
Czech Technical University in Prague

Faculty of Electrical Engineering

MASTER’S THESIS

Andrey Albershteyn

Processor-in-the-Loop Development System for
e200 Core Microcontrollers

Department of Control Engineering

Supervisor of the Master’s thesis: Ing. Michal Sojka, Ph.D.

Study programme: Cybernetics and Robotics

Specialization: Cybernetics and Robotics

Prague 2018

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

420194Personal ID number:Albershteyn AndreyStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Processor-in-the-loop Development System for e200 Core Microcontrollers

Master’s thesis title in Czech:

Vývojový systém pro processor-in-the-loop simulace s mikrokontrolerem řady e200

Guidelines:
1. Make yourself familiar with NXPMPC5748 hardware platform and the Rapid prototyping platform (RPP) project developed
earlier at the university.
2. Design and implement the PIL system for MPC5748MCU based on Matlab Simulink with (roughly) the following features:
- Layered software architecture: HAL-DRV-RTOS-API-TLC
- Basic HW support: GPIO, SPI, SCI, LIN, ADC, FlexRay, CAN, PWM, (ENET)
- Consider AUTOSAR OS as an RTOS
- Single rate model execution with the granularity of 500 ?s
- Basic diagnostic function: Overrun
- External mode support (SCI or ENET interface)
- Integration with Matlab R2016b (64 bit) for Windows
3. Test your system by developing demonstration applications (Simulink models) for each of the peripheral and a more
complex application involving multiple peripherals.
4. Document the resulting system both from user and developer point of view.

Bibliography / sources:
[1] Jenkins, Horn, Sojka: Simulink code generation target for Texas Instruments TMS570 platform, Technical report, ČVUT
v Praze, 2015.
[2] M. DiNatale: An introduction to AUTOSAR (https://retis.sssup.it/sites/default/files/lesson19_autosar.pdf)

Name and workplace of master’s thesis supervisor:

Ing. Michal Sojka, Ph.D., Department of Control Engineering, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 25.05.2018Date of master’s thesis assignment: 31.01.2018

Assignment valid until: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Michal Sojka, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgments

I would like to express my gratitude to my supervisor, Ing. Michal Sojka, Ph.D., for

his supporting and given advice. My thanks also go to Ing. Pavel Kučera, Ph.D. for

his excellent management of this project.

I hereby declare that I have completed this thesis with the topic ”Processor-in-the-Loop

Development System for e200 Core Microcontrollers” independently and that I have

included a full list of used references. I have no objection to the usage of this work in

compliance with the act §60 Zakon e.121/2000 Sb. (copyright law).

In date signature of the author

Abstract: The aim of this thesis is to develop a processor-in-the-loop system based on

e200 core microcontroller from NXP MPC5748G [36]. The use of visual programming

tools such as Simulink [26] allows to utilize Model-Based Design development process

and significantly speed up the integration and validation of the software pieces. Holding

this purpose Eaton corporation required a tool to create a processor-in-the-loop system

comprised mainly of Simulink, Autosar OS, and e200 based microcontroller. We de-

signed a basic prototype system made up of the Autosar operating system and Simulink

library. We described and documented the structure of the designed system and the

way it is implemented. Furthermore, we provided detailed instructions of the process

of configuration of the new components and the process of adding new functionality

to already existing Simulink library. We developed a testing application to simplify

verification process and created four demonstration models to provide a starting point

in the development of the more complex models.

Keywords: Model-based design, Processor in the loop, Matlab/Simulink, Autosar

Abstrakt: Hlavńı ćıl této diplomové práce je vytvořit processor-in-the-loop systém za-

ložený na mikrokontroléru od firmy NXP s jádrem e200 – MPC5748G. Použit́ı vizuálńıch

programovaćıch nástroj̊u, např́ıklad Simulink, umožňuje využit́ı principu Model-Based

Design během vyv́ıjeńı nového produktu a významně zrychluje proces validace a ver-

ifikace vytvořených algoritmů. Pro vývoj jednoho ze svých produkt̊u firma Eaton

potřebovala vytvořit nástroj pro processor-in-the-loop testováńı založeného na Simulink,

Autosar OS a MPC5748G. Tato práce se zabývá vývojem a návrhem zmı́něného systému.

Detailně jsme popsali a zdokumentovali celou strukturu a realizace. Dál, vytvořili jsme

návody pro přidáńı daľśıch funkce do Simulink knihovny a pro konfigurace nových hard-

warových jednotek. Vyvinuli jsme testovaćı aplikace pro ověřováńı existuj́ıćıch funkce

operačńıho systému a čtyři demonstračńı Simulink modely, které slouž́ı ukázkou imple-

mentovaných charakteristik systému a můžou se použ́ıt pro vývoj složitěǰśıch model̊u.

Kĺıčová slova: Model-based design, Processor in the loop, Matlab/Simulink, Au-

tosar

Contents

1 Introduction 5

1.1 Objectives . 5

1.2 Outline . 6

2 Concepts and Technologies 7

2.1 Model-Based Design . 7

2.2 Brief description of Processor-in-the-loop simulation 7

2.3 Autosar . 8

2.3.1 Autosar configuration . 9

2.4 Autosar MCAL . 9

2.5 Matlab & Simulink . 9

3 PIL System Design 11

3.1 System Architecture . 11

3.2 Operating System Configuration . 13

3.2.1 Autosar OS Configuration . 13

3.2.2 MCAL modules Configuration 13

3.3 The use of RTE . 14

3.4 User Application . 15

3.4.1 Simulink Skeleton of the application 16

3.4.2 Architecture . 16

3.5 Simulink Library . 18

3.5.1 Block internal structure . 18

3.6 PIL simulation flow . 19

3.7 Run-time Model behavior . 19

4 Environment Set-up 21

4.1 Hardware Set-up . 21

4.2 Software Tools . 22

4.2.1 S32 Design Studio IDE for Power Architecture based MCUs . . . 22

4.2.2 Wind River Diab Compiler 5.9.6 22

4.2.3 NXP Software Packages . 23

1

4.2.4 EB Tresos Studio . 23

4.2.5 Cygwin & GNU Make & Putty 23

4.2.6 Matlab + Simulink . 23

5 Implementation Details 25

5.1 Folders and Files description . 25

5.1.1 Folders structure . 25

5.1.2 Makefiles . 26

5.1.3 Compilation & Execution . 27

5.1.4 Simulink Folder Description . 29

5.2 User Application . 32

5.2.1 ert main.c . 32

5.2.2 model.c . 34

5.3 OS & MCAL Configuration . 34

6 User Manuals 37

6.1 Configure Makefile.config . 37

6.2 The use of Testing application . 37

6.3 Assemble and install Simulink library 38

6.4 Create new model . 39

6.5 Adding new functionality . 39

6.5.1 Configure hardware . 40

6.5.2 Creating Interface to Simulink 40

7 Evaluation 43

7.1 Demonstration of IO blocks . 43

7.2 Timing and Multirate Simulink model 44

7.3 Granularity . 45

7.4 SCI Echo Server . 46

7.5 Overrun demonstration . 46

8 Conclusion 47

List of Figures 53

Acronyms 55

2

CD content 57

Appendix A 59

Appendix B 61

Appendix C 63

Appendix D 65

3

4

1. Introduction

Development of a new product with strict requirements on safety and reliability is a long

and challenging task. Making this process quick and effortfully optimal is financially

beneficial. One of the techniques applied in engineering is Model-Based Design (see

2.1). It is a method used to deal with non-trivial model design problems [7] via applying

visual and mathematical tools. The use of graphical diagramming tools dramatically

speeds up development and verification of the existing systems and new ideas [24].

One of a currently developing product in the Eaton Corporation is hydraulically-

operated electronically controlled differential. Its primary goal is to provide superior

vehicle cross-country mobility with a rapid response for stability and traction control.

Electronic control eliminates drivers interface but requires stable controlling algorithms

and communication with other components of the car [5].

Eaton Corporation is an international power management company with many con-

sumers products and solution for a variety of industrial sectors. One of the first Eaton

domain of interest is automotive. Nearly every automotive, vehicle and engine manu-

facturer in the world make use of Eaton’s high-quality products [4]. Eaton offers a long

list of traction modifying devices for many applications ranging from personal cars to

military machines.

One of the well-known tools for Model-Based Design of embedded software is Simulink

(see 2.5). For our purposes, there already exists a relevant Model-Based Design toolbox1

oriented toward the development of the software compatible with the microcontroller

used in this project. This toolbox allows creating models which can interact and control

low-level peripherals such as GPIO pins, ADC, PWM, SCI, CAN, etc. However, this

toolbox is not compatible with Autosar which is one of the main requirements of this

work.

1.1 Objectives

The objective of this project is to create a prototype of the system with similar function-

ality for the Processor-in-the-loop simulation. The system should be based on Autosar

operating system and utilize Simulink for Model-Based Design. The integration with

Simulink includes a library with basic hardware blocks such as digital input/output,

SCI, PWM, etc. In terms of timing, the generated application have to be precise with

granularity down to 500µS. As a tested model can be quite complicated, the time

required to calculate one step of the control loop can not fit within the execution step

1https://www.nxp.com/support/developer-resources/run-time-software/

automotive-software-and-tools/model-based-design-toolbox:MC_TOOLBOX

5

https://www.nxp.com/support/developer-resources/run-time-software/automotive-software-and-tools/model-based-design-toolbox:MC_TOOLBOX
https://www.nxp.com/support/developer-resources/run-time-software/automotive-software-and-tools/model-based-design-toolbox:MC_TOOLBOX

of the processor. The system should have functionality for execution time overrun di-

agnostic of the model’s control loop (overrun later in the text). Next, to make it even

more flexible, we should implement external mode support to allow run-time communi-

cation between Simulink and hardware target. This system needs to be integrated with

Matlab R2016R running under MS Windows operating system. The last objective is

to document every part of the project for the further development.

1.2 Outline

The thesis is divided into eight chapters. After this introduction and problem descrip-

tion, Chapter 2 – Concepts and Technologies explains the essential core of this work

and gives a description of primary tools and frameworks. Chapter 3 surveys the design

of the suggested system architecture. It should create a background of the way system

is constructed and function. The chapter also deals with explanation of the particular

parts of the system and how they work and should be configured. The next Chapter

4 lists all the software tools recommended for work with this project and describes

hardware configuration. Chapter 5 extends Chapter 3 with a real implementation of

the designed architecture. It contains most of the practical details which should help

during project investigation. In Chapter 6 we provide several instructions on how to

work and extend this system. Chapter 7 contains the description of the evaluation

models which were developed to demonstrate working ability and correctness of the

suggested solution. Finally, in Chapter 8 we recapitulate major results of the project

and briefly describe future improvments.

6

2. Concepts and Technologies

In this chapter, we will give a relevant background on the main concepts applied in this

work. Then we will describe the key technologies used in the development.

2.1 Model-Based Design

Model-Based Design (MBD) is a methodology broadly used in motion control, goods

industry, aerospace, and automotive fields [7]. It is the mathematical and visual ap-

proach used throughout the whole process of the product development. It dramatically

speeds up prototyping, testing, and verification of software development [7] [24] [30].

Model-Based Design is comprised of the four main phases – modeling, analyzing, sim-

ulating and deployment. In this work, we are mainly focused on the last step – deploy-

ment. In terms of MBD, it means the execution of a developed model on real hardware

via code auto-generation. This process helps to catch problems which were missed or

can not be found during a software simulation [7].

