
 CZECH TECHNICAL UNIVERSITY IN PRAGUE
 Faculty of Electrical Engineering
 DEPARTMENT OF CONTROL ENGINEERING

 HELSINKI UNIVERSITY OF TECHNOLOGY
 Department of Automation and Systems Technology
 Automation Technology Laboratory

MASTER’S THESIS

INFORMATION AGENTS IN
PROCESS AUTOMATION

Milan Fajt

Supervisor: Assoc. Prof. Jan Bílek (CTU)

 Prof. Dr. Tech. Aarne Halme (HUT)

Instructor: Dr. Tech. Pekka Appelqvist (HUT)

Prague, 2004

Czech Technical University in Prague - Faculty of Electrical Engineering
Department of Control Engineering

&
Helsinki University of Technology - Department of Automation and Systems Technology

Automation Technology Laboratory

Submission of Master's thesis

Student: Milan Fajt

Field of study: Control Engineering

Topic of the thesis: Information Agents in Process Automation

Master's thesis elaboration:

1) Acquaint yourself with fundamentals of information access in process
automation.

2) Acquaint yourself with fundamentals of agent technology.
3) Analyze and propose the use of information agents in process automation.
4) Design, implement and test a demonstration scenario of information agents in

process automation.

Supervisor: Assoc. Prof. Jan Bílek
 Prof. Dr. Tech. Aarne Halme

Instructor: Dr. Tech. Pekka Appelqvist

Date of submission: November 2002

Date of commitment: May 2004

I

Master's thesis originality statement

I pronounce that I have elaborated this Master's thesis independently and that I have used only
materials (literature, projects, SW, etc.) referred in this Master's thesis.

I do not have any objection against the use of the material contained in this Master's thesis by
other persons for any noncommercial purposes.

Prohlášení o původnosti díla

Prohlašuji, že jsem svou diplomovou práci vypracoval samostatně a použil jsem pouze podklady
(literaturu, projekty, SW, atd.) uvedené v přiloženém seznamu.

Nemám závažný důvod proti užití tohoto školního díla ve smyslu §60 Zákona č. 121/2000 Sb. o
právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů
(autorský zákon).

Espoo, June 25, 2003 Milan Fajt

II

Abstract

 Agent technology's potentials to enhance current approaches of information
access in process automation systems (PAS) such as OLE for Process Control (OPC) are
the prime objectives of this thesis. In agent technology, here considered as a new
programming paradigm, software systems are built from functionally independent
program units called agents that are fully autonomous and active in contrast to the
objects in object-oriented programming.

The main focus of the theoretical part is given to information agents in process
automation. Individual aspects of information agents in general, such as requirements,
reliability, architecture and implementation are studied and summarized from referenced
materials and next they are applied and analyzed with regard to information agents in
process control. Advantages and disadvantages of information agents are discussed and
comparison with OPC is provided.

 In the practical part of the thesis, an information access module and an agent
message evaluating mechanism were implemented. Both were tested and presented in the
demonstration scenario where information agents were connected to a physical
laboratory system. Agents were monitoring and diagnosing the condition of the running
system and they were notifying an external agent about its changes.

Contribution of this thesis is in the problem specification of information access in
general and in a brief analysis of information agents in process automation. Further,
developed software will be used and extended in the consecutive research of agent
enhanced process automation.

III

Anotace

 Tématem této práce je využití agentní technologie k zdokonalení stávajících
informačních systémů v automatizaci procesů jako například OLE for Process Control
(OPC). Agentní technologie je zde chápána jako nový programovací přístup k tvorbě
komplexních systémů. S využitím agentní technologie jsou softwarové systémy tvořeny
z nezávislých programových jednotek - agentů. Tyto agenti jsou plně autonomní a
aktivní programy narozdíl od objektů v objektově orientovaném programování.

 Hlavní pozornost teoretické části práce je věnována informačním agentům v
automatizaci procesů. Ze zdrojů uvedených v referencích jsou zde shrnuty jednotlivé
vlastnosti a charakteristiky informačních agentů, jako jsou požadavky, spolehlivost,
architektura a implementace, a ty jsou dále aplikovány a analyzovány s ohledem na
informační agenty v automatizaci procesů. Dále jsou zde zmíněny výhody a nevýhody
informačních agentů a je zde provedeno jejich porovnání s OPC technologií.

 V praktické části této diplomové práce byl navrhnut a implementován
programový informační modul a algoritmus pro vyhodnocování agentních zpráv. Jejich
funkčnost byla demostrována na laboratorním fyzikálním systému, ke kterému byli
informační agenti připojeni. Agenti prováděli diagnózu stavu běžícího systému. Změny
stavu systému byly agenty zasílány vnejšímu pozorovateli představovaným dalším
informačním agentem.

 Přínosem této diplomové práce je specifikace problému přístupu k informacím
obecně a ve stručné analýze informačních agentů v automatizaci procesů. Vyvinutý
software bude dále využit v pokračujícím výzkumu aplikování agentní technologie v
automatizaci procesů.

IV

Preface
 This Master's thesis was elaborated with a great help of the agent team at the Automation
Technology Laboratory at the Helsinki University of Technology in Finland within my exchange
study program in the school year 2002 - 2003. This Master's thesis could never be created
without all the support that was given to me during the time I was working on the thesis. I would
like to express my profound appreciation to all of you who had a positive influence on my work.

I would like to thank Professor Aarne Halme, head of the Automation Technology Laboratory,
for his permission to work on my thesis in his laboratory, for all his support, for his attitude to
make things simple and in a positive mood and for the great environment that the laboratory is
under his supervision.

My sincere thanks also belong to Associate Professor Jan Bílek from the Control Engineering
Department at the Czech Technical University. His great readiness to help me and his overall
very positive attitude, especially when dealing with my problems, made on me the best
impression.

I was very happy for the honor to meet and to work under supervision of Dr. Pekka Appelqvist
who was giving me all the time critical feedback and very constructive advises for my thesis
elaboration. During work with him, I got lot of invaluable experience. Thank you Pekki for your
patience and for your great help.

Very big thanks come to Mr. Ilkka Seilonen and Mr. Teppo Pirttioja for their great support, for
many technical advises and especially, for their Finnish humor. The way they think is very
logical and the variety of questions that they gave me never let me stop thinking about my work.

My thanks also belong to the personnel of the Automation Technology Laboratory. They
provided me very nice and pleasant working environment.

Special thanks belong to Karoliina Auvinen, ihanan mielen omaava tyttö, jokaisesta minuutista
hänen kanssaan ja saaden minut ymmärtämään ettei elämä ole pelkkää työtä ja opiskelua. Hänen
kanssaan, oleskeluni Suomessa muodostui erityisen intensiiviseksi ja Suomesta tuli jopa vielä
kauniimpi.

I am glad that I can express here my gratefulness also to all my friends, especially to Jirka
Dlouhý, Jaromír Sršeň, Michal Doleček, Karel Honzl, Daniel Švanda, Daniel Ehrenberger and
many others for being there outside and for letting me to know them.

Finally, I would like to thank to my whole family that gave me all necessary space and support I
needed.

Espoo - Finland, June 17, 2003 Milan Fajt

V

Table of Contents

Submission of Master's thesis ... I

Master's thesis originality statement .. II

Abstract ... III

Anotace .. IV

Preface ... V

Table of Contents ... VI

Table of Figures .. VIII

Table of Tables ... IX

Table of Abbreviations ...X

1 Introduction ... 1
 1.1 Background of the thesis .. 1
 1.2 Objectives .. 2
 1.3 Structure ... 3

2 Information access in process automation 5
 2.1 The concept and the purpose ..5
 2.2 Requirements ... 6
 2.3 Users .. 8
 2.4 Implementation .. 9
 2.5 DDE ... 11
 2.6 OPC Specifications .. 13
 2.6.1 Motivation .. 13
 2.6.2 Implementation .. 13
 2.6.3 OPC Common .. 14
 2.6.4 OPC Alarms and Events .. 14
 2.6.5 OPC Batch ... 16
 2.6.6 OPC Data Access ... 16
 2.6.7 OPC Data Exchange .. 18
 2.6.8 OPC Historical Data Access .. 18
 2.6.9 OPC Security ... 19
 2.6.10 OPC XML Data Access ... 19
 2.6.11 Advantages ... 20

3 Agent technology and information agents 21
 3.1 Agent technology ... 21
 3.1.1 Agent definition ... 21
 3.1.2 Agent characteristics .. 22
 3.1.3 Agent architecture .. 25
 3.1.4 Agent implementation and related standards 27
 3.1.5 Areas of applications ..29
 3.2 Agent technology in information access .. 31

VI

 3.2.1 Information agent ... 31
 3.2.2 Information agent architecture ... 32
 3.2.3 Current use of agent-based information access 33

4 Concept of information agents in process automation 34
 4.1 Introduction .. 34
 4.2 Motivation .. 34
 4.3 Analysis of the concept ... 35
 4.3.1 Architecture of the concept .. 36
 4.3.2 Ontology .. 38
 4.3.3 Agent communication language .. 39
 4.3.4 Communication protocols .. 40
 4.3.5 Agent architecture .. 40
 4.3.6 Multi agent architecture ... 42
 4.3.7 Message processing ... 44
 4.3.8 Security .. 45
 4.4 Implementation .. 46
 4.5 Comparison with OPC ... 47
 4.6 Advantages and disadvantages .. 49
 4.7 Future visions ... 50

5 Designing information agents .. 51
 5.1 Introduction .. 51
 5.2 Underlying architecture ... 51
 5.2.1 FIPA-OS agent toolkit and platform .. 51
 5.2.2 FIPA for Process Control (FIPAPC) ... 52
 5.3 Design of the information access module .. 53
 5.4 Design analysis .. 58

6 Implementation and test of information agents 59
 6.1 Test environment ... 59
 6.2 Demonstration system .. 60
 6.2.1 Description ... 60
 6.2.2 Implementation .. 61
 6.2.3 Running and results ..66

7 Conclusions .. 69
 7.1 Summary .. 69
 7.2 Conclusions .. 69
 7.3 Future work .. 71

8 References .. 73

9 Appendix 1 FIPA SL content language grammar 78

10 Appendix 2 Contents of the enclosed compact disc 80

VII

Table of Figures

Figure 2.1 - Process control information architecture (adopted from [OPC Overview, 1998]).............. 11
Figure 2.2 - Applications Working with Many OPC Servers, (adopted from [OPC Overview, 1998]).. 13
Figure 2.3 - Interaction between several OPC Alarm and Event Servers and Clients (adopted from

[OPC AE, 2002])..

16

Figure 2.4 - Example data structure in the OPC Data Access server (adopted from [OPC DA, 2002]). 18
Figure 3.1 - An object and an agent comparison (adopted from [Ferber, 1999]).................................... 23
Figure 3.2 - Agent hierarchy and environment (adopted from [Jennings, 1999])................................... 25
Figure 3.3 - A classification of the various types of application for multi-agent systems (adopted

from [Ferber, 1999])...

26

Figure 3.4 - A classification of the various types of application for multi-agent systems (adopted
from [Ferber, 1999])...

27

Figure 3.5 - Development of agent technology research (adopted from [Luck et al., 2002])..................30
Figure 3.6 - An information agent's knowledge structures and environment (adopted from

[Decker, 1997])..

32

Figure 4.1 - Legacy clients tightly coupled to physical systems..35
Figure 4.2 - Agent augmented process automation system..36
Figure 4.3 Architecture of agent-augmented process automation system... 37
Figure 4.4 - Intelligent devices with agent behavior in process automation..38
Figure 4.5 - Ontology retrieving from an ontology repository.. 39
Figure 4.6 - Information agent architecture based on RETSINA and [Finin et al., 1994] agent

architectures..

41

Figure 4.7 - Agent architectures for information access.. 42
Figure 4.8 - Water system and its information agents... 45
Figure 4.9 - Traditional (on the left) and agent based (on the right) information access to sensors and

actuators in process automation..

47

Figure4.10 - Future vision of the agent information system in process automation................................. 50
Figure 5.1 - a) FIPA reference model (adopted from [FIPAOS, 2003]), b) the main components

within FIPA-OS agent platform (adopted from [Emorphia Ltd., 2002]).............................

51

Figure 5.2 - a) the life cycle of the FIPAPC agent, b) the FIPAPC agent module architecture.............. 52
Figure 5.3 - Message processing in the information access module.. 53
Figure 5.4 - Class diagram of message content interpreting classes.. 55
Figure 5.5 - SLNode object tree... 56
Figure 5.6 - SL language sentence processing... 57
Figure 6.1 - The laboratory physical system... 59
Figure 6.2 - The real physical process system... 60
Figure 6.3 - Communication protocols (adopted from [FIPA, 2002])... 62
Figure 6.4 - FIPA ACL messages.. 63
Figure 6.5 - SLNode object tree for expression: (Device state) in the FIPA SL content

language sentence...

64

Figure 6.6 - The implemented cold water valve diagnose algorithm...65
Figure 6.7 - Measured data from the demonstration scenario..66
Figure 6.8 - The GUI of the PersonalAssistant agent with all sent and received messages.................... 67

VIII

Table of Tables
Table 2.1- OPC XML-DA compared with OPC DA (adopted from [Haus, 2003]) 20

IX

Table of Abbreviations

ACC Agent Communication Channel
ACL Agent Communication Language
ACLs Access Control Lists
AMS Agent Management System

BDI Belief Desire Intension

CAA Content Adaptation Agent
CIA Cooperative Information Agents
CCL Constraint Choice Language
COM Component Object Model
CORBA Common Object Request Broker Architecture
CycL Language of formal logic

DA Data Access
DCOM Distributed Common Object Model
DCS Distributed Control Systems
DDE Dynamic Data Exchange
DF Directory Facilitator
DLL Dynamic Link Library
DSS Decision Support Systems
DX Data eXchange

EXE Executable

FIPA The Foundation for Intelligent Physical Agents
FIPA-OS FIPA Open Source
FIPAPC FIPA for Process Control

GUI Graphical User Interface

HDA Historical Data Access
HTTP Hyper Text Transfer Protocol

JESS Java Expert System Shell
JINI Java-based set of APIs and runtime conventions for building of

distributed systems
JVM Java Virtual Machine

KIF Knowledge Interchange Format

MAS Multi Agent System
MES Manufacturing Execution System
MS Microsoft
MTP Message Transportation Protocol
MTS Message Transportation System

ODL Ontology Definition Language

X

OLE Object Linking and Embedding
OLTP On-Line Transaction Processing
OML/CKML Ontology Markup Language / Conceptual Knowledge Markup

Language
OPC OLE for Process Control
OPM Object-Process Methodology

P2P Peer to Peer
PAS Process Automation System
PID Proportional Integral Derivative

QoS Quality of Service

RDF Resource Description Framework
RETSINA Reusable Environment for Task-Structured Intelligent Networked

Agents
RMI Remote Method Invocation

SCADA Supervisory Control And Data Acquisition
SL Semantic Language
SOAP Simple Object Access Protocol
SPC Statistical Process Control

UDDI Universal Description, Discovery and Integration

VB Visual Basic
VBA Visual Basic for Applications

WMTP Wireless Message Transport Protocol
WSCL Web Services Conversation Language
WSDL Web Services Description Language

XML Extensible Markup Language

XI

1 Introduction

1 Introduction

1.1 Background of the thesis
 Information access in process automation constitutes data transmission among
plant-floor devices, higher-level control, management and monitoring applications. Data
from an automated process are important for analyses of product qualities and for
controlling and monitoring the process itself and its behavior. Typical industrial
processes are complex systems consisting of a number of various devices designed and
created by different manufacturers. All of these devices need to be controlled and
synchronized to make the whole system running properly. Information and control
systems have to collect, understand and evaluate data from all parts of the process. This
means, they have to contain the overall knowledge about the process and therefore they
can be very sophisticated and their design difficult and prone to errors. Changing
properties of such complex systems is deceptive, especially at runtime.

 Agent technology introduces autonomous entities called agents that behave and
act according to their goals and with loosely coupled external control. To exhibit desired
behavior, agents make decisions based on the knowledge of the situation in the
surrounding environment. This knowledge is obtained through receptors, through
communication with other agents and often it is partially pre-programmed. Agents can
serve for many purposes and therefore they can be implemented in many different ways
that best fit the particular requirements. They can possess physical bodies or be purely
software agents. The important property that agents have is the ability to intelligently
communicate with each other. By intelligent communication is understood human-like
communication that is based on a set of words and rules with the possibility to express
high variety of information. Communication allows agents to share knowledge and
intentions they have and thus to do rational decisions corresponding to actual situation in
their environment. The meaning of the words used in communication and their mutual
relations are specified by ontologies. Using the same ontologies ensures that all agents
understand to messages equally.

 The work of this thesis is a part of the research where application of agent
technology in process automation is studied. In this research, the FIPA for Process
Control (FIPAPC) agent platform was designed and implemented as a testing tool of
agents in process automation systems (PAS). The FIPAPC is an extension to the FIPA
Open Source (FIPA-OS) agent platform and an introduction to it and its description can
be found in [Pirttioja, 2002]. During this research, it has revealed that information access
in process automation is a subtopic big enough to be treated separately in its own
research and thus a theme for this Master's thesis has been established.

1

1 Introduction

1.2 Objectives
 The goal of this thesis is to give an introduction to agent technology in
information access in process automation and to implement and demonstrate an example
application of information agents with the use of the FIPAPC agent platform. Agent
technology has many characteristics, based on which agents are expected to prolong the
service life of the process automation systems and to increase their safety, reliability and
efficiency. Application of information agents can, for example, include sophisticated
data preprocessing such as diagnosing of the working state of a process automation
system. It is common in process automation that product samples are regularly taken and
manually analyzed in the quality laboratories to guarantee a required quality level.
Results from these analyses are stored in databases. Information agents can thus as well
access and process offline data from a process automation system to improve current
product quality and to extract hidden coherencies among various process factors.

 The introductory part of this thesis summarizes the information sources dealing
with information access in process automation and with agent technology. All sources,
from where details were taken, are referenced at the end of this thesis.

 The theoretical part of this thesis deals with information agents in PAS.
Information agents are regarded as autonomous and independent parts of PAS. They are
proposed to form a hierarchical structure corresponding to the structure of the PAS.
Every agent has information depending on the system part that it is responsible for and it
provides this information to other agents. Agents possess device-specific information and
algorithms used for controlling, diagnosing or monitoring. Thus they are able to provide
higher level information by evaluating data and knowledge they have about PAS. These
agent systems are also able to satisfy higher variability of information queries due to the
agent communication languages they use.

 In the practical part of this thesis, information agents are implemented to show
their advantages over other information access technologies. A demonstration of a
scenario, where agents provide complex information about a laboratory PAS to another
agent, is presented. The laboratory PAS consists of two water tanks, a water jet pump
and water valves that are represented by hierarchically structured agents. Every agent is
responsible for its particular system's part and holds information relevant to it. In the test
scenario, the highest-level agent, that represents the whole physical system to the outside
world, is asked by an external agent to monitor the running state of the system and to
send a notification in the case that the state has changed. The highest-level agent resends
the query to all subagents. Every agent that has received the query starts periodically to
collect data that is necessary to evaluate the condition of the system's part the agent is
responsible for. In the case, when an agent observes that the running state has changed, a
notice message is sent to a higher-level agent and so on until the message propagates
through the top level agent to the external agent. In the implementation of this

2

1 Introduction

demonstration scenario, only one agent carries out real system diagnosis. Other agents
automatically evaluate the running system state as being correct.

