
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Control Engineering

Bachelor’s Thesis

Automation of precision
measurement process using laser
tracker and industrial robot

Václav Kubáček

May 2022
Supervisor: Ing. Tomáš Jochman

Acknowledgement / Declaration

I would like to thank my supervisor
Ing. Tomáš Jochman, for his guidance
in both solving the thesis goals and com-
posing the thesis. I would also like to
thank Ing. Pavel Burget, Ph.D., the di-
rector of Testbed for Industry 4.0. Who
made it possible for me to conduct my
bachelor’s project on the robotic work-
station at Testbed.

I declare that I have worked inde-
pendently on the submitted thesis and
that I have listed all the sources of
information used in accordance with
the methodological guideline on the
observance of ethical principles in the
preparation of university theses.

In Prague on May 21, 2022

. .

iii

Abstrakt / Abstract

Tato bakalářská práce se zabývá au-
tomatizací procesu přesného měření s
využitím laser trackeru a průmyslového
robotu. Úkolem je navrhnout způsob
komunikace mezi kontrolérem robotu,
kontrolérem laser trackeru a aplikačním
softwarem. Další částí práce je navrh-
nout a testovat proces automatické
kalibrace pracovního prostoru robotu a
také proces přesného měření výrobku
pomocí dotykové sondy na sledovacím
zařízení. Na závěr dojde k porovnání
výsledků vlastních algoritmů s výsledky
získaných ze softwaru třetích stran.

Klíčová slova: laser tracker; ka-
librace; průmyslový robot, dotyková
sonda, přesné měření;

This bachelor thesis deals with the
automation of a precision measurement
process using a laser tracker and an
industrial robot. The task is to design
a communication method between the
robot controller, the laser tracker con-
troller, and the application software.
Another part of the work is to design
and test the process of automatic cal-
ibration of the robot workspace and
accurate product measurement using a
touch probe on the tracker. Finally, the
results of the developed algorithms will
be compared with the results obtained
from third-party software.

Keywords: laser tracker; calibration;
industrial robot, touch probe, precision
measurement;

iv

Contents /

1 Introduction 1
1.1 Goals 1

2 Main components of the
robotic workstation 3

2.1 Hardware 3
2.1.1 Industrial robot and

positioner 3
2.1.2 Laser tracker and ac-

cessories 4
2.2 Software 5

2.2.1 Robot programming 5
2.2.2 Metrology software 6

3 Communication with the
laser tracker controller 7

3.1 Connecting the laser tracker . . . 7
3.1.1 EtherCAT 8
3.1.2 Real Time Feature

Pack EtherCAT
(RTFP-EC) 8

3.1.3 Connection of the Au-
tomation Robot Cable 9

3.2 Communication protocol 10
3.2.1 Input frame from Slave

to Master 10
3.2.2 Output frame from

Master to Slave 11
3.2.3 Algorithm for the laser

tracker automated control . 13
3.3 Conversion of incoming data . . 15

3.3.1 IEEE Standard for
Floating-Point numbers . . 15

3.3.2 Implementation of the
Real numbers converter . . 15

3.3.3 Discussion on precision
loss 16

3.3.4 Coordinate system
conversion for positions . . 17

3.3.5 Coordinate system
conversion for rotations . . 17

3.3.6 Euler angles conversion
limitations 18

3.4 Other configuration option . . . 19
4 Automatic robot workspace

calibration 20
4.1 Description of the workflow . . 20

4.2 Transformation between
the positioner and the laser
tracker 𝗧𝗱

𝗹 21
4.2.1 Features measurement . . . 21
4.2.2 Plane, Axis and Center

point alignment 22
4.2.3 Robot programming 23

4.3 Transformation between
the laser tracker and
robot’s root 𝗧𝗹

𝗿 24
4.3.1 Transformation be-

tween the laser tracker
and the T-Mac 25

4.3.2 Transformation be-
tween the robot and
the T-Mac 26

4.3.3 Joining 𝗧𝗹
𝘁 and 𝗧𝗿

𝘁 together 27
4.3.4 Euler angles 28

5 Inspection of the manufac-
tured part 30

5.1 Measurement of the print-
ed part using Polyworks
Inspector software 30

5.1.1 Printed Part 30
5.1.2 Polyworks Inspector

program 31
5.1.3 Workflow for automat-

ed inspection of the
printed part 32

5.1.4 Robot programming 33
5.1.5 Evaluation of the in-

spection 34
5.2 Measurement of the print-

ed part without metrology
software 35

5.2.1 Acquisition of mea-
sured data 35

5.2.2 Inspection of the thick-
ness of the lower ring . . . 36

5.2.3 Cylinder inspection 38
6 Comparison of the meth-

ods presented in Chapters
5 and 6 with metrology
software 40

v

6.1 Comparison of calibration
methods 40

6.1.1 Workflow description
in Robodyn 40

6.1.2 Comparison of both
transformation matrices . . 41

6.1.3 Calibration result 43
6.2 Comparison of printed part

inspection methods 43
6.2.1 Layer thickness inspection . 44
6.2.2 Cylinder inspection 46

7 Conclusion 48

References 50

A Thesis assignment 53

B Photographs of devices 55

vi

Tables / Figures

6.1 Layer thickness deviations 44
6.2 Cylinder parameters devia-

tions . 46

2.1 Robotic workplace3
2.2 Perpendicular printing4
3.1 Configuration with T-Mac7
3.2 Configuration with RRR.8
3.3 Automation cable9
3.4 Frame from slave 10
3.5 Inputs in WorkVisual 11
3.6 Frame from master 11
3.7 Outputs in WorkVisual 13
3.8 Float32 . 15
3.9 Double64 . 15

3.10 Double converter 16
3.11 Whole converter 17
3.12 Configuration with PC. 19

4.1 Calibration diagram. 21
4.2 DKP coordinate system. 22
4.3 Incremental movement 24
4.4 T-Mac face 3 25
5.1 Printed part . 31
5.2 Circle acquisition 32
5.3 Macro Script program 33
5.4 Polyworks Inspector. 35
6.1 Robodyn . 41
6.2 Plane and points 45
6.3 Layer thicknesses deviations . . . 45
6.4 Cylinder . 46
B.1 Laser Tracker 55
B.2 Touch Probe . 55
B.3 Automation Interface 56
B.4 Object inspection 56

vii

Chapter 1
Introduction

The bachelor thesis deals with the automation of a precision measurement process using
a laser tracker and an industrial robot. The principle of the precision measurement
function is that the robot carries a tool which is 6DoF (Degrees of Freedom) tracking
device for automated applications, equipped with a touch probe. On demand, the laser
tracker measures the position of the 6DoF tracking device in space.

Thanks to these devices, it is possible to design and develop an application for auto-
matic calibration of the robot workspace. In addition, it is possible to use the device to
accurately measure objects in space with a touch probe, as is the case with Coordinate
Measuring Machines (CMMs). The advantages over CMMs are greater flexibility in the
selection of measurement positions, and when equipped with a conveyor, the capacity
for output inspection on the production line can be significantly increased.

A secondary contribution of this work is the use of the results of robot workspace
calibration for multi-axis additive manufacturing. Accurate calibration of the robot
workspace is required to link the external kinematic chain to the robot controller.
Furthermore, it is possible to use the laser tracker in feedback with the robot controller
to refine the robot trajectories, especially in linear interpolation.

This project is being developed at the Testbed for Industry 4.0, which is part of the
Czech Institute of Informatics, Robotics, and Cybernetics (CIIRC CTU)1.

1.1 Goals
The main objective of this work is to design and develop a process for automatic robot
workspace calibration using a laser tracker and an industrial robot. The next objective
is to design and develop a process for accurate measurement of a part by touch probe
with the same devices.

To accomplish these goals, there is a need to provide communication between the
laser tracker and the robot controller so that the laser tracker can send measured data
to the robot controller, and the robot can send commands to the laser tracker. The
received data must also be converted to the correct format so that the robot controller
can process them.

The result of the automatic calibration of the robot workspace is to find the trans-
formation matrix between the robot root and the root of the positioning table. The
second transformation matrix to be found is the transformation matrix between the
laser tracker coordinate system and the robot coordinate system. The matrix is needed
in order to compare the robot positions with those measured by the laser tracker. This
matrix can also be obtained from the Robodyn software, which is primarily used for
robot calibration. It is therefore convenient to compare these methods.

An automatic inspection of a manufactured part process can automatically determine
if the part has been manufactured within specified tolerances. Part inspection can be

1 https://ricaip.eu/testbed-prague/

1

https://ricaip.eu/testbed-prague/

1. Introduction .
created both with and without the Polyworks Inspector metrology software. These
methods will also be compared with each other. If no third-party software is used, there
is a great opportunity to automate the inspection process in the meaning of continuous
quality control. Such a solution can be used at the output of a production line and
could automatically measure its products and detect faulty ones. In this solution, the
laser tracker, alongside the 6DoF tracking device, works similarly to CMM [1].

2

Chapter 2
Main components of the robotic workstation

The hardware and software used at the robotic workstation will be introduced before
the solution of the specified goals of the work is presented. Industrial robots are quite
common in the automation of manufacturing processes, whereas laser trackers are not
often used in manufacturing plants. Therefore, the laser tracker and its components
will be presented in more detail. Software products will also be introduced in short.
Rather they will be described at the places in the thesis where they are needed and
used.

2.1 Hardware

2.1.1 Industrial robot and positioner

. Kuka KR 8 R1620 is a 6-axis robot arm with a rated payload of 8 kg, a maximum
reach of 1620 mm, and with pose repeatability of 0.04 mm. The manufacturer does
not provide this accuracy for absolute positioning, which is needed in additive man-
ufacturing. This robot is suitable for the workstation because it can carry a 6DoF
tracking device and also an extruder for 3D printing. It is worth mentioning that
Kuka KRC4 small size 2 controller is used [2].. Kuka DKP-400 is a 2-axis positioner external kinematics with pose repeatability 0.1
mm. The rotating axis (𝐸1) can rotate in the range ±90 ∘, and the rotating axis
(𝐸2) can rotate endlessly. It serves as a pad on which it is printing [3]. Workplace
can be seen in the Figure 2.1. Thanks to the positioner kinematics, turning and
tilting with the printed part is possible. It allows to print perpendicular to the pad,
as shown in Figure 2.2. Printing without any supports is possible in contrast to other
conventional 3D printers.

Figure 2.1. Workplace with Kuka KR 8 R1620 robot and Kuka DKP-400 positioner.

3

2. Main components of the robotic workstation .

Figure 2.2. Example of perpendicular printing.

2.1.2 Laser tracker and accessories

. Absolute Tracker AT960 (Figure B.1) is a laser tracker that measures a point in space
using a class 2 laser (composed of multiple class 1 laser beams). As the target can be
multiple devices, at the workstation, 1.5′′ and 0.5′′ red ring reflectors (RRR) are used
for measuring a single point, and T-Mac (Tracker-Machine control sensor). When
using the T-Mac, it can even measure 6DoF.

The native coordinate system of the measured point is defined in spherical coor-
dinates (φ, 𝜃, 𝑟). The laser source has two orthogonal rotating axes that can move
horizontally and vertically. Using encoders on these axes, the first two coordinates
of the point are obtained. φ is the coordinate of the horizontal axis, and 𝜃 is the
coordinate of the vertical axis [4].

Distance 𝑟 is measured with the Absolute Interferometer (AIFM) module, which
combines an Interferometer (IFM) for precision of a dynamic measurements with an
Absolute Distance Meter (ADM) to set the absolute reference distance. Both modules
measure the distance to the reflector simultaneously. The IFM finds out the phase
between emitted and reflected signals to measure small differences in distance, and it
can detect quick changes in distance. The Interferometer uses a visible laser beam.
The ADM uses an invisible modulated laser beam. Modulation by a polarization of
laser beam is used. It is precise, but it takes some time to analyze the incoming
modulated waves, so the absolute position is first determined using the ADM, then
the relative deviations from it are dynamically determined using the interferometer
[5–6].

The accuracy of the laser tracker is defined by the Maximum Permissible Error
(MPE), which is defined by the Automotive Society of Mechanical Engineers (ASME)
[7]. It specifies the maximum error value permissible for a given measurement spec-
ification and target used. The inaccuracy of the measurement of the distance of a

4

. 2.2 Software

point in space is theoretically defined as the difference between the measured value
and the nominal value. The measurement inaccuracy is dependent on the target
distance. With increasing distance, the accuracy decreases. For a 1.5′′ RRR, the
MPE uncertainty 𝑈 of a distance coordinate 𝑟 is defined as:

𝑈𝑟 = ±15 𝜇𝑚 + 6 𝜇𝑚/𝑚.

The accuracy of the distance measurement is dependent on the ambient air tem-
perature and atmospheric pressure, so a temperature and pressure sensor must be
connected to the laser tracker to compensate for these influences during the measure-
ment [4].. 1.5′′ RRR is a passive target composed of three orthogonal mirrors. It is used to
measure a point in ℝ3. Its design ensures that the beam is reflected in the same
direction as it entered, that is, into the laser tracker. Its diameter is 38.1 mm, and
its acceptance angle of the laser beam is ±30 ∘ [8].. T-Mac Multiside TMC30-M with a touch probe is an active target for measuring a 6DOF
object in ℝ3. Information about the position of the point is obtained in the same
way as for an RRR reflector because there is one on its surface. Rotation information
is provided in quaternions. There are 7 Infrared Light Emitting Diodes (IR LEDs)
distributed over the surface of the T-Mac; several of them are even elevated above the
surface to provide 3D distribution. From the position of these LEDs, which illuminate
the laser tracker, the rotation of the T-Mac is defined. The T-Mac Multiside differs
from a simple T-Mac in that it has 4 faces that can be used for measurement. Each
face has its own reflector and a set of 7 IR LEDs [9]. The T-Mac can be seen in Figure
2.1, when it is mounted on the flange of the robot. A touch probe with a ruby tip
(Figure B.2) can be attached to the T-Mac. This is used to measure the surface of an
object; as soon as the probe touches an object, a point, where the probe touched the
object is sampled. When several points are measured, a point cloud of the measured
object is obtained. The way the probe works is that when it touches the surface, the
electrical contact inside the probe breaks; this triggers a measurement. The probe is
triggered by a force of 0.1 N [10].. An Automation Interface Controller (Figure B.3) is required to process the signals
from the T-Mac and send it to laser tracker. It can be also connected to the robot’s
controller.

2.2 Software

2.2.1 Robot programming
Kuka WorkVisual is software for hardware configuration, offline programming, and di-
agnostics of KR C4 control systems. It allows programming the robot and external
kinematics in KRL language, configuring inputs, outputs, and field buses, configuring
optional packages, and editing TOOL and BASE coordinate systems.

Kuka KRL is a procedural programming language used for programming Kuka robots.
A KRL program consists of SRC and DAT files. The SRC file contains the commands
themselves, and the DAT file is used to store program data, constants or positions.
SUB files are special programs that run continuously even when no SRC file is selected.
They are used, for example, to parallel monitoring of selected variables or to control
interrupts [11].

5

2. Main components of the robotic workstation .
Kuka RSI is an add-on option package to WorkVisual. It is used for cyclic data

exchange and processing between sensors and robot controller. For example, it can be
used to correct robot trajectories based on incoming sensor data. RSI creates so-called
RSI Contexts that run parallel with the SRC program. One cycle of an RSI context is
12 ms or 4 ms; this can be chosen. Its programming is done in a dedicated graphical
editor where signals are connected with function blocks. The user can create his own
function blocks. It is possible to transfer variables between the RSI context and the
SRC file and vice versa [12].

2.2.2 Metrology software
Tracker Pilot is the software included with the laser tracker and is used for accuracy
checks, system maintenance, firmware updates, defining the targets used, and also for
measurement. It is a good idea to perform these accuracy checks once in a while to
maintain the quality of the measurements. During these procedures, several points
must be measured at defined positions. The Tracker Pilot guides the user through
these processes. This software cannot process the measured data, only export it to a
CSV file [13].

Robodyn is metrology software developed by Hexagon Manufacturing Intelligence,
which is mainly used for robot calibration. It evaluates the positioning accuracy or can
adjust the Denavit–Hartenberg (DH) [14] parameters of the robot. It can also perform
ISO tests, for example ISO 9283. These norms test the robot in, for example, position
accuracy and repeatability, trajectory velocity characteristics or position stabilization
time [15].

Polyworks manufactures several products for objects modeling or measurement. The
Inspector software is used at the robotic workplace. It can be used for comprehensive
inspect of some manufactured part. In this software, reference objects can be created;
single points or point clouds can be measured; from them can be created whole fea-
tures. Furthermore, the measured data can be aligned and compared with the reference
ones. Lastly, measurement reports can be generated [16]. Polyworks Inspector supports
measurements with both RRR and T-Mac targets, including touch probe.

6

Chapter 3
Communication with the laser tracker
controller

For different applications of the laser tracker, various ways of communication exist. The
laser tracker can communicate only with an application computer or additionally with
the robot controller. For basic 3DoF measurements with the Tracker Pilot or Polyworks
Inspector is sufficient connection via Ethernet. When a robot is connected, Real-time
communication via EtherCAT protocol is available. For 6DoF measurements is needed
to connect T-Mac alongside the Automation interface. It can be connected with the
robot’s controller digital I/O via the Automation cable [17].

Tracker Pilot and Polyworks Inspector are automatically converting raw received data
to preferred coordinate systems [13, 16]. However, when using the real-time module,
the received data is in binary, so it must first be converted to decimal format. Then
the translation coordinates must be converted from spherical coordinates to cartesian
coordinates and the rotation from quaternions to a rotation matrix.

3.1 Connecting the laser tracker
The layout in Figure 3.1 enables measurements of 6DOF without an application PC.
That means without any metrology software [17–18]. Measured data is stored in the
robot controller, where it can be directly evaluated, or just stored and sent to a desk-
top PC after measurement is completed. Therefore, this configuration can be used
for workspace calibration, where both robot and laser tracker data are saved to the
robot’s hard drive. This configuration can also be used for automatic inspection of the
manufactured part. This will again record the laser tracker data to the robot’s hard
drive controller and then send and evaluate it on the PC in Matlab. When it is used
to correct robot trajectories, only the 3DoF is measured. Passive target RRR is used.
Hence, the T-Mac and Automation Interface are removed from the schematic, which
reduces to those in Figure 3.2.

