
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Control Engineering

DIPLOMA THESIS

Distributed Predictive Control

Author: Petr Endel

Supervisor: prof. Ing. Vladimír Havlena, CSc. Prague, 2012

Acknowledgements

I would like to express my gratitude and thanks to professor Vladimír Havlena for his

guidance and helpful comments. My sincere thanks go also to Mr. Jaroslav Peka°, PhD.

from Honeywell Prague Laboratory, who was always willing to consult the topic and

provide inspiring thoughts, explanations and advice. Last but not least I would like to

thank to my parents for their support and patience.

ii

Abstract

In this thesis the framework of decomposition methods for convex optimization prob-

lems is investigated and applied, using the subgradient methods for solving the master

algorithm. Potentially large engineering problems - distributed model predictive control

and industrial energy network optimization - are solved in a distributed way.

Projected subgradient methods are applied to solve master problem of dual de-

composition algorithm to obtain optimal solution of the problems. The comparison to

centralized approach is provided, pointing out the main features of the distributed ap-

proach. Di�erent step size rules of subgradient methods (together with advanced rules

by Polyak and Nesterov with their modi�cations) are implemented, their convergence

properties are compared and their implementation demands are also assessed. In the

energy network optimization the enhanced method introducing so called net constraints

is successfully applied and the in�uence of electricity price is investigated.

Keywords

distributed model predictive control, decomposition methods, convex optimization, du-

ality, subgradient methods

iii

Abstrakt

V této diplomové práci je prozkoumána problematika dekompozi£ních metod pro úlohy

konvexní optimalizace a tyto metody jsou aplikovány s pouºitím subgradientních metod

pro °e²ení nad°azeného algoritmu. Distribuovaným zp·sobem jsou °e²eny potenciáln¥

rozsáhlé inºenýrské úlohy - distribuované prediktivní °ízení a optimalizace pr·myslové

energetické sít¥.

Subgradientní metoda s projekcí subgradientu je pouºita na vy°e²ení nad°azené

úlohy duálního dekompozi£ního algoritmu pro získání optimálního °e²ení úloh. Je prove-

deno srovnání s centrálním p°ístupem, p°i£emº je poukázáno na hlavní znaky distribuo-

vaného p°ístupu. Jsou implementována r·zná pravidla pro velikost kroku subgradient-

ních metod (spole£n¥ s pokro£ilými pravidly Polyaka a Nesterova a jejich modi�kacemi),

jsou porovnány jejich konvergen£ní vlastnosti a jsou posouzeny také jejich poºadavky

na implementaci. V p°ípad¥ energetické sít¥ je úsp¥²n¥ aplikována roz²í°ená metoda

°e²ení zavád¥jící takzvaná omezení na sí´ a je prozkoumán vliv ceny elekt°iny na °e²ení

úlohy.

Klí£ová slova

distribuované prediktivní °ízení, dekompozi£ní metody, konvexní optimalizace, dualita,

