Diploma thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

TIAGo++: a robotic archer

Marek Jaluvka

Supervisor: RNDr. Miroslav Kulich, Ph.D.
May 2021

ii

S MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details
e ™
Student's name: Jaltivka Marek Personal ID number: 466227

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Control Engineering

Study program: Cybernetics and Robotics

Branch of study: Cybernetics and Robotics
_ J
Il. Master’s thesis details
e N

Master’s thesis title in English:

TIAGo++: a robotic archer

Master’s thesis title in Czech:

TIAGo++: roboticky lukostielec

Guidelines:

1. Get acquainted with a two-armed mobile robot Tiago++ and tutorials for its usage in ROS.
2. Get acquainted with a simple bow model as described in [1].

3. Design and realize a gripper to hold and manipulate a bow, a string, and an arrow.

4. Design and realize a control algorithm for shooting a bow.

5. Employ and tailor some object detection algorithm to aim and shoot at the target.

6. Experimentally evaluate the realized algorithms and discuss achieved results.

Bibliography / sources:

[1] C. N. Nickman, F. Nagler, P. E. Klopsteg (eds) Archery: The Technical Side, National Field Archery Association; 1st
edition, 1947

[2] TIAGo++ Tutorials, online, http://wiki.ros.org/action/info/Robots/TIAG0%2B%2B/Tutorials

[3] J. Redmon, A. Farhadi. Yolov3: An incremental improvement, arXiv preprint ArXiv:1804.02767, 2018

Name and workplace of master’s thesis supervisor:

RNDr. Miroslav Kulich, Ph.D., Intelligent and Mobile Robotics, CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 29.01.2021 Deadline for master's thesis submission: 21.05.2021

Assignment valid until:
by the end of summer semester 2021/2022

RNDr. Miroslav Kulich, Ph.D. prof. Ing. Michael Sebek, DrSc. prof. Mgr. Petr Pata, Ph.D.

Supervisor’s signature Head of department’s signature Dean’s signature

lll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I would like to thank RNDr. Miroslav
Kulich, Ph.D. for great guidance, valuable
advice, and revision of this thesis. I am
also grateful to Dr. Gagél Ecorchard for
the design and manufacturing of the bow

holder and bowstring rings for the robot.

Many thanks to Ing. Viktor Kozak for
the training of a neural network target
detector used as one of the detectors for
this thesis. I would like to also thank
Ing. Karel Kosnar, Ph.D. for practical
suggestions. Finally, I would like to thank
my family for unwavering support not only
during the writing of this thesis.

iii

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, May 21, 2021

Prohlasuji, ze jsem predlozenou préci
vypracoval samostatné a ze jsem uvedl
veskeré pouzité informacni zdroje v
souladu s Metodickym pokynem o do-
drzovani etickych principt pii pripravé
vysokoskolskych zédvéreénych praci.

V Praze, 21. kvétna 2021

Abstract

This thesis describes a TIAGo++ robotic
archer capable of shooting at a target de-
tected by its camera. Closer specifications
of the solved problem are first defined
along with description of the robot and
bow and arrows used. Next, the problem
is decomposed into necessary subtasks -
mathematical bow model adaption and
simulation, design of suitable bow draw-
ing trajectories for the robot (low torques
required by robot motors), target detector
development, and the process combining
the previous subtasks into a control loop
serving to detect, aim and shoot at the
target by the robot. All of these sub-
tasks are described in detail theoretically
at first, then their implementation on the
real robot is addressed, and finally, the
crucial parts of the system - the bow draw-
ing trajectories, target detector and the
target shooting process - are evaluated.

Keywords: archer, TIAGo++, robot,
target detection, ROS

Supervisor:
Ph.D.

RNDr. Miroslav Kulich,

iv

Abstrakt

Tato prace popisuje TIAGo++ robotic-
kého lukostrelce, ktery je schopny strilet
na ter¢ detekovany ve své kamete. Nejprve
jsou definovany blizsi specifikace feseného
problému spolu s popisem pouzitého ro-
bota a luku s sipy. Déle je problém de-
komponovan na potfebné podulohy - pre-
vzeti a simulace matematického modelu
luku, design vhodnych trajektorii nata-
hovéni luku pro robota (s nizkymi po-
zadavky na tocivé momenty od motoru
robota), vypracovani detektoru terce a
proces kombinujici predchozi podilohy do
ridici smycky, ktera slouzi k detekci, zami-
feni a vystielu na ter¢ robotem. VsSechny
tyto podilohy jsou detailné popsany nej-
prve teoreticky, poté je popsana jejich im-
plementace na realném robotovi a nakonec
jsou stézejni c¢asti systému - trajektorie
pro natahovani luku, detektor terce a pro-
ces strileni na ter¢ - vyhodnoceny.

Kli¢ova slova: lukostrelba, TIAGo++,
robot, detekce tercée, ROS

Preklad nazvu:
lukostrelec

TTAGo++: roboticky

Contents

1 Introduction

1.1 Goal of this thesis
1.2 Contribution

2 Related work

3 Problem definition

3.1 TTAGo++ robot.............
311Arms....................
Torso lifter.
3.1.2 Hey5 Hand End-Effector . . .
313Head
3.1.4 Mobile base

3.2 Bow and arrows

4 Approach

4.1 Robotic archer overview
42 Bowmodel..................

4.3 Search for optimal bow draw

configurations

4.4 Design of bow drawing

trajectories
4.5 Target detector
4.5.1 Concentric circles detector . .
4.5.2 Neural network detector
4.6 Detect - Aim - Shoot loop

5 Implementation

5.1 Implementation overview

52ROS ..
5.3 TTAGo-+-+ robot control

5.4 Bow end-effector & bowstring

TINGS « vt
5.5 Bowmodel..................

5.6 Search for optimal bow draw

configurations

5.7 Design of bow drawing

trajectories
5.8 Target detector
5.8.1 Concentric circles detector ..
5.8.2 Neural network detector
5.9 Detect - Aim - Shoot loop

6 Experimental evaluation

6.1 Testing drawing trajectories
6.2 Testing target detection

6.3 Detect - Aim - Shoot loop testing

7 Conclusion and Discussion

A Bibliography

65)

Figures

3.1 PAL Robotics TIAGo++ robot
components [PALD]
3.2 TTAGo++ robot in RViz -
important coordinate frames

3.3 TTAGo-++ robot arm e
3.4 Hey5 Hand [PALD]............. 9]

3.5 Geologic Softarchery 100 bow and

arrows [bow]

4.1 Bow model diagram [CNH4T],
edited

4.2 Draw configuration frames

4.3 Target with dimensions in cm . .

4.4 Pinhole camera model, from

4.5 Concentric circles detected on
target in robot camera (upper image),
the bottom images from left to right:
image cropped to the target, white
color segment, black color segment,
blue color segment, red color
segment

4.6 A general neural network diagram

[dat]

4.7 Derivation of rotation correction

computation
4.8 Derivation of lift joint correction

computation
4.9 Derivation of lift joint correction
computation - detailed

5.1 Initialization of communication via
a ROS topic. 1. Registration with the
Master, 2. Master sends contact
information for publisher to the
subscriber, 3. subscriber contacts the
publisher directly with its contact
information, 4. publisher sends data
to subscriber. [Jall9]

5.2 move_group ROS node [movb] . .

5.3 Bow end-effector (left) and
bowstring rings (right)

5.4 Bow Gazebo model undrawn and

fully drawn
5.5 Bow force-draw curve 1471

vi

5.6 A robot bow draw configuration
with the extended string bow model
(left) and a standard posture for
shooting a bow [Arr](right)

5.7 The output of torqueNormSum as a
function of bow xy position

5.8 Colors of all pixels in a target
image in HSV colorspace together
with the boxes defining color segment
ranges (white, black, blue and red)

6.1 Normalized torques of the left and
right arm motors for the drawing
trajectory "pitch 10 number 1". ...

6.2 Normalized torques of the left and
right arm motors for the drawing
trajectory "pitch O number 6".

6.3 Target with arrow hits marked as
green circles for sticked arrows and
yellow circles for bounced arrows,
distance 4 m (left) and 4.5 m (right)

Tables

3.1 Motor specifications [PALD]
4.1 Bow parameters

6.1 Left arm joints maximal absolute
normalized torques for every drawing
trajectory L. 59|

6.2 Right arm joints maximal absolute
normalized torques for every drawing
trajectory L. 60|

6.3 Position estimates (x, y and z
coordinates) for 7 different positions
with respect to the robot base link
frame - ground-truth position in
Vicon column, in other columns
differences from Vicon of concentric
circles raw (Accr), concentric circles
averaged (Acca), neural network
(Ann) and an average between CCA
and NN (Agy) ooovviiiiii

6.4 x and y deviations and distances
from the center for the arrow hits for
both robot-target distances, mean p
of the values and their corrected
sample standard deviation s

vii

Chapter 1

Introduction

As the focus of modern robotics shifts from single-task industrial assembly line
robots to mobile general purpose robots, there is a need to operate in various
environments not designed with a robotic agent in mind, but rather tailored
for humans. All our tools and infrastructure are designed with the assumption
of a human using them. One branch of robots successfully operating in such
environments are humanoid robots constructed to mimic human biomechanics.
One of the crucial and very advantageous features of the human form are
two arms for their dexterous and efficient capabilities of manipulating various
objects.

Many everyday tasks require two-hand manipulation: opening various pack-
ages, unscrewing bottle lids, washing dishes, or cutting paper with scissors,
just to name a few. Many tools are also designed to be wielded with two
hands, e.g., a broom, shovel, wheelbarrow, or a chainsaw. Complex movement
and coordination between both arms is usually necessary for these tools, as
there are often only a few ways of using that particular tool properly, i.e.,
to serve its purpose and avoid straining its operator excessively. A perfect
example of such a tool is the bow. Its main design goal is to convert as much
of the physical strength of the archer as possible to the kinetic energy of the
arrow. The movement of drawing and shooting bow has been perfected by
humans over thousands of years as its efficiency and accuracy were pivotal
for survival. Letting a robot draw and shoot a bow close to this efficiency
or accuracy is a challenging, but achievable task. Shooting a bow requires
strength and precision rather than speed, which makes it a convenient way
for a lot of robots to potentially launch a projectile since most of the contem-
porary robots are not able to generate safely enough end-effector acceleration
to successfully throw an object.

As a result of these properties, drawing and shooting a bow with a dual-arm
robot is chosen as the main focus of this thesis.

. 1.1 Goal of this thesis

This thesis aims to develop and describe a robotic archer with TIAGo++
dual-arm robot. This entails the design of a physical holder, attaching the
bow to the robot, designing low-torque bow drawing trajectories, creating a

1. Introduction

system of visual detection and localization of the target and finally developing
a control loop to shoot an arrow at the target.

The most emphasis is placed on the design of the bow drawing trajectories as
they are the foundation of the whole system and their improper design would
not only decrease the accuracy as is the case for the rest of the subtasks, but
also could render the whole shooting process anywhere from energy inefficient
up to completely impossible due to the torques required from the robot motors
being beyond their capabilities.

The designing process of these trajectories needs to be general enough to
be after modifications potentially applied to different physically demanding
tasks involving complex arm movements.

As a secondary goal, the whole system needs to be as accurate as possible,
which is a product accuracies of each component - the physical bow and its
mathematical model, localization of the target and the shooting control loop
itself.

. 1.2 Contribution

The main contributions of this thesis are:

B creating a simulation of a bow using a mathematical model fitted to real
bow parameters

B devising an optimization approach to the design of bow drawing trajec-
tories

® developing a method of reliable detection and localization of a target

B composing the detection and localization of the target and drawing
trajectories into the detect-aim-shoot loop

® evaluating the suitability of the drawing trajectories and the accuracy
of both the target localization by itself and the whole detect-aim-shoot
loop.

Chapter 2
Related work

Certain component tasks of the solution of this thesis are by themselves
frequent topics in the literature.

For example, an optimization-based framework to design optimal trajectories
for a robotic system with respect to an arbitrary physical criterion is derived
by [BMKO01]. The optimization criterion is formulated such that it has ana-
lytically computable gradients enabling a reliable and efficient solution to the
optimization problem. This framework is demonstrated on several tasks for a
humanoid robot model like power lifting, diving, and gymnastics.

The paper by [CF17] explores specifically torque efficient robot motions with
relation to the singularities of the kinematic chain. Singularities are in robotics
configurations of the robot, where the end-effector looses the ability to move
in one or more directions. These are usually avoided, but as shown in [CF17]
the motions at or near singularities are optimally torque and energy efficient.
The archery target detection is also solved in various forms, usually as a part
of an automatic scoring system for archery. For example, in [JD20], the target
is detected by first filtering out the background of the target face (the whole
square encompassing the concentric circles inside the target), then detecting
its corners, followed by a perspective transformation and finally a Hough
transformation to get the biggest circle in the target.

The paper by [DL19], on the other hand, aims to develop an efficient FPGA
implementation of target detection with a robotic archer in mind. The target
center is obtained by first using color segmentation in HSV color space to
classify each pixel as target yellow, red, blue colors, or none of these. The
target center is obtained by an algorithm trying to recognize a color sequence
matching the standard target sequence of blue-red-yellow.

The closest work from the perspective of its goal to this thesis is currently
a paper by [PK10], which presents a humanoid robot iCub learning the
skill of archery by a reinforcement learning approach - the robot shoots at
the target multiple times with different aims and draw lengths and evalu-
ates each shot by visually detecting the arrow hit in relation to the target.
This evaluation drives the learning process to progressively hit closer to
the target center. Two algorithms for the learning process are compared:
the expectation-maximization-based POWER algorithm and a custom local
regression algorithm called ARCHER. To find the target in the image, a

3

2. Related work

dataset of pixels in the target and in the arrow tip is collected manually by
an operator as an initial calibration. These pixels are converted to the YUV
color space and their U and V components (chrominance) are used to learn
a Gaussian Mixture Model (GMM) of the color characteristics of the target
and arrow tip in UV space. Parameters of these Gaussian distributions are
later during the learning process used for position estimation of the target
and arrow tip in the image.

Chapter 3

Problem definition

In this thesis, we are tackling the problem of designing a robotic archer with
the capability of detecting and shooting at a target. The core components
we are provided to achieve this are described in this chapter. Namely, we
are using a TTAGo++ two-handed robot as the archer and a recurve bow
with low draw force to shoot a suction cup arrow at the target. The bow is
mounted on the robot and the arrow is nocked on the bowstring ready to
shoot. The target is located in a close vicinity of the robot - at the distance
of 3.5 to 5.5 m.

B 3.1 TIAGo++ robot

TIAGo++ robot by PAL Robotics |pala] was used as the robotic archer. The
whole robot is in Figure [3.1. Its components pivotal for this thesis will be
discussed in this section.

