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Abstract

Multi-Agent Path Finding (MAPF) is a
problem of finding a collision-free plan
consisting of paths for multiple agents
in which the agents do not collide with
each other. The realization of these paths
may not be as planned for various rea-
sons, resulting in collisions. The most
common issue is a delay of an agent. The
robustness in the MAPF refers to a guar-
antee that the agents will not collide dur-
ing plan execution. The approach used
in this thesis is the Action Dependency
Graph (ADG), which captures the action-
precedence relationships of the originally
created plan. Using this graph while mon-
itoring plan execution, it is possible to
synchronize agents’ movements to avoid
collisions. The thesis discusses the prop-
erties of this approach and its use in re-
planning during plan execution, and lays
a solid foundation for experimental ver-
ification of the approach’s functionality
and properties, in the form of a modified
simulator and supporting algorithms.

Keywords: ADG, Multi-Agent Path
Finding, Robust plan execution
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Abstrakt

Multi-agentní plánování cest (Multi-
Agent Path Finding) je problém spočí-
vající v hledání bezkolizního plánu sklá-
dajícího se z cest pro větší počet agentů,
ve kterém se agenti mezi sebou nekolidují.
Realizace těchto cest nemusí být přesně ta-
ková, jak byla původně naplánována z růz-
ných důvodů. Nejčastějším problémem je
zpoždění agenta. Robusností se v MAPF
rozumí garancí, že agenti nebudou v re-
alizaci plánu kolidovat. Přístup, který je
použit v této práci je Graf akčních závis-
lostí (ADG), který zachycuje vztahy akcí
z hlediska přednosti v původně vytvoře-
ném plánu. Používáním tohoto grafu při
monitorování exekuce plánu je možné syn-
chronizovat pohyby agentů a předejít tak
kolizím. Tato práce se zabývá vlastnostmi
tohoto přístupu, jeho použitím při přeplá-
nování během exekuce plánu a pokládá
pevný základ pro experimentální ověření
vlastností a funkčnosti přístupu ve formě
modifikovaného simulátoru a vedlejších
algoritmů.

Klíčová slova: ADG, Multi-agentní
plánování, Robustní realizace plánu

Překlad názvu: Robustní realizace
plánů v multi-agentních systémech
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Chapter 1

Introduction

Multi-Agent Pathfinding (MAPF) is a problem of planning paths for multiple
agents so that the agents will be able to follow these paths concurrently
without colliding with each other [SSF+19]. Its contemporary applications
include situations where multiple agents need to synchronize their actions
to finish the tasks without collision, such as automated warehouses and
autonomous vehicles.

Most MAPF solvers provide a collision-free plan but with the assumption
that agents always move synchronously. In practice, this may not be the
case, and for various reasons, an agent can be delayed in the execution of its
plan, which can cause undesirable collisions. Multiple approaches have been
introduced to address this issue, guaranteeing that agents will not collide
despite delays - this guarantee is referred to as robustness.

This thesis studies one of the state-of-the-art approaches, the Action
Dependency Graph (ADG) framework. The main objective is to implement
the ADG, incorporate it into a simulator, and verify its functionality and
properties. This is related to another task - implementing a tool that will
make the correct plan invalid and modifying the provided simulator so that it
can work with such plans. Simulation of invalid plans may result in a possible
collision; therefore, implementing a method of monitoring plan execution
and detecting possible collisions is desirable. Furthermore, the advantages
of replanning in the middle of plan execution are discussed, and related
algorithms are tested for functionality and properties.

1



1. Introduction .....................................
In chapter 2, related work is summarized to provide insight into the MAPF

problem-solving. The problem and notation used throughout the thesis
are defined in chapter 3. Chapter 4 describes in detail the ADG approach.
Chapter 5 presents a way of introducing delays to an existing plan that is
later used to demonstrate the ADG functionality. Chapter 6 discusses the
plausibility of replanning during plan execution and connects it to the ideas
stated in the previous chapters. Chapter 7 shows multiple experiments using
the ADG in simulations; Chapter 8 shortly describes the implementation,
and Chapter 9 concludes the thesis.
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Chapter 2

Related work

2.1 MAPF solvers

This section introduces some of the state-of-the-art solvers, their properties,
and their principles. There are many other methods solving MAPF problem
not listed in here as it is not the aim of this thesis to encompass them in
detail. The mentioned methods are related to grid pathfinding and they all
present different approaches to the MAPF problem.

Solvers are divided by their method of finding a solution into three
categories [FSS+17], [OMDT19]: (1) Search-based - uses space-searching
algorithms such as modified A* or tree-search to obtain results. (2) Reduction-
based - reduces the MAPF problem to other known problems such as Boolean
satisfiability problem (SAT), integer linear programming or Constraint sat-
isfaction problem (CSP). (3) Rule-based - makes agent move step-by-step
following ad-hoc rules. Hybrid solvers make use of more than one method
listed above.

Conflict-based search (CBS) [SSFS21] is an optimal and complete search-
based solver. It tests possible solutions and generates constraints to resolve
conflicts. A constraint is a tuple (ai, v, t) that prohibits agent ai from occupy-
ing vertex v at time step t. The solution with the lowest cost, path respecting
imposed constraints, and no inter-agent conflicts is selected [FSS+17].

3



2. Related work.....................................
Enhanced CBS (ECBS) [BSSF14] is a complete and suboptimal search-

based solver. It uses focal search in both high-level and low-level searches.
The purpose of the low-level search is to find single-agent paths. In contrast,
the high-level search is used to find the most promising solution, validating
it with respect to being collision-free and creating constraints should any
collision be found. The focal search narrows the search only to nodes of
particular interest. The suboptimal factor w determines the range of quality
of the returned solution. SOC of the solution will never be higher than the
SOC of the optimal solution multiplied by w.

Hierarchical Cooperative A* (HCA*) [Sil21] is an incomplete and subop-
timal search-based solver. Agents are sorted according to predefined order,
such as the likelihood of a collision. Paths are planned for agents with respect
to the order of agents and then added to the global reservation table. Any
agent may not occupy a specific location at specific times if other agents
already reserve it [FSS+17].

Push and Swap (PS) [LB11] uses two primitives - push, which moves
an agent toward its goal, and swap, which swaps two agents’ positions,
using empty tiles in the process. PS is complete if the graph contains at
least two empty tiles and is suboptimal. It falls into the rule-based solvers’
category [OTD21].

Revised Prioritized Planning (RPP) [CNKS15] assigns priorities to agents,
and plans paths for agents one by one so that it avoids start positions of lower
priority agents and avoid conflicts with higher priority agents. A solution
is reached if each agent has a satisfying (goal-reaching) path that avoids
all lower priority agents’ starting positions and all goal positions of higher
priority agents. RPP is an incomplete and suboptimal search-based solver.