subgradientní metody

iv

v

Contents

1 Introduction 1

1.1 Context of decomposition techniques 1

1.2 Motivation of the thesis . 2

1.3 Objectives of the thesis . 2

1.4 Historical overview and state-of-the-art 2

1.4.1 Decomposition methods 2

1.4.2 Distributed MPC . 3

1.5 Methods of the thesis . 4

1.6 Outline of the thesis . 4

2 Model Predictive Control 6

2.1 Introduction . 6

2.2 Formulation . 6

2.2.1 Predicted output and state 7

2.2.2 Cost function . 8

2.2.3 Constraints . 9

2.2.4 Formulation of optimization problem 10

2.2.5 Blocking . 10

2.3 Example . 11

3 Optimization 13

3.1 Introduction . 13

3.2 Standard form of an optimization problem 13

3.3 Introduction to duality . 14

3.4 Optimality conditions . 16

3.5 Connection between optimization and mechanics 17

4 Subgradient methods 20

4.1 Introduction . 20

4.2 Projected subgradient method for dual problems 21

vi

CONTENTS vii

4.3 Basic step size rules . 23

4.3.1 Constant step size . 23

4.3.2 Constant step length . 24

4.3.3 Square summable, but not summable step sizes 24

4.3.4 Non-summable diminishing step sizes 24

4.3.5 Non-summable diminishing step lengths 24

4.4 Advanced step size rules . 25

4.4.1 Optimal step size by Polyak - with optimal value known 25

4.4.2 Optimal step size by Polyak - with optimal value un-

known . 26

4.4.3 Algorithm by Nesterov 27

5 Decomposition methods 29

5.1 Basic idea, separable problems 29

5.2 Complicating variable . 30

5.2.1 Primal decomposition 30

5.2.2 Dual decomposition . 31

5.3 Complicating constraint . 32

5.3.1 Primal decomposition 32

5.3.2 Dual decomposition . 32

5.4 General form . 33

5.4.1 Primal decomposition 34

5.4.2 Dual decomposition . 34

5.5 Example . 36

5.5.1 Problem formulation . 36

5.5.2 Solution using primal decomposition 37

5.5.3 Solution using dual decomposition 38

6 Applications to engineering problems 41

6.1 Dynamic control - MPC . 41

6.1.1 Problem formulation . 41

6.1.2 Distributed algorithm and its solution 44

6.1.3 Comparison to centralized approach 45

6.1.4 Illustration of possible deployment 45

6.1.5 Analysis of di�erent step size rules 52

6.1.6 Comparison of di�erent step size rules 58

6.2 Static control - industrial energy network 61

6.2.1 Problem formulation . 61

6.2.2 Distributed algorithm and its solution 65

CONTENTS viii

6.2.3 Comparison to centralized approach 67

6.2.4 Comparison of selected step size rules 68

6.2.5 In�uence of electricity price 69

7 Conclusion 71

7.1 Investigative part . 71

7.2 Implementation part . 71

7.3 Innovative part . 72

A Background research VI

A.1 Decomposition methods . VI

A.1.1 Distributed Newton method for network optimization

[JADB09] . VI

A.1.2 A proximal center-based decomposition method for

multi-agent convex optimization [NECO08] VII

A.1.3 A decomposition approach to distributed analysis of

networked systems [LANG04] VII

A.1.4 Distributed consensus algorithm via LMI-based model

predictive control and primal/dual decomposition meth-

ods [WAKA10] . VIII

A.1.5 Dynamic dual decomposition for distributed control

[RANT09] . VIII

A.1.6 A tutorial on decomposition methods for network util-

ity maximization [PALO06] VIII

A.2 Distributed MPC . IX

A.2.1 Research and development trend of distributed MPC

[ZENG08] . IX

A.2.2 Distributed model predictive control: theory and ap-

plications [VENK06] . IX

A.2.3 Decentralized model predictive control via dual de-

composition [WAKA08] X

A.2.4 Stability analysis of decentralized RHC for decoupled

systems [KEVI05] . X

A.2.5 Distributed MPC based on a cooperative game [MAES09] XI

A.2.6 Distributed state estimation and model predictive con-

trol: application to fault tolerant control [MENI09] . XI

A.2.7 Negotiation and learning in distributed MPC of large

scale systems [JAVA10] XII

CONTENTS ix

A.2.8 Distributed hierarchical MPC for con�ict resolution

in air tra�c control [CHAL10] XIII

B Contents of the CD attached XV

List of Figures

2.1 Unit step response of controlled system 11

2.2 MPC solution of one optimization problem at time step 30 12

2.3 Simulation of system controlled by MPC (receding horizon) 12

3.1 Mechanics example . 18

4.1 Illustration of Polyak's step size rule . 25

5.1 Graph representation of the Problem 5.10 37

5.2 Primal decomposition . 39

5.3 Dual decomposition . 40

6.1 MPC example situation . 43

6.2 Unit step response of subsystem I. 43

6.3 Unit step response of subsystem II. 43

6.4 Unit step response of subsystem III. 44

6.5 Subsystems' inputs and outputs, �rst iterate 46

6.6 Subsystems' inputs and outputs, 1020th iterate 47

6.7 Centralized (red) and distributed (green) solution (part 1) 48

6.8 Centralized (red) and distributed (green) solution (part 2) 49

6.9 Central master algorithm . 50

6.10 Master algorithm distributed to nets . 50

6.11 Master algorithm distributed to node(s) 51

6.12 Extension of the network (one subsystem added) 51

6.13 Extension of the network (two subsystems added) 51

6.14 Constant step size convergence - basic comparison 52

6.15 Constant step size convergence - suboptimality of the solution 53

6.16 Constant step length convergence . 54

6.17 Selected components of gradient for γ = 0.001 54

6.18 Square summable, but not summable step size convergence 55

6.19 Square summable, but not summable step size convergence - �xed ratio a
b 56

x

LIST OF FIGURES xi

6.20 Non-summable diminishing step size convergence 56

6.21 Non-summable diminishing step length convergence 57

6.22 Convergence for algorithm by Nesterov 58

6.23 Convergence for algorithm by Polyak . 59

6.24 Distance to the optimum - Polyak, f∗ known 59

6.25 Distance to the optimum - Polyak, f∗ unknown 59

6.26 Comparison of convergences of all step size rules used 60

6.27 Industrial energy network scheme . 61

6.28 Cost curves for boilers . 62

6.29 Two-section turbine scheme . 63

6.30 Revenue functions of turbines T1 and T2 64

6.31 Revenue curve for turbine T3 . 64

6.32 Industrial energy network - block diagram 65

6.33 Distributed solution obtained by constant step size rule 67

6.34 Comparison of convergences of all step size rules used 69

6.35 The solutions for di�erent CE . 70

A.1 Block diagram of controller . XII

List of Algorithms

4.1 General optimization algorithm . 21

4.2 Nesterov's algorithm for minimizing unconstrained convex function f(x) 28

5.1 Primal decomposition, general form . 35

5.2 Dual decomposition, general form . 36

xii

List of Tables

6.1 Comparison of convergences of all step size rules used 60

6.2 Distributed solution - α = 0.45, after 60th iterate 68

6.3 Centralized solution . 68

6.4 Comparison of convergences of all step size rules used 69

6.5 Flows [ton/h] at selected subsystems for di�erent CE [CZK/MW] 70

6.6 Pro�t for di�erent CE [CZK/MW] . 70

xiii

Typesetting 1

R set of real numbers

Rn set of real vectors of n components

Rm×n set of real m× n matrices

a, b, . . . , α, β, . . . scalars

α(k), α(k) scalar at time step k

w, x, . . . , λ, ν, . . . column vectors

x(k), x(k) vector at time step k

xi i-th component of vector x

xm..n subvector of x, [xm, . . . , xn]T

(x)i selected components of vector x corresponding to

subsystem i

xk+Nk vector [x(k)T , . . . , x(k +N)T]T

‖x‖2 quadratic norm of x

λ � 0 generalized inequality (component-wise)

A matrix

IN unity matrix of order N

f(x) function, f(x) : Rn → R

∂f(x) subdi�erential of f at x

∇f(x) gradient of f at x, ∇f(x) =
[
∂f
∂x

]T
f∗, f(x∗) optimal value of function f(x)

ΠC(X) projection of set X to set C

1The typesetting common in standard optimization literature (for example [BOYD09], [BERT99] or
[NOCE06]) was pre�ered, because most of the thesis deals with the optimization theory. This literature
implicitly take x as a (column) vector - the di�erence between vectors and scalars should be clear from
the context (or it is explicitly stated to avoid confusion).

xiv

Chapter 1

Introduction

1.1 Context of decomposition techniques

In modern control theory the requirements on the control are encapsulated into quality

criterion and the control problem is translated into optimization problem [HAVL96].

Present industry processes are generally composed of di�erent interconnected subsys-

tems. Because of large number of sensors and actuators involved and the high perfor-

mance requirements, modern control systems are becoming more and more complex. To

control (in fact to optimize) the large scale systems, for example power systems, water

networks or large tra�c systems, various approaches are developed.

