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Abstract
With the approval of the regulation UN-
ECE R157 there is now a minimal set of
scenario based tests, that an ALKS has
to pass in order to be allowed into pro-
duction. However, there are no specific
parameters, hence they shall be reason-
ably selected. To vary them as much as
possible in the shortest time, a simula-
tor is used. Using Python 3 and Carla,
I implemented an ALKS as well as 3 of
the tests to assess it. The tests can be
parameterized, providing the total of 90
versions. The ALKS has used a radar as
the only sensor and has not passed all the
tests, therefore further work is required.

Keywords: autonomous driving,
OpenDRIVE, ALKS, Python, Carla,
Unreal Engine 4

Supervisor: Ing. Michal Sojka, Ph.D.

Abstrakt
Se schválením předpisu UNECE R157
nyní existuje minimální soubor testů za-
ložených na scénáři, kterými musí ALKS
projít, aby mohl být uveden do výroby.
Neexistují však žádné konkrétní parame-
try, ty proto musí být rozumně vybrány.
Pro jejich co největší obměnu v co nejkrat-
ším čase se používá simulátor. Pomocí
Pythonu 3 a Carla jsem implementoval
ALKS a také 3 testy, abych mohl ALKS
zhodnotit. Testy lze parametrizovat a po-
skytují celkem 90 verzí. ALKS používá
radar jako jediný senzor a neprošel všemi
testy, proto je zapotřebí další práce.

Klíčová slova: autonomní řízení,
OpenDRIVE, ALKS, Python, Carla,
Unreal Engine 4

Překlad názvu: Testovací prostředí pro
verifikaci systému automatizovaného
udržování vozidla v jízdním pruhu
(ALKS)

vi



Contents
1 Introduction 1
2 Background 3
2.1 ALKS and 6 levels of driving

automation . . . . . . . . . . . . . . . . . . . . . 3
2.2 ASAM OpenX standards . . . . . . . 3
2.3 Roadrunner . . . . . . . . . . . . . . . . . . . 4
2.4 Game engines . . . . . . . . . . . . . . . . . 5

2.4.1 Unreal engine . . . . . . . . . . . . . . 5
2.4.2 Unity . . . . . . . . . . . . . . . . . . . . . . 5

2.5 Simulation tools . . . . . . . . . . . . . . . 6
2.5.1 Carla . . . . . . . . . . . . . . . . . . . . . . 6
2.5.2 SVL Simulator . . . . . . . . . . . . . 6
2.5.3 Esmini . . . . . . . . . . . . . . . . . . . . 6

3 Design 7
3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Carla and tests . . . . . . . . . . . . . . . . 8
4 Implementation 11
4.1 Software installation . . . . . . . . . . 11
4.2 Map creation in RoadRunner . . . 12
4.3 Import into Carla . . . . . . . . . . . . . 13
4.4 ALKS tests in Python 3 . . . . . . . 14

4.4.1 Setup . . . . . . . . . . . . . . . . . . . . . 14
4.4.2 Sensor callbacks . . . . . . . . . . . 15
4.4.3 ALKS . . . . . . . . . . . . . . . . . . . . 16
4.4.4 Data processing . . . . . . . . . . . . 18
4.4.5 Tests . . . . . . . . . . . . . . . . . . . . . 19

5 Evaluation 25
6 Conclusion 29
Bibliography 31

vii



Figures
2.1 Visualization of scenarios in Esmini 6

3.1 Server-client architecture of Carla. 8
3.2 Inclusion of common modules into

a test (the cut-out test as an example
here), all written in Python 3. . . . . . 9

4.1 RoadRunner GUI with a finished
scene, exploited in the Carla
simulator to test ALKS. . . . . . . . . . 12

5.1 Graphs from the cut-in test on a
right bend, where the ego was
supposed to go by 20 km/h and the
test vehicle by 10 km/h cutting into
ego’s lane from the left. Red arrow
shows the beginning of the
maneuver. . . . . . . . . . . . . . . . . . . . . . 26

5.2 Graphs from the cut-out test,
where the ego was supposed to go by
40 km/h and the test vehicle by 20
km/h and cutting out from ego’s lane
to the left. Red arrow shows the
beginning of the maneuver. . . . . . . 27

Tables

viii



Chapter 1
Introduction

In recent decades, automation development intervenes more and more domains
of our lives, ranging from factory pipelines through self service cash registers
to many smart devices. Some of these are fail-safe, but those which are fail-
deadly require intensive testing and verification before being manufactured
and sold. This is the case within the automotive area, where especially
cars are implementing new systems and functions to make drivers’ journey
easier and more comfortable. One of the newest functions is so called ALKS,
standing for automated lane keeping systems. Such a function, when active,
is responsible for the dynamic driving task (DDT), so the driver can focus
on secondary tasks. Put in another words, it actively controls the throttle,
brake pedal as well as the steering wheel in response to the environmental
conditions and traffic around. ALKS is primarily intended to use on straight
roads or highways, where the vehicles’ path is not curved too much and can
not be crossed by any other road user.

With the recent approval of the regulation UNECE R157 [1] (further
referred to as the regulation) it is possible to include ALKS into equipment
of vehicles sold on the market in over 60 countries, if they pass at least the
set of tests mentioned therein. The specific parameters of the tests are not
specified, however, so a technical service, conducting the tests, should verify
safety and reliability by selecting parameters for them reasonably.

While all the tests are done on real vehicles, of course, they are very well
complemented by using simulation tools, where many of possible errors can
be identified. This is cheaper, faster and has the advantage of allowing the
system in question to be easily tested in most of any conceivable traffic
scenarios, common ones as well as edge cases, without modifying an already
produced piece.