B 3.1.1 Arms

Both arms are 7 DoF (degrees of freedom) serial manipulators with 7 rotational
joints. In other words, the position of each arm can be described by 7
parameters - rotation angles around the rotation axes in each joint. For a

general serial manipulator, these angles are denoted as 601, 6s, ... 8, where n
is the number of joints. Put in a vector they create the joint configuration:
01
o % (3.1)
On

For the purposes of this thesis, we will distinguish between the joint configu-
rations of each arm by the additional lower index [for left or r for the right
arm

On 0r1
o—|%2| o =%, (3.2)
Or7 07

3. Problem definition

RGB-D - =
camera Laptop tray
Stereo
microphones
" B Expansion panel
Speaker TER
Right
7 DoF arm
Left
7 DoF arm
Right end-effector
Lifting torso

Right forcetorque
sensor (optional)
Left end-effector

Left forcetorque
sensor (optional)
Speaker
LED

Dock station contactor stripes

Laser
range-finder

Service panel

Figure 3.1: PAL Robotics TIAGo++ robot components [PALb

Given these joint configurations and a robot model (the relative position and
orientation of each joint in the kinematic chain of each arm), we are able
to compute forward kinematics of the arms, i.e., determine the position and
orientation of both end-effectors. An end-effector in robotics is the last link
in a kinematic chain usually used to effect the environment. The first link
in the kinematic chain, on the other hand, is generally called the base link.
This is usually an object the manipulator is mounted on. The base link of the
TIAGo++ robot arms (and torso) will be the mobile base with its coordinate
frame called base_footprint and positioned as depicted in Figure

Often, an opposite task to forward kinematics is performed called inverse
kinematics. The input to this task is a desired position and orientation of
the end-effector, often compactly given as a transformation matrix from the
end-effector coordinate frame to the base link coordinate frame T2, and the
output is one or more possible joint configurations to reach this pose. For
both TTAGo++ arms, the inverse kinematic task will be computed always for
specific frames called tool link frames. They are positioned in the wrists and
depicted in Figure as arm_left_tool_link and arm_right_tool_link.

The arms are a mirror image of each other with respect to the kinematics.
Regarding other properties like dynamics and motor specifications, they
are identical. An image of one of these arms is in Figure [3.3. The only

specifications of the arm motors relevant for this thesis are summarized in
Table [3.1.

3.1. TIAGo++ robot

base footprint

Figure 3.2: TIAGo++ robot in RViz - important coordinate frames

Actuator Gear transmission ratio | Nominal torque [Nm]
1st module 100:1 39
2nd module 100:1 39
3rd module 100:1 22
4th module 100:1 22
Wrist 1st DoF 441:1 3
Wrist 2nd DoF 441:1)
Wrist 3rd DoF 441:1 5

Table 3.1: Motor specifications [PALb

The joints are not fitted with torque sensors, but provide information about
currents through the motors. This will be later used to roughly estimate the
motor torques.

3. Problem definition

M3D wrist (3 DoF)

2nd M90
module

-

1st MO0
module

/fw —>

3rd MS0
module

4th M90
module

Figure 3.3: TIAGo++ robot arm [PALD]

B Torso lifter

The robot torso is mounted on a prismatic joint with a range of 35 cm. The
height of the whole robot can be anywhere from 110 to 145 cm.

B 3.1.2 Hey5 Hand End-Effector

The Heyb Hand end-effector was used as the drawing left hand. It is illustrated
in Figure [3.4. The fingers are controlled by 3 motors - one for the thumb,
one for the index finger and the last for the remaining fingers, which are
represented by one joint called "mrl" (middle ring little).

B 3.1.3 Head

TIAGo++’s head is mounted on a 2 DoF pan-tilt mechanism. It is equipped
with a RGB-D Orbbec Astra S camera. The depth sensor unfortunately has
a range of 0.4 - 2 m, which renders it not usable for this thesis. The image
mode used is 640x480 resolution with 30 fps.

The frame the target detection will be later performed in is depicted in Figure
3.2|as xtion_rgb_optical_frame and will be from here on referred to as the
camera frame.

B 3.1.4 Mobile base

The mobile base has a differential drive, laser-range finder and three rear
sonars. These enable robot localization and navigation with obstacle avoid-
ance.

3.2. Bow and arrows

Figure 3.4: Hey5 Hand [PALD

. 3.2 Bow and arrows

The bow and arrows used for the realization of this thesis were from the
Geologic’s Softarchery 100 set [bow] illustrated in Figure [3.5. The reason
behind that was the full draw force of 20 lbf or 89 N (as provided by the
manufacturer) was within the robot’s capabilities and the suction cup arrows
excluded the possibility of a serious injury after a potential accident.

3. Problem definition

Figure 3.5: Geologic Softarchery 100 bow and arrows [bow]

10

Chapter 4
Approach

. 4.1 Robotic archer overview

The task of realizing a robotic archer capable of recognizing a target and
shooting at it consists of several subtasks.

First, a mathematical model of the bow needs to be adopted to serve as a
simulation tool.

Next, it is needed for the robot to be able to handle the bow accurately and
predictably. This was achieved by a custom 3D printed end-effector designed
to mount the bow on the robot.

Then, some bow-drawing trajectories need to be designed: multiple trajectories
with different bow elevation (pitch) angles to provide more options to choose
from for a given robot position relative to the target. These trajectories need
to put as little strain as possible on the robot motors - i.e., the torques need
to be minimized. The reason for this is that a bad draw trajectory can give a
high load on small motors (like a wrist motor) not designed for such a load.
This task is divided into two parts:

® finding optimal draw configurations - for a known final draw length,
finding possible arm configurations, ensuring proper torque distribution
across all motors

B design a low-torque trajectory to get to a given final draw configuration.

Subsequently, the target needs to be detected and localized. A camera inside
the robot’s head was used for this purpose. Two methods are used to find
the target in the image: an object detection neural network trained on the
target and a concentric circles detector.

Finally, the detection and bow drawing need to be composed into a detect-
aim-shoot loop.

More detailed description of these components follows.

. 4.2 Bow model

For the purposes of planning robot movements suitable for drawing and
shooting a bow, it was necessary to create first a mathematical model of a

11

4. Approach

bow for the robot model to interact with. A lot of such models have been
developed to this day, but for our purposes, only very simplified model relating
draw length to the necessary draw force would suffice. Such model has been
adopted from |[CNHA4T].

The model assumes a bow consisting of a middle rigid part and two flexible
limbs (upper and lower). The tips of both of these limbs are assumed to move
on trajectories in the shape of arcs of a circle. This assumption is reasonable
as practically all bowyers construct the bows to bend like this (this property
results in all sections of the bow stressed equally when drawn). A bow model
with all its describing parameters is displayed in the Figure 4.1|

The meaning of individual parameters, which are used throughout this thesis,
as well as important relations with other parameters are summarized in the
Table 4.1, All these parameters express the kinematic properties of the bow
given its geometry (various lengths and angles). The only exception is the
bow constant C' which relates angle A of limb deflection and static force at
bow tips f. This constant is bow specific and is influenced by bow dimensions
and material.

These relations can readily provide the draw length and all forces and tension
given the angles A and F (and bow dimensions). Unfortunately, the most
important dependency for bow drawing is the static draw force as a function
of draw length F(D) which is not so easily obtained from the expressions.
However, it can be still derived from the diagram in Figure |4.1. Using the
cosine formula and the Pythagorean theorem:

Q—\/D2+(]zl+L)2
2

9
G:arccos{ —B?+ 2—52}
2 9
M = arccos {3B15(163% + 8% — Q2)]
4L + B
K = arccos 4—221
The angles A and FE are then:
A=n-G-K
(4.2)
E=M-A.

This is enough to obtain the dependency F'(D) by the respective substitutions.

The dependency F'(D) is important because it also can be directly used to
compute the potential energy stored in the bow for a particular draw length:

D
E,= [Fdl. (4.3)
Hop

12

4.2. Bow model

relation to

parameter parameter meaning other parameters
B half of bow length -
I half of the length i
of the rigid handle
length of active bending
B portion of each limb Bi=B-1
g half of the length i
of the string
distance from middle of bow 3
H to middle of line H=-BysinA
connecting bow tips 4
Ho bow to string distance i
for undrawn bow
distance from arrow nock
P to middle of line P=SsinFE
connecting bow tips
D draw length D=H+P
half of the length 3 By
Y of line connecting bow tips Y= ZBI cos A + 4 L
o center of circular motion located at distance %Bl
of bow tip from undeflected bow tip
angle between the line
A connecting bow tip and point O -
and the undeflected limb
angle made by string with
E . . . -
the line connecting the bow tips
static force at each bow tip
! in a direction tangent to its path f=c-4
. o . I
T static tension in the string = Sn(A+E)
F static draw force F=2TsinFE
distance along the path
N made by the bow tip -
during the draw
C bow constant -

Table 4.1: Bow parameters

This potential energy is during the shot converted to the kinetic energy of
the arrow, but also to vibrations of the string and limbs, noise and elastic
energy of the arrow. Bow efficiency describes the portion of the potential
energy actually converted to kinetic energy:

Ek = nEpu

(4.4)

where 7 is efficiency, E}, is kinetic energy of the arrow and E), is the potential

13

4. Approach

h 4 e -

Figure 4.1: Bow model diagram [CNH47], edited

energy stored in the bow. The velocity of the arrow on departure from the
bow is then:

v=4]—=, (4.5)
where m is mass of the arrow.
B 2.3 Search for optimal bow draw configurations
The process of finding optimal draw configurations for a given draw length

will be described here. This process was employed only to find the final
draw configurations, not the intermediary points during drawing under the

14

4.3. Search for optimal bow draw configurations

assumption that the final draw configurations require the biggest force and
therefore torques on motors. Also, the robot is expected to hold the bow in
the final configuration for the longest time during aiming.

The following paragraphs will describe in detail the criterion of optimality
for the bow draw configurations - its computation and the reasoning behind
it. Using this criterion, an optimization task will be formulated to find an
optimal bow draw configuration. Finally, a method to solve this task will be
stated.

As was previously mentioned, it was crucial for the drawing motion to require
as little torque as possible from robot motors and the torque needed to be
distributed properly between the motors, i.e., each motor needed to operate
only within its nominal torque range. To better characterise the torque load
on a particular motor in relation to its capabilities, normalized torques are
used throughout this thesis:

Tei = L s = {l,r}, i=1..7, (4.6)

where 7, ; is the torque exerted on a motor number ¢ of arm s (left or right),
n; is nominal torque for motor ¢ (motors with the same number are identical
on both arms) and 77'; is the normalized torque.

The torques of the motors required for the robot’s end-effector to exert
some force and moment on the environment can be generally computed like

in |Asa05]:

th 1
—JOTF 0 — 92 | T2 F = fn,n+1 4
T=JOE 0= T = P N | @
On Tn

where T is a vector of torques of each joint in an open kinematic chain, J is
the Jacobian matrix computed for some joint configuration @ and F' composes
of a 3x1 vector of end-effector force and a 3x1 vector of end-effector moment
on the environment.

For the purposes of this task, I will model not only the motor torques required
to counteract the forces of the draw, but also the torques counteracting the
weight force of each arm link as these are significant, even dominant over draw
forces for certain draw configurations. To compute such torques, which are
the results of forces acting on a different point in the kinematic chain other
than the end-effector - center of mass of that particular link - it is necessary
to essentially compute the Jacobian as if the chain had a virtual end-effector
in that point. Such a Jacobian computed for some joint configuration € at a
point p from the kinematic chain expressed in the base link coordinate frame
will be here denoted as J(@,p). The torques needed by the motors of one
robotic arm with n different links (all links counted including the finger links
or the bow itself) to counteract the drawing force and gravity of the links are

15

4. Approach

then:

fs

T, = J(Os,eS)T 0

£ J(0nem.)" lmgig] ,os={lr}, (48)

=1

where e, is the end-effector point for the arm, f is a 3x1 vector of the drawing
force expressed in the base link frame, em; is the center of mass of i-th link
on the arm and my; is its mass. Finally

9= (4.9)

Q@ O O

with g being gravitational acceleration. The vector is pointing up because
that is the direction the motors apply force to the links to counteract gravity.
Furthermore, the relation f, = —f; holds in the base link frame.

Now that we have a way to compute the joint torques given a particular joint
configuration, we must find possible joint configurations. The robot has a
bow mounted in its right hand and draws it with its left hand. The bow pose
coordinate frame will be fixed to the bow and positioned as shown in the
Figure 4.1. Let us have the bow pose in the right hand as a variable and
fix some draw length. The orientation of the left hand should match that of
the bow pose (to avoid large torques on the wrist) and its position will be
determined by the draw and some fixed offsets. Therefore, the left hand pose
will depend only on the bow pose which will be the only variable.

As already mentioned in the previous chapter, the links, we can readily com-
pute the inverse kinematics for will be called tool links here, more specifically
the left tool link and the right tool link for both arms. The right tool link pose
is obtained from the bow pose according to the static transformation between
the two links defined by the physical dimensions of the handle mounting bow
on the robot. The pose of the left tool link is obtained as a transformation
from the bow pose to the left hand grasping frame located on the left hand
palm near the fingers and then by a static transformation to the left tool link.
The transformation matrix of the left hand grasping frame to the base link
frame is:

1 0 0 —=D+uzypy
010
0 _ 70 Yof f
Tlhgf - Tbow : 00 1 _;Off) (410)
0 0 0 1

where D is the draw length, x,7 is an offset in the x direction, y,ss in the y
direction and z,s; in the negative z direction. Some z,s is always necessary
so that the left hand is positioned below the arrow on the string. The Figure
4.2|is provided to better illustrate the coordinate frames involved.

Upon reception of the necessary poses of both tool links, all possible (or at
least most) joint configurations able to reach these poses were obtained from

the inverse kinematics. Subsequently, an optimal configuration was picked

16

4.3. Search for optimal bow draw configurations

Figure 4.2: Draw configuration frames

from these joint configurations for each arm independently. The criterion for
this selection was a minimal Euclidean norm of the normalized torques for
that configuration:

norms = ||T5||, s={l,r}, (4.11)

where 77 is the vector of normalized torques computed from 74 according
to the Equation [4.6, which in turn was computed with the particular joint
configuration 6 according to the Equation The load on the robot motors
for a particular draw configuration can then be defined as:

load = norm] + normy, (4.12)

where norm; and norm;. are the norms from Equation for the optimal
joint configurations.

A pseudocode for a function torquesNormSum, which takes the bow pose in
the form of x, y, z position and Euler angle representation of orientation
(yaw (¢p)—>pitch (a)->roll (¢)) and returns the value of load, is in Algorithm
Most component functions and variables of this algorithm have been
described in the previous paragraphs. Concerning the rest: a variable rm
stands for robot model and is a data structure holding all the information
about robot kinematics. More specifically, the robot physical model is kept
here. Individual joints of the robot are accessed via their respective joint group
- rm.left and rm.right for arms and rm.torso for the torso. The function
setJointPositions sets joint configuration of some joint group in a robot
model variable to its input argument. The function isInSelfCollision

17

4. Approach

unsurprisingly checks for self-collision of the robot model after its state has
been modified. Finally, the variables 8;.¢ and ,..; are some joint configurations
chosen such that the left or right arm, respectively, is collision-free with the
rest of the robot.

The function torquesNormSum was used as a minimization criterion in the
search for optimal draw configurations. Furthermore, an equality constraint
is needed to filter out most of the infeasible points, i.e., the configurations
not reachable by the inverse kinematics. The function findA11IKSolutions
in torquesNormSum returns empty sets as well when the inverse kinematics
is unable to find a solution, but is way too computationally expansive to
check for all search points as the search space is mostly composed of infeasible
points. A pseudocode of this equality constraint is in Algorithm [2. The
function setFromIK sets the joint state of a particular joint group from the
inverse kinematics computed for an end-effector pose given as its second
argument. This looks for any solution. It returns true on success or false
otherwise setting the Boolean variables foud_ ik _left and foud ik _right.
This equality constraint returns 0 upon finding a feasible point or else it
returns 1. This logic was chosen to comply with the standardized definition
of an equality constraint of an optimization task as f(z) = 0.

