions that change. This task is performed through feature-based change detection and
results in a representation robust to changes in the environment. In the following text, we
present the change detection method and show how it extends the baseline localization frame-
work described in Section 6.3.

6.4.1. DETECTING CHANGES

The change detection algorithm is based on the comparison of feature descriptors. We define
a similarity measure between two descriptors d and d ′ based on their Euclidean distance:

s(d ,d ′) = 1

1+||d −d ′||2
. (6.2)

This definition follows a standard approach to convert a distance measure to a similarity mea-
sure [16]. The similarity measure takes values between 0 and 1 with higher values indicating
more similar descriptors. Using Euclidean distance for comparing SURF descriptors is sug-
gested in [14] as one of the standard options.

The outline of the change detection algorithm is as follows:

1. Based on the pairs of tentative correspondences found by the matching algorithm, use
MSAC [138] to estimate the transformation between the query image Iq and the best-
match database image Ii∗ .

2. Transform the positions of the features Fi∗ in the best-match database image Ii∗ to the
coordinate frame of the query image Iq, yielding a set of transformed features F̄i∗ .

3. Calculate the descriptors D̄i∗ = {d̄ 1
i∗ , d̄ 2

i∗ , . . . , d̄
mi∗
i∗ } of the transformed features F̄i∗ in the

query image Iq.

4. Calculate the similarity s j between the descriptors d j
i∗ corresponding to the features f j

i∗

in the database image Ii∗ and the descriptors d̄ j
i∗ of their projections f̄ j

i∗ in the query
image Iq.

To calculate s j , the similarity measure (6.2) is adapted to the following form:

s j = 1

1+
∣∣∣∣∣∣d j

i∗ − d̄ j
i∗

∣∣∣∣∣∣
2

for j = 1, . . . ,mi∗ . (6.3)

The change detection is therefore based on computing the similarity measure between the

descriptors d j
i∗ calculated on the best-match database image Ii∗ and their transformed coun-

terparts d̄ j
i∗ calculated on the query image Iq. Note that this is different from using the features

Fq and their descriptors Dq detected in the query image for comparison.

6.4. CHANGE DETECTION METHOD 73

6.4.2. WEIGHTS UPDATE

The weights of the features in the best-match database image are updated using the similarity

values s j . The weights are updated proportionally to the similarity between the descriptors d j
i∗

calculated on the best-match database image Ii∗ and their transformations d̄ j
i∗ calculated on

the query image Iq:

∀ j ∈ {1, . . . ,mi∗} : w j
i∗ ← min(C s j w j

i∗ ,1) (6.4)

As the similarity measure s j takes values between 0 and 1, we choose C = 2 so that the weight
remains constant if the similarity s j is equal to 0.5.

(a) (b)

Figure 6.3: A database image (a) and a query image with one object missing on the third shelf from the top (b). The
crosses represent the features in both images. Tentative correspondences found by the matching algorithm are
shown in green. The cyan circles show the transformations of the features from the database image to the query
image. The magenta circles show the features that were identified as a change.

Figure 6.3 shows a scene on which we illustrate the principle of the change detection algo-
rithm. An item, e.g. a toolbox, has been removed from one of the shelves after building the
visual database. The change detection algorithm transforms the features from the database
image to the query image and calculates their SURF descriptors. They are then compared to
the corresponding SURF descriptors in the database image. Since the descriptors in the region
of the toolbox have low similarity, their weights are decreased. Note that as a by-product, some
unstable features may have their weights decreased as well.

6.4.3. LONG-TERM OPERATION

The localization framework presented in Section 6.3 can now be extended by change detec-
tion with feature weight updates. An overview of the long-term localization with the change
detection module is shown in Figure 6.2. In the long-term operation, the robot continuously
localizes itself in the environment and maintains its visual database up to date by incorporat-
ing changes detected in the environment.

An important requirement that makes the change detection method efficient is that wrong
matches (localization failures) need to be avoided as much as possible, because incorporating

74 6. CHANGE DETECTION USING WEIGHTED FEATURES FOR IMAGE-BASED LOCALIZATION

false-positive changes in wrongly matched database records decreases the quality of the visual
database. To avoid this, we introduce three conditions that serve as a confidence criterion: a
spatial condition, a temporal condition, and a sufficient number of correspondences. Only if
all three conditions are met, the change detection module is run and the visual database is
updated. In this way, the chance of incorporating false change detections on wrongly matched
images is minimized.

SPATIAL CONDITION

The spatial condition relates the ‘physically’ closest database records (pose-wise) and the clos-
est matches found by the localization algorithm (descriptor-wise), with reference to the best-
match record. It exploits the assumption that images taken from nearby positions have some
common features. Simply put, it is met only if the poses of the most similar matches are not
too far from each other, taking into account the density of the database records. The spatial
condition is evaluated through the following procedure:

1. Determine ns most similar matches in the visual database for the query image, where ns

is a user-specified parameter. Sort them in descending order of the weighted correspon-
dences ratio, which is calculated as the argument of (6.1).

2. Calculate the Euclidean distances ei , i = 2, . . . ,ns , between the best match and the suc-
cessive (ns − 1) most similar matches. For this purpose, the distances are calculated in
the (x, y)-space of the robot (omitting the angle ϕ).

3. Calculate the mean Euclidean distance ms :

ms = 1

ns −1

ns∑
i=2

ei . (6.5)

4. Similarly as in Step 2, calculate the Euclidean distances e ′
j between the best match and

(nr −1) database records closest to the best match in the (x, y)-space of the robot, where
nr is a user-specified parameter.

5. Calculate the reference mean Euclidean distance mr :

mr = 1

nr −1

nr∑
j=2

e ′
j . (6.6)

6. Compare ms with mr . If ms < mr , the poses of the most similar matches are close enough
to each other and the spatial condition is met.

Typically, the number of closest reference records nr is set to be several times larger (e.g.
5×) than ns . Note that the reference means mr can be pre-calculated offline for all database
records for efficiency.

6.4. CHANGE DETECTION METHOD 75

TEMPORAL CONDITION

The temporal condition verifies whether the distance between the current location and the
previous location is smaller than a given threshold δ. It takes into account the physical limi-
tations of the robot and discards unreliable matches in cases when the robot appears to have
moved further than it possibly could. The temporal condition is tested only if the spatial con-
dition was met both for the current and for the previous image, which allows for recovery after
a localization failure.

SUFFICIENT NUMBER OF CORRESPONDENCES

As described in Step 1 of the change detection algorithm in Section 6.4.1, we use MSAC [33] to
estimate the transformation between the query image and the best-match database image. In
this way, we also obtain the information on which features are considered inliers and which
are outliers. A small number of inlier correspondences indicates that the match is not very
reliable. Therefore, if the number of corresponding feature pairs classified as inliers is smaller
than a given threshold θ, the weights are not updated.

6.4.4. LIMITATIONS

The proposed method adjusts the importance of features in the database images through their
weights. This approach relates all subsequent visits of a place to the first mapping session. If
the appearance of a place changes (almost) completely, there are none or only a very few fea-
tures that can be matched between the current view and the appearance of the place captured
during the visual database creation. In such cases, the query image cannot be matched cor-
rectly. For instance, if applied to outdoor environments, the method is in general not able to
deal with seasonal changes. Nevertheless, unlike other authors [12, 36], we have decided not to
include feature addition to the algorithm. The motivation behind this design choice is that new
features might come, for instance, from a temporary occlusion or a severe change of lighting
conditions. Distinguishing such situations from permanent changes usually means introduc-
ing more parameters to the method. Our aim is to keep the long-lasting features from the initial
scanning, as we presume that the main structures in most of the scenes remain stable over long
periods of time.

As we only use single camera images and no information about the depth is needed, we
are limited to the use of planar perspective feature projection (Section 6.4.1). The projection
works well if the viewpoints (robot poses) in the visual database are similar to those in the
query images, which is the case in the data sets used in the experiments. If the robot gets too
far from the records present in the visual database, the viewpoint changes significantly and
the reprojection of features does not work well. As a consequence, even though it would be
possible to update also the adjacent images in the visual database with the detected changes,
we do not perform this update as the benefit would be suppressed by the errors incurred by the
reprojection.

While the algorithm allows for adding new images to the database at any point, new
database records need to come with the information about the pose of the robot, see Sec-
tion 6.3. Such information may not be available to the robot performing the long-term op-
eration, as the only sensor it needs to have in our setting is a camera.

76 6. CHANGE DETECTION USING WEIGHTED FEATURES FOR IMAGE-BASED LOCALIZATION

6.5. EVALUATION ON OUR DATA SETS

For the experimental evaluation, we have chosen TurtleBot 2 as a widely used and affordable
platform, equipped with an RGB-D camera and an on-board computer with a performance
comparable to standard laptops. Note that even though the camera is capable of recording
depth images, the depth information is not used in our method, as we only use grayscale im-
ages. We have used two TurtleBot robots to evaluate the robustness of the method using two
different cameras in various environments:

1. TurtleBot 2 equipped with a camera Asus Xtion PRO LIVE, used in experiments at the
Robotics Lab, Carlos III University in Madrid, Spain;

2. TurtleBot 2 equipped with a camera Orbbec Astra Pro, used in experiments at the Czech
Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague,
Czech Republic.

In both cases, we attached an additional structure to the robot to fix the camera at a higher
position, see Figure 6.4. The pose of the robot was captured through odometry based on wheel
encoders. We used floor markers and manual correction of the measured poses to ensure suf-
ficient ground truth precision.

(a) (b)

Figure 6.4: Mobile robots TurtleBot 2 used in the experiments: (a) at the Carlos III University in Madrid, (b) at the
Czech Technical University in Prague.

6.5. EVALUATION ON OUR DATA SETS 77

6.5.1. DATA SETS

While several data sets featuring city streets, seasonal changes and other outdoor environ-
ments are available [141], the number of available long-term indoor data sets is limited. With
the exception of the STRANDS Witham Wharf data set [85], which we evaluate in Section 6.6,
there are, to the best of our knowledge, no public data sets capturing indoor dynamic environ-
ments which would be well suited for the type of changes that we focus on in this work. To allow
for a detailed analysis and better insight into the method’s performance, we have recorded our
own data sets from four indoor environments at the Leganés campus of the Carlos III Univer-
sity in Madrid and at the Czech Institute of Informatics, Robotics, and Cybernetics in Prague.

The data sets in each of the environments – Lab, Classroom, Hall, and Office – consist of
multiple sequences. The sequences were recorded on different days and at different times of
the day, capturing various changes in the environment (moving chairs and items on the desks,
changing the picture on computer screens, opening and closing window blinds, etc.). We have
also recorded new sequences after eight months in the Lab, Classroom, and Hall environments
to evaluate the long-term performance of the method on a longer time span.