The goal of this thesis is to present the reader with 3 open source simulation
tools and describe a way how to implement an ALKS as well as 3 tests from
the regulation in one of them, including the parameterization.
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Chapter 2
Background

2.1 ALKS and 6 levels of driving automation

The ALKS is a system designed to take over the dynamic driving task (DDT)
and is fully responsible for controlling your vehicle once activated. However,
the conditions to fulfill before activation are strict. They are stated in
paragraphs 5-9 of the regulation [1] and include the maximum operational
speed of 60 km/h, no intrusion on any neighbouring lane, prohibition of
pedestrians and cyclists on the road or physical separation of traffic moving in
opposite direction, that is to prevent any other road users from cutting across
the path of the vehicle. With that being said, ALKS shall not be activated
for example in a city with dense road network where a lot of junctions happen
to be.

ALKS belongs to level 3 out of the 6 levels of driving automation, with
level 0 being no automation and level 5 fully automated1. They are defined
by the standard J3016_201806 from the Society of automation engineers
(SAE)2 and were adopted by U.S. Department of Transportation. Level 3
is the conditional driving automation, so not only are there conditions to
fulfill before activation, but as soon as ALKS evaluates it will not able to
control the vehicle for any reason, it shall hand the control over to the driver.
How such a transition shall be done is described in the regulation as well.
Nevertheless, it shall be possible for the human driver to override ALKS at
any instant time.

2.2 ASAM OpenX standards

ASAM stands for Association for standardization of Automation and Mea-
suring systems [2]. It is located in Höhenkirchen, Germany and was founded
in 1998 on an initiative of German car manufactures AUDI, BMW, Daimler
and Porsche VW. They develop and maintain standards in different areas
of automotive industry. In 2018 they added new area to their expertise –
highly automated driving – and adopted 3 new standards into it. These are

1https://www.synopsys.com/automotive/autonomous-driving-levels.html
2https://www.sae.org/standards/content/j3016_201806/

3

https://www.synopsys.com/automotive/autonomous-driving-levels.html
https://www.sae.org/standards/content/j3016_201806/


2. Background .....................................
OpenDRIVE, OpenSCENARIO and OpenCRG, together called the OpenX
standards. The three standards are complementary to each other and cover
both the static and dynamic content of a simulation.

The OpenDRIVE3 deals with the static one and description of an envi-
ronment is done using an xml schema, usually all in one file. Each road has
its’ own reference line along which features of the road are defined, including
lanes, traffic signs or objects as parked car or traffic cones. A road can be
chopped into sections, which is done for example when the number of lanes
changes, e.g. merge lane on a highway, or linked together with others either
directly with a link tag or via junction tag if the connection is ambiguous.

OpenSCENARIO4, however, handles the dynamic one. Scenario files use
xml format and have an initial section to set up the scenario (set the weather,
put actors on the right spot, etc.) and a main container for all that happens
called storyboard. Usually there is only one per scenario and can be divided
into 6 more elements: ⟨Story⟩, ⟨Act⟩, ⟨ManeuverGroup⟩, ⟨Maneuver⟩,
⟨Event⟩ and ⟨Action⟩. An action is the simplest thing that can be performed
by any actor in the scenario, e.g. acceleration or lane change. They differ
depending on which actor they are used with, because you can not execute a
lane change with a pedestrian. Actions are grouped into events and so are
events into maneuvers etc. To determine if an element should be triggered,
conditions of that element are evaluated. They must be wrapped into a
⟨ConditionGroup⟩ tag. Logical AND is applied to conditions contained
therein and logical OR between ⟨ConditionGroup⟩s.

Finally, OpenCRG5 describes a file format for the road surface description
and a method to store them in a layout called curved regular grid, hence
CRG. Primary use of this standard lies in tire, vibration or endurance tests.
The only possible usage of this standard while simulating ALKS is the option
to have precise and realistic rendering of the road texture. Besides that,
OpenCRG presents C API and MATLAB API that are equipped sufficiently
to handle data in the OpenCRG format. Nevertheless, only OpenDRIVE in
version 1.4 was used in this work.

2.3 Roadrunner

Roadrunner is a commercial application with a graphical user interface (GUI)
for creating static simulation environments, although it is free for those who
have access to Matlab [6]. It has wide range of customization capabilities
regarding traffic signals controllers and their timing at junctions, road lanes
and their marking. It comes with a library consisting of hundreds of predefined
models from many categories, namely traffic signs, traffic light styles, barriers
or vegetation.

Besides the predefined assets, user can import custom models or textures
by simple drag-and-drop technique into the asset library. OpenDRIVE files

3https://www.asam.net/standards/detail/opendrive/
4https://www.asam.net/standards/detail/openscenario/
5https://www.asam.net/standards/detail/opencrg/
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.................................... 2.4. Game engines

are importable, too. When satisfied with the work, the environment can be
exported in two ways: either as a single file, namely OpenDRIVE (.xodr),
filmbox (.fbx) or AutoCad (.dxf), or directly bundled for a simulation software
or a game engine. Following are available: Carla, Unity engine, Unreal engine,
Metamoto, VIRES Virtual Test Drive (VTD).

2.4 Game engines

Game engines are tools primarily used by programmers for fast and easy
game development. They could be categorized into orientation, i.e. 2D or
3D oriented, or into target platform, i.e. Windows, Linux etc. Games are
often computationally demanding, so the code of a game engine is usually
speed-optimized to maintain high frame rate. In the scope of this thesis, I
have come across 2 out of tens game engines, which are described in greater
detail.

2.4.1 Unreal engine

The Unreal engine is proprietary, cross-platform, 3D game engine written in
C++ and made by Epic Games, Inc. It includes an integrated editor, the
Unreal Editor, that eases the creation of simulation environment. Related
features to highlight are:.World partitions – In case of a large map, rendering it all at once may

be difficult and unnecessary. The solution is chopping the map into a
grid of sectors and rendering those needed..World layers – Having screen overcrowded with objects makes it im-
possible to easily edit any particular one when needed. The concept of
layers eases objects editing by dividing them into groups, whose visibility
can be toggled by one click.. Physics system – Real physics is of great importance to some vehicle re-
lated simulations. The Unreal engine is equipped with a high-performance
physics system called Chaos.