A centralized control solution, where all subsystems' interactions are considered, is

a traditional option. The main drawbacks of this approach are high cost of installation,

potential problems with computation times and maintenance and higher risk of failure

due to their centralized nature [MENI09]. That is why the concept of decentralization

was frequently used in last decades, when the system is divided into subsystems con-

trolled by independent agents (regulators), without sharing any information between

regulators. This research area is still active, for recent review of those methods see for

example [BAKU08]. However, in case of strong interactions between subsystems the

performance of the control can be deteriorated and the stability may not be achieved

[SCAT09].

In another approach, called distributed, the controllers of di�erent subsystems share

some information in order to improve the performance, the robustness and the fault-

tolerance of the closed-loop system [MAES09]. Comprehensive classi�cation of those

methods can be found in [SCAT09]. Possible enhancement of distributed approach is

a hierarchical scheme, where the controllers are coordinated by an algorithm of higher

level, called coordinator or master. The coordinator can be only one for the whole

system or it can be spread within the system. That is the reason why the distinction

between those two approaches, distributed and hierarchical, could be tricky. Decompo-

1

CHAPTER 1. INTRODUCTION 2

sition methods, which are used to decompose the original (large) optimization problem

into smaller subproblems and the master problem, �nd its use in those two control

approaches.

1.2 Motivation of the thesis

The main motivation of this thesis is to gain capability to handle large optimization

problems, which are emerging in today's engineering practice (and de�nitely they will

continue to emerge in the future). Solving those problems in a distributed/hierarchical

way reduces the memory requirements and provides modularity. In this diploma thesis

decomposition methods will be analysed and applied on the potentially large optimiza-

tion problems - namely model predictive control (MPC) and industrial energy network

optimization.

In next subsection, the objectives of the thesis will be stated. After that the back-

ground research will be summarized - the historical overview will be presented together

with state-of-the-art of decomposition methods and distributed model predictive con-

trol. Then the choice of methods used in the thesis, based on the background research,

will be commented. In last subsection of this introductory chapter the outline of the

thesis will be presented.

1.3 Objectives of the thesis

The �rst objective of the thesis is to investigate decomposition methods of optimization

problems and the predictive control. Di�erent algorithms of decomposition techniques

will be presented and those, that are suitable for predictive control, will be implemented.

Then those algorithms will be applied to selected engineering problems, to solve them

in a distributed way. Next objective is to compare those algorithms to centralized

approach using selected problems, as well as provide comparison of the distributed

algorithms applied.

1.4 Historical overview and state-of-the-art 1

1.4.1 Decomposition methods

Decomposition methods of solving large-scale optimization problems �rst appear in the

work of Dantzig [DANT60, TEBB01] concerning linear continuous problems (especially

1This section is based on the background research included in the Appendix A. It was not possible
to avoid using specialized terms in those sections, the terms important in the following text will be
explained in corresponding chapters.

CHAPTER 1. INTRODUCTION 3

when constraint matrix exhibits speci�c structure). According to [BERT99], other his-

torically important papers were [EVER63] and [BEND62]. The former brings in gen-

eralized view of Lagrange multipliers method, not limiting the objective function to be

di�erentiable or even continuous, and presents some extensions of the method (regard-

ing the �stability� of the numerical solution). The latter article presents a method for

mixed integer programming problems using iterates between subproblems and master

problem. Another signi�cant text was [LASD68]. There the dual problem is investi-

gated thoroughly and new algorithm is proposed, using subproblem solutions to update

prices. Adapted versions of those methods are reviewed for example in [BOYD07] and

in the last chapter of textbook [BERT99] (with comprehensive list of references to the

topic).

Recent papers in the area of decomposition methods were investigated in background

research included in Appendix A.1. Some of the works focus on improving particular

algorithms to get better performance - for example the paper [JADB09] (described in

A.1.1) dealing with another representation of the dual Newton direction in order to

obtain faster convergence in network optimization problems, or paper [NECO08] (ex-

cerpted in A.1.2), where new proximal center-based method is presented, with optimal

selection of the step parameters. The subgradient methods are applied in [LANG04] for

solving coupled linear matrix inequalities in a distributed algorithm obtained by primal

decomposition method (the paper is summarized in A.1.3).

Decomposition methods are closely related to problems of interacting agents and

game theory. The reduction of communication between agents while keeping the conver-

gence to the consensus point is described in [WAKA10] (details are provided in A.1.4).

Authors of other papers apply dual decomposition techniques to particular areas - for

example to feedback control, together with performance validation of decentralized con-

trol laws, see [RANT09] and A.1.5, or to communication network utility maximization,

in [PALO06] and A.1.6.

1.4.2 Distributed MPC

The roots of distributed control research can be tracked back into 1970s with frequently

cited book [MESA70], where the theory of multilevel systems was set up. The paper

[LAU72] introduces distributed scheme for controlling the commodity �ow through the

network and [WANG73] deals with stabilizing a linear time-invariant multivariable sys-

tem by local feedback control laws. Predecessors of today's model predictive control

were studied about ten years later in [CHEN82] and [CUTL80] (although the principles

of MPC had already been used in industry).

The topic of distributed model predictive control is extensively covered in [VENK06]

together with broad literature review, discussing cooperative framework, distributed

state estimation, vertical integration of MPCs and other related issues (the work is de-

CHAPTER 1. INTRODUCTION 4

scribed in more detail in A.2.2). The state-of-the-art of distributed MPC is presented in

Appendix A.2, starting with the overview of current trends, which can be found in pa-

per [ZENG08] (excerpted in A.2.1). In [WAKA08] (described in A.2.3) �standard� dual

decomposition algorithm is applied to decentralized MPC for e.g. formation control.

The stability of decentralized MPC schemes for decoupled systems (with input and

state constraints and common objective) is addressed in frequently cited [KEVI05] (see

A.2.4). Authors of [MAES09] (description in A.2.5) provide su�cient conditions for

practical stability of the closed-loop system consisting of two constrained linear systems

coupled through inputs. Distributed estimation of states for MPC is tackled and applied

to problem of Fault Tolerant Control in [MENI09] (summarized in A.2.6).