6.5.2. EXPERIMENTAL SETUP

At first, we have constructed a visual database for each environment. Our visual databases are
sparser than the query sequences to make the database images distinctive and avoid multiple
records from the same place. Therefore, the visual databases typically contain fewer images
than the query sequences. The playback of the recorded query sequences served as a stream of
query images in real time. Each query image was matched with the most similar image in the
visual database and the pose associated with the most similar database image was returned as
the pose of the robot. If the confidence conditions (Section 6.4.3) were met, the feature weights
of the best match record in the visual database were updated based on the detected changes.

In all experiments, we have used the following default configuration of the confidence cri-
terion: the number of closest samples was set to ns = 2 and the number of reference samples
nr = 10. The temporal difference tolerance was set to δ = 0.5 m and the minimum number of
correspondences was θ = 10. We have empirically evaluated that the default values worked
well in all performed experiments. However, they may be adjusted for improved performance
on data sets with substantially different properties. Optimization and further analysis of the
parameters will be performed as a part of our future work.

We have compared the root-mean-squared (RMS) localization errors on the query se-
quences matched against the original visual databases and against the visual databases that
have been updated by executing localization with change detection on the query sequences.
For all images in all query sequences, a maximum of 20 % of the image area has changed with
respect to the visual database and with respect to the other query sequences.

The localization errors are calculated for each pair of a query image and the matched
database image as an `2 norm (Euclidean distance) between the ground truth robot pose of
the query image and the robot pose stored with the matched database image. The robot ori-
entation angle is also included in the robot pose vector and it is wrapped to yield a maximal
difference of π rad. Note that the units of the localization RMS error are not meters, as the pose
vector combines values in meters and radians.

78 6. CHANGE DETECTION USING WEIGHTED FEATURES FOR IMAGE-BASED LOCALIZATION

6.5.3. RESULTS

In this section, we present the results of the method on four indoor environments: Lab, Class-
room, Hall, and Office. For each of them, we have randomly chosen different combinations of
the query sequences for updating the visual database to demonstrate the method performance
in various scenarios.

LAB ENVIRONMENT

The Lab data set was recorded at the Carlos III University in Madrid. The changes in the envi-
ronment that appear in this data set include moving up to 3 chairs, altering the content on the
whole area of the whiteboard, moving up to 10 objects on desks, and moving up to 5 items on
the shelves of the cabinets.

(a)

0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

(b)

Figure 6.5: Lab environment: (a) examples of images, (b) the trajectory travelled.

First, we have created the visual database L-DB for a trajectory of an approximately square
shape, see Figure 6.5. We have recorded three other sequences, L-Q1, L-Q2, and L-Q3, which
serve as the query sequences. The sequence L-Q4 was recorded eight months later. Table 6.1
summarizes the properties of the sequences and Table 6.2 presents the results.

Table 6.1: Properties of the image sequences used in the Lab environment.

Image Number Distance
sequence of images travelled

L-DB (database) 41 10.0 m
L-Q1 (query) 89 10.5 m
L-Q2 (query) 85 10.2 m
L-Q3 (query) 84 10.0 m
L-Q4 (query) 97 10.4 m

The localization accuracy on the query sequence L-Q3 improves when the visual database
L-DB is updated by changes detected on the sequence L-Q1. If the visual database is afterward
updated also on the sequence L-Q2, the localization accuracy on the query sequence L-Q3 is
further improved.

6.5. EVALUATION ON OUR DATA SETS 79

Table 6.2: Localization RMS errors on different query sequences in the Lab environment. Sequences evaluated on
a database updated with changes are shown in bold.

Visual Updated Query Localization
database on sequence RMS error

L-DB – L-Q3 0.56
L-DB L-Q1 L-Q3 0.46
L-DB L-Q1, L-Q2 L-Q3 0.41
L-DB – L-Q4 1.25
L-DB L-Q1 L-Q4 1.20

The number of changes that have occurred in the environment during the long time span
before recording the new query sequence L-Q4 was significant. Despite that, the localization
RMS error has improved on the query sequence L-Q4 when it was evaluated on the visual
database L-DB updated by the sequence L-Q1, compared to evaluating it on the original vi-
sual database L-DB. The sequence L-Q1 captures changes such as moved chairs and objects
on tables, which helps to build a more robust representation of the environment. The stable
elements in the environment are assigned higher weights, which allows for a more accurate
localization even after a long period of time.

CLASSROOM ENVIRONMENT

The Classroom data set, featuring e.g. desks with items being moved on them, a whiteboard
with changing content, and adjustable window blinds, was also recorded at the Carlos III Uni-
versity in Madrid. We have first created the visual database C-DB, see Figure 6.6. Two query
sequences, C-Q1 and C-Q2, were recorded several days after the visual database C-DB, and
another query sequence, C-Q3, was recorded eight months later. Table 6.3 summarizes the
properties of the sequences and Table 6.4 presents the results.

(a)

0 5 10 15

0

2

4

6

8

10

12

(b)

Figure 6.6: Classroom environment: (a) examples of images, (b) the trajectory travelled.

The localization task was more challenging in the Classroom environment. In the case of
the query sequence C-Q2 evaluated on the visual database C-DB updated on C-Q1, the local-
ization accuracy remains the same as for the evaluation on the original C-DB. However, for

80 6. CHANGE DETECTION USING WEIGHTED FEATURES FOR IMAGE-BASED LOCALIZATION

Table 6.3: Properties of the image sequences used in the Classroom environment.

Image Number Distance
sequence of images travelled

C-DB (database) 62 13.5 m
C-Q1 (query) 100 13.6 m
C-Q2 (query) 101 13.3 m
C-Q3 (query) 117 13.3 m

Table 6.4: Localization RMS errors on different query sequences in the Classroom environment. Sequences eval-
uated on a database updated with changes are shown in bold.

Visual Updated Query Localization
database on sequence RMS error

C-DB – C-Q2 0.39
C-DB C-Q1 C-Q2 0.39
C-DB – C-Q3 1.02
C-DB C-Q1 C-Q3 0.96

the new query sequence C-Q3, updating the visual database helps to decrease the localization
error.

HALL ENVIRONMENT

The Hall data set, resembling an industrial environment, was also recorded at the Carlos III
University in Madrid. We have first created the visual database H-DB for a rectangular trajec-
tory, see Figure 6.7. We have recorded two other sequences, H-Q1 and H-Q2, which serve as
the query sequences. Eight months later, we have added another sequence H-Q3. Table 6.5
summarizes the properties of the sequences and Table 6.6 presents the results.

(a)

0 2 4 6 8 10 12

0

2

4

6

8

10

(b)

Figure 6.7: Hall environment: (a) examples of images, (b) the trajectory travelled.

Taking into account the spacing between consecutive database images (see Figure 6.7b),
the localization results using the initial visual database are already accurate, leaving little space

6.5. EVALUATION ON OUR DATA SETS 81

Table 6.5: Properties of the image sequences used in the Hall environment.

Image Number Distance
sequence of images travelled

H-DB (database) 58 22.5 m
H-Q1 (query) 67 7.1 m
H-Q2 (query) 59 6.9 m
H-Q3 (query) 53 6.2 m

Table 6.6: Localization RMS errors on different query sequences in the Hall environment. Sequences evaluated
on a database updated with changes are shown in bold.

Visual Updated Query Localization
database on sequence RMS error

H-DB – H-Q1 0.20
H-DB H-Q2 H-Q1 0.19
H-DB – H-Q2 0.16
H-DB H-Q1 H-Q2 0.15
H-DB – H-Q3 1.80
H-DB H-Q1 H-Q3 1.64
H-DB H-Q2 H-Q3 1.65

for improvement. Nevertheless, an improvement was achieved in both cases – for the query se-
quence H-Q2 evaluated on the visual database H-DB updated with H-Q1 and for the query se-
quence H-Q1 evaluated on the visual dabatase H-DB updated with H-Q2. Within the 8 months,
the Hall environment has undergone substantial changes. The visual database H-DB updated
with any of the two sequences H-Q1 or H-Q2 allows for a more accurate localization on the
new query sequence H-Q3.

OFFICE ENVIRONMENT

(a)

0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

(b)

Figure 6.8: Office environment: (a) examples of images, (b) the trajectory travelled.

82 6. CHANGE DETECTION USING WEIGHTED FEATURES FOR IMAGE-BASED LOCALIZATION

The Office data set was recorded at the Czech Technical University in Prague. The office un-
dergoes changes such as opening and closing cabinet doors, changing positions of the chairs,
or replacing items on the desks. We have first created the visual database O-DB for a rectan-
gular trajectory, see Figure 6.8. We have recorded four other sequences, O-Q1, O-Q2, O-Q3,
and O-Q4, which serve as the query sequences. Table 6.7 summarizes the properties of the
sequences and Table 6.8 presents the results.

Table 6.7: Properties of the image sequences used in the Office environment.

Image Number Distance
sequence of images travelled

O-DB (database) 67 10.2 m
O-Q1 (query) 119 9.7 m
O-Q2 (query) 116 10.2 m
O-Q3 (query) 116 10.3 m
O-Q4 (query) 111 10.1 m

Table 6.8: Localization RMS errors on different query sequences in the Office environment. Sequences evaluated
on a database updated with changes are shown in bold.

Visual Updated Query Localization
database on sequence RMS error

O-DB – O-Q1 0.74
O-DB O-Q2 O-Q1 0.72
O-DB – O-Q2 0.93
O-DB O-Q3 O-Q2 0.90
O-DB – O-Q3 0.94
O-DB O-Q1 O-Q3 0.90
O-DB – O-Q4 0.97
O-DB O-Q2 O-Q4 0.91

The Office data set proves to be more difficult in terms of precise localization. The environ-
ment contains large uniform and textureless areas and also repetitive instances of identical ob-
jects, which makes the feature-based localization more challenging. Nevertheless, the change
detection method results in improved localization accuracy.

6.5.4. DISCUSSION

The change detection method reduces the localization (pose estimation) RMS error by 27 % in
the Lab environment and by 9 % in the Hall environment. These two environments are rich
in distinctive features, which allows for a better performance of the feature-based localization
method. Therefore, localization can also better benefit from the change detection method. The
other two environments, Classroom and Office, have shown to be more difficult for localization.
However, the change detection method could still improve the localization accuracy by 6 %
in both cases. The change detection method has proven to work even when dealing with a
long time span in the case of all three environments Lab, Classroom, and Hall, where we have
recorded new sequences several months after the first experiments.

6.6. EVALUATION ON PUBLIC DATA SET 83

The method runs in real time. In our experiments, we were capturing an image every sec-
ond. The processing time of a single query image is approximately 250 ms on a standard com-
puter (Intel Core i7-4610M @ 3.0 GHz, 16 GB RAM) for visual databases of less than 100 images.
Methods allowing speed-up on larger databases can be employed, as discussed in Section 6.3.3.
Such extensions are beyond the scope of this work.

6.6. EVALUATION ON PUBLIC DATA SET

In addition to the experiments with our own data sets, we evaluate the method on a public data
set Witham Wharf from the STRANDS project [85]. The data set is intended for RGB-D local-
ization in changing environments and therefore, it suits well a long-term indoor localization
experiment with our method. Furthermore, we use the data set to compare the performance
of our method to two alternative methods for feature-based localization [35, 36]. Finally, we
analyze the impact of using different feature detectors and descriptors within our method.