2.4.2 Unity

The Unity engine is capable of dealing with both 2D and 3D content, written
in C++ as well. It is newer engine than the Unreal engine and automated
driving simulation is not its’ focus. Instead it revolves around mobile games
development. In comparison to the Unreal engine, the support for automated
driving simulation is lacking, e.g. real physics simulation is missing. It is
more suitable for precise modeling, virtual reality (VR) or computer vision.

5



2. Background .....................................
2.5 Simulation tools

Simulation tools come either as standalone applications or projects built upon
an engine, which eases some computations, so the tool is able to focus on
others. Their aim is to identify as many errors as possible before a product is
tested in the real world.

2.5.1 Carla

The Carla simulator6 is an open source software that is being developed to
test, train and validate autonomous driving systems, built upon the Unreal
engine 4. It is built on the client-server architecture and exposes Python API
to control the simulation on the server. It comes with preset maps and models
for vehicles, sensors as well as pedestrian figures. Moreover, it is possible to
define your own sensors, run synchronous as well as asynchronous simulations
or exploit built-in module called the Traffic Manager to create realistic urban
traffic in the scene.

2.5.2 SVL Simulator

The SVL Simulator is an open source simulator developed by LG Electronics
America R&D Lab, located in California7. It supports features similar to
Carla, such as a Python API or ROS 2 bridge as well as some specific to it [4]
– Apollo 5.0 (open source software for autonomous vehicles), Visual Scenario
Editor (VSE), wider range of sensor in comparison to Carla.

2.5.3 Esmini

The name comes from the abbreviation of Environment Simulator Mini-
malistic8, used in [5]. It was initially developed to familiarize with the
OpenSCENARIO standard. It lacks sensor or physics simulations. However
it provides an interface to scenes described in OpenDRIVE format, called
RoadManager. It utilizes OpenSceneGraph to visualize the scenarios.

Figure 2.1: Visualization of scenarios in Esmini

6https://carla.org/
7https://www.svlsimulator.com/about/
8https://github.com/esmini/esmini
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Chapter 3
Design

3.1 Setup

The first step was to choose a suitable simulator. Esmini was discarded
early, because it does not support sensor related simulation and only exploits
scenarios in OpenSCENARIO format. Usability is further limited by the
simulator, since it does not support all features of the standard. That reduced
the options to SVL Simulator and Carla. SVL Simulator did not allow user
to import custom maps at the time and has no developer mode in Linux.
Realizing developer mode’s usefulness, I discarded SVL Simulator, leaving
Carla as the winner.

The second step was to install Carla, which could be done in two ways:
installing the package version or building from source. With the package
version you lose the ability to customize the simulation environment. Although
being much more time-consuming, error-prone and less straightforward, the
source build was the obvious option here. Note, that I encountered errors
during building Carla, that I was not able to solve by using its’ documentation
alone.

The third step was to create the scene, where the tests from the regulation
could be run. Again, the user has more options. Generally, you must have 2
files prepared to be imported into Carla - geometry in filmbox format (.fbx)
and road information in OpenDRIVE (.xodr). To obtain them, 2 ways are
described in the Carla documentation [3] – using OpenStreetMap or RoadRun-
ner. OpenStreetMap is free, real world map database maintained by diverse
community of volunteers. If you need real world-like scenery, OpenStreetMap
would be the better choice for you. RoadRunner is recommended though and
was therefore, and for reasons mentioned in 2.3, used in this thesis.

Next, setting up the environment is needed Carla provides multiple ways
to do it, but they differ depending on whether you have a package version or
a source build. Since I use the source build, 3 options were available: typing
make import in command line, using RoadRunner plugin and manual import
through the Unreal Editor. I used to exploit the manual way, back when the
one-command procedure had not been implemented yet, but, at the time of
writing, it works well. Moreover, it is possible to import multiple maps at
once this way.

7



3. Design........................................

Figure 3.1: Server-client architecture of Carla.

Finally, the user has to decide how to implement the ALKS. To my knowl-
edge, Carla enables this through ROS bridge, CarSim or its Python API. I
used the Python API purely because of my familiarity and experience with
Python.

3.2 Carla and tests

I built Carla on a computer with Unix based operational system. Carla is
based on server-client architecture, see picture 3.1, and uses two ports for
communication. I have run both the client and the server locally, so no
change was required in the default configuration. Then I exploited Carla’s
Python API to construct ALKS tests from the regulation. A controller
already implemented by Carla developers was used in the test vehicle and my
ALKS controlling the ego vehicle, i.e. the vehicle under test. Each test for
ALKS is a Python script built up from 3 main parts, that imports 4 common
modules, depicted in picture 3.2. Firstly, the setup involves connecting to a
server and spawning all actors, i.e. the ego vehicle, its’ sensors and the test
vehicle. Afterwards, sensor callbacks are assigned as are controllers to the
vehicles. Secondly, there is a main loop, which runs until enough time has
been simulated. ALKS is called and useful computed data are saved every
iteration therein. Each test can be parameterized and was run multiple times
in different variations. Finally, saved data are processed and graphs created.

8



....................................3.2. Carla and tests

Figure 3.2: Inclusion of common modules into a test (the cut-out test as an
example here), all written in Python 3.

9
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Chapter 4
Implementation

In this chapter I describe the installation of necessary software, then the
structure of the ALKS tests implemented in Python 3 and finally the way of
processing generated data. Throughout the last section issues that occurs
are mentioned, but have not been solved yet and require further work.