 An important part of the practical work consists from a mechanism for agent
message interpretation. This mechanism enables interpreting of messages based on
parsing their grammar tree representation. With the help of this mechanism, agents
should be able to process a great variety of simple messages.

 As a conclusion of this thesis, agent technology enables decomposition of a
complex information system of a large PAS into a number of autonomous, independent
and simpler parts represented by information agents. Therefore, complexity of a
traditional central information system is distributed over the whole PAS. Individual parts
of this information system can be designed separately and more easily in contrast to
current approaches used for information access in process automation such as OPC. This
is shown in the presented information agent demonstration, which is simple on one hand
but which is showing the proposed concept of information agents in a real PAS on the
other hand.

Technical knowledge about PAS is not stored centrally but is distributed among
individual agents. This should lead to higher scalability, reliability, flexibility and
usability of information systems. Thanks to agent-based information systems, client
applications will not need to possess any technical details about PAS. They will mainly
focus on presenting data to human users.

1.3 Structure
 This thesis has the following structure:

Chapter 2: Information access in process automation. This chapter is a literature review
of information access, its purpose and requirements on it. The current approaches for
information access in process automation are introduced, specifically the DDE protocol
and the OPC Specifications.

Chapter 3: Agent technology and information agents. This chapter is a literature review
of agent technology. In the first part, basic concepts, ideas, advantages and architecture
of agent technology are presented. The second part deals with the role of agent
technology in information access and how agent technology can enhance the current
approaches for information access.

Chapter 4: Concept of information agents in process automation. This chapter is the
theoretical part of this Master's thesis. Use of agent technology in information access in
process automation is studied. The advantages and disadvantages of agent-based
approach over traditional approaches are discussed.

3

1 Introduction

Chapter 5: Designing information agents. This chapter together with the following
chapter is the practical part of this Master's thesis. It presents the proposition of an
information access module for the FIPAPC agents. Also fundamentals and design of an
agent-messages evaluation mechanism are introduced.

Chapter 6: Implementation and the test of information agents. This chapter presents a
description of the testing environment and the scenario that was proposed for
demonstration of the information access module. The results obtained from running the
test scenario are at the end of this chapter.

Chapter 7: Conclusions. This chapter evaluates the results obtained from tests and
summarizes the advantages and the disadvantages of agent technology in information
access in process automation.

4

2 Information access in process automation

2 Information access in process automation
 As stated in the Merriam-Webster Dictionary, one of the many definitions
describing information is: "knowledge obtained from investigation, study, or instruction".
Information is necessary for farther development of all human activities and therefore
there is a tendency to continuously increase the amount of collected and stored
information. This fact forces researchers to develop and improve tools for storing and
accessing information. The following chapter is a literature review of information access
and information retrieving architecture with regard to process automation.

2.1 The concept and the purpose

 The amount of stored information is said to double every year. This development
creates big challenges for information technology. Not just where and how to store
information but also how to access this information needs to be addressed. Without a fast
and efficient information access, the benefits from large quantity of stored information
would not be so significant.

 Information access means retrieving of data from data sources. To accomplish
information access, a data source, an information channel and a data request that initiates
a data retrieving process, are involved. The data request starts the data retrieving process
according to requirements on sought information, for example a relation of requested
data to a specific domain.

 An example of information access can be the Manufacturing Execution System
(MES). It is used to provide information about production activities across an enterprise
to the Enterprise Resource Planning (ERP) system. Provided information enables
optimization of production process from accepting a new order to completing products
and thus it corresponds to faster responses to changing output and output's property
requirements. The purpose for collecting data is, in this case, divided into the following
categories:

• Quality assurance - data corresponds to product qualities which are compared
with the required ones to achieve a desired product quality level.

• Performance analysis - data from manufacturing process represent individual
states of manufacturing process and helps to conduct performance analysis.

• Maintenance management - data contain values of process variables that can be
used to track and foresee a system failure.

• Documentation - data serve for statistics about process running and made
products.

• Product traceability - data relating to production condition of an individual
product.

• Supplier management - logistics data serve for material order planning.

 5

2 Information access in process automation

 In total, information from the manufacturing process and it's appropriate
evaluation improve among others production flow, an on-time product delivery, the
amount of created products and thus mainly and purposefully money profit. [Fortu,
2002].

In process automation, accurate process control depends on reliable and fast
enough retrieving of data representing the current process state. Data from the control
system, actuators and sensors themselves are also needed to ensure reliability of the
control process. Besides the process level, data are also needed at the operational and
management levels for example by a process operator or production manager. In this
case, data are often visualized in the form of curves and dynamic graphical objects
representing state of the running process. Another use of data is for later evaluation and
statistics.

2.2 Requirements
 Information access system provides data for many purposes and for many
different users' roles. In general, information access has the following properties whose
importance depends on the individual cases where information access is employed:

• Reliability - corresponds to the functionality of information access itself and
depends on the implementation, i.e. on the used technologies and the way they
are applied, for example whether is used back-up or not.

• Accuracy - means the ability to provide data according to given requirements.
Accuracy depends on the format in which data are available and on meta-
information, if any is provided with data and which describes data meaning.

• Promptness - corresponds to the time needed to obtain required data. It depends
on the computing power of the information access system, algorithms used to
search data and throughput of the transmission channels.

• Flexibility - means the ability to provide data from different data sources through
different information channels to different users in different formats.

• Data validity - corresponds to the ability to provide useful valid data.

 Reliability of information access to the parts of the system directly participating
in control is extremely important in process automation. Automation systems, where
running-process interruption would be very expensive, must contain alternate
information channels. Other systems have to posses at least an algorithms or a sequence
of actions to be performed in the case of an information system's failure.

Accuracy of information received from sensors depends on a resolution with
which information was sensed. The resolution of measurement depends on two key

 6

2 Information access in process automation

factors. Firstly, on the physical process that is being controlled and its characteristics.
Different processes require different accuracy of measurements. For example in the food
industry, cooking time does not need to be measured with higher accuracy than seconds.
Secondly, the resolution depends on the sensors themselves, on their capabilities. A
measurement should not be finer than the measurement error of a used sensor. In all
cases, accuracy of measured information needs to enable proper running of the given
process and not be limiting.

Promptness with what information needs to be provided depends on individual

cases of automation processes. Promptness has to be faster than the dynamics of the
controlled processes, in process automation at least ten times faster.

Flexibility of data provided from and to different devices is very important in

process automation. The current market is characterized by products from many
companies and their mutual communication is necessary for their corporate use.
Moreover, nowadays many applications (SCADA packages, databases, spreadsheets,
etc.) are already in use and they also must be taken into account when designing
information system architecture. Data are usually provided in the format that is chosen at
the design time of the controlled system and later enhancements to the system are
designed to use the same format.

Data validity plays important role in all types of information access and is mostly
connected with the dynamics of a data source. If data are not delivered at time, they
become useless and even harmful when used for control.

 From more general point of view, information access itself is a part of
information system architecture that represents the whole framework of physical and
software systems enabling information access from miscellaneous data sources.
Requirements, which such information system architecture has to address, are according
to [Barbuceanu et al., 1994]:

• Information access - provides data from data sources connected through a
corporate network; allows information to be inferred from various data sources
and provides data in the required format.

• Consistency maintenance - allows detection of inconsistencies among data
models and stored data and provides tools and methods for removing them.

• Monitoring and automation - monitors information changes and automates
information updates, informs interested people about specific events, for example
when specified information is obtained.

• Cooperative work - allows people and computers to work together as a team.
• System integration - allows a system to be built from independently developed

components and to be easily used and maintained.

 7

2 Information access in process automation

 The amount of data collected from a process depends on two factors.

First, it is the complexity of controlled systems. It is a common practice to collect more
data than it is necessary to increase robustness of control. Second, it depends on the
frequency with what data are collected. This is associated with the dynamics of the
controlled system and on the precision of control.

[OPC Overview, 1998].

2.3 Users
 Users of the information system in process automation are those who specify the
requirements on it. They have different roles in the automation process maintenance and
management and therefore individual users need different types of information with
different requirements. Their roles can be split into:

• Online operator
• Production manager
• Technology manager
• Service-man
• Researcher
• Mobile remote operator
• Program applications and devices

The online operator directly supervises a process automation system whether it runs
correctly. He uses monitoring systems that display the current values of variables and
their boundaries textually or graphically. The online operator is one of the first persons
who know about any system failure and who make the first actions to supersede the
failure. He needs an access to the current values of all system variables, their set points
and their limitations. He can also need a description of all variables, time development
of variables, relations among individual variables and relations among variables and
actions that is the process automation system capable to perform.

The production manager is interested in data statistics and in hidden data relations that
can be obtained with help of the data mining techniques. The production manager is
responsible for material ordering, production planning and negotiating orders with
customers. Required information represents offline system data such as a description of
data, historical values of data and their statistical properties, relation between amount of
input material and out-coming products, time severity of the production of individual
products and statistical data about system failures and wasters.

 8

2 Information access in process automation

The technology manager is responsible for improving the process technology. He needs
both data statistics and variable developments. He evaluates this information and
according to it he is able to change process constants or a process structure. The
technology manager needs offline data such as historical system data and its statistics,
the quality of products in individual production phases and time development of all
system variables.

The service-man is required to find and remove system defects. He needs data
representing system variable values and their developments and deviations from
expected developments, information about other failures that have happened in the past
and limitations that have been broken. According to this information, the service man is
able to find the reason of a system failure or to anticipate it in the future.

The researcher is studying behavior of a running system and is testing his theories. It is
not common that the researcher can freely manipulate with the system's settings
according to his needs. It is necessary to keep the system running and to prevent
production losses. Therefore, the researcher's work is limited. Data required are offline
data representing time dependencies of individual variables for different system
constants settings, descriptions of constants and variables and data about physical
properties of the system.

The mobile remote operator can represent the previous mentioned roles. The difference
is in how and from where data are accessed. Mobile remote operators use personal user
assistants (PDA), mobile phones or other similar devices to wirelessly connect to an
information system and to retrieve data from it. This type of connection is characterized
by a relatively slow data transfer and by limited display capabilities of used devices.
Remote operators need to access system settings, the current values of all system
variables as well as statistical data. They want to be informed about selected events that
happen in the system for example a shortage of input material or a system failure.

Program applications and devices represent information, control and other program
applications and devices that are part of the automation process system. Their data
requirements vary from their tasks and purposes but their functionality is hard coded at
design-time and does not change much in production process.

2.4 Implementation
 Implementation of the information system corresponds to its hardware and
software representation. Implementation spans from the hardware platform and
appropriate software tools selection to the high-level knowledge-based problem solving.
Nowadays, hardware and software components are being rapidly developed and
information system architecture designers have many options to choose from. The final
choice depends on experience, which the designer has with particular hardware devices

 9

2 Information access in process automation

and software tools, on the suitability of individual products for the given task and on the
price of individual products. In general, implementation of the information system is a
compromise of the mentioned requirements.

In practice, information system architecture incorporates many heterogeneous

data sources. To ensure reliable communication to/between them, designers have the
following modern tools that are platform independent and allow future system
enhancements, further development and modifications.

As for the data format, the last few years increasing attention is paid to the XML
format. XML is a simple text code using marks to express the inner data structure
according to a few primitive rules. The XML inner structure can be described and
validated by another XML code called the XML Schema. XML is software and platform
independent format supporting interoperability between different parts of the information
system.

As for the data transfer, Distributed COM (DCOM), Remote Method Invocation
(RMI) and Web Services are few of the examples. All of them are suitable for
communication among distributed systems. DCOM technology is mainly used in the MS
Windows platforms. It uses a binary format in which data are sent. RMI is Java based
technology that can be used in all platforms running the Java Virtual Machine (JVM).
Sent data are also in the binary format. Web Services use the worldwide spread HTTP
protocol to carry data in the textual Simple Object Access Protocol (SOAP), which is in
the XML format.

Information access implementation can be done in many ways how it is, actually,
done in reality. Generally, information architecture in process automation is shown in
Figure 2.1. This architecture is divided into the following layers:

• Field Management - contains mainly actuators and sensors, provides information

about the state of controlled process, about the states of individual devices,
configuration parameters, etc.

• Process Management - contains Distributed Control Systems (DCS) and
Supervisory Control And Data Acquisition (SCADA) systems that control and
monitor running processes.

• Business Management - uses collected process information in business
management and provides this information to other applications.

[OPC Overview, 1998]

 10

2 Information access in process automation

latigid

Business Management

Process Management

Field Management

Plant Highway

Plant Highway

Valves

Client Applications

Operator Console

RT/History Data
Server

RT/History Data
Server

Configuration and
Maintenance

latigidlatigid

Controller

Fieldbus

Measurements
-pressure
-temp
-flow

Analog IO
Discrete IO

Handheld
PDA

latigid

Figure 2.1 Process control information architecture (adopted from
[OPC Overview, 1998]).

2.5 DDE
 DDE stands for the Dynamic Data Exchange. It is a protocol represented by set of
Windows-based messages and guidelines. Through this protocol, Windows applications
can exchange all sorts of data for example text strings, binary data blocks or commands.
One application is always providing some specific data (this application is called a DDE
server) to another application (a DDE client). Applications can use DDE for single data
transfers or for continuous data exchanges. Windows messages contain only two
parameters (wParam and lParam) that can be used for sending only a few bytes of data.
For passing larger data structures, these parameters need to contain pointers to these data
structures. The DDE protocol specification exactly defines the use of wParam and
lParam parameters for most of the possible situation of the data transfer.

Because DDE is a message-based protocol, whole communication is managed by
passing defined DDE messages between the DDE server and the DDE client. The DDE
protocol also allows the DDE client application to send commands to the DDE server.
What commands is the DDE server executing, if any at all, depends on the particular
DDE server and it should be well documented in the user manuals. The scope of use of
the DDE protocol can be extended from a single computer to the in-network-connected
computers by using a DDE network version the NetDDE protocol.

 11

2 Information access in process automation

 Every data item provided by the DDE server is uniquely identified. An identifier
is composed from three parts. The first part specifies an application name. This is mostly
the DDE server's application name without the .exe extension. The second part
represents a DDE Topic, which determines a group or a data category in the server. The
third part is a DDE Item Name, which is unique in the given DDE server.

 Data exchange between the DDE server and the DDE client is called a
conversation. Every successful conversation consists from the following parts:

• Initiation. It is started by a DDE client application by broadcasting a specific
DDE message to all the running applications. The DDE message contains the
DDE Application Name, the DDE Topic and the DDE Item Name. In the case
that a server application that provides requested data is running, an answer
message is sent and the Windows operating system opens a DDE link between
these two applications.

• Exchange. During the exchange phase data are transferred by one of the

following method:

• Cold link - the client requests data and the server supplies them.
• Warm link - the client requests data and also wants to be informed

whenever they change. The server informs the client about data change but
the transfer is made only when the client approves it.

• Hot link - the client requests data and also wants to be informed whenever
they change. In the case of a change, data are transferred automatically.

The data request can also represent a command. In this case, the server
performs the requested operation.

• Termination. It can be done by either the server or the client application. Opened
channels are closed and the established DDE links are terminated. Closing one
application involved in the communication also causes termination of all DDE
links.

 The DDE protocol can be used to implement broad range of features in the
Windows applications. For example linking to real-time data, such as to stock market
updates, scientific instruments, process control or creating documents with charts and
tables using DDE for their dynamic update and many others are possible.

 In summary, DDE communication is relatively easy to implement comparing to
other technologies (COM). The DDE server can serve to a wide range of clients and can
be updated without any need for their change. DDE is immune to the problems
associated with different versions of DLLs on different machines. It can be small and

 12

2 Information access in process automation

self-contained. The DDE clients do not threaten correct running of the DDE server by
being busy or slow because DDE communication is asynchronous and is carried out by
the standard message handling.

[Angelfire, 2003], [MathWizards, 2003], [MSDN, 1992], [TALtech, 2003].

2.6 OPC Specifications
 OLE for Process Control (OPC) is a standardized set of interfaces that allow well
defined and unified communication among different clients and different devices. It was
created by the OPC Foundation that published its first specification in 1996. The OPC
Foundation board members are represented by people from major industry-control
companies such as Siemens AG, Rockwell Automation, Honeywell, Toshiba, Microsoft,
etc. Nowadays, OPC is the state-of-the-art in information access in process automation.

2.6.1 Motivation
 Before OPC, information access in process automation was consisted of various
applications that were using their own drivers to access data from devices. Much effort
was given to development of the similar drivers by different companies. Created drivers
did not support all the features of individual devices. For new devices, new drivers had to
be created and already existing client applications had to be modified. Access conflicts
occurred when two different drivers were accessing the same device. Manufacturers
creating drivers for their devices were not able to satisfy requirements of all the client
applications. Therefore, OPC was created to provide a common way for data access to
numerous data sources represented mainly by devices on the factory floor.

2.6.2 Implementation
 Today, manufacturers create only one OPC Server for the specific device or
group of devices. The OPC Server is an application that knows how to access data from
certain devices and how to provide them to client applications. OPC Servers serve to all
kinds of clients (an on-line operator application, an office application, etc.). On the other
hand, clients need to know only one way how to access data from all OPC Servers, see
Figure 2.2.

Figure
[OPC
OPC Server
vendor A

OPC Server
vendor B

OPC Server
vendor C

OPC Interface

Application X

OPC Interface

Application Y

 2.2 Applications Working with Many OPC Servers, (adopted from
Overview, 1998]).
 13

2 Information access in process automation

 OPC uses the Microsoft COM and DCOM technologies and the ability of object
oriented programming to define functionality of objects by interfaces without specifying
the inside implementation. The OPC Foundation has standardized in OPC specifications
many of these interfaces for many different purposes. Every specification always
contains Custom Interfaces and Automation Interfaces. The Custom Interfaces, which
must be always implemented by the OPC server, are mainly for server and client
programmers using C++ programming language. The Automation Interfaces, which are
optional, are for client programmers developing with higher-level programming tools
such as the Visual Basic (VB) and the Visual Basic for Applications (VBA). VBA is
used for example in the MS Excel. In both cases, efficiency of code writing and
application performance are in contrast. The OPC specifications define only interfaces
and their behavior; therefore concrete implementation is up to every server's vendor.

 OPC Foundation has created several interface specifications that are meant to be
used for different purposes. The OPC server does not need to implement all of these
interfaces but when the OPC server is implementing an interface it has to implement all
its functionality. The most important specifications that the OPC Foundation has
standardized or that are in the standardization process are:

• OPC Common
• OPC Alarms and Events
• OPC Batch
• OPC Data Access
• OPC Data Exchange
• OPC Historical Data Access
• OPC Security
• OPC XML Data Access

2.6.3 OPC Common

This specification defines interfaces that have to be implemented by all OPC
servers, except the OPC Security server. OPC Common specifies functions for setting
and querying LocalID, which is an identifier used for defining individual server-client
sessions. [OPC Common, 1998].