The Model-Based Design is mostly applied via utilization of graphical tools as it is

much quicker to develop a model and find mistakes in the algorithm than in text-based

modelling tools [29]. In this project, we used Matlab + Simulink modeling environment

which is described in section 2.5

2.2 Brief description of Processor-in-the-loop simulation

Processor-in-the-loop simulation is the process of executing developed model on real

hardware. This methodology helps to expose problems at the beginning of the product

cycle, in the design phase. The hardware tests help to detect problems which can be

missed during the software model simulation. For example, we can carry out over-

run diagnostics to determine if designed control loop fits within execution step of the

processor [25].

One of the most popular and known tool for Model-Based Design (section 2.1) with

PIL verification is Simulink [26]. PIL simulation functionality provided by Simulink

lets us to generate, compile and execute tests on target hardware automatically. The

results of the execution can be then analyzed in the powerful Matlab environment [25].

7

2.3 Autosar

Autosar (AUTomotive Open System ARchitecture) it is an open and standardizied

software architecture for automotive electronic control units established by the part-

nership of many large companies such as BMW, Bosch, Ford, Toyota, etc. [1] [9]. Its

purpose is to manage growing complexity of automotive software through reuse and

exchangeability of the software modules between different projects and companies [1].

Application Layer

AUTOSAR Runtime Environment (RTE)

Microcontroller

Microcontroller
Drivers

Memory Drivers Communication
Drivers

I/O Drivers

Memory Hardware
Abstraction

Communication
Hardware Abstraction

Onboard Device
Abstraction

Complex
Drivers

I/O Hardware

Abstraction
Communication

Services
System Services Memory Services

Figure 2.1: Autosar OS Layers Structure

The primary goal of Autosar is to make hardware and software highly independent

of each other. The layered structure depicted in figure 2.1 is the main advantage of

Autosar in comparison to the custom solutions. It allows customers to reuse software in

numerous project without modifying it. The strict definition of application interfaces

and so-called Basic Software Modules (BSW) provides a unified interface on all of the

hardware platforms [1].

Autosar Specification defines what should be implemented and how it should behave

(in terms of software interface). Moreover, specification formulates the guidelines on

how it should be implemented (e.g., file structure) but each implementation can differ.

Therefore, Autosar specification is an interfaces description and not an implementation

instructions.

In this project, we used Autosar implementation provided by NXP. This realization do

not contains the full complect of modules, only the System Services and Microcontroller

Abstraction layer (the red blocks and the purple one in figure 2.1). Its documentation

rigorously describes every deviation from original specification.

Autosar in its nature is moduled system [2] [11]. Staying with this ideology most of

the companies and OEMs distribute their software in the separate pieces. For example,

in our case NXP provides two software packages Autosar OS and Autosar MCAL [33].

8

Operating System package provides System services only; the purple blocks in figure

2.1. Whereas, MCAL/MAL package provides modules for microcontroller abstraction;

the red blocks in the figure 2.1.

2.3.1 Autosar configuration

The every component of the system as OS as particular MCAL module can be divided

into two parts – implementation and configuration. The realization of a module is

a static set of files which do not require any modification. Whereas configuration is

distributed in the form of templates that are later parsed by special tools to generate

modules’ configuration.

Therefore, the assembling process of the system is divided into two parts. Collecting

all the necessary realization related source code and header files and then generating

configuration of the whole operating system via special tool (see section 4.2.4) [39].

2.4 Autosar MCAL

MCAL/MAL stands for MicroController Abstraction Layer. It is the first layer of

abstraction in Autosar operating system. MCAL/MAL implements interface for on-

chip MCU peripheral modules, and external devices mapped to the memory. This layer

creates an abstraction for Basic Software Modules and a few OS services. It makes the

top and middle layers first abstraction of the underlying hardware. In figure 2.1 MCAL

layer is shown as the red blocks and consist of I/O Drivers, Communication Drivers,

Memory Drivers and Microcontroller Drivers. As a more concrete example this layer

contains drivers for LIN, GPIO, ADC, etc.

2.5 Matlab & Simulink

Matlab and Simulink are products of the MathWorks Inc. It is software with many

different extensions and worldwide community. These tools create an environment for

mathematical model development, analysis, and verification. It is widely used in most of

the engineering fields such as automotive, aerospace, signal processing, communication,

etc.

Matlab is computing environment with its proprietary programming language. It is in-

tended primarily for numerical computation and matrix manipulations. But it is highly

extensible with many toolboxes and interfaces to the other programming languages such

as C/C++, Java, Python, Fortran, and C#.

9

Simulink is a graphical programming environment for model development. The devel-

opment process is based on manipulation with graphical blocks. It allows to prototype

and test new ideas rapidly while decrease chance of making the mistakes as in text-

based tools. Moreover, it is tightly integrated with Matlab which offers the broad range

of possibilities for further analysis.

The flexibility of the Simulink allows to modify and extend created models quickly.

With the addition of Simulink, Matlab and Embedded Coder it became a perfect tool

for Model-Based Design for embedded devices. These extensions offer powerful func-

tionality for code generation for real-time and nonreal-time applications. The Matlab

coder is a tool for generating C and C++ code for a variety of hardware platforms. It

generates readable and portable source code which can be then integrated into a cus-

tom project. Embedded Coder is enhancement above the Matlab coder for producing

target-specific optimization, code customizations and Processor-in-the-loop simulations

[18] [15]. The Simulink coder allow to generates C and C++ code from the Simulink

charts and diagrams [27].

10

3. PIL System Design

In this Chapter, we will give the description of the software architecture developed dur-

ing this project. The system can be divided into two main parts. First one is low-level

embedded software made up of Operating System, MCAL modules, Autosar configu-

ration and user application. The second one is Simulink related resources. It consists

of the scripts exerting process of model code generation, specific target configuration

rules of a model and blocks’ templates composing Simulink library.

Firstly, we will give a brief description of the system architecture as a total; which

components made up the system and how they interact with each other. Then we will

describe each of them in more details.

3.1 System Architecture

Generate

Generate
&

Control

Generate

Simulink

Block Templates

Simulink Library

Visual Blocks

Upload

Makefiles

MPC5748G

Statical

Autosar
Configuration

*.h + *.c

Model
*.h + *.c

Autosar OS
*.h + *.c

MCAL
*.h + *.c

Wind River
Diab

Compiler

scripts.m

Makefiles

Autosar Plugins

EB Tresos Studio

Figure 3.1: System Architecture

11

This section describes the architecture of the project and the way its components inter-

act with each other. Figure 3.1 shows a schematic diagram of the system arrangement

and overview of the processes happening in the system. The chart can be roughly

divided into two parts. One is statical and is not affected by Simulink (highlighted

with a grey rectangle). The second one is partially generated and mostly controlled by

Simulink.

Let’s focus on the first part. By statical, we mean that these components are not

affected or modified during model development. The red blocks in the grey area named

”Autosar OS” and ”MCAL” are the source code of Autosar Operating System and

MCAL modules accordingly. These sources are provided by NXP (for more information

see section 4.2.3).

The left-side red block in the grey area is a configuration of Autosar OS and MCAL

modules. It is generated via EB Tresos Studio (see 4.2.4) indicated as a green box.

The IDE outputs files with many parameters used by Autosar components to carry out

hardware initialization, to define which API is required and to create interface entities

(e.g., channels, ports). The last light-grey box on the right symbolize the Makefiles

which defines the key variables for the complation process.

The core component of the second part is Simulink. Simulink has a few purposes.

Firstly, it is used for model development. To create a model which utilize microcon-

troller’s peripherals you need to assemble and install a custom library. The special

script collects blocks found in a project folder compiles them and then assemble them

into the library. Next, the library is added in the library browser and blocks can be

freely used in the model.

The fact that model will be used for PIL simulation require additional manipulations

with model’s configuration. The Matlab environment allows to automate it via scripts.

When the model is created user specify target platform which defines all required

parameters such as target language, Makefile template, make utility, model solver,

solver’s parameters, etc.

The next purpose of the Simulink is to convert the model created by a user into the

source code. To accomplish this, we use the extension named Embedded Coder. In

addition to source code, it generates Makefile to compile and link all the necessary files

automatically.

The model is converted into the C source code by utilization of special templates

attached to every block. These templates describe how a block should be integrated

with the other parts, how it should be initialized and terminated, and inner algorithm

of the block [15].

To summarise, before developing a new model Autosar components should be brought

to required configuration. That means that in this phase all the peripherals, channels,

12

system clocks, system tasks, etc. are created and configured. After that, the whole

process of the code generation, compilation and uploading is controlled by Simulink.

Embedded Coder generates source code of the model using built-in blocks and blocks

from the custom library. The code is then compiled and uploaded to the target hard-

ware. Finally, Simulink indicates that process is successfully finished and the model is

continue executing on the board.

3.2 Operating System Configuration

The Autosar components have three different variants of configuration: Pre-Compile,

Post-Build, and Link-Time [12]. In this project, we used two types – PreCompile and

PostBuild. The first one means that all of the componenet’s parameters are generated

in the form of source and header C files before the compilation of the system and can

not be changed in the run-time. The second one stores multiple ECU configuration in

the memory areas, and the system can switch between them in run-time. Moreover, it

allows to change some of the BSW properties and add other elements, but it is limited

only to a specific set of parameters [40].

3.2.1 Autosar OS Configuration

The Autosar operating system allows only pre-compile time type fo the configuration

parameters. It means that it is configured and scaled statically. Therefore, most of the

system parameters and functions such as alarms, scheduling tables, number of tasks,

stack sizes, interrupts are configured before compilation and can not be changed in a

run-time.

3.2.2 MCAL modules Configuration

A microcontroller consists of many hardware components such as clocks, CPU cores,

communication modules, etc. Before running any operating system or user application,

these peripherals need to be configured. Autosar MCAL is microcontroller abstraction

layer for these hardware components.

Even though Autosar is a highly flexible system, it is accomplished by limiting the

system configuration making it less dynamic. For example, it is impossible to change

pin mode from a digital output to PWM-driven one (NXP safety implementation does

not support this API). The API offered by the operating system also relies on the

configuration and need to be enabled or disabled depending on the project requirements.

Moreover, some of the parameters are strictly limited by Autosar specification and can

have only Pre-Compile type of configuration.

13

NXP’s MCAL modules are distributed in the form of plug-ins for EB Tresos Studio (see

4.2.4). Plug-in folder includes templates in the form of Tresos Studio markup language.

These templates are used to generate C language headers and source code files which

contains the configuration of individual MCAL modules.

Plug-in folder also contains a statical implementation of MCAL module. In other words,

it implements all structures and functions which provides an interface for interaction

with hardware. This implementation is also need to be included in the project.

3.3 The use of RTE

Autosar is a widely used system. Nowadays most of the car parts have their built-in

microcontroller for monitoring, communication, and control. Most of the OEMs do

not produce the whole set of the parts required to assemble a car. They focus on one

specific set of products and supply it to bigger companies [41]. It becomes important

to offer compatible software for interact and control these parts. The primary purpose

of Autosar is to standardize this software via abstraction layers. In Autosar ideology

these applications should be placed at the application layer (top layer in figure 3.2).

Figure 3.2: Autosar implementation provided by NXP [36]

In an Autosar system, the user application is called Software Components. These are

located in the application layer of Autosar architecture. They can communicate with

each other and with operating system services via Run-time Environment. RTE with

other Basic Software Modules implements Virtual Functional Bus concept [3]. It is a

14

pivotal idea in Autosar architecture that assures standardized communication between

components. That, in turn, allows OEMs to ship the same controlling application for

different variation of hardware configuration.