Priority Inheritance with Backtracking (PIBT) [OMDT19] is an incomplete,
suboptimal rule-based solver. PIBT plans every time step the location of
all agents for the next time step until a solution is reached. It ensures that
all agents reach their goals eventually, but they might not be at their goals
simultaneously, making it incomplete [OTD21].

2.2 Improving robustness of existing plan

k-robust solvers [ASF+18] are MAPF solvers which have as an output a plan
with a guarantee of being collision-free even considering at most k time step

4



.......................... 2.2. Improving robustness of existing plan

delays for each agent. In other words, the plan does not have k-delay conflict
that occurs if and only if πi(t) = πj(t+ ∆) for ∆ ∈ [0, k], where π is a plan, t
is a time step, i and j denote different agents. k-robust solvers may be created
as a variant of existing non-robust MAPF solvers.

MAPF-POST [HKC+16] is a post-processing step that takes kinematic
constraints and edge lengths into account and constructs a simple temporal
network based on the precedence relation of MAPF plan schedule. Using this
simple temporal network, agents maintain a safe distance so that they will
not collide.

RMTRACK [GCF04] addresses the delay possibility as a control law. An
agent will not cross an intersection area before another robot that was sup-
posed to cross the area first [HKT+19].
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Chapter 3

Problem setting

3.1 Problem formulation

This section defines important MAPF terms commonly used in related lit-
erature and this thesis. They were mostly taken from papers [SSF+19]
and [FSS+17], which offer a much broader overview of the MAPF problem
than it is stated here. Any other used sources are properly cited in the text.

The classical MAPF problem with R agents is a tuple <G, s, t>, where
G = (V, E) is an undirected graph, V is a set of vertices and E a set of
edges. s:[1, ..., R] → V maps an agent to source vertex (also referred to start
position), and t: [1, ..., R] maps an agent to a target vertex (also referred to
goal position).

An action is a function a:V → V such that a(v) = v’, where v and v’ are
vertices. Performing action a on the agent in vertex v will result in the agent
being in vertex v’ next time step - a discretized time unit. Two types of
actions are available for an agent. The first one is move, in which the agent
proceeds to change the position from vertex v to another vertex v’ for which
an edge (v, v′) ∈ E exists. The second action is wait, where the agent waits
at its current vertex position. There are two assumptions in the Classical
MAPF regarding time: (1) time is discretized into time steps, (2) every action
takes exactly one time step.

7



3. Problem setting....................................
A sequence of actions π = (a1, ..., an) is called a single-agent plan or path,

if it leads from starting position to goal position for a particular agent. A
solution is a set of k single-agent plans, one for each agent. A solution is valid
if it is collision-free.

MAPF solvers produce collision-free plans, by taking into consideration
the notion of conflicts during planning. There are two main types of conflicts
that MAPF solvers generally consider - vertex conflict and swapping conflict.
Vertex conflicts occurs if two agent are planned to occupy the same vertex at
the same time step. Formally, this can be written as follows:

πi[t] = πj [t]

where π is a single agent plan, i and j denote different agents and t is a time
step. Swapping conflict occurs when two agents are planned to swap positions
in a single time step. Formally, this can be written as follows:

πi[t+ 1] = πj [t] and πi[t+ 1] = πj [t]

where π is a single agent plan, i and j denote different agents and t is a time
step.

The MAPF variant addressed in the thesis is MAPF in 4-neighbor grids.
In this variant, every vertex represents a cell in a two-dimensional grid, and
the move action of an agent is limited to 4 neighboring cells, i.e. moving to
the right, left, lower, or upper cell. If an agent’s cell is next to the border of
the grid or next to an obstacle, its number of neighboring cells is lower, and
so is the number of possible move actions.

The two most commonly used functions for evaluating solution quality are
Sum of costs (SOC) and Makespan. The cost is the sum of time steps in a
single-agent plan from the start position to the goal position, where the agent
stays for the rest of the plan. The SOC is a sum of all single-agent plans
costs in the solution. For a MAPF solution π = (π1, ..., πR), the SOC of π is
defined as

SOC =
∑

1≤i≤R

|πi|

Makespan is the first time step in which all agents stay at their goal positions.
For a MAPF solution π = (π1, ..., πR), the makespan of π is defined as

M = max1≤i≤R|πi|

Finding an optimal MAPF solution is an NP-hard problem [YL13]. With
the increasing number of agents, finding a solution becomes more computa-
tionally demanding as state-space grows exponentially. MAPF solver is an

8



................................. 3.1. Problem formulation

algorithm that returns a solution to the MAPF problem. Optimal MAPF
solvers focus only on finding optimal solutions, while suboptimal MAPF
solvers sacrifice optimality for faster runtime. A solver is complete if it always
finds a valid solution to the MAPF problem if there is one.

Realization of the plan must take into account that the assumption of
executing every action exactly in one time step is unrealistic in practice, as
robots do not always move at the same velocity due to being subjected to
higher-degree dynamic constraints and various other slowdowns. When a
robot is slowed down in plan execution, other agents may perform an action
leading to the same vertex as the one occupied by the slowed agent, thus
creating a collision. Realization of the plan should address this issue and
prevent collisions from happening.

9
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Chapter 4

Agent delay

As physical robots are subject to dynamic constraints, control inaccuracies,
and unforeseen slowdowns [HKT+19], they may be delayed in the execution
of planned movements, creating the possibility of collisions. A simulation
environment that does not consider these limitations should execute agents’
actions exactly as planned. In such an environment, it is desirable to introduce
delays in the initially collision-free plan to verify the functionality of robust-
increasing frameworks and test their properties. This chapter presents an
algorithm that easily introduces an arbitrary number of delays to an arbitrary
number of agents in any time step.

Before executing the delaying algorithm, it is necessary to obtain infor-
mation about the plan and intended delays. Delay can be characterized by
three integers - ID of delayed agent dA, starting time step of delay sT , and
the number of time step units to be delayed d. As for the plan, the essential
features are the number of agents R, makespan M , the goal of the delayed
agent g, and a positions matrix pos encoding the positions of all agents with
shape R ×M . Examples of position matrices are shown in Tables 4.1-4.2.
Because multiple delays can be intended, some of the information above
should be stored in an array: let a delay be an array of tuples (dA, sT, d).
Then, the array index should correspond to a particular intended delay.

The algorithm for delaying one agent is presented in Algorithm 1 and is
structured into three phases. In the first phase, a position of a delayed agent
at the start of delay is d times inserted into the pos, with the first dimension
index being the delayed agent ID and the second starting time step of delay.
This prolongs the path of the delayed agent by d time steps while other

11



4. Agent delay .....................................
paths remain unchanged. In the second phase, there is a cycle in which the
penultimate position in the delayed agents’ path is checked whether it is the
goal position. If the statement is true, it would also mean the last position is
the goal position, and that last position can be removed from the path. If the
statement is false, prolonging the agents’ path also increases makespan, and
the increment is stored in the timeStepsToAdd variable. In the third phase,
all other agent’s paths are prolonged to match the new makespan by adding
goal positions at the end of the respective agent’s path. The algorithm’s
output is a new makespan and a new position matrix with one delayed agent,
which can be later converted to the original plan format.