Multi agent MPC architecture presented in [JAVA10] (see A.2.7) uses reinforcement

learning and two types of agents (MPCs and �negotiators�) - this approach is applied

to water network model, while the real application in water network in Barcelona is

in progress. Another recently published application of distributed MPC is the con�ict

resolution in air tra�c management, in [CHAL10] (reviewed in A.2.8).

1.5 Methods of the thesis

Based on the background research, both the primal and dual decomposition methods will

be investigated (as reviewed in [BOYD07]). For solving the master algorithm emerging

from those methods the subgradient methods will be used, as presented in [WAKA08]

or [LANG04]. Those methods present relatively simple approach how to solve convex

optimization problem with non-di�erentiable objective function. Their advantage are

the small memory requirements, which can play signi�cant role in large optimization

problems. Their drawback - slow convergence rate [JADB09] - might be made faster

using advanced step size rules. The attention will be focused on convergence rate as well.

The algorithms described in next chapters will be implemented in MATLAB computing

environment (see [MATH11]).

1.6 Outline of the thesis

Chapter 1 presents di�erent approaches to deal with complex systems and problems.

The topics of decomposition methods and distributed predictive control are introduced.

The background research of those two topics (included in Appendix A) is summarized

and the selection of methods used in the thesis is commented.

Chapter 2 analyses model predictive control - formulation of its optimization prob-

lem, various cost functions, hard and soft constraints, together with blocking strategy.

Those concepts are illustrated on the example.

Chapter 3 provides the overview of basic optimization terms, such as Lagrangian

CHAPTER 1. INTRODUCTION 5

or dual function, and the explanation of Karush-Kuhn-Tucker optimality conditions.

The connection between theoretical mechanics formulations and optimization concepts

is depicted on the example, to illustrate the physical meaning of Lagrange multipliers.

Chapter 4 covers in detail subgradient methods, which are used for solving non-

di�erentiable convex optimization problems. The projected subgradient method is ex-

plained as well. The step size rules, which can be used for searching for the optimum,

are listed.

Chapter 5 provides compact description of decomposition methods. Both com-

plicating variables and complicating constraints are considered, while both primal and

dual approach are used to cope with them. After basic illustration the general approach

is introduced in a form of primal decomposition algorithm and dual decomposition al-

gorithm. Those concepts are veri�ed on the example.

Chapter 6 describes in detail the solution of two engineering problems using the

methods presented in previous chapters. The �rst problem is dynamic (control of sys-

tem consisting of three interconnected subsystems), while the second problem is static

(determining the optimal steam �ows in the industrial energy network). In both cases

algorithms with di�erent step size rules are compared, together with comparison to

centralized solution.

Chapter 7 summarizes the objectives achieved and the results of the thesis. The

chapter is divided into three parts, describing the work done in investigative, implemen-

tation and innovative part.

Chapter 2

Model Predictive Control

2.1 Introduction

Model predictive control (MPC, also known as receding horizon control), is a technology

used in industry since 1970s [HAVL05] to control multivariable constrained dynamical

systems [DING10]. It is valued for its inherent ability to handle constraints while

minimizing some cost (or maximizing some reward) [INST10] [ROSS03].

The crucial part of MPC controller is formed by a model of the system. The con-

troller uses the model to predict the outputs, while its main task is to compute the inputs

(manipulated variables) such that the response (controlled variables) of the system has

desired properties. These properties are often expressed by so called cost function.

Cost function penalizes the undesired behavior of the system and its value should be

minimized (if the reward function is used, it is obvious that it should be maximized).

The prediction of inputs and outputs is made on the prediction horizon using the

actual state of the system - so in this form it would be an open loop control. The

feedback is introduced by applying only the �rst input and computing new prediction

every sampling period. This feature is called receding horizon. In next subsections, the

notation and basic concepts from [STECH10] will be used.

2.2 Formulation

Linear MPC, widely used in practice for its simplicity [MACE02], will be described. It

is formed by linear model of the system and quadratic cost function. As a linear model,

the impulse response, ARX or state space model could be used. The state space model

was chosen in this thesis, because it gives the compact description of multivariable

systems and all other formulations can be transformed into this form1,
1It is assumed that the reader is familiar with basics of linear systems theory, so the explanation of

variables and matrices is not provided.

6

CHAPTER 2. MODEL PREDICTIVE CONTROL 7

x(k + 1) = Ax(k) +Bu(k) (2.1)

y(k) = Cx(k) +Du(k).

Let's denote the number of inputs of this linear system by m and number of outputs

by p.

2.2.1 Predicted output and state

If the vectors of outputs and inputs during the prediction horizon are formed as

yk+N−1k = [y(k)T y(k + 1)T . . . y(k +N − 1)T]T ,

uk+N−1k = [u(k)T u(k + 1)T . . . u(k +N − 1)T]T

and matrices Py and Hy as

Py =

C

CA
...

CAN−1

 ,

Hy =

D

CB D
...

. . .

CAN−2B · · · CB D

 ,
where N is prediction horizon (scalar), the predicted output trajectories can be ex-

pressed as

yk+N−1k = Pyx(k) +Hyu
k+N−1
k , (2.2)

where x(k) is in fact the initial state. In the same manner the expression for the system

state can be formed. If

xk+Nk+1 = [x(k + 1)T x(k + 2)T . . . x(k +N)T]T ,

CHAPTER 2. MODEL PREDICTIVE CONTROL 8

Px =

A

A2

...

AN

 ,

Hx =

B

AB B
...

. . .

AN−1B · · · AB B

 ,
then

xk+Nk+1 = Pxx(k) +Hxu
k+N−1
k (2.3)

is the prediction of system state during the prediction horizon of length N .

2.2.2 Cost function

Cost function usually has additive form, where each term represents di�erent control

requirement and is weighted according to the desired behavior. In most cases the re-

quirements are related to reference tracking and actuator behavior (control e�ort or

�energy�). There are many options for setting up the cost function, as well as di�er-

ent notations to express it - notation presented here is based on [STECH10], because

it provides relatively e�cient insight, although it does not correspond to all formal

conventions.