2.6.4 OPC Alarms and Events
 This specification defines interfaces of OPC Event Servers. With help of these
interfaces, OPC clients are able to find out what specific events and alarms are supported
by individual OPC Event servers and they can register themselves to be notified about
their occurrence. Alarms and events can, for example, indicate trespass of the safety
limits of device variables or other abnormal situations.

 14

2 Information access in process automation

 Within the specification an alarm is a special case of a condition that needs an
extra attention. A condition is a denominated state of the OPC Event Server or one or
more of its objects. An event is a detectable occurrence that is significant to the OPC
Event Server, to the device the server represents or to OPC clients. The event does not
have a direct object representation as the alarm does. There are three types of events in
the OPC Event Servers:

• Condition-related events - they are associated with defined conditions.
• Tracking-related events - they are not associated with a condition but with

interaction between the OPC Event Server and its process related objects.
These events can be generated for example by a system operator when he
changes the set point of a system variable.

• Simple events - they are all the other events than those mentioned above, for
example a component failure.

 Alarms and events are generated by the OPC Event Server that is represented by
COM objects. The OPC Event Server implements the IOPCEventServer interface that
provides clients the following functionality:

• Determining the types of events supported by the specific OPC Event Server.
• Entering subscriptions to the individual events.
• Registering the client's call-back interface that is used when the OPC Event

Server is shutting down.

 The OPC Event Servers can play several roles in the whole information system.
The key ones supported by the OPC specification are:

• An OPC Event Server that can detect alarms and events and send them to one
or more clients.

• An OPC Event Server that can collect alarms and events from multiple
sources (for example by subscribing to another OPC Event Server) and report
them to one or more clients.

A picture, which is illustrating the two types of OPC Event Servers mentioned above, is
in Figure 2.3. Clients of OPC Event Servers are usually:

• operator stations
• event/alarm logging components
• event/alarm management subsystems

[OPC AE, 2002]

 15

2 Information access in process automation

2.6.5 OPC Batch

Operator
Station 2

Operator
Station 1

Event
Logger, etc.

Alarm/Event
Management Server

Simple Alarm/
Event Server

SPC ModuleDevice

Simple Alarm/
Event Server

Server Client

Figure 2.3 Interaction between several OPC Alarm and Event Servers and
Clients (adopted from [OPC AE, 2002]).

 This specification provides description of COM objects, interfaces and
namespaces used by OPC Batch Servers and their OPC clients. They allow exchanging
the following types of data:

• Current runtime batch information.
• Equipment information necessary for understanding the context of the

runtime batch information.
• Historical records of batch execution.
• Master recipe contents.
• Batch related events.

The OPC Batch specification does not specify the solution for batch control problems but
it provides tools that enable to deal with these problems. Integration with the OPC
Alarms and Events Servers can be done through so called Batch Specific Attributes.
These attributes support mapping of events that are generated during a batch processing
and thus they enable to OPC Alarm and Event servers to provide these events to OPC
clients. [OPC Batch, 2001]

2.6.6 OPC Data Access
 The OPC Data Access (DA) specification is the most often implemented one. It
defines server and client objects and interfaces that allow the OPC client to connect to
the OPC DA server and through it to read and write data from running industrial
processes, for example current variable values, control parameters, information about the
current state of network connections etc.

 16

2 Information access in process automation

 The OPC DA specification defines requirements for both the OPC DA server and
the OPC DA client. In both cases, there is a specified group of interfaces that need to be
implemented. According to the specification, the OPC DA server is represented by these
objects:

• OPCServer object
• OPCGroup object
• OPCItem object

The OPCServer object maintains information about the OPC Server. It stores the
OPCGroup objects and provides tools to clients for managing these objects (creating,
deleting, etc.) and it provides means for writing and reading process data that are
administered by the OPC Server. The types of available process data depend on the
particular server implementation.

 OPC Group objects contain information about themselves and they provide tools
for creating and organizing OPC Item objects associated with them. After connecting to
an OPC Server, a client creates and registers an OPC Group object in the server. The
client stores data items that are chosen from all OPC items offered by the server in this
OPC Group object. With help of the OPC Group object, the client formulates its interest
in the selected items and can manage these items at once. The OPC Group object can be
activated and deactivated and it provides a mechanism for the client to subscribe to the
set of items so that it can be notified when they change. A notification is sent to the
registered client's callback function. The OPC Group object can be of two types, private
or public. The private one is only accessible by the client who created it. In contrast, the
public one is for sharing by multiple clients.

The OPCItem object is an internal object of the OPC Server object and can, for example,
represent the data type or the current value of a variable. Every OPCItem object has its
ItemID that identifies it in the OPC Server. From a client point of view, the OPCItem
object is not accessible directly. Instead, the client has to use the OPC Group object
where the item is referenced. The OPCItem object represents more an address of a data
source than the data source itself.

 Every OPCItem object has its Value, Quality and TimeStamp parameters.
OPCItems defined in the OPCServer object are usually structured according to their
relation to the process they belong to. An example item structure is in Figure 2.4. In this
Figure, there are three OPCItems, the first one with ItemID that is equal to
AREA1.REACTOR10.TIC1001.CURRENT_VALUE.

 17

2 Information access in process automation

<ROOT>

AREA1
REACTOR10

TIC1001
CURRENT_VALUE
SETPOINT
ALARM_STATUS

etc...

Figure 2.4 Example data structure in the OPC Data Access server (adopted
from [OPC DA, 2002]).

 The OPC DA specification also defines what interfaces the OPC DA client has to
implement. These interfaces contain callback functions used by the OPC DA Server to
send notifications about completed operations and other events. [OPC DA, 2002]

2.6.7 OPC Data Exchange
 The standardization process of the first version of the OPC Data Exchange (DX)
specification was finished in February 2003 but was not accessible for public at the time
of writing this thesis. In contrast to OPC DA, where data are transferred vertically among
sensors, actuators and controllers at the factory floor and business and monitoring
applications at the highest level of a plant, OPC DX supports a horizontal peer-to-peer
data exchange and remote server configuration. Functionality that is provided by OPC
DX interfaces includes:

• A server to server communication - OPC DX defines interfaces that extend
OPC DA functionality to allow a direct data transfer between OPC DA
Servers. Previously, this had to be done by client applications.

• A remote server configuration - OPC DX clients can be used to configure
OPC DX devices on a network using standard DCOM and XML based
interfaces.

• Support for web technologies and communication over various networks -
OPC DX supports the newest communication technologies such as Simple
Object Access Protocol (SOAP) and takes advantages of the Microsoft .NET
framework. OPC DX also serves as a bridge between different network
systems, for example Profibus, Fieldbus, Ethernet networks, etc.

[OPC DX Press Release, 2002], [OPC DX Vision, 2002]

2.6.8 OPC Historical Data Access
 The OPC Historical Data Access (HDA) specification defines interfaces enabling
to retrieve both on-line and off-line data from the OPC Historian server. This server
stores measured or by another way gained process data. Data are recorded along with
other attributes that allow clients to later determine when data were measured, what they

 18

2 Information access in process automation

represent, what their quality is, whether they were changed after measurement, etc. The
OPC Historian server also offers so called aggregates. They are operations over
measured sets of data, for example minimum and maximum value, variance value and
others. What data, data attributes and aggregates an OPC Historian server offers is up to
particular server implementation and up to its specific use in the given industrial
environment. The OPC HDA interfaces allow a client at runtime to discover what
concrete data an OPC HDA server provides and what data operations it supports.

 The OPC Historian servers can support various features. This is determined by
implementation of optional OPC HDA interfaces. The main two types of servers
supported by the OPC HDA specification are the following:

• Simple Trend data servers. These servers simply store measured data together
with time and quality attributes and provide them to clients in the same
format.

• Complex data compression and analysis servers. These servers compress data
before storing them. They provide aggregates, support for historical data
updates and possibility of storing annotations along with historical data.

[OPC HDA, 2001]

2.6.9 OPC Security
 The OPC Security specification allows the OPC Servers to implement security
issues in a common standardized way. It also provides guidelines for the OPC Clients
how to communicate with security aware OPC Servers.

 Security is provided with help of two optional interfaces that can be implemented
by all types of OPC Servers. The OPC Server providing security has to implement one or
both of these interfaces. The IOPCSecurityNT interface is for clients running at the MS
Windows NT or later platform. It allows a client to connect to the server and to use NT
credentials that are associated with the logon user. Therefore, security issues can be for
NT users using this interface transparent and hidden. The IOPCSecurityPrivate interface
is for clients using private credentials, which are necessary for example when connecting
to OPC servers running on a non MS Windows NT platform. It always requires a user to
provide a user ID and a password. The OPC Security specification does not specify what
data objects are secured. This is always up to every OPC Server implementation. The
OPC Security specification is based on the OPC Security Reference Model, which comes
from the MS Windows NT Security Model. [OPC Security, 2000]

2.6.10 OPC XML Data Access
 The OPC XML Data Access (XML-DA) specification was not yet finished at the
time of writing this thesis and the preliminary version was not accessible for public.

 19

2 Information access in process automation

 The OPC XML-DA specification defines Web Services that provide clients the
same kind of plant floor data as the OPC DA server does. Thanks to the use of the widely
spread and platform independent XML format and the SOAP protocol, data can be
accessed by clients from wherever in the world where is a connection to the Internet.
Comparison between OPC DA and OPC XML-DA is done in Table 2.1.

 OPC XML-DA OPC DA
Based on Web Services COM / DCOM
Data transfer XML, longer data and

conversion overhead
Binary, allowing fast data transfer

Inter-platform XML, SOAP is not platform
specific and widely available

DCOM availability is very limited
on non-Windows system and the
binary data transfer may cause
problems

Connection Designed for non-permanent
connections

Permanent connection required

Table 2.1 OPC XML-DA compared with OPC DA (adopted from
[Haus, 2003]).

 OPC DA has performance advantages over OPC XML-DA but OPC XML-DA is
suitable for higher-level applications where flexibility is more important than transfer
efficiency. OPC XML-DA supports connection between different operating systems and
at very long distances. OPC XML-DA functionality provides only a non-permanent
connection and individual functions are independent on each other.

[Haus, 2003]

2.6.11 Advantages

OPC allows manufacturers to create only one set of software components that can
be used by all client applications. Client developers can use the support-component-
writing languages and they do not need to rewrite their code when devices are changed
or new ones are created. OPC provides efficient communication and high level of
functionality. It allows Plug & Play functionality in process automation. It reduces
training, custom development and maintenance costs.

[Karhela, 1999], [OPC Overview, 1998] and [OPC Overview, 2002].

 20

3 Agent technology and information agents

3 Agent technology and information agents

3.1 Agent technology
 Nowadays, agent technology represents a fast-growing research discipline with
high expectations. The bases of agent technology lay in artificial intelligence research
and distributed computing. Agents in many ways resemble human behavior and hence,
other disciplines such as philosophy, logic, economics, social sciences, biology, language
study and others play also important role in agent technology. Computer science here
constitutes the role of a building tool that implements the ideas given from the
disciplines mentioned above. In this literature review chapter, a definition of an agent is
given, the reasons why agent technology was founded is discussed as well as what agent
architecture is and how it is nowadays implemented. Farther, there are mentioned
advantages and disadvantages of agent approach, where agent technology is used and
what its future is. For more detailed information about agent technology, a reader is
advised to follow the references at the end of this thesis.

3.1.1 Agent definition
 Nearly every article dealing with agents provides its own agent definition. Some
definitions are very abstract ones and some of them define agents according to the area
where they are studied. A general definition can be taken, for example, from [Ferber,
1999]:

"An agent is a physical or virtual entity
 a) which is capable of acting in an environment,
 b) which can communicate directly with other agents,
 c) which is driven by a set of tendencies (in the form of individual objectives or of a

 satisfaction/survival function which it tries to optimize),
 d) which possesses resources of its own,
 e) which is capable of perceiving its environment (but to a limited extent),
 f) which has only a partial representation of this environment (and perhaps none at

 all),
 g) which possesses skills and can offer services,
 h) which may be able to reproduce itself,
 i) whose behavior tends towards satisfying its objectives, taking account of the

 resources and skills available to it and depending on its perception, its
 representations and the communications it receives."

 The definition above addresses all types of agents. In this thesis, only software
agents are treated if not specified differently. Another definition, this time of the
software agent, taken from [AgentBuilder, 2003] says that agents are the next technology
development step in computer science:

 21

3 Agent technology and information agents

"An agent is simply another kind of software abstraction, an abstraction in the
same way that methods, functions, and objects are software abstractions. An object is a
high-level abstraction that describes methods and attributes of a software component. An
agent, however, is an extremely high-level software abstraction which provides a
convenient and powerful way to describe a complex software entity. Rather than being
defined in terms of methods and attributes, an agent is defined in terms of its behavior.
This is important because programming an agent-based system is primarily a matter of
specifying agent behavior instead of identifying classes, methods and attributes. It is
much easier and more natural to specify behavior than to write code.
There is a minimum set of common features that typify a software agent. A software
agent is:

• autonomous; the agent is capable of operating as a standalone process and
performing actions without user intervention.

• communicative; it communicates with the user, other software agents, or other
software processes.

• perceptive; it is able to perceive and respond to changes in its environment."

3.1.2 Agent characteristics

For the current developing methods, it is very difficult to model complex
distributed systems, to define their structure and the relation among their individual
parts. Control unit implementation of such complex systems, which are capable to
respond correctly to whatever situation that happens in the whole system, is almost
unfeasible. Designers cannot treat all the different states a system can have because there
are simply too many of them (an interaction in unpredictable time among unpredictable
components is impossible to analyze at the design time). Thus, if any technology is able
to tackle the problems specified above, then it can be said that such technology can
substantially enhance the current approaches for dealing with large systems.

Agent technology is proposed to be a tool for designing and implementing large

complex systems. Agents are supposed to replace sophisticated monolithic software
systems. Individual agents are less intelligent than the central control unit and they are
mainly focused on specific problems. On the other hand, agents are able to intelligently
communicate with each other and thus they are able to achieve the same functionality as
the central system has. Moreover, agents are supposed to create more transparent and
more robust systems and be better scalable and better controllable than the central
systems.

 Because agents are autonomous and they know how to behave by themselves,

the overall control complexity is reduced by being redistributed into individual agents
and also coupling among system components becomes of lower degree. Therefore, the
agent approach is suitable for decomposition of a task into smaller ones. Dealing with

 22

3 Agent technology and information agents

smaller tasks is easier for programmers and it is less prone to create mistakes in program
code.

The ability to decompose a system into smaller parts makes agent technology

also suitable as a designing tool of large systems. With agent technology, a higher level
of abstraction is achieved.

The possibility to create intelligent interrelationship among individual agents is

another advantage of agent technology. For example, the agents sharing the same
objectives can be grouped together and cooperate with each other. According to actual
needs, agents can form suitable groups dynamically to cope with the actual situation
more effectively. A group of agents can have an agent representative who stands in for
these agents and serves as their coordinator. By grouping agents together, an arbitrary
level of agent hierarchy can be achieved. In case of a failure of one of the agents, the
other agents from the group look for its substitution by negotiating among each other.

 Agents enhance currently used static data objects by making them active, Figure
3.1. As active objects, agents are a natural development step in programming technology.
The world around us is full of objects that actively behave in the surrounding

environment and communicate with it and with each other. Static objects have minimal
support for defining and managing organizational relationship. Also, they do not
encapsulate an agent choice. Static objects perform actions according to the methods that
are invoked without any reasoning about it. In contrast, every agent has its own goals to
achieve and all its behavior is devoted to meet these goals. Static objects, unlike agents,
do not exhibit social behavior. According to [Jennings, 1999]:

Services

Objectives

Speech acts

Speech acts

Methods Requests

Answers

Object Agent

Figure 3.1 An object responds directly to request corresponding to its
methods, while an agent encapsulates its skills (or services) through
supplementary mechanisms, which 'filter' external communications and
manage dialogues. Agents are also driven by personal objectives (or
tendencies) (adopted from [Ferber, 1999]).

 23

3 Agent technology and information agents

"Agents have control both over their internal state and over their own behavior
(one of things that distinguish agent from objects, although objects encapsulate state and
behavior, more accurately behavior realization, they fail to encapsulate behavior
activation or action choice. Thus, any object can invoke any publicly accessible method
on any other object at any time. Once the method is invoked, the corresponding actions
are performed. In this sense, objects are totally obedient to one another and don't have
autonomy over their choice of action)".

Agents can communicate, negotiate and coordinate each other. The agent can

disagree and refuse to perform an action, which it was asked to accomplish, or the agent
can propose a modified or another else action instead of the original one. This decision
making at run time makes engineering of complex systems much easier because designer
does not need to analyze all potential system states at design time. [Jennings, 1999],
[Maturana et al., 2002].

 According to [Young, 2001], the agent approach is better than the currently used
ones because it brings:

• Higher productivity - for instance agents are able to accomplish more
sophisticated tasks just by themselves.

• Distributed computing - agents behave autonomously.
• Economical savings - single computer with large computing power is replaced by

many any cheaper ones.
• Less network traffic - agents can group similar data and queries together and send

them at once or they can make preprocessing of data before sending them and
thus reducing the amount of data.

 Agent technology has many advantages over the currently used methods but on
the other hand, it brings a number of new problems. These problems are caused by
demanding agent communication and by agent's social behavior.

A group of agents is more than a summary of individual agents and therefore an
agent system cannot be decomposed and still having the same properties as the whole
system. At run time, an agent system can produce an unpredictable agent-collective
behavior as a result of interactions among many agents at the same time. That is the
reason, why it is very difficult and almost impossible to debug agent code in an old
fashioned way. Instead, new approaches need to be introduced. Social science starts to
play an important role in studying of agent systems.

Another problem is security and how to introduce trustworthy measures for
agents. Agents need to recognize to who they can trust and thus where to send sensitive
data. A difficulty is also the lack of standards for agent communication. Agents need to
share the same communication language to be able to understand each other.

 24

3 Agent technology and information agents

3.1.3 Agent architecture
 Agents are actively communicating with their environment and with each other
either directly or through the environment, see Figure 3.2. Agents can share their

objectives within a group of agents. According to different tasks, agents form different
relational structures. The most common are:

Figure 3.2 Agent hierarchy and environment (adopted from [Jennings,
1999]).

• Centralized hierarchy - one agent behaves as a super agent and coordinates other

agents.
• Proper hierarchical form - as in centralized hierarchy plus there are more super

agents, that are again coordinated by "a super-super agent" etc.
• Modified hierarchical form - as in the proper hierarchical form plus the super

agents can communicate with each other - so called horizontal communication.
• Heterarchical form - as in centralized hierarchy plus there are more super agents

that can communicate with each other as in the modified hierarchical form
• No hierarchy - agents are not grouped in any hierarchy

 Individual hierarchical structures have their own advantages and disadvantages
and are suitable for different environment. For example, stock market can be represented
by agent sellers and buyers with free relations and no hierarchy. On the other hand, the
industrial process requires more stable architecture such as centralized hierarchy.