Algorithm 1 Delay Agent
Input: delay,R,M, pos
Output: delayedPositions, newM

/* duplicate the delayed position */
1: for i← 0 to delay.d do
2: insert(pos[delay.dA], delay.sT, pos[delay.dA][delay.sT ])

/* remove unnecessary array elements */
3: timeStepsToAdd ← 0
4: for (i← length(pos[delay.dA])− 1; i > M ; i−−) do
5: if pos[delay.dA][i− 1] = g then
6: pos[delay.dA].remove(i)
7: else
8: timeStepsToAdd ± length(pos[delay.dA]) - 1 - M

/* add elements to arrays of other agents*/
9: for i← 0 to R do
10: if i 6= delay.dA then
11: for y ← 0 to timeStepsToAdd do
12: pos[i].append(pos[i][timeSteps])
13: delayedPositions← pos
14: newM ←M + timeStepsToAdd
15: return delayedPositions, newM

A model situation with two agents is shown in Figure 4.1, with its optimal
and collision-free plan in form of position matrix shown in Table 4.1. Let the
red agent (labeled as an agent 0) be delayed by two time step units at time
step 1. The path changes are shown in Table 4.1.

12



...................................... 4. Agent delay

Figure 4.1: Model situation with two agents

Agent
Time 0 1 2 3

0 2 6 10 10
1 4 5 6 7

(a) : Position matrix of original valid plan

Agent
Time 0 1 2 3 4 5

0 2 6 6 6 10 10
1 4 5 6 7
(b) : Delayed path of agent 0

Agent
Time 0 1 2 3 4

0 2 6 6 6 10
1 4 5 6 7

(c) : Reduced redundant goal positions
in delayed path

Agent
Time 0 1 2 3 4

0 2 6 6 6 10
1 4 5 6 7 7

(d) : Added goal position to other path
to align path lengths

Table 4.1: Path changes while executing Algorithm 1

Introducing more delays to the plan is easily done by repeating the described
algorithm with previously delayed positions and the new makespan as input.
This is shown in Algorithm 2, but with a few extra steps in lines two and
three. Different results may arise depending on the order of applying intended
delays for the same agent. For example, let red agent on the previous model
situation be delayed by one time step unit at time step 0 and also by two
time step units at time step 1. A desirable result would be red agent staying
at node 2 for two time steps and then staying at node 6 for three time steps.
However, by first introducing the one time step delay, the positions change
in such a way that the next intended two step delay at time step 0 will
only prolong the first delay. This is shown in Table 4.2a. To prevent such
situations, the order of delays must be in descending order according to the
starting time step of delay. By reversing the order of delays, the paths will
be delayed as intended (Table 4.2b).

13



4. Agent delay .....................................
Agent

Time 0 1 2 3 4 5

0 2 2 2 2 6 10
1 4 5 6 7 7 7

(a) : Position matrix of delayed plan with
applying delays in the ascending order
according to the starting time step

Agent
Time 0 1 2 3 4 5

0 2 2 6 6 6 10
1 4 5 6 7 7 7

(b) : Position matrix of delayed plan with
applying delays in the descending order
according to the starting time step

Table 4.2: Different paths are returned depending on the order of applying delays

Algorithm 2 Delay Multiple Agents
Input: delay,R,M, pos
Output: delayedPositions
1: for i← 0 to length(arrd) do
2: sortIndices← getSortIndices(delay.sT )
3: ix← sortIndices[i]
4: pos,M ← delayAgent(delay[ix], R,M, pos)
5: delayedPositions← positions
6: return delayedPositions

14



Chapter 5

Action Dependency Graph

5.1 The ideas and construction of the ADG

Action Dependency Graph (ADG) [HKT+19] is a graph that captures action-
precedence relationships of the MAPF solution. It is constructed as a set
of vertices representing the position of an agent at a particular time and a
set of edges representing action dependency. The edges are distinguished as
Type 1 edge and Type 2 edge. The former one represents dependencies of
single agent’s actions, which creates a constraint that all agent actions must
be done in the exact sequence as planned. Type 2 edges represent action
dependencies of two agents planning to move to the same location at different
times. The dependency creates a constraint that an agent cannot move to a
location unless all agents who have an earlier planned arrival time in that
location finish their action.

Let R be the number of agents, i index denoting a particular agent, t
time step, s agent’s position before executing an action, g agent’s position
after executing the action, n number of time steps until a goal is reached, P
MAPF plan structure, containing s, g, t and possibly other relevant variables.
Algorithm 3 constructs the ADG with time complexity O(R2M2), where M
is makespan. In lines 2 to 8, the algorithm constructs Type 1 edges that link
the plan’s information associated with single agents’ action - the origin of the
edge is P i

t and the destination is P i
t+1. In lines 10 to 17, Type 2 edges are

constructed if a condition that s of one some agent i is equal to g of other
agent i′ and the planned time step t of si is less or equal to the planned time

15



5. Action Dependency Graph ...............................
Algorithm 3 ADG creation
Input: Plan Pi for each robot.
Output: GADG

1: /* create vertices and Type 1 edges */
2: for i← 0 to R do
3: Add vertex P i

0 to VADG

4: P ← P i
0

5: for t← 1 to ni do
6: Add vertex P i

t to VADG

7: Add edge (p, P i
t ) to EADG

8: P ← P i
t

9: /* create Type 2 edges */
10: for i← 0 to R do
11: for t← 0 to ni do
12: for i′ ← 0 to R do
13: if i 6= i′ then
14: for t′ ← 0 to ni′ do
15: if si

t = gi′
t′ and t ≤ t′ then

16: Add edge (P i
t , P

i′
t′ ) to EADG

17: break

step t of gi′ holds.

A model scenario is shown in Figure 5.1a with two agents. The optimal
MAPF plan is as follows: The blue agent has to move to the right cell to
allow the red agent to reach its goal destination. The next time step, the
blue agent returns to its starting cell and moves down to reach its own goal
destination. The actions that correspond to the described optimal plan are
shown in Figure 5.1b. This plan, however, has action dependencies that can
cause a collision if no safety measurements are taken. If the blue agent is
delayed in the first time step for one time step unit, the red agent would move
directly into the same cell as the blue agent and collide. Creating the ADG for
this plan and applying it in the simulation, the action dependency of the red
agent on the blue agent would be recognized, and the red agent would stall
its actions until this dependency no longer exists. When an agent finishes its
action, the corresponding vertex can be marked as no longer active, removing
all dependencies (edges) associated with this vertex. The constructed ADG
for the plan of the model scenario is shown in Figure 5.1b.