Simulink software already has tools for validation, development, and simulation of the

software components [28]. Unfortunately, implementation of the Autosar provided by

NXP does not implement I/O Hardware Abstraction basic software component (see

figure 3.2). It is an interface between microcontroller abstraction layer and RTE [3].

Even though it is not the part of the problem what we are solving, it would bring some

model portability and reliability of the MathWorks tools. As a result, we couldn’t

use VFB for data acquisition and control over peripheral modules. Instead, we used

interface provided by MCAL/MAL layer to interact with on-chip modules.

3.4 User Application

Simulink
MCAL

USER
APPLICATION

Autosar OS

Generates
Code

Firmware

Figure 3.3: Simulink generates only user application (model’s code)

The user application is meant to be a software piece which utilizes the operating system

for its custom behavior. In our case, it represents software generated from a developed

model. As we do not use RTE and can not utilize its interface this application can

not be placed at the application layer of Autosar layer structure (see 2.1). We can

assume that our application is above MCAL abstraction layer with tight integration

with system services.

The structure of the application is fixed and have a skeleton which later is filled up with

code generated from a control loop of the Simulink model. The skeleton already contains

integration with Autosar OS and a few important MCAL modules initialization. It

defines all the tasks and their inner structure.

15

3.4.1 Simulink Skeleton of the application

The skeleton is not a regular C language file; it is template written in special TLC

language. This template is parsed by Simulink and then filled up with necessary code

constructions. Code which will be placed in the template depends on many parameters

defined by Simulink. For example, although template has a construction which needs

to be replaced by code for external mode support if this support is disabled in model

settings (in Simulink), it will not be generated.

The model’s control loop is placed in a separate file completly generated by Simulink. It

mainly consists of three functions which are called from the main application file. These

functions are responsible for initialization, one control loop step, and termination of the

model. The control loop of the model is placed under one step (modelname step(void)

in the code) function. The initialization (modelname initialize() in the code) function

contains intial source code of the blocks. Every block template describes the process

of the block intialization and termination. The last function termination is similar to

initialization function, but it is called at the model termination stage.

The generated control loop is made up of parts of the code corresponding to separate

blocks. These code pieces interact via code structure generated on the basis of the

blocks’ description (e.g., number of the inputs/outputs, types of the inputs). Simulink

knowns the way to handle its built-in blocks. We implemented similar templates for

our custom blocks. These blocks TLC templates were based on RPP project imple-

mentation. More information about blocks implementation can be found at [10], [16],

[21] and [14].

3.4.2 Architecture

The application architecture has a few primary criteria which need to be satisfied:

application unable to change OS parameters, execution rate need to be precise, mini-

mal execution rate of the model can vary, and application should detect control loop

overruns.

As mentioned earlier Autosar OS is statically configured and can not be changed in

run-time, the application should be structured in the way that it does not require any

OS configurations. For example, we can not manipulate with task’s priority or length

of the alarms’ cycle to obtain required task execution behavior.

Minimally required execution rate of the model is 500µS. We used it as a fundamental

frequency for the whole application. It is accomplished by a hardware counter and

alrarm attached to it. The alarm is system object which can be configured to activate

specific task every n ticks. The alarm is attached to the counter which is incremented

by hardware clock (FXOSC) configured to specific frequency, in our case 40MHz.

16

Between the hardware clock and the software counter there is clock STM0 which inputs

is connected to FXOSC and output is configured as input for the counter. It has

prescaler which decrease count frequency to 2MHz. The alarm’s period length is 1000

ticks. Therefore, every 500µS alarm activates a task which is responsible for the control

of the application. This task also has the highest priority.

MAINTASK

Alarm
500 muS

if period:
 fire_event()

External mode
support

EXTMODETASKSIMULATIONTASK

Event
Which parts to exec.?

Execute model

ECU & MCU initialization

Interrupt initialization

Start OS

main()

Figure 3.4: Internal structure of the user application

This periodic task (in implementation it is named MAINTASK) has two main purposes

– to carry overrun diagnostics and activate model task responsible for model execution.

Main and model tasks are synchronized via system events (similar to semaphores).

Model task unlimitedly waits for an event to occur. Only the periodic task decide

when event need to be set.

Model task need have to be executed with fundamental rate defined by Simulink. This

rate is calculated as a greatest common divisor of all sample rates of all control loops

presented in the model. The main periodic task, mentioned earlier, uses this rate to

calculate period at which execution cycle it needs to activate the model task. For

example, if the fundamental rate is 0.05 and the main task always has rate 0.0005,

then, the main task will set event every 100 cycles.

When the model has multiple control loops with different sample rates they are handled

as follow:

1. Simulink calculates fundamental rate – the smallest step required to all loops

were in phase

2. Main periodic task executes the model task with this smallest step

3. Function generated by Simulink marks parts of the model which need to be exe-

cuted in this step

17

4. Parts which should not be executed are skipped

In this type of architecture called singletask – multirate overrun detection reduces to

control of a single task. As main periodic task has the highest priority, it can preempt

execution from the model task and check if it is within time limits or not.

There also exists a third task named EXTMODETASK which is used for External

Mode support. This task is filled up with code generated by Simulink Coder.

3.5 Simulink Library

We created a custom Simulink library with blocks which represent an interface to

hardware peripherals. In other words, these blocks are the visual representation of the

code which will be placed in the final sources.

Visual models of the blocks are attached to templates. These templates contain the

description of C-code construction for block initialization, execution, and termination.

More information about the process of creating a custom library and the way libraries

works can be found at [22].

3.5.1 Block internal structure

S-function is a Simulink interface which allows using custom blocks in Simulink models.

In order to utilize it, we need to define a few block’s attributes which will determine

the way block will be function and presented in Simulink.

The particular blocks are defined by three files – visual model, Matlab executable

(MEX) and TLC template. The visual model is built-in Simulink block attached to

MEX file. It can have a mask manually created by a developer with port labels, param-

eters help, an icon on the block, etc. to make the block more recognizable. The Matlab

executable file is written in a compilable language (in our case it is C) and presents ex-

ecutable part of the block. The Simulink calls function from MEX file to obtain block

attributes such as the number of inputs, number of outputs, number of parameters,

etc. The C MEX files are designed to be flexible in its implementation; it can be, for

example, complex algorithm. In this project, we used it as the description of block’s

attributes (number of inputs/outputs/parameters). The last file is TLC template. It

is code-representation of the block. These files are written in TLC language. These

templates are not used in model development, only in code-generation phase. For more

information about block structure see [14], [13] and [10].

18

3.6 PIL simulation flow

The application can be roughly divided into two parts – OS and User Application

(figure 3.3). As the OS does not require any modification, Simulink will treat it as

user’s additional sources. We can automate the OS compilation process by modifying

Makefile generated for model compilation.

Makefile is created from a template which is parsed and filled up with model’s pa-

rameters. This template includes Makefiles for OS compilation. Also, these Makefiles

specifies compiler, building flags, output folder, rules for other extra sources (e.g.,

UART), etc. In result, we get a classical C project which can be compiled even without

Simulink by using building control tool (for example make utility; see 4.2.5).

The user application (model) is transformed into code. The source code of the blocks

is based on TLC templates. Simulink uses code structures based on blocks descrip-

tion provided in TLC and s-function templates to interconnect blocks inside of the

application.

The whole PIL simulation workflow including code-generation and compilation can be

seen in figure 8.7. More information about PIL simulation can be found at [32] and

[15].

3.7 Run-time Model behavior

In a run-time Simulink can connect to the target hardware via a serial link or TCP/IP.

If the connection is successfully set up, the user can change blocks parameters and view

dataflow of the model, like in software simulation. This is done by step-nature of the

model execution. Communication between Simulink and target hardware is based on

server-client architecture where target is server and Simulink is client. Unfortinately,

there is no official description of the protocol used for communication.

The Mathworks, Inc. provides library written in C language which need to be includ-

ed into the target’s firmware. This library implements communication protocol and

handling of the model modifications.

19

20

4. Environment Set-up

4.1 Hardware Set-up

The hardware set-up consist of the hardware target, Windows PC, power adapter,

JTAG debugger and a few cables. First of all, we need to power up the board with 5V

min. 1A power supply. This power adapter is not shipped within NXP board package.

Then, connect JTAG debugger to PC via USB cable and to board via 14-pin JTAG

connector. As a debugger, we used USB MULTILINK FX Advanced Debug Probe1

distributed by one of the NXP partner P&E Micro. The probe has two LEDs one

of which is power, and the other is an indicator of target connectivity. Therefore, if

your board and debug probe are correctly set up you will see both LEDs glowing.

Documentation and specifications of the probe can be found at the official ”Download

page”2.

SW2 to ON position

5V 2.1mm power
connector

14 pin JTAG
cable

Figure 4.1: Photo of the evaluation board taken from [35]

1http://www.pemicro.com/products/product_viewDetails.cfm?product_id=15320143&

productTab=1
2http://www.pemicro.com/products/product_viewDetails.cfm?product_id=15320143&

productTab=3

21

http://www.pemicro.com/products/product_viewDetails.cfm?product_id=15320143&productTab=1
http://www.pemicro.com/products/product_viewDetails.cfm?product_id=15320143&productTab=1
http://www.pemicro.com/products/product_viewDetails.cfm?product_id=15320143&productTab=3
http://www.pemicro.com/products/product_viewDetails.cfm?product_id=15320143&productTab=3

Lastly, we need to create a serial connection between board and laptop via USB cable.

Evaluation board already has the USB-RS232 serial interface, so there is no need for

additional hardware. The FTDI FT2232D USB to Serial interface chip which is placed

on the board will create two serial ports on your PC. Note that only one of these ports

is used. To determine which one is working you can try to connect a serial monitor

to one of them and reset the board. It will boot a hard-coded firmware and send a

message via serial port; often it is port with the higher number.

4.2 Software Tools

This project was developed and tested on the Windows 10 machine. In this section,

we will list recommended applications and tools which you will need to work with the

developed project.

4.2.1 S32 Design Studio IDE for Power Architecture based MCUs

S32 Design Studio is an integrated development environment for Automotive and Ultra-

Reliable MCUs. It is officially distributed by NXP. S32 Studio is based on multiplatform

Eclipse open source IDE. It includes GNU toolchain with GCC Compiler 4.9 for e200

power architecture microprocessors. Also, it has support for Green Hills and Wind

River Diab compilers, built-in GDB debugger with integration for P&E Multilink/Cy-

clone hardware. We used it to test basic hardware peripherals with the utilization of

SDK provided by NXP and to use P&E Micro GDB server for firmware debugging and

uploading.

The end project does not use S32 Design Studio itself, only its tools. In other words,

we are using only P&E Micro GDB Server, and drivers installed for probe support.

S32 Desgin Studio download, installation instruction and documentation can be found

on official NXP web-pages in [37].

4.2.2 Wind River Diab Compiler 5.9.6

Wind River Diab compiler is a compiler with many supported target architectures

including PowerPC. Due to some source code limitation of NXP’s Autosar OS and

Autosar MCAL implementations we were forced to use one of the officially supported

compilers (Green Hills Compiler or Wind River Diab Compiler or CodeWarrior com-

piler). This product has evaluation license which can be found at [31]. Installation

instruction and user manual will be sent via email after registration.

22

4.2.3 NXP Software Packages

In this project, we used implementation of Autosar OS and Autosar MCAL3 provided

by NXP. These are software packages comprised of source codes, documentation, inte-

gration manuals, makefiles and EB Tresos Studio plugins. These packages are required

to be installed as they contains source code of the OS and MCAL modules.