T-Mac Multiface

Leica Absolute
Tracker AT960

Kuka KR 8 R1620

KRC4
Robot controller

Automation
Interface

T-Mac Cable

Automation Robot Cable

Application PC

LAN cable

Leica Absolute
Tracker AT960

Real Time Feature
Pack

KRC4
Robot controller

EtherCAT

T-Mac Multiface

Leica Absolute
Tracker AT960

Kuka KR 8 R1620

KRC4
Robot controller

Automation
Interface

T-Mac Cable

Automation Robot Cable

Real Time Feature
Pack

EtherCAT

T-Probe + Trigger Cable

T-Probe + Trigger Cable

Figure 3.1. Wiring diagram with T-Mac, Real Time module without application computer.

7

3. Communication with the laser tracker controller .
Alongside the tracker, there is the Automation Interface, without which the con-

nected T-Mac could not work. The T-Mac is attached to the flange of the robot. For
the automatic inspection function, the touch probe is attached to it. For the workspace
calibration function, the T-Mac is without the probe. Unlike T-Mac Cable, T-Probe
Cable, and Trigger Cable, which are specialized cables supplied by the Leica manufac-
turer, the Automation Robot Cable is basically parallel wires connected to the digital
I/O module of the robot controller [17]. So it is up to the user how they are used. The
Real Time module communicates with the robot controller via the EtherCAT commu-
nication protocol.

T-Mac Multiface

Leica Absolute
Tracker AT960

Kuka KR 8 R1620

KRC4
Robot controller

Automation
Interface

T-Mac Cable

Automation Robot Cable

Application PC

LAN cable

Leica Absolute
Tracker AT960

Real Time Feature
Pack

KRC4
Robot controller

EtherCAT

T-Mac Multiface

Leica Absolute
Tracker AT960

Kuka KR 8 R1620

KRC4
Robot controller

Automation
Interface

T-Mac Cable

Automation Robot Cable

Real Time Feature
Pack

EtherCAT

T-Probe + Trigger Cable

T-Probe + Trigger Cable

Figure 3.2. Wiring diagram of the laser tracker for 3DOF measurements.

3.1.1 EtherCAT

EtherCAT is a communication protocol for factory automation applications. It supports
high-speed transmission of the data to achieve real-time communication between devices
in a network. EtherCAT uses the same Physical and Data Link layer as Ethernet and
does not require additional switches.

Whether a slave or a master, the EtherCAT device typically has two Ethernet ports.
The device receives a frame from the previous device with the first port and with the
second port, the device sends the frame to the next device. Often, a single frame goes
through the nodes from the master; it goes from one slave to another. Every slave
conveys only the part of the frame addressed to him. Data reading and writing in a
single node are done within several nanoseconds. The most common network typologies
are supported by the EtherCAT, such as star, tree, line, and bus. Ring topology is very
useful because a frame sent by the master terminates again in the master node [19–20].

At the current robotic workstation, there is just a single master and a single slave.
The laser tracker as a slave automatically returns the frame to the master, the Beckhoff
EtherCAT Coupler1, which is connected to the robot controller.

3.1.2 Real Time Feature Pack EtherCAT (RTFP-EC)

The Real Time Feature Pack EtherCAT module (RTFP-EC) is an additional device
for the laser tracker that provides real-time communication for the robot controller.
It communicates with the robot controller via the EtherCAT protocol. Due to small
latencies, it is useful either for sending measured data to the robot controller or receiving
commands from the robot controller.

Use of the RTFP-EC module is advantageous because all communication program-
ming between the laser tracker and the robot’s controller is done in the WorkVisual.
There is no need for additional software such as Polyworks Inspector. The laser tracker
inputs and outputs are mapped in WorkVisual. Therefore, it is possible to work directly
with the raw data from the laser tracker and send commands to the laser tracker to
control it. Additionally, another laser tracker can be connected to the network; un-
fortunately, at the robotic workstation there is not a second laser tracker [18]. The

1 https://www.beckhoff.com/cs-cz/products/i-o/ethercat-terminals/ek1xxx-bk1xx0-ethercat-
coupler/ek1100.html

8

https://www.beckhoff.com/cs-cz/products/i-o/ethercat-terminals/ek1xxx-bk1xx0-ethercat-coupler/ek1100.html
https://www.beckhoff.com/cs-cz/products/i-o/ethercat-terminals/ek1xxx-bk1xx0-ethercat-coupler/ek1100.html

. 3.1 Connecting the laser tracker

disadvantage is that there is no library from the Leica manufacturer for this commu-
nication, so the received data are binary. It was necessary to design a converter to
process them.

The Real Time module could provide measured data from a 3DoF or a 6DoF target.
Those are sent in a cycle with a frequency up to 1 kHz, but the manufacturer recom-
mends 250 Hz. It can asynchronously receive commands from the robot controller to
control the laser tracker. For example, send a laser beam to the specified position or
perform a stationary measurement [18].

3.1.3 Connection of the Automation Robot Cable

Automation Robot Cable particularly serves for handshake signals between the robot
and an application program and for status signals from the probe. Individual signals,
shown in Figure 3.3, have the following functions:

. GND, +24 V—GND stands for ground, the reference level of signals 0 V. +24 V is a
power supply with a current of 300 mA. So the nominal voltage level of all signals is
either 0 V or 24 V. Logical “1” is represented by 24 V, and logical “0” by 0 V.. DIG IN 1, DIG IN 2, DIG IN 3—The robot informs the application software about its
status through digital inputs. Their function depends on the user. For example, to
indicate whether the robot program is active and the robot is ready to go to the next
position.. DIG OUT 1, DIG OUT 2, DIG OUT 3—Similarly, with the digital outputs, the application
software can give commands to the robot. For example, when DIG OUT 1 is in a
ℎ𝑖𝑔ℎ state, the robot can move to the next position, and when in 𝑙𝑜𝑤, the robot has
to stop and wait.. HALT—This signal is practical when the touch probe is connected to the T-Mac. The
HALT goes into a 𝑙𝑜𝑤 state when the probe is triggered; otherwise, it stays in ℎ𝑖𝑔ℎ.
It provides information that the probe has just touched an object, and the robot
should stop.. WATCHDOG—The watchdog is checking the LAN connection between the Automation
Interface and the application PC. Another internal watchdog communication takes
part between them. When the connection is broken, the Watchdog signal turns to a
𝑙𝑜𝑤 state; otherwise, it stays in a ℎ𝑖𝑔ℎ state [17].

T-Mac Multiface

Leica Absolute
Tracker AT960

Kuka KR 8 R1620

KRC4
Robot controller

Automation
Interface

LAN cable

T-Mac cable

Tool

Automation Robot Cable

Application PC

LAN cable

Leica Absolute
Tracker AT960

Real Time Feature
Pack

KRC4
Robot controller

EtherCAT

WATCHDOG
GND

DIG IN 1
DIG IN 2
DIG IN 3

+24 V

HALT
DIG OUT 3
DIG OUT 2
DIG OUT 1

Figure 3.3. Signals in the Automation Robot cable.

9

3. Communication with the laser tracker controller .

3.2 Communication protocol

3.2.1 Input frame from Slave to Master

The frame that a slave (the laser tracker) sends to a master (RSI Context) is 88 bytes
long. It contains the part with measured data, the Cyclic Measurement (68 bytes),
and the second part, Command Response (20 bytes), serves as the acknowledgment
of the command request from the master. The parts of the Cyclic Measurement are
in Figure 3.4. The Command Response part is very similar to the Command Request
from a master. It will be explained in Section 3.2.2. The differences are that instead of
Command Control, the slave has Command Status, and it has only 4 Arguments.

Name Width
Cyclic

Measurements 68 bytes

Command
Response 20 bytes

Name Width Data
Type

Tracker
Status 4 bytes UDINT

AngleHz 8 bytes LREAL
AngleVt 8 bytes LREAL
Distance 8 bytes LREAL

Quaternion0 8 bytes LREAL
Quaternion1 8 bytes LREAL
Quaternion2 8 bytes LREAL
Quaternion3 8 bytes LREAL
Time Stamp 8 bytes ULINT

Name Width Data
Type

Version 1 byte USINT
Command ID 1 byte USINT

Command
Control 1 byte USINT

Job ID 1 byte USINT
Argument 1 4 bytes
Argument 2 4 bytes
Argument 3 4 bytes
Argument 4 4 bytes
Argument 5 4 bytes
Argument 1 4 bytes

Figure 3.4. Laser tracker to the robot controller frame—Input data.

Tracker Status contains information about the taken measurement. For obtaining
correct information, it is necessary to interpret the Tracker Status bit by bit. For
example, the second least significant bit says if the measurement is valid. Next, there is
information on whether accuracy was out of range or which error occurred, even what
face of the T-Mac was used, etc. A detailed description can be found in the manual [18].
In the project’s current phase, it is only detected if the measurement went successful.
What is expected from the laser tracker is known, so controlling other parameters was
unnecessary. For optimal solution for automated processes, it will be necessary to look
at other parameters.

The next part of the frame is the measured values themselves. Coordinates of the
measured point are provided in a spherical coordinate system (φ, 𝜃, 𝑟). AngleHZ (φ)
gives a horizontal angle in radians. Similarly, AngleVt (𝜃) gives a vertical angle, and
Distance (𝑟) is a radius in meters. If T-Mac is connected, the measurement contains
information about rotation. This is delivered in the form of quaternions: 𝑞0, 𝑞1, 𝑞2, 𝑞3.

Those numbers are in format LREAL (Long Real), so the width is 8 byte (64 bit).
This format is incompatible with the REAL data type in WorkVisual. The robot
controller cannot process Long Real. For this reason, these input numbers cannot be
automatically converted to any variable in the WorkVisual. An additional converter in
RSI was created to interpret incoming numbers to the format of REAL, which is only
32 bit [11, 18]. The converter is described in Section 3.3.

The last part of the input frame is Time Stamp. It gives information about when the
data was written to the frame by the slave. EtherCAT master uses it for synchronization
[20].

10

. 3.2 Communication protocol

Figure 3.5 represents I/O mapping in Workvisual. It shows where the data from the
laser tracker is mapped. Input addresses from 40 to 680 serve as inputs to the RSI
context.

Figure 3.5. Input data mapping in WorkVisual.

3.2.2 Output frame from Master to Slave

The robot controller, as a master, can send predefined commands to the laser tracker.
The Command IDs can be sent from a PLC2 (Programmable Logic Controller) for
an application for automated measurements. There are driving parameters: Version,
Command ID, Command Control, and Job ID. Next, there are arguments that have
various uses in a command’s specification. The individual parts of the frame are shown
in Figure 3.6.

Name Width Data
Type

Version 1 byte USINT
Command ID 1 byte USINT

Command
Control 1 byte USINT

Job ID 1 byte USINT
Argument 1 4 bytes
Argument 2 4 bytes
Argument 3 4 bytes
Argument 4 4 bytes
Argument 5 4 bytes
Argument 6 4 bytes

Figure 3.6. Robot controller to Laser tracker frame—Output data.

The Version variable is useless for the current application. The version number can
be incremented with every frame. For example, an error can be trackable when the
version number is known. Command ID specifies which command the laser tracker

2 https://new.siemens.com/cz/cs/products/automation/systems/industrial/plc.html

11

https://new.siemens.com/cz/cs/products/automation/systems/industrial/plc.html

3. Communication with the laser tracker controller .
should execute. Command Control says whether some command is active or no action
is required. Lastly, Job ID has to be incremented for every new command.

If the master wants to start processing the command, it will set Command Control
from 0x00 to 0x01. In contrast, the slave has six states for Command Status:

Entry state: 0x00
Initialized: 0x01
Start: 0x03
Processing: 0x07
Completed: 0x0f
Error: 0x13

There are seven predefined Commands, but the most useful commands are these four:

. Laser go-to position will lead the laser tracker head to the defined position specified in
Argument1—horizontal angle (in radians), Argument2—vertical angle (in radians),
and Argument3—approximate distance (in meters). All these arguments are in 32 bit
floats. Argument4 defines whether the laser tracker should find the nearest target:
0 for no and 1 for yes [18]. However, the only reason for selecting no is when the
laser is guided to places where it is not assumed the laser tracker will measure. For
example, not to shine in people’s eyes when it is not measuring.. Stationary measurement will perform one of the three stationary measurements ac-
cording to Argument1: 0 is for Standard, which lasts 2 𝑠, 1 is for Fast measurement
(0.5 𝑠), and 2 for Precise measurement (5 𝑠) [13]. The result of the Stationary mea-
surement will appear in the same positions as the results of the Cyclic measurement.
They will stay there as long as the laser tracker is in state Completed.. Set Target ID can preselect target, which is defined in the Tracker pilot. So the laser
tracker will know what the target is. It can be useful when targets switch between
1.5′′ and 0.5′′ reflectors. This feature cannot be performed when T-Mac is used, it
is detected automatically.. Shutdown Tracker. This command will shut down the laser tracker and terminates
all communication.

For all commands above apply, as a response from the slave comes only in Argument1,
it is reserved for an error message if an error occurred. There are 10 error messages.
Again, their exact description does not need to be presented, some of them are: some of
the driving arguments are invalid, the previous command is pending, the command was
aborted, the Job ID was incremented at the wrong time, or an unknown error occurred.

The update rate of the EtherCAT is higher than RSI Context or KRL program. From
the slave are coming the same frames until the master responds. Hence the EtherCAT
master responds only to changes in frames from the slave. The master will respond
when it detects that the slave has changed the value of the Command Status or Job
ID parameters [18]. Since it does not matter that the master may not communicate
quickly, the outgoing frame can be composed in KRL and sent to the slave.

Lastly, Figure 3.7 represents I/O mapping in WorkVisual. Output addresses from 40
to 256 are output from the RSI context to the laser tracker.

12

. 3.2 Communication protocol

Figure 3.7. Output data mapping in Workvisual.

3.2.3 Algorithm for the laser tracker automated control
This section shows an example algorithm for sending a command to the laser tracker.
The idea to the future is that some PLC sends commands to the robot controller, which
action should be performed. When the automatic inspection will be installed at the end
of the production line, which is controlled by a PLC, it will be above the laser tracker
and the robot. Then the PLC will give the measurement commands. As was written
in the previous section, there are four possible actions. When the robot is ready to
take a measurement, the PLC will send a request, and the robot, together with the
laser tracker, will perform the action. When it is done, the robot is ready for a new
command from the PLC.

At the moment, all four actions for the laser tracker are programmed in KRL and
RSI and can be arbitrarily arranged one behind the other. Unfortunately, the program
cannot communicate with the PLC. However, this is no big challenge. The focus was on
establishing communication between the robot and the laser tracker and not on PLC
programming.

The program for the PLC can take different forms depending on the application.
There will be three variables needed in every case: PlcAction, PlcActionRequest,
and RobotReady. When the robot is ready for receiving a command, the variable
RobotReady is set to True, thus signaling the PLC its state. PlcActionRequest will
generate only a single pulse signaling that new command is required and the action num-
ber is already ready in integer—PlcAction. The range of this variable is from 1 to 4.
At this moment, the variable RobotReady is set to 𝐹𝑎𝑙𝑠𝑒. The robot cannot receive
another command, and the selected action is handled. This sequence runs in a loop.

The algorithm below shows only one command for the laser tracker: Laser go-to
position. The other actions vary in sent Arguments. This algorithm is implemented
mainly in KRL. The outgoing data frame is created bit by bit, as it is defined. RSI
Context is used only for transferring inputs from the laser tracker to KRL variables
and vice versa. For clearance of the code, when the variable with the same name comes
from the slave, it has at the end character 𝑆:

Set: 𝐴𝑙𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ← 0𝑥00
wait for 𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝑆𝑡𝑎𝑡𝑢𝑠 = 0𝑥01 and 𝐽𝑜𝑏𝐼𝑑𝑆 = 0𝑥01 then ▷ tracker initialized

𝑉 𝑒𝑟𝑠𝑖𝑜𝑛 ← 0𝑥11
loop

𝑅𝑜𝑏𝑜𝑡𝑅𝑒𝑎𝑑𝑦 ← 𝑇 𝑟𝑢𝑒 ▷ sends an acknowledgment to the PLC
wait for 𝑃𝑙𝑐𝐴𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑞𝑢𝑒𝑠𝑡 then

𝑅𝑜𝑏𝑜𝑡𝑅𝑒𝑎𝑑𝑦 ← 𝐹𝑎𝑙𝑠𝑒
switch 𝑃𝑙𝑐𝐴𝑐𝑡𝑖𝑜𝑛

case 1 then ▷ Laser go-to position

13

3. Communication with the laser tracker controller .
𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝐼𝑑 ← 0𝑥03
𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡1 ← 𝐻𝑧𝐴𝑛𝑔𝑙𝑒
𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡2 ← 𝑉 𝐴𝑛𝑔𝑙𝑒
𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡3 ← 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡4 ← 0𝑥01
𝐽𝑜𝑏𝐼𝑑 ← 𝐽𝑜𝑏𝐼𝑑𝑆 + 1
𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝐶𝑜𝑛𝑡𝑟𝑜𝑙 ← 0𝑥01
wait for 𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝐼𝑑 = 0𝑥03 and

𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝑆𝑡𝑎𝑡𝑢𝑠 = 0𝑥07 and 𝐽𝑜𝑏𝐼𝑑𝑆 = 𝐽𝑜𝑏𝐼𝑑 then
wait for 𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝑆𝑡𝑎𝑡𝑢𝑠 = 0𝑥0𝑓 or

𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝑆𝑡𝑎𝑡𝑢𝑠 = 0𝑥13 then
if 𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝑆𝑡𝑎𝑡𝑢𝑠 = 0𝑥0𝑓 then ▷ Action ended correctly

𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝐼𝑑 ← 0𝑥01
𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝐶𝑜𝑛𝑡𝑟𝑜𝑙 ← 0𝑥00

else ▷ 𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝑆𝑡𝑎𝑡𝑢𝑠 = 0𝑥13
𝑅𝑒𝑎𝑑 𝐸𝑟𝑟𝑜𝑟 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑖𝑛 𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡1𝑆
break

end if
case 2 then ▷ Stationary measurement

...
case 3 then ▷ Set Target ID

...
case 4 then ▷ Shutdown Tracker

...
default

break
endswitch

endloop

After the EtherCAT master is turned on and synchronizing with the slave on the
EtherCAT bus is done, the communication between them can begin. They both must
start with all variables in frames with the value 0x00. Then the tracker sets Command
Status to 0x01 and Job ID to 0x01. The tracker is initialized and waits for a command.