6.6.1. DATA SET OVERVIEW

The data set contains images captured by a mobile robot every 10 minutes at eight locations in
an open-plan office. It is divided into a training set recorded over the period of one week and
three test sets, which were recorded on three different days throughout the following months.
The training set consists of 1008 images for each of the eight locations, while each test set con-
tains 144 images for each location. We omit the available depth information and convert the
RGB images to grayscale images, as in Section 6.5.

To form the visual database, we take the first image for each location from the training
set, see Figure 6.9. All the remaining images from the training set are used to build the query
sequence S-Q1. Each test set corresponds to one of the query sequences S-Q2, S-Q3, and S-Q4,
see Table 6.9.

Figure 6.9: Initial images (S-DB) taken from each of the eight locations in the STRANDS Witham Wharf data set.

84 6. CHANGE DETECTION USING WEIGHTED FEATURES FOR IMAGE-BASED LOCALIZATION

Table 6.9: Summary of the STRANDS Witham Wharf data set properties.

Image Number Date of
sequence of images recording

S-DB (database) 8 10 November 2013
S-Q1 (query) 8056 10–16 November 2013
S-Q2 (query) 1152 17 November 2013
S-Q3 (query) 1152 2 February 2014
S-Q4 (query) 1152 14 December 2014

6.6.2. METHOD PERFORMANCE

This experiment compares the baseline localization algorithm, where the change detection
module is disabled, with localization using change detection. As the data set consists of eight
discrete locations rather than images from trajectories (like in Section 6.5), we use a different
evaluation metric than for our data sets. We calculate the localization accuracy as the fraction
of images that were assigned to the correct ground truth location among all evaluated images.
The nature of the data set also does not allow for the use of the spatial and temporal conditiona
in the confidence criterion. The confidence criterion therefore relies on the minimum number
of correspondences, which was set to θ = 10.

The localization algorithm with change detection takes S-DB as the visual database and
runs first on the long query sequence S-Q1 (training set). Then, retaining the feature weights
after processing S-Q1, it is executed on the query sequences S-Q2, S-Q3, and S-Q4 (test se-
quences). The baseline localization without change detection is evaluated independently on
all four query sequences. The results are presented in Table 6.10 and examples of matched
places for query images from one place are shown in Figure 6.10.

Table 6.10: Localization accuracy of the proposed method on the query sequences from the STRANDS Witham
Wharf data set using the SURF features. Better results are shown in bold.

Visual Updated Query Change Localization
database on sequence detection accuracy

S-DB – S-Q1 off 64.15 %
S-DB – S-Q1 on 66.37 %
S-DB – S-Q2 off 58.68 %
S-DB S-Q1 S-Q2 on 60.16 %
S-DB – S-Q3 off 60.76 %
S-DB S-Q1 S-Q3 on 62.67 %
S-DB – S-Q4 off 47.83 %
S-DB S-Q1 S-Q4 on 50.61 %

Note that the robot records the images 24 hours and therefore, a substantial portion of the
images, which were taken at night, is completely dark. Such images do not contain any features
and therefore cannot be matched correctly. To ensure a fair evaluation, we have not excluded
any images from the data set.

The sequences are processed in batches of eight images, one from each place. Once the
images from the same time frame are processed, the algorithm moves to the next time frame. If
the change detection module is enabled, the weights are updated after processing every image.
Already on the query sequence S-Q1, during ongoing change detection, a higher localization

6.6. EVALUATION ON PUBLIC DATA SET 85

Change

Detection

Baseline

S-DB S-Q1 S-Q2 S-Q3 S-Q4

Place 6

Place 6 Place 6

Place 5

Place 6 Place 5 Place 6

Place 5 Place 6 Place 7

match
mismatch

Figure 6.10: Examples of images matched by the baseline method and using the change detection. The figure
shows successful matches (S-Q1, S-Q2, S-Q4) as well as a localization failure (S-Q3) when using the change detec-
tion method.

performance is achieved with the change detection module enabled. For the test sequences
S-Q2, S-Q3, and S-Q4, feature weights pre-trained by processing S-Q1 are used as a starting
point and they continue to update throughout the experiment. Also on all the test sequences,
the localization is more accurate when the change detection module is enabled.

6.6.3. ADAPTIVE APPEARANCE-BASED MAP

An alternative to the proposed method is the Adaptive Appearance-Based Map (AABM) for
long-term localization, presented in [36]. The algorithm introduces two types of feature stor-
age: the short-term memory (STM) and the long-term memory (LTM). While LTM is used for
feature matching, STM serves as a waiting list for newly discovered features captured at the
same place. Both types of memory are adaptively updated based on the features observed in
the query images. For a detailed description of the method, please refer to [36].

We evaluate AABM in the same way as our method (Section 6.6.2). To configure the method,
we adopt the parameters used in the experiments reported in [36]. As the authors do not sug-
gest how to tune the parameters for specific data sets and since both experiments presented in
[36] share similar properties with the Witham Wharf data set, we have executed the evaluation
in the two configurations used in the work. The first one uses STM with 4 stages and LTM with
5 stages, while the second one is configured with a 2-stage STM and a 4-stage LTM. We used the
same baseline localization method as in our other experiments, which is similar to the static
map described in [36]. The results are reported in Table 6.11.

To ensure a fair comparison, the STM and LTM update (denoted rehearsal and recall in
[36]) was performed only if the number of matching features between the query image and
the best-match LTM was at least θ = 10, same as in our method. Without this modification,
the LTM would be cleared after observing several successive fully dark images and the method
would stop working.

86 6. CHANGE DETECTION USING WEIGHTED FEATURES FOR IMAGE-BASED LOCALIZATION

Table 6.11: Localization accuracy of [36] on the query sequences from the STRANDS Witham Wharf data set.
Performance better than our method (Table 6.10) is denoted in bold.

Base Pre-trained Query STM LTM Localization
images on sequence stages stages accuracy
S-DB – S-Q1 2 4 66.47 %
S-DB – S-Q1 4 5 55.50 %
S-DB S-Q1 S-Q2 2 4 61.89 %
S-DB S-Q1 S-Q2 4 5 55.38 %
S-DB S-Q1 S-Q3 2 4 57.29 %
S-DB S-Q1 S-Q3 4 5 49.05 %
S-DB S-Q1 S-Q4 2 4 43.14 %
S-DB S-Q1 S-Q4 4 5 45.05 %

First, we discuss the performance of AABM using 2 STM stages and 4 LTM stages. The
method [36] shows a comparable to slightly better performance w.r.t. our method (Table 6.10)
on images recorded in the period of the first eight days (0.10 % for S-Q1 and 1.73 % for S-Q2).
However, the performance drops substantially for images captured three months later (5.38 %
on S-Q3) and one year later (7.47 % on S-Q4). For the configuration of 4 STM stages and 5 LTM
stages, our change detection method outperforms AABM on all query sequences.

The results indicate that the performance of AABM varies depending on the number of STM
and LTM stages. The advantage of our method is that its performance is not particularly depen-
dent on the choice of parameters – we did not have to change the configuration of the method
in any of the performed experiments. Apart from the setting of the parameters, the difference
in the performance can be explained by the way the features are processed. Our method ac-
centuates the features from the initial scanning that remain the same and reduces the impact
of those that have changed by updating their weights. By contrast, AABM completely drops
LTM features that are not present for several frames and needs to re-learn them again, passing
them first through STM. Therefore, feature weighting in our method provides a better way to
capture feature importance.

6.6.4. LOCALIZATION USING FAB-MAP

This section presents an evaluation of a general localization method that does not update the
database. We chose the Fast Appearance-Based Mapping [35], abbreviated as FAB-MAP, which
is a popular method for localization and mapping.

FAB-MAP is a probabilistic approach based on Chow Liu trees [33]. The method learns a
generative model of bag-of-words observations [131]. The requirement for a learned model
(vocabulary) represents the main difference from our method and AABM. However, FAB-MAP
is expected to perform well even with a model trained on different data, which diminishes the
issue with the training overhead. The authors show that the method is able to deal with scene
changes, which is applicable to our experimental scenario.

We have used a publicly available implementation1 of the FAB-MAP algorithm with the
Indoor Environments vocabulary2. We have adapted several parameters in the default config-

1http://www.robots.ox.ac.uk/~mjc/Software.htm
2http://www.robots.ox.ac.uk/~mjc/FabMap_Release/IndoorVocab_10k.zip

http://www.robots.ox.ac.uk/~mjc/Software.htm
http://www.robots.ox.ac.uk/~mjc/FabMap_Release/IndoorVocab_10k.zip

6.6. EVALUATION ON PUBLIC DATA SET 87

uration of the method to match our evaluation scenario on the STRANDS Witham Wharf data
set. The SURF blob response threshold was changed to 4.0, as suggested in the documentation
of the vocabulary used. The prior probability of being at a new place was set to zero, because
we require each image to be assigned to one of the existing locations, due to the nature of the
Witham Wharf data set. Finally, the position prior model was set to uniform as the images
in the Witham Wharf data set do not come from a continuous robot trajectory, but they are
recorded at individual locations.

Same as in Sections 6.6.2 and 6.6.3, we have used S-DB as the base environment represen-
tation and S-Q1 to S-Q4 as the query sequences, see Table 6.9. Each query image was assigned
to one of the eight locations in S-DB. The overall accuracy for each query sequence is reported
in Table 6.12.

Table 6.12: Comparison of the localization accuracy of FAB-MAP [35] and the proposed change detection method
on the query sequences from the STRANDS Witham Wharf data set. The better performing method is denoted in
bold.

Base Query
Method

Localization
images sequence accuracy
S-DB S-Q1 FAB-MAP 67.42 %
S-DB S-Q1 Our method 66.37 %
S-DB S-Q2 FAB-MAP 59.64 %
S-DB S-Q2 Our method 60.16 %
S-DB S-Q3 FAB-MAP 57.73 %
S-DB S-Q3 Our method 62.67 %
S-DB S-Q4 FAB-MAP 46.53 %
S-DB S-Q4 Our method 50.61 %

The results show that FAB-MAP, being a more sophisticated technique, expectably outper-
forms our method, and also AABM, on the initial query sequence featuring a small number
of changes. However, from the performance on the following sequences, we conclude that
our method performs better on data recorded several months later after the initial scanning,
similarly as in comparison with AABM discussed in Section 6.6.3. The proposed method with
change detection is better by 4.94 % on S-Q3 and by 4.08 % on S-Q4 than FAB-MAP. Therefore,
this again confirms the benefits of change detection for images recorded after a longer period
of time has passed from the initial scanning, where more changes are present in the environ-
ment.

6.6.5. FEATURE TYPES

As discussed in Section 6.3.1, the proposed method can be used with various feature detectors
and descriptors, according to the choice of the user. In this experiment, we compare SURF [14],
ORB [123], and BRISK features [94]. In all cases, we use the same method for feature detection
and for descriptor calculation.