The optimization task we are trying to solve during this search for optimal
draw configurations is the following:

xg{lzr}w torquesNormSum(z, y, z, ¥, a, ¢, rm, Oicp, O,c5) (4.13a)
subject to isInfeasible(x, y, z, ¢, o, ¢, rm) =0 (4.13b)
Tmin < T < Tmax (4.13¢)
Ymin <Y < Ymaz (4.13d)
Zmin < 2 < Zmaz (4.13¢)
Vmin <Y < Ymaa- (4.13f)

The minimization variables are only x, y, z and v, the rest is fixed for a given
draw configuration search. The searches were conducted multiple times for
multiple pitch angles to accommodate for various robot-to-target positions.
The roll angle ¢ was set to zero.

A lot of classical approaches to solving optimization problems rely on
some convenient properties of the optimization criterion and constraints, e.g.,
smoothness or even convexity. These enable the solver to rather quickly find
a local or even global optimum using the gradient of the criterion.
Unfortunately, the functions torquesNormSum and isInfeasible are both
nonlinear non-smooth functions mainly due to the need to compute the inverse
kinematics solution/s in a non-analytical way and pick the best ones. The
gradient does not exist for these functions.

In such cases, we are unable to claim about any solution, it is truly optimal
(globally or locally) unless we perform an exhaustive search through all feasi-
ble points. This is, however, even with modern computers impossible to do in
a reasonable time for nontrivial problems. The methods actually usable for
these kinds of problems - and used to find draw configurations for this thesis

18

4.3. Search for optimal bow draw configurations

Algorithm 1: torquesNormSum

1 Function torquesNormSum(z, y, z, ¥, o, ¢, rm, Oicf, Orcp):

2
3

© 0 N O ook

10
11

12

13
14
15
16

17
18
19
20
21
22
23

24

25
26
27
28
29
30
31
32

TP, T? + transformToToolLinks(z, y, 2, ¥, , ¢, Tm);
Oy, O, + findA11IKSolutions(7}, 1Y, rm);

if ©,#0 & O, # () then
n; < oo;
foreach joint configuration 6; in ©; do
rm.left < setJointPositions(6;);
rm.right <— setJointPositions(f,.s);
if isInSelfCollision(rm) then

‘ continue;
end

n; < getTorquesNorm(rm, "left");

if n; < nj then
ny < n;
end

end
ny — 0o;
foreach joint configuration 6, in 6, do
rm.left < setJointPositions(f.f);
rm.right < setJointPositions(0,);
if isInSelfCollision(rm) then

‘ continue;
end

n, < getTorquesNorm(rm, "right");

if n, < n; then
ny < Ny;
end

end
return n; + n;;

else
return oo;
end

Algorithm 2: isInfeasible

1 Function isInfeasible(x, y, z, ¥, a, ¢, rm):

O W N

TP, T° + transformToToolLinks(z, y, 2, ¥, , ¢, Tm);
found_ik_left + setFromIK(rm.left, T));
found_ik_right < setFromIK(rm.right, T);

return (found_ik_left & found_ik_right) 7 0 : 1;

19

4. Approach

- perform a sampling of the search space to find a population of candidate
solutions, which is refined until some condition (low speed of improvement, a
defined time has passed ...) is met and finally combined to a solution. These
methods can find only a "sufficiently good" solution, but we will call their
final product "optimal" for brevity throughout this thesis.

A portion of these methods like Tabu Search use their previously acquired
search results to guide them through the search space in a deterministic way,
whereas genetic or evolutionary algorithms take a more stochastic approach.
An actual algorithm used for the draw configuration search was an evolution-
ary algorithm ISRES (Improved Stochastic Ranking Evolutionary Search).
In general, evolutionary algorithms refine their population of candidate so-
lutions by a random mutation of the individual, crossover or the random
recombination of several existing candidates and a random selection giving
greater chance of better candidates to survive to the next generation [fls].
The ISRES algorithm specifically uses stochastic ranking of the candidate
solutions to strike a good balance between avoiding evolving infeasible solu-
tions too much, resulting in a bad feasible space exploration (especially for
disjoint feasible space), and between evolving them too much leading to a
bad feasible space exploitation. This ranking has been introduced in [RY00]
and improved in [YRO05].

B aa Design of bow drawing trajectories

After some optimal draw configurations had been found, it was necessary to
design for each one the whole trajectory from some undrawn state to that
particular optimal draw configuration. This trajectory should not stress the
motors disproportionately as well, otherwise all the work put into finding
the optimal final draw configuration would be in vain. To achieve this, some
constraints needed to be put on the trajectories:

® Orientations of both end-effectors needed to be (roughly) the same at
all times

® The position of the left end-effector needed to be (roughly) in the bow
plane (x-z plane in the bow coordinates in Figure 4.1) at all times, from
here on called "synchronous" movement

The procedure of the design itself using motion planning was started with
the robot in a particular optimal draw configuration with the left hand
closed and progressed towards an undrawn bow configuration. Some key joint
configurations (in each phase of the undraw) were stored along the way and
thanks to them the process could be planned in the opposite direction, giving
the draw trajectory we were looking for. This method was chosen because the
final draw configuration was known and a specific undrawn configuration was
not required as it is possible to move between various undrawn configurations
(the robot does not hold the bow string) without any constraints.

The undraw trajectory was designed in 4 phases:

20

4.4. Design of bow drawing trajectories

1. Move both hands on a (more or less) straight line towards each other as
close to each other as possible

2. Move both hands to draw length of 0.3 m, synchronous movement of the
hands parallel to the xy bow plane is allowed

3. Undraw from 0.3 m completely, movement in any direction allowed as
long as hands are synchronous

4. Open the left hand and move it away from the string, movement in a
plane parallel to the xy bow plane allowed

Before diving in depth in the algorithms in each phase, it is appropriate to first
introduce the function they will rely on: moveArmsToPoses. A pseudocode of
this function is in Algorithm 3. Besides some variables we already encountered
like tool link poses Tl0 and T and robot model rm, it takes in the torso joint
value [, a string first_arm to specify which arm to move first and three
data structures mg, mg_left and mg_right. The abbreviation mg stands
for "move group" and these data structures provide a way to plan and execute
movements for a certain joint group - mg_left for left arm, mg_right for
right arm and mg for both arms + torso prismatic joint. These variables
encompass a communication interface with the movement planner and joint
motor controllers. This will be discussed in detail in Section 5.3l

The target joint configuration for a movement is set by setJointValueTarget
and the function move plans and if successful, executes movement to the
last joint target. It returns true on success, false otherwise. In short, the
moveArmsToPoses function gets the closest inverse kinematics solution for
some given tool link poses and tries to move the robot to this joint configura-
tion either both arms at once or one arm after another. If the movement of
the second arm fails, the first arm must be moved back to its initial position.
A pseudocode of the function findClosestSolution is also provided in the
Algorithm |4l This function returns a Boolean success/fail variable and the
closest inverse kinematics solution to some initial joint configurations. This
is needed as a big difference in initial and target joint configurations signifies
an unnecessarily complicated movement undesirable for the draw trajectory.
The inefficient double loop is required, in contrast to the Algorithm |1, be-
cause the arms are expected to operate close to each other at times, thus
the self-collision needs to be checked for every possible combination of joint
configurations provided by the inverse kinematics. The distance function
performs Euclidean distance computation between its argument vectors.

Now, the individual phases will be described. All the phases use the
function moveArmsToPoses to implement a search for a bow pose (and draw
length sometimes) that is reachable by both inverse kinematics and the
planner while adhering to some path constraints characterising that phase.
These constraints were of two kinds - orientation and end-effector position
constraints. The orientation constraints ensured only a small deviation of the
end-effectors’ orientation quaternions throughout that phase. These were the

21

4. Approach

Algorithm 3: moveArmsToPoses

1 Function moveArmsToPoses (T, T?, I, first_arm, mg, mg_left,
mg_right, rm):

2 0).init < getCurrentJointValues(myg_left);
3 0,.init < getCurrentJointValues(mg_right);
4 found__solution, 6y, 6, < findClosestSolution(Tlo, T?, 01.init,
or,initv Tm);

5 if found__solution then

6 setJointValueTarget(myg, [l, 6, 6,]);

7 setJointValueTarget(mg_left, 6));

8 setJointValueTarget(mg_right, 6,);

9 if first_arm = "both" then

10 ‘ found__solution < move(mg);

11 else if first_arm = 'left" then

12 if move(mg_left) then

13 if not move(mg_right) then

14 setJointValueTarget(mg left, 0) init);
15 move(mg_left);

16 found__solution < false;

17 end

18 else

19 ‘ found__solution < false;

20 end

21 else if first_arm = "right" then

22 if move(mg_right) then

23 if not move(mg_left) then

24 setJointValueTarget(mg_right, 0, init);
25 move(mg_ right);

26 found__solution < false;

27 end

28 else

29 ‘ found__solution < false;

30 end

31 end
32 end
33 return found_ solution

22

4.4. Design of bow drawing trajectories

Algorithm 4: findClosestSolution
1 Function findClosestSolution(Tlo, 7O, 01.init, Orinit, Tm):

2 | O, O, + findAl1IKSolutions(7), T, rm);
3 found__solution < false;

4 d* < oo;

5 if 9,40 & O, # () then

6 foreach joint configuration ; in ©; do

7 foreach joint configuration 8, in 6, do
8 setJointPositions(rm.left, 6;);
9 setJointPositions(rm.right, 0,);
10 if isInSelfCollision(rm) then
11 ‘ continue;

12 end

13 found__solution <+ true;

14 d < distance(0y, 0 it) + distance(0,, 0, init);
15 if d < d* then

16 d* + d;

17 07 < 6y;

18 0: < 6,;

19 end

20 end
21 end
22 end
23 return found_solution, 07, 0;

same for all phases, making orientation of the end-effectors roughly the same
as the final draw orientation for the whole draw trajectory. The end-effector
position constraints, on the other hand, kept the particular end-effector in a
box in space. The dimensions and center of this box were phase-specific.

Phase 1 tries to find a straight line undraw movement, thus the end-effectors
positions were constrained mainly in the y and z directions in the bow
coordinated frame. A pseudocode in Algorithm [5/ describes this search. This
function takes in the bow pose, torso joint value, [, minimal, maximal, and step
values for draw length, maximal and step values for bow position difference in
x direction and robot data rd. The robot data variable is a container for the
robot model rm and all the necessary move groups, namely mg, mg_ left and
mg__right. This function essentially shifts the bow pose for each draw length
(from minimal to maximal) along its x axis until it is able to move the arms
to this configuration. The function transformToToolLinks is overloaded to
accept different inputs here - the bow pose as a transformation matrix and
the draw length, which was in the previous section set globally and fixed. The
function shiftInOwnCoords performs for an input transformation matrix T

)

23

4. Approach

and a translation vector [z,y, z] the following computation:

1 0 0 =z
01 0 y

T 00 1 » (4.14)
0 00 1

Algorithm 5: lookForMinDrawOnLine
1 Function lookForMinDrawOnLine (Tl?ow, l, Din, Dmazs Dstep,
Abow,ma:z:; Abow,step; rd):

2 found__solution < false;

3 D <+ Dmin;

4 while D < D,,q. & not found_solution do

5 Abow — 0;

6 while Ay < Apow,mae & not found solution do

7 TP, T? + transformToToolLinks(Ty , D, rd.rm);

8 if moveArmsToPoses(T, T2, I, "right", rd.mg, rd.mg_left,

rd.mg_right, rd.rm) then

9 ‘ foud__solution < true;

10 end

11 T2 ., shiftInOwnCoords(T}) . [—Apow,steps 0, 0]);

12 Abow < Abow + Abow,ste;o;
13 end
14 TP ., < shiftInOwnCoords(T ., [Avow.step + Dbow maz, 0, 0]);
15 D < D + Dggep;
16 end
17 return found__solution;

Phase 2 follows with the search for a bow pose on the horizontal bow plane
and the draw length of 0.3 m. The movement in the z direction in the bow
frame was mainly limited by the position constraints. The pseudocode of
this search is in Algorithm 6. It essentially places the bow pose at successive
points in a grid in the xy direction with a given draw length D until it finds
a reachable pose.

Phase 3 meant the string was returned to its undrawn position - for our bow
at the distance of 0.175 m from the bow. Because of this small string-to-bow
distance, the left hand actually needed to move down during this phase to
avoid collision with the right arm. This is problematic in two ways: first, the
left hand needed to slide along the string still under some tension creating
friction between the glove and the string, and second, the left hand being
lower than the right hand while drawing creates additional torque on the
right end-effector. For this reason, we increment z,;¢ during the search in
phase 3 from some minimal value. Usually, it was enough to only change 2z,
with a fixed bow pose (and a fixed draw length of 0.175 m) using the process
described in Algorithm |7l In some cases, this was not sufficient and the bow

24

4.5. Target detector

Algorithm 6: lookForXYBowPose

1 Function lookForXYBowPose(Tl?ow, l, D, Tmaz, Tsteps Ymazxs Ystep
rd):

2 found__solution < false;

3 z < 0;

4 y < 0;

5 while = < 2,4 & mnot found__solution do

6 while y < ymee & notfound_solution do

7 TP, TP + transformToToolLinks(T0 ,, D, rd.rm);

8 if moveArmsToPoses(TlO, TO, 1, "both", rd.mg, rd.mg_left,

rd.mg_right, rd.rm) then

9 ‘ foud__solution < true;

10 end

11 1Y ., < shiftInOwnCoords(T , [0, Ystep, 0]);

12 Y < Y + Ystep;

13 end

14 Tl?ow — shiftInOwnCoords(T&w, [Zstep, —Ymaz — Ysteps 0]);
15 T < T+ Tstep;

16 y < 0;
17 end
18 return found_ solution;

pose needed to be shifted in a cube in the space around the starting position
of this phase. This is illustrated in the Algorithm (8]

Finally, phase 4 was the easiest to design as after the opening of the left
hand it was sufficient to get both hands sideways apart. The movement
occurred in a plane parallel to the xy bow plane in order for the left hand
not to collide with the right arm or the arrow. The search was very similar
to the Algorithm |6, except the fact that only one of the tool links was shifted
along the x and y directions in the bow frame instead of the whole bow pose.
As mentioned earlier, the start and final joint configurations of each phase
of the undraw trajectory together with the constraints for each phase were
stored and allowed an easy planning of the draw trajectory. These trajectories
were stored in files, this allowed them to be replayed later exactly without
any uncertainty coming from the planner.

B a5 Target detector

The task for the target detector is to recognize the target in an image and
estimate its position in the camera frame. To do that, a dimension in pixels
of the target must be also extracted from the image and matched to its
corresponding real world dimension. The target with the radii of all of its
circles marked, is in Figure 4.3.