An agent cannot execute its action if there are active vertices on which the
action is dependent. In practice, this means that the vertex corresponding
to the agents’ action is a destination of some existing edge with still active
origin vertex. For example, in Figure 5.1b, at the start of the simulation, the
only possible action is 7→ 8 of the blue agent, since it is not a destination of

16



................................... 5.2. Plan monitoring

any existing edge. After executing this action, all dependencies associated
with this action are removed, and now 13 → 7 of the red agent is the only
possible action. This procedure continues until all agents reach their goal
destinations.

Although this method is robust to any delay of an agent, it comes at the
expense of a possible increase of SOC or makespan. The optimal plan for
the scenario in Figure 5.1b has SOC 7 and makespan 5; after simulating the
ADG disregarding any delays, the SOC increased to 10, and the makespan
increased to 7.

(a) : Model scenario

(b) : The optimal plan for the model scenario,
including the ADG edges represented as arrows

Figure 5.1: Model scenario and visualized dependencies on the optimal plan

5.2 Plan monitoring

The ADG guarantees robustness when it is used during monitoring plan
execution. When an agent is ready to execute an action, it must first be
checked if any dependencies prevent the agent from carrying out the action.
If there are any such dependencies, the agent waits until the dependency no
longer exists. For that reason, when an agent finishes an action, it is necessary
to remove all dependencies connected with that action so that other agents
would not be vainly restrained in their movements. Therefore, the ADG must
be continuously updated during the plan execution. The detailed algorithm
of feasible plan monitoring is shown in Algorithm 4.
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Algorithm 4 Plan monitoring with ADG
Input: GADG, P, realPositions
1: tg ← 0
2: SOC ← 0
3: for i← 0 to R do
4: finished[i]← false
5: ta[i]← 0
6: while finished.count() 6= R do
7: doActions(GADG, ta, P, realPositions, finished)
8: if increaseTimestep() = true then
9: tg ← tg + 1;

10: updateADG(GADG, ta, P, realPositions, finished, tg, SOC)
11: function doActions(GADG, ta, P, realPositions, finished)
12: for i← 0 to R do
13: t← ta[i]
14: if finished[i] = false and P i

t = realPositions[i] then
15: if isDependent(GADG, i) = false then
16: commenceAction(i)
17: if P i

t+1 = realPositions[i] then
18: P i

t .finished← true
19: stopAction(i)
20: function updateADG(GADG, ta, P, realPositions, finished, tg, SOC)
21: for i← 0 to R do
22: t← ta[i]
23: if P i

t .finished = true then
24: for all (P i

t , v) ∈ EADG do
25: EADG.erase(P i

t , v)
26: ta[i]← t+ 1
27: if isAgentFinished(P i

t ) = true then
28: SOC ← tg + SOC
29: finished[i]← true

The above algorithm may look complex, but the ideas it represents are
simple. The input is an ADG graph GADG, plan structure P, and realPositions
array, which should correspond to the real positions of agents in plan execution.
The other notation used in the algorithm is described next. finished is a
boolean array that stores information on whether an agent is in the goal
position and does not have any more actions planned. R denotes the number
of agents. tg is a time step of the plan realization, independent of the
individual agents. ta is an array of each agent’s time step. For example, if
the agent i is delayed for 7 time step units at the start of the simulation,
after 7 time steps, tg would be 7, and ta[i] would be 0. Keeping track of
individual agent’s time steps is vital to knowing what actions they should take

18
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next. The following three functions are domain-specific: increaseTimestep
is connected to the real-time clock, and determines whether a time step
should be increased; commenceAction commands an agent to execute its
next action; stopAction commands an agent to stop its current action. The
isAgentFinished function checks whether an agent is in the goal position
and has no other actions planned. isDepended checks whether the next action
of an agent is not dependent on other actions. The remaining non-described
notation has the same meaning as in the previous algorithms.

In lines 1 to 7, multiple variables and arrays are initialized. In lines 8 to 14,
the while cycle is constructed with the terminating condition that all agents
reached are in their goal positions. First, the function doActions is called,
which commands agents to execute their actions. The agent commences
executing its next action if the following is true:. The agent’s plan is not finished. The agent resides at the currently planned position. The agent is not dependent on any other agent’s actions
If an agent is at the target position of action, it stops executing the action and
marks the vertex associated with the stopped action as finished. This function
is repeatedly called until a time step is increased. Then, the updateADG
function is called. All associated edges in the ADG with the finished vertices
are removed. It is also checked whether the agent is at the goal position and
does not have any other actions planned, as it is a terminating condition for
the while cycle.

5.3 Cycles in ADG and their detection

ADG is supposed to be an acyclic graph, but the ADG construction algorithm
does not completely disallow the possibility of cycle creation. The following
example shows the behavior of ADG when cycles are present.

(a) : timestep 0 (b) : timestep 1 (c) : timestep 2 (d) : timestep 3

Figure 5.2: An example of simulated MAPF plan, where four agents change
their positions among themselves
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Figure 5.2 shows an example of four agents changing their positions in a

circular movement. This would be an expected output of MAPF planners
since they do not take the possibility of delays into account. However, this
situation would require precise synchronous execution to avoid collisions. In
ADG, this would be detectable as a cycle. Execution with ADG containing
a cycle would result in a deadlock of agents involved in the cycle. The
dependencies of the described situation are shown in Figure 5.3.

Figure 5.3: ADG dependencies of the optimal plan for the scenario on Figure
5.2a. The cycle is highlighted in red.

In the ADG of the plan in Figure 5.3, there is a cycle in nodes in time step
t1. Upon execution, this will result in a deadlock situation, where neither
agent can start an action leading to a target position in time step t2 node
because the depending actions will never be finished.

In paper [HKT+19], it is proposed to prevent cycles occurring during
planning, for example, by disallowing an agent to move out of a particular
position in the perpendicular direction of another robot moving into that
same position. If no such precaution is done beforehand, it is necessary to
check whether there are any cycles in the ADG upon its creation.

Detecting cycles in a graph is usually handled by depth-first search. How-
ever, it is possible to simplify the search by knowing that a cycle can only
occur across one particular time step. There are two types of edges in the
ADG, and neither of them allows a vertex to be dependent on another vertex
planned later. Type 1 edges are a sequence of one agent’s moves, therefore a
vertex can be dependent only on vertices planned with earlier time. Type 2
edges introduce the property that a vertex can be only dependent on vertices
of other agents with earlier time (see Algorithm 3, line 15). A possibility of a
vertex being dependent on another vertex at a later time does not exist.
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The simplified search for cycles is shown in Algorithm 5. The search starts
with an initial time step variable t (line 1). First, all vertices with the planned
execution time t are marked as not visited (lines 2 to 3). Suppose there is
such Type 2 edge that vertex vt is an origin. In that case, vertex v′t is a
destination, and both vertices are planned to be executed in time step t, the
vertices are marked as visited, and the destination vertex is passed to the
recursive function (lines 5 to 8). In the recursive function, for each Type
2 edge where the origin is the passed vertex and the destination is another
vertex planned to be executed in time step t, the destination vertex is checked
if it has been visited. If true, the cycle is successfully detected; otherwise, the
destination vertex is passed to the recursive function. Should the recursive
function fail to detect a cycle, the search continues with different initial origin
vertex (lines 4 to 5). Should no cycle be detected for any initial origin vertex
with planned execution time t, the time step variable t is incremented by 1.