The ORB and BRISK features have binary descriptors. In contrast to the SURF descrip-
tors, which can be compared by using the Euclidean distance, these descriptors are compared
through the Hamming distance [94, 123]. The ORB and BRISK descriptor distances are nor-
malized to the range of the SURF descriptor distances for consistency.

88 6. CHANGE DETECTION USING WEIGHTED FEATURES FOR IMAGE-BASED LOCALIZATION

We have evaluated the method in an identical scenario as in Section 6.6.2. The baseline
algorithm without change detection is run independently on all four query sequences without
any prior weight updates. The change detection is executed first on the sequence S-Q1 and
then the updated visual database is used as an entry point to evaluate the sequences S-Q2, S-
Q3, and S-Q4. The results are presented in Table 6.13 for the ORB features and in Table 6.14 for
the BRISK features.

Table 6.13: Localization accuracy of the proposed method on the query sequences from the STRANDS Witham
Wharf data set using the ORB features. Better results are shown in bold.

Visual Updated Query Change Localization
database on sequence detection accuracy

S-DB – S-Q1 off 56.24 %
S-DB – S-Q1 on 56.65 %
S-DB – S-Q2 off 52.26 %
S-DB S-Q1 S-Q2 on 53.73 %
S-DB – S-Q3 off 48.26 %
S-DB S-Q1 S-Q3 on 48.96 %
S-DB – S-Q4 off 37.59 %
S-DB S-Q1 S-Q4 on 37.50 %

Table 6.14: Localization accuracy of the proposed method on the query sequences from the STRANDS Witham
Wharf data set using the BRISK features. Better results are shown in bold.

Visual Updated Query Change Localization
database on sequence detection accuracy

S-DB – S-Q1 off 61.35 %
S-DB – S-Q1 on 62.18 %
S-DB – S-Q2 off 54.60 %
S-DB S-Q1 S-Q2 on 55.82 %
S-DB – S-Q3 off 47.57 %
S-DB S-Q1 S-Q3 on 50.43 %
S-DB – S-Q4 off 40.36 %
S-DB S-Q1 S-Q4 on 42.45 %

The results show that an improvement with respect to the baseline is achieved by using the
change detection method with alternative feature types in almost all cases, with the only ex-
ception of the query sequence S-Q4 evaluated using the ORB features. However, in that case,
the localization accuracy is low, both without and with the change detection. The SURF fea-
tures (Table 6.10) achieve the best localization accuracy on all query sequences. The average
computation times per query image for implementation in Matlab using the Computer Vision
Toolbox on a standard computer3 are 163 ms for the SURF features, 363 ms for the ORB fea-
tures, and 880 ms for the BRISK features. The algorithm therefore runs in the shortest time
using the SURF features. Note that in all cases, we used the default parameters of the localiza-
tion method, of the detector, and of the descriptor. We did not perform any parameter tuning.

3Intel Core i7-4610M @ 3.0 GHz, 16 GB RAM

6.7. CONCLUSIONS 89

6.6.6. DISCUSSION

The evaluation on the STRANDS Witham Wharf data set has demonstrated that the proposed
method is able to achieve improved localization accuracy over the baseline and outperform
the alternative methods [35, 36] in a long-term scenario. The performance of these methods
could possibly be improved by extensive parameter tuning, but the authors do not provide
any guidelines for setting the parameters. The strength of our method is therefore the small
number of parameters and the robustness of the method to their setting, as demonstrated by
using the same configuration for substantially different data sets.

The change detection method allows for the use of different feature types. SURF features
yield the best results both in the localization accuracy and in the processing time.

The Witham Wharf data set contains images assigned to the same place taken from slightly
different viewpoints, as well as under substantial day/night illumination changes. Such situ-
ations increase the risk of false matches and subsequent wrong feature updates. The experi-
mental results show that the proposed method yields improved performance over the baseline
despite these challenges.

6.7. CONCLUSIONS

We have proposed a method for change detection based on the comparison of local visual
features and we have shown how the change detection method can be incorporated into a
localization framework. The representation of the environment in the form of a visual database
is continuously adapted as the robot moves through its area of operation. We have introduced
feature weights to capture the importance of each feature. The weights are updated based on
the feature descriptor similarity.

We have used a three-component confidence criterion to decrease the risk of impairing the
visual database by introducing changes from wrongly matched images. The experimental eval-
uation on four different environments has shown that the change detection algorithm allows
to capture the dynamics of the environment and leads to more accurate localization.

An evaluation on the Witham Wharf data set with thousands of images provided an in-
sight into the method performance in additional experiments. The proposed method outper-
forms the baseline localization method without change detection and also two alternative ap-
proaches, AABM and FAB-MAP, on the majority of the query sequences.

In our future work, we are planning to perform a long-term experiment by recording mul-
tiple large-scale sequences over a long time span and to further improve the algorithm by eval-
uating other feature weight update methods. Using a precise localization based on data from
additional sensors or from a motion capture system would improve the accuracy in the visual
database building stage. This would reduce reprojection errors in image matching and allow
for propagating the detected changes also to the neighboring records, improving the overall
localization accuracy.

Another possible line of future research would be to incorporate the semantic information
into the change detection algorithm, e.g., by applying an object detection method to determine
the changes in the scenes based on object occurrence.

7
CONCLUSIONS AND FUTURE RESEARCH

7.1. CONCLUSIONS

The objective of this thesis was to address a number of challenges in data-driven model learn-
ing. To that end, efficient techniques have been proposed to construct an accurate model of a
robot and its environment and use it for tasks such as robot control and localization.

Chapter 3 introduced symbolic regression as an effective tool for constructing robot mod-
els from data. SR produces accurate, compact models with a low number of parameters using
even very small training sets. In contrast to black-box methods such as deep neural networks,
it constructs models in the form of analytic expressions, allowing for an insight into the model
structure. In terms of data efficiency, real-world experiments with an under-actuated pendu-
lum have shown that only 5 seconds of interaction with the system are sufficient to find an
accurate model that can be successfully used within an RL controller to swing up the pendu-
lum. The experiments on a walking robot with 14-dimensional state space have shown that
accurate models can be found by means of SR even for higher-dimensional systems while the
computational cost and the resulting model complexity grow only linearly.

The approach to model learning proposed in this work is not dependent on a particular
choice of the SR algorithm. It has been demonstrated that two distinct SR algorithms, SNGP
and MGGP, yield comparable results. Next to constructing standard state-space models, SR has
been used to build also input–output models. The advantage of input–output models is that
they do not require observations of the full state vector, which is often not directly measurable
in practice. A comparison with widely-used state-of-the-art methods – neural networks and
local linear regression – has shown that SR performs on the inverted pendulum problem by
at least one order of magnitude better than these alternatives in terms of RMSE on the test
set. The findings presented in this thesis aim at achieving a broader adoption of SR as a viable
alternative to established data-driven model learning techniques in the field of robotics and
dynamic systems.

One of the challenges in data-driven model learning consists in large data sets collected
during the robot operation. Large data sets not only represent an excessive computational
burden for model learning, but they are also typically composed of a majority of samples from
repetitive motions, resulting in an uneven data distribution. Using such data for model learn-

91

92 7. CONCLUSIONS AND FUTURE RESEARCH

ing in turn produces a strong bias in the models. To that end, in Chapter 4, a novel method
based on the model prediction error, called PERMIT, has been proposed and compared to four
sample selection methods from the literature. The methods have been evaluated on data from
three dynamic systems: a simulated mobile robot, a real mobile robot TurtleBot 2, and a real
Parrot Bebop 2 drone. The results have shown that methods exploiting the information about
the data or intermediate models clearly outperform sequential and random sample selection
methods. The proposed method PERMIT ranked among the best-performing ones together
with the variance method. An advantage of PERMIT over the variance method is that it does
not require a set of models but only one model to select the training samples. In a real-world
experiment with a mobile robot, a model found by SR using a training data set of as few as
24 samples was used within an RL framework to successfully perform the motion control task.

Data-driven model learning methods often produce models that are accurate, but do not
comply with the physical constraints of the robot. Such models used in a model-based control
framework may have an adverse impact on the resulting control policies. To deal with that,
in Chapter 5, SR has been extended to include prior knowledge about the system, which is in
most cases known. The prior knowledge can be represented in the form of prior models, such
as theoretical or empirical models, and formal constraints. The prior knowledge enters the
model search along with the training data with the objective to evolve accurate robot models
more efficiently, using small training data sets, and following the formal constraints. A multi-
objective approach is used to minimize the data fitting error as well as the constraint violation
error at the same time. An experimental evaluation on two robots of different complexity has
shown that including the prior knowledge improves the model accuracy and compliance with
the physical properties of the robot, as compared to the baseline SR. An improvement in model
accuracy has been achieved by including the prior model both for the baseline SNGP and for
SNGP with formal constraints.

Chapter 6 presented a method for visual localization of mobile robots in dynamic envi-
ronments. In contrast to deep neural networks, the proposed method based on local features
represents a data-efficient and computationally lightweight solution. An experimental evalua-
tion on our own long-term localization data set composed of four different environments has
shown that using the change detection algorithm leads to more accurate localization. The lo-
calization results on the public Witham Wharf data set with thousands of images have shown
that the proposed method outperforms not only the baseline localization method without
change detection, but also two alternative state-of-the-art approaches, AABM and FAB-MAP,
on a majority of the query sequences.

7.2. FUTURE RESEARCH

While solutions to several challenges in data-driven model learning have been proposed in this
thesis, many interesting research questions remain open for future investigation. The models
found by means of SR are compact, in particular when compared to deep neural networks.
However, the model complexity can be controlled only indirectly through user-defined param-
eters such as the maximum number of features, maximum feature depth, and the set of ele-
mentary functions. To have direct control over the accuracy-complexity tradeoff, a future line
of research would investigate methods for progressive model construction and reduction.

7.2. FUTURE RESEARCH 93

The sample selection methods presented in Chapter 4 are used for SR, but they could also
be applied to other data-driven model learning approaches, such as local linear regression [10].
Another possible application would be to control the composition of the replay buffer in deep
reinforcement learning. The next step in further developing the sample selection framework
would be to introduce an automated data set maintenance, including removal of data samples
that are either outliers or are no longer valid because the robot model has changed over time.

This thesis deals with using SR for robot model learning and using the resulting model
within an RL framework. However, SR can also be used, for instance, to model the value func-
tion in RL, as in [90]. The value functions in that work are constructed using baseline SNGP.
Therefore, a line of future research would be to apply the proposed SR extensions, in particular
including the prior knowledge and using the sample selection, to construct value functions.