25

4. Approach

Algorithm 7: lookForFinalUndraw

1 Function 1ookForFina1Undraw(T£ow, I, D, 2Zoff.min, 2off,maz>

S ok WN

® =

10
11

Zoff.steps first_arm, rd):

found__solution + false;

Zoff < Zof fymin;

while 2 < 2,77 mae & mnot found__solution do

TP, T? + transformToToolLinks(7p,, D, Zoff, Td.m);

if moveArmsToPoses(T}, 1Y, I, first_arm, rd.mg,
rd.mg_left, rd.mg_right, rd.rm) then
‘ foud__solution + true;

end

Zoff = Zoff T Zoff,step>

end

return found__solution;

Algorithm 8: lookForFinalUndrawVarBow

1 Function lookForFinalUndrawVarBow(Tboow, I, D, 2of f,mins Zof f,maz>

© W N O Ok W W

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Rof f,steps Lmazs Lsteps Ymaxs Ysteps fmax, Zstep; firstiarm, rd):

found__solution + false;

x <+ 0;

Yy« 0;

z + 0;

while z < 2,4, & not found__solution do

while y < Y4 & notfound_solution do

while 2z < 2,4, & not found__solution do

if lookForFinalUndraw(Té)ow, l, D, 2offmin, Zof fmaz
Zotf,steps first_arm, rd) then
‘ foud__solution + true;

end

TbOO'LU

Z < Z + Zstep;

+ shiftInOwnCoords(Ty , [0, 0, Zstep));

bow?

end
79 shiftIannCoords(Tfaw, [0, Ustep —Zmaz — Zstep));

bow
Y < Y + Ystep;
z < 0;
end
Tl?ow — shiftIannCoords(Tl?ow, [—Zsteps —Ymaz — Ystep, 0]);
T 4= T + Tstep;
y < 0;
end
return found_ solution;

26

4.5. Target detector

Figure 4.3: Target with dimensions in cm

There are multiple possible approaches to this problem. Two different
methods were used for the target detection. Both of these methods were
fairly easily implementable and sufficient for the purposes of this thesis, but
recognizably suboptimal with room for improvement as discussed later in the
Experimental evaluation chapter.

The first method was a concentric circles detector, whose job was to find
some concentric circles in the image and perform a color segmentation to
clarify which circle was actually found. The second one was a neural network
trained for finding the whole target and drawing a bounding box around it in
the image.

To compute the target position estimate given the target center pixel coordi-
nates, a pixel dimension and a matching real world dimension, both of these
methods used the formulas derived in the following paragraphs.

A standard pinhole camera model illustrated in Figure [4.4 is used. Let us
have two points with some unknown coordinates in the camera frame labeled
U, V, W] and [X, Y, Z]. The pixel coordinates of these points according to

27

4. Approach

P=(X.Y,Z)

/

optical

p
|
1
|
|
. [
axis i s
| e [
" - "
A .
- : principal |
i point |
! (czscy) o
| |
|
]
| |
! v
1 Yy
]
I
W v

Figure 4.4: Pinhole camera model, from Jopel9].

the camera equation are:

u U

Vv

)\1 21) =P W

1

. X
)\2) =P Y)

1 VA

1

where

fz 0 ¢z O
P=10 fy cy 0
0O 0 1 0

Xe

(4.15)

(4.16)

(4.17)

is a matrix composed of camera intrinsic parameters like the focal lengths
fz and f, and the principal point coordinates ¢, and c¢,. We assume both
points lie on a plane parallel to the image plane, thus W =27 = A\; = Ao = A.
Moreover, we know the distance of these points in pixels called r and in
the real world R. From this information, we would like to compute the 3D
coordinates of one of the points U, V and W. After subtracting the Equation

28

4.5. Target detector

4.15 from the Equation |4.16 (and A\ = A2 =) we get:

X —
Y

T —u
AMy—v| =P
0

U
—-V
0 (4.18)
0

Now we need to multiply the Equation from the left by the transpose of the
left side:

[x—u y—v 0] A2 z:Z :({x—u y—v O])\)P
0

X-U

Y-V
o | @)
0

then we need to substitute the transposition of the right side of the Equation
4.18 to the right side and simplify the left side:

X-U
Y-V
0
0

M((z-uw?+(y-v?)=|X-U Y-V 0 0|PTP (4.20)

This gives us the square of the pixel distance on the left side. Now we need
to exploit the inner structure of P:

fa% 0 f:}ccz 0

0 12 fyc 0
PTp = Y vy . 4.21
fzCe fycy c + ci +1 0 ()

0 0 0 0

After substituting this into the Equation [4.20 we get finally:
Nr? = fAX U+ fHY = V)2 (4.22)

As f, and f, are in practice very similar in value, we can replace them both
in this equation by

fot 1y

f=22 "2y 4.2
F=t1 (123)
and factor it out:
N2 = f2((X —U)P? 4+ (Y = V)?) = f?R? (4.24)
giving us finally:
A=W = f%. (4.25)

This, of course, introduces some imprecision to our computation, which is
however for our purposes justifiably negligible. We can estimate roughly

29

4. Approach
some error upper bound by first expressing f, and f, by fas f, =f—cand
fy = f + ¢, then substituting to 4.22:
N2 = (f2=2ef +)X —U)? + (f2 +2cf + A (Y - V)2 (4.26)
and this gives us after some rearrangement:
N = PR+ EPR? + 2¢f((Y = V) — (X = U)?). (4.27)

The relative error can be computed as follows:

A=A
Aerr _ approx
=

- ‘ V2R 4 2R2 4 2f((Y — V)2 — (X —U)?) - fR

VR? 4 ER2 £ 2cf((Y — V)2 — (X —U)?)
(4.28)

After plugging our fixed values f = 525 and ¢ = 1 and the worst case values

of the variable R = 0.75, and the expression (Y — V)% — (X — U)? = 0.752,

we arrive at:

Aerr 2 0.0019. (4.29)

At the distance we are shooting the bow - around 5 m - this gives us errors in
A below 1 ¢cm, which is an order of magnitude less than the actual imprecision
as discussed in the Experimental evaluation chapter.

The rest of the point coordinates can be obtained from the Equation |4.15] so
for known pixel coordinates u, v, we get:

W
U= E(u —Cy)
v (4.30)
fy
w =2
T

B 4.5.1 Concentric circles detector

The concentric circles detector looks for concentric circles in the image, finds
their center and the pixel radius of the biggest circle. It also needs to recognize
which of the circles in the real target matches the biggest circle to use the
correct real world radius R. This is done by color segmentation.

A pseudocode of a function detectTargetCC, which describes the main part of
the detector, is in Algorithm (9l This function takes in the image img and the
matrix P of camera intrinsic parameters. The function findA11Circles tries
to find all circles present in the image and returns them as an array of triples
in the form [center,, centery, radius]. The function findMaxConcentricSet
takes in the array of circles and a maximal distance of circle centers to be still
considered concentric. It returns a maximal set of concentric circles. After
getting this maximal concentric set of circles, they are sorted by radius in
an ascending order and the biggest one - ¢y,4, - is used to crop the image
around it by the cropToTarget function.

30

4.5. Target detector

The color segmentation is then applied to this cropped image inside the
function sortColorSegmentsByArea and the color segments are sorted by
their area from the smallest to the biggest. This function returns an array of
indexes representing each color (0 - red, 1 - blue, 2 - black, 3 - white) in this
sorted order. The yellow central segment is not considered as it is impossible
for it to be the outermost circle in any group of two or more concentric circles.
The color region with the biggest area is assumed to belong to the outermost
target segment in the cropped image. The index of this color is used to
pick the right real world radius from the array R when calling the function
getTargetPosition. This function essentially implements the Equation [4.30L
Finally, the validity of the color segmentation is checked by the function
isColorSchemeValid. Mainly, the order of the areas of the segmented color
regions must match the order of the colors in the target.

Algorithm 9: detectTargetCC

1 Function detectTargetCC(img, P):

2 | R« [10, 15, 20, 26];

3 dmaz < 3;

4 C < findAllCircles(img);

5 Ceon + findMaxConcentricSet(C, dmaz);
6

7

8

9

t« [0, 0, 0;
position_valid < false;
if Ceon # () then

Ceon,sorted < sortByRadius(Ceon);
10 Cmaz < Ccon,sorted[_l]§
11 iM@erop < cropToTarget(img, Cmaz);
12 index__array < sortColorSegmentsByArea(imgcrop);
13 i < index__array[—1];
14 t < getTargetPosition(cmaz[0]; Cmaz(l], ¢maz(2], R[], P);
15 if isColorSchemeValid(indexr_array) then
16 position_ valid <+ true;
17 end
18 end
19 return position_wvalid, t;

The color segmentation is performed internally as checking for a certain
pixel, if it belongs to a certain box in a 3D space of colors in HSV color space.
This color space is often used for color segmentation as distinct colors in
an image are usually very well separable in it by box regions [Rub20] [Sto].
An example of a detection of the target in the robot camera together with
the image cropped to the target and the segments as provided by the color
segmentation are in Figure |4.5.

31

4. Approach

Figure 4.5: Concentric circles detected on target in robot camera (upper image),
the bottom images from left to right: image cropped to the target, white color
segment, black color segment, blue color segment, red color segment

B 4.5.2 Neural network detector

A neural network was trained by Ing. Viktor Kozdk to recognize the whole
target. The system draws a bounding box around the detected target. The
center of this bounding box is considered the target position estimation.
Neural networks are very general data structures in artificial intelligence used
in a wide range of applications like computer vision, speech recognition, vehicle
routing and many more tasks. These networks consist of nodes called neurons
interconnected with oriented edges as depicted in Figure [4.6. The network
represents a computation graph with each neuron being a mathematical
function of the values of the input connections, which returns a value for
the output connections. Individual networks differ in the topology and the
specific mathematical function each neuron performs. These functions have
adjustable parameters called weights that grant neural networks their most
important ability - they can be trained.

The most straight-forward example of such a network can be a classifier tasked
with distinguishing different classes of objects in images. Such a classifier
can be trained in a supervised way by providing a lot of labeled images. The
weights are in the training process adjusted so that the network returns the
correct labels for most of the training data. With the training done correctly

32

4.6. Detect - Aim - Shoot loop

Hidden
layer

Input

Output
layer

Figure 4.6: A general neural network diagram [dat]

(the network neither underfits nor overfits on the training data), this network
is usable for classification on previously unseen images.

The network in Figure [4.6|is a fully-connected neural network: the neurons

in each layer are connected to each neuron in the neighboring layers. For
computer vision tasks, however, more sparse connections are used - a neuron
in the current layer is influenced only by a few neurons close to each other in
the previous layer. The image on the output of a layer, called a feature map,
is obtained by convolution of the image on its input with a kernel of weights,
hence the name Convolutional Neural Networks (CNNs).
Nevertheless, for the purposes of this thesis, an object detection neural
network is required rather than a classifier - meaning it must also locate the
target in the image, if present. A great choice for this is a Regions with CNN
features (R-CNN) network proposed in [GDDM13] . This architecture first
finds the regions in the image likely to contain an object (e.g., by Selective
Search or Edge Boxes) and then runs a classifier CNN on the regions. The
specific network used for the target detection is a Faster R-CNN. Faster
R-CNN, proposed in [RHGS15|, uses a convolutional neural network even
for the detection of regions - Region Proposal Network (RPN). This network
predicts object bounds and objectness scores at each position and provides
the results to a Fast R-CNN detector |Girl5).

B 46 Detect - Aim - Shoot loop

The final functionality combining bow drawing and target detection is shooting
the detected target. After each request to shoot the target, the robot performs
a 4-step process:

1. detect the target
2. localize the detected target in the base link coordinate frame

3. pick the best draw configuration to shoot the target and change orienta-
tion accordingly

4. draw the bow, change lift joint accordingly and release the string.

33

4. Approach

Each step will be discussed further in the rest of this section.

The target detection in step 1 is achieved by letting the robot turn in place
slowly until the target is detected by the camera. This utilizes the concentric
circles target detection, because it is faster than the neural network. After
the detection, the head of the robot is pointed to the target.

This is where step 2 begins, consisting mainly of letting the robot look at the
target for some time and receive some neural network detection together with
several concentric circles detections, that can be averaged out. This gives us
some estimation of the target position in the robot base link frame already
usable for shooting.

Step 3 is the most complex, because we need to find for each of the available
draw configurations the angle of rotation of the robot and the lift joint value
required to hit the target with the arrow. These are compared and the
draw configuration requiring the least amount of rotation is picked. How the
computation of the necessary angle of rotation and the lift joint value were
derived will be discussed next.

The derivation of the rotation needed for the alignment with the target can be
explained using the Figure 4.7, which is looking at the situation from above.
The x and y axes represent the robot base link frame, which is at the center of
the robot mobile base. Bow x, y position in this frame is represented by a blue
dot with a blue position vector and the label "bow". Bow is at the distance
of r from the base link frame origin and its orientation is illustrated by the
orange vector going from the bow position having an angle of 1) with the x
axis. The target is marked by a red point and it has the magenta position
vector in the base link frame. We will compute the angle Arot between the
position vector of "bow" and the position vector of "bow goal" to aim at the
target. This angle can be computed as:

Arot = —w + ¢ + 6. (4.31)
Two of these constituent angles can be easily computed from the known data:
w = atan2(bowy, bow;) (4.32)

and
¢ = atan2(target,, target,). (4.33)

To get & we first need a few more computations. We can get § from a known

Y as
p=v¢+m, (4.34)

which can get us € like this:
e=w—pF+7=w—1. (4.35)

Bow orientation does not change with respect to the bow position vector after
the rotation, therefore we can get :

Y=T—€ (4.36)

34

4.6. Detect - Aim - Shoot loop

Rotation correction derivation

1.5

1.0 - y %

0.5 A

0.0 A

-0.51

-0.5 0.0 0.5 1.0 1.5 2.0

Figure 4.7: Derivation of rotation correction computation

We now have a triangle with vertices "O"-"target"-"bow goal" with two
sides known and an angle opposite of the longer side (we can assume d > r
always holds). The cosine formula gives us:

d? = 2 +r% — 2frcos~, (4.37)

after solving the quadratic equation for f and picking only the positive
solution, we get:

f=rcosy+/r2cos?y — (r2 —d?). (4.38)

Now, to finally compute §, we can get its cosine from another cosine formula:

2 g2 _ g2
cosd = % (4.39)
and its sine from the sine formula:
sing = 157 (4.40)
d
Finally
0 = atan2 (sin 9, cos 9). (4.41)

The derivation of the lift joint correction computation will be explained using

35

4. Approach

the Figure 4.8 and its detailed version |4.9. We essentially need to compute the
z-coordinate of the intersection of the arrow with the vertical plane containing
the target, denoted zp;;. We must then modify the lift joint such that the
new zp;; = target, to hit the target. The lift joint correction is in that case

leorr = target, — Zpg. (4.42)

To compute zp;;, we model the arrow to have some initial velocity v obtained
from the Equation |4.5 with some initial pitch angle apg. We assume the
center of mass of the arrow to be at half its length from the tip. The initial
coordinate of this point in s-axis of Figure |4.8|is:

larrow

2

where lgrrow is the arrow length and Hy is the bow-to-string distance for the
undrawn bow. Similarly, its z-coordinate is

so=(— Hy) cos oy, (4.43)

larrow

20 = bow, + (— Hp) sin ay. (4.44)
With only gravity assumed to act on the arrow, we can obtain the trajectory
of the center of mass as follows:

s = 809 + vgot
(4.45)

1 2
Z:ZO+UZOt—§gt,

where v59 = vcosag, v,0 = vsinag, t is time and ¢ is the gravitational
acceleration. To obtain the curve representing this trajectory as z(s) we get ¢
from the first equation and substitute it into the second:
V50 1 (s—s0)?
z(s) = z0 + oo (s — so) 59 O (4.46)
The arrow is assumed to be tangent to this trajectory at every point.
Because of this and its nonzero length, it actually hits the vertical plane
slightly above the intersect of the trajectory with the plane, as can be seen in
Figure 4.9. This makes the computation more complicated, but doable.
We will try to find sy and z; from the Figure 4.9. According to the orange
right triangle in this figure:

l2
Sj+ 2 = e (4.47)
A second equation containing sy and z; can be obtained by first taking a
derivative of the function z(s) with respect to s:
dz v g
— =——5(s—s50) =t , 4.48
T = e s0) = tan o(s) (4.49)
where «(s) is the arrow pitch angle as a function of s. Furthermore, it holds
that
~f
tan (a(f —sy7)) = =, (4.49)
Sf

36

4.6. Detect - Aim - Shoot loop

Lift joint correction derivation

1.50 A

1.25 A

1.00 A -
| (1:)

1

1

1

1

1

1

1

1

1

1

1

1

]

Zhit

z[m]

0.75 1 -
0.50 A

0.25 A1

0.00 A
So St

v

-0.25 A f

-0.5 0.0 0.5 1.0 1.5 2.0
s[m]

Figure 4.8: Derivation of lift joint correction computation

where f is the bow-to-target distance from the rotation correction computation.
This gives us the second equation as

Zf V20 g
S0 T (s s). 4.50
sf Vs U?O (f f) ()

After expressing z; from 4.50, substituting to 4.47 and simplifying, we get

2 / 2 22 2
)) l
Istad (v0— 2L) (=22 -2 w0] 1) -0 — 0, (4.51)
Vso VUso Us0 Uso Uso Uso

where f' = f — so. This equation was solved for s by finding the roots of
the polynomial on the left, from which a positive sy with zero imaginary part
was picked. z; was then computed from the Equation 4.50. The z-coordinate
of the arrow center of mass on hit can be computed from the Equation |4.46
with the substitution s = f — s; giving us finally

zhit = 2(f — sf) + 25. (4.52)

The function performing the search through the draw configurations has a
pseudocode in Algorithm [10 This function takes in an array of draw configu-
rations draw__configs, target coordinates in base link frame and the draw
length. Each element of the array draw_ configs is a data structure contain-
ing the identification of that draw configuration - pitch angle and configuration
number (starting at 0 for each pitch angle) - and the configuration itself
given as joint coordinates . The getDrawConfigCorrectionToShootTarget

37

4. Approach

Lift joint correction derivation - detailed

1.6 1.7 1.8 1.9 2.0 2.1
s[m]

Figure 4.9: Derivation of lift joint correction computation - detailed

function sets an internal robot model to the joint coordinates provided, gets
the bow pose for that configuration and then computes the corrections as
discussed in the previous paragraphs. It also checks if the lift joint correction
is admissible - meaning within the range of the joint and the lower bow tip
has some clearance above the ground. It returns infinity for the rotation
correction if the lift joint correction is not admissible. The variable dcd*
stands for "optimal draw configuration data" and contains all the information
needed to shoot the target, i.e., the draw configuration identification and
the corrections. After getting these corrections, the robot is slowly turned in
place by the angle Arot.