The master now fills the outcoming frame with mandatory variables. Command
ID says that Laser go-to position is required. Argument1 to Argument3 specify the
coordinates where the laser tracker should aim. After that Job ID could be incremented.
The slave will start executing the command only after Command Control is set to 0x01.
The slave sets the same Version number and Job Id as the master, and the Command
Status goes from 0x01 to 0x03—Start and then to 0x07—Processing. The action can be
aborted by setting Command Control back to 0x00. After the laser tracker head is in
its desired position, Command Status will be either 0x0f—Completed or 0x13—Error.
When the master reads the result of the action in the slave’s Command response, the
Command Control can be turned to state 0x00—Stop.

In the case of the action of positioning the laser tracker, there are no return data.
But, when the Stationary measurement is selected, the measured data are in position
for Cyclic Measurement data as long as the slave is in state Completed and the master
in state Start [18].

14

. 3.3 Conversion of incoming data

3.3 Conversion of incoming data
This section will show how to convert the measured data, which is obtained from
the laser tracker, to a suitable format. The measured data are in the wrong decimal
number format and in a different coordinate system format. The laser tracker controller
sends 64 bit double, but the robot controller can handle only 32 bit float. A position
is represented in spherical coordinates and a rotation in quaternions. It has to be
converted to Cartesian coordinates and rotation matrix. The position coordinates along
with the rotation are used in the robot workspace calibration in Chapter 4 and in the
automatic part inspection in Chapter 5.

3.3.1 IEEE Standard for Floating-Point numbers
The IEEE 754 standard defines several rules for notating real numbers on computers.
From the laser tracker are incoming decimal numbers in 64 bit double precision format
(Figure 3.9) but the robot controller can handle only 32 bit single precision format
(Figure 3.8). The binary notation of a floating-point number is divided into three
parts:

. The Sign—For both notations, it is one bit. 1 is for negative numbers, and 0 represents
positive numbers.. The Exponent—In single precision format occupies 8 bits, and in double 11 bits.
Because both positive and negative exponent representation is needed, there is an
offset to which the exponent is added. The offset is 2𝑛−1 − 1, where 𝑛 is number of
bits of exponent (8 or 11). The biases are 127 and 1023.. The Mantissa— 23 bit for single precision float and 52 bit for double precision. It is the
part with significant digits. In order to be written correctly, it must be normalized,
for example 1.01101. Since the first digit is always 1, to save bits, it is omitted [21].

Sign Exponent Mantissa

1 bit 8 bits 23 bits

Sign Exponent Mantissa

1 bit 11 bits 52 bits

Figure 3.8. Scheme of the binary representation of the single-precision floating-point num-
ber.

Sign Exponent Mantissa

1 bit 8 bits 23 bits

Sign Exponent Mantissa

1 bit 11 bits 52 bits

Figure 3.9. Scheme of the binary representation of the double-precision floating-point num-
ber.

3.3.2 Implementation of the Real numbers converter
The first task of the converter is to represent raw measured data that arrives in a
frame from the slave. On the input there are 64 bits, and the output is a REAL
type number. This is common to all coordinates of position and rotation. The second
part takes these numbers and converts them to Cartesian coordinates and rotation
matrix. Next, they are mapped to the variable $ANOUT[index] in KRL. These two
operations are implemented in RSI using several custom-made function blocks. For

15

3. Communication with the laser tracker controller .
testing purposes, the converted numbers are just sent to the KRL and saved to a text
file so they can be checked for accuracy. Figure 3.10 schematically describes the first
operation—–converting input to a number suitable for further calculations. The yellow
blocks are functions already implemented RSI, and the blue boxes are custom-made
function blocks.

Mantissa

Sign

Exponent

Exponentiation of
Mantissa Map2AnOut

MULTI

#63

#52 - #62

#29 - #51

Figure 3.10. Schematic description of the algorithm converting a number from the laser
tracker to a format suitable for KRL or RSI.

Function block Sign represents equation

𝑠 = −2 ⋅ 𝑛 + 1,

where 𝑠 is the required sign and 𝑛 incoming bit. The output is either 1 or −1. For
input 𝑛 = 0 (positive number) the output is 𝑠 = 1; for input 𝑛 = 1 (negative number)
the output is 𝑠 = −1.

Function block Mantissa is an implementation of equation

𝑚 = 1 + (#51 ⋅ 2−1) + (#50 ⋅ 2−2) + ... + (#29 ⋅ 2−23).

It composes a mantissa from binary numbers into a decimal number. The 1 is added
because the normalized form of the floating point number always starts with a 1 and
therefore is not included in the data frame, it must now be added back. Function block
Exponent is quite similar to the Mantissa. It just does not add 1, it subtracts 1023,
which is the offset for the exponent [21]. The equation is

𝑒 = (#52 ⋅ 20) + (#53 ⋅ 21) + ... + (#62 ⋅ 210) − 1023.

Function block MULTI is simply multiplying two numbers. Furthermore, the function
block Exponentiation of Mantissa multiplies the output of the MULTI function block
by 2𝑒. It was necessary to create this function block because in RSI does not exist
a function block that can do a power of some number with a variable exponent [12].
Overall, the converter calculates the equation

𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑠 ⋅ 𝑚 ⋅ 2𝑒.

3.3.3 Discussion on precision loss
It is important to question whether cutting off half of the bits will result in the loss of
important information. When working with single bits, it is not a problem to read a 64
bit number, but it should be stored in the REAL data type, so only the half of the 64
bit number that can fit into REAL. The exponent cannot exceed the range from -126
to 127. There is also less room for significant digits. Mantissa has only 23 bits available
instead of 52 bits [21]. However, this is still enough to record the numbers from the
laser tracker. The measurement resolution of both the ADM (Absolute Distance Meter)

16

. 3.3 Conversion of incoming data

and the encoders are much worse than the float32 range. The laser tracker gives us
distance information in 𝜇𝑚 [4], so an example of how to write a 1 𝜇𝑚 = 1 × 10−6 𝑚 in
float32 type is presented:

0 01101011 00001100011011110111101.

In reality, this binary representation corresponds to a number

9.999999974752427078783512115478515625 × 10−7,

which is a much better resolution of 1 × 10−6 than what the laser tracker sensors can
provide.

3.3.4 Coordinate system conversion for positions
As soon as all numbers are in the correct format, they can be converted into the proper
coordinate systems. Again, two function blocks in RSI were created, one for convert-
ing position from spherical coordinates to Cartesian coordinates and the second for
converting quaternions to rotation matrix. Figure 3.11 shows the complete converter.

Input binary data to
REAL type numbers

Quaternions to
Rotation matrix

Spherical coordinates
to Cartesian

Robot trajectory
correction

Raw data

KRL
R

Figure 3.11. Diagram of complete converter of binary data from the laser tracker.

The function block for converting position has three inputs, distance—𝑟, horizontal
angle—φ, and vertical angle—𝜃. The output is coordinates 𝑥, 𝑦, and 𝑧 relative to the
laser tracker coordinate system [22–23]. In the RSI context, there are implemented
these equations:

𝑥 = 𝑟 ⋅ 𝑠𝑖𝑛(φ) ⋅ 𝑐𝑜𝑠(𝜃), (1)

𝑦 = 𝑟 ⋅ 𝑠𝑖𝑛(φ) ⋅ 𝑠𝑖𝑛(𝜃), (2)

𝑧 = 𝑟 ⋅ 𝑐𝑜𝑠(φ). (3)

3.3.5 Coordinate system conversion for rotations
The rotation in the space ℝ3 can be defined in several ways, the axis-angle (𝘀, 𝜃)
notation can be used as a default. This notation assumes that any rotation in ℝ3 can
be performed as a rotation by the angle 𝜃 around the vector 𝘀 [24]. There are equivalent
notations to this one called quaternions.

Quaternions are complex numbers with three complex units. They are notated as
𝑞 = 𝑞0 + 𝑖𝑞1 + 𝑗𝑞2 + 𝑘𝑞3, where 𝑞0, 𝑞1, 𝑞2, and 𝑞3 are real numbers; and 𝑖, 𝑗, and
𝑘 are the complex units [25]. Let us represent the quaternions by a vector in ℝ4:

17

3. Communication with the laser tracker controller .
𝗾 = (𝑞0 𝑞1 𝑞2 𝑞3)𝑇. Let the components of the vector 𝘀 be 𝘀 = (𝑠𝑥 𝑠𝑦 𝑠𝑧)𝑇, then the
conversion relation from the axis angle notation is

𝗾 = (𝑐𝑜𝑠(𝜃
2) 𝑠𝑖𝑛(𝜃

2)𝑠𝑥 𝑠𝑖𝑛(𝜃
2)𝑠𝑦 𝑠𝑖𝑛(𝜃

2)𝑠𝑧)
𝑇

. (4)

However, conversion relationship from quaternions to axis angle notation is needed.
The angle 𝜃 can be first isolated:

𝜃 = 2 ⋅ 𝑎𝑟𝑐𝑐𝑜𝑠(𝑞0). (5)

𝑞0 belongs to the interval ⟨−1, 1⟩ which is the same interval as the domain of the
function 𝑎𝑟𝑐𝑐𝑜𝑠(𝑥). Knowing the angle 𝜃, it is not difficult to calculate the remaining
parameters:

𝑠𝑥 = 𝑞1

𝑠𝑖𝑛(𝜃
2)

, 𝑠𝑦 = 𝑞2

𝑠𝑖𝑛(𝜃
2)

, 𝑠𝑧 = 𝑞3

𝑠𝑖𝑛(𝜃
2)

. (6)

The axis angle notation is not used in any application at the robotic workstation. The
rotation must be further converted to a rotation matrix 𝗥 [26]. This can be done using
Rodrigues’ formula:

𝗥 = 𝗜𝟯 + 𝑠𝑖𝑛(𝜃)𝗦 + (1 − 𝑐𝑜𝑠(𝜃))𝗦2, (7)

where 𝗜𝟯 is identity matrix and the matrix 𝗦 is the matrix of the cross product 𝘀 × 𝘅,
where 𝘅 ∈ ℝ3 [27]. The matrix 𝗦 is skew symmetric.

𝗦 = ⎛⎜
⎝

0 −𝑠𝑧 𝑠𝑦
𝑠𝑧 0 −𝑠𝑥

−𝑠𝑦 𝑠𝑥 0
⎞⎟
⎠

(8)

3.3.6 Euler angles conversion limitations
Before the conversion to the rotation matrix, the conversion to Euler angles was im-
plemented. However, this was not an ideal procedure because part of the solution is
lost. The solution was reworked to convert the quaternions to the rotation matrix. The
Euler angles can be defined as

𝗥 = 𝗥𝘇 ⋅ 𝗥𝘆 ⋅ 𝗥𝘅. (9)

That is, as a sequential multiplication of the rotation matrix around the 𝑧 axis, then
around the 𝑦 axis, and finally around the 𝑥 axis [28–29]. The parameters of these
matrices are 𝑟𝑧, 𝑟𝑦, 𝑟𝑥. Euler angles are further discussed in Section 4.3.4. The
conversion from quaternions to the Euler angles was done according to these formulas
[30]

𝑟𝑧 = 𝑎𝑟𝑐𝑡𝑎𝑛(2(𝑞0𝑞3 + 𝑞1𝑞2)
1 − 2(𝑞2

2 + 𝑞2
3)

), (10)

𝑟𝑦 = 𝑎𝑟𝑐𝑠𝑖𝑛(2(𝑞0𝑞2 − 𝑞3𝑞1)), (11)

𝑟𝑥 = 𝑎𝑟𝑐𝑡𝑎𝑛(2(𝑞0𝑞1 + 𝑞2𝑞3)
1 − 2(𝑞2

1 + 𝑞2
2)

). (12)

Function 𝑎𝑟𝑐𝑡𝑎𝑛(𝑦
𝑥) returns results only in the interval ⟨− 𝜋

2 , 𝜋
2 ⟩, so some results can be

lost. Moreover, when 𝑥 is close to zero, the problem with dividing by zero occurs. This
problem solves the function 𝑎𝑡𝑎𝑛2(𝑦, 𝑥), which returns a result in the interval (-𝜋, 𝜋⟩
[31]. However, the problem is with the 𝑎𝑟𝑐𝑠𝑖𝑛(𝑥) function, which returns values only
in the interval ⟨− 𝜋

2 , 𝜋
2 ⟩. Actually, the problem in the conversion from quaternions to

18

. 3.4 Other configuration option

Euler angles can be deduced from the fact that it is a transformation from ℝ4 to ℝ3, so
some information must be lost.

Another problem with the Euler angles is the so-called Gimbal lock. This is a singu-
larity; it occurs when 𝑟𝑦 = ±90 ∘. Then 𝑟𝑧 and 𝑟𝑥 have an identical effect on rotation,
which is an undesirable condition [32].

3.4 Other configuration option
At the end of the chapter, the wiring of the laser tracker without the Real Time module
is presented. The layout in Figure 3.12 also enables measurements of 6DoF [18]. This
configuration is used when on an application PC runs either Polyworks Inspector or
Tracker Pilot and the measured data are sent there.

T-Mac Multiface

Leica Absolute
Tracker AT960

Kuka KR 8 R1620

KRC4
Robot controller

Automation
Interface

T-Mac Cable

Automation Robot Cable

Application PC

LAN cable

Leica Absolute
Tracker AT960

Real Time Feature
Pack

KRC4
Robot controller

EtherCAT

T-Mac Multiface

Leica Absolute
Tracker AT960

Kuka KR 8 R1620

KRC4
Robot controller

Automation
Interface

T-Mac Cable

Automation Robot Cable

Real Time Feature
Pack

EtherCAT

T-Probe + Trigger Cable

T-Probe + Trigger Cable

Figure 3.12. Wiring diagram with T-Mac connected and without Real Time module.

19

Chapter 4
Automatic robot workspace calibration

The aim of this chapter is to design the procedure to get the transformation matrix
between the robot root and the positioner root. Workstation calibration is important to
ensure accurate additive manufacturing and it is also used to calibrate the parameters
of the workstation’s digital twin. Since digital twins are widely used for offline motion
planning, their parameters must correspond as closely as possible to those of the real
workstation.

The base of the positioner can indeed be taught by touching several points with
TCP. It is done right in the Kuka SmartPad. Nevertheless, this method cannot provide
as accurate base parameters as they are required. It is because the input data for
this method are from the robot encoders at each axis, from which direct kinematics
is computed. Moreover, this transformation is calculated from only 3 points [11], but
in the presented method, it is calculated from much more points to make the method
more robust.

4.1 Description of the workflow

As it has already been written, this chapter aims to obtain the transformation matrix
between the root of the robot and the root of the positioner. This task consists of two
parts: the method of obtaining the transformation between the laser tracker and the
robot root 𝗧𝗹

𝗿 and obtaining the transformation matrix between the positioner and the
laser tracker 𝗧𝗱

𝗹 . After that, the two transformation matrices will be multiplied among
themselves and inverted, resulting in the transformation matrix between the robot root
and the positioner root.

𝗧𝗿
𝗱 = (𝗧𝗹

𝗿 ⋅ 𝗧𝗱
𝗹)−1 (1).

A workflow description of obtaining all the necessary transformation matrices is shown
in Figure 4.1. As it is shown there, to get the transformation matrix 𝗧𝗹

𝗿, two more
transformation matrices need to be combined, that is, a transformation matrix between
the T-Mac and the robot 𝗧𝘁

𝗿 and a transformation matrix between the laser tracker and
the T-Mac 𝗧𝗹

𝘁 [14].

20

. 4.2 Transformation between the positioner and the laser tracker 𝗧𝗱
𝗹

Data from the
laser tracker

Data from the
laser tracker

Data from the
robot

Figure 4.1. Workflow diagram of obtaining the transformation matrix from the robot root
coordinate system to the DKP root coordinate system 𝗧𝗿

𝗱 from matrices 𝗧𝘁
𝗿, 𝗧𝗹

𝘁, and 𝗧𝗱
𝗹 .

4.2 Transformation between the positioner and the
laser tracker 𝗧𝗱

𝗹
This part of the task is more straightforward than the second one. The main idea is
to align the coordinate system of the laser tracker with the coordinate system of the
positioner and get the transformation matrix between them. The coordinate system
can be defined by Plane, Axis, Center point method [16]. The computational part is
done in Matlab. Points acquisition is automated; they are recorded by Tracker Pilot.
The tasks of communication (Chapter 3) and workspace calibration were developed
simultaneously, so Tracker Pilot was primarily used for data acquisition in the devel-
opment of the calibration process. Measurements in the Tracker Pilot are triggered by
the touch of the probe. The method described in Chapter 3 could also measure those
points, and it will be used instead of the Tracker Pilot.

4.2.1 Features measurement
During the measurement, both axes of the positioner must be in zero positions. The
workflow consists of the robot going around the positioner and measuring a plane–
surface of the positioner (𝑝1) and two circles (𝑐1, 𝑐2). 𝑐1 is the larger circle in the
middle of the positioner, as shown in Figure 4.2, and 𝑐2 is the smaller circle. From both
circles are extracted its centers (𝑠1, 𝑠2). The method of measuring the plane and center
of the circle is the same as in Section 5.2, so it is explained in detail there. To obtain
the plane, 12 points on its surface are measured and the center of the circle is obtained
from 8 points. The equation of the plane is as follows:

𝑝1: 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0. (2)

In this application, it is required that the constraining plane of both circles is the
plane 𝑝1. The centers of both circles are therefore projected into this plane. The 𝑧
coordinates of the centers 𝑠1 and 𝑠2 are replaced by the value according to the Equation
(2):

𝑧 = −𝑎
𝑐

𝑥 − 𝑏
𝑐
𝑦 − 𝑑

𝑐
. (3)

21

4. Automatic robot workspace calibration .
In the alignment method, the 𝑠1 serve as the center point of the coordinate system.

Between points 𝑠1 and 𝑠2 is created the axis 𝑎1. The coordinate system on the top of
the DKP table is created from features 𝑝1, 𝑎1, 𝑠1. These features can be used to perform
alignment according to the Plane, Axis Center point method.