4.2.4 EB Tresos Studio

EB Tresos Studio is configuring tool for Autosar OS and Autosar Basic Software Mod-

ules (including MCAL/MAL modules). It is based on Eclipse open source IDE and can

be easily extended via plugins. The software packages described in section 4.2.3 will

automatically install plugins for all provided software modules. As Elektrobit and NXP

are partners, NXP offers evaluation license for EB Tresos Studio. Detailed description

and features can be found at [8].

4.2.5 Cygwin & GNU Make & Putty

Cygwin is the large set of GNU and Open Source tools which attempts to migrate utils

available on the most Linux platforms to the Windows systems. In other words, it is

set of Linux utils such as cp, mv, rm, cd, etc. modified to work on Windows operating

system. We used them in the build process (mainly in Makefile) to create folders,

remove files, find text in the source code, etc. Installation tool and documentation can

be found at [6]. To be able to use these tools inside of the Windows command prompt

(cmd) add CYGWINROOT/bin folder to your system path.

The make utility is automatization tool for the building process. It controls and ex-

ecutes the compilation, linking and other source code manipulation. You can either

install stand-alone GNU Make4 utility or use one shipped with Matlab (in our version

of Matlab it is GNU Make 3.81).

Putty is open source software which can be used as serial link monitor. Installation

instruction and documentation can be found at [38].

4.2.6 Matlab + Simulink

Matlab/Simulink is a powerful toolset for analysis and model design applying code-

based and visual approach. These tools are widely used for Model-Based design (section

2.1) in many engineering fields. We used Simulink, Matlab Coder, Simulink Coder [27]

3Autosar 4.0 https://www.nxp.com/autosar
4http://gnuwin32.sourceforge.net/packages/make.htm

23

and Embedded Coder [15] to create a model and then generate C/C++ code. The code

is later compiled and executed on the target hardware.

To install Simulink and required toolboxes follow the official installation guide available

at [26] and [17].

--

MATLAB Version: 9.1.0.441655 (R2016b)

MATLAB License Number: *****

Operating System: Microsoft Windows 10 Home Version 10.0 (Build 16299)

Java Version: Java 1.7.0_60 -b19 with Oracle Corporation Java

HotSpot(TM) 64-Bit Server VM mixed mode

--

MATLAB Version 9.1 (R2016b)

Simulink Version 8.8 (R2016b)

Control System Toolbox Version 10.1 (R2016b)

Embedded Coder Version 6.11 (R2016b)

MATLAB Coder Version 3.2 (R2016b)

MATLAB Compiler Version 6.3 (R2016b)

MATLAB Compiler SDK Version 6.3 (R2016b)

Simulink Coder Version 8.11 (R2016b)

Simulink Control Design Version 4.4 (R2016b)

Listing 4.1: Output of the Matlab’s ver command

24

5. Implementation Details

Chapter 3 explains the design of the developed system. This chapter gives description

of implementation details of the project. The result of this work is distributed in the

form of a folder with all configurations and sources included. However, this is not

stand-alone working example and requires additional software described in chapter 4.

5.1 Folders and Files description

5.1.1 Folders structure

The following listing shows folder structure of the developed system. We separate the

project into two parts – one contains all the content necessary for the developing and

running firmware on the target hardware and second one for integration with Simulink.

./

cfgPE Micro GDB server configuration
docs..Documentation
inc..Headers
lcf...Linker Script
PIL-example......................................EB Tresos Studio Project

config..............................Folder with Autosar configs in *.xdm
output..Generated Output

generated

epc......................................Autosar OS configuration
include..Modules headers
output..............................Modules configuration in *.epc
src...Modules sources

simulink...Simulink related content
blocks................................Blocks visual and code components

tlc c...................................TLC source code of the blocks
demos....................................Simulink Demonstration models

src...Testing Application Sources
lib..User’s libraries (UART)

Figure 5.1: Directory tree of the project

The root folder contains a few files with configuration for software tools such as linker

or GDB. The other part of the folder contains sources for a testing application.

The testing application means to be the application which has the same structure as

software generated by Simulink, except it doesn’t have Simulink’s injections of code.

This can be useful for testing newly added Autosar module or for verification of code

which hard to debbug using Simulink modeling tool.

25

Let’s discuss these folders in more details:

• cfg - contains configuration file for P&E Micro GDB server which was taken from

the S32 Design Studio workspace.

• docs - this folder contains this document and its sources

• inc - folder with headers used in testing and Simulink applications. These head-

ers defines, for example, variable types, system version, UART library interface.

Some of them were taken from NXP’s Sample Application, and some were cre-

ated for the testing application located at PROJECT_ROOT/src. Note that these

headers are also used for application generated by Simulink.

• lcf - folder contains linker script used in the compilation process. This script was

taken from NXP’s sample application and modified for this project.

• PIL-example - contains EB Tresos Studio project with configuration used in

this example. The project can be imported into Tresos Studio workspace. To be

able to modify the project you need to install plug-ins shipped as part of NXP

software package (see section 4.2.3).

• simulink - folders with scripts, templates and models for integration with Simulink.

• simulink/blocks - blocks’ templates and their visual models

• simulink/blocks/tlc c - TLC description of the blocks

• simulink/demos - prepared Simulink demonstration models

• src - testing application code sources

• src/lib - testing application libraries. It contains a library for work with the

UART which was taken from one of the NXP’s sample application and modified

with the necessary functions for our purposes. This library is also used in the

application generated by Simulink.

5.1.2 Makefiles

The compilation process of the testing and Simulink’s application is controlled by Make-

files (Simulink executes them). The project root folder contains there makefiles - make-

file, Makefile.config and Makefile.rules.

• makefile - is a Makefile which is used only for compilation of testing application.

This file also contains a few rules for uploading firmware into target hardware,

cleaning the project and printing some debug information. This file utilizes both

of configuration and rules makefiles.

26

• Makefile.config - this file contains the configuration of the compilation pro-

cess. These are, for example, paths to Autosar OS, S32 Studio, Diab compil-

er, compilation flags, output folder, etc. Makefile generated by Simulink for

model compilation includes these configurations to replace default ones. An

Autosar application compiled by this file can be made up of various configu-

ration of MCAL modules. Therefore, to optimize and speed up the compila-

tion process, this Makefile parses Autosar configurations to obtain a list of en-

abled MCAL modules. The file with the list of enabled modules is located at

PROJECT_ROOT/PIL-example/generated/include/modules.h. The inclusion of

a few key modules is hard-coded (Base, ECUM, RTE). The list is obtained via

Cygwin (see 4.2.5) utilities such as cat and grep. The code can be seen in listing

5.1.

• Makefile.rules - this file contains rules for the compilation of particular files.

Note that Autosar OS has separated makefiles located at OS_DIR/mak/os_defs.

mak and OS_DIR/mak/os_rules.mak. If you include this file in another makefile

(e.g., in the PROJECT_ROOT/makefile), it should be included after Makefile.config.

This file is used by Simulink Makefile to compile Autosar OS, MCAL modules

and user’s libs (located at PROJECT_ROOT/src/lib).

Get list of enabled modules

AUTOSAR_MODULES := $(shell cat "$(TRESOS_OUTPUT_FS)/include/modules.h" |

grep ’^\#define USE_ ’ | grep ’STD_ON ’ | cut -d’_’ -f2)

Base modules which are not included in modules.h

AUTOSAR_MODULES += Base

AUTOSAR_MODULES += ECUM

AUTOSAR_MODULES += RTE

Get folders from NXP MCAL software package

MOD_FOLDERS := $(addprefix $(MCAL_TRESOS_PLUGINS)/,$(foreach mod_name ,$(

AUTOSAR_MODULES),$(shell ls $(MCAL_TRESOS_PLUGINS) | grep -i "$(

mod_name)_")))

Listing 5.1: Part of the Makefile.config which obtains list of used MCAL modules

5.1.3 Compilation & Execution

The application generated by Simulink contains Makefile in it (the name depends on

the model’s name < modelName > .mk). This Makefile is generated from template

makefile.tmf located at PROJECT_ROOT/simulink. Template includes configuration

and rules Makefiles from the project root (see section 5.1.2).

The Wind River Diab compiler is used not only for the compilation of Autosar sources

but also for compilation of sources generated by Simulink. Due to the fact that it

27

is a commercial compiler, it requires a license. The license is located at the path

DIAB_ROOT/license. The path to this folder is need stored in environmental variable

WRSD LICENSE FILE. It is used by the compiler to determine is license is valid.

As testing application can be compiled from the command line (Command Prompt in

Windows), these environmental variable can be set via a batch script. The official

documentation for the Diab compiler provides instruction how to generate all required

variables. We provided the env.bat file as an example.

However, Simulink doesn’t have access to command line’s environment. Therefore,

variables should be defined inside of the Matlab/Simulink environment. We defined

only licensing path in the PROJECT_ROOT/simulink/start.m.

The Makefile.config contains a path to the folder that is used for store compiled

binaries and end firmware file. By default, this folder is PROJECT_ROOT/output (the

variable is OUTPUT PATH). However, the firmware generated by Simulink is stored

in its project folder. The output folder is used only for storing separate parts (e.g.,

Dio.o, OS alarm.o).

The assembled firmware is uploaded via P&E Micro GDB server shipped in the form

of Eclipse plug-in for S32 Design Studio IDE. The Simulink’s firmware is uploading

automatically via Makefile’s target upload. The testing application, in turn, should

be uploaded with the following command make -f makefile upload.

The uploading process is carried out by communication between P&E Micro GDB

server and GNU PowerPC GDB. The GNU Debugger is also shipped as part of S32

Design Studio.

target remote localhost :7224

monitor _reset

load firmware.elf

detach

Listing 5.2: GDB script for firmware uploading

We automated GDB uploading process via *.gdb script. In case of the testing applica-

tion, this script is hard-coded into makefile under $(FLASH SCR) target. In case of

Simulink projects, it is located in PROJECT_ROOT/simulink/autosar_pil_make_rtw_

hook.m. This is done due to the fact that Makefiles generated by Simulink have dif-

ferent names depending on the model’s name. The RTW hook calls this Makefile with

upload target. After the first uploading, the GDB’s script can be found in the project

folder. As it is standard GDB debugging session, it is possible to manually debug the

target.

The listing 5.2 shows the process of the firmware uploading. First of all, PowerPC

GDB [client] connects to the P&E Micro GDB server; the port can be changed in

28

command line arguments we set it to 7224. Then, debugger resets the target hardware

and uploads firmware. Lastly, it detaches from the GDB server and leaves firmware to

execute on the hardware.

To assure that application is running it prints starting message on the serial port.

The message contains model’s name and compilation datetime. The example of the

message is shown in the listing 5.3. The serial link can be monitored via Putty (see

section 4.2.5).