Agents that communicate with each other and affect each other form the Multi-
Agent System (MAS). To facilitate agent implementation, number of diverse MAS has
been created. Individual implementations are called agent platforms and they provide

 25

3 Agent technology and information agents

both agent-programming tools and agent running environment. With help of MAS,
programmers can more focus on implementation of individual features of agent behavior
than on how to implement that behavior. Agent platforms also provide mechanisms for
agent communication and agent registration. The tools offered by a platform depend on
the purpose for what the platform was created. One of the possible subdivisions of agent
platforms is in Figure 3.3. There exist already a large number of agent platforms in the
world. This gives programmers the possibility to choose a platform that best fits to their
needs. High platform diversity also means that many different communication techniques
are used. This can be a problem when communication among different agent platforms is
required. This is the reason why great attention is paid to establishing widely acceptable
communication standards. [Pirttioja, 2001], [FIPA, 2002], [Poslad et al., 2001],
[Mangina, 2002].

Agents sense different parts of their environment and hence they possess different
information. To exchange information, agents communicate among each other.
Communication can be done through exchanging messages among agents or by
observing other agents' behavior. An agent message consists of a schema and the words
that agents understand. The same words can have different meanings in different
communication contexts. The meanings of words for a specific domain are determined
by ontologies. According to [McEntire, 1999] an ontology is: "Specification of a
conceptualization that is designed for reuse across multiple applications. By
conceptualization, we mean a set of concepts, relations, objects, and constraints that
define some domain of interest."

M u l t i - a g e n t
s y s t e m

D i s t r i b u t e d
t e c h n i q u e s f o r

p r o b l e m s o l v i n g

P r o b l e m
s o l v i n g

M u l t i - a g e n t
s i m u l a t i o n

B u i l d i n g
a r t i f i c i a l

w o r l d s

C o l l e c t i v e
r o b o t i c s

P r o g r a m
d e s i g n

S o l v i n g
d i s t r i b u t e d
p r o b l e m s

D i s t r i b u t e d
s o l v i n g o f
p r o b l e m s

Figure 3.3 A classification of the various types of application for multi-
agent systems (adopted from [Ferber, 1999]).

[Bailin and Truszkowski, 2001], [Gomez et al., 2001], [Labrou et al., 1999], [FIPA,
2002g].

 26

3 Agent technology and information agents

 Several models of agent architectures have been proposed as a result of studies of
an agent-based computing during the last ten years.

First, agents can be purely reactive (behavioural). These agents have a direct
connection from their receptors to their actuators. Therefore they behave in a reflexive
way. The response of these agents to a stimulus is very fast but the complexity of their
behavior is limited. Into this group belong for example agents using the subsumption
architecture of Brooks.

Second, agents are deliberative. They plan their actions. In this category are

belief-desire-intention (BDI) agents. They have a model of their surrounding
environment and based on this model and on information from sensors they can produce
complex behavior. The disadvantage of these agents is that their reactivity is slower
comparing to reactive agents and that their model has to be kept updated with changes in
the surrounding environment. Nevertheless, these agents are prevalent.

The third type of architecture is based on the previous two types and it is called

hybrid architecture. It takes advantages of fast responsibility of reactive architecture and
prediction capabilities of deliberative architecture. Architecture of both deliberative and
reactive agent can be seen in Figure 3.4. [Luck et al., 2002].

3.1

pro
Objectives

Picking up and
putting down

objects

Advancing in
random manner

Decision
making

Modeling
representations

Perception

Planning

Carrying out
of tasks

Environment

Agent

Exploring

Making a
map of
territory

Optimizing
paths

Replenishing
energy

Avoiding
objects

Sensors Actuators

Agent

Environment

Figure 3.4 Representation of deliberative agent with horizontal modular
architecture (left) and reactive agent with subsumption architecture (right)
(adopted from [Feber, 1999]).
.4 Agent implementation and related standards
 Agent technology is not being developed to compete with any current

gramming technology but instead, it takes advantage of them. It combines

 27

3 Agent technology and information agents

programming technologies with knowledge from other non technical areas, especially
from the human studies. Agents and agent platforms can be implemented in almost any
programming language. Nevertheless, only programming languages that are widely
spread and have great support, for example in good development tools and many code
libraries, are used. Currently, the most used languages for agent programming are C++
and Java.

The essential part of every agent platform is a communication module that is
responsible for communication with other agent platforms. To achieve compatibility
among platforms, technologies supporting mutual communication, public platform
independent protocols, data formats and public standards are used. It is important to
mention the FIPA (Foundation for Intelligent Physical Agents) organization. It
establishes, among others, standards for agent communication languages (FIPA-SL,
FIPA-RDF, FIPA-KIF) and standards for communication protocols (FIPA-Request
communication protocol etc.).

 The most used languages for exchanging knowledge among agents are
Ontolingua, CycL, Ontology Markup Language (OML)/ Conceptual Knowledge Markup
Language (CKML), Object-Process Methodology (OPM), Extensible Markup Language
(XML) / Resource Description Framework (RDF) and Ontology Definition Language
(ODL). Ontolingua is a language based on KIF and it is the ontology-building language
used by the Ontolingua Server. CycL is a formal language for representing assertions in
Cyc - the world biggest knowledge base. OML/CKML languages express ontologies in
the XML based format. OPM is an object-oriented data model used to describe single
and multi-database schemas and queries. RDF is designed to encode metadata
concerning web documents. ODL is a language for a common representation of objects
in object-oriented databases and programming languages.

 An ontology and agent knowledge can be either hard-coded into agent code, it
can be acquired from other agents or a combination of both of these. The first approach
is relatively easy to implement. Agents possess code, which expresses instructions how
to behave in situations represented by specified conditions. The problem is how to
behave in unknown situations. In the second approach, agents are more flexible to cope
with situations unknown at design time. Here, the problem is the implementation of the
learning process.

 Agent communication takes advantage of tools created for distributed network
computing. The most known of them are the Common Object Request Broker
Architecture (CORBA), Web Services and JINI. CORBA and Web Services are
architectures that enable remote object creation and remote methods invocation. JINI
provides a simple Java based mechanism that enables devices to connect together and to
provide services to each other. A relatively new protocol is the XML based Simple
Object Access Protocol (SOAP) that gains increasing popularity coming from its

 28

3 Agent technology and information agents

platform independence and the possibility to be sent through the widely spread and for
most networks transparent HTTP protocol. SOAP provides a simple way for exchanging
structured data in a distributed environment and it is a fundamental element of the Web
Services. For advertising agent services and agents themselves to other agents in a
network, Universal Description, Discovery and Integration (UDDI), Web Services
Description Language (WSDL) and Web Services Conversation Language (WSCL) have
been developed. UDDI is a platform-independent open framework for describing and
discovering services. WSDL is a grammar for describing network services and WSCL
enables definition of abstract interfaces for the Web Services. [Labrou et al., 1999],
[FIPA, 2002c], [FIPA, 2002d], [FIPA, 2002e].

3.1.5 Areas of applications
 Agent technology is still at the beginning of its development despite of effort and
attention that was given to it. Nowadays, almost every technical university has its own
research team working on this topic. There are several conferences in the world every
year (HoloMAS, CIA and others) and new collaborations between companies and
universities are established. Agent technology is studied how to be used in different
industrial domains from economics to telecommunication, see [Hayzelden and Bourne ,
2001].

The agent-based systems can be divided into three broad categories according to their
use:

• Assistant agents - they act as secretaries, they collect information, execute
transactions on behalf of a human principal or otherwise else help to their master.

• Multi-agent simulation systems - agents model and simulate real world domains.
They typically simulate systems composed from a high number of components of
different types where the system level properties cannot be obtained from
individual component's properties, for instance economy systems or human and
animal societies.

• Multi-agent decision systems - agents make mutual decisions based for instance
on the auction mechanism.

Currently, use of agent technology is studied for example in: manufacturing, process

control, telecommunication systems, air traffic control, traffic and transportation
management, information filtering and gathering, electronic commerce, business process
management, human capital management, skills management, (mobile) workforce
management, defense, entertainment, medical care and others.

Examples of real applications of agent technology can be found in [Parunak,
1998]. For instance, agents coordinate discrete-manufacturing process in the
Autonomous Agents for Rock Island Arsenal project or agents regulate the individual
room temperature in a building in the Market-Based Climate Control project.

 29

3 Agent technology and information agents

 It can be expected that agent technology will play more and more significant role
in many different areas in the next few years. To be able to fully use the power of agent
technology, it is still needed to resolve many problems associated especially with agent
communication and knowledge storing and sharing. Predictions of the next agent
technology development-steps can be seen in Figure 3.5. It is said that the main attention

is going to be paid to establishing the communication and the knowledge managing
standards. At the end of this process, agents should be able to communicate with other
agents they have never met before. They should be able to exchange new information
among each other, to understand this information and mainly to make a reasonable
decisions and actions based on obtained information. Applications, where agent
technology will play important role in the future, include:

2002

Predefined
protocols

Ad-hoc design

Simulation
scalability

Time

Pr
od

uc
tiv

ity

2005

Semi-
Structured
languages

Agent design

Large numbers
scalability

2008

Advertised
standards

Standard
agent design

Large-scale
Grid system

2010

Learned
protocols

Emergent
languages

Full scalability

Closed agent
systems

Cross-boundary
systems

Open agent
systems

Fully-scalable
systems

Figure 3.5 Development of agent technology research (adopted from
[Luck et al., 2002]).

• Ambient intelligence - programs possess intelligent interfaces for human users or

other devices and they generally behave intelligently when communicating and
processing data.

• Grid computing - it is related to intelligent task decomposition and intelligent
network distribution of its subtasks and thus enabling efficient use of computing
resources.

• Electronic business - agent-based automatic business contracts, business
negotiations and transaction performing.

• Semantic web - agents intelligently process user requests and cooperate with each
other in searching for information to get the most suitable information about
requested topic.

 30

3 Agent technology and information agents

• Bioinformatics and computational biology - agents support intelligent data
searching through the fast growing medical databases.

• Others like monitoring and control, resource management, space and military
applications, etc.

[Luck et al., 2002].

3.2 Agent technology in information access
 It is common that companies during the time of their existence gather abundance
of information relevant to their work activity. Companies constantly need to access this
information and work with it. Their profit is often dependent on the time with which
relevant information can be obtained. Information is usually stored in heterogeneous
sources in a semi-structured form with the lack of formal semantics. This causes serious
problems to the current information technologies. First, searching for right information is
difficult in such data sources. Second, maintaining existing information with semi-
structured and distributed nature is time demanding. Another problem is that information
sources are more often used by users with minimal computer knowledge who do not
know how to use information technologies. Nevertheless, the current situation is that
most from the information processing, including searching, browsing, accessing,
interpreting, maintaining, and generating, is devoted to human users. [Fensel, 2002].

3.2.1 Information agent
 The agent approach brings new possibilities and advantages into information
access by introducing information agents. From general point of view, an information
agent is the agent that was introduced in the previous sections and has all there
mentioned properties. The information agent specializes itself on information providing
in a more intelligent and autonomous way than the traditional information access
approaches. It means that the information agent is able to analyze given data requests
and, based on them, effectively search and provide data. The power of information
agents comes from their cooperation and the ability to semantically process and
understand given data requests. Based on [Barbuceanu and Fox, 1994], information
agents provide support for sharing of stored information, deductive capabilities (inferring
new information from existing information), automatic, content-based routing and
distribution of information to the agents that need it, automatic retrieval, processing and
integration of information, checking and maintaining various forms of consistency of the
information and performing information access control functions (specifying who has or
has not the right to see and change available information).
 A general definition from [Babbage simmel, 2003] states that the information
agent is an event-driven delivery mechanism. This definition is very wide. It does not
specify the subject of the delivering process. In this thesis, the information agent is
regarded more according to [Klusch, 2003]: "an information agent is a computational
software entity that has access to one or multiple, heterogeneous and distributed

 31

3 Agent technology and information agents

information sources, pro-actively searches for and maintains relevant information on
behalf of its human users or other agents preferably just-in-time."

3.2.2 Information agent architecture
 In [Decker, 1997], importance of design-template architecture is mentioned for
each class of agents because it makes implementation of agents easier for programmers,
it leads to better understanding of the agent characteristics and it supports interactions
among agents developed by different agent designers. A set of reusable behaviors
(particular approaches for a goal accomplishing) that the information agent needs to
implement, is proposed. These basic behaviors are:

• Advertising behavior - an information agent exists in an environment and has to
provide a description of information and ontologies it provides by registering to a
matchmaker or a broker who act also as the information agents but they provide
only yellow pages information.

• Message polling behavior - an agent continually asks for new incoming messages
to process.

• Information monitoring behavior - an agent monitors information and when a
given condition is true it starts a transition of selected data.

• Query answering behavior - the ability to answer simple information requests.
• Cloning behavior - in overloaded working conditions an agent can clone itself to

divide its burden to be able to satisfy other incoming requests in reasonable time.

 The proposed information agent architecture is in Figure 3.6. The information
agent is divided into four modules. The Current Activity & Request Information module
is responsible for communication with other agents, monitoring agent environment and
fulfilling information requests through the Local Information Database module. This
module stores information from the previous data requests and, in the case that it does
not have requested information, it uses the Problem Solving Plan Library module to
retrieve this information. The information format in the Local Information Database
module does not depend on the source from which the information was received. The

Task Agent 1

Task Agent 2

Information Agent

Local

Information

Database

Current

Activity &

Request

Information

Problem-

Solving

Plan Library

Ex
te

rn
al

In
te

rf
ac

e

WWW
Page

News

Ex
te

rn
al

 In
fo

rm
at

io
n

So
ur

ce
s

request registration

request fulfillment

Figure 3.6 An information agent's knowledge structures and environment
(adopted from [Decker, 1997]).

 32

3 Agent technology and information agents

Local Information Database module has three important functions. It is able to group
multiple related queries and thus to limit access to external data sources and decrease the
network load. Then, it serves as a buffer in the case of unexpected problems with
external sources. Third, it can provide historical and statistical data. The External
Interface module is responsible for accessing heterogeneous databases.

3.2.3 Current use of agent-based information access
 Probably the most studied application of agent technology in information access
is the use for searching data through intranets and the Internet. Semantic webs and
information agents are their examples. Semantic webs can be understood as data stores
keeping data in structured and semantically described forms. This allows to create
information agents that are capable of intelligent data searching. The current information
access research in this area is aimed on creation of means and standards for semantic
data description of information and on tools providing more efficient access to existing
information.

Another class of applications covers programs that generate new information.
They create new data on behalf of current needs or given requests. For example data
mining applications working over large amount of distributed data and carrying out
analysis. Another example are monitoring applications collecting and evaluating
information from given systems.

According to the current research, agents should be capable of adaptive

information retrieval; reasoning with imperfect information; advanced, personalized 3-d
visualizations of information spaces; cooperation in real-time and open environments;
collaboration in peer-to-peer networks; agent-based distributed ontology learning and
many others in the near future. [Klusch, 2003].

 33

4 Concept of information agents in process automation

4 Concept of information agents in process automation
 The goal of this chapter is to combine the ideas and the principles from the
previous chapters and to give a proposal of how agent technology could be used,
designed and implemented in information access in process automation.

4.1 Introduction
 Agent technology is suitable for building distributed systems. It is an appropriate
tool for designing dynamic systems where parameters and structure change at runtime.
Currently, information agents are mainly used in the Internet. Their study and their
application in process automation are still at the very beginning and actually no such a
paper was known to the author at time of writing this thesis. Traditionally, areas, where
great emphasis is given to safety and reliability, are rather conservative to new
technologies.

 In process automation, agents are proposed to represent individual sub-processes
and/or devices of the controlled systems. Information agents communicate and cooperate
with each other. They read information from a system, calculate information from
measured data or they query information from other information agents. Information
agents should allow a user or another agent to make a subscription for being notified
about selected events. Information agents should also allow changing of the system
settings but controlling the system should be left to a controller that does nothing than
controlling and therefore it is faster and more reliable.

4.2 Motivation
 Information access in process automation is being implemented in many different
ways. Usually the biggest leading companies in this domain use their own solutions. On
one hand, their own approaches allow them to tailor data communication optimally to
their own developed products, but on the other hand, communication between devices
from different manufactures can be very difficult to establish.

 Communication among active devices on a plant floor is implemented with help
of industrial networks such as Profibus, Fieldbus, CAN and many others. This means,
that all used devices in one network have to support given communication protocols and
rules and therefore, designers of automation systems have limited choice when searching
for suitable components.

 Communication between a process system and high-level business and control
applications uses server-client approach. The server application has access to plant data
using a specific industrial network and it provides this data to other client applications
using communication standards such as DDE or OPC for example. DDE clients have to
know in advance a DDE server name, item names and names of the commands supported

 34

4 Concept of information agents in process automation

by individual DDE servers. The DDE client applications are thus a DDE server
dependent and have to be configured manually, which requires depth knowledge of a
specific DDE server's capabilities. An OPC client can at runtime iterate automatically
through data and services offered by an OPC server but what individual data represent
and what is their relation to the process system is up to a user to decide.

 In both cases where DDE or OPC are used, client applications have to be
preconfigured in advance to be able to display and process right data in the right way.
Client applications have to possess knowledge about data they use and therefore, they are
tightly coupled with individual data servers, see Figure 4.1. For every process system, a
user needs a special client that understands data provided by the system. The current
approaches specify how to get data but not what that data represent. The objective of this
chapter is to show whether agent technology is able to cope with problems specified
above.

Client A

Process system 1
(Profibus)

Process system 2
(Fieldbus)

Client B Client C Client D

OPC DA

OPC XML-DA

DDE

OPC XML-DA
Net-DDE

Net-DDE

User station

Process system n
(Profibus)

Figure 4.1 Legacy clients tightly coupled to physical systems.

4.3 Analysis of the concept
 Information retrieving from process automation and from the Internet is rather
different. At the first place, it is safety and efficient running in process automation and
therefore, information agents need to be designed in this sense. In contrast to the Internet,
an automated system is a limited source of information regarding both the diversity of
data and the amount of data. On one hand, information agents in process automation do
not need to learn user's behavior or user's personal interests but on the other hand, agents
need to monitor and adjust themselves to a process automation system's characteristics.
They can learn from the previous correct and incorrect system behavior to anticipate and
inform about significant events in the future.

 35

4 Concept of information agents in process automation

Queries that information agents could be capable to answer are for examples:

• What measurements do you provide?
• What devices are in the system?
• What is the relation between action f and value of a variable x?
• What is the unit of a variable x?
• What are statistical data of a variable x?
• Send me a variable x whenever a condition y is true?
• Change the condition y to a condition z?
• What is the percentage of faultless running of a device x?
• What is the current state of a device x?

4.3.1 Architecture of the concept
 From the agent point of view, the information system in process automation is
regarded as a multi agent system where individual agents are responsible for different
parts of the process system. Such a concept can be implemented in three ways.
 First, the automated system is constructed from passive sensors and actuators.
Agent technology is implemented by agents running in an agent platform and
communication with the passive devices is done through I/O modules of a process

controller, see Figure 4.2. This concept refers to an agent augmented process automation
system that was proposed and it is in research at the Helsinki University of Technology
(HUT) at the Automation Technology Laboratory, see [Appelqvist et al., 2002],
[Seilonen et al., 2002c] and [Pirttioja, 2002]. The general architecture of the agent
augmented process automation system is in Figure 4.3. Agents create an abstract layer
above the process automation system and provide intelligent interface to the system. This

M
sensors and

operator
agents

actuators

e-business
agents

mobile
agents Internet user

agents

data
agents

controllers

Agent platform

Figure 4.2 Agent augmented process automation system.