It must also be noted that the root of the DKP is not on top of the positioner but
259 mm below it in direction 𝑧 axis [3]. This number is subtracted from the translation
in axis 𝑧. In Figure 4.2 can be seen the two circles marked in orange and the coordinate
system on the table surface. The notation of the coordinate system: 𝑥 axis—red,
𝑦 axis—green, 𝑧 axis—blue.

Figure 4.2. Marked coordinate system on the surface of the DKP with marked the two
measured circles. The negative x axis points towards the robot root, and the y axis points

towards the laser tracker.

4.2.2 Plane, Axis and Center point alignment
Before the actual implementation of the method is presented, the theoretical basis of
alignment is described. This alignment method is borrowed from Polyworks Inspec-
tor. Unfortunately, its manual does not say anything about the theoretical basis of
this method, so its process must have been invented. A small hint is presented on
the Autodesk PowerInspect site [33]. They say that the center point determines the
translation; the plane locks the rotation around the 𝑥 and 𝑦 axes. Finally, the line de-
termines the rotation around the 𝑧 axis. It can be deduced how the alignment method
is performed from this information. In this task, the transformation matrix is defined
in form of

𝗧 =
⎛⎜⎜⎜
⎝

𝑟1,1 𝑟1,2 𝑟1,1 𝑡1
𝑟2,1 𝑟2,2 𝑟2,3 𝑡2
𝑟3,1 𝑟3,2 𝑟3,3 𝑡3
0 0 0 1

⎞⎟⎟⎟
⎠

. (4)

Where 𝑟1,1, ..., 𝑟3,3 are elements of the rotation matrix R and 𝑡1, ..., 𝑡3 are elements of
the translation vector t [14]. This vector is easy to obtain. The coordinates of the laser
tracker origin are 𝓞 = (0 0 0)𝑇. The translation between these positions is obtained
by subtracting the origin from the position vector of the center point:

𝘁 = 𝘀𝟭 − 𝓞 = 𝘀𝟭. (5)

To determine the rotation matrix, it is used the fact that it is equivalent to basis
vectors [26]. The condition is that the base must be orthonormal, which means that all

22

. 4.2 Transformation between the positioner and the laser tracker 𝗧𝗱
𝗹

vectors are unit vectors and orthogonal to each other. Thus, the rotation matrix will
consist of column vectors stacked one behind the other:

𝗥 = (𝘅 𝘆 𝘇) . (6)

The plane in the form of (2) directly gives normal vector of the plane 𝗻 = (𝑎 𝑏 𝑐)𝑇

[34]. It is worth mentioning that plane has two possible normal vectors, 𝗻 and −𝗻. The
one that points up from the plane (with positive 𝑧 coordinate) is chosen. This vector is
normalized. The Euclidean norm of the vector is ‖𝑛‖ =

√
𝑎2 + 𝑏2 + 𝑐2. This normalized

vector is designated as basis vector 𝘇:

𝘇 = ⎛⎜⎜
⎝

𝑎
‖𝑛‖
𝑏

‖𝑛‖
𝑐

‖𝑛‖

⎞⎟⎟
⎠

(7)

The second basis vector can be obtained easily as well. The centers of the two
measured circles lie conveniently on the 𝑥 axis of the table coordinate system. The
Axis is defined as 𝗮 = 𝘀𝟮 − 𝘀𝟭, so after this vector is normalized, it can be declared a
basis vector 𝘅. Because normal vector 𝘇 is perpendicular to all vectors in plane 𝑝1, it is
perpendicular also to the vector 𝘅, so the conditions for the basis vector are met.

After the two basis vectors are known and a vector perpendicular to both of them is
sought, the cross product of the vectors 𝘇 and 𝘅 can be used. The order of multiplication
must not be confused to maintain the right-hand coordinate system: ̂𝘆 = 𝘇 × 𝘅. After ̂𝘆
is normalized, it can be declared a basis vector 𝘆. So all the components of the rotation
matrix 𝗥 are known, and it can be composed.

To get the transformation matrix from the laser tracker to the table’s root, it has
to be subtracted 259 mm from the element 𝑡3 in the matrix 𝗧, which corresponds to
translation in the 𝑧 axis.

4.2.3 Robot programming

The robot has to go around the table and measure those three objects using T-Mac
with the touch probe. The program is partially written in KRL and RSI. The RSI is
useful when the robot is close to the target and is about to touch the table’s surface.
It can quickly respond to contact with the table and immediately stop the robot.

The robot first measures the plane, calculated from 12 measured points. All measured
points are predefined and may be more or less random. The robot stops approximately
10 mm away from the surface where a single point is measured. Next, the function
for approach movement is started; the inputs are three parameters that tell in which
direction it should be moving and by how much. Inside this function are commands,
which prepare, activate, and subsequently deactivate an RSI Context. The RSI Context
is schematically described in Figure 4.3. Once it is turned on, it runs in a loop and
slowly moves towards the surface till the probe tip hits the table; at this moment, the
Tracker Pilot samples the point, and the robot stops.

23

4. Automatic robot workspace calibration .

PosCorr

StopOR
NOT

Timer - log.1
after 4s

Move in x axis [mm]

Move in z axis [mm]

HALT

RSI Context for approach movement

Move in y axis [mm]

Figure 4.3. Diagrammatic description of the RSI Context.

Inside the RSI Context is a function block PosCorr, which can relatively change the
robot’s position or rotation depending on the base currently in use. Even though it
is possible to correct the rotation, it is unnecessary to correct it. Right before the
approach movement, the probe is in sufficient rotation configuration.

The correction is executed in every cycle of the RSI Context that lasts only 12 ms, so
this correction cannot be in millimeters, but in smaller units. The robot is not dynamic
enough to move several mm in such a short period of time. Moreover, each coordinate
can be corrected maximum of 25 mm for one lifecycle of the RSI Context. For these
reasons, the correction is set to ±0.05 mm when moving in a single direction and
±0.035 mm for each coordinate when the robot moves in two directions simultaneously.
This means that the robot moves for this short distance in every cycle of the RSI
context.

The second essential function block in the RSI context is Stop; it stops the robot
in a moment of logical “1” in the input [12]. The signal HALT from the Automation
interface sends this trigger signal. But, it is logical “1” when the probe is steady-state
and turns to logical “0” when the tip has touched [18]. So before the input to the
function block, it is necessary to negate the HALT signal. If the Automation Interface
does not send the HALT signal, but the probe has touched, the Stop could also be
triggered from the Timer. The output turns to logical “1” after 4 𝑠. This Timer is not
reset in every RSI Context cycle, but it lasts as long as the RSI context is active. For
this reason, there is OR logical operation right on the input of the Stop [12].

Once the plane is measured, the robot measures the circle in the middle of the table
and the second circle. To determine the circle, 8 points in a single level are needed
to measure. The probe will go slightly under the table surface in the hole, and it will
gradually touch the measuring points, whereas the plane measured before is used as a
constraining plane so that the measured circles will appear in the plane.

4.3 Transformation between the laser tracker and
robot’s root 𝗧𝗹

𝗿
The main idea is to compose this transformation matrix with the transformation be-
tween the tracker and the T-Mac and subsequently the transformation between T-Mac
and the robot’s root. The tracker’s measured position and rotation create the first
transformation matrix. And the second transformation is obtained from the robot’s
forward kinematics. Several measurements are made and then evaluated by statistical

24

. 4.3 Transformation between the laser tracker and robot’s root 𝗧𝗹
𝗿

methods. Firstly, obtaining a single transformation is going to be described, and after
that, how to combine multiple measurements into one result.

4.3.1 Transformation between the laser tracker and the T-Mac
This method does not use the touch probe but the T-Mac alone. The probe must be
dismounted before taking measurements. The T-Mac has four faces; there is a reflector
on each face. On each reflector’s surface in the middle is an origin of a coordinate
system of that face. During measurement, 𝑓𝑎𝑐𝑒3 is used, and its coordinate system is
in Figure 4.4. Face, where the T-Mac cable is plugged in, is 𝑓𝑎𝑐𝑒4. On the opposite
side of 𝑓𝑎𝑐𝑒4 is 𝑓𝑎𝑐𝑒2 and on the opposite side of 𝑓𝑎𝑐𝑒3 is 𝑓𝑎𝑐𝑒1. Each side has its
own coordinate system, with the origin at the center of the reflector on the surface of
the T-Mac. The 𝑧 axis direction always comes out of the reflector perpendicular to the
surface of the T-Mac, and the negative 𝑦 axis direction always points directly towards
the touch probe adapter. The 𝑥 axis is added so that it is a right-handed coordinate
system [9].

By taking a measurement, the laser tracker provides 6DoF measurement. That is a
position and rotation of T-Mac’s coordinate system related to the tracker’s coordinate
system. This can be done in Tracker Pilot; the standard measurements are taken. In
the future, the acquisition of measured data from the laser tracker according to chapter
3 will also be implemented in this solution. However, use of Tracker Pilot is convenient
because measured data can be exported to a CSV file, and they are post-processed in
Matlab.

Figure 4.4. T-Mac 𝑓𝑎𝑐𝑒3 coordinate system.

A single measurement consists of 7 parameters, three coordinates of translation, and
quaternions represents rotation. Those parameters are processed in a custom-made
function create_trafo(𝑡𝑥, 𝑡𝑦, 𝑡𝑧, 𝑞0, 𝑞1, 𝑞2, 𝑞3), where 𝑡𝑥, 𝑡𝑦, and 𝑡𝑧 are translations in
each axis; 𝑞0, 𝑞1, 𝑞2, 𝑞3 are rotation parameters. This function composes a transforma-
tion matrix T according to (4). First, it is created as a unit matrix, and then the proper
parameters are inserted into it. The rotation matrix R is obtained from the quaternions
using the same equations as in Section 3.3.5.

The matrix R is inserted into the matrix T to positions 𝑟1,1, ..., 𝑟3,3. For making the
matrix complete, it is placed 𝑡𝑥 at position 𝑡1, 𝑡𝑦 at position 𝑡2, and 𝑡𝑧 at position 𝑡3

25

4. Automatic robot workspace calibration .
[14]. This gives the transformation from the laser tracker to the T-Mac 𝑓𝑎𝑐𝑒3 coordinate
system, it is represented by a matrix 𝗧𝗹

𝘁, is obtained.

4.3.2 Transformation between the robot and the T-Mac
When the tracker is taking the measurement, the robot records its TCP position. The
TCP coordinates system is the coordinates system of T-Mac. The transformation be-
tween flange and TCP was read from the digital twin. At this point, it is worth noting
that Kuka uses Euler angles [11] to describe rotation:

𝗥 = 𝗥𝘇 ⋅ 𝗥𝘆 ⋅ 𝗥𝘅. (8)

Where the individual matrices represent the rotation in ℝ3 around each axis. First
around the 𝑧 axis by the parameter 𝑟𝑧, then around the 𝑦 axis by the parameter 𝑟𝑦
and lastly around the 𝑥 axis by the parameter 𝑟𝑥. This definition of Euler angles is
also called yaw-pitch-roll, it is used for aircraft rotation [29]. Rotation matrices around
individual axes [26]:

𝗥𝘇(𝑟𝑧) = ⎛⎜
⎝

𝑐𝑜𝑠(𝑟𝑧) −𝑠𝑖𝑛(𝑟𝑧) 0
𝑠𝑖𝑛(𝑟𝑧) 𝑐𝑜𝑠(𝑟𝑧) 0

0 0 1
⎞⎟
⎠

, (9)

𝗥𝘆(𝑟𝑦) = ⎛⎜
⎝

𝑐𝑜𝑠(𝑟𝑦) 0 𝑠𝑖𝑛(𝑟𝑦)
0 1 0

−𝑠𝑖𝑛(𝑟𝑦) 0 𝑐𝑜𝑠(𝑟𝑦)
⎞⎟
⎠

, (10)

𝗥𝘅(𝑟𝑥) = ⎛⎜
⎝

1 0 0
0 𝑐𝑜𝑠(𝑟𝑥) −𝑠𝑖𝑛(𝑟𝑥)
0 𝑠𝑖𝑛(𝑟𝑥) 𝑐𝑜𝑠(𝑟𝑥)

⎞⎟
⎠

. (11)

When the robot stops, the Stationary measurement in Tracker Pilot is taken [13],
and right before starting to the next position, so that the robot’s position is steady,
the separate coordinates of the TCP are saved in a text file on the robot controller’s
hard drive. The robot variable $POS_ACT_MES is recorded. It is an E6POS data
type that provides the measured position of TCP in the currently used base coordinate
system, which is the robot root base. The individual coordinates can be accessed via
dot notation. $POS_ACT_MES.X, $POS_ACT_MES.Y, and $POS_ACT_MES.Z
indicates the position of TCP and $POS_ACT_MES.A, $POS_ACT_MES.B, and
$POS_ACT_MES.C gives the rotations. A is Kuka’s parameter for rotation around
the 𝑧 axis, B is a parameter of rotation around the 𝑦 axis, and C is a parameter of
rotation around the 𝑥 axis [35].

The text file is opened after a first position is reached, a current position is always
written on a new line, and it is closed and saved after all points are measured. It is saved
in the robot’s controller under C:\KRC \ROBOTER \UserFiles. The KRC4 controller
runs on Windows operating system, which can be used to transfer files between the
robot’s controller and a PC. A new Administrator account is created in the controller
with read and write rights. Then under the properties of the UserFiles file, it is selected
that this folder can be shared with the new account, including read and write rights.

Once the measured values are written to the text file, the file can be accessed from
the PC. It is necessary to open Windows File Explorer, and after “\\” it has to be
typed KRC4 controller’s IP address. Then, it can be selected to log in to the newly
created account [36] Login details can be remembered so that they do not have to be
entered each time. Now, the text file with the recorded positions can be copied to the
root folder of the Matlab project an imported to the Matlab script.

26

. 4.3 Transformation between the laser tracker and robot’s root 𝗧𝗹
𝗿

There are only 6 parameters from the robot describing the position and rotation of
the T-Mac. Three for position (𝑡𝑥, 𝑡𝑦, 𝑡𝑧) and three for rotation (𝑟𝑧, 𝑟𝑦, 𝑟𝑥). The trans-
formation matrix T is obtained from a custom-made function create_trafo_euler(𝑡𝑥, 𝑡𝑦,
𝑡𝑧, 𝑟𝑧, 𝑟𝑦, 𝑟𝑥). Again, the identity matrix is filled with the rotation matrix R, that is
created according to (8) Then the translation parameters are inserted at positions 𝑡1,
𝑡2, and 𝑡3. The transformation matrix 𝗧𝗿

𝘁 that represents the transformation from the
robot’s root coordinate system to the T-Mac 𝑓𝑎𝑐𝑒3 is created.

4.3.3 Joining 𝗧𝗹
𝘁 and 𝗧𝗿

𝘁 together

The transformation matrix, which represents the transformation of the coordinate sys-
tem from the laser tracker to the robot’s root, can be easily obtained since we know
the transformation between robot and the T-Mac and between the laser tracker and
the T-Mac. It is obtained as follows:

𝗧𝗹
𝗿 = 𝗧𝗹

𝘁 ⋅ 𝗧𝘁
𝗿, (12)

where 𝗧𝘁
𝗿 is unknown but is acquired by inverting the matrix 𝗧𝗿

𝘁. In order to perform
the inversion, we need to verify whether the matrix 𝗧 is invertible, that is if it has a
nonzero determinant. Transformation matrices are usually invertible [14]. The resulting
transformation matrix is obtained from the relation:

𝗧𝗹
𝗿 = 𝗧𝗹

𝘁 ⋅ (𝗧𝗿
𝘁)

−1, (13)

In order to better determine the transformation between the robot and the laser
tracker, it is calculated from multiple points. A position generator was created in
Matlab to create linear motions that go around the entire workspace with different
rotations of the T-Mac. More specifically, 30 points are generated. T-Mac goes between
positions

𝑥 ∈ ⟨72, 612⟩, 𝑦 ∈ ⟨551, 956⟩, 𝑧 ∈ ⟨778, 937⟩,

and rotations are within intervals

𝑟𝑧 ∈ ⟨61, 96⟩, 𝑟𝑦 ∈ ⟨−39, 15⟩, 𝑟𝑥 ∈ ⟨42, 99⟩,

these TPC positions are in the robot’s coordinate system. These positions are located
just above the DKP, where the robot is required to be as accurate as possible. The
rotation parameters are chosen in such a way that the optical connection of the laser
beam between the laser tracker and the T-Mac is not interrupted. The content of the
created text file with positions is then only copied into the KRL program.

Once the robot has passed all 30 positions, and it has recorded all positions, and the
laser has also measured all positions; they are imported into a Matlab. 𝗥 is the matrix
of points measured by the robot. In matrix 𝗟 are stored measured points by the laser
tracker. For every 30 positions, the matrix 𝗧𝗹

𝗿 is calculated.
From every 𝗧𝗹

𝗿, the individual parameters of translation and rotation are extracted
using the custom-made function parameters_from_trafo(𝗧𝗹

𝗿) and stored in the corre-
sponding row of matrix 𝗣. This matrix is used to store the parameters of the trans-
formation matrices. The translations are easy to extract since they are at positions 𝑡1,
𝑡2, and 𝑡3. Converting the rotation matrix to Euler angles is more complicated. It is
discussed in section 4.3.4. It is worth mentioning that Euler angles have two solutions
in the nonsingular case [37]. So far, the solution that has been chosen is the one that

27

4. Automatic robot workspace calibration .
was expected, which is not a very efficient approach. In the future, this will be con-
verted to quaternions to avoid converting the rotation matrix to Euler angles as much
as possible.