=============== Model Started ===============

’model_name ’ - Wed Jun 19 14:10:44 2018 (TLC 8.3 (Jul 20 2012))

Listing 5.3: Example of the model start message

5.1.4 Simulink Folder Description

PROJECT ROOT/simulink

autosar pil.tlc...System Target file
generate lib.mLibrary assembling script
start.m..Entry point script
file process.tlcmrmain’s initialization template
slblocks.m ..Block library control file
autosar pil make rtw hook.m..................................RTW hooks
makefile.tmf...Makefile’s template
sl customization.m........Customization of MATLAB env. in current folder
mrmain.tlc.........................Template of the main model’s source file
compile blocks.m...............................Script for block compilation
autosar pil select callback handler.m.....Callback for System Target file
rtiostream serial.c Serial interface for External Mode support
setup.m...Library installation script
demos..Demonstration models
blocks...Library’s blocks

header.c....................................S-Functions’ common header
sfunction din.c..DIN S-Function
sfunction xxx.c...xxx S-Function
sfunction pwm.c.......................................PWM S-Function
trailer.c...................................S-Functions’ common trailer
din.slx...................................DIN visual model for Simulink
xxx.slx....................................xxx visual model for Simulink
pwm.slxPWM visual model for Simulink
tlc c.................................TLC template for particular blocks

sfunction din.tlc................................DIN TLC template
sfunction xxx.tlc................................xxx TLC template
sfunction pwm.tlc..............................PWM TLC template
common.tlc......................Common function for TLC templates

Figure 5.2: Shorten directory tree of the Simulink folder

29

Figure 5.2 shows the list of the files in Simulink folder. The part of these scripts compiles

and assemble the blocks library. The other part sets and configures the environment.

The following list describes purposes of these files in more details:

• autosar pil.tlc - is so-called System Target file. It exerts the process of code-

generation during model build. It defines variables which are pivotal to the build-

ing process. For example, we defined only a few important parameters - the name

Makefile’s template, the name of code-generation utility (make rtw), language,

code format, target type, etc. For more information see [20].

• generate lib.m - this script creates library file and adds blocks to it.

• start.m - it is an entry point to the library compilation. This file were created

mainly to separate parameters which need to be defined before usage.

• file process.tlc - wrapper for mrmain.tlc template. This file is used by au-

tosar pil select callback handler.m to set it as ERT custom template.

• slblocks.m - Simulink block library control file. It defines a few library’s meta-

data for library browser.

• autosar pil make rtw hook.m - hook file1 that invokes custom functions in

the specific phases of the build process.

• makefile.tmf - template of the Makefile for the projects generated by Simulink.

• sl customization.m - the function which is called to customize Matlab’s envi-

ronment in the current folder2.

• mrmain.tlc - template of the main model’s source file. More details can be found

in section 5.2.1.

• compile blocks.m - all blocks listed in the array in the start.m script and which’s

corresponding files are presented in the blocks folder are compiled via Matlab’s

MEX compiler.

• autosar pil select callback handler.m - callback function which called when

autosar pil.tlc is set as model’s System Target file. This callback function sets

recommended parameters of the model. These parameters can be changed via

graphical user interface in model’s preferences.

• rtiostream serial.c - abstraction layer between target serial link implementation

and external mode libraries provided by MathWorks.

• setup.m - installation script which sets a few important variables. Then, it

compiles blocks via compile blocks.m and assembles them into library via gener-

ate lib.m.
1https://www.mathworks.com/help/rtw/build-process-customization.html
2https://www.mathworks.com/help/simulink/ug/registering-customizations.html

30

https://www.mathworks.com/help/rtw/build-process-customization.html
https://www.mathworks.com/help/simulink/ug/registering-customizations.html

• blocks/header.c & blocks/trailer.c - common header and trailer for blocks’

sfunctions.

• blocks/sfunction xxx.c - sfunction for xxx block. These files are just data

sources/sinks which describe a number of block’s inputs, outputs, parameters

and carry a few additional operations such as parameters’ validation.

• blocks/xxx.slx - visual representation of block xxx. It is create a mask of the

block with port labels and icon on the block. In other words, it is an appearance

of the block in Simulink.

• blocks/tlc c/common.tlc - common header for TLC templates.

• blocks/tlc c/sfunction xxx.tlc - TLC template for xxx block. This template

is written in TLC language and used by Simulink to generate C code. Therefore,

these files are code-description of the blocks.

The current library set contains 6 blocks: ADC, Digital Input (din), Digital Output

(dout), PWM, SCIR (SCI Receive), SCIS (SCI Sender), Overrun. These are basic

blocks with a minimal number of parameters. The Autosar MCAL modules have a

broad range of function to configure and interact with hardware peripherals. The

required functionality can be easily added to the existing implementation.

The configuration of the Autosar system is a quite complicated process of architecture

planning and setting up all the components together. Moreover, Autosar configuration

is highly depended on project requirements and necessary functionality (see section

3.2.1). Even though it is possible to implement a simple Simulink wrapper for the

provided interface, it is time-consuming to handle all the situations of the driver uti-

lization. Simulink is not a configuring tool for Autosar, and it can not offer the same

level of functionality. Therefore, we agreed with the assignment submitter that this set

of blocks is enough for the demonstration of the system working capacity and switched

priority to the other parts of the project.

• ADC - converts a value from a chosen channel

• Digital Input - reads boolean value (LOW/HIGH) on hardware pin

• Digital Output - writes boolean value (LOW/HIGH) to hardware pin

• PWM - sets PWM signal on a chosen channel with a variable duty cycle

• SCIR - receive one byte from the serial port

• SCIS - sends one byte to the serial port

• Overrun - overrun detection block

31

The serial port is attached to the LIN2 hardware channel. The configuration of this

channel can be found in Autosar OS configuration. The parameters of the serial link are

hardcoded in the UART library located at PROJECT_ROOT/src/lib. The parameters

are 115200-8-N-1.

Note that we also added overrun diagnostic block to the library (except visual model).

Unfortunately, due to the fact that we failed to integrate External mode support in our

target, this block does not work as we expected. It is a simple block with one boolean

output which indicates an occurrence of the overrun. However, as the target hardware

can not communicate with Simulink, it can not send an event that overrun occurred.

Therefore, we change it in the way that when overrun is detected the code corresponding

to this block sends message on a serial port.

The library can be assembled by running start.m script. It in turn calls com-

pile blocks.m and generate lib.m. The start.m contains a few important parame-

ters which need to be set before a run.

5.2 User Application

We implemented single task – multirate executing model. In this type of architecture,

all the particular model parts (with different sampling times) created in Simulink are

periodically executed in only one task. To decide which part of the model execute and

which not Simulink provides a mechanism in the form of the function rate scheduler().

This scheduler is executed with fundamental model rate (a greatest common divisor of

all sample times) and marks all the control loops which need to be activated in this

execution step.

The program consists of three task – main periodic task (MAINTASK), simulation

task (SIMULATIONTASK) and external mode task (EXTMODETASK). All model

related code is periodically called from the simulation task. The main periodic task

is responsible for overrun detection and synchronization of the simulation task. The a

mechanism for single tasking architecture is shown in figure 5.3.

The code of the user application is automatically generated from the model developed

via Simulink. There are two primary files which need to be mentioned – ert main.c

and modelname.c (filenames depend on the template and model names, therefore, they

can be different):

5.2.1 ert main.c

ert main.c - it is the main entry point to the user application, and it contains C main

function. This file is generated from a template (mrmain.tlc) which is written in the

32

form of markup language used by Simulink for code modification. mrmain.tlc contains

function calls and variables definition which will be replaced by corresponding C code.

The ert main.c is a file which defines application structure in the form of tasks. It

contains tasks functions and main() function. main() is the initialization of basic

modules (MCU, ECU), interrupts, serial link and modules which added by Simulink.

Simulink add only those modules which it found in the model. For example, if the

model uses ADC, then Simulink will add ADC initialization into main() function. This

is done by the following command: % < LibCallModelInitialize() > (in mrmain.tlc).

In final step main() function pass control to the operating system.

Main thread loop

Wait for Alarm

False

True

n-th execution

Check Overrun Flag

Set SIMULATIONTASK
activation event

Model thread loop
Wait for Event

Set Overrun Flag

Schedule rates

Rate Scheduler

Set flags which sample rates
need ot be execute

model_step_0()

if flags[1] == 1:
 model_step_1()

if flags[2] == 1:
 model_step_2()

Clear Overrun Flag

Clear Event

model.cert_main.c

Figure 5.3: Application inner structure

There is three task function corresponding to each task – MAINTASK, EXTMODE-

TASK, and SIMULATIONTASK. The MAINTASK is running with sample time equal

500µS via waiting for an event from the alarm. It is done for make execution of the

all task precise. This task runs on the highest required frequency and starts SIMU-

LATIONTASK with period calculated by Simulink. Also, MAINTASK have highest

33

priority and controls if SIMULATIONTASK overran or not.

5.2.2 model.c

model.c - this file is completly generated by Simulink. The file is made up of three

function – initialization, one step of the model and termination of the model. These

functions are filled up with code in accordance with model’s utilization of the blocks.

This means that every block has its initalization, step and termination procedures.

Simulink Coder collects all those procedures combine them and put into model.c.

The most important part is one step function. This function implements control loop

of the model. The custom blocks created in this project will be described in accordance

with their TLC templates.

5.3 OS & MCAL Configuration

The OS is configured separately from particular MCAL modules. The textual configura-

tion files of the operating system can be found at PROJECT ROOT/PIL-example/config.

It is stored in *.xdm format which a proprietary format is providing enhanced usabil-

ity features during work with EB Tresos Studio [12]. The following list contains main

points about OS configuration:

• OS has one mode (”Mode01”) and one application (”Application01”)

• We configured three interrupts – UART RX, UART TX and end of ADC conver-

sion

• System has three tasks - MAINTASK, EXTMODETASK, and SIMULATION-

TASK (described in section 3.4.2)

• OS has two counters. Both are attached to hardware clocks. First one is a

system counter attached to a clock with a frequency of 80MHz. The second one

is responsible for the timing of the tasks’ execution, and frequency of its clock is

40MHz.

• The counter used for task activation is actually connected to the FXOSC via

STM0 clock (see figure 5.4) with prescaler which decrease input frequency to

2MHz

• The system has one alarm attached to the second 2MHz counter. This is cyclic

alarm with period of 1000 ticks. At the overflow point it activates MAINTASK.

34

The more information about the configuration of the clock, counter, alarm can be found

in Appendix C (section 8).

Figure 5.4: STM0 clock generation (taken from reference manual at [36])

Most of the MCAL modules are configured for its minimal working state. These settings

can be investigated by using project for EB Tresos Studio (see section 4.2.4) placed at

PROJECT ROOT/Tresos Studio or by examining *.epc configuration files located at

PROJECT ROOT/generated/output.

A few key configuration points which need to be mentioned:

• ADC module is configured to convert a value from one channel (connected to a

potentiometer)

• PWM module has only one channel connected to LED1 (DS1)

• One of the LIN channels is used for UART communication (LIN2)

• LED2 - 4 (DS2 - 4) are configured as outputs

35

36

6. User Manuals

In this chapter you find several instruction which should help properly configure the

project for further work. The previous Chapter 4 – Environment Set-up listed all the

tools required for work with the project. In these instruction we assume that these

tools are already available in the system.

6.1 Configure Makefile.config

The first step before compiling of any project is to configure Makefile.config. As it is

explicit from the filename it is file wich configuration such as paths, compilation flags,

and files lists. The file is divided into section via comments to make it clearly readable

and intuitive. The section named ”User defined paths” contains paths which need

to be changed in accordance with your installation paths.

• PROJECT ROOT - this path is generated automatically via cygpath utility (it

is part of the Cygwin set; see 4.2.5). In case of the problem with the cygpath it

can be filled manually.

• OS ROOT - path to the NXP Autosar OS folder.

• S32 STUDIO - path to the root folder of S32 Design Studio.

• NXP MCAL - path to the NXP Autosar MCAL folder.

• DIABDIR - path to the Diab compiler. Note that it is not the root folder of

the Wind River Diab package. It is path to compiler folder, for example, located

at DIAB_ROOT/compilers/diab-5.9.6.2

These are the necessary modifications which need to be applied. Feel free to modify

any of the other parameters such as output folder, cygwin utilities, compiler flags etc.