The accuracy of robot localization in dynamic environments using the proposed change
detection method could be improved by reducing reprojection errors in image matching. Pos-
sible solutions include using stereo images or combining RGB images with depth data, mo-
tivated by the increasing availability of RGB-D sensors. A more accurate matching would im-
prove the precision of weight updates and it would also allow propagating the detected changes
to the neighboring records. An interesting extension to using local features within the change
detection algorithm would be to capture the semantic information in the scene, for instance,
through object detection. Then, the tracked changes in the scenes would include object occur-
rences, which could lead to higher robustness and reliability of the localization algorithm.

GRANTS

This work was supported by the European Regional Development Fund under the project Ro-
botics for Industry 4.0 (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000470) and by the Grant Agency
of the Czech Technical University in Prague, grant no. SGS19/174/OHK3/3T/13.

95

LIST OF ACRONYMS

AABM Adaptive Appearance-Based Map

AI Artificial Intelligence

BRIEF Binary Robust Independent Elementary Features

BRISK Binary Robust Invariant Scalable Keypoint

DNN Deep Neural Network

DOF Degree Of Freedom

ELU Exponential Linear Unit

FAB-MAP Fast Appearance-Based MAPping

FAST Features from Accelerated Segment Test

FSH Feature Stability Histogram

GMM Gaussian Mixture Model

GP Genetic Programming

HOG Histogram of Oriented Gradients

LiDAR Light Detection And Ranging

LLR Local Linear Regression

LTM Long-Term Memory

MGGP Multi-Gene Genetic Programming

NARX Nonlinear AutoRegressive with eXogenous input

NSGA Non-dominated Sorting Genetic Algorithm

ORB Oriented FAST and Rotated BRIEF

PERMIT Prediction ERror method for Model ImprovemenT

RANSAC RANdom SAmple Consensus

ReLU Rectified Linear Unit

RGB Red, Green, Blue

RGB-D Red, Green, Blue, Depth

RL Reinforcement Learning

RMS Root Mean Square

RMSE Root Mean Square Error

97

98 LIST OF ACRONYMS

SGD Stochastic Gradient Descent

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localization And Mapping

SNGP Single Node Genetic Programming

SR Symbolic Regression

STM Short-Term Memory

SURF Speeded-Up Robust Features

TSDF Truncated Signed Distance Function

BIBLIOGRAPHY

[1] I. ABRAHAM AND T. D. MURPHEY, Active learning of dynamics for data-driven control
using Koopman operators, IEEE Transactions on Robotics, 35 (2019), pp. 1071–1083.

[2] P. F. ALCANTARILLA, S. STENT, G. ROS, R. ARROYO, AND R. GHERARDI, Street-view change
detection with deconvolutional networks, Autonomous Robots, 42 (2018), pp. 1301–1322.

[3] E. ALIBEKOV, J. KUBALÍK, AND R. BABUŠKA, Symbolic method for deriving policy in rein-
forcement learning, in 2016 IEEE 55th Conference on Decision and Control (CDC), Dec
2016, pp. 2789–2795.

[4] R. ALTEROVITZ, S. KOENIG, AND M. LIKHACHEV, Robot planning in the real world: Re-
search challenges and opportunities, AI Magazine, 37 (2016), pp. 76–84.

[5] J. ANDRADE-CETTO AND A. SANFELIU, Concurrent map building and localization on in-
door dynamic environments, International Journal of Pattern Recognition and Artificial
Intelligence, 16 (2002), pp. 361–374.

[6] M. H. ANG, O. KHATIB, AND B. SICILIANO, Encyclopedia of Robotics, Springer, 2018.

[7] I. ARNALDO, K. KRAWIEC, AND U.-M. O’REILLY, Multiple regression genetic program-
ming, in Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Com-
putation (GECCO ’14), 2014, pp. 879–886.

[8] I. ARNALDO, U.-M. O’REILLY, AND K. VEERAMACHANENI, Building predictive models via
feature synthesis, in Proceedings of the 2015 Annual Conference on Genetic and Evolu-
tionary Computation (GECCO ’15), 2015, pp. 983–990.

[9] R. ARROYO, P. F. ALCANTARILLA, L. M. BERGASA, AND E. ROMERA, Towards life-long visual
localization using an efficient matching of binary sequences from images, in 2015 IEEE
International Conference on Robotics and Automation (ICRA), 2015, pp. 6328–6335.

[10] C. G. ATKESON, A. W. MOORE, AND S. SCHAAL, Locally weighted learning, Artificial Intel-
ligence Review, 11 (1997), pp. 11–73.

[11] R. C. ATKINSON AND R. M. SHIFFRIN, Human memory: A proposed system and its control
processes, vol. 2 of Psychology of Learning and Motivation, Academic Press, 1968, pp. 89–
195.

[12] B. BACCA, J. SALVI, AND X. CUFÍ, Appearance-based mapping and localization for mobile
robots using a feature stability histogram, Robotics and Autonomous Systems, 59 (2011),
pp. 840–857.

99

100 BIBLIOGRAPHY

[13] E. BARKER AND C. RAS, Unsupervised basis function adaptation for reinforcement learn-
ing, Journal of Machine Learning Research, 20 (2019), pp. 1–73.

[14] H. BAY, A. ESS, T. TUYTELAARS, AND L. VAN GOOL, Speeded-up robust features (SURF),
Computer Vision and Image Understanding, 110 (2008), pp. 346–359.

[15] B. BESCÓS, J. M. FÁCIL, J. CIVERA, AND J. NEIRA, DynSLAM: Tracking, mapping and
inpainting in dynamic scenes, arXiv preprint, abs/1806.05620 (2018).

[16] J. C. BEZDEK, Pattern recognition with fuzzy objective function algorithms, Springer Sci-
ence & Business Media, 2013.

[17] J. BISWAS AND M. VELOSO, Episodic non-Markov localization: Reasoning about short-
term and long-term features, in 2014 IEEE International Conference on Robotics and Au-
tomation (ICRA), 2014, pp. 3969–3974.

[18] I. BŁĄDEK AND K. KRAWIEC, Solving symbolic regression problems with formal con-
straints, in Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO ’19), 2019, pp. 977–984.

[19] J. BOEDECKER, J. T. SPRINGENBERG, J. WÜLFING, AND M. RIEDMILLER, Approximate real-
time optimal control based on sparse Gaussian process models, in 2014 IEEE Symposium
on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), Dec 2014,
pp. 1–8.

[20] J. BONGARD AND H. LIPSON, Automated reverse engineering of nonlinear dynamical sys-
tems, Proceedings of the National Academy of Sciences, 104 (2007), pp. 9943–9948.

[21] F. BONIARDI, T. CASELITZ, R. KÜMMERLE, AND W. BURGARD, A pose graph-based local-
ization system for long-term navigation in CAD floor plans, Robotics and Autonomous
Systems, 112 (2019), pp. 84–97.

[22] N. BORE, P. JENSFELT, AND J. FOLKESSON, Multiple object detection, tracking and long-
term dynamics learning in large 3D maps, arXiv preprint, abs/1801.09292 (2018).

[23] J. BRANKE, S. GRECO, R. SŁOWIŃSKI, AND P. ZIELNIEWICZ, Learning value functions in
interactive evolutionary multiobjective optimization, IEEE Transactions on Evolutionary
Computation, 19 (2015), pp. 88–102.

[24] C. BRAUER, Using Eureqa in a stock day-trading application. Cypress Point Technologies,
LLC, 2012.

[25] D. BRUDER, C. D. REMY, AND R. VASUDEVAN, Nonlinear system identification of soft robot
dynamics using Koopman operator theory, in 2019 International Conference on Robotics
and Automation (ICRA), 2019, pp. 6244–6250.

[26] L. BUŞONIU, D. ERNST, R. BABUŠKA, AND B. DE SCHUTTER, Approximate dynamic pro-
gramming with a fuzzy parameterization, Automatica, 46 (2010), pp. 804–814.

BIBLIOGRAPHY 101

[27] L. BUŞONIU, D. ERNST, B. DE SCHUTTER, AND R. BABUŠKA, Cross-entropy optimization
of control policies with adaptive basis functions, IEEE Transactions on Systems, Man, and
Cybernetics – Part B: Cybernetics, 41 (2011), pp. 196–209.

[28] R. BURBIDGE, J. J. ROWLAND, AND R. D. KING, Active learning for regression based on
query by committee, in International Conference on Intelligent Data Engineering and
Automated Learning, Springer, 2007, pp. 209–218.

[29] J. C. BUTCHER AND N. GOODWIN, Numerical methods for ordinary differential equations,
vol. 2, Wiley Online Library, 2008.

[30] W. CAARLS, Generic Reinforcement Learning Library, 2018. https://github.com/
wcaarls/grl.

[31] N. CARLEVARIS-BIANCO AND R. M. EUSTICE, Learning visual feature descriptors for dy-
namic lighting conditions, in 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2014, pp. 2769–2776.

[32] Z. CHEN, L. LIU, I. SA, Z. GE, AND M. CHLI, Learning context flexible attention model
for long-term visual place recognition, IEEE Robotics and Automation Letters, 3 (2018),
pp. 4015–4022.

[33] C. CHOW AND C. LIU, Approximating discrete probability distributions with dependence
trees, IEEE Transactions on Information Theory, 14 (1968), pp. 462–467.

[34] W. CHURCHILL AND P. NEWMAN, Experience-based navigation for long-term localisation,
The International Journal of Robotics Research, 32 (2013), pp. 1645–1661.

[35] M. CUMMINS AND P. NEWMAN, FAB-MAP: Probabilistic localization and mapping in the
space of appearance, The International Journal of Robotics Research, 27 (2008), pp. 647–
665.

[36] F. DAYOUB AND T. DUCKETT, An adaptive appearance-based map for long-term topolog-
ical localization of mobile robots, in 2008 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2008, pp. 3364–3369.

[37] T. DE BRUIN, J. KOBER, K. TUYLS, AND R. BABUŠKA, Experience selection in deep reinforce-
ment learning for control, Journal of Machine Learning Research, 19 (2018), pp. 1–56.

[38] T. DE BRUIN, J. KOBER, K. TUYLS, AND R. BABUŠKA, Integrating state representation learn-
ing into deep reinforcement learning, IEEE Robotics and Automation Letters, 3 (2018),
pp. 1394–1401.

[39] K. DEB, A. PRATAP, S. AGARWAL, AND T. MEYARIVAN, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6 (2002),
pp. 182–197.

https://github.com/wcaarls/grl
https://github.com/wcaarls/grl

102 BIBLIOGRAPHY

[40] M. DEISENROTH AND C. E. RASMUSSEN, PILCO: A model-based and data-efficient ap-
proach to policy search, in International Conference on Machine Learning (ICML), 2011,
pp. 465–472.

[41] M. P. DEISENROTH, Efficient reinforcement learning using Gaussian processes, KIT Scien-
tific Publishing, 2010.

[42] E. DERNER, C. GOMEZ, A. C. HERNANDEZ, R. BARBER, AND R. BABUŠKA, Change de-
tection using weighted features for image-based localization, Robotics and Autonomous
Systems, 135 (2021), p. 103676.