4.1 Software installation

Carla in version 0.9.12. was used in this work, but newer versions are available
at the time of writing. Generally, there are two sections – requirements and
Carla build. The prerequisites1 has to be fulfilled before installation. Then,
create a GitHub and Epic Games account and link them together2. This is
needed, because Carla uses a fork of Unreal engine 4.26, that contains specific
patches. Next, clone the repository via git clone and build the engine with
make in its’ directory.

The second part is building Carla. Run all following commands in the Carla
root directory. First, git clone the repository. Downloading assets3 and
exporting the environment variable UE4_ROOT is necessary. Finally, run
make PythonAPI to prepare the client side, make launch to run the server
and make libCarla, which makes it possible to import Carla library into a
Python script. Note, that make launch is only needed the first time after
you either switch to another version of Python or change the source code to
compile everything. Afterwards, using make launch-only suffice.

For RoadRunner, MathWorks account is required and versions 2021a and
2021b were used. Once you have it, follow the steps from their Help Center4.

1https://carla.readthedocs.io/en/0.9.12/build_linux/
#part-one-prerequisites

2https://www.unrealengine.com/en-US/ue4-on-github
3https://carla.readthedocs.io/en/0.9.12/build_linux/#get-assets
4https://www.mathworks.com/help/roadrunner/ug/install-and-activate-roadrunner.

html?s_tid=srchtitle
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4. Implementation....................................
4.2 Map creation in RoadRunner

After opening RoadRunner for the first time, you will be prompted to create
a new project, to choose a root folder on your drive and name for it. Right
after, there will be another prompt to include the asset library. Select "yes".
Each project is divided into scenes. After creating the project, an empty scene
opens. It takes a few clicks to make a map similar to the one on picture 4.1.
Having their documentation5 at hand, I made such a map ensuring following
points:. In the asset library, freeway is selected in RoadStyles category. This is

4-lane road that suffice to run all ALKS tests. To my knowledge, the
road style can not be changed afterwards.. There are no dead-end roads. When importing the map to into Carla,
an error may occur, which makes it impossible for Carla to process
OpenDRIVE related information.. Road bends have the radius of cca. 250 meters, at least on one side.
This eases radar points filtration in a way that only simple functions
instead of complex algorithms can be deployed.

Figure 4.1: RoadRunner GUI with a finished scene, exploited in the Carla
simulator to test ALKS.

When finished with the scene, particular files have to be exported. In the
section File from the menu above the toolbar, select Export -> Carla. The
window that appears has additional options. In the filmbox export subwindow,
check only Power Of Two Texture Dimensions and uncheck any other. Export

5https://www.mathworks.com/help/roadrunner/

12
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...................................4.3. Import into Carla

to tiles is only useful for huge maps. Under OpenDRIVE options, fulfill
following list:.Database Version – Set it to version 1.4. Carla does not support any

other..Driving Side – Right, but if you have a symmetrical map such as in
picture 4.1, then left can be chosen as well.. Export signals – Check. Export objects – Check. Export scene origin reference – Check.Clamp distances – Check

Leave options not mentioned in the list unchecked or as they are.

4.3 Import into Carla

Shut down Carla if it is running. Then move or copy all files, obtained after
following 4.2, to Import folder located in Carla root folder. Then run make
import AGRS="–package=<name>" and replace <name> with desired name
for your map. <name> must be different each time you do this import. After
the process finishes, launch Carla again. There is a content manager in the
bottom part of the Unreal editor. Find the imported map and double click it
to load it into the main window. If the import succeeded, then there will be
red, dotted lines inside each lane.

Now, depending on whether your scene in RoadRunner contains road
separators, denoted as purple lines across a road in picture 4.1, or not, you
will have some spawn points generated. Road sections between these lines are
recognized as different roads, therefore they ID will differ in the OpenDRIVE
file. Check for spawn points can be done in two different ways. Either
navigate the map by right clicking and holding the right mouse button and
W, A, S, D keys in the main view port until you can see a spawn point. They
are denoted as oriented points with the orientation being indicated by a little
arrow. Keep the view port close to the road, because spawn points are not
rendered if far enough. The second way is to go through the list of all object
in the world where your map is. It is located on the upper right side of the
Unreal editor. Spawn points contain the string "VehicleSpawnPoint" and
some number at the end to differ between them.

In case there are no spawn points, you have to add them manually, because
any road user can be spawned only in these points. In the object class
database in the upper left side of the Unreal Editor, filter VehicleSpawnPoint
and drag-and-drop it into the view port. Place them cca. 2 meters above
the road, in the center of a lane and set the orientation accordingly. This
prevents many undesired situations such as a vehicle spawned with its’ wheels
under the terrain, not spawned on a road while its’ wheels are or moving in
the opposite direction.
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4.4 ALKS tests in Python 3

I programmed 3 ALKS tests and 4 common modules in Python 3, exploiting
Carla’s Python API6 and Python libraries numpy (denoted as np in code
listings), matplotlib (plt), class Lock from threading and class deque
from collections. Each contains two vehicles, the ego vehicle with a radar
attached and the test vehicle, that perform it. Initially, functionality of
the modules, depicted in 3.2, is described. Then the tests themselves are
presented.

4.4.1 Setup

Setup prepares the test. It spawns both vehicles and the radar attached
to the ego. The radar can be parameterized7. How this is done and what
numbers I set can be seen in listing 4.1. On the line 1, the radar blueprint is
retrieved, then attributes are set and on the line 8, Carla tries to spawn it.
In order to simulate a realistic radar, parameters were taken from Bosch car
front radar8. To spawn the radar, the customized blueprint, the parent actor,
i.e. the ego, and transform relative to it are passed to the world’s method9.
Contrary to the documentation, numbers have to be converted to strings,
otherwise an error is raised.

Spawning vehicles is in principle the same process, except they are not
attached to any other actor, see 4.2. Parameter ego_spawn says where it
should be spawned (4.3).