Finally, in step 4 the robot draws the bow to the desired configuration, adjusts
the lift joint and releases the string.

38

4.6. Detect - Aim - Shoot loop

Algorithm 10: getClosestDrawConfigurationToShoot Target

1 Function
getClosestDrawConfigurationToShootTarget (draw_ configs,
target,, target,, target,, D):

2 Arot* + oo;

3 admissible__config_ found < true;

4 | ded” + [~1,-1,0,0.124];

5 foreach dc in draw__configs do

6 correction < getDrawConfigCorrectionToShootTarget(dc.f,

target,, target,, target,, D);
7 if |correction[0]| < Arot* then
8 Arot* < |correction|0];
ded* = [de.pitch, de.number, correction|0], correction[1] |;

10 admissible__config found < true;

11 end
12 end
13 return admissible_config found, ded*;

39

40

Chapter 5

Implementation

B 51 Implementation overview

This chapter describes the control of the robot via ROS and the actual im-
plementation of the functionalities introduced theoretically in the previous
chapter. The sections provide some information about the software libraries
used, the pitfalls encountered, and their solutions. Examples of some specific
results are added, too. The source code responsible for each functionality
provided as an attachment to this thesis is also referenced.

B 52 RrOs

This section provides a basic description of ROS as it will be heavily refer-
enced in further sections. Robot Operating System (ROS) is an open source
middleware designed for the purposes of robotics, i.e., to enable communi-
cation between all components of a usually heterogeneous robotic system
and create a unified interface for the developers of robotic applications to
interact with the hardware. It also provides other useful tools for package
management, debugging, visualization, and more [ros]. ROS was the main
tool for the software development needed for this thesis with almost all the
source code contained in ROS package tiago_archer.
ROS behaves like a distributed system: every application usually has multiple
independent programs running at the same time called ROS nodes. These
nodes are designed such that they can be run on the same PC or can be
scattered along different computers and communicate via a network with
no change to their source code. For this to be possible, there must be a
main node called ROS Master running at all times. All other nodes register
with this node and the communication between any other nodes is initiated
by Master. Asynchronous channels used for communication between nodes
are called topics. After initiation by master, the topics are used for direct
communication between nodes - peer-to-peer model. This is evident from the
diagram in Figure [5.1.

ROS topics were used extensively throughout this project. Each topic has a

41

5. Implementation

ROS Master ROS Master

IP address and port for
“topic_name" publisher

publish on “topic_name

with "topic_type" type subscribe to “topic_name"

with "topic_type" type

Node A (publisher)

Node B (subscriber) Node B (subscriber)

Node A (publisher)

ROS Master ROS Master

IP address and port for
"topic_name" subscriber

Node A (publisher) Node B (subscriber)

Node A (publisher) Node B (subscriber)

Figure 5.1: Initialization of communication via a ROS topic. 1. Registration with
the Master, 2. Master sends contact information for publisher to the subscriber,
3. subscriber contacts the publisher directly with its contact information, 4.
publisher sends data to subscriber. [Jall19)

unique name and supports only one type of message. A message type can be
composed of some basic message types in the std_msgs package or from other
non-trivial message types as demonstrated by a custom message definition
from the tiago_archer package below.

Listing 5.1: tiago_archer/RobotTrajectoryArray
string id
moveit_msgs/RobotTrajectory[] trajectory_array
float64[] start_joint_values_left
float64[] start_joint_values_right
float64 start_torso_value
intl16 open_close_hand_index

Other means of communication between nodes (implemented internally using
topics) also utilized within this thesis are services and actions. Services enable
synchronous communication conforming to the client-server model, i.e., the
client node sends a request and the server node after performing the requested
task sends a response to the client.

Actions are similar to services, but the processing of a request called "goal"
can be preempted by a different goal or canceled completely. The action
server can also send some feedback messages during the execution to inform
about its progress before sending the final result. This is fitting for some
tasks taking a long time to execute - like a robot movement.

42

5.3. TIAGo++ robot control

. 5.3 TIAGo++ robot control

The robot was controlled completely via ROS. The specific ways of controlling
the most important robot parts are discussed in this section.

There are several ways the arms can be controlled. Some manual joint control
using a GUI from the rqt_joint_trajectory_controller ROS package or
the WebCommander [PALb] was sometimes used, but most of the controlling
was done through code using Movelt motion planning framework [movaj.
Movelt is a widely used software in modern robotics capable of computing
kinematics and planning tasks and moving the joints for any robot given its
robot_description parameter from the ROS parameter server (and some
other configuration parameters).

Movelt interfaces with the user, ROS and the robot through a ROS node
called move_group. A diagram illustrating some of the various topics, services
and actions this node is communicating through is in Figure [5.2. Essentially,
move_group uses current joint information obtained from the robot via the
joint_states topic, the robot model from the robot_description parame-
ter, robot position in the map from the ROS TF library and the information
about other objects in the workspace from sensors or directly set by the user,
to maintain the planning scene. This is a representation of the robot in its
current state and the world. This planning scene is then used for motion
planning, which generates a collision-free path in the joint space of the robot
to get to some desired joint or cartesian configuration. This path is then
upgraded to a trajectory by adding some time parametrization accounting
for the joint velocity and acceleration limits. The finished trajectory is finally
handed over to the joint motor controllers to execute it.

Since the main part of the code for this thesis is programmed in C++,
the move_group_interface is used to communicate with the move_group
node. More specifically, a class called MoveGroupInterface [mgi| from the
moveit::planning_interface namespace was employed.

A joint group is specified as a constructor argument of the
MoveGroupInterface class, so each instance can control one joint group
at once. The arms can be controlled separately as joint groups "arm__left"
and "arm_ right" or with torso as "arm_ left_ torso" and "arm_ right_ torso"
or together as "both__arms_ torso".

The torso is also controlled via Movelt. Apart from the joint groups, where
it is combined with the joints of one or both arms, it can also be controlled
separately as "torso" joint group.

Unlike the torso, the Heyb hand end-effector can be controlled only via its
dedicated Movelt joint group "hand_ left".

The head orientation is controlled via a convenient action interface called
/head_controller/point_head_action. This allows to look at a specific
3D point in a given frame.

The mobile base can be manually controlled using a gamepad. To con-
trol the base programatically, velocity commands need to be sent to the
/mobile_base_controller/cmd_vel ROS topic. This topic is of type

43

5. Implementation

ROS Param Server

wlu| &
olg| €
| o
S|l S
User Interface . B
i i)
i [move_group_interface] : MoveGroupAction oD
(C+) PickAction JointTrajectoryAction -§ £
: PlaceAction « §
¢ Y]
i (moveit_commander (2}
(Python) Get IK Service =
: : Get FK Service (o]
: B e = 1
i i__Get Plan Validity Service g
;]] 3 Plan Path Service b(i Point Cloud Topic | 8 2
GUI (Rviz Plugin) i Execute Path Service g -ng: 3
H Get Planning Scene Service o) Q
i1 Other Interfaces AttachedObject
S 4 1 CollisionObject
] PlanningSceneDiff
a\ :

Figure 5.2: move_group ROS node [movb]

geometry_msgs/Twist and requires a 3D vector of linear and a 3D vector of
angular velocities.

B 54 Bow end-effector & bowstring rings

The bow was mounted on the robot by a holder designed and printed on a 3D
printer by Dr. Gaél Ecorchard. Two rings were also printed for the left hand
to decrease friction between the hand and the string when drawing. The bow
end-effector and the rings are depicted in Figure

. 5.5 Bow model

This section will discuss the implementation of the bow model in the simulation
and compare it to the real bow.

A bow model has been constructed using Gazebo simulator [gaz]. This is
a robotics-oriented free software able to build and visualize robot models,
simulate their dynamics, generate sensor data etc.

Initially, a SDF (Simulation Description Format) model of the bow has been
created using the mathematics of the Bow model in the previous chapter.
The rigid handle has been modelled in Blender [ble] and its mesh imported
to SDF, while the rest of the model are SDF box links for the limbs and SDF
cylinder links for the string. A limb (upper or lower) is represented by a box
fixed to the handle of length % connected by a rotational joint in the point
O from the Table E to a box of length %. The string is modelled as two
rigid cylinders connected to the limbs and to each other by a rotational joint.
A gazebo plugin was used to give the model its dynamic properties: an angle
A was constantly checked for both limbs and the torque of the joint in point

44

5.5. Bow model

Figure 5.3: Bow end-effector (left) and bowstring rings (right)

O has been set to
3B1CA

4

to create the force f = C'A from the Table [4.1 on the bow tip. The bow
model in Gazebo simulator in its undrawn and fully drawn state is depicted
in Figure

The force-draw curve has been measured on the real bow using a force
sensor from [mer] and the constant C' has been set so that the analytical
force-draw curve obtained from the bow model in the previous chapter and
the real measurement differed minimally. More specifically, a linear regression
using the least squares method has been used.
It is apparent from the expressions in Table 4.1 the constant C' is just a
scaling factor of the force-draw curve:

(5.1)

Tlimb —

2CAsin E
F=2TsinE=-——"——=CF' 2
sin Sn(A1E) CF', (5.2)
2Asin E
where F/ = % This allows us to formulate the problem of finding C
sin

minimizing the sum of squares of the differences between the forces measured
and the analytical forces for the same draw length as follows:

=n

min Y _ [|CFy(Di) — Fn(D3)]| 2, (5.3)
=1

where the indexes a and m mean "analytical" and "measured", respectively,
and n is the number of draw lengths measured. Rewriting it into a matrix

45

5. Implementation

Figure 5.4: Bow Gazebo model undrawn and fully drawn

format yields:

FC/L<D1) Fm(Dl)
/
mcl'p Fa(D2) C— Fin(D2) (5.4)
Fo(Dn) Fy(Dy)
Lets label _
Fo(Dr) Fp(Dh)
/
ap = Fa(DQ) . bp = Fin (D) , (5.5)
LFa(Dn) Fn(Dn)
then the minimizing C' can be computed in closed form as
C = (akap)'atbp. (5.6)
By this computation, we obtained
C =110.4458 N/rad. (5.7)

Another plugin was added to the bow model in Gazebo for testing purposes:
it applied two opposite forces to the bow - one to the handle and the other

46

5.5. Bow model

Bow force as a function of draw length

90 A
—— Gazebo model

Real bow measurement
—— Analytical model

80 A

70 A

60 1

50 A

FIN]

40 -

30 A

20 1

10 A

0.2 0.3 0.4 0.5 0.6
D[m]

Figure 5.5: Bow force-draw curve

to the string mimicking draw of the bow. The forces were progressively
increased and the draw length was being computed from the joint angles
of the model. Since we were only interested in static steady state forces,
the inertial properties of the links in the model were set to zero to avoid
significant oscillations stemming from the bow model dynamics (essentially
an undamped linear harmonic oscillator dynamics). The draw lengths and
forces during this process were saved into a file.

The Figure |5.5 illustrates the force-draw curve obtained by this process to-
gether with an analytical force-draw curve obtained by applying the bow
model equations in the previous chapter and finally, it contains a force-draw
curve measured on the real bow. It shows that the performance of the Gazebo
model coincides with the analytical model. It also shows the model is very
close to the real bow force-draw curve.

Later, the SDF model was rewritten into URDF (Unified Robot Descrip-
tion Format) to be integrated into the TIAGo++ robot Gazebo model as
an optional end-effector. Unfortunately, this was not fully successful, as
URDF supports only the modelling of open kinematic chains (the bow is a
closed kinematic chain) and all attempts to circumvent this limitation were
so far met with frequent simulation crashes. Although this rendered the
direct interaction between the robot model and the bow end-effector model
impossible, the bow Gazebo model was still very useful. For example, the
simulation did not crash when the bow end-effector model was stationary
in the simulation, which enabled the search for optimal draw configurations

47

5. Implementation

as the collision model of the bow end-effector loaded properly allowing the
self-collision checking to account for it. There was no need to actually move
the robot in the simulation during this process. The robot with the bow
end-effector was moved in the simulation during the design of the bow drawing
trajectories, but the string was removed from the bow model for this purpose,
making its kinematic chain open (limb joint limits were introduced to prevent
the limbs from undeflecting completely). This way, the planner could avoid
collisions with the bow.

The folder tiago_archer/bow_and_arrow_models/bow contains the SDF
and URDF models in files bow.sdf and bow_ros.urdf.xacro, respectively.
The Gazebo plugin responsible for the bow properties is implemented in
the folder tiago_archer/src/bow_plugin/ in files bow_ros_plugin.cpp
and bow_ros_plugin.h. The plugin applying force to the bow while test-
ing is in tiago_archer/src/bow_ros_testing.cpp. Lastly, for the com-
putation of the constant C' and for the plotting of the force-draw curve,
Python scripts were used located in the tiago_archer/scripts folder in
files compute_C_by_least_squares.py and force_draw_plotter.py.

B 56 Search for optimal bow draw configurations

A ROS node in tiago_archer/src/find_best_draw_config_nlopt.cpp
was mainly responsible for the search. The functions torquesNormSum and
isInfeasible are implemented here in a straightforward way according to
the Algorithms |1/ and [2.

This implementation relies on classes like moveit: : core: :RobotModel [robal,
moveit::core: :RobotState [robb] or planning_scene::PlanningScene
[pla] to construct the robot’s model from its URDF description on the pa-
rameter server, hold, change and investigate robot’s state and associated
properties (like a Jacobian) and check for self-collision, respectively.