Algorithm 5 Searching for cycles in ADG
Input: GADG

Output: true if cycle is detected, otherwise false
1: for t← 0 to M do
2: for all vt do
3: vt.visited← false

4: for all vt do
5: for (vt, v

′
t) ∈ EADG do

6: vt.visited← true
7: v′t.visited← true
8: if CycleDetectRec(GADG, v

′
t) then

9: return true
10: vt.visited← false
11: v′t.visited← false

12: return false
13: function CycleDetectRec(GADG, vt)
14: for (vt, v

′
t) ∈ EADG do

15: if v′t.visited = true or CycleDetectRec(GADG, v
′
t) then

16: return true
17: return false
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Chapter 6

Replanning

In certain situations, it is necessary to create a new plan during the execution
of an already existing one. These include dynamic scenarios, where agents’
goals change when reached or when an unforeseen obstacle is detected and
may collide with the agent’s trajectories. Furthermore, replanning may also
be advantageous to create a new plan with better-expected properties. This
chapter links the concept of replanning to ADG, discussing the possibilities
and benefits the replanning has in ADG-controlled plan execution.

The following sections describe the situations when replanning is advanta-
geous or necessary in further detail, present algorithms that would efficiently
replan based on ADG, and show a feasible way of connecting replan algorithms
with a simulator.

6.1 Replanning to reduce SOC

Suppose the plan realization is controlled by the ADG. An agent ai cannot
execute an action until all agents whose agent ai is dependent on finish their
actions, stalling it for an unforeseeable amount of time steps. This property of
the ADG is helpful as it guarantees robustness but at the cost of an increase
in SOC. When ai is stalled, at the same time, other agents may be dependent
on ai and therefore stalled, which further increases total SOC. To put it
concisely, ADG guarantees robustness to delays but also introduces additional
delays in plan execution as a result.
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6. Replanning......................................
A model scenario in Figure 6.1a is an example of the above situation. It is

similar to the one discussed in the previous chapter (Figure 5.1), but this one
includes an extra green agent (labeled as an agent 2). The optimal plan with
ADG dependencies is shown in Figure 6.1b.

(a) : Model scenario

(b) : The optimal plan for the model scenario,
including the ADG dependencies

Figure 6.1: Model scenario and visualized dependencies on the optimal plan

There is one key dependency that links the blue agent’s (labeled as an agent
1) and the green agent’s action in time step 4. The green agent can perform
the action planned in time step 4 only when the blue agent completes its action
in time step 4; however, the blue agent must also deal with dependencies
connected to the red agent (labeled as an agent 0) beforehand. If the plan
execution is controlled by ADG and no additional delays are considered
(agents, therefore, move synchronously), the green agent would be stalled
while waiting for the blue agent to finish its planned action on time step 4.
The resulting paths are shown in Table 6.1b, and the paths of the optimal
plan without ADG controlling are shown in Table 6.1a.

Agent
Time 0 1 2 3 4 5 6

0 13 7 1
1 7 8 7 13 19 25
2 10 16 22 21 20 19 18

(a) : Paths of the optimal plan

Agent
Time 0 1 2 3 4 5 6 7 8 9

0 13 13 7 1
1 7 8 8 8 7 13 19 25
2 10 16 22 21 20 19 19 19 19 18

(b) : Paths after ADG-controlled simulation

Table 6.1: The differences in paths after ADG-controlled simulation and the
optimal plan
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The SOC of the original plan is 13, and the makespan is 6, whereas the
SOC of the ADG-controlled plan is 19 and the makespan is 9. Even though
the assumption of synchronous agent moving was declared (and no delay was
induced as a consequence), the SOC and makespan increased considerably in
the ADG simulation. The green agent attributed the most to the increase with
3 more actions than the projected number in the optimal plan; however, this
was caused as a consequence of the blue agent being delayed before executing
the action planned at time step 4. This shows that not only does ADG
introduce delays during plan execution, but the delays also may cumulate.

Taking a closer look at the situation when the green agent was stalled, it
is noticeable that the stalling could have been prevented by replanning.

(a) : Stalling of the green agent

(b) : The blue agent was supposed
to cross the intersection first but
it was delayed before the situation
arose. Red agent is therefore stalled
futilely

Figure 6.2: Situations where replanning would improve SOC

In figure 6.2a, the agents are in the middle of the execution of the plan,
precisely at time step 4 (see Table 6.1b). The red agent is in the goal position,
and the green agent is waiting for the blue agent to execute its actions as
it is dependent on it (see Figure 6.1b). If a new plan is created now, with
starting positions the agents currently occupy, it would be possible to create
a new ADG.

Agent
Time 0 1 2 3

0 1
1 7 13 19 25
2 20 19 18

(a) : Paths of the optimal plan after re-
planning

Agent
Time 0 1 2 3 4

0 1
1 7 13 13 19 25
2 20 19 18

(b) : Paths after replanning in ADG-
controlled simulation

Table 6.2: Different paths are returned depending on the order of applying delays

Suppose the agents immediately follow the new plan and are controlled by
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6. Replanning......................................
the new ADG. The paths of a new optimal plan for the situation in Figure
6.2a are shown in Table 6.2a. In contrast to the plan in Table 6.1a, the green
agent is planned to cross tile number 19 sooner than the blue agent. This
change of priority would also mean that according to the new ADG, the
blue agent would now be dependent on the green agent and not the other
way around. When the simulation finishes, the overall SOC before and after
replanning is 17, and makespan is 8. This is an improvement to the simulation
without replanning discussed before, where SOC was 19 and makespan 9.
Note that the simulation with replanning assumed that the new plan was
created immediately, which is generally not the case.

Another scenario where replanning is beneficial is shown in Figure 6.2b.
In this scenario, the advantages of replanning should be much more evident.
Suppose the agents are in the middle of plan execution, and according to
the original plan, the blue agent would cross the intersection sooner than
agent the red agent. Therefore, the ADG derived from this plan created a
dependency of the red agent on the blue agent such that the red agent cannot
cross the intersection until agent the blue agent does. However, since the blue
agent is far from the intersection, it was likely delayed before the situation
in the figure arose. The red agent must wait futilely until the blue agent
manages to cross the intersection. If replanned, the new plan should consider
that the red agent is closer to the intersection and let it cross the intersection
first, significantly decreasing overall SOC.

All of these leads to a conclusion that replanning is beneficial in ADG-
controlled plan execution; the crucial question is when it is plausible to replan.
For minor delays, replanning could be meaningless as the agents may resolve
the dependencies sooner than the new plan is found. Therefore, a good
indicator is when a dependent agent’s stalling is projected to be considerably
high, such as the situation in Figure 6.2b.