The standard form of cost function is

J(uk+N−1k) =
1

2

k+N−1∑
i=k

{
q(i). ‖e(i)‖22 + r(i) ‖u(i)‖22 | x(k)

}
, (2.4)

where e(i) = yref(i)− y(i) is the tracking error (di�erence between reference signal and

system output), scalar q(i) is weight of tracking error at time step i and r(i) is weight

of control e�ort at i. Another cost function, which will be used in this thesis, penal-

izes movement of actuators instead of their positions (so called minimum movement

controller),

J(uk+N−1k) =
1

2

k+N−1∑
i=k

{
q(i). ‖e(i)‖22 + r(i) ‖∆u(i)‖22 | x(k)

}
, (2.5)

where ∆u(i) = u(i)− u(i− 1).

To obtain the form without the sum, weighting matrices Q and R, which contain

values q(i) and r(i), i = k, ..., k +N − 1 in diagonals, can be introduced, so that

CHAPTER 2. MODEL PREDICTIVE CONTROL 9

J(uk+N−1k) =
1

2
[(yk+N−1

ref k − yk+N−1k)TQ(yk+N−1
ref k − yk+N−1k) + . . .

. . .+ (∆uk+N−1k)TR(∆uk+N−1k)], (2.6)

where

yk+N−1
ref k = [yref(k)T yref(k + 1)T . . . yref(k +N − 1)T]T ,

∆uk+N−1k = [∆u(k)T ∆u(k + 1)T . . . ∆u(k +N − 1)T]T .

It is obvious that all those forms use quadratic terms, which complies with the de�nition

of linear MPC.

2.2.3 Constraints

As it was said, the ability to handle constraints of the process is one of the main

advantages of MPC. The constraints are usually given by actuator properties, but also

system outputs or state could be constrained. Two di�erent kinds of constraints can be

distinguished - hard constraints and soft constraints.

Hard constraints describe physical limitations and it is not possible to violate them.

The form of hard constraints is clear,

uk+N−1
min k ≤ uk+N−1k ≤ uk+N−1

max k (2.7)

∆uk+N−1
min k ≤ ∆uk+N−1k ≤ ∆uk+N−1

max k

yk+N−1
min k ≤ yk+N−1k ≤ yk+N−1

max k

xk+N
min k+1 ≤ xk+Nk+1 ≤ xk+N

max k+1.

The soft constraints can be violated, what implies a particular cost (new term is in-

troduced into cost function). The formal description of soft constraint uses slack vari-

able/vector ε(k), for example

yk+N−1k ≤ yk+N−1
max k + ε(k) (2.8)

and the term added to the cost function is 1
2S ‖ε(k)‖22, where S is the weight. Soft

constraints are used when some disturbances are acting on the variable (system state

or outputs), so they are important for practical implementation.

CHAPTER 2. MODEL PREDICTIVE CONTROL 10

2.2.4 Formulation of optimization problem

To sum up, the basic MPC control problem, which is solved every sampling period,

can be formulated as an optimization problem (the detailed explanation follows in next

chapter, but the basic idea should be clear now)

minimize J(uk+N−1k) (2.9)

subject to

uk+N−1
min k ≤ uk+N−1k ≤ uk+N−1

max k

∆uk+N−1
min k ≤ ∆uk+N−1k ≤ ∆uk+N−1

max k

yk+N−1
min k ≤ yk+N−1k ≤ yk+N−1

max k

xk+N
min k+1 ≤ xk+Nk+1 ≤ xk+N

max k+1

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k),

where the cost function is

J(uk+N−1k) =
1

2
[(yk+N−1

ref k − yk+N−1k)TQ(yk+N−1
ref k − yk+N−1k) + . . .

. . .+ (∆uk+N−1k)TR(∆uk+N−1k)].

The equations for prediction of system state 2.3 and system output 2.2 should be taken

into account. Then, after some manipulations, the problem can be reformulated to a

standard mathematical problem of quadratic programming

minimize J(uk+N−1k) =
1

2
(uk+N−1k)TH(uk+N−1k) + . . .

. . .+ (uk+N−1k)TFw (2.10)

subject to Zuk+N−1k ≤W + V w,

where w is the vector of parameters, which contains for example initial state x(k). This

problem can be solved by common software tools.

2.2.5 Blocking

Solving optimization problem at each sampling period can be too demanding for the

computation power. In the case of complex systems or systems with fast sampling

period, it is necessary to reduce the on-line complexity of the problem. The most

straight-forward way to do this is to reduce the number of optimization variables by so

called blocking strategy.

CHAPTER 2. MODEL PREDICTIVE CONTROL 11

0

0.5

1

1.5
From: In(1)

T
o:

 O
ut

(1
)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

time [s]

T
o:

 O
ut

(2
)

From: In(2)

0 5 10 15
time [s]

Step Response

Figure 2.1: Unit step response of controlled system

Blocking �xes the manipulated variables for h periods by using blocking matrix

Bblock ∈ Rm.N×(m.N/h) (consisting of 0's and 1's) to de�ne new vector of optimization

variables

uN+k−1
old k = Bblock.u

N+k−1
new k . (2.11)

The term Bblock.u
N+k−1
new k is incorporated into the Problem 2.10. The number of opti-

mization variables (components of uN+k−1
old k , which is given by m.N) is then reduced by

factor h to m.N/h (number of components of uN+k−1
new k) as well as the original size of

matrix H ∈ Rm.N×m.N is reduced to H ∈ R(m.N/h)×(m.N/h). It is also possible to de�ne

di�erent lengths of blocks (it can be represented by vector h̄, which contains lengths of

blocks) to suit well the dynamic behavior of the system. For example at the beginning

of the prediction horizon the manipulated variables are �xed for lower number of periods

to deal better with the dynamics of the system.

2.3 Example

Consider the system with two inputs and two outputs with transfer function

G =

[
3
s+2

1
(s+1.6)(s2+2s+1.16)

s+0,7
(s+1.8)(s+0.9)

2(s+0.2)
(s+1.8)(s+0.3)

]
sampled with period T = 0.1 s. The unit step response is depicted on Figure 2.1.