 36

4 Concept of information agents in process automation

concept is necessary for the current non-intelligent devices and requires an agent
platform where software agents, corresponding to individual devices or subsystems, are
running. An example of implementation of such an agent platform is the FIPA for
Process Control (FIPAPC) developed at HUT. This platform is based on the FIPA-OS
agent platform, which is extended by functionality to access data from an automation
system through OPC technology. The agent augmented process automation system
requires that agents are configured manually by the FIPAPC programmers according to
technical characteristics of the system.

Figure 4.3 Architecture of agent-augmented process automation system.

 Second, the process automation system is composed from intelligent devices.
These devices possess all technical information about themselves and behave as agents,
see Figure 4.4. Advantages of this concept consist in the unified solution which means
that a device and its software agent constitute one unit. This approach allows use of the
agent devices in a Plug-n-Play manner and it cancels need for an agent platform.
Nowadays with the progress in the electronic industry, so called embedded systems are
becoming more and more popular in process automation. They are dedicated electronic
devices that contain a powerful computational unit and scalable and configurable
operating software. Embedded systems are suitable candidates for agent devices. They
'just' need to implement agent features. Agents themselves can be regarded as one type of
embedded software systems. Currently, the disadvantage of the second approach is
higher complexity of intelligent devices and thus their higher price.

 Third, both approaches mentioned above are combined in the process automation
system. The passive devices are encapsulated by the agent layer and thus they are
incorporated into the agent system consisting of intelligent devices implementing agent
features. In all cases, information agents need to implement the same communication
standards to understand to each other.

 37

4 Concept of information agents in process automation

process

M
sensor and

operator
agents

actuator agents

e-business
agents

mobile
agents Internet user

agents

data
agents

agents
control

Figure 4.4 Intelligent devices with agent behavior in process automation.

4.3.2 Ontology
 When implementing information agents in process automation, one approach is to
program agents to have whole knowledge about all devices in the system and to be able
to understand to all possible users' information-requests. This approach requires a lot of
programming and it is not flexible to changes in the system. In the second approach,
agent architecture is ontology independent (it does not contain hard coded meaning of
terms used in agent communication) and it possesses mechanism for working with new
ontologies from various domains. In this case, ontologies are downloadable by agents
when necessary from other agents or from ontology depositories. To enable the
mechanism of manipulation with ontologies, an ontology manipulation language and
ontology protocols have to be specified.
 In both approaches, ontologies should be separated according to the domains they
represent. Relations between ontologies have to be specified so information agents have
a mechanism to find ontologies they need for dealing with individual requests. One
possible approach is to store ontologies in a hierarchical structure, see Figure 4.5. The
root ontology, which is common to all other ontologies, is so called information meta-
ontology. This ontology represents a general base of terms used to obtain information
about what data are provided by an information agent representing particular device or a
subsystem. It can also specify terms that are used to get information common to all
information agents. The information meta-ontology has to be a domain independent
ontology and has to be understood by all information agents. Examples of queries that
the information meta-ontology supports can be the following:

• What measurements do you provide and in what ontology they are specified?
• What actions do you provide and in what ontology they are specified?

 38

4 Concept of information agents in process automation

• What is the description of the device you are responsible for?
• What is the device current state?
• How long is the device running?
• When was the last device's maintenance-check?

ontology
agent

information
meta-ontology

sensor
ontology motor

ontology

servomotor
ontology

Mservomotor
agent

online operator
agent

Figure 4.5 Ontology retrieving from an ontology repository.

 Other ontologies in the ontology hierarchy are already domain dependant. They
define terms related to specific processes, devices or a group of devices. The further in
the hierarchy tree ontology is, the more domain specific terms it defines. In the case that
two similar ontologies are defined, ontology bridges matching similar terms in both
ontologies are proposed to be used. Hierarchical approach for organizing ontologies
allows different manufactures to incorporate their own ontologies into the public
ontology tree at the place that corresponds to their domain of use. This enables agents to
search and to use the required ontologies by specific communication process.
 A typical scenario, where ontologies can be exchanged, is in Figure 4.5. An
online operator wants to get information from a servomotor. It asks an information agent
representing the servomotor what type of ontology is needed to understand servomotor
information. Because the online operator agent does not possess the required ontology, it
asks an ontology agent, which serves as an ontology repository, to provide the server
motor ontology. Once the online operator agent has the required ontology, it can start
communication with the servomotor information agent.

4.3.3 Agent communication language
 The agent communication language can be regarded as a mathematical model of
the simplified human language. In contrast to object method calls, the agent language is
not limited as for the number of methods and types of methods' parameters. Its scope of
use is being extended with knowledge that agents acquire. The agent communication
language should be able to express information efficiently, unambiguously and in well-

 39

4 Concept of information agents in process automation

supported format. A suitable candidate could be derived from the FIPA-SL language and
the XML format which would combine the expressive power of the FIPA-SL with the
well supported and widely recognized XML format. A necessary presumption for
interoperability among various agents is a standard of such a language.

4.3.4 Communication protocols
 In a simple information system, where information agents only need to request
specific information, action or create a subscription to an event, three communication
protocols are actually needed. They are query, request and subscription protocols.
Examples of these protocols can be the corresponding FIPA protocols, see [FIPA, 2002].
Other protocols, such as auction protocols, are more suitable for systems with higher
freedom in relation among agents, for example as it is in the market systems.

 Another class of protocols, that information agents will need, is for exchanging
ontologies or information about ontologies and protocols for exchanging the protocols
themselves. The former ones enable to automatically extend process systems in a Plug-
And-Play manner. For example, when a new device is added into a process system or
some device is replaced by another one which is using an ontology that is new for the
current information agents, the information agents need to use the ontology protocols to
get the required ontology. Protocols, that enable exchanging of description about
protocols and exchanging the protocols themselves, enable automatic extension to agent
communication mechanisms. An example can be very close to the previous one. An
information agent can need to go through an iteration process with other agents to
deduce required information. But the problem is that not all agents know the required
iterative communication protocol. The initiator agent thus provides the iterative protocol
to other agents or instructs other agents to get the required protocol from a protocol
repository. Finally, agents start to use the right protocol. Well-defined standards and
mechanisms are again needed to ensure such functionality.

4.3.5 Agent architecture
 Internal architecture of information agents can be realized in many ways. In all
cases, it should enable to easy extend agent behavior or to change the current one.
Therefore, an agent should be built from independent modules that can be updated at
runtime and configured through the configuration files without need for recompilation.

 Information agents can be implemented as special agents whose only tasks are
information retrieving and providing. Another way is to create an information module
that can be added to existing agents. In process automation, emphasis is given to short
time responses and to reliability of agents. Therefore, individual agents should not be too
complex and their functionality should be devoted only to one domain of tasks.

 40

4 Concept of information agents in process automation

 Very general information agent architecture is proposed in Figure 4.6. This
architecture is based on the BDI agent model and it enables an agent to process different
messages and to remember acquired information. A description of individual parts of this
architecture is given from the fundamental point of view.

 The Router module is responsible for outgoing and incoming message routing. In
the case, that the outgoing message does not contain a recipient's address, the Router
module uses matchmaking or brokering services of a facilitator agent. Incoming
messages of starting conversations are delivered to the Planner module and the other
ones, which are already a part of some conversation, are delivered to the Executor
module. The Router module can also be responsible for the security issues.

ne
tw

or
k

(facts/believes)
knowledge base

desires capabilities

SchedulerScheduler

ontology base plan library

Information agent

scheduleactions

PlannerPlanner

ExecutorExecutor

RouterRouter

Figure 4.6 Information agent architecture based on RETSINA and
[Finin et al., 1994] agent architectures.

 The Planner module creates a set of independent tasks representing a received
message and it gives this set to the Scheduler module. To carry out the message
decomposition, the Planer module needs knowledge about the external world state, the
right ontology to understand the message content, a plan library with templates of tasks
decomposition, information about agent's capabilities and information about agent's
goals.

 The Scheduler module, based on constraints of individual subtasks that were
received from the Planner module, creates an order according to which the subtasks have
to be executed. The execution order is stored in the schedule base from where it is picked
up by the Executor module.

 The Executor module executes tasks from the schedule base and keeps
information about running tasks in the action base. The Executor module updates
particular info bases when it calculates or receives results from other agents. In the case,

 41

4 Concept of information agents in process automation

that the Executor module has to communicate with another agent to accomplish a
particular task, the Executor module passes the incoming messages to the Planner
module to process them.

 Information agent architecture should not have any influence on agent external
behavior in the sense that agent architecture has to be transparent for agent
communication. It means that agents of different architectures have to be able to
communicate with each other.

4.3.6 Multi agent architecture
 Multi agent architecture corresponds to relations among individual agents and
roles that agents have in these relations. Architecture has great influence on agent
behavior. The type of agents' relations is established by the environment where agents
operate. For example in a market system, agents do not create any tightly-coupled
relational hierarchy. On the other hand, information agents in process automation tend to
form a hierarchy system that better corresponds to the process systems. It is up to an
information system designer what type of a hierarchy he chooses. In principle, the
designer can choose from multi-agent architectures shown in Figure 4.7 and their mutual
combinations.

 A facilitator agent F, in Figure 4.7b, provides information about or from agents to
other agents. The facilitator agent is described and used in [FIPAOS, 2003]. After their
creation, individual agents register themselves to the facilitator agent so they can be
discovered by other agents. The facilitator agent informs on demand individual agents
about other agents and their services. The facilitator agent can also serve as a broker that
handles information queries by itself and returns only final information. In process
automation, the facilitator agent can be used after system startup to initiate information
agent structure configuration and/or it can be responsible for Plug and Play behavior by
informing the current agents about a new agent and vice versa.

FF

AA BB CC

AA

BB

communication channel

communication channel

CCAA BB

communication channel

CC

a) b) c)

relational
links

Figure 4.7 Agent architectures for information access. a) Flat Peer-to-Peer
(P2P) architecture. b) Flat architecture with agent facilitator (adopted from
[Finin et al., 1994]). c) Hierarchical architecture.

 The non-hierarchical agent system without an agent facilitator, Figure 4.7a, is
also called peer-to-peer system (P2P). Every agent has its own objectives that it tries to

 42

4 Concept of information agents in process automation

accomplish. Agent knows their neighbors by observing the environment or from replies
to broadcast messages. Agents ask each other to provide information or to perform an
action. In the case that neighbor agents are not able to accomplish given queries, they can
delegate those queries to their neighbor agents and so on. This architecture provides the
highest level of reliability because no agent has a special role. Individual agents are
entirely independent. A failure of one agent has just a little influence on the whole
system. On the other hand, this type of architecture is difficult to control and to foresee
the whole system's behavior. Information access in process automation has to be
deterministic and fast responding and therefore P2P system is not proper information
architecture in process automation.

 In the non-hierarchical system with an agent facilitator, Figure 4.7b, one or more
agents have the role of the agent facilitators. Agent facilitators can decrease the total
number of messages sent among agents but they can also become communication
bottlenecks in systems with many agents. According to [Ben-Ami and Shehory, 2002],
large agent systems without a facilitator are faster communicating than systems with a
facilitator. Information agents using the agent facilitator can create fast and flexible
information systems where the number of agents is not high. The potential disadvantage
is that all agents rely on the facilitators, which in the case of their failure can bring
problems to the whole system.

 The hierarchical agent system (based on tree or modified-tree hierarchical
architecture) presumes that agents hold information about relations to other agents.
These relations can be pre-configured or they can be dynamic. The latter case is more
difficult to implement (probably with help of an agent facilitator) but it provides higher
flexibility to system changes. Hierarchical architecture naturally represents process
systems which can be divided into independent functional blocks that can be farther
divided into smaller independent blocks and so on until they are represented by
individual sensors, actuators and parts of the physical system itself. Information agents in
hierarchical architecture possess information about their subagents (acquired by learning
or by pre-configuration) and they can request them to provide specific data or perform a
specific operation. Agents have links only to their sub-agents and the super-agent in
agent system hierarchy. The whole automation system is represented by the top-level
agent. The top-level agent serves for external agents as an entry point to the system and
provides information to them. The top-level agent can provide addresses of its sub-agents
to allow establishing of direct communication with them, or the top-level agent can
encapsulate the whole automation system and can act as an exclusive information
provider to the system. The similar behaviour may have all information agents that have
any sub-agents. Encapsulation of a system part is suitable when information from
individual subparts is bound together. Then, it is up to the super agent to evaluate all data
together and to provide consistent information to other agents.

 43

4 Concept of information agents in process automation

 The facilitator agent can serve as an alternative or as a support agent for
hierarchically structured information agents in process automation. For example, when a
user agent wants to know a specific device's variable value it can ask the facilitator for
the address of the information agent that is in charge of that device instead of asking the
process agent that would have to propagate this task to all its subagents until the specific
device.

 Mobile agents that are able to travel from one system to another play a special
role in agent information architecture. In information access in process automation,
mobile agents could for example represent a client diagnostic application. Such a
diagnostic agent can travel to a factory information system to perform diagnostic
operations that can require high data transfers. All operations can thus be performed
inside the company's information system and therefore they are secured and they do not
require a permanent Internet connection with the mobile agent's home. When a task is
completed, the diagnostic agent returns back with a result.

4.3.7 Message processing
 Information agents process messages according to the type of the messages,
knowledge they possess and the relation they have with the message sender. The
information agent can either have all the necessary information to answer the message or
not. In the second case, the information agent has to be able to get required information
from the same or from other agents. The incoming message then needs to be decomposed
into independent sub-queries that may even include querying another information agent.
A complete answer may thus be composed of data from several information sources
represented by other agents. In such a case, the information agents have to know how to
merge different data types if necessary and how to formulate the correct answer. Data
from various sources are of the same type or not. In the first case, data can be merged for
example by statistical functions (for instance, when an information agent retrieves
temperature values from different sensors in the same area, the agent can calculate an
average value from them) that can use weighting coefficients to give different
importance to different data sources. The weighting coefficients can be preprogrammed
or they are learnt from the communication process with other agents. Data from various
sources can also be simply put into a data set that is included in the answer (for example
when an information agent is asked to return the names of all devices in a process
system, the information agent retrieves from other agents individual names and creates a
set from them). In the second case, when data returned from several data sources are of
different type, an information agent needs to understand the relation among individual
data and their particular importance for the answer (for example, when an information
agent is asked if a system is ready for startup, the information agent needs to ask other
agents for values of their variables to evaluate the current system state).
 An example of data decomposition is demonstrated in a process system
represented by three hierarchically structured information agents, see Figure 4.8. The

 44

4 Concept of information agents in process automation

process agent is the highest-level agent representing the whole process system. It has two
sub-agents, the pump and the tank agents. The process agent is sent a message querying
the readiness of the process to start running. The message written in the FIPA-SL
language can have the following form:

(iota ?x (= ?x (process state)))

pump agent

water pump

tank agent
process agent

water tank

actual water level

minimal water level

Figure 4.8 Water system and its information agents.

The process agent, based on knowledge about its subagents, decomposes the message
into two separate messages. In the first one, the process agent queries the pump agent
whether the state of the pump is in order and in the second message, the tank agent is
asked what the water level is:

(iota ?x (= ?x (device state)))
(iota ?x (= ?x water_level))

The answers in both cases are of different types, in the first one it is a string and in the
second one it is a number:

(=(iota ?x (= ?x (device state))) ready)
(=(iota ?x (= ?x water_level)) 523)

The process agent has to understand to both answers as well as it has to know what the
minimal water level is to start the system.

4.3.8 Security
 As it is discussed in [Castelfranchi, 2001], information does not represent only
data but it has also social nature. Specific information has different importance for
different users. It needs to be secured so only authorized user has an access to it. Because
the agent information system in process automation is a cooperating system, where all
information agents are trusted, the main security bottleneck is user access to the

 45

4 Concept of information agents in process automation

information system both from a company's intranet and from the Internet.
Communication among information agents in a plant in most cases does not need to be
secured and is thus not slowed down.

 An agent information system has to provide services that allow authentication
and authorization of user agents and coding and signing messages. With regard to short
time responses to queries, it is not favorable that every agent in the agent information
system possesses a mechanism for securing and verifying messages. Instead, special
security agents should be used that serve as mediator agents between user and
information agents. After connecting to the agent information system, for every user
agent is instantiated a security agent that authorizes the user agent and then handles all
the user agent's requests. The security agent provides access only to authorized
information agents and data. This type of security requires the security agents to
understand the user agents' queries and to be able to evaluate their competence. In larger
systems, where many users are involved, also functionality for trust delegation needs to
be implemented. This functionality includes giving rights to other user agents for
performing certain queries, to specify time constraints of given rights and to specify what
user agents can delegate what rights and to whom, etc.
 Another way how security could be implemented into the agent information
system is the use of permissions for certain queries. These permissions would be issued
by authorization agents and required by information agents (and for example
implemented in the router module of agent architecture shown in Figure 4.5). In this
case, access to every information agent would be secured even inside the agent
information system but the total response time would be higher than in the previous case
thanks to additional security processing.

 In all cases, security mechanisms should use the world security standards to not
become a stumbling block in agent communication. A suitable approach is to make the
agent-applicable security mechanisms publicly available from agent repositories so
agents can negotiate over a specific security level and tools to reach this level before the
data retrieving.

4.4 Implementation
 When implementing information agents in process automation, it is important to
ensure that agents that influence process control have to satisfy all message delivery-time
limits. Nevertheless, information agents are not meant to be a part of the control system's
core. Technologies used for implementing of information agents in the Internet, such as
the XML data format and the SOAP protocol over HTTP, are not necessarily the most
suitable. They are designed for communication among different platforms and over large
distances which is seldom the case of information access in process automation. In
process automation, distances among individual devices and thus among agents are
mostly up to several hundreds of meters. The control system is usually implemented with

 46

4 Concept of information agents in process automation

use of network technology provided by one manufacturer and therefore there are no
problems with communication incompatibility. The emphasis is given more to reliability,
deterministic behavior and on short time delivery. Determinism in sending messages is
hard to implement in agent communication and hence other agent advantages have to
overcome this limitation.
 Currently, communication among controllers and user applications is done for
example with help of the OPC specifications through DCOM technology.
Communication among controllers and intelligent devices is done through industrial
networks and their protocols and communication among controllers and passive
actuators and sensors is done directly through IO modules. In automated systems
composed fully from agent enhanced devices, data transfer does not occur so often due to
the autonomy of the agents. This fact balances the disadvantage of asynchronous agent
message delivery mechanism. In Figure 4.9 are depicted the traditional and the agent
based information access communication network used on a factory floor. In systems,
where passive and agent enhanced devices need to be used together, agent wrappers will
be necessary for the passive devices.

 Information agents that do not affect process control can take full advantage of
technologies described in the chapter 3. User agents connected wirelessly to a process
system can use the special designed Wireless Message Transport Protocol (WMTP) that
provides to agents efficient and reliable communication. More information about WMTP
can be found in [Laukkanen, 2002].