Once all 30 𝗧𝗹
𝗿 matrices are calculated and their parameters stored in the matrix 𝗣,

these parameters can be evaluated. Each parameter is computed from its 30 instances
by computing the mean value, that is, the best estimate of the expected value E(X)
[38]. Thus, 6 mean values are calculated (̄𝑡𝑥, ̄𝑡𝑦, ̄𝑡𝑧, ̄𝑟𝑧, ̄𝑟𝑦, ̄𝑟𝑥). From these estimations
of expected value, the resulting transformation matrix 𝗧𝗹

𝗿 between the origin of the
laser tracker and the robot’s root coordinate system is computed. Again using function
create_trafo_euler(̄𝑡𝑥, ̄𝑡𝑦, ̄𝑡𝑧, ̄𝑟𝑧, ̄𝑟𝑦, ̄𝑟𝑥). This process is described in the following
pseudocode:

𝗥 ← 𝑟𝑒𝑎𝑑𝑚𝑎𝑡𝑟𝑖𝑥() ▷ read measured data from the robot
𝗟 ← 𝑟𝑒𝑎𝑑𝑚𝑎𝑡𝑟𝑖𝑥() ▷ read measured data from the laser tracker
𝗣 ← 𝑧𝑒𝑟𝑜𝑠(30, 6) ▷ matrix of parameters from the resulting transformation matrix
for 𝑖 = 1, ... , 30

𝗧𝗿
𝘁 ← 𝐶𝑟𝑒𝑎𝑡𝑒𝑇 𝑟𝑎𝑓𝑜(𝗥 [𝑖, 𝑎𝑙𝑙 𝑐𝑜𝑙𝑢𝑚𝑛𝑠])

𝗧𝗹
𝘁 ← 𝐶𝑟𝑒𝑎𝑡𝑒𝑇 𝑟𝑎𝑓𝑜𝐸𝑢𝑙𝑒𝑟(𝗟 [𝑖, 𝑎𝑙𝑙 𝑐𝑜𝑙𝑢𝑚𝑛𝑠])

𝗧𝗹
𝗿 = 𝗧𝗹

𝘁 ⋅ 𝑖𝑛𝑣(𝗧𝗿
𝘁)

𝗣 [𝑖, 𝑎𝑙𝑙 𝑐𝑜𝑙𝑢𝑚𝑛𝑠] ← 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝐹𝑟𝑜𝑚𝑇 𝑟𝑎𝑓𝑜(𝗧𝗹
𝗿)

end for
𝗺 ← 𝑧𝑒𝑟𝑜𝑠(1, 6) ▷ vector of means of transformation matrix parameters
for 𝑖 = 1, ... , 6

𝗺 ← 𝑚𝑒𝑎𝑛(𝗣 [𝑎𝑙𝑙 𝑟𝑜𝑤𝑠, 𝑖])
end for
𝗧𝗹

𝗿 = ← 𝐶𝑟𝑒𝑎𝑡𝑒𝑇 𝑟𝑎𝑓𝑜(𝗺)

4.3.4 Euler angles

In this section, the conversion of the rotation matrix to Euler angles is introduced. The
rotation matrix, which was created using Equation (8), looks like this:

𝗥 = ⎛⎜
⎝

𝑐𝑜𝑠(𝑟𝑦)𝑐𝑜𝑠(𝑟𝑧) 𝑅1,2 𝑅1,3
𝑠𝑖𝑛(𝑟𝑧)𝑐𝑜𝑠(𝑟𝑦) 𝑅2,2 𝑅2,3

−𝑠𝑖𝑛(𝑟𝑦) 𝑠𝑖𝑛(𝑟𝑥)𝑐𝑜𝑠(𝑟𝑦) 𝑐𝑜𝑠(𝑟𝑥)𝑐𝑜𝑠(𝑟𝑦)
⎞⎟
⎠

, (14)

𝑅1,2 = 𝑠𝑖𝑛(𝑟𝑥)𝑠𝑖𝑛(𝑟𝑦)𝑐𝑜𝑠(𝑟𝑧) − 𝑠𝑖𝑛(𝑟𝑧)𝑐𝑜𝑠(𝑟𝑥),

𝑅1,3 = 𝑐𝑜𝑠(𝑟𝑥)𝑐𝑜𝑠(𝑟𝑧)𝑠𝑖𝑛(𝑟𝑦) + 𝑠𝑖𝑛(𝑟𝑥)𝑠𝑖𝑛(𝑟𝑧),

𝑅2,2 = 𝑠𝑖𝑛(𝑟𝑥)𝑠𝑖𝑛(𝑟𝑦)𝑠𝑖𝑛(𝑟𝑧) + 𝑐𝑜𝑠(𝑟𝑥)𝑐𝑜𝑠(𝑟𝑧),

𝑅2,3 = 𝑠𝑖𝑛(𝑟𝑦)𝑠𝑖𝑛(𝑟𝑧)𝑐𝑜𝑠(𝑟𝑥) − 𝑠𝑖𝑛(𝑟𝑥)𝑐𝑜𝑠(𝑟𝑧).

The conversion back to Euler angles (𝑟𝑧, 𝑟𝑦, 𝑟𝑥) is done by using the parameters
𝑅1,1, · · · , 𝑅3,3. The case when 𝑅3,1 ≠ ±1 is presented first. Then the value of 𝑟𝑦 is
immediately obtained:

𝑟𝑦,1 = −𝑎𝑟𝑐𝑠𝑖𝑛(𝑅3,1). (15)

As discussed earlier, the function arcsine returns values only in interval ⟨− 𝜋
2 , 𝜋

2 ⟩. So
there are actually two solutions of 𝑟𝑦. The second one is shifted by 𝜋:

𝑟𝑦,2 = 𝜋 − 𝑟𝑦,1. (16)

28

. 4.3 Transformation between the laser tracker and robot’s root 𝗧𝗹
𝗿

If 𝑅3,2 is divided by 𝑅3,3, and 𝑅2,1 is divided by 𝑅1,1, the formula for 𝑡𝑎𝑛(𝑟𝑥) and
𝑡𝑎𝑛(𝑟𝑧) is found. Subsequently, 𝑎𝑡𝑎𝑛2() is used instead of the arctangent to get the
angles 𝑟𝑥 and 𝑟𝑧 :

𝑅3,2

𝑅3,3
=

𝑠𝑖𝑛(𝑟𝑥)𝑐𝑜𝑠(𝑟𝑦)
𝑐𝑜𝑠(𝑟𝑥)𝑐𝑜𝑠(𝑟𝑦)

= 𝑡𝑎𝑛(𝑟𝑥), (17)

𝑟𝑥 = 𝑎𝑡𝑎𝑛2(
𝑅3,2

𝑐𝑜𝑠(𝑟𝑦)
,

𝑅3,3

𝑐𝑜𝑠(𝑟𝑦)
), (18)

𝑅2,1

𝑅1,1
=

𝑠𝑖𝑛(𝑟𝑧)𝑐𝑜𝑠(𝑟𝑦)
𝑐𝑜𝑠(𝑟𝑧)𝑐𝑜𝑠(𝑟𝑦)

= 𝑡𝑎𝑛(𝑟𝑧), (19)

𝑟𝑧 = 𝑎𝑡𝑎𝑛2(
𝑅2,1

𝑐𝑜𝑠(𝑟𝑦)
,

𝑅1,1

𝑐𝑜𝑠(𝑟𝑦)
). (20)

First, 𝑟𝑦,1 and then 𝑟𝑦,2 can be substituted into equations (18) and (20). This will
produce bolt solutions of 𝑟𝑥,1, 𝑟𝑥,2, 𝑟𝑧,1, 𝑟𝑧,2 [37].

The case in which 𝑅3,1 = ±1 is the singularity called Gimbal lock (𝑎𝑟𝑐𝑠𝑖𝑛(1) = 90∘).
So 𝑟𝑦 is either 90∘ or −90∘. It means that 𝑟𝑧 and 𝑟𝑦 are causing the same rotation, so
one parameter of them is redundant [32]. Thus, 𝑟𝑧 can be set to 0.

When 𝑟𝑧 = 0, and 𝑅3,1 = −1, then 𝑟𝑦 = 90∘, and then 𝑅1,2, 𝑅1,3 can be simplified:

𝑅1,2 = 𝑠𝑖𝑛(𝑟𝑥)𝑐𝑜𝑠(𝑟𝑧) − 𝑐𝑜𝑠(𝑟𝑥)𝑠𝑖𝑛(𝑟𝑧) = 𝑠𝑖𝑛(𝑟𝑥 − 𝑟𝑧) = 𝑠𝑖𝑛(𝑟𝑥), (21)

𝑅1,3 = 𝑐𝑜𝑠(𝑟𝑥)𝑐𝑜𝑠(𝑟𝑧) + 𝑠𝑖𝑛(𝑟𝑥)𝑠𝑖𝑛(𝑟𝑧) = 𝑐𝑜𝑠(𝑟𝑥 − 𝑟𝑧) = 𝑐𝑜𝑠(𝑟𝑥), (22)

Those can be divided between each other, and using 𝑎𝑡𝑎𝑛2(), the 𝑟𝑥 is obtained:

𝑟𝑥 = 𝑎𝑡𝑎𝑛2(𝑅1,2, 𝑅1,3). (23)

The second possibility of singularity is when 𝑅3,1 = 1, then 𝑟𝑦 = −90∘, 𝑟𝑧 can be
again set to 0, then 𝑅1,2, 𝑅1,3 become

𝑅1,2 = −(𝑠𝑖𝑛(𝑟𝑥)𝑠𝑖𝑛(𝑟𝑧) + 𝑐𝑜𝑠(𝑟𝑥)𝑐𝑜𝑠(𝑟𝑧)) = −𝑠𝑖𝑛(𝑟𝑥 + 𝑟𝑧) = −𝑠𝑖𝑛(𝑟𝑥), (24)

𝑅1,3 = −(𝑐𝑜𝑠(𝑟𝑥)𝑐𝑜𝑠(𝑟𝑧) − 𝑠𝑖𝑛(𝑟𝑥)𝑠𝑖𝑛(𝑟𝑧)) = −𝑐𝑜𝑠(𝑟𝑥 + 𝑟𝑧) = −𝑐𝑜𝑠(𝑟𝑥), (25)

Those can again be divided between each other, and using 𝑎𝑡𝑎𝑛2(), the 𝑟𝑥 is obtained
[37]:

𝑟𝑥 = 𝑎𝑡𝑎𝑛2(−𝑅1,2, −𝑅1,3). (26)

29

Chapter 5
Inspection of the manufactured part

The idea of this application is that the robot equipped with the T-Mac and touch probe
will be at the output of the production line and will check parameters of manufactured
part. Then it will evaluate if the product has been manufactured within the specified
tolerances. Measured data will then be compared with the reference CAD model.

At our workstation, the printed part is measured. After the part is printed, the
extruder is swapped with the T-Mac with the touch probe. In this task, the robot
serves only as a simple tool carrier; no precise positioning is required. An example of
the object inspection process is shown in Figure B.4. Together with the laser tracker,
T-Mac works similarly to CMM. This solution is less costly, as the user does not have
to buy an expensive CMM but can use an industrial robot, which costs significantly less
[1]. In addition, there is a greater possibility of automating the process. The output
of production lines can be different types of products, and the robot can easily inspect
them.

5.1 Measurement of the printed part using Polyworks
Inspector software

5.1.1 Printed Part

An example of a part that is printed on the workstation is shown in Figure 5.1. In
order to print it, the positioner must rotate the first axis to a perpendicular position.
Then it is rotated with the second axis all around, and the printing continues. The
robot moves only on the 𝑧 axis. This demonstrates the advantages of multiple degrees
of freedom as opposed to conventional 3D printers1 with 3DoF (gantry construction).
This product would have to be printed with supports on them.

The base of the printed part is a 2 mm high ring (annulus) with a diameter of the
inner circle of 50 mm and an outer circle of 100 mm. There are four holes in it with
diameters of 10 mm. On the inner circle is a printed cylinder with a diameter of 50 mm.
Subsequently, the positioner is rotated in the first axis of 90∘, and on top of the cylinder
are printed circular layers that create another annulus. This time it has a thickness of
1.5 mm, the width of layer. The used extruder nozzle has a diameter of 1 mm, and
the printed material is pressed, so the layer becomes wider. Overall, the annulus has
an outer diameter of 63 mm. After this, the first axis goes returns back to the default
position. At its edge is printed another cylinder of a height of 30 mm. The positioner
is then turned back to the perpendicular position. And the last annulus is printed on
the edge of the cylinder. Its outer diameter is 100 mm.

1 https://www.prusa3d.com/cs/

30

https://www.prusa3d.com/cs/

. 5.1 Measurement of the printed part using Polyworks Inspector software

Figure 5.1. An example of a printed product that cannot be printed on a conventional
3DoF printer without support, but can be printed at this workstation.

5.1.2 Polyworks Inspector program
In Polyworks Inspector, there can be run the custom-made program for so-called Macro
Script editor. It supports automatic execution of measurement instructions and sub-
sequent data evaluation [16]. There are three sets of instructions. First, instructions
specific only to the Leica laser trackers are used to connect to the laser tracker or con-
trol the robot [17]. The second set of instructions is common to the entire Polyworks
Inspector; there are instructions that provide commands for measurement and evalu-
ation. For example, instruction that starts the plane feature measurement. The last
are basic commands common to other programming languages. These instructions can
handle, for example, working with variables, loops, and conditions evaluations.

Subsequent creation of the program in Macro Script editor is relatively easy. The best
option is that the user first performs the measurement process once manually. In Poly-
works Inspector, there is a Command History window where the executed commands
are recorded in real-time. The user can then see what commands are used to execute
the desired operation [16]. Thus, he or she finds out how to assemble the measurement
program. The individual parts of the Macro Script program are now introduced:

. Establishing communication—The IP address and the IP address of the Automation
Interface are needed to establish communication with the laser tracker and Polyworks
Inspector. Then it is specified which laser tracker and which target are connected.
The specifics are that the T-Mac with a touch probe is used. It is then verified if the
laser tracker communicates with the Polyworks Inspector, subsequently, if the T-Mac
is indeed detected as the target. Then it is verified whether there is no other problem
in establishing communication [17]. Finally, the CHECKPROGACTIVEBIT com-
mand tests if the robot’s program is running, so the robot is ready to move. This
signal is mapped to DIG IN 1(Figure 3.3).. Feature measurement—This section measures a plane and two circles in sequence.
When the number of points a feature consists of is specified, Polyworks Inspec-
tor knows when the feature acquisition should be complete. The ROBOT CON-
FIRMEDGO (DIG OUT 1) and ROBOT WAITFORPOSREACHED (DIG IN 2)
commands are particularly useful. With the first one, the Polyworks Inspector sends
a signal to the robot that it can move to the next position. And with the second one
serves as a wait; it waits for the robot to get to the specified position, and only then

31

5. Inspection of the manufactured part .
can other commands be executed. In Figure 5.2, these commands are used in 𝑓𝑜𝑟
loop.. Measured data evaluation—Once features are measured, some other features may be
necessary to create. For example, from a circle, can be extracted its center point.
Next, in this part can be performed object alignment [16]. In Figure 5.2 can be seen
used instructions for obtaining the circle and center point from it.

Figure 5.2. Screenshot from Macro Script editor showing instructions of measuring a circle
followed by extracting its center.

5.1.3 Workflow for automated inspection of the printed part
This inspection is performed in Polyworks Inspector using a Macro Script program.
A new workspace in Polyworks Inspector must be opened, and then the Macro Script
program will do all the work. The Macro Script program cooperates with a robot’s
program in KRL. The workflow diagram is in Figure 5.3.

Before the program can be started, the robot must send the signal that the robot’s
program is running. Immediately after starting the Macro Script program, communi-
cation with the laser tracker is established. After this, the CAD model of the printed
part is imported. It is stored in the root folder of the Polyworks project. The problem
is that it is imported into the origin of the world coordinate system that corresponds to
the origin of the laser tracker’s coordinate system. In order to compare the CAD model
with actual measured parameters, they must be in the same coordinate system [16].
A coordinate system identical to the positioner’s surface coordinate system is created
(Figure 4.2).

The Plane, Axis and Center point method is used again but this time is done automat-
ically in Polyworks Inspector. First, the plane is obtained—plane_A. It is determined
by measuring 12 points. This plane is not exactly the positioner’s surface, but a pad
of width of 1 mm is attached to it, on which it is printed. A small circle—circle_A
is then measured, the center of which lies in the positive direction of the x axis. The
probe then goes inside the lower cylinder, where another circle—circle_B is measured
at a single level. Both circles have a constraining plane plane_A in order to both center
points lie on the pad. When aligning is performed, as the plane is used plane_A, as
the axis is used the line between two circle’s center points, and as the center point is
used the center of the circle_B.

ROBOT CONFIRMEDGO and ROBOT WAITFORPOSREACHED are again used
for synchronization between the Macro Script program and the robot. This pair of
signals are not used for every robot move as the title suggests, but ROBOT CON-
FIRMEDGO is sent when the robot starts one particular geometric object. And
ROBOT WAITFORPOSREACHED is received only after finishing measuring a whole
feature. This use is suitable for waiting for the Polyworks Inspector; it takes some time

32

. 5.1 Measurement of the printed part using Polyworks Inspector software

to process the measured data and prepare the measurement of the next object. Thus,
the robot cannot start measuring other points that would not be recorded [16].

The parameters of the printed part are then evaluated. Basically, any part of the
product can be examined, as well as the parameters between the individual parts. For
automated inspection testing purposes, the base thickness at each point is examined,
then the diameter and the direction vector of the top cylinder is examined as well.
Again, the 12 points are used to determine the base of the part. To determine the
cylinder, measuring three circles in three different levels is necessary. Each circle consists
of 8 points, making the whole cylinder of 24 [39].

The distance between each point of the base and the pad plane is measured. The
optimal distance for each point is 2 mm. The minimal, maximal, mean, and standard
deviation can be determined. It can be chosen how much tolerance is allowed and thus
evaluate whether the base thickness of the product is printed correctly. It is no problem
to add additional points to the inspection for greater measurement accuracy.

Connecting to the
Laser tracker, and

Automation
Interface

Probing the table
surface - plane_A

Probing the small
hole - circle_A

Probing the circle
inside the bottom
cylinder - circle_B

Aligning of the CAD
model to the real

object

Probing the surface
of the Printed part

base - plane_B

Importing a CAD
model

Probing the upper
cylinder - cylinder_A

Inspection of the
plane_B surface

and the cylinder_A
dimensions

Creating and
exporting a report

Terminating the
communication with
the Tracker and the

Automation
Interface

Figure 5.3. Scheme of the workflow of the Macro Script program for automated inspection.