All necessary spatial transformations and general matrix or vector operations
are performed using the Eigen library [GJT10)].

The function findA11IKSolutions had to be implemented as the class
moveit: :core: :RobotState only provides the function setFromIK, which
returns at most one possible solution of the inverse kinematics. The KDL
kinematics plugin, which is a wrapper around the inverse kinematics solver
provided by the Orocos Kinematics and Dynamics Library (KDL) [oro], is
used for this internally. This solver is a numerical inverse kinematics solver,
meaning it is trying to find a solution joint configuration @ by finding the
roots of the expression

T, — T(6), (5.8)

where T, is a transformation matrix of desired 3D pose of the robot end-
effector and T'(0) is the transformation matrix of its pose given the joint
configuration @, i.e. the forward kinematics.

The £indA11IKSolutions function was implemented using the setFromIK,
which has a mechanism of rejecting invalid solutions and keep looking for

48

5.6. Search for optimal bow draw configurations

different ones. The validity of a solution is determined by an arbitrary
user-defined function passed to setFromIK as an input argument. The
findA11TIKSolutions was thus implemented by running setFromIK in a
loop until it was no longer able to find any solutions dissimilar enough from
those already found before. The validation determination function therefore
returns true when the input solution is not similar to any of the solutions in
an array of already found solutions. As the measures of similarity between
the solutions, the cosine similarity was used, which is computed for two joint
configurations 61 and 05 as:

079,
im(61,60 — 17 5.9
sim(81,82) = 15,1 (5.9)

This expression is close to 1 when the joint configurations are similar and
close to 0 when they are not. An experimentally obtained threshold of 0.999
was used to distinguish similar and dissimilar solutions.

The find_best_draw_config_nlopt node listens to a /link_inertias topic
for the inertial properties of all links constituting the robot arms - the mass
and the position of the center of gravity are obtained this way for every
link for use in torque computation. A Gazebo plugin for the robot model
implemented in tiago_archer/src/robot_link_inertias_publisher.cpp
is a publisher of these messages.

The search itself was done by the already introduced ISRES algorithm, specif-
ically its implementation in the NLopt nonlinear optimization library [Joh].
The search was run 50 times to obtain multiple usable solutions for several
specific a (pitch) angles of the bow. The result of this effort was 7 optimal
draw configurations for a = 0°, 4 configurations for « = 5° and a = —5°,
and 5 configurations for @ = 10° and o = —10°, so together 25 different
draw configurations. A portion of these searches were actually performed
with a slightly modified computation of the torques norm than previously
stated. More specifically, the norm used in the Equation [4.11 was actually a
maximum norm instead of the Euclidean. This sometimes leads to a better
distribution of normalized torques across the motors.

The majority of the draw configurations found had the end-effectors at
shoulder height or above, similar to how real archers draw a bow. Some
configurations found were even very close to a standard bow draw posture as
illustrated in Figure |5.6. This points to the optimality of the standard bow
draw posture regarding muscle effort. A portion of the robot optimal draw
configurations found had the end-effectors at stomach height - this would be
unusable for a real archer since optical aiming in this posture is not possible.
The Figure 5.6/ also shows the "extended string" bow model. This was a part
of the robot model during the search. Its purpose was to avoid configurations
in which the right arm would be in the way of the shooting string, while
permitting collisions near the end of the string trajectory during the shot.
Therefore, the original undrawn string stayed in the model, but it was allowed
to collide with the right arm, unlike the other two extra strings and the circle
to fill part of the space between them.

49

5. Implementation

Figure 5.6: A robot bow draw configuration with the extended string bow model
(left) and a standard posture for shooting a bow [Arr](right)

The node implemented in tiago_archer/src/draw_config_search.cpp was
used to map out the landscape of the optimization criterion, i.e., for a value of
1 (yaw angle) and a bow z position, it performed a grid search across the bow
xy position and saved the values of torquesNormSum in a file. The general
tendency observed from these searches is the function is decreasing in the
negative y direction of the base link or the robot’s right. This is illustrated
in Figure depicting a scatter 3D plot of the outputs of torquesNormSum

as a function of bow xy position for bow z = 1.0 m and ¢ = —3™

Finally, a ROS node in tiago_archer/src/draw_configs_demo.cpp served
to move the robot to one of the draw configurations saved in the
tiago_archer/optimal_draw_configs/ folder.

N 57 Design of bow drawing trajectories

A ROS node in tiago_archer/src/draw_bow_find_traj.cpp has been im-
plemented for the design of the bow drawing trajectories. The procedure
outlined in the previous chapter has been followed, but soon it became ap-
parent that phase 1 - the search for the minimal draw on the line - was too
restrictive and rarely yielded any usable trajectory. Although implemented,
this phase was usually skipped.

The designed trajectories were saved to a file for later use. The YAML file

50

5.7. Design of bow drawing trajectories

The norm sum as a function of bow x andy, bowz=1.0 mand y= —%rr

3.25
3.00
2.75
2.50
2.25
2.00

0.75 1.75
0.70 1.50

norm sum

x[mq'
0.50

-0.7

—05 06

—04 yIm]

-0.3

Figure 5.7: The output of torqueNormSum as a function of bow xy position

format was chosen for this purpose as it is well suited for the storage of
complex structured data. Its interface to Python is extremely easy to use
- the yaml Python library can store and load any Python object with two
lines of code. All trajectories were therefore saved and loaded via ROS nodes
implemented in Python scripts.

More specifically, the draw_bow_find_traj node sent the trajectories via the
/draw_trajectory topic of type tiago_archer/RobotTrajectoryArray (de-
fined as an example of a complex message in Section to the plan_saver.py
ROS node located in tiago_archer/scripts. This node then saved the tra-
jectories to a file in the folder tiago_archer/trajectories.

These trajectories could be pieced together into two kinds of movements
- a draw/undraw movement mainly for trajectory testing purposes and a
draw/release movement. The whole movement from the start position to
the final position - the start position again for draw/undraw and the draw
configuration for the draw/release movement - could be played with minimal
involvement of the planner. The planner was only used to correct small errors
of the joint positions before playing a particular component trajectory of a
movement as the robot motor controllers refuse to play a trajectory with
the starting point differing in any joint by more than 0.01 radians from the
current robot state.

To minimize the involvement of the planner in the whole process including get-
ting into a start position of a different movement, in general, an "initial joint
configuration" of the robot was introduced. This served as an intermediary

o1

5. Implementation

between different movements - for every draw configuration, three trajectories
have been found and saved to connect to the initial configuration. These were
more specifically, initial configuration to draw start configuration, draw start
configuration to the initial configuration, and the final draw configuration to
the initial configuration. Together, these enable all possible transitions be-
tween movements without the planner. These trajectories were designed using
the ROS node in tiago_archer/src/draw_bow_find_traj_to_init.cpp.
No path constraints were imposed during the design, it was enough for the
trajectories to be collision-free and not unnecessarily complicated.

The complete movements including the appropriate transitions can be played
with the ROS node in tiago_archer/src/draw_bow_play_traj.cpp. This
node obtains the draw trajectories via the get_robot_draw_trajectory ROS
service from the draw_trajectory_server.py node.

N 58 Target detector

Both detectors have been implemented as ROS Python nodes located in
files in the tiago_archer/scripts folder - target_detector.py for the
concentric circles detector and target_detector_NN.py for the neural net-
work. They both subscribe to the /xtion/rgb/image_rect_color and
/xtion/rgb/camera_info ROS topics providing the rectified (corrected for
distortion) RGB image from the robot’s camera, and the camera intrinsic
parameters, respectively. The output of both detectors is a target position
estimate advertised as a transformation in the ROS TF framework.

B 5.8.1 Concentric circles detector

The OpenCV - open-source computer vision library - has been used to im-
plement the concentric circles detector [Itsl4]. The circles were found in the
image by OpenCV'’s HoughCircles function. The foundation of this function
is Hough Circle Transformation.

Hough transformations, in general, are algorithms designed to find simple
geometric shapes in an image resistant to noise and missing points in the
shape. They work with an image outputted by an edge detection algorithm
and transform each edge point into the parameter space of the particular
shape. This transformation for an edge point determines all the different
parameters of the shape making the edge point part of the shape. Parameters
for circle are three - center x and y coordinate and radius.

The standard Hough Circle Transformation algorithm iterates through differ-
ent possible radii and for each one transforms all edge points in the image
into the parameter space of only the center coordinates parameters. For a
fixed radius, this transformation is:

a=1x —rcosb
e (5.10)
b=y —rsinf,

52

5.8. Target detector

where a and b are the z and y coordinates of the center, 2’ and vy are the edge
point image coordinates and r is the radius. Letting # €< 0, 27 > makes this
also a circle in the 2-parameter space. One edge point thus corresponds to a
circle in the parameter space for a fixed r. Taking all edge points therefore
yields multiple circles in the 2-parameter space for a fixed r. The points in
these circles together with the current r are used to increment values in a 3D
array called accumulator at the position [a, b, r]. This array is a discretization
of the whole 3D parameter space, and all its cells are initialized to 0. Cells
with value above a certain threshold are deemed to be the parameters of a
circle in the image.

OpenCV uses a more advanced implementation - Hough Gradient Method.
After running the input image through Canny edge detector, the gradient is
computed for every edge pixel determining the normal direction to the edge.
A 2D accumulator array is incremented in both directions of the gradient
(positive and negative) from the edge point. This procedure finds candidates
for circle centers. Subsequently, the best radius is found for each of these
candidate centers by getting the distances from a particular center to all edge
points and picking the distance shared by the most edge points (implemented
as a 1D accumulator array) [The].

This implementation actually is not able to detect multiple circles with the
same center, therefore it was necessary for the concentric circles detector
to run HoughCircles several times on the same image for various values of
minimal and maximal radius and put together all the circles found.

The color segmentation was implemented by the OpenCV inRange function,
which picks the pixels of the target image with color in a certain box in HSV
color space and returns a mask image. This image is a binary matrix with
the dimensions of the target image storing "1" for the pixels in the color
range and "0" otherwise. The ranges were chosen to contain the main regions
where each color segment appeared in the HSV space. These box ranges are
depicted in Figure 5.8, which plots all the pixels in a target image in the HSV
color space. Two disjoint boxes define the blue segment.

This detector outputs two transformations - the position estimate of the last
detected target as /target_raw and the median of these positions over 10
detection as /target_averaged.

B 5.8.2 Neural network detector

The neural network was implemented using the Detecto Python module
[det]. During the training phase, a file storing the network weights has been
created. The detector loads the weights during the initialization and uses
them to predict the target bounding boxes for each input image. The box
with the highest score is deemed to be the target. Its size and center are
used for the target position estimation, being broadcast as /target_NN TF
transformation.

A separate ROS workspace had to be created for the neural network detector
as it requires Python 3 rather than Python 2, which is the version the rest of
the system works with.

53

5. Implementation

Target color segmentation using HSV

Sat,
“atioy 150

200

250 200

Figure 5.8: Colors of all pixels in a target image in HSV colorspace together
with the boxes defining color segment ranges (white, black, blue and red)

B 5.9 Detect - Aim - Shoot loop

The Detect - Aim - Shoot loop is implemented in the shoot_to_target.cpp
ROS node located in tiago_archer/src. This node is expected to be run
simultaneously with both detectors, the draw_trajectory_server.py to
have access to the drawing trajectories and with a publisher of a static trans-
formation between the arm_right_tool_link and the bow_planning_frame,
which corresponds to the bow frame. This is needed for determining the
bow pose when running on the real robot as thanks to using the prerecorded
trajectories for every arm movement, the bow model does not need to be
incorporated to the real robot.

The implementation stays true to the shooting process and the computations
outlined in the Approach chapter. There are, however, a few specifications
worth mentioning here.

First, the localization phase uses, rather than a fixed waiting period for the
robot to look at the target, a condition on the estimates. More specifically,
they must be within 30 cm distance of each other. This signifies the neural
network has caught up with the concentric circles (the neural network is lag-
ging behind the concentric circles due to its significantly higher computation
time).

For the robot to shoot accurately, a rotation by a precise angle Arot needs to
be implemented. A simple P controller with input saturation (minimal and
maximal values for the input angular velocity are defined) can perform this
task and orient the robot within 0.001 radians from the goal orientation. The
current base link frame orientation in the map is provided by the amcl [amc]
ROS node, which runs on the robot by default. AMCL stands for adaptive
Monte Carlo localization - this node uses the mobile base laser scan data

o4

5.9. Detect - Aim - Shoot loop

together with the odometry to maintain a map of its surroundings and localize
the robot in the map. The amcl node actually publishes the transformation
between the map and the odometry frames. Obtaining the robot orientation
with respect to the map frame instead of the odometry is resistant to errors
caused by, e.g., slipping of a wheel. Unfortunately, the localization often
(about 1 in 7 shots) underestimates the robot real orientation and as a result
misses the goal orientation by up to a few degrees. This is enough to miss the
target completely. To combat this, the robot’s head is after localization fixed
in a position pointing at where the localized target would be with respect to
the robot base link after a perfect robot rotation. The rotation then proceeds
as before, but after it, the drawing phase is not initiated unless the target
center, as obtained by raw concentric circles, is less than 10 pixels away
from the image plane center. This distance is obtained additionally from the
target_detector.py node. The localization followed by rotation correction
are performed in a loop until the aforementioned condition is satisfied.
Another correction being employed is the correction of the end-effector po-
sitions. The motor controllers on the real robot can position the joints
accurately to the desired joint values with the precision of 0.01 radians. This
can still introduce some imprecision as the resulting end-effector poses can
differ by low units (1-3) of centimeters from the desired precise poses. A
correction has been added to the end of the draw phase to account for this -
the real bow pose is obtained and a small adjustment in the orientation and
lift joint is performed.

Regarding the arrow trajectory computation, the potential energy of the draw
is computed from the measured force-draw curve by a numerical integration
using the trapezoid method. To obtain the velocity of the outgoing arrow

from the Equation 4.5, the constant T was roughly estimated by measuring

m
the velocity of the arrow in three shots by a 180 fps iPhone 7 camera.

55

56

Chapter 6

Experimental evaluation

This chapter contains the description of the experiments aimed to evaluate
the robotic archer. First, in the Section |6.1 the drawing trajectories are
evaluated according to their design goal - to require reasonable torques from
the motors. Next, Section 6.2 evaluates the accuracy of the target detection
by both detectors. Finally, Section 6.3 evaluates the accuracy of the shooting
itself.

B 6.1 Testing drawing trajectories

All 25 designed drawing trajectories have been tested on the real robot by
measuring the motor currents during the particular draw/release movement
with the bow and arrow mounted. A torque estimate has been produced from
the currents as follows:

T =nKi, (6.1)

where 7 is a torque of a particular motor, ¢ is the current through the motor,
K is a motor torque constant and n is the motor gear ratio. The motor
torque constants provided by PAL Robotics are used. More specifically,
K =0.136 Nm/A for the first and second joint motors, K = 0.087 Nm/A for
the third and forth motors and K = 0.0392 Nm/A for the three remaining
joints. The gear transmission ratios from the Table 3.1 are used.

The currents are obtained from the /joint_states ROS topic under "efforts".
The ROS node effort_average.py located in tiago_archer/scripts sub-
scribes to the /joint_states topic and produces an average of the currents
for each motor every 20 ms. Data obtained like this for every drawing
trajectory was saved to a file and later converted to torques according
to the Equation 6.1, normalized by the respective nominal torques and
plotted. The data from these experiments and the plots are located in
/tiago_archer/efforts_measurements.