PLC with
digital-analog

digital

OPC based communication

M

ACL

analog
M

user application user application

latigid

IO module

Figure 4.9 Traditional (on the left) and agent based (on the right)
information access to sensors and actuators in process automation.

4.5 Comparison with OPC
 OPC technology is currently one of the state-of-the-art technologies for
communication mainly among process controllers and user applications. It offers process
data access, an event and alarm notification, historical data storing and access. It supports
server-to-server communication, remote data access over the Internet and capabilities to
secure data access and transfer. OPC technology is built on DCOM technology used at

 47

4 Concept of information agents in process automation

the MS Windows platforms. The biggest advantages of OPC are the standards that
ensure intercommunication between applications written by different development
teams, high functionality provided by individual OPC interfaces, support for new
technologies coming with increasing use of the Internet and support for automated data
access that enables programmatically enumerate OPC server data and its functionality.

 Information agents are able to offer the same functionality as OPC with regard to
the quantity of provided services. Moreover, agent functionality is not bound to any
specifications that define concrete services as it is in the case of OPC. Agent
functionality is fully extendible as the agent communication language is by ontologies.
For example, information agents can provide information about relation between two
different process variables, variable limits, variable unit etc. Agents are able of high-
level data preprocessing and reasoning due to intelligence and knowledge they possess.
In contrast to OPC, information agents form an information system with distributed
knowledge of a process system. With advent of more and more intelligent control system
devices such as embedded systems, information agents will become their natural
representation in information systems.
 On the other hand, in agent information system, messages are sent exclusively
asynchronously. That is, delivery times are unpredictable. This can cause problems when
information agents constitute a part of the control system. Also, message processing is
slower than DCOM calls used in OPC. However, agent technology is not meant to
replace OPC. Agent technology is more regarded as a higher layer using and working
over OPC.

4.6 Advantages and disadvantages
 Information agents bring many new features into the information systems in
process automation over the currently used technologies. Their implementation is also
rather different. Whether information agents are going to succeed in process automation
depends on the advantages and with them associated profit emerging from adopting
agent technology.

 The main advantages that information agents have over the current information
technologies are the following. First, agents distribute knowledge of a process system
into the corresponding parts of the system. It is natural that individual system
components possess knowledge that is relevant to them. It means that device
manufactures, which have the most detailed information about their devices, can equip
them with this information at the factory where the devices are assembled. Control
system designers can thus focus more on the functionality of the whole system than on
the issues associated with communication and diagnoses of individual devices.
Therefore, the designers do not need to be experts on individual products from individual
companies and they can invest their time in studying more general problems.

 48

4 Concept of information agents in process automation

 Second, information agents divide a process system into independent and
autonomous parts that are able to give information about themselves. Provided
information is not limited to simply-measured data but it can be preprocessed according
to a requestor's needs and knowledge that the information agents possess. Higher-level
agents coordinating other agents thus do not need to know their physical properties.
 Third, information agents not only provide information from a process system but
they also understand to this information. They can offer a description of provided
information to a human user and/or they can be queried by other agents for an ontology
associated with that information. With help of the ontologies, agents can understand
various queries and they can form various messages.

 Further, information agents are suitable for human-machine interfaces. They
make information access usable by non-technical users. Agent-based information access
moves device specific knowledge from clients to agents. Clients thus can be simple
applications focusing mainly on presenting information and on friendly human user
experience. Information agents cooperate with each other and therefore they allow
creation of flexible systems that can be modified at runtime and that automatically
reconfigure themselves according to their surrounding environment and their new tasks.

 On the other hand, information agents are still in research. It is known what
behavior and functionality can be expected from agents but their implementation still
needs to be studied. Number of standards need to be established before information
agents will be able to fully demonstrate all their predicted capabilities. Integration of the
information agents into the legacy systems and vice versa will require additional
software. Moreover, agent communication including ACL message processing and
evaluating is much slower than simple function calls with known parameter types used in
the current information systems.

4.7 Future vision
 Information agents will be intelligent software components. Due to the capability
to understand and exchange their knowledge with other agents, they will be able to
communicate with each other regardless knowing each other before. Information agents
in a process system will be able to retrieve, extract, analyze, filter, monitor and update
data in that system. They will allow information synthesis and presentation. Information
agents will adapt to the surrounding environment for example to changes in the structure
of the system and they will behave in an optimal way according to given requirements.
 It is hard to predict whether and when information agents will be a common part
of process automation. Use of information agents in process automation is demonstrated
in Figure 4.10. Information agents will be associated with every device, controller and
user application in the information system in process automation. Information agents will
be sold by device manufacturers along with process-control devices. Such agents will
possess all detailed technical information about devices such as variable limits, device

 49

4 Concept of information agents in process automation

constants, self-diagnostic tests, etc. and they will be able to automatically cooperate with
other agents from other manufactures. Information agents will allow plug and play
functionality for process devices by virtue of the ontology databases where domain
specific information will be stored. Information agents will store all technical knowledge
about individual process devices. Therefore, user applications will be very simple and
their main task will be to represent data from a process system. Clients will be able to
connect to a process system and to automatically display data from the system both
textually and graphically. Clients will be represented by all different devices and
applications, their location will not be important. When it is necessary, communication
between agents will be secured and access into the information system will be monitored
and restricted only to the authorized users and/or agents.

M

ACL

Client
(user agent)

desktop application,

mobile phone,

agent, …

Process
system 1

Process
system 2

Process
system n

ACL / RPC

ACL / HTTP

ACL / HTTP

ontology
agent

process agent

ACL PnP

Figure 4.10 Future vision of the agent information system in process
automation - a versatile client application and Plug and Play process device
installation.

 50

5 Designing information agents

5 Designing information agents

5.1 Introduction

This chapter introduces one possible way of information agents design. The
design starts from the FIPAPC architecture, developed at the HUT Automation
Technology Laboratory, which itself is based on the FIPA-OS agent platform. The
information agents extend the FIPAPC agents by, here proposed, an information access
module. This module serves as an add-on feature that enables to the existing FIPAPC
agents to deal with messages containing the information access ontology. In addition, a
proposed mechanism for agent message interpretation is here described.

5.2 Underlying architecture

5.2.1 FIPA-OS agent toolkit and platform
 The FIPA-OS is both an environment for running agents and a set of tools for
creating the FIPA compliant agents. It is written in Java programming language. Inner
architecture of the FIPA-OS agent platform corresponds to the FIPA reference
architecture model ([FIPA, 2002]), see Figure 5.1a. The Directory Facilitator (DF) and
the Agent Management System (AMS) are represented by agent-management agents.

The DF provides "yellow pages" services to agents running in the platform and the AMS
provides agent lifecycle management. The Message Transportation System (MTS) with
use of the Internal and External Message Transportation Protocols (MTP's) and Agent
Communication Channel (ACC) are responsible for message delivery between agents
within one or several agent platforms.

DF AMS

MTS

ACCInternal MTP’s External MTP’s

FIPA-OS Agent Framework JESS Agent Shell

Agent Implementation

Agent Shell

Task Manager

Conversation Manager

Message Transport Service

Message Transport Protocols

a) b)

Figure 5.1 a) FIPA reference model (adopted from [FIPAOS, 2003]), b) the
main components within FIPA-OS agent platform (adopted from [Emorphia
Ltd., 2002]).

 The main components of the FIPA-OS agent programming toolkit and their
individual relations are in Figure 5.1b. The Message Transport Protocols and the

 51

5 Designing information agents

Message Transport Services are hidden to a programmer. They ensure communication
among agents in the local and the external platforms. The Conversation Manager tracks
agent messages at the performative level and assures that the order of messages in a
certain conversation follows the particular conversation protocol. The Task Manager
administers running of Tasks. The Task is a Java thread that performs specific
operations, it is able to return a result and it can send and receive messages to and from
other agents. The Agent Shell provides the FIPAOSAgent class that is used as a base
class for all agents. The JESS Agent Shell gives to agents possibility to use the JESS
expert reasoning system.

5.2.2 FIPA for Process Control (FIPAPC)

The FIPAPC is built on the top of the FIPA-OS. It extends the FIPA-OS agents to
be easily employable in process control and it serves as a foundation to the proposed
information access module. The FIPAPC agent platform was designed and implemented
by the agent group at the HUT Automation Technology Laboratory, see [Appelqvist et
al., 2002], [Seilonen et al., 2002c] and [Pirttioja, 2002]. The previous attention in the
FIPAPC was given to the distributed process control planning. Agents were
hierarchically structured to represent a process system. They were programmed to
cooperate with each other and to plan their actions to achieve desired process system
behavior. For example to start up the process system, agents first planned what actions
and in which order had to be accomplish and then agents performed individual actions
according to the agreed plan. Further in the project, agents were used for automatic fault
recovery where they negotiated with each other about changes of their set points to
decrease the impact of a device failure on the whole system behavior.

incoming message with
information-access

ontology

super daemon task

FIPAPC agent

Register with DF and AMS

Start Super Daemon Task

Redistribute incoming messages

Deregister with AMS and DF

exit

yes

no

information-access
module

recovery
module

a) b)

Figure 5.2 a) the life cycle of the FIPAPC agent, b) the FIPAPC agent
module architecture.
 52

5 Designing information agents

 The FIPAPC agents implement their individual abilities in independent modules,
for example the recovery module or here designed the information access module.
Because most of the agent functionality is in modules, FIPAPC agent code itself is
simple and it includes mainly agent initialization. The principal operations that the
FIPAPC agent performs during its life are shown in Figure 5.2a. After being started, an
agent registers itself to DF and AMS agents. Then the Super Daemon Task is started. It
runs individual ability modules according to configuration settings in a profile file and
then it redistributes incoming messages to appropriate modules, see Figure 5.2b. Every
agent message contains a name of the ontology that is used in the message content. This
ontology name is used for searching the right module that is able to handle the message.
All modules are inherited from the Task class, which allows the Super Daemon Task to
maintain all modules in the same way.

5.3 Design of the information access module
 Individual agent modules represent agent's ability to deal with messages from
different domains. Agents can be 'taught' to process messages with new ontology by
installing and using appropriate ability module. This philosophy of ontology
implementation is rather different from that one mentioned in the chapter 4, where all
agent modules are proposed to be ontology independent. There, ontologies are expressed
with use of an ontology language that agents know to interpret. In this design, an
ontology is represented by functionality stored in Java classes that corresponds to the
terms and relations specified by given ontology. This approach is not flexible to changes
in ontologies but it is many times easier to implement.
 The principle of processing messages in the information module starting from the

SuperDaemonTask InformationAccessDaemonTask

InformationAccessHandlerTask

InformatinAccessXAbility

handleX(msg)

handleX(msg)

create

create

dealWithMessage(msg)

msg

Figure 5.3 Message processing in the information access module.

 53

5 Designing information agents

FIPAPC architecture is in Figure 5.3. First, ability modules supported by an agent are
configured in the agent XML configuration file referred to as an agent's profile. For the
information access module, the agent's profile contains the name of the information
access ontology: "informationaccess" and the name of the class representing the
entry point to the information access module: "InformationAccessDaemonTask"

<DaemonTasksProfile>
 <DaemonTaskDescription
 daemonTaskClassName="InformationAccessDaemonTask"
 ontologyName="informationaccess" />
</DaemonTasksProfile>

When a message with a header containing the performative X (determining the type of
the message such as: query, subscribe, etc.) and with the informationaccess
ontology is sent to an information agent, the agent's Super Daemon Task calls method
handleX(...), which is provided by the InformationAccessDaemonTask
class and to which the received message is given as a parameter. Every message
processing is done in a separate program thread that is started within the handleX
method and that is represented by the InformationAccessHandlerTask class.
This class is independent on the message content and it uses the
InformationAccessXAbility classes (referred to as the ability classes) to deal
with concrete messages according to the X performative used in the message header.

 Functionality of ability classes corresponds to the types of the message
performatives. Ability classes are responsible for sending messages according to the
rules given by a conversation protocol that is associated with every message. Some
performatives requires a special treatment with the message. For example according to
the FIPA standards, the subscribe performative requires that a message has to be
stored along with the result obtained from message evaluation and regularly reevaluated
to monitor the result changes and to notify a subscribing-agent about these changes. Such
an extra functionality needs to be specially implemented and if a requirement comes later
for its implementation it unfortunately means changes in many already existing Java
classes of the information access module.

 The ability classes cover all functionality that is required for dealing with
particular performatives and conversation protocols but they do not contain code for
message content processing. This functionality is provided by a special set of message
interpretation classes, see Figure 5.4. The most important class in Figure 5.4 is the
InterpreterBuilder class. This class provides the method
createInterpreter with string parameters representing a message content and the
name of the agent language in which the message content is written. As a result of

 54

5 Designing information agents

calling the createInterpreter method, an instance of an object with the
Interpretable interface is returned. The Interpretable interface provides the
interpret() and the isInterpretable() methods. The interpret()
method interprets a message content and returns a result. The isInterpretable()
method only checks whether the message content is interpretable or not. With help of the
InterpreterBuilder class, message processing in the ability classes is represented
only by calling these two methods and by processing returned results.

InterpreterBuilder

NodeBuilder

SLNodeBuilder

ContentReaderBuilder

ContentReader

SLContentReader

ResultReaderBuilder

ResultReader

SLResultReader

Node

SLNode

FunctionalTermSLNode ConstantSLNode

« uses » « uses »

« creates »

+interpret() : void
+isInterpretable() : Boolean

«interface»
Interpretable

« uses »

«
us

es
 »

«
cr

ea
te

s
»

«
cr

ea
te

s
»

Figure 5.4 Class diagram of message content interpreting classes.

 The mechanism of message content processing is based on building a grammar
tree that is representing the message content. A grammar, which specifies a language
syntax and which enables analysis and evaluation of sentences written in that language,
has to be defined for every agent communication language. Messages can be interpreted
as trees according to these grammars. For example in Figure 5.5, there is a sentence
written in the SL agent communication language and its grammar tree representation.
The grammar tree contains names of Java classes that match the corresponding grammar
elements. Every tree node object is inherited from the Node class and thus it implements
the same Interpretable interface, see Figure 5.4. Individual Nodes possess
functionality according to the grammar elements they represent and they know what kind
of child nodes they can be related to. A reference to the grammar tree root Node object
is returned to an ability class after calling the createInterpreter method. The
ability class interprets the message content by calling the interpret method of the
root Node. The root Node object in its interpret method implementation calls the
interpret methods of all its child nodes, which again do the same procedure with

 55

5 Designing information agents

their child nodes and so on. The returned results from child nodes are processed and the
final result is returned to the ability class.

 Because grammars of all languages are represented by objects inherited from the
same Node class, the ability classes always use the same Interpretable interface
to evaluate a message content independently on the used agent language. In this thesis
work, only the SL language grammar was partially implemented. The grammar elements
that were implemented were chosen according to the messages that were sent among
agents in the demonstration scenario, see the chapter 6. The SL language grammar
specification determines a fixed set of terms that correspond to the core of the grammar.
Further, SL language sentence can contain constants, variables, functions, etc., according
to the domain where an agent is used. Therefore, if whatever sentence from a certain
domain needs to be interpretable then all grammar nodes have to have their Node class
implemented as well as all the specific terms used in that certain domain. When an agent
needs to learn new ontology, it needs to get the Node classes representing the terms
from that ontology and when an agent needs to learn new agent language it needs the
Node classes representing the grammar core of that language.

ContentSLNode

ContentExpressionSLNode

PropositionSLNode

WffSLNode

BinaryLogicalOpSLNode WffSLNode WffSLNode

AtomicFormulaSLNode AtomicFormulaSLNode

PropositionSymbolSLNode PropositionSymbolSLNode

StringSLNode StringSLNode

equiv

“a” “b”

(equiv “a” “b”)

Figure 5.5 SLNode object tree.

 An example of proposed SL-language sentence processing is in Figure 5.6. A
query sentence is first divided into separate terms. Then, the SL language parser creates a
static tree representation of the query according to the SL grammar. The structure of the
grammar tree is simplified in Figure 5.6. The full tree structure is in Figure 5.5. Next, a
tree consisting from the Node objects is created and the interpret method of the root

 56

5 Designing information agents

node is called. According to the SL language grammar, the final result contains the
original message with an evaluated result.

query: parser
(SL, RDF, …)

lexical
analyzator

equiv

a b
object tree

builder(= (equiv “a” “b”) false)
result:

interpret() equiv

a b

(equiv “a” “b”) ‘(‘, ‘equiv’, ‘”a”’, ‘”b”’, ‘)’

Node object tree

Figure 5.6 SL language sentence processing.

 The last thing to discuss, as for the proposed design of the information module, is
creation of object tree representations from agent language sentences. After the
createInterpreter method of the InterpreterBuilder class is called,
instructions from the XML configuration file are read.

<BuilderProfile>
 <BuilderDescription
 contentLanguageType="FIPA-SL"
 nodeBuilderClassName="SLNodeBuilder"
 contentReaderClassName="SLContentReader"
 resultReaderClassName=" SLResultReader" />
</BuilderProfile>

 The attribute contentLanguageType specifies the type of the agent
language. The attribute nodeBuilderClassName determines the name of a class
that is inherited from the NodeBuilder class. The NodeBuilder class provides
methods for dynamic creation of Node objects based on the name of the grammar
elements they represent. The attribute contentReaderClassName contains the
name of the class that creates static grammar tree representation from an agent sentence
and that allows to iterate through this tree. The attribute resultReaderClassName
contains the name of the class that is able to return a result from interpreted sentence.
This functionality is necessary because the results of a sentence evaluation contain also
the original sentences. All classes specified in the configuration file are loaded
dynamically at runtime with the help of Java reflection functionality. Therefore, ability

 57

5 Designing information agents

to process new agent languages and ontologies can be added to an agent at runtime
without any need for its restart or code modifications.
 When creating the grammar object tree representation of an agent language
sentence, the InterpreterBuilder class first creates the NodeBuilder and
ContentReader objects according to the configuration file. Then the
ContentReader object is used to get the name of the root node from the static tree
representation of the sentence and the NodeBuilder object creates a Node object
corresponding to the root node's name. Every Node object has the ability to create its
own child nodes according to the provided ContentReader object. Creation of the
rest of the grammar object tree is done through delegation of the ContentReader
object to child nodes and repeating the procedure above.

5.4 Design analysis
 The designed mechanism for message processing is extendible to messages
written in any kind of agent language. Message content is represented by an object tree
that corresponds to the used grammar. Ontologies are implemented by set of Java classes
and learning an ontology means copying corresponding classes to an agent and to
reconfiguring the agent's profile. Moreover, every agent possesses classes that implement
its knowledge of a particular device for which the agent is responsible for. For example,
a pump agent will have a class for starting the pump and a temperature sensor agent will
have a class for reading a temperature value.
 . This approach is relatively easy to implement and for demonstration purposes in
this thesis, which are not focused on the work with ontologies, it is sufficient. According
to the chapter 4, agent architecture should support all kinds of communication protocols.
The designed information access module deals with different protocols in separate ability
classes. Adding a new ability class means changes in information access module code
and requires recompilation and an agent restart. Functionality that would allow runtime
protocol exchanging is far beyond the goal of this thesis.
 The information access module is supposed to be used mainly by the information
agents that represent data sources from individual parts of a process system. Other
functionality such as human friendly communication was not considered. Also security
considerations were not taken into account in the design. Nevertheless, securing the
communication with external agents can be provided by special security agents as it is
proposed in the chapter 4.