6.2 Replanning to resolve agent’s malfunction

In this thesis, an agent is malfunctioning if it cannot execute any more actions.
This could happen by running out of batteries or stopping receiving a signal
from the control program. The controlling program would either detect this
immediately or at a later time because the agent would be stalled for a
significant amount of time steps in one position unreasonably.

In Figure 6.3, two distinctive situations with malfunctioning agents are
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(a) : Red agent is waiting for
the malfunctioning blue agent,
the situation can be fixed by re-
planning

(b) : Red agent is waiting for the
malfunctioning blue agent, the
blue agent has to be perceived
as an obstacle

Figure 6.3: Scenarios, where the red agent is waiting for the malfunctioning
blue agent

presented. The malfunctioning agent is the blue one in both cases. In Figure
6.3a, suppose the red agent is dependent on the blue agent. The red agent
would be stalled indefinitely as the blue agent can no longer execute actions
that would eliminate the dependency. This problem can be solved by simply
replanning. The dependency would be reversed, and the red agent would
reach its goal position.

In figure 6.3b, the agents are planned to reach goals in train-like motion.
Since the blue agent is malfunctioning, this cannot happen. As opposed to
the previous situation, the replanning is not so simple. The MAPF solvers
would perceive the train-like motion still as the best plan as it comes with
the lowest SOC and makespan. A legitimate approach is to consider the blue
agent to be an obstacle and replan the path only for the functioning red
agent.

6.3 Commit cut

The commit cut algorithm [HKT+19] was designed to efficiently replan
in dynamic scenarios, where agents’ goals change when reached and the
simulation finds and executes new plans continuously. Since testing persistence
is not the aim of this thesis, the focus in this section will be shifted to
another declared property of the algorithm - robustness to the newly appeared
obstacles. It will also be discussed whether the approach is feasible to reduce
the overall SOC.
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Algorithm 6 Commit cut
Input: GADG

Output: commit cut ci ∈ VADG for i = 0, ..., R− 1
1: {d0, ..., dR−1} ← ComputeDesiredSet(GADG)
2: G′ADG ← (VADG, E

′
ADG) where

3: E′ADG = {(v, v′)|(v′, v) ∈ EADG}
4: reachable← ∅
5: q ← Queue({d0, ..., dR−1})
6: while q not empty do
7: P i

t ← Dequeue(q)
8: reachable← reachable ∪ {P i

t }
9: for (P i

t , v) ∈ E′ADG do
10: if v /∈ reachable then
11: Enqueue(q, v)
12: for j ← 0 to R do
13: cj ← argmaxt{P i

t |P i
t ∈ reachable ∧ i = j}

The purpose of Algorithm 6 is to find such a set of vertices (commit cut),
one for each agent, where the positions after executing those vertices would
be used as a starting position for the MAPF solver. Since there is a time lag
until a new plan is found, the algorithm first finds a set of vertices (desired set)
such that the expected execution time of actions is larger than the expected
planning time (line 1). Next, the reversed graph of ADG is computed, where
all edge’s directions are reversed (lines 2 to 3). The vertices in the desired
set are enqueued (line 5), a new set is created (reachable set, line 4), and an
exhaustive search is executed on the reversed graph (lines 6 to 11). A vertex
P i

t is dequeued and added to the reachable set during the search. All vertices
in edges, where P i

t is the destination, are checked if they are already in the
reachable set; if not, the vertices are enqueued, and the search continues. The
reachable set after the search ends is called a set of committed vertices. The
last actions for each agent in the set of committed vertices are added to the
commit cut set (lines 12 to 13).

The starting positions are sent to a planner, and the agents execute actions
in the reachable set until the new plan is created. If an agent executes the
action in the commit cut set, it stops at the current position and refrains from
executing any more actions from the old plan. The new plan is combined
with the vertices from the reachable set that were not executed. The first
vertices from the new plan are synchronized in time so that there are no
dependencies from the new plan to the old plan.

According to the original paper [HKT+19], the algorithm is supposed to
be robust to newly appeared obstacles; when an agent detects an obstacle,
it notifies a planner of the obstacle and refrains from doing any action until
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replanned. It is not clear how it would deal with situations as shown in
Figure 6.3b, where, should the blue agent be stopped, the red agent cannot
execute any set of actions as the blue agent blocks the way. Furthermore, the
algorithm cannot be efficiently used in situations where it would be beneficial
to replan to reduce overall SOC, as was discussed in Section 6.1, particularly
the scenario in Figure 6.2b. In this scenario, the red agent waits on the blue
agent to cross the intersection due to imposed dependency. After replanning,
it would be desirable that the dependency would not exist to let the red
agent cross the intersection first. However, at minimum, the commit cut
algorithm commits all blue agent’s actions up to the one that crosses the
intersection, and the red agent would still need to wait for the blue agent
before transitioning to the new plan.

6.4 Modified commit cut

The commit cut algorithm has properties that make it efficient in real-time
dynamic scenarios but may not be the best option when the intention is
to decrease overall SOC in plan execution. The presented Algorithm 7 is
a modified version of the commit cut algorithm and it is a novel approach
introduced in this thesis.

The main idea is to resolve futile stalling that may be present in ADG-
controlled plan execution by setting an arbitrary number of time steps k that
would correspond to the maximum number of actions the agent can execute
in the old plan before transitioning to the new plan.

The realization of the idea is to go iteratively through the ADG and add
to the reachable set only the vertices that can be reached in k time steps
from current position. A vertex P i

t is added to the reachable set if it does
not have any Type 2 edges, where P i

t is a destination and the origin vertex
v is not in the reachable set (lines 9 to 18). The while cycle ends when no
more vertices are added during one iteration (line 19)

The situation in Figure 6.2b can now be successfully resolved using this
algorithm. Let k = 3, for example. The blue agent adds all three next vertices
to the reachable set, as it is not dependent on the red agent. The red agent
does not add any vertices, as the first vertex in its plan sequence depends
on the vertex of the blue agent that has not been added to the set. During
planning phase, the blue agent executes k′ ≤ k actions. When the new plan
is created, it is combined with k− k′ blue agent’s next actions in the old plan.
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Algorithm 7 Modified commit cut
Input: GADG

Output: commit cut ci ∈ VADG for i = 1, ..., R
1: {00, ..., tR−1

0 } ← GetCurrentT imes(GADG)
2: {t0k, ..., t

R−1
k } ← ComputeDesiredT imes(GADG)

3: reachable← ∅
4: finished← false
5: while finished = false do
6: finished← true
7: for i← 0 to R do
8: for t← ti0 to tik do
9: addToReachable← true

10: for (v, P i
t ) ∈ EADG do

11: if v /∈ reachable then
12: addToReachable← false
13: break
14: if addToReachable = false then
15: break
16: else
17: reachable← P i

t

18: ti0 ← ti1
19: finished = false

20: for j ← 0 to R do
21: cj ← argmaxt{P i

t |P i
t ∈ reachable ∧ i = j}

Since the red agent is closer to crossing the intersection, the optimal plan
would let the red agent cross the intersection first; therefore, the red agent
will not depend on the blue agent in the newly created ADG.