5.1.4 Robot programming

Since the robot moves in the base of the positioner, to which the manufactured product
is always aligned, the robot’s movements can be easily planned. So far, no postpro-
cessor for generating robot movements has not been made. Robot program is written
in KRL manually. Since each printed object is slightly different, the robot moves the
last section, about 10 mm, in an incremental motion. This incremental movement has
already been described in Section 4.2.3. Then the program is completed by transitions
between the measured points. The incorporation of synchronization signals for the pro-
gram in Polyworks Inspector must not be forgotten. At the beginning of the program,
$OUT[3]—robot has finished movement, and $OUT[2]—robot program is active, are
set to True. The robot waits until the $IN[1] variable is True to start measuring the
feature. Immediately afterward, it drops $OUT[2] to False and returns to True when

33

5. Inspection of the manufactured part .
it has passed all the points to get a particular feature. Then it waits for $IN[1] again
[35].

The T-Mac with the touch probe must be tilted during the measurement; otherwise,
it will crash into the overhanging parts. If the probe measures an object from the
outside, the surroundings of the object to be measured can be divided into 8 segments,
for which tilts are defined according to the 𝑥 and 𝑦 axes. When the measured point is
in the proximity of the positive 𝑥 axis, it is sufficient to change the parameter defining
the rotation around the tool’s 𝑦 axis in the negative direction; in the case of Kuka,
this is parameter 𝐵. For points in the neighborhood of negative 𝑥 values, these are
positive values of the tilt 𝐵. If the point is in the region of the 𝑦 axis, the probe rotates
about the 𝑥 axis, as indicated by parameter 𝐶. When the measured points are in the
neighborhood of positive 𝑦 axis, the probe rotates in the positive values of parameter 𝐶
and vice versa. The remaining 4 segments combine both the 𝑥 and 𝑦 coordinates and
thus combine the appropriate tilt. The specific tilt values can vary depending on how
much the surface overhangs the measured point.

If the inside surface of an object is measured, such as the middle circle during align-
ment, the parameters B and C are the negated parameters B and C that correspond to
them for measurements from outside of the object. Using these conditions, trajectories
to measure almost any feature on the surface of an object can be generated. The prob-
lem are places that are too narrow or overhanging; to measure them, the probe would
have to approach from the bottom up. In the case of measuring the printed product,
the kinematics of the robot would not allow it.

5.1.5 Evaluation of the inspection

The purpose of the bachelor thesis was to design a process for inspecting a printed
part, not to deal with specific parameters to determine the correctness of a printed
part. As already written, when measuring in Polyworks Inspector, it can be chosen
from many parameters to investigate. It is, therefore, suitable for in-depth evaluation
of measurement data, but not so suitable for automating the process [16]. For example,
in the case of a cylinder, concentricity or cylindricity might be interesting to investigate.
And for a plane, for example, flatness or parallelism [39]. When inspecting without any
metrology software, these parameters will now not be evaluated.

In Figure 5.4 are captured results of the inspection. The interior of the upper cylinder
and the thickness of the lower ring at 12 points was examined. The thickness of the
lower ring is represented by the 𝑧 coordinates.

When examining the area, a colormap was created from all the measured points to
represent the distance of the measured points from the pad. For 12 points, the colormap
is sparse, but for more points, it would be an excellent graphical representation of the
thickness. This colormap is then used to find the point with the smallest and largest
deviation of the 𝑧 axis coordinate from the nominal value [16]. It is good to note that
not all nominal values have a z component of exactly 2 mm either, which is probably
due to the inaccuracy of the pad (plane_A) measurements. The measurement shows
that the point where the thickness is the greatest from the defined value is 0.146 mm
thicker. The point with the smallest layer thickness is found to have a layer is by -0.104
mm thicker than defined. Interestingly, these two points are close together. This may
be due to the probe falling into the gap between the two extruder nozzle’s paths when
measuring the least thick point.

The cylinder consists of three circles in three planes with a distance of 9 mm between
each other. Each circle consists of 8 points. Three points are needed to make a circle,

34

. 5.2 Measurement of the printed part without metrology software

and only two circles would be enough to make a cylinder [39]. More points were added to
improve the accuracy of the parameters of the resulting cylinder. The nominal diameter
of the inside of the upper cylinder is 60 mm, and the actual diameter is 59.649 mm,
so it was printed with a deviation of -0.351 mm. This satisfies the defined tolerance of
±0.5 mm.

For the cylinder, the deviation of the direction vector from the defined one is also
evaluated. Ideally, it should be aligned with the z axis. That is, it should have an angle
between the x and y basis vectors of 90 ∘ and from the z basis vector of 0 ∘, which it
has not since the cylinder is printed on a ring that is not always perfectly parallel to
the bottom ring on the base. Tolerances were set to ±1 ∘, which was only met for the
angle between the y-axis and the feature’s direction angle [16].

Figure 5.4. Polyworks Inspector environment after completed inspection. The figure shows
the features needed for alignment, the coordinate system of the printed part, and the results

of the measured features.

5.2 Measurement of the printed part without
metrology software

Metrology software Polyworks Inspector provides a large number of functions that are
very useful for detailed inspection, but these functions can be redundant for simple
output tolerance checking. Since one of the uses of a T-Mac with a touch probe can be
output inspection in a production line, it is more convenient to automatically evaluate
the measured data in, for example, a Matlab function. Polyworks Inspector slows down
the measurements. It takes some time to prepare the feature measurements and then
evaluate the measured data [16]. Secondly, for the user, there is no need to buy an
expensive Polyworks license for these simple measurements.

5.2.1 Acquisition of measured data

As this task was created simultaneously with the laser tracker data conversion task, it
was easier to perform the measurements in Tracker Pilot and export the measured data
from there. The Tracker Pilot only provides the data recorded by the laser tracker,
it does not evaluate the measured data in any way. The trigger for a measurement
acquisition is selected for the touch probe so that the point is recorded when the probe
touches the surface [13]. When it will be measured without Tracker Pilot but using Real
Time module, trigger option can be specified as one of the Arguments in the Command
Request, as described in Section 3.2.3.

35

5. Inspection of the manufactured part .
The robot’s program is the same as for the printed part measurement with the Poly-

works Inspector. The control signals that are synchronizing the automatic inspection
between the Polyworks Inspector and the robot’s moves ($𝐼𝑁[1], $𝑂𝑈𝑇 [2], $𝑂𝑈𝑇 [3]
variables) are omitted. Also omitted are the robot paths that provide the measure-
ments of the two circles (circle_A, circle_B) needed to align the CAD model to the
actual object. The CAD model is not being used here, so the alignment does not mat-
ter. The measured data are in the coordinate system of the laser tracker and not in the
coordinate system of the positioner. It does not matter that the measured objects are
in the coordinate system of the laser tracker. The thickness of the printed layer and
the diameter of the cylinder will not change.

The robot while measuring the features touches the pad on 12 points to obtain the
plane of the pad, then 12 points on the surface of the bottom ring are measured for
getting the thickness of the layer. Lastly, 8 points are measured in two levels inside the
top cylinder for obtaining cylinder’s axis, and diameter. In this case, only two circles
are used to determine the cylinder [39]. So the measurement total consists of 40 points
which are exported from the Tracker Pilot.

5.2.2 Inspection of the thickness of the lower ring
For this inspection, the first 24 measurement points are imported into Matlab, and the
first 12 are used to create the plane of the pad, on which the object is printed. These
points are interpolated into the plane using linear regression. The remaining 12 points
will then be examined for their distance from the plane. Equation of pad’s plane 𝜋 is

𝜋: 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0, (1)

where 𝑥, 𝑦, 𝑧 are variables and 𝑎, 𝑏, 𝑐, 𝑑 are coefficients of the plane [34]. The variable 𝑧
will be isolated:

𝜋: 𝑧 = −𝑎
𝑐

𝑥 − 𝑏
𝑐
𝑦 − 𝑑

𝑐
, (2)

new plane’s coefficients are created, then the equation of 𝜋 is

𝜋: 𝑧 = − ̂𝑎𝑥 − �̂�𝑦 − ̂𝑑. (3)

If those 12 measured points substituted for variables 𝑥, 𝑦, 𝑧, it produces a system of
12 equations with 3 unknowns:

𝑧1 = − ̂𝑎𝑥1 − �̂�𝑦1 − ̂𝑑
𝑧2 = − ̂𝑎𝑥2 − �̂�𝑦2 − ̂𝑑

...
𝑧12 = − ̂𝑎𝑥12 − �̂�𝑦12 − ̂𝑑

This system can be rewritten into a matrix form 𝗔𝘅 = 𝘇, where

𝗔 =
⎛⎜⎜⎜⎜
⎝

−𝑥1 −𝑦1 −1
−𝑥2 −𝑦2 −1

...
...

...
−𝑥12 −𝑦12 −1

⎞⎟⎟⎟⎟
⎠

, 𝘅 = ⎛⎜
⎝

̂𝑎
̂𝑏
̂𝑑
⎞⎟
⎠

, 𝘇 =
⎛⎜⎜⎜⎜
⎝

𝑧1
𝑧2
...

𝑧12

⎞⎟⎟⎟⎟
⎠

.

Then the vector 𝑧 can be transferred to the other side of the equation:

𝗔𝘅 − 𝘇 = 𝟬. (4)

36

. 5.2 Measurement of the printed part without metrology software

This is an overdetermined system, which can be approximated. It is an optimization
problem of minimizing the norm of deviations on the left-hand side of equation (4); the
problem does not change if it is minimized the square of this norm [40]:

𝑚𝑖𝑛‖𝗔𝘅 − 𝘇‖2 (5)

This task is easily solved in Matlab using the a command 𝘅 = 𝗔 \ 𝘇. This provides the
̂𝑎, ̂𝑏, ̂𝑐 parameters of the plane 𝜋 from the equation (3).
Once the equation of the pad’s plane has been obtained, the printed layer thicknesses

can be evaluated sequentially at 12 points. For each point, the distance from the plane
𝜋 is calculated. First, the plane 𝜋 is converted back to the format from (1):

𝜋: ̂𝑎𝑥 + �̂�𝑦 + 𝑧 + ̂𝑑 = 0. (6)

This form of the equation gives the normal vector 𝗻 of the plane [34]. The normal
vector is 𝗻 = (�̂� �̂� 1)𝑇. For later calculations, it is useful to normalize the vector n.
As it has been done in section 4.2.2.

In the matrix 𝗣 are stored the measured points. So the rows contains points 𝗽𝗶 =
(𝑥𝑖 𝑦𝑖 𝑧𝑖)𝑇, where 𝑖 = 1, · · · , 12. Then, any point 𝗽𝟬 that lies in the plane 𝜋 has to be
found. Subtracting point 𝗽𝟬 from point 𝗽𝗶 gives a vector 𝗾𝗶. The distance of point 𝗽𝗶
from the plane 𝜋 is given as an Euclidean norm of the vector 𝗾𝗶 projected onto a linear
subspace created by the unit normal vector 𝗻 [41].

The point 𝗽𝟬 can be any point that satisfies equation (6), so it can be chosen a trivial
variant

𝗽𝟬 = (0 0 − ̂𝑑)𝑇 .

In general, the formula for the projection of a vector 𝘂 ∈ ℝ3 onto a vector 𝘃 ∈ ℝ3 is

𝑝𝑟𝑜𝑗𝘃𝘂 = (𝘂 ⋅ 𝘃
‖𝘃‖2)𝘃, (7)

where the 𝘂 ⋅ 𝘃 denotes the dot product of vectors. When these facts are combined, the
definition of the shortest distance 𝑑𝑖 of the point 𝑝𝑖 from the plane 𝜋 can be found:

𝑑𝑖 = ∥ 𝑝𝑟𝑜𝑗𝗻𝗾𝗶 ∥ = ∥ (𝗾𝗶 ⋅ 𝗻
‖𝗻‖2)𝗻 ∥. (8)

The first simplification of equation (8) is that ‖𝑛‖ = 1. So the equation simplifies to
the form

𝑑𝑖 = ∥ (𝗾𝗶 ⋅ 𝗻)𝗻 ∥. (9)

Next, there is a fact that ‖𝑥𝘃‖ = 𝑥‖𝘃‖, where 𝑥 ∈ ℝ. Since the dot product 𝗾𝗶 ⋅ 𝗻 results
in a scalar, this rule can be used [41]. Using again the fact that ‖𝑛‖ = 1, equation
simplifies to the form

𝑑𝑖 = (𝗾𝗶 ⋅ 𝗻)‖𝗻‖ = 𝗾𝗶 ⋅ 𝗻. (10)

If the points 𝗽𝟬 and 𝗽𝗶 are returned to the vector 𝗾𝗶, a simplified formula for the distance
of the point 𝗽𝗶 from the plane 𝜋 is found:

𝑑𝑖 = (𝗽𝗶 − 𝗽𝟬) ⋅ 𝗻, (11)

into which the 12 measured points can be easily substituted in Matlab. This produces
12 distances that determines the thickness of the printed layer at each point 𝗽𝗶. From
these distances, it can be calculated the minimum and maximum deviation just as in
Polyworks Inspector.

37

5. Inspection of the manufactured part .
5.2.3 Cylinder inspection

Just as the bottom ring could be inspected, the parameters of the top cylinder can be
inspected without using Polyworks Inspector. The cylinder is made of two circles, each
of 8 points. Again, they are measured in the coordinate system of the laser tracker, but
in this case, unfortunately inaccuracy of the positioner tilt is mixed together with the
inaccuracy of the cylinder’s center axis. This problem is easily solved by transforming
the measured points into the coordinate system of the positioner, as described in Section
4.2.2. For now, the alignment is not incorporated. It is relied on a mastering of both
axes of the positioner, which was performed exactly as it is instructed by Kuka [11].
So, when both axes are at zero position, it is assumed that the error in the positioner
position is much smaller than the misalignment of the center axis of the printed cylinder.

The cylindrical surface ω in ℝ3 can be defined by its radius 𝑟ω and a direction vector
𝘂 (center axis). Since each circle is measured in constant 𝑧 coordinates, the center
of each circle will be at its center of mass. From these two points, the vector 𝘂 is
easily obtained. Fortunately, an equation of circles are not needed; it is more tricky to
parameterize circle in ℝ3 . The radius (𝑟1, 𝑟2) of each circle is calculated as the expected
value (mean value) of the distances of the measured points from the center of the circle.
From these two radiuses is calculated the diameter of the cylinder.

The last 16 measured points are loaded into Matlab. It is divided into two matrices,
𝗣𝟭 and 𝗣𝟮, according to the belonging of each circle. Their rows contain the coordinates
of the measured points (𝑥, 𝑦, 𝑧). The center of mass (𝘁𝟭, 𝘁𝟮) of the two circles is easily
calculated; for each component, the mean of the points of the respective component is
calculated [38]:

𝑡𝑥 =
𝑃1,𝑥 + · · · + 𝑃8,𝑥

8
, 𝑡𝑦 =

𝑃1,𝑦 + · · · + 𝑃8,𝑦

8
, 𝑡𝑧 =

𝑃1,𝑧 + · · · + 𝑃8,𝑧

8
, (12)

where 𝑃1,𝑥 denotes the first row of the matrix 𝗣 and its first component, which cor-
responds to the 𝑥 coordinate. A direction vector is created using the points 𝘁𝟮 and
𝘁𝟭:

𝘂 = 𝘁𝟮 − 𝘁𝟮. (13)

Ideally, after normalization of the vector 𝘂, it should be 𝘂 = (0 0 1)𝑇. That would
mean it was printed perpendicular to the DKP. In real situation, however, the compo-
nents 𝑥, and 𝑦 are not 0. The deviation of the vector 𝘂 from the central axis can be
defined as three angles between the vector 𝘂 and vectors 𝘃𝘅 = (1 0 0)𝑇, 𝘃𝘆 = (0 1 0)𝑇,
and 𝘃𝘇 = (0 0 1)𝑇. The angle φ between vector 𝘂 and each vector 𝘃 can be derived
from the relation [41]

𝑐𝑜𝑠(φ) = 𝘂 ⋅ 𝘃
‖𝘂‖‖𝘃‖

→ φ = 𝑎𝑟𝑐𝑐𝑜𝑠−1(𝘂 ⋅ 𝘃
‖𝘂‖‖𝘃‖

)

This is done for all three vectors 𝘃 resulting in angles φ𝑥, φ𝑦, φ𝑧. The results are then
just converted from radians to degrees. The angle φ𝑧 is already the deviation being
sought. The φ𝑥 and φ𝑦 angles must be subtracted by 90∘ to obtain those deviations.

Next, using the points in the matrices 𝗣𝟭 and 𝗣𝟮 and the centers of the circles 𝘁𝟭 and
𝘁𝟮 can be found the radiuses 𝑟1, 𝑟2 of both circles. Each radius 𝑟 is calculated as the
average of the distances of the points from 𝗣 to the center 𝘁. The distance is calculated
as the norm of the vector 𝘁 − 𝗣. The circle’s radius is

𝑟 =
‖𝘁 − 𝗣𝗧

𝟭 ‖ + · · · + ‖𝘁 − 𝗣𝗧
𝟴 ‖

8
, (14)

38

. 5.2 Measurement of the printed part without metrology software

where 𝗣𝗶 denotes the 𝑖th row of the matrix 𝗣, 𝑖 = 1, · · · , 8. When 𝑟1, 𝑟2 are calculated,
the diameter 𝑑ω of the cylinder is obtained as the double the radius 𝑟ω, which is obtained
from the average of 𝑟1, and 𝑟2:

𝑑ω = 2𝑟1 + 𝑟2
2

= 𝑟1 + 𝑟2. (15)

39

Chapter 6
Comparison of the methods presented in
Chapters 5 and 6 with metrology software

6.1 Comparison of calibration methods
This section compares methods for determining the transformation between the laser
tracker’s coordinate system and the robot’s root coordinate system. The first method
is the one presented in section 4.3; this method is not using any metrology software.
The second method is using Robodyn, it is a software primarily designed for robot
calibration, but as a by-product, it produces the transformation matrix between the
laser tracker and the robot’s root. It also finds the transformation between the flange
and the TCP, which is also useful for accurate measurements in the future [15].

Since the main focus of this chapter is to compare the developed method with a
method using Robodyn, the transformation matrix between the coordinate system of
the positioner and the coordinate system of the laser tracker will be omitted. This
is because Robodyn is mainly designed for calibration of open kinematic 6DoF chains
and not for two-axis external kinematics [15]. Therefore, the transformation matrix
between the positioner and the laser tracker was not determined using Robodyn.