[43] E. DERNER, J. KUBALÍK, N. ANCONA, AND R. BABUŠKA, Constructing parsimonious ana-
lytic models for dynamic systems via symbolic regression, Applied Soft Computing, 94
(2020), p. 106432.

[44] E. DERNER, J. KUBALÍK, AND R. BABUŠKA, Data-driven construction of symbolic process
models for reinforcement learning, in 2018 IEEE International Conference on Robotics
and Automation (ICRA), May 2018, pp. 5105–5112.

[45] E. DERNER, J. KUBALÍK, AND R. BABUŠKA, Reinforcement learning with symbolic input-
output models, in 2018 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), Oct 2018, pp. 3004–3009.

[46] E. DERNER, J. KUBALÍK, AND R. BABUŠKA, Guiding robot model construction with prior
features, in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Oct 2021, pp. 7112–7118.

[47] E. DERNER, J. KUBALÍK, AND R. BABUŠKA, Selecting informative data samples for model
learning through symbolic regression, IEEE Access, 9 (2021), pp. 14148–14158.

[48] P. DREWS, L. J. MANSO, S. DA SILVA FILHO, AND P. NÚÑEZ, Improving change detection
using Vertical Surface Normal Histograms and Gaussian Mixture Models in structured en-
vironments, in 16th International Conference on Advanced Robotics (ICAR), 2013, pp. 1–
7.

[49] O. EGUASA, E. EDIONWE, AND J. MBEGBU, Local linear regression and the problem of di-
mensionality: A remedial strategy via a new locally adaptive bandwidths selector, Journal
of Applied Statistics, (2022), pp. 1–27.

[50] D. ERNST, P. GEURTS, AND L. WEHENKEL, Tree-based batch mode reinforcement learning,
Journal of Machine Learning Research, 6 (2005), pp. 503–556.

[51] S. ERTEKIN, J. HUANG, L. BOTTOU, AND L. GILES, Learning on the border: Active learning
in imbalanced data classification, in Proceedings of the Sixteenth ACM Conference on
Information and Knowledge Management, 2007, pp. 127–136.

[52] J. FAIGL, J. CHUDOBA, K. KOŠNAR, M. KULICH, M. SASKA, AND L. PŘEUČIL, SyRoTek – A
robotic system for education, AT&P Journal PLUS, 2 (2010), pp. 31–36.

BIBLIOGRAPHY 103

[53] M. FEHR, F. FURRER, I. DRYANOVSKI, J. STURM, I. GILITSCHENSKI, R. SIEGWART, AND

C. CADENA, TSDF-based change detection for consistent long-term dense reconstruction
and dynamic object discovery, in 2017 IEEE International Conference on Robotics and
Automation (ICRA), 2017, pp. 5237–5244.

[54] M. L. FELIS, RBDL: An efficient rigid-body dynamics library using recursive algorithms,
Autonomous Robots, 41 (2017), pp. 495–511.

[55] C. FERREIRA, Gene expression programming: A new adaptive algorithm for solving prob-
lems, Complex Systems, 13 (2001), pp. 87–129.

[56] R. FINMAN, T. WHELAN, M. KAESS, AND J. J. LEONARD, Toward lifelong object segmen-
tation from change detection in dense RGB-D maps, in 2013 European Conference on
Mobile Robots, 2013, pp. 178–185.

[57] M. A. FISCHLER AND R. C. BOLLES, Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography, Communications
of the ACM, 24 (1981), pp. 381–395.

[58] J. FORBES AND D. ANDRE, Representations for learning control policies, in Proceedings of
the ICML-2002 Workshop on Development of Representations, 2002, pp. 7–14.

[59] E. GARCIA-FIDALGO AND A. ORTIZ, Vision-based topological mapping and localization
methods: A survey, Robotics and Autonomous Systems, 64 (2015), pp. 1–20.

[60] D. GEDON, N. WAHLSTRÖM, T. B. SCHÖN, AND L. LJUNG, Deep state space models
for nonlinear system identification, in 19th IFAC Symposium on System Identification
(SYSID), vol. 54, Elsevier BV, 2021, pp. 481–486.

[61] J. GERTLER, Fault detection and diagnosis, Springer, 2013.

[62] J. D. GIBBONS AND S. CHAKRABORTI, Nonparametric statistical inference: Revised and
expanded, CRC Press, 2014.

[63] S. GREYDANUS, M. DZAMBA, AND J. YOSINSKI, Hamiltonian neural networks, in Ad-
vances in Neural Information Processing Systems, 2019, pp. 15379–15389.

[64] I. GRONDMAN, M. VAANDRAGER, L. BUŞONIU, R. BABUŠKA, AND E. SCHUITEMA, Efficient
model learning methods for actor–critic control, IEEE Transactions on Systems, Man, and
Cybernetics – Part B: Cybernetics, 42 (2012), pp. 591–602.

[65] S. GU, T. P. LILLICRAP, I. SUTSKEVER, AND S. LEVINE, Continuous deep Q-learning with
model-based acceleration, arXiv preprint, abs/1603.00748 (2016).

[66] N. HAWES, C. BURBRIDGE, F. JOVAN, L. KUNZE, B. LACERDA, L. MUDROVA, J. YOUNG,
J. WYATT, D. HEBESBERGER, T. KORTNER, ET AL., The STRANDS project: Long-term au-
tonomy in everyday environments, IEEE Robotics & Automation Magazine, 24 (2017),
pp. 146–156.

104 BIBLIOGRAPHY

[67] N. HEESS, G. WAYNE, D. SILVER, T. LILLICRAP, T. EREZ, AND Y. TASSA, Learning contin-
uous control policies by stochastic value gradients, in Advances in Neural Information
Processing Systems, 2015, pp. 2944–2952.

[68] T. HESTER AND P. STONE, Intrinsically motivated model learning for developing curious
robots, Artificial Intelligence, 247 (2017), pp. 170–186.

[69] H. O. İLHAN AND M. F. AMASYAL, Comparing informative sample selection strategies in
classification ensembles, International Journal of Machine Learning and Computing, 4
(2014), p. 79.

[70] D. JACKSON, A new, node-focused model for genetic programming, in Genetic Program-
ming: 15th European Conference, EuroGP 2012 Proceedings, A. Moraglio, S. Silva,
K. Krawiec, P. Machado, and C. Cotta, eds., 2012, pp. 49–60.

[71] D. JACKSON, Single node genetic programming on problems with side effects, in Parallel
Problem Solving from Nature – PPSN XII: 12th International Conference Proceedings,
Part I, C. A. C. Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, and M. Pavone, eds., 2012,
pp. 327–336.

[72] T. A. JOHANSEN AND B. A. FOSS, ORBIT – operating-regime-based modeling and identifi-
cation toolkit, Control Engineering Practice, 6 (1998), pp. 1277–1286.

[73] E. JOHNS AND G.-Z. YANG, Feature co-occurrence maps: Appearance-based localisation
throughout the day, in 2013 IEEE International Conference on Robotics and Automation
(ICRA), 2013, pp. 3212–3218.

[74] E. JOHNS AND G.-Z. YANG, Generative methods for long-term place recognition in dy-
namic scenes, International Journal of Computer Vision, 106 (2014), pp. 297–314.

[75] N. K. JONG AND P. STONE, Model-based function approximation in reinforcement learn-
ing, in Proceedings of the 6th International Joint Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’07, 2007, pp. 95:1–95:8.

[76] D. KHANDELWAL, M. SCHOUKENS, AND R. TOTH, Data-driven modelling of dynamical
systems using tree adjoining grammar and genetic programming, in 2019 IEEE Congress
on Evolutionary Computation Proceedings, 2019, pp. 2673–2680.

[77] N. KHOSHNEVIS AND R. TABORDA, Application of pool-based active learning in physics-
based earthquake ground-motion simulation, Seismological Research Letters, 90 (2019),
pp. 614–622.

[78] J. KIEFER AND J. WOLFOWITZ, Stochastic estimation of the maximum of a regression func-
tion, The Annals of Mathematical Statistics, 23 (1952), pp. 462–466.

[79] D. P. KINGMA AND J. BA, Adam: A method for stochastic optimization, arXiv preprint,
abs/1412.6980 (2014).

BIBLIOGRAPHY 105

[80] J. KOBER AND J. PETERS, Reinforcement learning in robotics: A survey, in Reinforcement
Learning: State-of-the-Art, M. Wiering and M. van Otterlo, eds., Springer, Berlin, Heidel-
berg, 2012, pp. 579–610.

[81] J. KOCIJAN, Modelling and control of dynamic systems using Gaussian process models,
Springer, 2016.

[82] K. KONOLIGE AND J. BOWMAN, Towards lifelong visual maps, in 2009 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2009, pp. 1156–1163.

[83] I. KORYAKOVSKIY, H. VALLERY, R. BABUŠKA, AND W. CAARLS, Evaluation of physi-
cal damage associated with action selection strategies in reinforcement learning, IFAC-
PapersOnLine, 50 (2017), pp. 6928–6933.

[84] J. KOZA, Genetic programming: On the programming of computers by means of natural
selection (Complex adaptive systems), MIT Press Ltd, 1992.

[85] T. KRAJNÍK, J. P. FENTANES, O. M. MOZOS, T. DUCKETT, J. EKEKRANTZ, AND M. HAN-
HEIDE, Long-term topological localization for service robots in dynamic environments us-
ing spectral maps, in 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2014.

[86] J. KUBALÍK, E. ALIBEKOV, AND R. BABUŠKA, Optimal control via reinforcement learning
with symbolic policy approximation, IFAC-PapersOnLine, 50 (2017), pp. 4162–4167.

[87] J. KUBALÍK, E. DERNER, AND R. BABUŠKA, Enhanced symbolic regression through local
variable transformations, in Proceedings of the 9th International Joint Conference on
Computational Intelligence, vol. 1, 2017, pp. 91–100.

[88] J. KUBALÍK, E. DERNER, AND R. BABUŠKA, Symbolic regression driven by training data
and prior knowledge, in Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion (GECCO ’20), 2020, pp. 958–966.

[89] J. KUBALÍK, E. DERNER, AND R. BABUŠKA, Multi-objective symbolic regression for physics-
aware dynamic modeling, Expert Systems with Applications, 9 (2021), p. 115210.

[90] J. KUBALÍK, E. DERNER, J. ŽEGKLITZ, AND R. BABUŠKA, Symbolic regression methods for
reinforcement learning, IEEE Access, 9 (2021), pp. 139697–139711.

[91] L. KUNZE, H. KARAOGUZ, J. YOUNG, F. JOVAN, J. FOLKESSON, P. JENSFELT, AND

N. HAWES, SOMA: A framework for understanding change in everyday environments
using semantic object maps, Association for the Advancement of Artificial Intelligence
(AAAI), 2018.

[92] L. KUVAYEV AND R. S. SUTTON, Model-based reinforcement learning with an approxi-
mate, learned model, in Proceedings of the Ninth Yale Workshop on Adaptive and Learn-
ing Systems, 1996, pp. 101–105.