 58

6 Implementation and test of information agents

6 Implementation and test of information agents
 The concrete use of the information access module described in the previous
chapter is demonstrated in a test scenario. Information agents are connected to a real
physical system. They read data from this system to evaluate its current running status
and they provide this information to other agents.

6.1 Test environment
 For demonstration of information agents, a real laboratory physical system that is
shown in Figure 6.1 was used. This system was constructed for research purposes. It

consists from two water tanks of the total volume 800 liters that are interconnected at the
top and at the bottom with tubes. Inside the right water tank, different temperature in the
lower and in the higher part is induced with help of four automatically controlled valves
with cold and hot water. Water circulation in the whole system is managed by a water
pump.

Figure 6.1 The laboratory physical system.

 All valves and the pump are interconnected with the Smar controller
(manufactured by the Smar International) through the Fieldbus industrial network. The
Smar controller is further connected through an IO module to thermometers. Information
from the controller is read by the Smar OPC DA server running at the Windows 2000
platform. From this OPC server, information is provided to all OPC DA clients such as
monitoring applications and also to agents running in the FIPA-OS platform. To enable
communication between Java agents and the OPC server, the Java JOPCClient library is
used.

 59

6 Implementation and test of information agents

6.2 Demonstration system

6.2.1 Description
 A common task that needs to be implemented in process automation is diagnosis
of a system status. This task is usually done by a client application that is connected to a
controlled system and that collects and evaluates system's data. A disadvantage of this
solution is in the tight connection between the client and the system. Therefore, the client
update is required when the system changes.
 The implemented scenario demonstrates the use of information agents for a
system diagnosis. Agents are supposed to monitor the system state and to report its
changes to a user. In later research, information about the system state should be utilized
by agents implemented in [Chakraborty, 2003] to start the automatic fault recovery
process. The diagnosed system is represented by the laboratory physical system that is
described in the previous chapter. The physical system is virtually divided into three
functionally independent parts, the pump, the lower and the higher parts of the right

water tank, see Figure 6.2. Each of these parts is represented by an information agent.
Moreover, the whole right water tank and the whole physical system itself are also
represented by information agents.

Process agent

Pump agent
Tank agent

Level1 Level2
agentagent

FIPA-OS Agent
Platform

T1

T2 Level 2

Level 1
V1

V2

V3

V4

Level1 agent

agent
Level2 agent Pump

Tank agent
Process agent

User agent

User

Fieldbus

controller

OPC DA
server

DCOM

Smar specific
communication

Smar

Smar

Figure 6.2 The real physical process system.

 60

6 Implementation and test of information agents

 Information agents possess technical parameters and functionality for diagnosing
those system's parts they represent. In the test scenario, information agents are asked by a
user agent to monitor the status of the physical system and to send a notification when
the status has changed.

6.2.2 Implementation
 In the demonstration system, one user agent and five information agents were
implemented, see Figure 6.2. In contrast to the information agents, the user agent does
not use the information access module. Functionality of this agent is rather passive. It
only sends and receives messages to and from other agents and displays these messages
in a Graphical User Interface (GUI) application to a human-user. The GUI was adopted
from the FIPA-OS IOTestAgent and modified for use in the test scenario. The user agent
sends messages based only on the human-user's commands.
 Information agents are organized in a hierarchical structure according to the
relations that are among the physical system parts which the agents represent, see Figure
6.2. Individual relations are specified in the agent profiles by a list of sub-agent names.
For example the process agent's profile contains the following data:

<FIPAPCAgentProfile>
 <subAgent>pumpagent</subAgent>
 <subAgent>tankagent</subAgent>
</FIPAPCAgentProfile>

 The whole physical system is represented by the process agent, which is the
parent agent to all other information agents. The user agent communicates only with the
process agent and it does not know about other information agents. This approach allows
the user agent to be very simple and to be able to connect to whatever other physical
system represented by a process agent.

For the test scenario, an ability class supporting the FIPA Subscription protocol
(see Figure 6.3) and the protocol itself were implemented. In the demonstration system,
the user agent utilizes this protocol to subscribe itself to the process agent to get the
current status of the system state and to be informed about any future changes. The
response of the process agent and its sub-agents to the subscribe message can be
separated into two parts.

First, it is a subscription part. After receiving the subscribe message, the process
agent resends this message to its sub-agents who resend it to their sub-agents and so on.
Before accepting the subscription request, all information agents try to evaluate the
message content. It means that they check the status of the system part they are
responsible for. If the evaluation is successful, agents send back an inform reply with the
obtained result. In the case that the massage evaluation fails, agents send back a refuse
reply and they also send a cancel message to all its sub agents. Therefore, before sending

 61

6 Implementation and test of information agents

the inform reply, agents, which have any sub-agents associated with them, wait for the
replies from all of these sub-agents to be able to incorporate received results into the
final answer. Hence, the process agent sends back the inform/refuse reply as the last one.
In a real application, instead of sending the refuse reply, agents should try to provide at
least incomplete information (default, historical or deduced value). In process

automation, agents should never totally refuse their services. It is safer to use not precise
information than no information at all.

[agree]

FIPA-Subscribe protocol

Initiator Participant

X

inform

failure

subscribe

inform

failure

0-n

cancel

X

refuse

agree

Figure 6.3 Communication protocols (adopted from [FIPA, 2002]).

Second, it is an evaluation part. After the successful subscription, information
agents regularly evaluate all subscribed messages. If results differ from the previous
ones, the inform reply with the new result is sent to the upper agent. That is, the inform
message is not sent directly to the user agent but always by the process agent. This
allows parent agents to process the inform message first and when needed to take a
necessary measures regarding the result in the message. They can also reevaluate the
result taking into account information they possess. In the test scenario, parent agents
simply resend the inform reply to the agent that is on the way to the user agent.

 The subscription and the inform messages used in the demonstration scenario are
in Figure 6.4. Messages are written in the FIPA ACL language, see [FIPA, 2002b].
Every message contains identifiers of the sending and the receiving agent. These
identifiers are agent names by which agents are registered in the FIPA-OS platform.
Further, the messages include the content parameter, which here contains the request

 62

6 Implementation and test of information agents

for monitoring the system state. Another parameter is ontology, which contains the
name of the information access ontology. This value ensures that these messages are
handled by the information access module. The parameter language specifies the
content language and it is used by the InterpreterBuilder class to create the right
ContentReader and NodeBuilder objects. In the current implementation, only and
partially the FIPA SL content language is implemented. The parameter protocol
contains the fipa-subscribe-full value. This string characterizes that the
messages are parts of the fully implemented FIPA Subscribe protocol (by default not
provided by the FIPA-OS platform). This parameter is used by communication services
of the FIPA-OS platform to ensure that agents send messages in the sequence specified
by this protocol. The parameter conversation-id specifies to what conversation the
ACL messages belong. This is necessary because agents are communicating with their
sub-agents and with their parent agent simultaneously. When an agent receives a
subscription message, it redistributes this message to its sub-agents with the
conversation-id parameter created from the original one and from the name of the
sub-agent.

(subscribe
:sender (agent-identifier :name externalagent)
:receiver (agent-identifier :name processagent)
:content "((iota ?x (= ?x (Device state))))"
:ontology informationaccess
:language fipa-sl
:protocol fipa-subscribe-full

)
:conversation-id ID123

(inform
:sender (agent-identifier :name processagent)
:receiver (agent-identifier :name externalagent)
:content “(= ((iota ?x (= ?x (Device state)))) STATE)"
:ontology informationaccess
:language fipa-sl
:protocol fipa-subscribe-full

)
:conversation-id ID123

Figure 6.4 FIPA ACL messages. The term STATE stands for one of: OFF,
OK, WORKING_BUT, ERROR.

 The argument of the content parameter: ((iota ?x (= ?x (Device
state)))) in the subscribe message expresses an agent's request for the value of a
device state. The string iota ?x defines the variable ?x in the expression (= ?x
(Device state)) that assigns the value of Device state to this variable. The
term Device represents a name of a function and the term state serves as a parameter

 63

6 Implementation and test of information agents

to that function. When the message content is being evaluated, first the SLNode object
tree is built according to the grammar tree that the message represents. The FIPA SL
content language grammar allows using any number of user specified functions,
variables, constants, etc. but in messages only those ones, for which SLNode classes
exist, can be used so the messages will be interpretable. Terms Device and state are
the terms defined by the informationaccess ontology and they are represented by
objects in the grammar tree according to Figure 6.5. When the SLNode object tree is
interpreted, the object DeviceSLNode first checks if its parameter has the value
state. If yes, necessary variables' values are read and evaluated from the part of the

physical system, which the agent executing the Device function is responsible for. This
means, that every information agent has to have its own DeviceSLNode class because
diagnosis code for every part of the laboratory system is different. On the other hand, all
SLNode classes that represent only the SL content language grammar are for all agents
the same. In what class namespaces are the agent specific and the agent general SLNode
classes defined, is determined in the agent's profiles. When creating SLNode objects, the
SLNodeBuilder first attempts to instantiate the objects from the agent specific and
second from the agent general namespace using Java Reflection functionality. This
technique enables to override the functionality of general SLNode classes by individual
agents.

ContentSLNode

FunctionalTermSLNode

DeviceSLNode

TermSLNode

ConstantSLNode

StringSLNode

((iota ?x (= ?x (Device state))))

…

state

Figure 6.5. SLNode object tree for expression: (Device state) in the
FIPA SL content language sentence.

 As a result of a diagnosis, the DeviceSLNode objects return one of the
following strings: OK, OFF, WORKING_BUT, ERROR, see Figure 6.4. The string OK
means that the diagnosed system's part is running without any problems. The string OFF
indicates that the system or its part is switched off. The string WORKING_BUT indicates

 64

6 Implementation and test of information agents

that the system is working correctly but some values of system's variables are, for
example, close to their critical values. This result can also be generated when a
combination of system variable values is suspicious, etc. The string ERROR represents
the case when some variable has reached its critical value in the system or some device is
not responding and so on. Because information agents are hierarchically structured,
upper agents are responsible for larger parts of the physical system than their sub-agents.
When agents receive a message from their sub agents, they can reevaluate the message
according to information from other parts of the system. For example an agent receives
an ERROR result from its sub-agent. But the agent knows that the sub-agent is
representing a physical system part that is back-upped by another sub-system, which is
working correctly. Therefore the agent can change the result from ERROR to
WORKING_BUT and send it to the higher agent.

 To enable an agent to reason over the results from sub-agents, the meaning and
the priority of all the possible results have to be implemented. In the demonstration
scenario, individual results, their priorities and a method for determining priorities are
defined in the InformationAccessConstants class. When an agent receives
results from its sub-agents, the result with the higher is chosen. The priorities are in the
following order: OK, OFF, WORKING_BUT, ERROR.

 In the demonstration system, only the cold water valve in the lower part of the
right water tank is under supervision. That means, only the DeviceSLNode class for
the Level2 agent, see Figure 6.2, is carrying out system measurements and diagnosis, see
Figure 6.6. First, the control mode and the opening value of the cold water valve are
read. If the control mode is the manual regime, the result of evaluation is OFF. If the

Read cold water
valve mode and

opening

mode

result
=

OFF

result
=

OK

result
=

WORKING_BUT

opening
> 80%

opening
> 95%

result
=

ERROR

manual automatic

NO

NO YES

YES

Figure 6.6 The implemented cold water valve diagnose algorithm.

 65

6 Implementation and test of information agents

control mode is set to automatic, the valve opening value is further compared. If the
value is under 80%, the result is OK, for values between 80% and 95% the result is
WORKING_BUT and for values over 95% the result is ERROR. The DeviceSLNode
classes of other agents are automatically evaluating the system state as being OK. The
goal of implemented diagnose functionality is not to show its complexity but to
demonstrate functionality of the information access module.

6.2.3 Running and results
 At the beginning of the demonstration, the manual control for all water valves,
temperature set points 30°C and 27°C for higher and lower halves of the water tank were
set, see Figure 6.7. Then the FIPA-OS platform with all information agents and the user
agent was started. The user agent, referred to as a PersonalAssistant (PA) agent, was
manually commanded to send the subscription message to the process agent. All sent and
received messages by/to the PA agent are in Figure 6.8.

25

26

27

28

29

te
m

pe
ra

tu
re

 [°
C

]

set point

0

10

20

30

40

50

60

70

80

90

100

00 02 04 06 08 10

time [min]

va
lv

e
op

en
in

g
[%

]

hot water valve

cold water valve

ERROR LIMIT

WORKING_BUT LIMIT

O
K

Su
bs

cr
ip

tio
n

&
 O

FF

m
ai

n
co

ld
 w

at
er

 su
pp

ly
 O

FF

W
O

R
K

IN
G

_B
U

T

m
ai

n
co

ld
 w

at
er

 su
pp

ly
 O

N

ER
R

O
R

W
O

R
K

IN
G

_B
U

T
O

K

O
FF

Figure 6.7. Measured data from the demonstration scenario. In the top chart,
there is a development of temperature in the lower half of the water tank. In
the bottom chart, there are openings of the hot and the cold-water valves
with marks when the PA agent received messages from the process agent
and when the main cold water supply was switched on and off.

 66

6 Implementation and test of information agents

 In response to the subscription message, all information agents accepted the
subscription and returned the inform reply. The DeviceSLNode class of the Level2

Figure 6.8. The GUI of the PersonalAssistant agent with all sent and
received messages.

 67

6 Implementation and test of information agents

agent detected that the cold-water valve was in the manual regime and therefore the
result of diagnosis was OFF, see Figure 6.7. A while later, all water valves were
manually switched into the automatic regime. This change was detected by the Level2
agent and the inform message with result OK was sent to the PA. From this time, the
temperature in the lower part of the water tank was regulated to 27°C with help of a PID
controller. At marked time in Figure 6.7 the main cold water supply to the whole system
was manually switched off. Incoming hot water caused increase of temperature above its
set point. The PID controller started to open the cold-water valve and to close the hot-
water valve. When opening of the cold-water valve reached 80% and 95%, the Level2
agent sent the inform messages with WORKING_BUT and ERROR results respectively.
The main water supply of cold water was again manually switched on after while. This
lead to decrease of temperature under both limit values and therefore WORKING_BUT
and OK inform messages were sent. The regulation process was renewed and all water
valves were manually switched back into the manual regime. The Level2 agent had
noticed this change by sending the inform message with the OFF result.

 68

7 Conclusions

7 Conclusions

7.1 Summary
 So far, information agents were mainly studied in connection with information
access in the Internet. The application of information agents in process automation is
rather new, and up to now, almost no research was given to this topic. Therefore, the
goal of this thesis is to give a basic analysis of this subject.

 First, information access in process automation is discussed in this thesis. The
concept and requirements on information access in general and then specifically in
process automation along with the OPC Specifications are presented. Second, a brief
introduction to agent technology and to agents representing autonomous, communicating
and perceiving entities is provided. Third, the idea of agent approach is applied to
information access in process automation. Last, in the practical part of this thesis,
attention is given to design, implementation and testing of an information access module.
The module is based on the FIPAPC agent architecture and it is utilizing an agent
message interpreting mechanism developed in this thesis. The proposed architecture of
message processing is independent on an agent content language and it is configurable
via XML files. Functionality of this mechanism was tested in the demonstration scenario
for which the FIPA SL content language was chosen. In the scenario, five information
agents using the information access module were monitoring a laboratory physical
system. Agents were organized in a hierarchical structure that corresponded to the
structure of the physical system. During the test, information agents were sent a message
from an external agent requesting a notification about changes of the system running
state. Later, the operation of the system control process was disrupted by manually
cutting off the main supply of cold water used for regulating the temperature in the
system. This interference forced the control mechanism to increase opening of a cold
valve to its critical limit. This situation was properly observed by the information agents
and the external agent was notified about this event. Besides the information access
module, the FIPAPCAgent class was designed. This class allows to assign different
modules to an agent by configuring the agent's profile and automatic starting of these
modules at the agent's start up.

7.2 Conclusions
 In the theoretical part of the thesis, applicability of agent technology for
information access in process automation was analyzed according to the general
requirements. The results are given in the next paragraphs.

 Information systems in process automation have to be very reliable especially
when they are used as a part of control systems. Information agents are software units
whose reliability depends on the faultless program code and on the environment where

 69

7 Conclusions

this code is running. Traditional information access technologies are in practice for
several years and during this time a lot of experience with their implementation was
gained and a number of program faults were removed. In contrast, information agents
represent new approach that needs to be well tested before installation in process
automation. After surpassing problems connected with introducing new technology,
information agents are expected to be more reliable than the legacy systems because of
their independence on each other. A failure of one agent does not threaten the whole
information system.

 Information agents can increase accuracy of returned information by
preprocessing it and they can tune information closer to the users needs. Agents can
validate information and provide filtering services for example by selecting only the
essential part and reducing thus the information overflow. On the other hand, agent
message processing, which includes message parsing and evaluation is slower than
classical network function calls with predefined parameter types. Also messages are sent
asynchronously at unpredictable moments. Therefore, information agents are not suitable
to be a part of the system where fast responses are crucial for trouble free running of the
system.

 In agent information systems, information can be expressed in any agent
language that is supported by agents and it can be changed at runtime. Moreover, agent
communication languages are universal and extendible the same way as human
languages are. Therefore, they are ideal tool supporting automatic information system
adaptability, flexibility and scalability. Agent languages are not bounded to any
programming language or operating system.

 In the practical part of the thesis, the information access module was
implemented. The FIPA-Subscription protocol provided by the FIPA-OS agent platform
was enhanced according to the FIPA standard. The original FIPA-Subscription protocol
did not support sending of the cancel messages needed to abandon an establish
subscriptions.

 Implementing of a mechanism that is able to process and evaluate any kind of
message in any kind of agent language is extremely difficult. In this thesis,
implementation of ontologies through Java classes was chosen. This approach is suitable
for interpreting simple agent messages but for more complicated messages also
implementation becomes complex and requires changes in already written code. A
general algorithm for message evaluation using the approach where knowledge is hard
coded is probably impossible to design. On the other hand, this approach does not
require any ontology language and is many times easier to implement for modules with
limited functionality.

 70

7 Conclusions

 Running of the demonstration scenario first required a restart of the operating and
control systems. Before the restart, agents were not able to connect to the physical
demonstration system. After the restart, agents were monitoring the system and reacting
to the changes in the system as it was expected. The result is shown in Figure 6.7 and in
Figure 6.8. Agents reacted to the changing state of the laboratory system properly by
sending corresponding messages. Agents were able to detect indirectly a failure in the
control system. As a problem can be regarded the slow reaction of agents to the changes
in the system. The reasons for this were first, the high load of the computer where agent
platform along with monitoring software were running. And second, agents were
periodically monitoring the system in constant intervals of 5 seconds.