The MPC for this system was implemented and then its behavior was simulated. The

MPC had following properties - prediction horizon N = 30 steps, the tracking weight

q(i) = 1000, i = k, ..., k+N−1 (for all k), the input weight r(i) = 10, i = k, ..., k+N−1

(for all k), constraints on inputs umin = [−0.7 − 0.4]T and umax = [1 2]T for whole

CHAPTER 2. MODEL PREDICTIVE CONTROL 12

0 5 10 15 20 25 30

0.65

0.7

0.75

0.8

Manipulated variable u
1

[−
]

0 5 10 15 20 25 30
0.9

0.95

1

1.05

1.1

[−
]

Controlled variable y
1

reference signal

0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5

Manipulated variable u
2

time steps

[−
]

0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5

time steps

[−
]

Controlled variable y
2

reference signal

Figure 2.2: MPC solution of one optimization problem at time step 30

prediction horizon and all k. It used soft constraint on the output ymax = 1.05 with

weight S = 1000 (for all k) in the cost function and blocking of inputs with constant

value h = 5. The reference signals for the outputs of the system were unit steps at time

step 25 for the �rst output and time step 50 for the second output.

On the Figure 2.2 the solution of one particular optimization problem at time step

30 can be seen. Here the e�ect of blocking can be noticed easily - the input is �xed

for the given number of sampling periods. At the same time the prediction horizon of

length N = 30 time steps can be identi�ed. Figure 2.3 depicts the whole simulation of

the system controlled by MPC until step 100 (using receding horizon).

0 20 40 60 80 100
−0.5

0

0.5

1

Manipulated variable u
1

[−
]

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

[−
]

Controlled variable y
1

reference signal

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

Manipulated variable u
2

time steps

[−
]

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

time steps

[−
]

Controlled variable y
2

reference signal

Figure 2.3: Simulation of system controlled by MPC (receding horizon)

Chapter 3

Optimization

3.1 Introduction

The optimization as a branch of mathematics �nds its use in operations research and

many engineering areas, including modern control theory. It is extensively studied

since 1940s, when it was connected with names George Bernard Dantzig or John von

Neumann.

The optimization problems basically can be divided into discrete and continuous.

One of major sub-�elds of continuous optimization is non-linear optimization, with

its subset - convex optimization. Those areas are covered by standard textbooks, for

example [POLY87], [BERT99] or [BOYD09]. This diploma thesis is focused on convex

optimization and particularly on subgradient methods for solving optimization problems

(discussed for example in [SCHO85]).

3.2 Standard form of an optimization problem

This chapter follows the notation of [BOYD09] and makes use of some parts of the

optimization theory explanation from [STECH00] and [BOYD09].

The optimization problem in a standard form can be formulated as

minimize f0(x) (3.1)

subject to fi(x) ≤ 0, i = 1, ...,m

hi(x) = 0, i = 1, ..., p,

where

13

CHAPTER 3. OPTIMIZATION 14

x ∈ Rn is the optimization variable,

f0 : Rn → R is the objective (cost) function,

fi : Rn → R are the inequality constraint functions,

hi : Rn → R are the equality constraint functions.

In other words, solving optimization problem means searching for the value x which

minimizes the objective (cost) function f0(x) and satis�es the constraints de�ned by

inequalities fi(x) ≤ 0 and equalities hi(x) = 0. The set of points that satisfy those

constraints (the set of feasible points) is called the domain of the optimization problem.

The optimal value p∗ of the Problem 3.1 (the notation f∗0 can be used) is described

as

p∗ = inf {f0(x) : fi(x) ≤ 0, i = 1, ...,m, hi(x) = 0, i = 1, ..., p} . (3.2)

If the domain of the optimization problem is an empty set, then p∗ =∞ and the problem

is called infeasible. If there are feasible points for which f0(xk)→ −∞ as k →∞, then

p∗ = −∞ and the problem is called unbounded below.

3.3 Introduction to duality

So called Lagrangian is formed by introducing weighted sums of constraints to the

objective function

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x), (3.3)

where λi is a Lagrange multiplier associated with the i-th inequality constraint and νi
is a Lagrange multiplier associated with the i-th equality constraint. The vectors λ and

ν are called the dual variables associated with the Problem 3.1.

The Lagrange dual function is the minimal value of the Lagrangian over all feasible

x,

q(λ, ν) = inf
x
L(x, λ, ν) = inf

x

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

)
. (3.4)

Suppose x̃ is a feasible point of the Problem 3.1, that means fi(x̃) ≤ 0 and hi(x̃) = 0,

and λ � 0. Then

CHAPTER 3. OPTIMIZATION 15

m∑
i=1

λifi(x̃) +

p∑
i=1

νihi(x̃) ≤ 0,

since the �rst sum is non-positive and the second sum is equal to zero. Then

L(x̃, λ, ν) = f0(x̃) +
m∑
i=1

λifi(x̃) +

p∑
i=1

νihi(x̃) ≤ f0(x̃)

and

q(λ, ν) = inf
x
L(x, λ, ν) ≤ L(x̃, λ, ν) ≤ f0(x̃).

Since q(λ, ν) ≤ f0(x̃) for every feasible point, it can be concluded that the dual

function is the lower bound on the optimal value p∗ (see 3.2),

q(λ, ν) ≤ p∗ (3.5)

for any λ � 0 and any ν. It is natural to ask about the best lower bound on p∗ which

can be obtained from dual function. That best lower bound can be found by solving the

problem

maximize q(λ, ν) (3.6)

subject to λ � 0.

This problem is called the Lagrange dual problem associated with the Problem 3.1

(which is called the primal problem). Important property of the dual problem is that it

is always convex, since the objective dual function is always concave and the constraint is

convex (for the proof see [BERT99], Chapter 5.1, where also geometrical interpretation

of Lagranage multipliers is demonstrated clearly).