106 BIBLIOGRAPHY

[93] S. LANGE, M. RIEDMILLER, AND A. VOIGTLANDER, Autonomous reinforcement learning
on raw visual input data in a real world application, in Proceedings 2012 International
Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, June 2012, pp. 1–8.

[94] S. LEUTENEGGER, M. CHLI, AND R. Y. SIEGWART, BRISK: Binary robust invariant scalable
keypoints, in 2011 International Conference on Computer Vision, 2011, pp. 2548–2555.

[95] S. LEVINE AND P. ABBEEL, Learning neural network policies with guided policy search
under unknown dynamics, in Advances in Neural Information Processing Systems 27,
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, eds., Curran
Associates, Inc., 2014, pp. 1071–1079.

[96] R. LIECK AND M. TOUSSAINT, Temporally extended features in model-based reinforcement
learning with partial observability, Neurocomputing, 192 (2016), pp. 49–60.

[97] T. P. LILLICRAP, J. J. HUNT, A. PRITZEL, N. HEESS, T. EREZ, Y. TASSA, D. SILVER, AND

D. WIERSTRA, Continuous control with deep reinforcement learning, arXiv preprint,
abs/1509.02971 (2015).

[98] R. LIOUTIKOV, A. PARASCHOS, J. PETERS, AND G. NEUMANN, Sample-based information-
theoretic stochastic optimal control, in 2014 IEEE International Conference on Robotics
and Automation (ICRA), IEEE, 2014, pp. 3896–3902.

[99] L. LJUNG, System Identification: Theory for the user, second edition, Prentice-Hall, New
Jersey, 1999.

[100] D. G. LOWE, Distinctive image features from scale-invariant keypoints, International
Journal of Computer Vision, 60 (2004), pp. 91–110.

[101] S. LOWRY, N. SÜNDERHAUF, P. NEWMAN, J. J. LEONARD, D. COX, P. CORKE, AND M. J.
MILFORD, Visual place recognition: A survey, IEEE Transactions on Robotics, 32 (2015),
pp. 1–19.

[102] T. MASTERS, Neural, novel and hybrid algorithms for time series prediction, John Wiley &
Sons, Inc., 1995.

[103] A. MAUROY AND J. GONCALVES, Linear identification of nonlinear systems: A lifting tech-
nique based on the Koopman operator, in 2016 IEEE 55th Conference on Decision and
Control (CDC), 2016, pp. 6500–6505.

[104] D. Q. MAYNE, J. B. RAWLINGS, C. V. RAO, AND P. O. SCOKAERT, Constrained model pre-
dictive control: Stability and optimality, Automatica, 36 (2000), pp. 789–814.

[105] J. F. MILLER AND P. THOMSON, Cartesian genetic programming, in Genetic Programming:
European Conference, EuroGP Proceedings, R. Poli, W. Banzhaf, W. B. Langdon, J. Miller,
P. Nordin, and T. C. Fogarty, eds., 2000, pp. 121–132.

BIBLIOGRAPHY 107

[106] V. MNIH, K. KAVUKCUOGLU, D. SILVER, A. GRAVES, I. ANTONOGLOU, D. WIERSTRA,
AND M. RIEDMILLER, Playing Atari with deep reinforcement learning, arXiv preprint,
abs/1312.5602 (2013).

[107] V. MNIH, K. KAVUKCUOGLU, D. SILVER, A. A. RUSU, J. VENESS, M. G. BELLEMARE,
A. GRAVES, M. RIEDMILLER, A. K. FIDJELAND, G. OSTROVSKI, S. PETERSEN, C. BEATTIE,
A. SADIK, I. ANTONOGLOU, H. KING, D. KUMARAN, D. WIERSTRA, S. LEGG, AND D. HAS-
SABIS, Human-level control through deep reinforcement learning, Nature, 518 (2015),
pp. 529–533.

[108] R. MUNOS AND A. MOORE, Variable resolution discretization in optimal control, Machine
Learning, 49 (2002), pp. 291–323.

[109] R. MURRAY-SMITH AND T. A. JOHANSEN, eds., Multiple Model Approaches to Nonlinear
Modeling and Control, Taylor & Francis, London, UK, 1997.

[110] T. NASEER, W. BURGARD, AND C. STACHNISS, Robust visual localization across seasons,
IEEE Transactions on Robotics, 34 (2018), pp. 289–302.

[111] B. NEUMAN, B. SOFMAN, A. STENTZ, AND J. A. BAGNELL, Segmentation-based online
change detection for mobile robots, in 2011 IEEE International Conference on Robotics
and Automation (ICRA), 2011, pp. 5427–5434.

[112] C. P. NEUMAN AND P. K. KHOSLA, Identification of robot dynamics: An application of
recursive estimation, Springer US, Boston, MA, 1986, pp. 175–194.

[113] A. Y. NG, A. COATES, M. DIEL, V. GANAPATHI, J. SCHULTE, B. TSE, E. BERGER, AND

E. LIANG, Autonomous inverted helicopter flight via reinforcement learning, in Experi-
mental Robotics IX: The 9th International Symposium on Experimental Robotics, M. H.
Ang and O. Khatib, eds., Springer, Berlin, Heidelberg, 2006, pp. 363–372.

[114] D. NGUYEN-TUONG AND J. PETERS, Model learning for robot control: A survey, Cognitive
Processing, 12 (2011), pp. 319–340.

[115] D. NGUYEN-TUONG, M. SEEGER, AND J. PETERS, Model learning with local Gaussian pro-
cess regression, Advanced Robotics, 23 (2009), pp. 2015–2034.

[116] D. NISTER AND H. STEWENIUS, Scalable recognition with a vocabulary tree, in 2006 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06),
vol. 2, 2006, pp. 2161–2168.

[117] F. NOBRE, C. HECKMAN, P. OZOG, R. W. WOLCOTT, AND J. M. WALLS, Online probabilis-
tic change detection in feature-based maps, in 2018 IEEE International Conference on
Robotics and Automation (ICRA), 2018, pp. 1–9.

[118] M. ONDERWATER, S. BHULAI, AND R. VAN DER MEI, Value function discovery in Markov
decision processes with evolutionary algorithms, IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 46 (2016), pp. 1190–1201.

108 BIBLIOGRAPHY

[119] J. PETERS AND S. SCHAAL, Policy gradient methods for robotics, in 2006 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), Oct 2006, pp. 2219–2225.

[120] A. PUNJANI AND P. ABBEEL, Deep learning helicopter dynamics models, in 2015 IEEE In-
ternational Conference on Robotics and Automation (ICRA), 2015, pp. 3223–3230.

[121] J. B. RAWLINGS AND D. Q. MAYNE, Model predictive control: Theory and design, Nob Hill
Publishing, 2009.

[122] N. ROY, I. POSNER, T. D. BARFOOT, P. BEAUDOIN, Y. BENGIO, J. BOHG, O. BROCK,
I. DEPATIE, D. FOX, D. E. KODITSCHEK, T. LOZANO-PÉREZ, V. MANSINGHKA, C. J. PAL,
B. RICHARDS, D. SADIGH, S. SCHAAL, G. S. SUKHATME, D. THÉRIEN, M. TOUSSAINT, AND

M. VAN DE PANNE, From machine learning to robotics: Challenges and opportunities for
embodied intelligence, arXiv preprint, abs/2110.15245 (2021).

[123] E. RUBLEE, V. RABAUD, K. KONOLIGE, AND G. BRADSKI, ORB: An efficient alternative to
SIFT or SURF, in 2011 International Conference on Computer Vision, 2011, pp. 2564–
2571.

[124] C. RYAN, J. COLLINS, AND M. O. NEILL, Grammatical evolution: Evolving programs for
an arbitrary language, in Genetic Programming: First European Workshop, EuroGP 1998
Proceedings, W. Banzhaf, R. Poli, M. Schoenauer, and T. C. Fogarty, eds., 1998, pp. 83–96.

[125] M. SCHMIDT AND H. LIPSON, Distilling free-form natural laws from experimental data,
Science, 324 (2009), pp. 81–85.

[126] E. SCHUITEMA, M. WISSE, T. RAMAKERS, AND P. JONKER, The design of LEO: A 2D bipedal
walking robot for online autonomous reinforcement learning, in 2010 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2010, pp. 3238–3243.

[127] D. P. SEARSON, GPTIPS 2: An open-source software platform for symbolic data mining,
in Handbook of Genetic Programming Applications, Springer International Publishing,
2015, pp. 551–573.

[128] B. SETTLES, Active learning literature survey, tech. rep., University of Wisconsin-Madison
Department of Computer Sciences, 2009.

[129] R. SIEGWART, I. R. NOURBAKHSH, AND D. SCARAMUZZA, Introduction to autonomous mo-
bile robots, MIT Press, 2011.

[130] O. SIGAUD, C. SALAÜN, AND V. PADOIS, On-line regression algorithms for learning me-
chanical models of robots: A survey, Robotics and Autonomous Systems, 59 (2011),
pp. 1115–1129.

[131] SIVIC AND ZISSERMAN, Video Google: A text retrieval approach to object matching in
videos, in Proceedings of the Ninth IEEE International Conference on Computer Vision,
2003, pp. 1470–1477.

BIBLIOGRAPHY 109

[132] F. SMARRA, G. D. DI GIROLAMO, V. DE IULIIS, A. JAIN, R. MANGHARAM, AND

A. D’INNOCENZO, Data-driven switching modeling for MPC using regression trees and
random forests, Nonlinear Analysis: Hybrid Systems, 36 (2020), p. 100882.

[133] N. STAELENS, D. DESCHRIJVER, E. VLADISLAVLEVA, B. VERMEULEN, T. DHAENE, AND

P. DEMEESTER, Constructing a no-reference H. 264/AVC bitstream-based video quality
metric using genetic programming-based symbolic regression, IEEE Transactions on Cir-
cuits and Systems for Video Technology, 99 (2012), pp. 1–12.

[134] F. STULP AND O. SIGAUD, Many regression algorithms, one unified model: A review, Neu-
ral Networks, 69 (2015), pp. 60–79.

[135] L. SUN, Z. YAN, A. ZAGANIDIS, C. ZHAO, AND T. DUCKETT, Recurrent-OctoMap: Learning
state-based map refinement for long-term semantic mapping with 3-D-Lidar data, IEEE
Robotics and Automation Letters, 3 (2018), pp. 3749–3756.

[136] R. S. SUTTON, Dyna, an integrated architecture for learning, planning, and reacting,
SIGART Bulletin, 2 (1991), pp. 160–163.

[137] R. S. SUTTON AND A. G. BARTO, Reinforcement learning: An introduction, MIT Press,
2018.

[138] P. TORR AND A. ZISSERMAN, MLESAC: A new robust estimator with application to estimat-
ing image geometry, Computer Vision and Image Understanding, 78 (2000), pp. 138–156.

[139] H. J. TULLEKEN, Generalized binary noise test-signal concept for improved identification-
experiment design, Automatica, 26 (1990), pp. 37–49.