The only trajectory not meeting the requirement of all normalized torques in
absolute values under 1.0 is the "pitch 10 number 1" trajectory (as previously
mentioned, the trajectories are identified by their pitch angle in degrees
and a number to distinguish trajectories with the same pitch angle). More
specifically, joints 3 and 4 of the left arm are briefly outside this bound as
depicted in Figure|6.1. This is probably caused by the left hand rings missing

o7

6. Experimental evaluation

the string during the draw and an excess of friction between the string and
the rubber glove leading to large torques as the motors try to fight against
it. This can be repaired by adjusting the ring positions accordingly. This
load on the motors is tolerable for such a short time, but could cause motor
overheating if left in the draw state for a few minutes. The right arm torques
for this drawing trajectory are, on the other hand, very low with the maximal
absolute value of a normalized torque below 0.55 as depicted also in Figure
6.1

Normalized torques during the draw/release movement Normalized torques during the draw/release movement

104 —mmmme A — joint 1 1.00
—— joint 2
— joint 3 0.75 4
— joint 4
— joint 5

0.5
—— joint &
joint 7
0.0
0.00

-0.51 -0.251

joints left normalized torques [-]

-0.501

1.0 mmmmm e N K
U A -0.754
~1.00

0 10 20 30 40 50 60 0 10 20 30 40 50 60
t[s] t[s]

joints right normalized torques [-]

Figure 6.1: Normalized torques of the left and right arm motors for the drawing
trajectory "pitch 10 number 1"

The rest of the trajectories do not exceed 0.9 normalized torque in any
motor. The drawing trajectory "pitch 0 number 6" even has the normalized
torques in absolute value below 0.75 for both arms as depicted in Figure 6.2

Normalized torques during the draw/release movement Normalized torques during the draw/release movement
1007 —=====--- — joint 1 1.007 —======-- — joint 1
—— joint 2 —— joint 2
0.75 — joint 3 0.75 4 —— Jjoint 3
= — joint4 = —— joint 4
8 0501 —— joint 5 8 0.0 — joint 5
z —— joint 6 g —— Jjoint 6
£ 025 joint 7 Z 0254 joint 7
o
3 | ¥ A
T 0.00 T 0.004 3 =
€ £ 7
£ 5
5
£ -0.25 2 -0.251
= z
2 o
- 2
£-050 £-0507
= £
-0.754 -0.754
-1.00 =======-- =100 ======---
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

t[s] ts]

Figure 6.2: Normalized torques of the left and right arm motors for the drawing
trajectory "pitch 0 number 6"

A maximum of absolute normalized torques during a particular trajectory
in every joint for every drawing trajectory for both arms is provided in Tables

6.1 and 6.2

o8

6.1. Testing drawing trajectories

Left arm joints
maximal absolute normalized torques [-]

Trajectory 1 2 3 4 5 6 7 | max

pitch O number 0 | 0.47 | 0.62 | 0.72 | 0.41 | 0.18 | 0.25 | 0.26 | 0.72

pitch O number 1 | 0.45 | 0.55 | 0.52 | 0.35 | 0.03 | 0.25 | 0.25 | 0.55

pitch O number 2 | 0.43 | 0.59 | 0.42 | 0.39 | 0.17 | 0.32 | 0.33 | 0.59

pitch 0 number 3 | 0.63 | 0.46 | 0.49 | 0.37 | 0.01 | 0.14 | 0.14 | 0.63

pitch 0 number 4 | 0.53 | 0.52 | 0.46 | 0.74 | 0.01 | 0.33 | 0.28 | 0.74

pitch O number 5 | 0.42 | 0.66 | 0.8 | 0.35 | 0.18 | 0.42 | 0.3 | 0.8

pitch O number 6 | 0.36 | 0.69 | 0.71 | 0.39 | 0.28 | 0.25 | 0.25 | 0.71

pitch -5 number 0 | 0.45 | 0.5 | 0.32 | 0.43 | 0.01 | 0.38 | 0.38 | 0.5

pitch -5 number 1 | 0.28 | 0.49 | 0.45 | 0.38 | 0.03 | 0.28 | 0.27 | 0.49

pitch -5 number 2 | 0.19 | 0.65 | 0.48 | 0.52 | 0.06 | 0.36 | 0.49 | 0.65

pitch -5 number 3 | 0.5 | 0.63 | 0.57 | 0.6 | 0.01 | 0.22 | 0.14 | 0.63

pitch 5 number 0 | 0.43 | 0.63 | 0.79 | 0.41 | 0.18 | 0.59 | 0.29 | 0.79

pitch 5 number 1 | 0.39 | 0.59 | 0.5 | 0.34 | 0.01 | 0.28 | 0.25 | 0.59

pitch 5 number 2 | 0.25 | 0.53 | 0.6 | 0.37 | 0.01 | 0.26 | 0.24 | 0.6

pitch 5 number 3 0.5 | 0.71 | 0.51 | 0.58 | 0.76 | 0.33 | 0.33 | 0.76

pitch -10 number 0 | 0.4 | 0.59 | 0.64 | 0.35 | 0.18 | 0.32 | 0.32 | 0.64

pitch -10 number 1 | 0.27 | 0.52 | 0.25 | 0.46 | 0.01 | 0.34 | 0.35 | 0.52

pitch -10 number 2 | 0.28 | 0.45 | 0.31 | 0.41 | 0.01 | 0.36 | 0.38 | 0.45

pitch -10 number 3 | 0.34 | 0.39 | 0.31 | 0.49 | 0.01 | 0.37 | 0.37 | 0.49

pitch -10 number 4 | 0.51 | 0.63 | 0.72 | 0.37 | 0.08 | 0.43 | 0.31 | 0.72

pitch 10 number 0 | 0.4 | 0.61 | 0.5 | 0.41 | 0.12 | 0.24 | 0.24 | 0.61

pitch 10 number 1 | 0.41 | 0.69 | 1.39 | 1.04 | 0.23 | 0.24 | 0.19 | 1.39

pitch 10 number 2 | 0.38 | 0.63 | 0.55 | 0.37 | 0.01 | 0.21 | 0.21 | 0.63

pitch 10 number 3 | 0.27 | 0.62 | 0.59 | 0.37 | 0.02 | 0.24 | 0.2 | 0.62

pitch 10 number 4 | 0.33 | 0.71 | 0.57 | 0.37 | 0.01 | 0.23 | 0.2 | 0.7T1

Table 6.1: Left arm joints maximal absolute normalized torques for every
drawing trajectory

99

. Experimental evaluation

Right arm joints

maximal absolute normalized torques [-]

Trajectory 1 2 3 4) 6 7 | max
pitch 0 number 0 | 0.77 | 0.58 | 0.49 | 0.42 | 0.04 | 0.28 | 0.14 | 0.77
pitch 0 number 1 | 0.88 | 0.59 | 0.44 | 0.48 | 0.2 | 0.15 | 0.14 | 0.88
pitch 0 number 2 | 0.84 | 0.59 | 0.46 | 0.36 | 0.14 | 0.1 | 0.11 | 0.84
pitch 0 number 3 | 0.58 | 0.46 | 0.65 | 0.39 | 0.03 | 0.16 | 0.16 | 0.65
pitch 0 number 4 | 0.51 | 0.53 | 0.69 | 0.37 | 0.08 | 0.13 | 0.13 | 0.69
pitch 0 number 5 | 0.63 | 0.57 | 0.51 | 0.6 | 0.05 | 0.36 | 0.12 | 0.63
pitch 0 number 6 | 0.61 | 0.55 | 0.45 | 0.48 | 0.07 | 0.44 | 0.18 | 0.61
pitch -5 number 0 | 0.57 | 0.71 | 0.83 | 0.4 | 0.23 | 0.09 | 0.09 | 0.83
pitch -5 number 1 | 0.71 | 0.58 | 0.44 | 0.49 | 0.21 | 0.14 | 0.14 | 0.71
pitch -5 number 2 | 0.15 | 0.58 | 0.53 | 0.4 | 0.04 | 0.14 | 0.2 | 0.58
pitch -5 number 3 | 0.64 | 0.54 | 0.66 | 0.32 | 0.23 | 0.13 | 0.17 | 0.66
pitch 5 number 0 | 0.74 | 0.57 | 0.54 | 0.38 | 0.43 | 0.23 | 0.23 | 0.74
pitch 5 number 1 | 0.74 | 0.57 | 0.49 | 0.44 | 0.41 | 0.19 | 0.19 | 0.74
pitch 5 number 2 | 0.65 | 0.6 | 0.46 | 0.39 | 0.02 | 0.19 | 0.16 | 0.65
pitch 5 number 3 | 0.52 | 0.6 | 0.54 | 0.48 | 0.16 | 0.21 | 0.21 | 0.6

pitch -10 number 0 | 0.71 | 0.65 | 0.5 | 0.41 | 0.33 | 0.18 | 0.12 | 0.71
pitch -10 number 1 | 0.56 | 0.5 | 0.69 | 0.44 | 0.1 | 0.1 | 0.1 | 0.69
pitch -10 number 2 | 0.58 | 0.57 | 0.69 | 0.41 | 0.09 | 0.12 | 0.11 | 0.69
pitch -10 number 3 | 0.63 | 0.83 | 0.77 | 0.39 | 0.13 | 0.12 | 0.12 | 0.83
pitch -10 number 4 | 0.84 | 0.6 | 0.72 | 0.63 | 0.05 | 0.16 | 0.16 | 0.84
pitch 10 number 0 | 0.72 | 0.58 | 0.63 | 0.37 | 0.35 | 0.19 | 0.19 | 0.72
pitch 10 number 1 | 0.48 | 0.54 | 0.48 | 0.51 | 0.04 | 0.13 | 0.19 | 0.54
pitch 10 number 2 | 0.75 | 0.59 | 0.43 | 0.48 | 0.19 | 0.09 | 0.09 | 0.75
pitch 10 number 3 | 0.7 | 0.61 | 0.42 | 0.38 | 0.06 | 0.16 | 0.13 | 0.7
pitch 10 number 4 | 0.64 | 0.63 | 0.6 | 0.41 | 0.02 | 0.14 | 0.16 | 0.64

Table 6.2: Right arm joints maximal absolute normalized torques for every

drawing trajectory

B 6.2 Testing target detection

The accuracy of the target detection has been tested by comparing it with
a very precise localization obtained from the Vicon Tracker [vic] system
available inside the laboratory, where the archer has been developed. This
localization involves attaching retroreflective markers to the localized objects -
in this case the robot and the target - and tracking these markers by infrared

cameras.

The target was during the testing placed on seven different positions in the
field of view of the robot’s camera. After reaching a new position, the detectors
were let to "stabilize" for a while. After both the averaged concentric circles
target position and the neural network target position already corresponded

60

6.2. Testing target detection

to the new target location, both these positions were saved to a file together
with multiple concentric circles raw detections and the ground-truth Vicon
localization. This task was performed by save_target_detection_data.py
node in tiago_archer/scripts. The resulting positions for each target
location and the differences of each detector estimate from the ground truth
are summarized in Table 6.3. These positions are measured with respect to
the robot base link frame, the camera was in its default orientation with its
z-axis aligned with the base link x-axis. A mean value and a corrected sample
standard deviation are provided for raw concentric circles measurements. Its
high variance justifies the use of averaging.

Best accuracy was achieved, as expected, for a closer target near the center
of the image plane as indicated by the detection of the target in locations
2 and 3 in the Table [6.3. The localization phase of the detect-aim-shoot
loop consequently features the robot’s head constantly pointing at the last
concentric circles raw detection position to center the image plane at the
target.

The output of the localization phase of the detect-aim-shoot loop is the aver-
age of the concentric circles averaged target position and the neural network
target position, which improves the accuracy as well. This is indicated by the
mean of the absolute difference between Vicon measurements and the three
position estimates - the concentric circles averaged, the neural network and
their average - computed across the seven target locations:

[0.20 +0.20
Aups.cca = |0.057 £0.027| |
0.102 4 0.087

[0.20 £ 0.13
Agps, NN = |0.087 +£0.051] , (6.2)
0.038 £ 0.049 |

[0.123 + 0.079]
Agps.ar = |0.058 £0.018 | ,
0.053 £ 0.045|

where Agps.cca, Daps, nv and Agps 40 are the mean values of absolute differ-
ences between Vicon and concentric circles averaged estimates, neural network
estimates and their average, respectively.

61

6. Experimental evaluation

target .

location # Vicon [m] Accrlm] Accalm] | Ann[m] | Agy[m]

5.270 0.31 +0.36 0.375 0.181 0.278

1 ~0.002 | 0.081+0.095 | 0.076 0.087 | 0.081
0282 | —0.15+0.18 | —0.166 | —0.113 | —0.139
3.691 —0.042 £+ 0.027 —0.038 —-0.167 —0.103

2 0.031 0.056 £+ 0.036 0.056 0.052 0.054
0.279 | —0.063+£0.041 | —0.066 | —0.010 | —0.038
2.913 —0.090 £ 0.043 —0.091 0.002 —0.044

3 0.038 0.040 £+ 0.095 0.038 0.048 0.043
0.276 —0.038 £ 0.018 —0.037 0.011 —0.013
3.286 —0.26 £0.23 —0.144 —0.105 —0.124

4 0.681 —0.003 £ 0.002 0.041 0.037 0.039
0.278 0.026 4 0.023 —0.023 —0.007 | —0.015

3.070 0.58 +0.44 0.572 —0.412 0.080

5 —0.844 —0.101 £0.076 —0.096 0.179 0.042
0.274 —0.27+£0.20 —0.266 0.106 —0.080
4.848 —0.118 £ 0.086 —0.061 —0.268 —-0.164

6 —1.019 0.112 £ 0.081 0.016 0.132 0.074
0.276 —0.033 +0.024 —0.048 —0.003 —0.025
5.507 0.112 £ 0.094 0.122 —0.250 —0.064

7 0.487 0.102 £ 0.085 0.074 0.074 0.074
0.279 —0.107 £ 0.089 —0.110 —0.018 —0.064

Table 6.3: Position estimates (x, y and z coordinates) for 7 different positions
with respect to the robot base link frame - ground-truth position in Vicon
column, in other columns differences from Vicon of concentric circles raw (Accr),
concentric circles averaged (Acca), neural network (Ayxy) and an average
between CCA and NN (A,,)

B 6.3 Detect - Aim - Shoot loop testing

The detect-aim-shoot loop has been evaluated by letting the robot go through
the whole process - from detection to shot - 15 times for two distances of the
robot to the target, more specifically 4 and 4.5 m. The detect-aim-shoot loop
for each measurement was started with the robot in an arbitrary orientation
with respect to the target. The target stayed at the same location for all
measurements and the position of the robot was also the same when measuring
for a single distance.

62

6.3. Detect - Aim - Shoot loop testing

The arrows often bounced out instead of sticking to the target, each shot
thus has been recorded on a video and the approximate positions of the arrow
impacts are depicted in Figure 6.3. The arrows sticking to the target are
marked by green circles and the ones that bounced out are marked by yellow
circles. A purple star marks the average position. The x and y deviations (x
oriented to the right of the Figure @ and y up) and the distance from the
target center of each arrow hit are summarized in Table

The figures demonstrate lower variance at closer distance, although the
average position is further from the target center. Mainly, the low average
height of the hits at 4 m distance is responsible for this. This is probably
caused by the system using more draw configurations with downward pitch
for the closer distance. The height accuracy of the shots from these draw

configurations is more sensitive to the correct setting of the n parameter,
m

which has been only roughly estimated here.