6.5 Incorporating replanning into simulator

This section shows a feasible way to connect replanning algorithms with a
simulator. This method provides several features - first, a new plan is created
independently on the simulator so that the simulation would not be halted.
The agents can still execute actions during the finding of a new plan. Second,
the new plan is safely combined with the actions of the old plan that were
supposed to be executed before transitioning to the new plan. Third, if any
delays were introduced before the simulation began for testing purposes, the
new plan will still adhere to the arranged delays so the test will not be flawed.

The inter-process communication was created using the nanomsg library
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[nana] with the C++ binding [nanb]. The plan visualizer and planning
algorithms were implemented by Keisuke Okumura [OTD21] [map] and the
plan visualizer uses the openFrameworks library [oF]. The plan visualizer
shows the continuous movement of the agents while executing actions from the
plan. Delaying the plan (Algorithm 1 and 2) was done in python script; all of
the rest were implemented in C++. Several modifications were made to the
plan visualizer for this thesis’s purposes, making it a plausible simulator for
testing robustness. The planner and the simulator are independent programs,
which is why inter-process communication is implemented.

Figure 6.4: Process diagram with the designated workflow order shown in red
numbers.

The workflow depicted in Figure 6.4. starts with the function getStartPositions
, which returns computed intended start positions for creating the new plan,
for example, by using the commit cut algorithm (1.). The simulator passes all
necessary information to create the new plan to the planner(2.). The planner
starts searching for a solution given the new start positions. When the planner
find the solution, it is passed back to the simulator(3.). The actions of the
old plan that were supposed to be executed before transitioning to the new
plan are combined with the new plan in the combinePlans function (4.). At
this point, the combined plan is already usable in simulation, but if there
were designated delays in the old plan for testing purposes, the new plan
erased these delays, and it would be sensible to put the previously designated
delays back. In the getDelayTimes function, the scheduled delay times and
duration are extracted (5.). In the delayPlan function, the delays are added
to the plan using Algorithms 1 and 2 from Chapter 4 (5.).
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Chapter 7

Experiments

This section shows multiple experiments that verify the functionality and
properties of the implemented algorithms, specifically the ADG, the commit
cut, and the modified commit cut. The experiments ran on computer with
CPU i5-1135G7 2.4GHz, 15 GB RAM, and Ubuntu 20.04.3 64-bit OS. The
used maps are from the MovingAI dataset [SSF+19] (Figure 7.1).

(a) : random-32-32-20 map (b) : maze-32-32-4 map (c) : room-32-32-4 map

(d) : room-64-64-8 map
(e) : warehouse-10-20-10-2-1 map

Figure 7.1: Maps used in the experiments
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7.1 ADG experiments

In this type of experiment, two different approaches are compared: The
ADG-controlled plan realization and ADG-controlled plan realization with
a periodical replanning. The approaches are evaluated through SOC and
makespan. The number of agents in each map was chosen so that the
cycles do not happen often. The motivation is to test whether replanning
is effective when combined with an ADG-controlled plan. As discussed in
the previous chapters, using ADG can create situations where agents wait
futilely. Replanning should sufficiently resolve these situations.

The procedure is as follows: For 5 different maps, 30 instances (different
starts and goals of the agents for the same map), and 100 sets of delays, the
SOC and makespan are calculated. The procedure is further explained below.
1) The delays are determined before the start of the simulation, and the
delay is defined as a tuple <agent, start, duration>. The values of agent,
start (starting time step of delay), and duration (in time steps) are chosen
randomly with uniform distribution. For agent, the range is [0, number of
agents]. For start, the range is [0, time step of path end of the chosen agent],
the path end is the time step when an agent is at a goal and does not move
away from it. For duration, the range is [1, 5]. All number generators are
seeded with the same number through the experiments.
2) The number of sets of delays is 100. The first set of delays is empty, i.e.,
no delays are introduced to the original plan. The k-th delay set contains
values of delay that are obtained in step 1) k − 1 times.
3) The replanning is done instantly, i.e., the agents immediately transition
from the old plan to the new one.
4) All of the planning were made by the MAPF solver ECBS with subopti-
mality factor w = 1.1, including the original plan
5) Should the original plan be invalid, or the creation of the path takes longer
than 10 seconds, or a cycle is detected in the ADG before the start of the
simulation, the experiment on the current instance is aborted, and a new
instance is generated instead.
6) If a cycle is detected after replanning, the agents stick to the original plan.
7) The replanning is done periodically - specifically, every 10th time step.
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(a) : Comparison of the two methods
in SOC

(b) : Comparison of the two methods
in makespan

Figure 7.2: The experiments for random-32-32-20 map with 50 agents

(a) : Comparison of the two methods
in SOC

(b) : Comparison of the two methods
in makespan

Figure 7.3: The experiments for maze-32-32-4 map with 15 agents

(a) : Comparison of the two methods
in SOC

(b) : Comparison of the two methods
in makespan

Figure 7.4: The experiments for room-32-32-4 map with 30 agents
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(a) : Comparison of the two methods
in SOC

(b) : Comparison of the two methods
in makespan

Figure 7.5: The experiments for room-64-64-8 map with 50 agents

(a) : Comparison of the two methods
in SOC

(b) : Comparison of the two methods
in makespan

Figure 7.6: The experiments for warehouse-10-20-10-2-1 map with 150 agents

In the figures 7.2-7.6, the horizontal axis is the total amount of delays in
time steps and the vertical axis is a quality evaluating function - makespan or
SOC. The red line fits the ADG results to a third-degree polynomial; the blue
line fits the results of the ADG with a periodical replanning to a third-degree
polynomial. The highlighted region represents 80% probability that the data
is in that region.
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Map
Total delay 0 69 138 207 276

random-32-32-20 0.69 2.58 3.41 3.70 3.79
maze-32-32-4 1.27 2.73 3.70 4.62 5.73
room-32-32-8 1.41 1.67 2.13 2.83 3.76
room-64-64-8 0.89 1.40 2.04 2.51 2.50

warehouse-10-20-10-2 -0.22 0.13 0.37 0.56 0.74

Table 7.1: The improvement in SOC of ADG-controlled plan realization with
a periodical replanning compared to the ADG-controlled plan realization. The
improvement is shown in percent.

Map
Total delay 0 67 138 207 276

random-32-32-20 0.70 3.68 4.91 5.50 6.26
maze-32-32-4 1.11 2.88 4.78 6.66 8.38
room-32-32-4 1.77 1.85 4.41 6.87 7.38
room-64-64-8 2.58 1.73 2.07 2.56 2.31

warehouse-10-20-10-2 -0.15 0.23 0.46 0.70 1.13

Table 7.2: The improvement in makespan of ADG-controlled plan realization
with a periodical replanning compared to the ADG-controlled plan realization.
The improvement is shown in percent.