1 radar_bp = bp_library .find(’sensor .other.radar ’)
2 radar_bp . set_attribute (’sensor_tick ’,str( delta_seconds ))#

delta_seconds ==0.02
3 radar_bp . set_attribute (’range ’,str (180))# Info 10 seconds

ahead at 60 km/h
4 radar_bp . set_attribute (’points_per_second ’,str (246/

delta_seconds ))# (120/3+1) *(30/6+1) ==246
5 radar_bp . set_attribute (’vertical_fov ’,str (2 * 15))# +-15
6 radar_bp . set_attribute (’horizontal_fov ’,str (2 * 60))#

+-60
7 radar_transform = carla. Transform (carla. Location (x=

ego_vehicle . bounding_box . extent .x, z= ego_vehicle .
bounding_box . location .z - 0.4))

8 radar = world. try_spawn_actor (radar_bp , radar_transform ,
attach_to = ego_vehicle )

Listing 4.1: Radar settings

6https://carla.readthedocs.io/en/latest/python_api/
7https://carla.readthedocs.io/en/latest/bp_library/#sensor
8https://www.bosch-mobility-solutions.com/media/global/

products-and-services/passenger-cars-and-light-commercial-vehicles/
driver-assistance-systems/multi-camera-system/front-radar-plus/onepager_
front-radar_en_200608.pdf

9https://carla.readthedocs.io/en/latest/python_api/#carlaworld

14

https://carla.readthedocs.io/en/latest/python_api/
https://carla.readthedocs.io/en/latest/bp_library/#sensor
https://www.bosch-mobility-solutions.com/media/global/products-and-services/passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/multi-camera-system/front-radar-plus/onepager_front-radar_en_200608.pdf
https://www.bosch-mobility-solutions.com/media/global/products-and-services/passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/multi-camera-system/front-radar-plus/onepager_front-radar_en_200608.pdf
https://www.bosch-mobility-solutions.com/media/global/products-and-services/passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/multi-camera-system/front-radar-plus/onepager_front-radar_en_200608.pdf
https://www.bosch-mobility-solutions.com/media/global/products-and-services/passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/multi-camera-system/front-radar-plus/onepager_front-radar_en_200608.pdf
https://carla.readthedocs.io/en/latest/python_api/#carlaworld


................................ 4.4. ALKS tests in Python 3

1 ego_bp = bp_library .find(" vehicle .audi.a2")
2 sp = world. get_map (). get_spawn_points ()[ ego_spawn ]
3 ego_vehicle = world. try_spawn_actor (ego_bp , sp)

Listing 4.2: Vehicle spawning

4.4.2 Sensor callbacks

Radar generates data each sensor tick. Radar callback is a function applied
on that data. Filtration of the radar data is shown in listing 4.3. The radar is
situated at the front and low above the ground, so it scans points on the road
surface. Such points and any other below the radar’s height are excluded
from ALKS computation, see line 12. Next, all points beyond both adjacent
lines are discarded. To compute these, vector cross product and OpenDRIVE
information is used, see lines 28, 29. Finally, the callback appends the points
into a GlobalData object, see listing 4.4, and sets bool flag new_r to True.
Note, that the argument map is not Python built-in function. It is
another object from the API.

1 def radar_callback (radar_data , debugger , map , ego_vehicle
):

2 points = np. frombuffer ( radar_data .raw_data , dtype=np.
dtype(’f4’))

3 points = np. reshape (points , (len( radar_data ), 4))# [[
velocity , azimuth , altitude , depth ] ,...[ , , ,]]

4

5 radar_rot = radar_data . transform . rotation
6 radar_loc = radar_data . transform . location
7 ego_loc = ego_vehicle . get_transform (). location
8 ego_rot = ego_vehicle . get_transform (). rotation
9 wp = map. get_waypoint (ego_loc , project_to_road =True)

10

11 # Ignore points below the sensor ’s height
12 points = [p for p in points if p[2] + np. radians (

ego_rot .pitch) >= 0]
13

14 # Determine where the adjacent lanes end
15 wp_loc = wp. transform . location
16 wp_loc .z = ego_loc .z
17 wp_vec = wp. transform . rotation . get_forward_vector ()
18 fw_vec = np.array ([ wp_vec .x, wp_vec .y, 0])
19 of_vec = np.array ([ ego_loc .x - wp_loc .x, ego_loc .y -

wp_loc .y, 0])# wp_loc .z - ego_loc .z == 0
20 result = np.cross(fw_vec , of_vec )
21 offset = wp_loc . distance ( ego_loc )
22 if result [2] < 0:
23 offset = -offset
24 left_distance = wp. get_left_lane (). lane_width + wp.

lane_width / 2 - offset
25 right_distance = wp. get_right_lane (). lane_width + wp.

lane_width / 2 + offset
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26

27 # Ignore points behind adjacent lanes
28 points = [p for p in points if (p[1] < 0 and abs(np.sin

(p[1]) * p[3]) < left_distance )
29 or (p[1] >= 0 and np.sin(p[1]) * p[3] <

right_distance )]
30 with MUTEX:
31 GD.rd. append ( points )
32 GD.new_r = True

Listing 4.3: Radar data filtration

4.4.3 ALKS

The whole ALKS function is shown in listing 4.4. GLobalData class makes
up an interface that both the radar and the ALKS use. Moreover, constants
of the controllers are stored here (lines 11-17). The steer is calculated as a
cross product of the vector from the ego location to the point in the middle
of its’ lane 3 meters ahead and the ego’s forward vector, respectively (lines
24-40). It does not rely on data from the radar, therefore it is computed
every time. Throttle and brake computation requires radar data. In case
there are none, the default throttle 0.7 is returned (lines 55-58). It has to
be in range 0-1 and greater then 0, otherwise the ego would stop as soon as
there is nothing detected by the radar. Longitudinal controller’s set point
is distance that depends on the ego’s speed. This is also addressed by the
regulation [1], paragraph 5.2.3.3.