6.2 The use of Testing application

The build process of the testing application is automated via Makefiles. The first

step, as described in the preceding section 6.1 is to assign correct paths. The rules

makefile Makefile.rules does not require any modifications. The entry point to start

the building process is makefile. It has a few key targets:

37

• all - compiles the testing application. By default, it takes only PROJECT_ROOT/

src/main.c file. To add more sources append them into CC FILES TO BUILD

variable. An assembled firmware will be located at PROJECT_ROOT/output/bin/

firmware.elf.

• upload - uploads the firmware into the hardware target.

• clean - remove firmware and all of the object files including the OS and MCAL

modules related.

The all target is default one. After successful compilation use upload target to flash

firmware into target hardware.

The target showflags is used for debugging purposes and can help to check if all paths

and files are correct.

On the Windows machine make utility can be run with the following command: make

-f Makefile target, where Makefile is the name of the makefile and target is the name

of the target. The commands are execution from the Windows Prompt or cmd. Note

that to run make without leading path it should be added to the environment path

variable.

6.3 Assemble and install Simulink library

The Simulink library itself is the collection of blocks. An assembled library can not

be modified. To modify existing blocks or add a new one you need to reassemble the

library. The process is of the installing library for the first time or reassembling it with

modified blocks is following:

1. Open Matlab and go to the PROJECT_ROOT/simulink via cd command

2. Open start.m script

3. Specify path in the compFolder variable

(a) compFolder is a folder with Wind River Diab compiler (see section 4.2.2).

The Makefile generated by Simulink calls project related Makefiles which

in turn specify this compiler as the main one. Wind River Diab compiler

expects a few environmental variables to be defined. These variables contain

list of folders including licensing one. Matlab use the compFolder path

to define a variable in its internal environment to make it visible for the

compiler.

38

4. Run this script. It will compile blocks, assemble them into the library and load

it into the Matlab/Simulink environment. The library file will be located at

PROJECT_ROOT/simulink/blocks/pil_mpc5748g.slx.

Now, the library should be available in the library browser under the name of Autosar

PIL - MPC5748G. In the end, the script opens one of the demonstration model

specified in the demo name variable.

Note that as TLC templates of the blocks are not a part of the library and used only for

code-generation you can freely change them without a need to reassemble the library.

6.4 Create new model

The process of creating a new model for Processor-in-the-loop testing is almost the

same as in a normal case. However, there exist a few differences. We automated all the

model’s parameters set up via defining custom target description file. In other words,

we simplified the process of creating a new model to only specifying a correct System

Target file.

1. Open Simulink and create a new model

2. Open model preferences

3. Go to Code-Generation tab

4. In the top area (named Target selection), in the field System Target file click

Browse....

5. Go to the PROJECT_ROOT/simulink folder. There will be custom System Target

file named autosar pil.tlc.

6. After that, all settings should update our default values. Now the model is ready

for compilation.

6.5 Adding new functionality

During this project, we implemented a set of basic blocks for work with the micro-

controller’s peripherals. These are Digital Input/Output, ADC, and PWM, SCI. But

MPC5748G has much reacher set of the peripherals which can be used in an advanced

project. In this section, we will describe how to add new functionality to already created

project and where to find documentation for correct configuration.

39

The process can be divided into two steps – hardware configuration and adding interface

to the Simulink library. The following sections explains both steps separetly.

6.5.1 Configure hardware

The first step is to configure hardware and create entry points. MCAL/MAL is ab-

straction layer right above the hardware. Autosar defines a specification for most of the

hardware peripherals. That means that high-level configuration almost does not depend

on low-level hardware configuration. In other words, the configuration of parameters

of different peripherals does not require knowledge of microcontroller’s low-level reg-

isters which need to be changed. For example, we did not work explicitly with the

hardware registers to configure hardware pins mode or direction. However, there are

many parameters which are platform depended and requires some knowledge of the

microcontoller implementation, for example, hardware clocks.

NXP’s plug-ins for EB Tresos Studio have the documentation of all of the fields offered

in the graphical user interface. Moreover, the plug-in folder has two stand-alone docu-

mentation files - module description and integration manual. The last one is especially

useful as it contains information about module dependencies.

Moreover, EB Tresos Studio has problem view window which is quite useful and helps

to create all required entities. It monitors all the changes made by the developer and

analyzes the configuration for conflicts or missing declarations. There exist a good

webinar about Autosar MCAL software from NXP available at [34].

6.5.2 Creating Interface to Simulink

The next step after hardware configuration is to create according blocks in the Simulink

library. As described in section 3.5.1 the particular blocks are made up of three files.

Firstly, to describe block’s attributes you need to create a Matlab executable file. It

is written in C language and compiled via MEX wrapper for a compiler. The MEX

shipped as part of the Matlab environment (for more information see [19]). The imple-

mentation of your newly added block should be placed at PROJECT_ROOT/simulink/

sfunction_name.c, where name is the name of your block; it is good practice to choose

short and memorizable abbreviatures. You can freely use already implemented blocks

to get an insight of basic structure of those files. More details about available framework

can be found at [13].

MATLAB_ROOT/bin/mex sfunction_name.c

Listing 6.1: Command to compile MEX from the Matlab

40

Note that you should define S FUNCTION NAME constant (in the begging of the file)

which will be used for attaching it to the visual model. After the block is complete

compile it with Matlab mex utility; it can be done by calling command in the listing

6.1

Secondly, you need to create visual model of the block:

1. Open Simulink and create New empty model

2. Open Library Browser

3. Search for s-function and add it to the model (see figure 6.1)

4. Open preferences of s-function block (Right Click - Preferences)

5. In S-Function name field type name defined in your sfunction source code; it

is a value of the S FUNCTION NAME constant.

6. If you defined any parameters type them into S-Function parameters field (for

example, double(SParameter1)).

7. Press apply and close this window. Now, you should see the block with the

corresponding number of inputs/outputs as in your MEX file.

8. To make block recognizable and mnemonical you can apply a mask on it. This

can be done by Right Click - Mask - Create Mask

Finally, we need to TLC template which will be used to generate the source code. The

templates should be placed at PROJECT_ROOT/simulink/blocks/tlc_c/sfunction_

name.tlc. Inspect our implementation to get an insight of the way to write those

templates. For more information check official documentation available at [23].

Figure 6.1: The block is point up by the red rectangle

41

At this phase, the block is ready to be added to the library. In the start.m script add

a name of your block into the list blocks (the name of the block is the same as the

filename of the *.slx file). After running the script, block will be added to the library.

42

7. Evaluation

In this chapter, we present four demonstration models which utilize blocks from the

developed Simulink library to show functionality and characteristics of the implemented

solution.

7.1 Demonstration of IO blocks

Figure 7.1: Demonstration model of all implemented IO blocks

The first model utilizes the low-level peripherals blocks available in the library. These

blocks are – Digital Input, Digital Output, ADC block and PWM block. This model

uses all four on-board LEDs to indicate that application is running. All four control

loops have different colors which represent different sampling rates. The second control

loop (green one) is running on the sample time equals to 0.5. Therefore, LED (under

pin 100 – DS3) will be toggle every half of a second. The others loops (red ones) are

running on the sample time of 0.01 fraction of a second. The fourth control loop reads

the analog value on potentiomentr (the blue one, used for ADC tests), calculates the

corresponding value in the range of PWM’s duty cycle and write it to the LED (first

one on the board – DS1).

43

7.2 Timing and Multirate Simulink model

Figure 7.2: Demonstration model of control loops with different freqencies

This model demonstrates correct work of timing and multirate mechanism. It uses three

different frequency to toggle three LEDs. Different colors denote different frequencies.

In non-trivial models, it can be hard to follow all the model sample times, to make it

more convenient Simulink has the legend which can be opened via menu: Display -

Sample time - All. This window is shown in figure 7.3.

Figure 7.3: Freqincies of the model shown in figure 7.2

44

7.3 Granularity

Figure 7.4: Model used to show correctness of timing mechanism

It is important for control application to have precise timing. To proof that our imple-

mentation has required the precision of the execution rate, we created demonstration

model with maximal possible frequency (2000 Hz). The repeating sequence stair, shown

in figure 7.4, has sample time 0.0005 and output vector [0 1]. The generated signal is

converted into boolean value (LOW/HIGH) and then written on one of the pins (in

this case it is PA[0]). We recorded this pin with Oscilloscope and measured a frequency

of 1000 Hz which corresponds to our expectations (pin is toggled every cycle therefore

frequency will be two times lower). The frequency can be seen in the left-bottom corner

in the figure 7.6.

Figure 7.5: Signal recorded with osciloscope for model in figure 7.4

45

7.4 SCI Echo Server

The last demonstration model is so-called Echo-server. The hardware target sends

back all the data it receives. The principle is simple: the SCIR block receives one byte

from the serial port, and the SCIS block sends this byte back. However, the model

is constantly executed which means that block SCIS attempts to send character every

execution step. This, in fact, creates constant spamming of empty characters on the

serial port. We solved this issue by wrapping the SCIS block into subsystem which is

activated only if SCIR successfully received a character. For monitoring serial port on

Windows machine you can use Putty (see section 4.2.5).

Figure 7.6: Model of the Echo server

7.5 Overrun demonstration

For the demonstration of the overrun diagnostics, we used the testing application.

We did not find an elegant solution to create an artificial overrun from the Simulink.

Therefore, we added infinite while loop in the testing application which is activated

when a pushbutton (SW4) on the board is pressed.

// Wait while button is pressed

while(Dio_ReadChannel ((Dio_ChannelType)DioConf_DioChannel_SW4) == STD_HIGH){

;

}

Listing 7.1: Fragment of the code for creating overruns

This hang-up leads to long task execution and creates overrun. The overruns are

signalled on serial port by message outputed by the MAINTASK.

46

8. Conclusion

The primary objective of this thesis was to create a basic prototype of the processor-

in-the-loop system running Autosar operating system on the MPC5748G-LCEVB De-

velopment Board. The project is similar to the Rapid prototyping platform (RPP)

developed earlier at the CTU. The key difference is the utilization of the automotive

industry standard – Autosar.

The main objective was to investigate and make use of Autosar operating system with

further integration with Matlab/Simulink environment. The Autosar open architecture

is quite a massive software standard with a plethora of specifications and rich set of

configuration parameters. The operating system was configured to satisfy the suggest

system design. The microcontroller abstraction layer modules were configured to create

a set of basic blocks to demonstrate capabilities of the system. Thesis assignment states

more extensive list of the blocks, however, as was shown in the section 5.1.4 and section

3.2.2 by the agreement with the submitter we decided to make only a demonstration

set of essential blocks. Our configuration of the system and its internal design make it

possible to assure necessary granularity of 500µS. Moreover, the overrun diagnostics

was included in the system setup. The developed Processor-in-the-loop system is in-

tegrated with Matlab R2016B (64 bit) running under MS Windows operating system.

The setup of the environment for the model development and PIL simulation is mostly

automated and only requires some essential modification of the configurational files.

The thesis contains the list of the tools recommended for work this project with links

to datailed documentation. We described suggested design of the system and provided

several instructions describing the use and ways of improving the system. Lastly, we

created evaluation models to demonstrate the system’s features and to help getting

started with the project.

External Mode The development or prototyping of a new model can be even more

productive if there would be External Mode support. It allows to change parameters of

the blocks in run-time and view data-flows inside a model. Unfortunately, the source

code provided by MathWorks, Inc. does not have any documentation at all. There exist

a few examples on the internet with external mode integration into the custom targets.