6.1.1 Workflow description in Robodyn
Robodyn is software for calibrating industrial robots from different manufacturers. It
only needs to know the DH parameters [14] of the robot and its controller. The data
for the definition of the DH parameters of the Kuka KR 1620 robot can be found
in its datasheet [2]. In addition to the robot specification, it is essential to choose
the correct measuring device (Leica Absolute Tracker AT960) and its target (T-Mac
𝑓𝑎𝑐𝑒3 without the touch probe). The target does not have to be a T-Mac, it can be
an ordinary RRR 1.5′′ reflector. CAD models of these devices can be imported into
Robodyn, the T-Mac model is not needed, it is visualized by its coordinate system (a
cone in Figure 6.1). Robodyn works on the principle that the robot passes through
several predefined positions, at which the tool rotates differently, and from these, it
finds the transformation between the robot and the measuring device [15].

Before the calibration can start, the approximate values of the transformations be-
tween the flange and the TCP and between the robot and the laser tracker must be
set. This is because Robodyn generates the robot trajectories with respect to the laser
tracker position so that there is an unbroken optical link between the laser tracker and
the target. Before running the calibration, it is a good idea first to run a simulation to
see if there are no collisions in some of the motions.

The calibration points are generated by Robodyn itself depending on the selected
workspace; this can be scaled and moved in space at the user’s choice. It can be above
the DKP, so the workspace is approximately the same as in the method using no metrol-
ogy software. Once the points are generated, they have to be manually checked, it often
happens that the robot configuration changes, which is not ideal because on the robot

40

. 6.1 Comparison of calibration methods

are mounted various cables and extruder accessories which could be damaged when the
robot is moved to a different configuration. If the robot is in a non-conforming config-
uration at a given point, the configuration can be changed manually, if Robodyn does
not find a conforming configuration, the point can be deleted and a new one generated
[15]. Figure 6.1 shows the prepared workspace with the generated measurement points.

Robodyn must connect to the robot controller and the laser tracker before the calibra-
tion can start. The robot paths are streamed to the controller using the EthernetKRL
package [42]. Hexagon provides both the KRL program and the SPS program for it.
So before connecting to the robot in Robodyn, both the SPS program and the KRL
program must be running. Then the calibration is started in Robodyn. When the robot
has passed all the points, the calibration report is generated.

Figure 6.1. Screenshot from Robodyn showing the robot, the laser tracker, generated
points, and a red cone showing the target.

6.1.2 Comparison of both transformation matrices
Now, both transformation matrices 𝗧 from the robot coordinate system to the laser
tracker coordinate system can be compared. Its components can be extracted so that
they can be compared with each other.

. Transformation matrix obtained using Tracker Pilot and Matlab:

𝗧𝗹
𝗿 =

⎛⎜⎜⎜
⎝

−0.8704 −0.4924 0.0008 2448.53
0.4924 −0.8704 0.0016 −967.703

−0.0001 0.0017 1 780.573
0 0 0 1

⎞⎟⎟⎟
⎠

, (1)

𝑡𝑥 = 2448.53 𝑚𝑚, 𝑡𝑦 = −967.703 𝑚𝑚, 𝑡𝑧 = 780.573 𝑚𝑚,

𝑟𝑧 = −0.089 ∘, 𝑟𝑦 = 0.043 ∘, 𝑟𝑥 = 150.503 ∘.

41

6. Comparison of the methods presented in Chapters 5 and 6 with metrology software
The transformation from the flange to the tool that was used for the measurements
was obtained from the NX software1, where it the digital twin of the workstation.
Its parameters are:

𝑥 = −7 𝑚𝑚, 𝑦 = 44.7 𝑚𝑚, 𝑧 = 306.5 𝑚𝑚, 𝑟𝑧 = 180 ∘, 𝑟𝑦 = 0 ∘, 𝑟𝑥 = 180 ∘.

Due to manufacturing tolerances, it may not be exactly as manufacturers of compo-
nents claims. This transformation between the flange and the TCP can be corrected
depending on what Robodyn determines.. Transformation matrix obtained by Robodyn:

𝗧𝗹
𝗿 =

⎛⎜⎜⎜
⎝

−0.8656 −0.5008 0.0007 2448.144
0.5008 −0.8656 0.0016 −967.8878

−0.0002 0.0018 1 780.614
0 0 0 1

⎞⎟⎟⎟
⎠

, (2)

𝑡𝑥 = 2448.144 𝑚𝑚, 𝑡𝑦 = −967.898 𝑚𝑚, 𝑡𝑧 = 780.614 𝑚𝑚,

𝑟𝑧 = 0.101 ∘, 𝑟𝑦 = 0.136 ∘, 𝑟𝑥 = 149.947 ∘.

The transformation parameters provided by Robodyn between the robot’s flange and
its tool are

𝑥 = −7.068 𝑚𝑚, 𝑦 = 44.291 𝑚𝑚, 𝑧 = 306.504 𝑚𝑚,

𝑟𝑧 = 179.404 ∘, 𝑟𝑦 = 0.26 ∘, 𝑟𝑥 = 179.921 ∘.

The differences of the transformation matrices can be shown to see how much they
differ from each other. The components of the transformation matrix obtained using
Robodyn is subtracted from the components of the matrix obtained using Tracker Pilot
and Matlab:

̂𝑡𝑥 = 0.3859 𝑚𝑚, ̂𝑡𝑦 = 0.1847 𝑚𝑚, ̂𝑡𝑧 = −0.0407 𝑚𝑚,

̂𝑟𝑧 = 0.5562 ∘, ̂𝑟𝑦 = 0.0298 ∘, ̂𝑟𝑥 = −0.1906 ∘.

From these data, it can be seen that the transformation matrices are different. The
method of finding the transformation matrix between the robot and the laser tracker
will have to be modified. A transformation matrix with such an error cannot be used
for real-time corrections to the robot during 3D printing. The measured points have to
be converted from the coordinate system of the laser tracker to the coordinate system
of the robot in order to compare the laser tracker and robot data with each other.

Of course, the first improvement can be to change the transformation of the tool.
Second, the method would not have to rely on the forward kinematics computed by
the robot. However, the robot could just provide values from the encoders at robot
axes and computation of the forward kinematics [14] could be done alongside the data
evaluation in Matlab. Furthermore, the parameters of the transformation matrix could
not be computed as the mean of a fixed number of measurements but these parameters
could be iteratively improve. The points could be added to the measurements until the
parameter deviations fell below some threshold. These points can be sent to the robot
via EthernetKRL so more and more points can be generated.
1 https://www.plm.automation.siemens.com/global/en/products/nx/

42

https://www.plm.automation.siemens.com/global/en/products/nx/

. 6.2 Comparison of printed part inspection methods

6.1.3 Calibration result
At the end of this section, the calibration result itself is presented. That is the trans-
formation matrix between the coordinate system of the robot root and the coordinate
system of the positioner root. Transformation matrix between the DKP and the laser
tracker 𝗧𝗱

𝗹 was created from the Plane, Axis, Center point alignment method and its
result is

𝗧𝗱
𝗹 =

⎛⎜⎜⎜
⎝

−0.501 −0.865 −0.0034 2161.769
0.865 −0.501 −0.004 1147.394
0.002 −0.005 1 −772.564

0 0 0 1

⎞⎟⎟⎟
⎠

. (3)

To obtain the transformation matrix 𝗧𝗿
𝗱, matrices (𝗧𝗹

𝗿 ⋅ 𝗧𝗱
𝗹)−1 from Equation (2) and

(3) has to be multiplied:

𝗧𝗿
𝗱 =

⎛⎜⎜⎜
⎝

0.010 −0.943 −0.003 3729.392
0.999 0.042 0.006 −1807.468

−0.005 −0.004 1 7.273
0 0 0 1

⎞⎟⎟⎟
⎠

. (4)

6.2 Comparison of printed part inspection methods
In this section, the methods that can be used for an automatic inspection of manufac-
tured parts are compared. One method uses Polyworks Inspector metrology software.
The second method first measures all the points and then processes and evaluates the
raw data. The second one can be called as Manual method. Both methods were used
to evaluate the same printed object (Figure 5.4). The measurement was held on the
same day, first with Polyworks Inspector, then with Tracker Pilot and Matlab. The
cylinder parameters can be compared with each other because it does not matter from
which specific points they are composed. The layer thickness was determined at 12
points, but it does not make sense to compare the thickness of a particular layer at a
point between the two methods. Although the robot program was not changed and the
measured points are the same in both cases, the robot will not travel from the same
point twice with absolute accuracy, especially when the last part of the path consists
of incremental motion.

When measuring in Polyworks Inspector, the CAD model is aligned to the printed
real object before the actual inspection of the features. The Plane, Axis, Center point
alignment method was used to find the transformation matrix from the Printed part
coordinate system to the laser tracker coordinate system:

𝗧𝗹
𝗱 =

⎛⎜⎜⎜
⎝

−0.5046 0.8634 0 101.48
−0.8633 −0.5046 −0.0058 2440.345
−0.005 −0.0029 1 525.198

0 0 0 1

⎞⎟⎟⎟
⎠

.

This can be decomposed into rotation and translation components:

𝑟𝑧 = −120.3046 ∘, 𝑟𝑦 = 0.2887 ∘, 𝑟𝑥 = −0.1674 ∘,

𝑡𝑥 = 101.48 𝑚𝑚, 𝑡𝑦 = 2440.345 𝑚𝑚, 𝑡𝑧 = 525.198 𝑚𝑚.

Tracker Pilot provides the raw data from the laser tracker; it is the same as we would
get when using the Real Time module. Tracker Pilot does not even compensate for the

43

6. Comparison of the methods presented in Chapters 5 and 6 with metrology software
radius of the ruby tip. It has a radius of 2.5 mm [13], so when the plane and lower ring
points are measured, 2.5 mm is subtracted from their 𝑧 coordinate. When the cylinder
surface is measured, there is no reason to compensate for the radius of the ruby tip as it
does not affect the centers of the circles, hence the center axis of the cylinder. Without
the compensated probe tip, the circles are measured with diameters 5 mm smaller, so
it should be added that to them. The resulting cylinder will have a correct diameter
by then.

6.2.1 Layer thickness inspection

The results of the bottom ring thickness can be compared. The equations of the planes
of the pad on which it is printed can be compared. In Polyworks Inspector, the equation
of the plane can be extracted in the laser tracker’s coordinate system.

𝜋1: −0.0033𝑥 − 0.0039𝑦 + 𝑧 + 524.3903 = 0, (5)

𝜋2: −0.0036𝑥 − 0.038𝑦 + 0.9999𝑧 + 524.753 = 0. (6)

The plane 𝜋1 was found by Manual method and 𝜋2 by Polyworks Inspector. Comparing
the coefficients of 𝜋1 and 𝜋2, we can consider that the detection of the 𝜋1 plane by the
Manual method works well.

The thickness of the printed layer at each points can be also evaluated. Polyworks
Inspector unfortunately does not allow access to the points that compose the feature.
The points would have to be measured individually and not as part of a plane. Which
is not a problem to implement, but at the moment it is not.

Method Max Dev [mm] Min Dev [mm]

Manual 0.212 -0.098
Polyworks 0.146 -0.104

Table 6.1. Maximum and minimum deviation from the expected value 𝐸(𝐷).

Table 6.1 shows the maximum and minimum deviations of the distance of the mea-
sured points from the nominal expected value 𝐸(𝐷) = 2, where 𝐷 is a random variable
representing the distance of the measured point from the plane 𝜋. Since the nominal
layer thickness is 2 mm, 𝐸(𝐷) = 2. The deviations of the lowest points are almost the
same, but the deviations of the highest points differ by approximately 0.07 mm. As
written earlier, the robot probably did not measure exactly the same point, but the
second time its position was slightly different, so it measured a different part of the
surface that was slightly higher.

Figure 6.2 shows the fitted plane of the pad and the measured points on the surface
of the printed part. That points and the plane was obtained by the manual method.
The distance with the maximum and minimum deviation is highlighted in orange.

44

. 6.2 Comparison of printed part inspection methods

Figure 6.2. Fitted plane of the pad, measured points, and distances between them.

In Figure 6.3, it can be seen that the 8th measured point is the thickest in the whole
layer, and the 9th measured point is the thinnest. These are the points with coordinates
𝑝8 = (2154.224 1190.505 −510.459), 𝑝9 = (2170.571 1179.804 −510.758).

The standard deviation from the measured points can be calculated. This way, it can
be found out the width of the neighborhood of the expected value. This indicates the
range in which the majority of the measured points are located. The smaller it is, the
less deviated the measured points are from the expected value. Standard deviation 𝜎 is
defined as the square root of the variance (𝜎2) of a random variable 𝐷. When there are
eight measured distances(𝑑1, · · · , 𝑑8) and a 𝐸(𝐷) = 2, it is calculated from the formula
[38]:

𝜎 = √(𝑑1 − 2)2 + · · · (𝑑8 − 2)2

8
. (7)

The standard deviation is 𝜎 = 0.089𝑚𝑚.

1 2 3 4 5 6 7 8 9 10 11 12

Samples

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

D
ev

ia
tio

n
[m

m
]

Figure 6.3. Deviations of layer thicknesses at each point.

45

6. Comparison of the methods presented in Chapters 5 and 6 with metrology software

Method Dev Diameter [mm] Dev X angle [∘] Dev Y angle [∘] Z angle [∘]

Manual -0.335 -1.453 0.37 1.499
Polyworks -0.351 -1.201 0.274 1.232

Table 6.2. Cylinder parameters deviations that were obtained with Tracker Pilot and Mat-
lab and with Polyworks Inspector.

6.2.2 Cylinder inspection
The second feature that was inspected is the upper cylinder. Its parameters are in-
variant to the coordinate system. The parameters of the cylinder measured with the
Polyworks Inspector can be seen in Figure 5.4.

Table 6.2 records the deviations of the radiuses and angular deviations of the center
axes in each axis. The two methods produced almost identical diameters of the cylinder.
But the center axis position is different. Probably the circle’s centers were determined
poorly. The deviation of the direction vector can be seen; it is more likely caused by the
robot’s poor positioning. The differences between the two methods could be resolved if
more points and overall circles were added to the measurements and the centers of the
circles were determined by some iterative method such as RANSAC (Random Sample
Consensus) [43].

Figure 6.4 shows in orange and blue the measured points on the surface of the cylin-
der. They are interlinked with straight lines just to visualize the contour of the circle.
The points consist of circles with a 5 mm smaller diameter because of the uncompen-
sated tip; nevertheless, the 5 mm is added to the diameters of the measured circles
during data evaluation. The yellow points are the detected centers of the circles, and
the line between them is the center axis of the cylinder.

Figure 6.4. The measured points of the top cylinder, the centers of the circles, and the
axis of the cylinder.

For the sake of completeness, the parameters of the cylinder, which were determined
with manual method are now presented:

𝑑𝑙 = 59.684 𝑚𝑚, 𝑑𝑢 = 59.646 𝑚𝑚, 𝑑 = 59.665 𝑚𝑚,

46

. 6.2 Comparison of printed part inspection methods

𝘂 = (−0.11 0.431 16.996)𝑇 , 𝘂𝗻 = (−0.0065 0.0254 0.9997)𝑇 .

Where 𝑑𝑙 is the diameter of the lower circle, 𝑑𝑢 is the diameter of the upper cylinder,
and 𝑑 is the diameter of the cylinder. The nominal value of all diameters is ̂𝑑 = 60 𝑚𝑚
𝘂 is the direction vector of the cylinder; after its normalization, it produces 𝘂𝗻, which
can be better compared with the ideal variant of this vector, which is �̂�𝗻 = (0 0 1)𝑇.

47

Chapter 7
Conclusion

In this bachelor thesis, the main objectives were to design and develop a process for
automatic robot workspace calibration and accurate measurement of a part with a touch
probe using a laser tracker and an industrial robot. This thesis created a foundation
for these solutions and explored the possibilities of using a laser tracker in cooperation
with a robot. These tasks were successful, and it can be seen that the laser tracker
has its place in the robotic workplace. This work has opened up great possibilities for
future work.

. First, used equipment and software were introduced. Particular attention was given
to the laser tracker and its equipment, which is not a common device like the in-
dustrial robot. The software used was also not emphasized as it would be difficult
to describe all their functionalities. Rather, the workflow was described only in the
sections where they were really needed and, moreover, where it was possible to see
their real use.. Furthermore, the data transfer and communication between the laser tracker and
the robot controller or application computer was presented. Since the laser tracker
should work autonomously with the robot on the application software, the receiving
of measured data from the laser tracker by the robot program was developed in this
part. At the same time, a protocol for sending commands to the laser tracker was
implemented. The native format of the numbers sent by the laser tracker is 64 bit
double, which, however, KRL cannot handle. It can only handle the REAL number
format, which is a 32 bit float. So this problem had to be solved first. Then a
converter from spherical point coordinates to Cartesian coordinates and a converter
of quaternions to rotation matrix for the rotation parameters had to be created.
These parts had to be implemented in the RSI since they had to be computed at
a high frequency. The last point in the communication is sending the laser tracker
requests. This could be implemented in KRL because there is no need to send
commands to the slave (the tracker) as fast as possible. Commands to perform a
special type of measurement (e.g., longer acquisition time), send the laser tracker to
a specified position and turn off the tracker have been implemented.. In the following part, a process for obtaining the transformation matrix between
the coordinate system of the robot root and the laser tracker and then between
the coordinate system of the laser tracker and the positioner was developed. These
transformations are multiplied together to create a transformation matrix between
the robot root and the positioner coordinate system. This matrix is necessary for
the workspace calibration, so it was found where the table is positioned in the real
world. This transformation matrix was also used to calibrate the digital twin of the
workstation. The process of obtaining the transformation matrix between the robot
and the positioner was developed independently of third-party software.