At both distances, there is still a notable bias to the left caused probably by
the rotation error due to the robot localization imprecision.

The arrows bounce out much more when further from the target as a larger
portion of their energy has been dissipated (due to aerodynamic forces) and
the orientation of the arrow with respect to the target on hit influences more
whether the arrow sticks or not.

Y eeolosic

Figure 6.3: Target with arrow hits marked as green circles for sticked arrows and
yellow circles for bounced arrows, distance 4 m (left) and 4.5 m (right) [bow]

63

6. Experimental evaluation

robot-target 4 m distance robot-target 4.5 m distance

shot # | x[m] y[m] | distance[m] | x[m] y[m] | distance[m]
1 -0.241 | -0.131 0.274 -0.002 | 0.012 0.012
2 -0.214 | -0.154 0.264 0.003 | -0.031 0.032
3 -0.180 | -0.154 0.237 0.032 | 0.046 0.056
4 -0.168 | -0.135 0.216 -0.002 | 0.081 0.081
5 -0.188 | -0.132 0.230 -0.005 | 0.158 0.158
6 -0.198 | -0.046 0.203 -0.074 | 0.132 0.151
7 -0.106 | -0.146 0.181 -0.118 | -0.007 0.118
8 -0.033 | -0.154 0.157 -0.152 | -0.007 0.152
9 -0.025 | -0.126 0.128 -0.175 | -0.027 0.177
10 -0.143 | -0.058 0.154 -0.179 | 0.005 0.179
11 -0.136 | -0.065 0.151 -0.143 | -0.146 0.205
12 -0.133 | -0.087 0.159 -0.180 | -0.101 0.207
13 -0.112 | -0.095 0.147 -0.178 | -0.093 0.201
14 -0.107 | -0.073 0.129 -0.233 | -0.054 0.240
15 -0.123 | -0.026 0.126 -0.252 | 0.062 0.260
1 -0.141 | -0.105 0.184 -0.111 | 0.002 0.149
s 0.061 | 0.044 0.050 0.095 | 0.085 0.075

Table 6.4: x and y deviations and distances from the center for the arrow hits
for both robot-target distances, mean u of the values and their corrected sample
standard deviation s

64

Chapter 7

Conclusion and Discussion

The whole process of shooting with a bow at a target is a complex task
consisting of many subtasks, which would each deserve a separate thesis to
do them justice. As a result, this thesis was more focused on certain lower
level subtasks like the search for optimal draw configurations and the design
of respective bow drawing trajectories for these configurations. For the other
subtasks, like the target detector and detect-aim-shoot loop, an easy but
notably suboptimal solution has been implemented.

The robot has fulfilled the main goal of this thesis of shooting at a detected
target with a bow, but its accuracy, range and arrow cadence have still a lot
of room for improvement.

The inaccuracy observed is a product of multiple factors. First, the bow
model used for the computation of the vertical trajectory of the arrow is
imprecise, the parameter T heeds to be tuned better as mentioned earlier.

m
This could be done by measuring the velocity of the arrow leaving the bow

for numerous shots and different pitch angles of the bow and estimating n

to fit the data best. The model of the shot also does not account for any
aerodynamic forces. These are not so significant for close distance shooting
like was performed here, but would become notable if the robot was made to
shoot at a longer distance, especially the drag is probably high on the arrow
due to its suction cup tip. Better grasping and releasing of the bowstring
by the draw hand is also needed for the accuracy to improve as the string
during release often slips from the rings to the last finger links before finally
leaving the draw hand, because the hand has not opened fast enough. This
can be repaired by shifting the rings closer to the fingertips and modifying the
drawing trajectories accordingly. Some of the draw configurations also result
in the string flicking the right arm a little in the last part of its trajectory
during the shot. This, similarly to the previous problem, results in the string
and by extension the arrow trajectory during the shot deviating from their
optimal path - a straight line. The arrow then can bump to the bow as it is
leaving - this leads to the arrow yawing away from the trajectory of its center
of mass (which is not influenced by this bump) during its flight, decreasing
its accuracy and increasing the chances of bouncing from the target. The
imprecision introduced by the target localization has been already discussed.
This can be potentially improved by using a higher resolution (but lower

65

7. Conclusion and Discussion

Fps) camera mode on the robot, especially for bigger target distances. The
biggest accuracy burden is, as mentioned before, the imprecision of rotation
estimation by the AMCL. An aiming process focusing more on the optical
alignment with the target could be used to rectify this. Such aligning is
currently used only to correct large rotation estimation errors as it is time-
consuming to perform, because it involves repeating the localization process
multiple times.

This leads to the final area of improvement for the system: it is very slow.
One complete detect-aim-shoot process can take up to 5 minutes due to the
localization trying to reach consensus between the concentric circles detector
and the neural network, which takes up to 9 s to process one image. An
obvious improvement here is to run this detector on a GPU, which would
decrease the computation time by several orders of magnitude.

66

Appendix A

Bibliography

[amc]

[Arr]

[Asa05]

[CF17]

[CNH47]

[dat]

[det]

AMCL ROS wiki, http://wiki.ros.org/amcl, [Online; accessed
May 21, 2021].

Arrowsoft Sports, |https://arrowsoftsports.com/how-to+
'shoot-a-recurve-bow/, [Online; accessed May 21, 2021].

H. Harry Asada, Introduction to robotics, https://ocw.mit.edu/
lcourses/mechanical-engineering/2-12-introduction-to- |
robotics-fall-2005/lecture-notes/chapter6.pdf| 2005,
[Online; accessed May 21, 2021].

Blender, https://wwu.blender.org/, [Online; accessed May 21,
2021].

G. Sohl E. Wang F. C. Park B. Martin, J. E. Bobrow and J. Kim,
Optimal robot motions for physical criteria, Journal of Robotic
systems 18 (2001), no. 12, 785-795.

Soft Archery Bow - Decathlon, https://www.decathlon.cz/
'sada-softarchery-100-id_8505629.html, [Online; accessed
May 21, 2021].

Changrak Choi and Emilio Frazzoli, Torque efficient motion
through singularity, 2017 IEEE International Conference on
Robotics and Automation (ICRA), 2017, pp. 5012-5018.

Paul E. Klopsteg C. N. Hickman, Forrest Nagler, Archery:
The technical side, https://www.archerylibrary.com/books/
hickman/archery-the-technical-side/, 1947, [Online; ac-
cessed May 21, 2021].

Neural network - diagram, https://databricks.com/glossary/
neural-network, [Online; accessed May 21, 2021].

Detecto documentation, https://detecto.readthedocs.io/,
[Online; accessed May 21, 2021].

67

http://wiki.ros.org/amcl
https://arrowsoftsports.com/how-to-shoot-a-recurve-bow/
https://arrowsoftsports.com/how-to-shoot-a-recurve-bow/
https://ocw.mit.edu/courses/mechanical-engineering/2-12-introduction-to-robotics-fall-2005/lecture-notes/chapter6.pdf
https://ocw.mit.edu/courses/mechanical-engineering/2-12-introduction-to-robotics-fall-2005/lecture-notes/chapter6.pdf
https://ocw.mit.edu/courses/mechanical-engineering/2-12-introduction-to-robotics-fall-2005/lecture-notes/chapter6.pdf
https://www.blender.org/
https://www.decathlon.cz/sada-softarchery-100-id_8505629.html
https://www.decathlon.cz/sada-softarchery-100-id_8505629.html
https://www.archerylibrary.com/books/hickman/archery-the-technical-side/
https://www.archerylibrary.com/books/hickman/archery-the-technical-side/
https://databricks.com/glossary/neural-network
https://databricks.com/glossary/neural-network
https://detecto.readthedocs.io/

A. Bibliography

[DL19]

[fls]

[gaz]

[GDDM13]

[Girl5]
[GJT10]

[Its14]

[Jall9]

[ID20]

[Joh]

[mer]

[mgi]

[mova)
[movb]

[opel9)]

M. Cabatuan C. Llorente E. Dadios D. Ligutan, A. Abad, FPGA
implementation of archery target detection using color sequence
recognition algorithm, International Journal of Recent Technology
and Engineering 8 (2019), 1391-1397.

Front Line Solvers, |https://www.solver.com/nonsmooth-
optimization, [Online; accessed May 21, 2021].

Gazebo simulator, http://gazebosim.org/, [Online; accessed
May 21, 2021].

Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik, Rich feature hierarchies for accurate object detection and
semantic segmentation, CoRR abs/1311.2524 (2013).

Ross B. Girshick, Fast R-CNN, CoRR abs/1504.08083 (2015).

Gaél Guennebaud, Benoit Jacob, et al., Eigen v3, http://
eigen.tuxfamily.org, 2010.

Itseez, The OpenCYV Reference Manual, 2.4.9.0 ed., April 2014,
[Online; accessed May 21, 2021].

Marek Jaluvka, Playing chess with KUKA robot using lin-
guistic instructions, Bachelor thesis, CTU in Prague, https:
//dspace.cvut.cz, 5 2019.

Jian Li Jiarong Du, Ru Lai, Vision-based automatic archery target
reporting system, Proc. of the 9th International Symposium on
Computational Intelligence and Industrial Application (Beijing,
China), ISCITA2020, 2020.

Steven G. Johnson, The NLopt nonlinear-optimization package,
http://github.com/stevengj/nlopt) [Online; accessed May 21,
2021].

Force sensor, https://www.colosus.cz/merak-sily-natahu-
luku-x151274, [Online; accessed May 21, 2021].

moveit Namespace Reference, http://docs.ros.org/en/
melodic/api/moveit_ros_planning_interface/html/
namespacemoveit.html, [Online; accessed May 21, 2021].

Mowelt, https://moveit.ros.org/, [Online; accessed May 21,
2021].

Movelt concepts, https://moveit.ros.org/documentation/
concepts, [Online; accessed May 21, 2021].

OpenCV: Camera Calibration and 3D Reconstruction,
https://docs.opencv.org/2.4/modules/calib3d/doc/
camera_calibration_and_3d_reconstruction.html, 2019,
[Online; accessed May 21, 2021].

68

https://www.solver.com/nonsmooth-optimization
https://www.solver.com/nonsmooth-optimization
http://gazebosim.org/
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://dspace.cvut.cz
https://dspace.cvut.cz
http://github.com/stevengj/nlopt
https://www.colosus.cz/merak-sily-natahu-luku-x151274
https://www.colosus.cz/merak-sily-natahu-luku-x151274
http://docs.ros.org/en/melodic/api/moveit_ros_planning_interface/html/namespacemoveit.html
http://docs.ros.org/en/melodic/api/moveit_ros_planning_interface/html/namespacemoveit.html
http://docs.ros.org/en/melodic/api/moveit_ros_planning_interface/html/namespacemoveit.html
https://moveit.ros.org/
https://moveit.ros.org/documentation/concepts
https://moveit.ros.org/documentation/concepts
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html

[oro]

[palal

[PALb]
[PK10]

[RHGS15]

[robal

[robb]

[ros]

[Rub20]

[RYO00]

[Sto]

[The]

[vic]

A. Bibliography

Orocos kinematics and dynamics, https://www.orocos.org/
kdl.html, [Online; accessed May 21, 2021].

PAL Robotics, https://pal-robotics.com/robots/tiagol [On-
line; accessed May 21, 2021].

PAL Robotics, TIAGo++ Handbook.

Ryo Saegusa Giorgio Metta Petar Kormushev, Sylvain Calinon,
Learning the skill of archery by a humanoid robot iCub, Proc. of
the IEEE-RAS International Conference on Humanoid Robots
(Nashville, TN, USA), 2010.

planning _scene::PlanningScene Class Reference,
http://docs.ros.org/en/jade/api/moveit_core/html/ |
|c1assp1anning__scene_1_1P1anningScene.htm1|, [Online;

accessed May 21, 2021].

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun,
Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks, CoRR abs/1506.01497 (2015).

moveit::core::RobotModel Class Reference,
//docs.ros.org/en/indigo/api/moveit_core/html/ |
classmoveit_l_1core_1_1RobotMode1.th [Online; ac-
cessed May 21, 2021].

moveit::core::RobotState Class Reference,
|//docs.ros.org/en/jade/api/moveit_core/html/ |
\classmoveit_1_lcore_1_1RobotState.html, [Online; ac-

cessed May 21, 2021].

Robot Operating System Wiki, http://wiki.ros.org, [Online;
accessed May 21, 2021].

Hema Rubesh, Interactive Color Image Segmentation using HSV
Color Space, Science Technology Journal (2020), 37-41.

Thomas P. Runarsson and Xin Yao, Stochastic ranking for con-
strained evolutionary optimization, IEEE Trans. Evolutionary
Computation 4 (2000), no. 3, 284-294.

Rebecca Stone, Image Segmentation Using Color Spaces in
OpenCV + Python, https://realpython.com/python-opencv-
\color-spaces/, [Online; accessed May 21, 2021].

TheAlLearner, Hough Gradient Method,
‘theailearner.com/tag/hough-gradient-method/, [Online;

accessed May 21, 2021].

Vicon, https://www.vicon.com/software/tracker/, [Online; ac-
cessed May 21, 2021].

69

https://www.orocos.org/kdl.html
https://www.orocos.org/kdl.html
https://pal-robotics.com/robots/tiago
http://docs.ros.org/en/jade/api/moveit_core/html/classplanning__scene_1_1PlanningScene.html
http://docs.ros.org/en/jade/api/moveit_core/html/classplanning__scene_1_1PlanningScene.html
http://docs.ros.org/en/indigo/api/moveit_core/html/classmoveit_1_1core_1_1RobotModel.html
http://docs.ros.org/en/indigo/api/moveit_core/html/classmoveit_1_1core_1_1RobotModel.html
http://docs.ros.org/en/indigo/api/moveit_core/html/classmoveit_1_1core_1_1RobotModel.html
http://docs.ros.org/en/jade/api/moveit_core/html/classmoveit_1_1core_1_1RobotState.html
http://docs.ros.org/en/jade/api/moveit_core/html/classmoveit_1_1core_1_1RobotState.html
http://docs.ros.org/en/jade/api/moveit_core/html/classmoveit_1_1core_1_1RobotState.html
http://wiki.ros.org
https://realpython.com/python-opencv-color-spaces/
https://realpython.com/python-opencv-color-spaces/
https://theailearner.com/tag/hough-gradient-method/
https://theailearner.com/tag/hough-gradient-method/

A. Bibliography

[YRO5] Xin Yao and Thomas P. Runarsson, Search biases in constrained
evolutionary optimization, IEEE Trans. on Systems, Man, and

Cybernetics Part C: Applications and Reviews 35 (2005), no. 2,
233-243.

70

	Introduction
	Goal of this thesis
	Contribution

	Related work
	Problem definition
	TIAGo++ robot
	Arms
	Torso lifter
	Hey5 Hand End-Effector
	Head
	Mobile base

	Bow and arrows

	Approach
	Robotic archer overview
	Bow model
	Search for optimal bow draw configurations
	Design of bow drawing trajectories
	Target detector
	Concentric circles detector
	Neural network detector

	Detect - Aim - Shoot loop

	Implementation
	Implementation overview
	ROS
	TIAGo++ robot control
	Bow end-effector & bowstring rings
	Bow model
	Search for optimal bow draw configurations
	Design of bow drawing trajectories
	Target detector
	Concentric circles detector
	Neural network detector

	Detect - Aim - Shoot loop

	Experimental evaluation
	Testing drawing trajectories
	Testing target detection
	Detect - Aim - Shoot loop testing

	Conclusion and Discussion
	Bibliography