However, they are outdated and does not provide enough information for implementing

it in another system. The correct integration of the external mode support apparently

involves some reverse engineering of quite complicated and old code.

However, during this project, we carried out some experiments and collected informa-

tion and records about the integration of the external mode into this or any other

project. These materials are available as an attachment to this work.

47

Fixed Configuration of Autosar + GNU Compiler Implementation of Autosar

OS and Autosar MCAL modules require compilation with compiler officially tested

and supported by NXP. However, Eaton Corporation would like to use free or custom

compiler for the further work. Due to the fact that user application code is written/-

generated in C language and doesn’t contain compiler-specific constructions or syntax,

there is a possibility to compile it with GNU Compiler for PowerPC architecture1.

Therefore, the compiled version of the pre-configured Autosar components for specific

project will allow to use a developed system without additional compilers such as Wind

River Diab Compiler or Green Hills Compiler.

1https://gcc.gnu.org/onlinedocs/gcc/RS 002f6000-and-PowerPC-Options.html

48

Bibliography

[1] Autosar. Autosar - The standardized software framework. [Online; accessed Jan-

uary, 2018]. url: https://www.autosar.org/.

[2] Autosar. Specification of Operating System. Version: 5.0.0. Revision: 3. [Online;

accessed January, 2018]. url: https://www.autosar.org/fileadmin/user_

upload/standards/classic/4-0/AUTOSAR_SWS_OS.pdf.

[3] Autosar. Specification of Run-time Environment. Version: 3.2.0. Revision: 3. [On-

line; accessed January, 2018]. url: https://www.autosar.org/fileadmin/

user_upload/standards/classic/4-0/AUTOSAR_SWS_RTE.pdf.

[4] Eaton Corporation. Eaton Web Pages - Automotive. [Online; accessed May, 2018].

url: http://www.eaton.com/Eaton/ProductsServices/Vehicle/markets/

automotive/index.htm.

[5] Eaton Corporation. Eaton Web Pages - EGerodisc Differentials. [Online; accessed

May, 2018]. url: http://www.eaton.com/Eaton/ProductsServices/Vehicle/

Differentials/egerodisc-differentials/index.htm.

[6] The Cygwin. Cygwin collection. [Online; accessed February, 2018]. url: https:

//www.cygwin.com/.

[7] Ewen Denney. “A Software Safety Certification Plug-in for Automated Code Gen-

erators”. In: NASA Ames Research Center, Moffett Field (November 29, 2006).

[8] Elektrobit. EB Tresos Studio. [Online; accessed February, 2018]. url: https:

//www.elektrobit.com/products/ecu/eb-tresos/studio/.

[9] Elektrobit. Latest in-car technologies - Autosar. [Online; accessed March, 2018].

url: https://www.elektrobit.com/products/ecu/technologies/autosar/.

[10] Carlos Jenkins, Michal Sojka, and Michal Horn. Code generation for automotive

rapid prototyping platform using Matlab/Simulink. Technical report, Czech Tech-

nical University in Prague, [Online; accessed January, 2018]. 2015. url: http:

//rtime.felk.cvut.cz/rpp-tms570/rpp_simulink.pdf.

[11] M.DiNatale. An introduction to AUTOSAR. ReTiS Lab, [Online; accessed Febru-

ary, 2018]. url: https://retis.sssup.it/sites/default/files/lesson19_

autosar.pdf.

[12] Freescale Marius Rotaru. Hands-on Workshop: Autosar Training. [Online; ac-

cessed May, 2018]. 2015. url: https://www.nxp.com/docs/en/supporting-

information/ftf-acc-F1243.pdf.

[13] MathWorks, Inc. Basic C MEX S-Function. [Online; accessed April, 2018]. url:

https://www.mathworks.com/help/simulink/sfg/example-of-a-basic-c-

mex-s-function.html.

49

https://www.autosar.org/
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-0/AUTOSAR_SWS_OS.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-0/AUTOSAR_SWS_OS.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-0/AUTOSAR_SWS_RTE.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-0/AUTOSAR_SWS_RTE.pdf
http://www.eaton.com/Eaton/ProductsServices/Vehicle/markets/automotive/index.htm
http://www.eaton.com/Eaton/ProductsServices/Vehicle/markets/automotive/index.htm
http://www.eaton.com/Eaton/ProductsServices/Vehicle/Differentials/egerodisc-differentials/index.htm
http://www.eaton.com/Eaton/ProductsServices/Vehicle/Differentials/egerodisc-differentials/index.htm
https://www.cygwin.com/
https://www.cygwin.com/
https://www.elektrobit.com/products/ecu/eb-tresos/studio/
https://www.elektrobit.com/products/ecu/eb-tresos/studio/
https://www.elektrobit.com/products/ecu/technologies/autosar/
http://rtime.felk.cvut.cz/rpp-tms570/rpp_simulink.pdf
http://rtime.felk.cvut.cz/rpp-tms570/rpp_simulink.pdf
https://retis.sssup.it/sites/default/files/lesson19_autosar.pdf
https://retis.sssup.it/sites/default/files/lesson19_autosar.pdf
https://www.nxp.com/docs/en/supporting-information/ftf-acc-F1243.pdf
https://www.nxp.com/docs/en/supporting-information/ftf-acc-F1243.pdf
https://www.mathworks.com/help/simulink/sfg/example-of-a-basic-c-mex-s-function.html
https://www.mathworks.com/help/simulink/sfg/example-of-a-basic-c-mex-s-function.html

[14] MathWorks, Inc. C/C++ S-Functions Documentation. [Online; accessed April,

2018]. url: https://www.mathworks.com/help/simulink/c-c-s-functions.

html.

[15] MathWorks, Inc. Embedded Coder. [Online; accessed April, 2018]. url: https:

//www.mathworks.com/products/embedded-coder.html.

[16] MathWorks, Inc. Introduction to the Target Language Compiler. [Online; accessed

May, 2018]. url: https://www.mathworks.com/help/rtw/tlc/what-is-the-

target-language-compiler.html.

[17] MathWorks, Inc. Matlab & Simulink. [Online; accessed February, 2018]. url:

https://www.mathworks.com/products/matlab.html.

[18] MathWorks, Inc. Matlab Coder. [Online; accessed January, 2018]. url: https:

//www.mathworks.com/products/matlab-coder.html.

[19] MathWorks, Inc. Matlab/Simulink Documentation - Build MEX functions from

C/C++ or Fortran source code. [Online; accessed March, 2018]. url: https:

//www.mathworks.com/help/matlab/ref/mex.html.

[20] MathWorks, Inc. Matlab/Simulink Documentation - Controlling Code Generation

With the System Target File. [Online; accessed April, 2018]. url: https://www.

mathworks.com/help/releases/R2011b/toolbox/rtw/ug/bse3c7m-1.html.

[21] MathWorks, Inc. Matlab/Simulink Documentation - S-Function Basics. [Online;

accessed April, 2018]. url: https://www.mathworks.com/help/simulink/s-

function-basics.html.

[22] MathWorks, Inc. Matlab/Simulink Documentation - Simulink Libraries. [Online;

accessed April, 2018]. url: https://www.mathworks.com/help/simulink/

libraries.html.

[23] MathWorks, Inc. Matlab/Simulink Documentation - TLC Files. [Online; accessed

March, 2018]. url: https://www.mathworks.com/help/rtw/tlc/tlc-files.

html.

[24] MathWorks, Inc. Model-Based Design Benefits. [Online; accessed January, 2018].

url: https://www.mathworks.com/solutions/model-based-design.html.

[25] MathWorks, Inc. Processor-In-the-Loop Simulation on Embedded Linux Boards.

[Online; accessed March, 2018]. url: https://www.mathworks.com/company/

newsletters/articles/processor-in-the-loop-simulation-on-embedded-

linux-boards.html.

[26] MathWorks, Inc. Simulink - Simulation and Model-Based Design. [Online; ac-

cessed March, 2018]. url: https://www.mathworks.com/products/simulink.

html.

[27] MathWorks, Inc. Simulink Coder. [Online; accessed April, 2018]. url: https:

//www.mathworks.com/products/simulink-coder.html.

50

https://www.mathworks.com/help/simulink/c-c-s-functions.html
https://www.mathworks.com/help/simulink/c-c-s-functions.html
https://www.mathworks.com/products/embedded-coder.html
https://www.mathworks.com/products/embedded-coder.html
https://www.mathworks.com/help/rtw/tlc/what-is-the-target-language-compiler.html
https://www.mathworks.com/help/rtw/tlc/what-is-the-target-language-compiler.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab-coder.html
https://www.mathworks.com/products/matlab-coder.html
https://www.mathworks.com/help/matlab/ref/mex.html
https://www.mathworks.com/help/matlab/ref/mex.html
https://www.mathworks.com/help/releases/R2011b/toolbox/rtw/ug/bse3c7m-1.html
https://www.mathworks.com/help/releases/R2011b/toolbox/rtw/ug/bse3c7m-1.html
https://www.mathworks.com/help/simulink/s-function-basics.html
https://www.mathworks.com/help/simulink/s-function-basics.html
https://www.mathworks.com/help/simulink/libraries.html
https://www.mathworks.com/help/simulink/libraries.html
https://www.mathworks.com/help/rtw/tlc/tlc-files.html
https://www.mathworks.com/help/rtw/tlc/tlc-files.html
https://www.mathworks.com/solutions/model-based-design.html
https://www.mathworks.com/company/newsletters/articles/processor-in-the-loop-simulation-on-embedded-linux-boards.html
https://www.mathworks.com/company/newsletters/articles/processor-in-the-loop-simulation-on-embedded-linux-boards.html
https://www.mathworks.com/company/newsletters/articles/processor-in-the-loop-simulation-on-embedded-linux-boards.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink-coder.html
https://www.mathworks.com/products/simulink-coder.html

[28] MathWorks, Inc. Simulink Software Tools for Autosar. [Online; accessed May,

2018]. url: https://www.mathworks.com/solutions/automotive/standards/

autosar.html.

[29] Charles J. Murray. “Automakers Opting for Model-Based Design”. In: Design

News (November 5, 2010). [Online; accessed May, 2018]. url: https://web.

archive.org/web/20101125060340/http://www.designnews.com/article/

511392-Automakers_Opting_for_Model_Based_Design.php.

[30] Vinod Reddy. “Accelerating development with model-based design”. In: embed-

ded.com (August 21, 2015). url: https://www.embedded.com/electronics-

blogs/say-what-/4440209/Accelerating-development-with-model-based-

design.

[31] Wind River. Wind River Diab Compiler 5.9.6 Evaluation. [Online; accessed Febru-

ary, 2018]. url: https://www.windriver.com/evaluations/diab_compiler/.

[32] Lars Rosqvist, Roger Aarenstrup, and MathWorks Inc. Kristian Lindqvist. Processor-

In-the-Loop Simulation on Embedded Linux Boards. [Online; accessed May, 2018].

url: https://www.mathworks.com/company/newsletters/articles/processor-

in-the-loop-simulation-on-embedded-linux-boards.html.

[33] NXP Semiconductors. AUTOSAR-4: AUTOSAR 4.0.x (Classic Platform) Soft-

ware. [Online; accessed January, 2018]. url: https://www.nxp.com/autosar.

[34] NXP Semiconductors. Introduction to NXP AUTOSAR MCAL Software. [Online;

accessed March, 2018]. url: https://www.nxp.com/video/introduction-to-

nxp-autosar-mcal-software:AUTOSAR-OnDemand-Training-Video.

[35] NXP Semiconductors. MPC5748G-LCEVB: Development Board for MPC5748G.