The transformation itself between the robot and the laser tracker could be used
to correct the robot trajectories in the future. The measured points from the laser
tracker are converted into the robot’s coordinate system using this transformation

48

. .
matrix, and then we can compare these points with those measured by the robot
itself and adjust its trajectory.. In the next chapter has been developed a procedure for the automatic inspection of
manufactured parts. First, in Polyworks Inspector, an autonomous part inspection
was developed, which starts with importing the CAD model, followed by the align-
ment of the real part, then the measurement of the specified points and features and
their evaluation, and finally, a report is generated from the measurements. A method
without using Polyworks Inspector has also been developed. The emphasis was on
the possibility of inspecting the manufactured part without metrology software. The
fitting of points to the plane and to the cylinder was tackled. This does not yet in-
clude alignment of the CAD model, any work with the CAD model is not expected,
but a transformation of the measured data into the positioner coordinate system is
added so that the measured points are in a uniform coordinate system.. The methods from Chapters 4 and 5 were then tested. First, the accuracy of the
transformation matrix between the robot and laser tracker coordinate systems which
was obtained with Tracker Pilot and Matlab was compared with that obtained using
Robodyn. However, its accuracy is not sufficient, differing by up to 0.39 mm and
0.56 ∘ in the individual components of translation and rotation. Next, the automatic
inspection methods were compared. The accuracy of the inspection of the bottom
layer thickness was sufficient, whereas the accuracy of the cylinder parameter detec-
tion was worse. The deviations were not sufficient. Probably, the method requires
more points in more circles and an iterative method of cylinder fitting.

The possibilities to further develop the methods presented in this thesis are great.
In particular, to improve their accuracy to take full advantage of the laser tracker’s
potential and the completion of the communication protocol between the laser tracker,
the robot controller, and the PLC. Then the measurement flow could be controlled from
the PLC.

Furthermore, the process of obtaining the transformation matrix between the robot
coordinate system and the laser tracker has to be improved. It is necessary to ensure
that the points measured by the laser are converted into the robot’s coordinate system
as accurately as possible so that the robot’s positions can be compared with those
measured by the laser tracker.

For automatic inspection, there is no need to refine methods for measuring specific
features. Of course, the objects to be measured change, and the methods for their
inspection will be solved ad hoc. For automatic inspection, it would be useful to create
a robot path generator. It is tedious to program them one by one, this way, the user
would choose which points will be measured, and the path generator would generate
the trajectory considering the geometry of the object to be measured.

49

References

[1] Coordinate Measuring Machines Measurement System Types and Characteristics
Measurement Fundamentals KEYENCE America.
https://www.keyence.com/ss/products/measure-sys/measurement-selecti
on/type/3d.jsp.

[2] KR CYBERTECH nano. KUKA Roboter GmbH.
http://www.wtech.com.tw/public/download/manual/kuka/KUKA%20CYBERTEC
H_nano_en.pdf.

[3] KUKA Positioner . KUKA Roboter GmbH.
https://s3-eu-central-1.amazonaws.com/centaur-wp/theengineer/prod/
content/uploads/2014/04/11134900/15_Spez_DKP_400_en.pdf.

[4] Leica AT930/AT960, User Manual. Leica Geosystems AG.
[5] Ron Eng. Leica Absolute Distance Meter .

https://manualzz.com/doc/33278244/leica-absolute-distance-meter.
[6] Leica Absolute Interferometer . . Hexagon Metrology.
[7] K.M. Nasr, A.B. Forbes, B. Hughes, and A. Lewis. ASME B89.4.19 standard for

laser tracker verification – experiences and optimisations. International Journal of
Metrology and Quality Engineering. 2012, 3 (2), DOI 10.1051/ijmqe/2012014.

[8] Red Ring Reflector 1.5”.
https://shop.hexagonmi.com/na/en_US/USD/Catalog/Laser-Tracker/
Reflectors/Red-Ring-Reflector-1-5%22/p/575784.

[9] Leica T-Mac, User Manual. Leica Geosystems AG.
[10] TESASTAR-p Touch Trigger Probes For Probe Heads.

https://grafker.hu/wp-content/uploads/2013/09/Q_2010_EN_TESASTAR_Pr
obe_Head.pdf.

[11] KUKA System Software 8.3. KUKA Roboter GmbH.
http://www.wtech.com.tw/public/download/manual/kuka/krc4/KUKA%20KS
S-8.3-Programming-Manual-for-SI.pdf.

[12] KUKA.RobotSensorInterface 3.1. KUKA Roboter GmbH.
https://manualzz.com/doc/44608163/kuka.robotsensorinterface-3.1.

[13] LEICA TRACKER PILOT, FOR AT9X0. Hexagon AB.
[14] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Robotics:

modelling, planning and control. London: Springer, 2010. ISBN 978-1-84628-641-4.
[15] RoboDyn User Manual. New River Kinematics.
[16] Reference Guide: PolyWorks|Inspector . INNOVMETRIC SOFTWARE INC..
[17] Leica Integrated Solutions, Configuration Manual. Leica Geosystems AG.
[18] Leica Absolute Tracker AT960/AT930, RTFP-EC Developers Guide. Leica Geosys-

tems AG.

50

https://www.keyence.com/ss/products/measure-sys/measurement-selection/type/3d.jsp
https://www.keyence.com/ss/products/measure-sys/measurement-selection/type/3d.jsp
http://www.wtech.com.tw/public/download/manual/kuka/KUKA%20CYBERTECH_nano_en.pdf
http://www.wtech.com.tw/public/download/manual/kuka/KUKA%20CYBERTECH_nano_en.pdf
https://s3-eu-central-1.amazonaws.com/centaur-wp/theengineer/prod/content/uploads/2014/04/11134900/15_Spez_DKP_400_en.pdf
https://s3-eu-central-1.amazonaws.com/centaur-wp/theengineer/prod/content/uploads/2014/04/11134900/15_Spez_DKP_400_en.pdf
https://manualzz.com/doc/33278244/leica-absolute-distance-meter
http://dx.doi.org/10.1051/ijmqe/2012014
https://shop.hexagonmi.com/na/en_US/USD/Catalog/Laser-Tracker/Reflectors/Red-Ring-Reflector-1-5%22/p/575784
https://shop.hexagonmi.com/na/en_US/USD/Catalog/Laser-Tracker/Reflectors/Red-Ring-Reflector-1-5%22/p/575784
https://grafker.hu/wp-content/uploads/2013/09/Q_2010_EN_TESASTAR_Probe_Head.pdf
https://grafker.hu/wp-content/uploads/2013/09/Q_2010_EN_TESASTAR_Probe_Head.pdf
http://www.wtech.com.tw/public/download/manual/kuka/krc4/KUKA%20KSS-8.3-Programming-Manual-for-SI.pdf
http://www.wtech.com.tw/public/download/manual/kuka/krc4/KUKA%20KSS-8.3-Programming-Manual-for-SI.pdf
https://manualzz.com/doc/44608163/kuka.robotsensorinterface-3.1

. .
[19] EtherCAT User’s Manual. Estun Automation Technology CO., LTD.

https://www.estuneurope.eu/wp-content/uploads/download/Manuali/
Fielbus/EtherCAT-User-s-Manual-V1-08.pdf.

[20] RealPars. What is EtherCAT?.
https://www.youtube.com/watch?v=tYAl2jkaB8Q.

[21] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision of
IEEE 754-2008). 2019, 1–84. DOI 10.1109/IEEESTD.2019.8766229. Conference
Name: IEEE Std 754-2019 (Revision of IEEE 754-2008).

[22] Eric W. Weisstein. Spherical Coordinates.
https://mathworld.wolfram.com/SphericalCoordinates.html?affilliate=
1. From MathWorld–A Wolfram Web Resource.

[23] Christopher Stover, and Eric W. Weisstein. Cartesian Coordinates.
https://mathworld.wolfram.com/CartesianCoordinates.html. From
MathWorld–A Wolfram Web Resource.

[24] Eric W. Weisstein. Rotation Formula.
https://mathworld.wolfram.com/RotationFormula.html. From MathWorld–
A Wolfram Web Resource.

[25] Eric W. Weisstein. Quaternion.
https://mathworld.wolfram.com/Quaternion.html. From MathWorld–A
Wolfram Web Resource.

[26] Eric W. Weisstein. Rotation Matrix.
https://mathworld.wolfram.com/RotationMatrix.html. From MathWorld–A
Wolfram Web Resource.

[27] Serge Belongie. Rodrigues’ Rotation Formula.
https://mathworld.wolfram.com/RodriguesRotationFormula.html. From
MathWorld–A Wolfram Web Resource, created by Eric W. Weisstein.

[28] Eric W. Weisstein. Euler Angles.
https://mathworld.wolfram.com/EulerAngles.html. From MathWorld–A
Wolfram Web Resource.

[29] Aircraft Rotations.
https://www.grc.nasa.gov/WWW/K-12/airplane/rotations.html.

[30] James Diebel. Representing Attitude: Euler Angles, Unit Quaternions, and Rota-
tion Vectors. 35.

[31] Four-quadrant inverse tangent - MATLAB atan2.
https://www.mathworks.com/help/matlab/ref/atan2.html.

[32] Evan G. Hemingway, and Oliver M. O’Reilly. Perspectives on Euler angle singu-
larities, gimbal lock, and the orthogonality of applied forces and applied moments.
Multibody System Dynamics. 2018, 44 (1), 31–56. DOI 10.1007/s11044-018-9620-0.

[33] To create a PLP (Plane, Line, Point) alignment PowerInspect 2019 Autodesk
Knowledge Network.
https://knowledge.autodesk.com/support/powerinspect/learn-explore/
caas/CloudHelp/cloudhelp/2019/ENU/PWRI-ReferenceHelp/files/GUID-
09496C7F-8475-4F90-A314-7766B6963CEA-htm.html.

[34] Eric W. Weisstein. Plane.
https://mathworld.wolfram.com/Plane.html. From MathWorld–A Wolfram
Web Resource.

51

https://www.estuneurope.eu/wp-content/uploads/download/Manuali/Fielbus/EtherCAT-User-s-Manual-V1-08.pdf
https://www.estuneurope.eu/wp-content/uploads/download/Manuali/Fielbus/EtherCAT-User-s-Manual-V1-08.pdf
https://www.youtube.com/watch?v=tYAl2jkaB8Q
http://dx.doi.org/10.1109/IEEESTD.2019.8766229
https://mathworld.wolfram.com/SphericalCoordinates.html?affilliate=1
https://mathworld.wolfram.com/SphericalCoordinates.html?affilliate=1
https://mathworld.wolfram.com/CartesianCoordinates.html
https://mathworld.wolfram.com/RotationFormula.html
https://mathworld.wolfram.com/Quaternion.html
https://mathworld.wolfram.com/RotationMatrix.html
https://mathworld.wolfram.com/RodriguesRotationFormula.html
https://mathworld.wolfram.com/EulerAngles.html
https://www.grc.nasa.gov/WWW/K-12/airplane/rotations.html
https://www.mathworks.com/help/matlab/ref/atan2.html
http://dx.doi.org/10.1007/s11044-018-9620-0
https://knowledge.autodesk.com/support/powerinspect/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/PWRI-ReferenceHelp/files/GUID-09496C7F-8475-4F90-A314-7766B6963CEA-htm.html
https://knowledge.autodesk.com/support/powerinspect/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/PWRI-ReferenceHelp/files/GUID-09496C7F-8475-4F90-A314-7766B6963CEA-htm.html
https://knowledge.autodesk.com/support/powerinspect/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/PWRI-ReferenceHelp/files/GUID-09496C7F-8475-4F90-A314-7766B6963CEA-htm.html
https://mathworld.wolfram.com/Plane.html

References .
[35] System Variables: For KUKA System Software 8.1, 8.2 and 8.3. KUKA Roboter

GmbH.
http://www.wtech.com.tw/public/download/manual/kuka/krc4/KUKA%20Sys
tem%20Variables%208.1%208.2%208.3.pdf.

[36] Networking with a KUKA Control PC Tutorial.
https://www.youtube.com/watch?v=qu1jxcGFuNI.

[37] Gregory G Slabaugh. Computing Euler angles from a rotation matrix. 7.
[38] Mirko Navara. Pravděpodobnost a matematická statistika. Centrum strojového

vnímání katedra kybernetiky FEL ČVUT,
https://cmp.felk.cvut.cz/~navara/stat/PMS_print.pdf.

[39] Jan Leinveber, and Pavel Vávra. Strojnické tabulky: pomocná učebnice pro školy
technického zaměření. Uvaly: Albra, 2011. ISBN 978-80-7361-081-4. OCLC:
776515128.

[40] Tomáš Werner. Optimalizace: Elektronická skripta přemětu B0B33OPT. Katedra
kybernetiky Fakulta elektrotechnická České vysoké učení technické,
https://cw.fel.cvut.cz/b211/_media/courses/b0b33opt/opt.pdf.

[41] Jiří Velebil. Abstraktní a konkrétní lineární algebra. České vysoké učení technické
v Praze Fakulta elektrotechnická,
https://math.fel.cvut.cz/en/people/velebil/files/akla/akla_2022_02_
11.pdf.

[42] KUKA.Ethernet KRL 2.1: For KUKA System Software 8.2. KUKA Roboter
GmbH.
http://www.wtech.com.tw/public/download/manual/kuka/krc4/KST-
Ethernet-KRL-21-En.pdf.

[43] Konstantinos G Derpanis. Overview of the RANSAC Algorithm. 2010.
http://www.cse.yorku.ca/~kosta/CompVis_Notes/ransac.pdf.

52

http://www.wtech.com.tw/public/download/manual/kuka/krc4/KUKA%20System%20Variables%208.1%208.2%208.3.pdf
http://www.wtech.com.tw/public/download/manual/kuka/krc4/KUKA%20System%20Variables%208.1%208.2%208.3.pdf
https://www.youtube.com/watch?v=qu1jxcGFuNI
https://cmp.felk.cvut.cz/~navara/stat/PMS_print.pdf
https://cw.fel.cvut.cz/b211/_media/courses/b0b33opt/opt.pdf
https://math.fel.cvut.cz/en/people/velebil/files/akla/akla_2022_02_11.pdf
https://math.fel.cvut.cz/en/people/velebil/files/akla/akla_2022_02_11.pdf
http://www.wtech.com.tw/public/download/manual/kuka/krc4/KST-Ethernet-KRL-21-En.pdf
http://www.wtech.com.tw/public/download/manual/kuka/krc4/KST-Ethernet-KRL-21-En.pdf
http://www.cse.yorku.ca/~kosta/CompVis_Notes/ransac.pdf

Appendix A
Thesis assignment

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483422Personal ID number:Kubáček VáclavStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Automation of precision measurement process using laser tracker and industrial robot

Bachelor’s thesis title in Czech:

Automatizace procesu přesného měření s využitím laser trackeru a průmyslového robota

Guidelines:

1) Learn the different parts of the robotic workstation and the principle of the main components.
2) Familiarize yourself with the communication method between the robot controller, the laser tracker controller and
application software. Analyse the type of data variables used and, if necessary, propose their conversion to ensure
compatibility. Provide wiring diagrams.
3) Design and develop a process for automatic calibration of the robot workspace using a Leica T-Mac (Tracker-Machine
control sensor) equipped with a touch probe. Implement algorithms for processing the measured data and its evaluation
in Matlab software. Provide a flow chart of the workstation functions.
4) Design and develop a process to measure a part accurately using a Leica T-Mac device equipped with a touch-sensing
probe. Use the application software of the laser tracker to evaluate the measured data and compare them a reference
CAD model. Provide a flow chart of the workstation functions.
5) Test and compare two methods given in 3) and 4). Focus on determining the accuracy of the measurements and the
advantages and disadvantages of each method.

Bibliography / sources:

[1] Bruno Siciliano, Oussama Khatib (Eds.). Springer Handbook of Robotics. 2008. ISBN: 978-3-540-23957-4.
[2] KUKA DEUTSCHLAND GMBH. KUKA.RobotSensorInterface 4.1: For KUKA System Software 8.6. Germany, 2019,
129 s. KTS RSI 4.1 V2.
[3] LEICA GEOSYSTEMS AG- METROLOGY PRODUCTS. Leica Absolute Tracker AT960/AT930: RTFP-EC Developers
Guide. 2016, 27 s. Document Revision: 1.0.

Name and workplace of bachelor’s thesis supervisor:

Ing.Tomáš Jochman Testbed CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 31.01.2022

Assignment valid until:
by the end of summer semester 2022/2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Tomáš Jochman

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

53

A Thesis assignment .
III. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

54

Appendix B
Photographs of devices

Figure B.1. Laser tracker AT960 on a tripod.

Figure B.2. Touch probe with a ruby tip attached to the T-Mac.

55

B Photographs of devices .

Figure B.3. Automation Interface Controller.

Figure B.4. An example of the inspection process of a manufactured part with a touch
probe.

56

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Goals

	Main components of the robotic workstation
	Hardware
	Industrial robot and positioner
	Laser tracker and accessories

	Software
	Robot programming
	Metrology software

	Communication with the laser tracker controller
	Connecting the laser tracker
	EtherCAT
	Real Time Feature Pack EtherCAT (RTFP-EC)
	Connection of the Automation Robot Cable

	Communication protocol
	Input frame from Slave to Master
	Output frame from Master to Slave
	Algorithm for the laser tracker automated control

	Conversion of incoming data
	IEEE Standard for Floating-Point numbers
	Implementation of the Real numbers converter
	Discussion on precision loss
	Coordinate system conversion for positions
	Coordinate system conversion for rotations
	Euler angles conversion limitations

	Other configuration option

	Automatic robot workspace calibration
	Description of the workflow
	Transformation between the positioner and the laser tracker T_l^d
	Features measurement
	Plane, Axis and Center point alignment
	Robot programming

	Transformation between the laser tracker and robot's root T_r^l
	Transformation between the laser tracker and the T-Mac
	Transformation between the robot and the T-Mac
	Joining T_t^l and T_t^r together
	Euler angles

	Inspection of the manufactured part
	Measurement of the printed part using Polyworks Inspector software
	Printed Part
	Polyworks Inspector program
	Workflow for automated inspection of the printed part
	Robot programming
	Evaluation of the inspection

	Measurement of the printed part without metrology software
	Acquisition of measured data
	Inspection of the thickness of the lower ring
	Cylinder inspection

	Comparison of the methods presented in Chapters 5 and 6 with metrology software
	Comparison of calibration methods
	Workflow description in Robodyn
	Comparison of both transformation matrices
	Calibration result

	Comparison of printed part inspection methods
	Layer thickness inspection
	Cylinder inspection

	Conclusion
	References
	Thesis assignment
	Photographs of devices