1 class GlobalData :
2 """ Class in which data from sensors are stored and

accessed by ALKS algorithm ."""
3 def __init__ (self , lon_p =.15 , lon_i =.2, lon_d =.3, lat_p

=.15 , lat_i =.2, lat_d =.3):
4 self.rd = deque( maxlen =10) # Radar data
5 self. past_controls = deque( maxlen =10) # My computed

controls
6 self.new_r = False # New radar data
7 self.lon_p = lon_p # Longitudinal proportional

constant
8 self.lon_i = lon_i # Longitudinal integral constant
9 self.lon_d = lon_d # Longitudinal derivative

constant
10 self.lat_p = lat_p # Lateral proportional constant
11 self.lat_i = lat_i # Lateral integral constant
12 self.lat_d = lat_d # Lateral derivative constant
13

14 # Global variables
15 MUTEX = Lock ()
16 GD = GlobalData (lon_p =1.5 , lon_i =0, lon_d =0, lat_p =1.,

lat_i =0, lat_d =0)
17

18 def ALKS(dt , ego_vehicle , road_vec , target_speed =40):
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19 # STEER
20 ego_vec = ego_vehicle . get_transform (). rotation .

get_forward_vector ()
21 ego_vec = np.array ([ ego_vec .x, ego_vec .y, 0]) # We

only care about xy plane
22 ego_vec /= np. linalg .norm( ego_vec )
23

24 cross = np.cross(road_vec , ego_vec ) # Road vector has
unit length

25 cross = np. arcsin (cross)
26 angle = np. linalg .norm(cross)
27 if cross [2] > 0:
28 angle = -angle
29

30 # Lateral PID terms
31 lat_ie = sum ([pc [2] for pc in GD. past_controls ]) * dt
32 lat_de = (GD. past_controls [ -1][2] - GD. past_controls

[ -2][2]) / dt
33 lat_pe = angle
34

35 steer = lat_pe * GD.lat_p + lat_ie * GD.lat_i + lat_de
* GD.lat_d

36

37 if len(GD. past_controls ) < 2:
38 GD. past_controls . append ([0.7 , 0.0, steer ])
39

40 if not GD.new_r:
41 last_control = GD. past_controls [-1]
42 last_control [2] = steer
43 return last_control
44

45 # THROTTLE / BRAKE
46 with MUTEX:
47 min_dists = [min(y, key= lambda x: x[3]) [3] for y in

GD.rd if y] # Array of scalars
48 GD.new_r = False
49

50 # Nothing measured
51 if len( min_dists ) <= 1:
52 GD. past_controls . append ([0.7 , 0.0, steer ])
53 return GD. past_controls [-1]
54

55 ego_speed = ego_vehicle . get_velocity () # ego_speed = [
x_speed , y_speed , z_speed ] [m/s]

56 ego_speed = np.sqrt( ego_speed .x ** 2 + ego_speed .y ** 2
+ ego_speed .z ** 2)

57 time_gap = 1.0 + ego_speed / 27.8 # 0.1 for each 2.78
m/s

58 distance = max (2.0 , time_gap * ego_speed )
59

60 # Longitudinal PID terms
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61 lon_ie = (sum( min_dists ) - distance * len( min_dists )) *

dt
62 lon_de = ( min_dists [-1] - min_dists [ -2]) / dt
63 lon_pe = min_dists [-1] - distance
64

65 throttle = lon_pe * GD.lon_p + lon_ie * GD.lon_i +
lon_de * GD.lon_d

66 brake = -( lon_pe * GD.lon_p + lon_ie * GD.lon_i +
lon_de * GD.lon_d)

67

68 GD. past_controls . append ([ throttle , brake , steer ])
69 return GD. past_controls [-1]

Listing 4.4: ALKS implementation

4.4.4 Data processing

Data processing consists of two functions. The first one writes all generated
data to memory and the other reads them to draw several graphs, with help of
matplotlib library. Both vehicles are spawned few meters above the ground
and have to fall onto it before moving. This is irrelevant to the tests, so this
fraction of the data is not considered when constructing the graphs.

1 def write_data (folder , *args):
2 """
3 :param args: name of the file , ego_locations ,

ego_velocities , test_locations , test_velocities ,
ego_controls

4 : return : name of the file
5 """
6 args = args [0] # Reduce dimensions for better

indexation
7

8 i = len(args [1])
9 for j in range (2, len(args) -1):

10 assert i == len(args[j]) # Arrays have to be of the
same length

11

12 with open(" records /" + folder + "/" + args [0], ’w’) as
f:

13 for j in range(i):
14 f.write(str(args [1][j][0]) + " " + # x_ego
15 str(args [1][j][1]) + " " + # y_ego
16 str(args [2][j]) + " " + # [m/s]
17 str(args [3][j][0]) + " " + # x_test
18 str(args [3][j][1]) + " " + # y_test
19 str(args [4][j]) + " " + # [m/s]
20 str(args [5][j][0]) + " " + # throttle
21 str(args [5][j][1]) + " " + # brake
22 str(args [5][j][2]) + " " + # steer
23 str(args [6][j]) + " " + # distance
24 "\n")
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25 return args [0]

Listing 4.5: Function that saves data

1 def create_graphs (folder , *args , save=True , show=False):
2 """
3 :param args: names of the files where data is saved
4 :param save: bool indicating whether to save figures or

not
5 :param show: bool indicating whether to show figures on

the screen or not
6 : return :
7 """
8 import matplotlib . pyplot as plt
9 num_ignore_first = 200