[Online; accessed February, 2018]. url: https://www.nxp.com/MPC5748G-LCEVB.

[36] NXP Semiconductors. MPC574xB-C-G: Ultra-Reliable MCUs for Automotive &

Industrial Control and Gateway. [Online; accessed February, 2018]. url: https:

//www.nxp.com/mpc5748g.

[37] NXP Semiconductors. S32DS-PA: S32 Design Studio IDE for Power Architecture

based MCUs. [Online; accessed January, 2018]. url: https://www.nxp.com/

s32ds.

[38] Simon Tatham. Putty - SSH and Telnet client. [Online; accessed February, 2018].

url: https://www.putty.org.

[39] Vector Informatik GmbH. AUTOSAR configuration Process. [Online; accessed

February, 2018]. url: https://vector.com/portal/medien/cmc/events/

Webinars/2013/Vector_Webinar_AUTOSAR_Configuration_Process_20130419_

EN.pdf.

[40] Vector Informatik GmbH. MICROSAR - product information. [Online; accessed

May, 2018]. url: https://vector.com/portal/medien/cmc/info/MICROSAR_

ProductInformation_EN.pdf.

51

https://www.mathworks.com/solutions/automotive/standards/autosar.html
https://www.mathworks.com/solutions/automotive/standards/autosar.html
https://web.archive.org/web/20101125060340/http://www.designnews.com/article/511392-Automakers_Opting_for_Model_Based_Design.php
https://web.archive.org/web/20101125060340/http://www.designnews.com/article/511392-Automakers_Opting_for_Model_Based_Design.php
https://web.archive.org/web/20101125060340/http://www.designnews.com/article/511392-Automakers_Opting_for_Model_Based_Design.php
https://www.embedded.com/electronics-blogs/say-what-/4440209/Accelerating-development-with-model-based-design
https://www.embedded.com/electronics-blogs/say-what-/4440209/Accelerating-development-with-model-based-design
https://www.embedded.com/electronics-blogs/say-what-/4440209/Accelerating-development-with-model-based-design
https://www.windriver.com/evaluations/diab_compiler/
https://www.mathworks.com/company/newsletters/articles/processor-in-the-loop-simulation-on-embedded-linux-boards.html
https://www.mathworks.com/company/newsletters/articles/processor-in-the-loop-simulation-on-embedded-linux-boards.html
https://www.nxp.com/autosar
https://www.nxp.com/video/introduction-to-nxp-autosar-mcal-software:AUTOSAR-OnDemand-Training-Video
https://www.nxp.com/video/introduction-to-nxp-autosar-mcal-software:AUTOSAR-OnDemand-Training-Video
https://www.nxp.com/MPC5748G-LCEVB
https://www.nxp.com/mpc5748g
https://www.nxp.com/mpc5748g
https://www.nxp.com/s32ds
https://www.nxp.com/s32ds
https://www.putty.org
https://vector.com/portal/medien/cmc/events/Webinars/2013/Vector_Webinar_AUTOSAR_Configuration_Process_20130419_EN.pdf
https://vector.com/portal/medien/cmc/events/Webinars/2013/Vector_Webinar_AUTOSAR_Configuration_Process_20130419_EN.pdf
https://vector.com/portal/medien/cmc/events/Webinars/2013/Vector_Webinar_AUTOSAR_Configuration_Process_20130419_EN.pdf
https://vector.com/portal/medien/cmc/info/MICROSAR_ProductInformation_EN.pdf
https://vector.com/portal/medien/cmc/info/MICROSAR_ProductInformation_EN.pdf

[41] Vector. Vector E-Learning - virtual VectorAcademy. [Online; accessed January,

2018]. url: https://elearning.vector.com/.

52

https://elearning.vector.com/

List of Figures

2.1 Autosar OS Layers Structure . 8

3.1 System Architecture . 11

3.2 Autosar implementation provided by NXP [36] 14

3.3 Simulink generates only user application (model’s code) 15

3.4 Internal structure of the user application 17

4.1 Photo of the evaluation board taken from [35] 21

5.1 Directory tree of the project . 25

5.2 Shorten directory tree of the Simulink folder 29

5.3 Application inner structure . 33

5.4 STM0 clock generation (taken from reference manual at [36]) 35

6.1 The block is point up by the red rectangle 41

7.1 Demonstration model of all implemented IO blocks 43

7.2 Demonstration model of control loops with different freqencies 44

7.3 Freqincies of the model shown in figure 7.2 44

7.4 Model used to show correctness of timing mechanism 45

7.5 Signal recorded with osciloscope for model in figure 7.4 45

7.6 Model of the Echo server . 46

8.1 PIL execution workflow taken from [32] 59

8.2 Warning in the library browser shown when the library is added 61

8.3 The dialog for fixing missing repository information 62

8.4 Screenshot of FXOSC configration in EB Tresos Studio (see 5.3 and 4.2.4) 63

8.5 Screenshot of STM0 configration in EB Tresos Studio (see 5.3 and 4.2.4) 63

53

8.6 Screenshot of counter configration in EB Tresos Studio (see 5.3 and 4.2.4) 64

8.7 Screenshot of alarm configration in EB Tresos Studio (see 5.3 and 4.2.4) 64

54

Acronyms

Autosar Automotive Open System Architecture. 8, 14

BSW Basic Software Modules. 8, 13, 14, 23

GDB GNU Debugger. 22, 25, 26, 28

MBD Model-Based Design. 5, 7

MCAL/MAL Microcontroller abstraction layer. 9, 15, 23, 40

MEX Matlab executable. 18

OEM Original equipment manufacturer. 8, 14, 15

PIL Processor-in-the-loop. 1, 5, 7, 10, 12, 19, 39, 47

RTE Run-time Environment. 1, 14, 15

RTW Real-Time workshop (Matlab Embedded coder). 28, 29

SWC Software Component. 14

VFB Virtual Functional Bus. 14, 15

55

56

CD content

./
Project.................................Developed Project
DP 2018 Andrey Albershteyn.pdf...........This document
External-Mode....Collected materials about External Mode

57

58

Appendix A

Figure 8.1: PIL execution workflow taken from [32]

59

60

Appendix B

This section contains advice and troubleshooting information which can be useful in

further development. During the development of the project we spent some time on

solving these issues which could be easily avoided.

• Official NXP web-pages contains Autosar + MCAL example for MPC5748G mi-

crocontroller. But actually it is for MPC5748C which is a slightly different pro-

cessor. Winter, 2018. Forum Discussion [Link]

• Due to differences in slash usage for Cygwin utilities and Windows’s paths there

could occure mistakes. Make sure your paths are correct.

• Linker Error during Simulink Library blocks compilation. One of the possible

reason for this error is that blocks are locked by Matlab/Simulink. Try to close

Matlab and Simulink, then, delete all .mexw64 files in simulink/blocks directory.

• License Error during compilation process. If you get get fatal error with follow-

ing message License error: Unknown LMAPI error one of the possible reasons

is that your environment variables for the compiler are incorrect. Try to regen-

erate env.bat file (the process is described in the Wind River Diab compiler

documentation).

• When you assemble the library and add it to the Simulink for the first time you

can get warning in the library browser (shown in figure 8.2). The library will not

be visible in the list.

Figure 8.2: Warning in the library browser shown when the library is added

To fix it press Fix link. The new dialog will open, shown in figure 8.3.

61

https://community.nxp.com/thread/470805

Figure 8.3: The dialog for fixing missing repository information

Choose the second option ”Generate repositories in memory” and press OK.

After that the library browser should update information about libraries and the

custom library should appear in the list. The name of the library is Autosar

PIL - MPC5748G.

62

Appendix C

This Appendix contains screenshots from EB Tresos Studio with configuration of the

key components - FXOSC clock, STM0, Counter, and Alarm. These are the key com-

ponents are used to activate main application task.

Figure 8.4: Screenshot of FXOSC configration in EB Tresos Studio (see 5.3 and 4.2.4)

Figure 8.5: Screenshot of STM0 configration in EB Tresos Studio (see 5.3 and 4.2.4)

63

Figure 8.6: Screenshot of counter configration in EB Tresos Studio (see 5.3 and 4.2.4)

Figure 8.7: Screenshot of alarm configration in EB Tresos Studio (see 5.3 and 4.2.4)

64

Appendix D

>> cd C:\Users\Andre\Project\simulink\

>> start

Start library generation process

Compiling blocks ...

"C:\ Program Files\MATLAB\R2016b "\bin\mex sfunction_adc.c

"C:\ Program Files\MATLAB\R2016b "\bin\mex sfunction_din.c

"C:\ Program Files\MATLAB\R2016b "\bin\mex sfunction_lout.c

"C:\ Program Files\MATLAB\R2016b "\bin\mex sfunction_or.c

"C:\ Program Files\MATLAB\R2016b "\bin\mex sfunction_pwm.c

"C:\ Program Files\MATLAB\R2016b "\bin\mex sfunction_scir.c

"C:\ Program Files\MATLAB\R2016b "\bin\mex sfunction_scis.c

Removing old blocks:

pil_mpc5748g/ADC

pil_mpc5748g/Digital Input

pil_mpc5748g/Digital Output

pil_mpc5748g/PWM

pil_mpc5748g/SCI Receive

pil_mpc5748g/SCI Send

Adding new blocks:

from: din.slx:

din/Digital Input as pil_mpc5748g/Digital Input

from: dout.slx:

dout/Digital Output as pil_mpc5748g/Digital Output

from: adc.slx:

adc/ADC as pil_mpc5748g/ADC

from: pwm.slx:

pwm/PWM as pil_mpc5748g/PWM

from: scis.slx:

scis/SCI Send as pil_mpc5748g/SCI Send

from: scir.slx:

scir/SCI Receive as pil_mpc5748g/SCI Receive

Closing and saving file pil_mpc5748g.slx

Target setup is complete!

Current configuration:

CompilerRoot : C:/Apps/Diab/compilers/diab -5.9.6.2/ WIN32

TargetRoot : C:/ Users/Andre/Project/simulink

Hardware : mpc5748g

Load library

>>

Listing 8.1: Sample output of the start.m script

65

66

	Introduction
	Objectives
	Outline

	Concepts and Technologies
	Model-Based Design
	Brief description of pil simulation
	Autosar
	Autosar configuration

	Autosar MCAL
	Matlab & Simulink

	PIL System Design
	System Architecture
	Operating System Configuration
	Autosar OS Configuration
	MCAL modules Configuration

	The use of rte
	User Application
	Simulink Skeleton of the application
	Architecture

	Simulink Library
	Block internal structure

	PIL simulation flow
	Run-time Model behavior

	Environment Set-up
	Hardware Set-up
	Software Tools
	S32 Design Studio IDE for Power Architecture based MCUs
	Wind River Diab Compiler 5.9.6
	NXP Software Packages
	EB Tresos Studio
	Cygwin & GNU Make & Putty
	Matlab + Simulink

	Implementation Details
	Folders and Files description
	Folders structure
	Makefiles
	Compilation & Execution
	Simulink Folder Description

	User Application
	ert_main.c
	model.c

	OS & MCAL Configuration

	User Manuals
	Configure Makefile.config
	The use of Testing application
	Assemble and install Simulink library
	Create new model
	Adding new functionality
	Configure hardware
	Creating Interface to Simulink

	Evaluation
	Demonstration of IO blocks
	Timing and Multirate Simulink model
	Granularity
	SCI Echo Server
	Overrun demonstration

	Conclusion
	List of Figures
	Acronyms
	CD content
	Appendix A
	Appendix B
	Appendix C
	Appendix D