The optimal value of this problem d∗ = q(λ∗, ν∗) (the notation q∗ can be used) is

the best lower bound on p∗ and it satis�es so called weak duality

d∗ ≤ p∗. (3.7)

The di�erence p∗ − d∗ is the optimal duality gap of the problem. If the optimal duality

gap is zero, then d∗ = p∗ and so called strong duality holds.

There exist various methods to identify problems where strong duality holds, called

constraints quali�cations - for example Slater's condition. Slater's condition states that

when the problem is convex and there exists a strictly feasible point, then strong duality

holds. Strictly feasible point is a point, where inequality constraints are satis�ed with

strict inequalities. For details see Chapter 5 of [BOYD09].

CHAPTER 3. OPTIMIZATION 16

3.4 Optimality conditions

Let x∗ be a solution of primal problem, (λ∗, ν∗) be a solution of dual problem and

suppose the strong duality holds. Then

f0(x
∗) = q(λ∗, ν∗)

= inf
x

(
f0(x) +

m∑
i=1

λ∗i fi(x) +

p∑
i=1

ν∗i hi(x)

)

≤ f0(x
∗) +

m∑
i=1

λ∗i fi(x
∗) +

p∑
i=1

ν∗i hi(x
∗)

≤ f0(x
∗).

It is obvious, that the last two lines hold even with equality, because hi(x∗) = 0 and

λ∗i > 0, fi(x
∗) < 0. From this chain of equations it can be concluded that

m∑
i=1

λ∗i fi(x
∗) = 0,

which means that

λ∗i fi(x
∗) = 0, i = 1, ...,m, (3.8)

because each term in the sum is non-positive. This equation is called complementary

slackness and it is satis�ed when strong duality holds. It can be seen that the optimal

Lagrange multiplier has to be zero, when fi(x∗) < 0 (the constraint is not active). For

diferentiable constraint functions of Problem 3.1 and strong duality, the gradient of L

at x∗ must equal to zero, since x∗ minimizes L(x, λ∗, ν∗) over x:

∇f0(x∗) +

m∑
i=1

λ∗i∇fi(x∗) +

p∑
i=1

ν∗i∇hi(x∗) = 0. (3.9)

All these important properties can be summarized into so called Karush-Kuhn-

Tucker (KKT) optimality conditions,

CHAPTER 3. OPTIMIZATION 17

fi(x
∗) ≤ 0, i = 1, ...,m

hi(x
∗) = 0, i = 1, ..., p

λ∗i ≥ 0, i = 1, ...,m (3.10)

λ∗i fi(x
∗) = 0, i = 1, ...,m

∇f0(x∗) +
m∑
i=1

λ∗i∇fi(x∗) +

p∑
i=1

ν∗i∇hi(x∗) = 0.

To sum up, for any optimization problem, where strong duality holds and the ob-

jective function is di�erentiable, any primal and dual optimal points satisfy those con-

ditions. If the primal problem is convex, then the KKT conditions are also su�cient

for the points to be primal and dual optimal (with zero duality gap).

KKT conditions present more general approach than the frequently used method

of Lagrange multipliers, including not only equality constraints, but also inequality

constraints. With no inequality constraints the conditions are the same as the Lagrange

conditions.

3.5 Connection between optimization and mechanics

In theoretical physics (mechanics) the term Lagrangian is used to summarize the dy-

namic behavior of systems. Particular parameters, so called generalized coordinates

x = x(t), are chosen to describe the system, its con�guration and behavior. Lagrangian

in theoretical physics is the function of time and those generalized coordinates together

with their time derivatives ẋ = ∂x
∂t ,

L = L(t, x, ẋ), (3.11)

for which the principle of least action applies - the nature realizes the trajectory for

which the action functional

S(tA, tB) =

tBˆ

tA

L(t, x, ẋ) dt (3.12)

has an extreme. The necessary condition for the extreme gives so called Lagrange

equations for the coordinates and its time derivatives (for non-dissipative systems),

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0. (3.13)

CHAPTER 3. OPTIMIZATION 18

H

T h

y
T

y

1

2

2H k

k

l,

,
2
l

-

Figure 3.1: Mechanics example

The solution of those equations is realized trajectory of the system. More details can

be found in [KULH11].

The choice of generalized coordinates can give the set of parameters which are de-

pendent, then relations between them have to be incorporated - the constraints have

to be introduced explicitly. That gives so called Lagrange equations of the �rst kind.

If the parameters are independent (and there is no important parameter left), then the

equations are called Lagrange equations of the second kind. The number of independent

parameters is then the degree of freedom of the system. It is obvious that the methods

of Lagrange multipliers and KKT conditions are used to solve the Lagrange equations

of the �rst kind or to solve problems, where the constraints are explicit.

To give an example of mechanical interpretation of Lagrange multipliers, let's con-

sider a system of a mass m (with center of gravity T) connected to two springs in the

shaft of height H, with the gravitation �eld, as depicted on Figure 3.1. The friction

between the mass and the shaft is neglected. The springs have constants k1, k2 and

lengths l1 = H − l2 and l2. To �nd the equilibrium (the static solution) it is necessary

to search for the minimum of the potential energy

V (yT) =
1

2
k2(yT − l2)2 +

1

2
k1(H − l2 − (H − yT))2 +mgyT ,

providing the constraints yT ≥ h
2 and yT ≤ H − h

2 . This results in the quadratic

programming problem

minimize f0(yT) =
1

2
k1(yT − l2)2 +

1

2
k2(yT − l2)2 +mgyT (3.14)

subject to h
2 − yT ≤ 0

yT −H + h
2 ≤ 0.

The solution to this problem can be obtained by forming the Lagrangian L(yT , λ1, λ2)

CHAPTER 3. OPTIMIZATION 19

(in a optimization sense) and �nding its minimum,

L =
1

2
(k1 + k2)(yT − l2)2 +mgyT + λ1(

h

2
− yT) + λ2(yT −H +

h

2
)

∂L

∂yT
= (k1 + k2)(yT − l2) +mg − λ1 + λ2 = 0

yT =
−mg + (k1 + k2)l2 + λ1 − λ2

k1 + k2
. (3.15)

The second derivative of the Lagrangian is k1 + k2, which is always positive, so the

minimum of the Lagrangian was found.