10 for arg in args:
11 with open(" records /" + folder + "/" + arg , ’r’) as f:
12 data = f. readlines () # data = [str1 , str2 , ...]
13 orig_len = len(data)
14 data = data[ num_ignore_first :] # data = [str1000 ,

str1001 , str1002 , ...]
15 data = [d. splitlines () for d in data] # data = [

str1000 , str1001 , ...] , only removes ’\n’ from the end
16 data = [d[0]. split () for d in data] # data = [[’a

’, ’b’, ’d’, ...] , [’c’, ’b’, ’x’, ...] , ...]
17 data = [[ float(m) for m in n] for n in data] #

data = [[a, b, d, ...] , [c, b, x, ...] , ...]
18

19 def display ():
20 plt.show(block=False)
21 plt.pause (5)
22 plt.close ()
23

24 plt. figure (num =1)
25 plt.plot(np. arange ( num_ignore_first , orig_len ), 3.6 *

np.array ([d[5] for d in data ]), "r-")
26 plt. xlabel ("Cycle [-]")
27 plt. ylabel (" Velocity [km/h]")
28 plt.ylim (0, 70)
29 plt.title("Test vehicle ’s velocity in scenario " +

arg)
30 if save:
31 plt. savefig (" graphs /" + folder + "/" + "TV_" + arg)

Listing 4.6: Part of the function that creates graphs from saved data

4.4.5 Tests

Each test accepts 7 arguments – test_spawn, ego_spawn, trigger_dist,
cut_dist, ego_speed, test_speed, change_right – and begins with cre-
ation of empty arrays where data are appended each simulation frame and

19



4. Implementation....................................
additional variables, connection to the server and adjustment of the settings,
shown in 4.7 and explained in Carla documentation10.

1 ego_locations = []
2 test_locations = []
3 ego_velocities = []
4 test_velocities = []
5 ego_controls = []
6 distances = []
7 client = None
8 world = None
9 radar = None

10 settings = None
11 i = 0
12 try:
13 client = carla. Client (’127.0.0.1 ’, 2000)
14 client . set_timeout (10)
15 world = client . get_world ()
16 settings = world. get_settings ()
17 settings . fixed_delta_seconds = 0.02
18 settings . synchronous_mode = True
19 settings . max_substeps = 10
20 world. apply_settings ( settings )

Listing 4.7: Connection and settings

Then both the test vehicle and ego with the radar are spawned, employing
test_spawn and ego_spawn parameters. Carla controllers are assigned to
both vehicles, as in 4.8.

1 from agents . navigation . controller import
VehiclePIDController

2 LONGITUDINAL_TERMS = {"K_P": 0.5, "K_I": 0.2, "K_D": 0.3,
"dt": 0.02}

3 LATERAL_TERMS = {"K_P": 0.5, "K_I": 0.2, "K_D": 0.3, "dt"
: 0.02}

4 ego_CARLA = VehiclePIDController ( ego_vehicle ,
LATERAL_TERMS , LONGITUDINAL_TERMS )

5 test_CARLA = VehiclePIDController ( test_vehicle ,
LATERAL_TERMS , LONGITUDINAL_TERMS )

Listing 4.8: Controller assignment

Afterwards, the main loop (4.9) executes until 80 seconds has been simulated,
which is enough even with the slowest speeds. The lane_change helper
variable prevents lane change from happening multiple times. The check is
based on the vehicles’ lane ID from OpenDRIVE file, therefore the safest
option to run the test successfully is to ensure that both vehicles stay on the
same road segment during the execution of the test. If the lane ID changes
when a vehicle enters new road segment depends on how the roads were
originally defined. Check on line 22 is valid for the cut-in test only. In the
cut-out test, this condition is negated and completely omitted in the follow
test, because no lane change happens therein.

10https://carla.readthedocs.io/en/0.9.12/adv_synchrony_timestep/
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Lines 28-34 dictate where the test vehicle moves. Here, trigger_dist,
cut_dist, change_right parameters play their role. change_right switches
between adjacent lanes. When the vehicles reach the distance of trigger_dist,
the test vehicle starts performing the lane change. Next waypoint to reach
for the test vehicle is selected cut_dist meters ahead, i.e. how fast will the
test vehicle turn its’ steering wheel. This logic is the same in the cut-out test
and completely omitted in the follow test, since it is irrelevant therein.

1 lane_changed = False
2 # Main loop
3 while i * settings . fixed_delta_seconds < 80:
4 # Compute next simulation frame
5 world.tick ()
6

7 # Variables needed for each cycle
8 ego_loc = ego_vehicle . get_location ()
9 test_loc = test_vehicle . get_location ()

10 dist = ego_loc . distance ( test_loc )
11 curr_ego_wp = map. get_waypoint (ego_loc , project_to_road

=True)
12 curr_test_wp = map. get_waypoint (test_loc ,

project_to_road =True)
13

14 # Get all waypoints in distance X meters where the
vehicles can go , end if there is none

15 next_test_wps = curr_test_wp .next (3) # next_test_wps = [
wp1 , wp2 , ...]

16 next_ego_wps = curr_ego_wp .next (3) # next_ego_wps = [wp3
, wp4 , ...]