 Information agents have many interesting features, which are definitely
demanded in process automation. Information agents enable distribution of intelligence
over information systems. They can adapt to changes in system architecture and system
functionality, they cooperate, learn, etc. The client application represented by the user
agent does not need to know any technical details about the system. When the system
structure is updated along with the corresponding information agent, the client remains
the same. Nevertheless, to be fully used, information agents require continuous extensive
research and mainly many tests need to be done to achieve high reliability required in
process automation. The designed information module still needs a lot of improvements.
To create perfect information access support for agents was not the aim of this thesis.
The goal was to discuss and demonstrate agent based information access and for these
purposes the information access module was implemented.

7.3 Future work
 As for the information access module and other modules in the FIPAPC project,
functionality for configuring performatives, which are supported by an agent, in the
agent's profile would be beneficial. This would enable easier update of already written
code and it would increase modularity of the whole project.

 Another testing of the agent message evaluation mechanism is needed. Currently,
only functionality required by the demonstration scenario is implemented and therefore
other and more complex messages are necessary for studying the suitability and use of
this mechanism. In the next demonstration scenario, attention could be paid to using the
hierarchical structure of information agents. That is, agents should be able to process
information from their sub-agents according to information from other sub-agents and
their own information. This approach requires the use of deliberate agents in contrast to
reactive agents used in the demonstration scenario.
 In the demonstration scenario, the size of intervals in what system data are
evaluated should be adjusted dynamically at runtime according to the magnitudes of
changes of system variable values.

 71

7 Conclusions

 Attention should be also given to such agent architecture that is independent on
ontologies and messages used in agent communication. Currently, knowledge is hard-
coded and its modification or extension requires changes in code and its recompilation.
To enable agent knowledge independence, standards for knowledge manipulation and
storing languages and tools for working with these standards are needed.

 As it was mentioned previously, agent messages are sent asynchronously in
unpredictable moments. This characteristic could limit the use of information agents in
process automation. Therefore a study of this characteristic is needed and research of
implementation of synchronous message sending mechanism is necessary.

 72

8 References

8 References

[AgentBuilder, 2003] Why, When, and Where to Use Software Agents. URL:
www.agentbuilder.com/Documentation/whyAgents.html [visited 3 January 2003]

[Angelfire, 2003] Dynamic Data Exchange (DDE) and NetDDE FAQ. URL:
http://www.angelfire.com/biz/rhaminisys/ddeinfo.html#DDECOM [visited 10 March
2003]

[Appelqvist 2000] Appelqvist P., Mechatronics Design of A Robot Society – A Case
Study of Minimalist Underwater Robot For Distributed Perception and Task Execution,
Doctoral Thesis, Automation Technology Laboratory, Helsinki University of
Technology, Finland, 2000

[Appelqvist et al., 2002] Appelqvist P., Seilonen I., Vainio M., Halme A., Koskinen K.,
Heterogeneous Agents Cooperating: Robots, Field Devices, and Process Automation
Integrated with Agent Technology, in Distributed Autonomous Robotic Systems 5 (DARS
2002), Asama H., Arai T., Fukuda T., Hasegawa T. (Eds.), Springer-Verlag, Tokyo,
Japan, pp. 350-359, 2002.

[Babbage simmel, 2003] Business Intelligence -Information Agent. URL:
http://www.babsim.com/consulting/businessintelligence_infoagent.htm [visited 3
January 2003]

[Bailin and Truszkowski, 2001] Bailin S. C. and Truszkowski W., Ontology Negotiation
as a Basis for Opportunistic Cooperation between Intelligent Information Agents. In
Proceedings of the 5th International Workshop, CIA 2001, pages 223-228, Modena,
Italy, 2001.

[Barbuceanu and Fox, 1994] Barbuceanu M. and Fox M. S., The Information Agent: An
Infrastructure Agent Supporting Collaborative Enterprise Architectures. In Proceedings
of the Third Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises, pages 112-117, Morgantown, West Virginia, USA, 1994.

[Ben-Ami and Shehory, 2002] Ben-Ami D. and Shehory O., Evaluation of Distributed
and Centralized Agent Location Mechanisms. In Proceedings of the 6th International
Workshop, CIA 2002, pages 264-278, Universidad de Rey Juan Carlos in Madrid, Spain,
2002.

[Castelfranchi, 2001] Castelfranchi C., Information Agents: The Social Nature of
Information and the Role of Trust. In Proceedings of the 5th International Workshop,
CIA 2001, pages 208-210, Modena, Italy, 2001.

[Chakraborty, 2003] Chakraborty S. Agent based approach to fault recovery in a process
automation system. Master's thesis, Department of Automation and System Technology,
Helsinki University of Technology, Espoo, Finland, February 2003.

[Decker et al., 1997] Decker K., Pannu A., Sycara K. and Williamson M., Designing
Behaviors for Information Agents. In Proceedings of 1st International Conference on
Autonomous Agents, pages 404-413, Marina del Rey, California, USA, February 1997.

 73

8 References

[Emorphia Ltd., 2001] Emorphia Ltd., FIPA-OS Developers Guide, 2 February 2001

[Fensel, 2002] Fensel D. A. Premises and Challenges of Research and Development in
Information Agent Technology in Europe. URL:
www.cs.vu.nl/~dieter/wgal/roadmap.html [visited 19 November 2002]

[Ferber, 1999] Ferber J. Multi-Agent Systems - An Introduction to Distributed Artificial
Intelligence. Addison-Wesley, Pearson Education Limited, 1999, ISBN 0-201-36048-9.

[Finin et al., 1994] Finin T., Fritzson R., McKay D. and McEntire R., KQML as an
Agent Communication Language. In Proceedings of the 3rd International Conference on
Information and Knowledge Management (CIKM'94), pages 456-463, Gaithersburg, MD,
USA, 1994.

[Finin et al., 2001] Finin T., Joshi A., Kagal L., Ratsimore O., Korolev V. and Chen H.,
Information Agents for Mobile and Embedded Devices. In Proceedings of the 5th
International Workshop, CIA 2001, pages 264-286, Modena, Italy, 2001.

[FIPA, 2002] FIPA. http://www.fipa.org [2002]

[FIPA, 2002a] FIPA Network Management and Provisioning Specification. URL:
http://www.fipa.org/specs/fipa00082/XC00082B.html [visited 10 October 2002]

[FIPA, 2002b] FIPA ACL Message Structure Specification. URL:
http://www.fipa.org/specs/fipa00061/XC00061E.html [visited 23 October 2002]

[FIPA, 2002c] FIPA SL Content Language Specification. URL:
http://www.fipa.org/specs/fipa00008/XC00008H.html [visited 31 October 2002]

[FIPA, 2002d] FIPA RDF Content Language Specification. URL:
http://www.fipa.org/specs/fipa00011/XC00011B.html [visited 1 November 2002]

[FIPA, 2002e] FIPA KIF Content Language Specification. URL:
http://www.fipa.org/specs/fipa00010/XC00010B.html [visited 2 November 2002]

[FIPA, 2002f] FIPA CCL Content Language Specification. URL:
http://www.fipa.org/specs/fipa00009/XC00009B.html [visited 2 November 2002]

[FIPA, 2002g] FIPA Ontology Service Specification. URL:
http://www.fipa.org/specs/fipa00086/XC00086D.html [visited 6 November 2002]

[FIPAOS, 2003] FIPA-OS. URL: http://fipa-os.sourceforge.net/index.htm [visited 26
May 2003]

[Fortu, 2002] Fortu T. Enterprise Resource Planning - Integration with Automation
Systems. Master's thesis, Department of Automation and System Technology, Helsinki
University of Technology, Espoo, Finland, 10 June 2002.

 74

8 References

[Gamma et al., 1994] Gamma E., Helm R., Johnson R. and Vlissides J., Design Patterns-
Elements of Reusable Object-Oriented Software. Addison-Wesley, Pearson Education
Limited, 1994, ISBN 0-201-63361-2.
[Gomez et al., 2001] Gomez M., Abasolo C. and Plaza E., Domain-Independent
Ontologies for Cooperative Information Agents. In Proceedings of the 5th International
Workshop, CIA 2001, pages 118-129, Modena, Italy, 2001.

[Haus, 2003] Haus K.T. OPC XML-DA Introduction. Technosoftware Inc., February
2003.

[Hayzelden and Bourne, 2001] Hayzelden A. L. G. and Bourne R. A., Agent technology
for communication infrastructures, John Wiley & Sons Ltd, 2001, ISBN 0-471-49815-7.

[Jennings, 1999] Jennings N. R., On agent based software engineering. Artificial
Intelligence, 117, pages 277-296, Elsevier Science B.V, 1999.

[Karhela and Weiss, 1999] Karhela T. and Weiss R., Process Simulation Coordination
Using Software Component Technology. In PC-based automation systems and
applications, Information and computer systems in automation, Helsinki University of
Technology, Espoo, Finland, 1999.

[Klusch, 2003] Klusch M., CIA-2003 Workshop. URL:
http://www.dfki.de/~klusch/cia2003.html [visited 23 March 2003]

[Labrou et al., 1999] Labrou Y., Finin T. and Peng Y., Agent Communication
Languages: The Current Landscape. In Intelligent Systems, 14(2), pages 45-52, IEEE
Computer Society, 1999.

[Laukkanen et al., 2002] Laukkanen M., Helin H. and Laamanen H., Tourists on the
Move. In Proceedings of the 6th International Workshop, CIA 2002, pages 36-50,
Universidad de Rey Juan Carlos, Madrid, Spain, 2002.
[Luck et al., 2002] Luck M., McBurney P., Preist C. and Guilfoyle C. Agent Technology
Roadmap. AgentLink, Southampton, United Kingdom, October 2002.

[Mangina, 2002] Mangina E. Review of Software Products for Multi-Agent Systems.
Applied Intelligence (UK) Ltd for AgentLink, www.AgentLink.org, June 2002.

[MathWizards, 2003] MathViews - Dynamic Data Exchange (DDE). URL:
http://www.mathwizards.com/techinfo/man/mathv06.htm [visited 10 March 2003]

[Maturana et al., 2002] Maturana F., Staron R., Tichy P. and Slechta P. Using
Dynamically Created Decision-Making Organizations (Holarchies) to Plan, Commit, and
Execute Control Tasks in a Chilled Water System. In Proceedings of the 3rd
International Workshop on Industrial Applications of Holonic and Multi-Agent systems,
pages 613-622, Aix en Provence, France, 2 September 2002.

[McEntire et al., 1999] McEntire R. and collective. An Evaluation of Ontology Exchange
Languages for Bioinformatics. In Proceedings of ISMB, pages 239-250, 1 August 1999.

 75

8 References

[MSDN, 1992] Supporting the Clipboard, DDE, and OLE in Applications. URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndynex/html/msdn_ddeole.asp [visited 27 March 2003]
[Nodine et al., 1999] Nodine M. et al., Active Information Gathering in InfoSleuth. In
Proceedings of the 2nd International Symposium on Cooperative Database Systems for
Advanced Applications (CODAS), pages 15-26, Wollongong, Australia, 1999.

[OPC AE, 2002] OPC Foundation, OPC Alarms and Events Custom Interface Standard,
Version 1.1, www.opcfoundation.org, 2 October 2002.

[OPC Batch, 2001] OPC Foundation, OPC Batch Custom Interface Specification,
Version 2, www.opcfoundation.org, 19 July 2001.

[OPC Common, 1998] OPC Foundation, OPC Common Definitions and Interfaces
Version 1.0, www.opcfoundation.org, 27 October 1998.

[OPC DA, 2002] OPC Foundation, OPC Data Access Custom Interface Standard,
Version 2.05A, www.opcfoundation.org, 28 July 2002.

[OPC DX Press Release, 2002] OPC Foundation, OPC DX Press Release,
www.opcfoundation.org, 15 March 2002.

[OPC DX Vision, 2002] OPC Foundation, OPC Data eXchange Vision 2002,
www.opcfoundation.org, 2002.

[OPC HDA, 2001] OPC Foundation, OPC Historical Data Access Custom Interface
Standard, Version 1.1, www.opcfoundation.org, 26 January 2001.

[OPC Overview, 1998] OPC Foundation, OPC Overview Version 1.0,
www.opcfoundation.org, 27 October 1998.

[OPC Overview, 2002] OPC Technical Overview. URL:
http://www.opcfoundation.org/01_about/OPCOverview.pdf [visited 8 November 2002]

[OPC Security, 2000] OPC Foundation, OPC Security Custom Interface, Version 1.0,
www.opcfoundation.org, 17 October 2000.

[Parunak, 1998] Parunak H. V. D. Practical and Industrial Applications of Agent Based
Systems. Environmental Research Institute of Michigan (ERIM), 1998.

[Pirttioja, 2001] Pirttioja T. FIPA-OS as an example of agent system implementation.
Automation and Systems Department, Helsinki University of Technology, Finland, 2001.

[Pirttioja, 2002] Pirttioja T. Agent-Augmented Process Automation System, Master’s
Thesis. Automation and Systems Department, Helsinki University of Technology,
Finland, 2002.

[Poslad et al., 2001] Poslad S. Standardizing Agent Interoperability: The FIPA. In
Proceedings of Advance Course on Advance Intelligence, Prague, The Czech Republic,
2001.

 76

8 References

[Seilonen et al., 2001] Seilonen I., Nurmilaakso J. M., Jacobsson S., Kettunen J.,
Kuhakoski K. Experiences from the Development of an XML/XSLT based Integration
Server for a Virtual Enterprise Type Co-Operation. VTT Automation, Finland, 2001.

[Seilonen et al., 2002a] Seilonen I., Pirttioja T., Appelqvist P. Agent technology and
process automation. 10th Finnish Artificial Intelligence Conference (STeP 2002), Oulu,
Finland, 16-17 December, 2002.

[Seilonen et al., 2002b] Seilonen I., Appelqvist P., Halme A., Koskinen K. Agent-based
approach to fault-tolerance in process automation systems. Submitted to the 3rd
International Symposium on Robotics and Automation (ISRA 2002), Toluca, Edo. de
Mexico, Mexico, 1-4 September, 2002.

[Seilonen et al., 2002c] Seilonen I., Appelqvist P., Vainio M., Halme A., Koskinen K. A
concept of an Agent-Augmented Process Automation System. 17th IEEE International
Symposium on Intelligent Control (ISIC'02), Vancouver, Canada, 27-30 October, 2002.

[Seilonen et al., 2003] Seilonen I., Pirttioja T., Appelqvist P., Halme A., and Koskinen
K., Distributed Planning Agents for Intelligent Process Automation. Accepted to the 5th
IEEE International Symposium on Computational Intelligence in Robotics and
Automation (CIRA 2003), Kobe, Japan, 16-20 July 2003.

[TALtech, 2003] Understanding Dynamic Data Exchange (DDE). URL:
http://www.taltech.com/TALtech_web/support/dde_sw/ddeunder.htm [visited 10 March
2003]

[Young et al, 1997] Young P., Johnson R. and Wolfe K., Agent Technology: Application
of Agent Technology. CSE 190 Internet Technologies, 19-21 May 1997.

 77

9 Appendix 1 FIPA SL content language grammar

9 Appendix 1 FIPA SL content language grammar
 The following text is a part of the FIPA SL Content Language Specification. The
entire specification with explanation of individual terms is in [FIPA, 2002c].

Content = "(" ContentExpression+ ")".

ContentExpression = IdentifyingExpression
 | ActionExpression
 | Proposition.

Proposition = Wff.

Wff = AtomicFormula
 | "(" UnaryLogicalOp Wff ")"
 | "(" BinaryLogicalOp Wff Wff ")"
 | "(" Quantifier Variable Wff ")"
 | "(" ModalOp Agent Wff ")"
 | "(" ActionOp ActionExpression ")"
 | "(" ActionOp ActionExpression Wff ")".

UnaryLogicalOp = "not".

BinaryLogicalOp = "and"
 | "or"
 | "implies"
 | "equiv".

AtomicFormula = PropositionSymbol
 | "(" BinaryTermOp Term Term ")"
 | "(" PredicateSymbol Term+ ")"
 | "true"
 | "false".

BinaryTermOp = "="
 | "\="
 | ">"
 | ">="
 | "<"
 | "=<"
 | "member"
 | "contains"
 | "result".

Quantifier = "forall"
 | "exists".

ModalOp = "B"
 | "U"
 | "PG"
 | "I".

ActionOp = "feasible"
 | "done".

Term = Variable
 | FunctionalTerm
 | ActionExpression
 | IdentifyingExpression
 | Constant

 78

9 Appendix 1 FIPA SL content language grammar

 | Sequence
 | Set.

IdentifyingExpression = "(" ReferentialOperator Term Wff ")".

ReferentialOperator = "iota"
 | "any"
 | "all".

FunctionalTerm = "(" "cons" Term Term ")"
 | "(" "first" Term ")"
 | "(" "rest" Term ")"
 | "(" "nth" Term Term ")"
 | "(" "append" Term Term ")"
 | "(" "union" Term Term ")"
 | "(" "intersection" Term Term ")"
 | "(" "difference" Term Term ")"
 | "(" ArithmeticOp Term Term ")"
 | "(" FunctionSymbol Term* ")"
 | "(" FunctionSymbol Parameter* ")".

Constant = NumericalConstant
 | String
 | DateTime.

NumericalConstant = Integer
 | Float.

Variable = VariableIdentifier.

ActionExpression = "(" "action" Agent Term ")"
 | "(" "|" ActionExpression ActionExpression ")"
 | "(" ";" ActionExpression ActionExpression ")".

PropositionSymbol = String.

PredicateSymbol = String.

FunctionSymbol = String.

Agent = Term.

Sequence = "(" "sequence" Term* ")".

Set = "(" "set" Term* ")".

Parameter = ParameterName ParameterValue.

ParameterValue = Term.

ArithmeticOp = "+"
 | "-"
 | "*"
 | "/"
 | "%".

 79

10 Appendix 2 Content of the enclosed compact disc

10 Appendix 2 Contents of the enclosed compact disc

 A part of this Master's thesis is an enclosed compact disc that contains the
following files and directory:

read_me.txt file Information about the content of the CD.

thesis.doc file Electronic form of this Master's thesis text.

documentation.doc file Documentation to Java source code.

InfoAgent directory Configuration files and Java source code of the
information access module and the demonstration
scenario.

The printout of the read_me.txt file:

 This CD is a part of the Information agents in process automation
Master's thesis. This thesis was written at Helsinki University of
Technology - Department of Automation and Systems Technology in
Automation Technology Laboratory by Milan Fajt in 2002/2003. On the
CD, there is a file read_me.txt containing this text. Further, there is a
thesis.doc file with electronic version of the thesis text,
documentation.doc file with documentation to Java source code and
an InfoAgent directory.
 The InfoAgent directory contains source code to Java classes
that are a part of the information access module and the demonstration
scenario both referred from the thesis. Further, there are configuration files
and examples of agent messages in the directory. To run the demonstration
scenario, installation of the FIPA-OS version 2.1.0 and Sun
Microsystems's Java Virtual Machine version 1.3.1 are needed. Java
classes have to be first compiled into Java byte code and installed
according to FIPA-OS documentation. In the case, that agents are not
going to be connected to the real physical system, code in the
DeviceSLNode class of the lower level agent providing this connection
has to be removed.

Milan Fajt, Espoo, June 18, 2003

 80