[140] S.-M. UDRESCU AND M. TEGMARK, AI Feynman: A physics-inspired method for symbolic
regression, Science Advances, 6 (2020), p. eaay2631.

[141] C. VALGREN AND A. J. LILIENTHAL, SIFT, SURF and seasons: Long-term outdoor localiza-
tion using local features, in 3rd European Conference on Mobile Robots, 2007, pp. 253–
258.

[142] V. VENKATASUBRAMANIAN, R. RENGASWAMY, K. YIN, AND S. N. KAVURI, A review of pro-
cess fault detection and diagnosis: Part I: Quantitative model-based methods, Computers
& Chemical Engineering, 27 (2003), pp. 293–311.

[143] S. VIJAYAKUMAR AND S. SCHAAL, Locally weighted projection regression: An O(n) algo-
rithm for incremental real time learning in high dimensional space, in Proceedings of the
Seventeenth International Conference on Machine Learning (ICML 2000), vol. 1, 2000,
pp. 288–293.

[144] E. VLADISLAVLEVA, T. FRIEDRICH, F. NEUMANN, AND M. WAGNER, Predicting the energy
output of wind farms based on weather data: Important variables and their correlation,
Renewable Energy, 50 (2013), pp. 236–243.

110 BIBLIOGRAPHY

[145] J. ŽEGKLITZ AND P. POŠÍK, Linear combinations of features as leaf nodes in symbolic re-
gression, in Proceedings of the Genetic and Evolutionary Computation Conference Com-
panion (GECCO ’17), 2017, pp. 145–146.

[146] K. WANG, G. PLEISS, J. GARDNER, S. TYREE, K. Q. WEINBERGER, AND A. G. WILSON,
Exact Gaussian processes on a million data points, Advances in Neural Information Pro-
cessing Systems, 32 (2019).

[147] R. WANG, R. GOYAL, S. CHAKRAVORTY, AND R. E. SKELTON, Data-based control of
partially-observed robotic systems, in 2021 IEEE International Conference on Robotics
and Automation (ICRA), 2021, pp. 8104–8110.

[148] L. WELLHAUSEN, R. DUBÉ, A. GAWEL, R. SIEGWART, AND C. CADENA, Reliable real-time
change detection and mapping for 3D LiDARs, in 2017 IEEE International Symposium on
Safety, Security and Rescue Robotics (SSRR), 2017, pp. 81–87.

[149] D. WU, C.-T. LIN, AND J. HUANG, Active learning for regression using greedy sampling,
Information Sciences, 474 (2019), pp. 90–105.

[150] J. YAO, Y. WU, AND H. ZHAI, Speeding up quantum few-body calculation with active
learning, arXiv preprint, abs/1904.10692 (2019).

[151] G. YEHUDA, M. GABEL, AND A. SCHUSTER, It’s not what machines can learn, it’s what we
cannot teach, arXiv preprint, abs/2002.09398 (2020).

LIST OF AUTHOR’S PUBLICATIONS

This list of publications features all papers co-authored by the thesis author published before
February 2022. All listed journal papers are indexed by Scopus and by the Web of Science.

PUBLICATIONS RELATED TO THE THESIS TOPIC

This section lists publications that are directly related to the thesis topic and cited in the thesis.

PUBLICATIONS IN IMPACTED JOURNALS

• E. DERNER, J. KUBALÍK, AND R. BABUŠKA, Selecting informative data samples for model
learning through symbolic regression, IEEE Access, 9 (2021), pp. 14148–14158.
Citations: 2 (Google Scholar)

• E. DERNER, C. GOMEZ, A. C. HERNANDEZ, R. BARBER, AND R. BABUŠKA, Change de-
tection using weighted features for image-based localization, Robotics and Autonomous
Systems, 135 (2021), p. 103676.
Citations: 1 (Google Scholar) / 1 (Scopus)

• J. KUBALÍK, E. DERNER, AND R. BABUŠKA, Multi-objective symbolic regression for physics-
aware dynamic modeling, Expert Systems with Applications, 182 (2021), p. 115210.
Citations: 1 (Google Scholar) / 1 (Scopus)

• J. KUBALÍK, E. DERNER, J. ŽEGKLITZ, AND R. BABUŠKA, Symbolic regression methods for
reinforcement learning, IEEE Access, 9 (2021), pp. 139697–139711.
Citations: 7 (Google Scholar)

• E. DERNER, J. KUBALÍK, N. ANCONA, AND R. BABUŠKA, Constructing parsimonious
analytic models for dynamic systems via symbolic regression, Applied Soft Computing,
94 (2020), p. 106432.
Citations: 15 (Google Scholar) / 10 (Scopus)

CONFERENCE PUBLICATIONS

Conference publications indexed by Scopus and by the Web of Science:

• J. KUBALÍK, E. DERNER, AND R. BABUŠKA, Symbolic regression driven by training data and
prior knowledge, in Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion (GECCO ’20), 2020, pp. 958–966.
Citations: 7 (Google Scholar) / 4 (Scopus)

111

112 LIST OF AUTHOR’S PUBLICATIONS

• E. DERNER, C. GOMEZ, A. C. HERNANDEZ, R. BARBER, AND R. BABUŠKA, Towards life-
long autonomy of mobile robots through feature-based change detection, in 2019 Euro-
pean Conference on Mobile Robots (ECMR), Sep 2019, pp. 1–6.
Citations: 1 (Google Scholar)

• E. DERNER, J. KUBALÍK, AND R. BABUŠKA, Reinforcement learning with symbolic input-
output models, in 2018 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), Oct 2018, pp. 3004–3009.
Citations: 11 (Google Scholar) / 6 (Scopus)

• E. DERNER, J. KUBALÍK, AND R. BABUŠKA, Data-driven construction of symbolic process
models for reinforcement learning, in 2018 IEEE International Conference on Robotics
and Automation (ICRA), May 2018, pp. 5105–5112.
Citations: 8 (Google Scholar) / 5 (Scopus)

Conference publications indexed by Scopus (to be indexed by the Web of Science):

• E. DERNER, J. KUBALÍK, AND R. BABUŠKA, Guiding robot model construction with prior
features, in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, Oct 2021, pp. 7112–7118.

Conference publications indexed by Scopus:

• J. KUBALÍK, E. DERNER, AND R. BABUŠKA, Enhanced symbolic regression through local
variable transformations, in Proceedings of the 9th International Joint Conference on
Computational Intelligence, vol. 1, 2017, pp. 91–100.
Citations: 12 (Google Scholar) / 10 (Scopus)

OTHER PUBLICATIONS

The publications listed in this section do not form the core of the thesis, but most of them are
also, at least marginally, related to the thesis topic.

PUBLICATIONS IN IMPACTED JOURNALS

• J. KULHÁNEK, E. DERNER, AND R. BABUŠKA, Visual navigation in real-world indoor envi-
ronments using end-to-end deep reinforcement learning, IEEE Robotics and Automation
Letters, 6 (2021), pp. 4345–4352.
Citations: 4 (Google Scholar) / 1 (Scopus)

• C. GOMEZ, A. C. HERNANDEZ, E. DERNER, R. BARBER, AND R. BABUŠKA, Object-based
pose graph for dynamic indoor environments, IEEE Robotics and Automation Letters,
5 (2020), pp. 5401–5408.
Citations: 4 (Google Scholar) / 2 (Scopus)

LIST OF AUTHOR’S PUBLICATIONS 113

CONFERENCE PUBLICATIONS

Conference publications indexed by Scopus and by the Web of Science:

• A. C. HERNANDEZ, E. DERNER, C. GOMEZ, R. BARBER, AND R. BABUŠKA, Efficient ob-
ject search through probability-based viewpoint selection, in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oct 2020, pp. 6172–6179.
Citations: 1 (Google Scholar)

• J. KULHÁNEK, E. DERNER, T. DE BRUIN, AND R. BABUŠKA, Vision-based navigation using
deep reinforcement learning, in 2019 European Conference on Mobile Robots (ECMR),
Sep 2019, pp. 1–8.
Citations: 36 (Google Scholar) / 17 (Scopus)

• A. C. HERNANDEZ, C. GOMEZ, E. DERNER, AND R. BARBER, Indoor scene recognition
based on weighted voting schemes, in 2019 European Conference on Mobile Robots
(ECMR), Sep 2019, pp. 1–6.
Citations: 2 (Google Scholar) / 1 (Scopus)

• C. GOMEZ, A. C. HERNANDEZ, E. DERNER, AND R. BARBER, Semantic localization
through propagation of scene information in a hierarchical model, in 2019 European Con-
ference on Mobile Robots (ECMR), Sep 2019, pp. 1–6.

	Summary
	Anotace
	Acknowledgments
	Introduction
	Motivation and Challenges
	Challenges in Data-Driven Model Learning
	Model Learning Challenges in Robotics

	Objectives and Contributions
	Symbolic Regression for Robot Model Learning
	Informative Training Sets
	Model Learning with Prior Knowledge
	Efficient Robot Localization in Dynamic Environments

	Model Learning Preliminaries
	Symbolic Regression
	Single Node Genetic Programming
	Symbolic Regression with Formal Constraints
	Nonlinear Dynamic System Model
	Reinforcement Learning

	Constructing Parsimonious Analytic Models for Dynamic Systems
	Introduction
	Theoretical Background
	Method
	Symbolic Regression
	Genetic Programming Methods Used
	Computational Complexity

	Experimental Results
	Mobile Robot
	Walking Robot
	Inverted Pendulum

	Conclusions

	Efficient Selection of Informative Samples for Model Learning
	Introduction
	Methods
	Model Learning Framework
	Sample-Selection Methods
	Computational Complexity
	Discussion and Limitations

	Mobile Robot Experiments
	System Description
	Data Collection
	Model Learning
	Control Task
	Simulation Results
	Results with the Real Mobile Robot

	Drone Experiments
	System Description
	Data Collection
	Model Learning
	Results

	Conclusions

	Physics-Aware Model Learning for Dynamic Systems
	Introduction
	Related Work
	Method
	Baseline Symbolic Regression
	Prior Knowledge

	Experiments
	Evaluation Scheme
	Method Parameters and Complexity
	Mobile Robot
	Drone

	Conclusions

	Change Detection Using Weighted Features for Image-Based Localization
	Introduction
	Related Work
	Visual Localization Framework
	Building the Visual Database
	Weighted Features
	Correspondence-Based Localization

	Change Detection Method
	Detecting Changes
	Weights Update
	Long-Term Operation
	Limitations

	Evaluation on Our Data Sets
	Data Sets
	Experimental Setup
	Results
	Discussion

	Evaluation on Public Data Set
	Data Set Overview
	Method Performance
	Adaptive Appearance-Based Map
	Localization Using FAB-MAP
	Feature Types
	Discussion

	Conclusions

	Conclusions and Future Research
	Conclusions
	Future Research

	Grants
	List of Acronyms
	Bibliography
	List of Author's Publications