17

18 # Check if lane has already been changed
19 tv_lid = map. get_waypoint ( test_vehicle . get_location (),

True). lane_id
20 ev_lid = map. get_waypoint ( ego_vehicle . get_location (),

True). lane_id
21

22 if tv_lid == ev_lid :
23 lane_changed = True
24

25 # Choice of where to go next for both vehicles
26 next_ego_wp = random . choice ( next_ego_wps )
27

28 if dist < trigger_dist and not lane_changed :
29 if change_right :
30 next_test_wp = random . choice ( curr_test_wp .

get_right_lane ().next( cut_dist ))
31 else:
32 next_test_wp = random . choice ( curr_test_wp .

get_left_lane ().next( cut_dist ))
33 else:
34 next_test_wp = random . choice ( next_test_wps )
35
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36 # Road vector calculation for steer
37 next_ego_wp_loc = next_ego_wp . transform . location
38 road_vec = np.array ([ next_ego_wp_loc .x - ego_loc .x,

next_ego_wp_loc .y - ego_loc .y, 0])
39 road_vec /= np. linalg .norm( road_vec )
40

41 # Control calculated by Carla
42 ego_control = ego_CARLA . run_step (ego_speed , next_ego_wp

)
43 test_control = test_CARLA . run_step (test_speed ,

next_test_wp )
44 my_control = ALKS( settings . fixed_delta_seconds ,

ego_vehicle , road_vec , ego_speed )
45

46 # Adjust my_control to Carla format
47 ego_control . throttle = np.clip( my_control [0], 0., 1.)
48 ego_control .brake = np.clip( my_control [1], 0., 1.)
49 ego_control .steer = np.clip( my_control [2], -1., 1.)
50

51 # Apply control to the ego vehicle
52 ego_vehicle . apply_control ( ego_control )
53 test_vehicle . apply_control ( test_control )
54

55 # Save data
56 ego_locations . append ([ ego_loc .x, ego_loc .y])
57 ego_vel = ego_vehicle . get_velocity ()
58 ego_velocities . append (np. linalg .norm ([ ego_vel .x,

ego_vel .y, ego_vel .z]))
59 test_locations . append ([ test_loc .x, test_loc .y])
60 test_vel = test_vehicle . get_velocity ()
61 test_velocities . append (np. linalg .norm ([ test_vel .x,

test_vel .y, test_vel .z]))
62 ego_controls . append ( my_control )
63 distances . append (dist)
64

65 i += 1

Listing 4.9: Main loop

The tests was executed while varying their arguments as shown in 4.10.
However, this variation was different for each of them. In the cut-in test,
the last 2 for cycles were merged into one, because the test_spawn differs
with each value of change_right and ego_spawn parameters. In the follow
test, the last for cycle is omitted. trigger_dist remained constant. This
variation provides 90 possibilities altogether – 36 versions of the cut-out and
the cut-in test and 18 versions of the follow test. 5 graphs were created from
each possible test.

1 if __name__ == " __main__ ":
2 files = []
3 for i in range (1, 4): # i = 1, 2, 3
4 for j in range(i): # j = 0..i
5 for spawns in zip ([15 , 26, 27], [30 , 22, 13]): #
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spawns = (15, 30) , (26, 22) , (27, 13)
6 for right in [True , False ]: # right = True ,

False
7 files. append ( write_data ("cut -out", cut_out (

test_spawn = spawns [0], ego_spawn = spawns [1],
trigger_dist =20, cut_dist =7+3*j, ego_speed =20*i,
test_speed =10*(j+i), change_right =right)))

8

9 create_graphs ("cut -out", *files)

Listing 4.10: Test variation
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Chapter 5
Evaluation

90 tests including all versions have been run to assess behaviour of the ALKS,
which consists of 2 P controller, one for each motion domain. Along the
X-axis, cycles are labeled. Each test lasted 80 seconds with the time-step of
0.02 second, therefore there are 4000 cycles. First 200 of them are not shown
in the graphs, due to reasons in 4.4.4 or 4.6. On the next pages, there are
pictures from 1 cut-in test on a right bend at slower speed of both vehicles
and from 1 cut-out test on a left bend at medium speed, demonstrating the
results. On pictures 5.2c and 5.1c can be seen that the ego vehicle started at
certain distance behind the test vehicle, approached it fast and kept cca. 10
meters distance. This indicates no crash of the two vehicles.

In figure 5.1e there is a peak in the ego vehicle’s speed around cycle 1000,
that exceeds the limit of 60 km/h. In this case the ALKS did not succeed in
the test. The reason for it is that the speed is not limited by the algorithm
so far. There is no such a peak in 5.2e, but that is due to much shorter initial
distance.

Due to non-realistic method to calculate the steer, the graphs 5.2a, 5.2b,
5.1a and 5.1b indicate perfection in the ego vehicle staying in its’ lane.
However, in 5.2b, the moment when the lane change happened is recognizable
around coordinates X=-600 and Y=-500, indicated by the red arrow. In
5.1d and 5.2d is the speed of the test vehicle driven by Carla controller, whose
set point is given speed and shows a only tiny error when performing the lane
change.
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(a) : Distances between the vehicles

(b) : Test vehicle’s position (c) : Ego vehicle’s position

(d) : Test vehicle’s speed (e) : Ego vehicle’s speed

Figure 5.1: Graphs from the cut-in test on a right bend, where the ego was
supposed to go by 20 km/h and the test vehicle by 10 km/h cutting into ego’s
lane from the left. Red arrow shows the beginning of the maneuver.
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(a) : Distances between the vehicles

(b) : Test vehicle’s position (c) : Ego vehicle’s position

(d) : Test vehicle’s speed (e) : Ego vehicle’s speed

Figure 5.2: Graphs from the cut-out test, where the ego was supposed to go by
40 km/h and the test vehicle by 20 km/h and cutting out from ego’s lane to the
left. Red arrow shows the beginning of the maneuver.
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Chapter 6
Conclusion

In this thesis, the reader is presented with 3 open source tools suitable for
autonomous driving simulations – Carla, the SVL Simulator and Esmini.
Carla was chosen to implement an ALKS according to the regulation UNECE
R157, 3 tests (cut-out, cut-in, follow vehicle) from the regulation and a way
how to run them in the Python API. Parameterization of the tests allowed
for 90 versions altogether.

The ALKS consists of two PID regulators, one controlling the lateral
motion, the other the longitudinal one, with their constants set to 1 and 1.5,
respectively. The results were shown in 2 sets of graphs. The ALKS passed
some tests and failed the other. This and improvements of the ALKS will be
the subject of future work.
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