The Figures 7.2-7.6 and Tables 7.1-7.2 show that the approach of ADG-
controlled plan realization with a periodical replanning has proven to be more
efficient in terms of SOC and makespan in all of the presented experiments.
Furthermore, the effect becomes more significant with the increasing number
of delays. It has been observed that the cycles in the initial plans have
occurred in units of percents. It was also verified that both approaches are
robust, as no collisions have happened through the experiments.

7.2 Commit cut experiments

In this type of experiment, the two compared approaches are the Commit cut
algorithm and the Modified commit cut algorithm, a new method devised in
this thesis. The approaches are evaluated through SOC and makespan. Both
the approaches use the ADG to provide a fluid transition from the old plan to
the new plan. However, the Commit cut algorithm does not repair situations
where agents wait futilely for another delayed agent. The experiments do not
only test Commit cut properties but also show whether the Modified commit
cut can be a plausible alternative.
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7. Experiments .....................................
The procedure is as follows: The SOC and makespan are calculated for

one map, 30 instances with different starts and goals of the agents, and 100
sets of delays. The procedure is further explained below.
1) The delays are generated the same way as in the ADG experiments in the
previous section.
2) The replanning is always done only at the start of the 15th timestep.
3) The predicted number of time steps it takes to obtain a new plan is set to
5. The agents still execute actions according to the old plan as defined in the
algorithms. 4) The actual number of time steps it takes to obtain a new plan
is set to 3. This number would not be set in real-time simulations, and it
would vary depending on the complexity of the map. The number is set to a
fixed value to ensure that simulation of both algorithms performs under the
same conditions. 5) All of the planning were made by MAPF solver ECBS
with suboptimality factor w = 1.1, including the original plan
6) Should the original plan be invalid, or the creation of the path takes longer
than 10 seconds, or a cycle is detected in the ADG, the experiment on the
current instance is aborted, and a new instance is generated instead.
/

(a) : Comparison of the two methods
in SOC

(b) : Comparison of the two methods
in makespan

Figure 7.7: The comparison of applying the commit cut algorithm and the
modified commit cut algorithm. The horizontal axis is the total amount of delays
in time steps; the vertical axis is a quality evaluating function - makespan or
SOC. The red line fits the commit cut results to third-degree polynomial; the
blue line fits the modified commit cut results to third-degree polynomial. The
highlighted region represents 80% probability that the data is in that region

Map
Total delay 0 69 138 207 276

random-32-32-20 0.35 0.94 1.58 1.92 1.69

Table 7.3: The improvement in SOC of Modified commit cut algorithm compared
to the Commit cut algorithm. The improvement is shown in percent
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............................... 7.2. Commit cut experiments

Map
Total delay 0 67 138 207 276

random-32-32-20 0.66 0.32 1.87 3.32 3.08

Table 7.4: The improvement in makespan of Modified commit cut algorithm
compared to the Commit cut algorithm. The improvement is shown in percent

The Figure 7.7 and Tables 7.3-7.4 show that the approach of Modified
commit cut has proven to be more efficient in terms of SOC and makespan in
the presented experiments. The effectiveness also becomes more significant
with the increasing number of delays. The fitted curve of the Commit cut
algorithm is very similar to the one of ADG in Figure 7.2a and Figure 7.2b.
This was expected, as the commit cut algorithm is based on the ADG and does
not fix its drawbacks. On that note, the Modified commit did not manage
to improve the properties as much as the ADG with a periodical replanning
approach. Nonetheless, it also offers the property of fluid transition from
the new plan to the old plan, which the ADG with a periodical replanning
approach does not have.
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Chapter 8

Conclusion

This thesis revolves around the robustness in the plan execution. Most MAPF
solvers provide a collision-free plan but with the assumption that agents
move synchronously and as planned. This is an unrealistic assumption as
physical robots are subjected to many defects, such as higher-order dynamic
constraints or control inaccuracies. Without further control, executing plans
created under mentioned assumption may result in collisions. This is the
motivation for implementing a framework that guarantees robustness in the
plan execution. The implemented framework in this thesis is the ADG -
Action Dependency Graph, which captures the action-precedence relationship
in the original MAPF plan. In the ADG-controlled plan execution, an agent
cannot execute an action that would move it to a position where another
agent may reside unless the agent has already moved out of the position.

Many tasks had to be completed to verify the functionality and properties
of this framework experimentally. First, a tool for introducing delays was
devised and implemented. Its purpose is to make the original plan invalid,
which would result in possible collisions and pose a challenge for the ADG to
provide robustness. The ADG had to be implemented and incorporated into
the simulator. The simulator had to be modified so that it would simulate the
invalid plan and monitor when the execution of the invalid plan diverges from
the original plan, so the movements of all agents can be correctly adjusted
according to the ADG. Completing these tasks laid a solid foundation for
performing multiple experiments of the ADG. Another implemented algorithm
is the commit cut algorithm. It is based on the ADG, and it searches for
the starting positions of agents for replanning. It was also intended to be
experimentally verified for its functionality and properties. The algorithm
did not resolve one of the ADG’s main drawbacks - the stalling for a long
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8. Conclusion......................................
time of an agent until the action dependencies are solved. Therefore, a new
replanning algorithm was devised and implemented with the intention of
reducing the overall SOC during ADG-controlled plan execution.

As the experiments show, the ADG is robust to an arbitrary number of
delays but at the expense of a futile stalling. Using ADG with predefined
replanning times proved to be a more efficient approach. This shows that
ADG can be further optimized for better results.

The commit cut algorithm functioned correctly but did not fix the stalling
the ADG creates. A new approach was devised - it is based on similar ideas
to the commit cut algorithm, but it performs way more effectively in the
measured evaluation functions SOC and makespan.

The experiments were possible to be carried out because a functional
simulator was created beforehand. It was specifically modified for testing
robustness. This simulator can be used to test the implemented algorithms
further or to test other robustness-increasing algorithms if the simulator is
slightly modified accordingly.

The subsequent development in the robust plan execution can be based on
improving the properties of the ADG. Particularly, the ADG can be further
optimized, as shown in the experiments, so the agents do not wait futilely for
the delayed agent or fix cycles’ occurrence. The direction that can lead to
the correct solution to these problems may be by cleverly assigning priorities
to agents or actions so that the dependencies may change during the plan
execution.

´
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Appendix B

Additional files

Only the essential directories are mentioned. The rest are supporting files.
File/Directory Description

F3-BP-2022-Weis-Josef.pdf The PDF file of this thesis.
thesis The directory containing the Latex

source files and used images for the
creation of this thesis document.

visualizer The directory that contains most of the
work created for the purposes of this
thesis.

mapf The directory of planner with
implemented MAPF solvers by Keisuke
Okumura.
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