The Problem 3.14 is convex with di�erentiable objective function and for sure there

exists a strictly feasible point (see the situation on the Figure 3.1), so according to the

Slater's condition the strong duality holds. This means that the KKT conditions can

be formulated as

h

2
− y∗T ≤ 0 (3.16)

y∗T −H +
h

2
≤ 0

λ∗1 ≥ 0 (3.17)

λ∗2 ≥ 0

λ∗1(
h

2
− y∗T) = 0 (3.18)

λ∗2(y
∗
T −H +

h

2
) = 0

k2(y
∗
T − l2) + k1(y

∗
T − l2) +mg − λ∗1 + λ∗2 = 0. (3.19)

The last equation is the zero gradient condition and it is crucial for solving the system

of equations - it can be easily seen that the solution is the same as 3.15.

In fact, the Equation 3.19 is a force balance condition - the �rst two terms are

the forces from the springs, the third term is the gravitation force. The Lagrange

multipliers (last two terms) act as a contact forces in case the mass is situated in the

marginal position. This can be seen from the complementary slackness conditions 3.18

- the multipliers are zero when the mass is between the marginal positions (constraints

3.16 are not active) and in the marginal position the particular multiplier becomes

nonzero.

Chapter 4

Subgradient methods

4.1 Introduction

In this chapter basic concepts of subgradient methods and projected subgradient method

for solving optimization problems is presented. The explanation starts with the uncon-

strained optimization problem. Usually it is not possible to �nd its analytical solution,

so it is necessary to search for it iteratively. The algorithm of searching for the optimum

produces a sequence of x(k), k ∈ N is an iteration number, where

x(k+1) = x(k) + α(k).∆x(k). (4.1)

Vector ∆x(k) is called a step (or search direction), scalar value α(k) ≥ 0 is called a step

size (step length, also scale factor). The general form of an algorithm is described in

Algorithm 4.1 [BOYD09].

In case of di�erentiable convex objective functions the most widely used methods

are the gradient method or Newton's method. They are deeply investigated in standard

textbooks (for example in Chapter 9 of [BOYD09] or �rst chapters of [BERT99]). The

subgradient methods are used for optimizing a non-di�erentiable convex functions - that

kind of problems can arise in various applications areas (system identi�cation, neural

networks and many others) [NEDI02]. Their advantage is a simplicity and usually

small memory requirements, which makes them suitable for large problems, as it was

commented in Section 1.5.

In subgradient methods the search direction (for minimizing the objective function)

is negative subgradient at the actual point, thus ∆x(k) = −g(k) in Equation 4.1, thus

x(k+1) = x(k) − α(k).g(k). (4.2)

Subgradient g of a function f : Rn → R at a point x is de�ned as any vector g that

satis�es

20

CHAPTER 4. SUBGRADIENT METHODS 21

Algorithm 4.1 General optimization algorithm
Given an initial point x from feasible set
Repeat (k-th iterate)

1. Determine a search direction ∆x(k)

2. Choose a step size α(k)

3. Update x(k+1) = x(k) + α(k)∆x(k)

Until stopping criterion is satis�ed

f(x) + gT (y − x) ≤ f(y) ∀y ∈ Rn (4.3)

(thus the subgradient gives a�ne global under-estimator of the function). The set of all

subgradients (the subdi�erential) of f at x is denoted by ∂f(x) - any subgradient from

this set can be chosen to determine the search direction. When f is di�erentiable, the

subgradient reduces to the gradient.

In the subgradient methods, the step lengths are often computed before the op-

timization begins, or there is particular (relatively simple) rule for updating the step

during the optimization algorithm. There are di�erent approaches how to choose the

step length, which will be discussed in Sections 4.3 and 4.4.

There is no guarantee that the value of objective function will improve in every step

(the subgradient method are not descent methods) - because of that the best point and

the best value of objective function found so far, f (k)
best

, should be kept in the memory. In

addition, stopping criteria don't work well in case of subgradient methods [BOYD08],

so in practice the subgradient method is frequently used without any formal stopping

criterion (the limit could be the number of iterations).

Let's point out that in case of solving dual problem, that means �nding maximum

of dual function, the problem can be easily reformulated. One simple modi�cation is

described by max q(x) = −min f(x), if f(x) = −q(x) (then subgradients are gf (x) =

−gq(x)). This means that the algorithm can look for the minimum of negative dual

function and obtain the same solution x∗ as in the case of maximizing the dual function.

4.2 Projected subgradient method for dual problems

For constrained optimization problems, the projected subgradient method is used.

When the feasible set C is convex, then the method is described by

x(k+1) = ΠC(x(k) − α(k).g(k)), (4.4)

CHAPTER 4. SUBGRADIENT METHODS 22

where ΠC(X) is the projection of set X on C. Later (in the Subsection 5.4.2 and in

implementations) the special case will be used, when C is a�ne, C = {x|Ax = b}, where
A is full rank matrix. In that case the projection operator is also a�ne and de�ned by

ΠC(z) = z −AT (AAT)−1(Az − b), (4.5)

so the subgradient update is (using Ax(k) = b, the property of C)

x(k+1) = x(k) − α(k).g(k) −AT (AAT)−1(Ax(k) −Aα(k).g(k) − b),

x(k+1) = x(k) − α(k).(I −AT (AAT)−1A).g(k). (4.6)

To highlight some parts of the explanation from [BOYD08], let's consider a problem

minimize f0(x) (4.7)

subject to fi(x) ≤ 0, i = 1, ...,m.

The dual function of this problem is

q(λ) = inf
x
L(x, λ) = f0(x

∗(λ)) +

m∑
i=1

λifi(x
∗(λ)), (4.8)

where x∗(λ) is a unique minimizer of the Lagrangian over x. The dual problem has a

form

maximize q(λ) (4.9)

subject to λ � 0.

When Slater's condition holds, the primal problem can be solved by solving the dual

problem - by �nding optimal λ∗ and then x∗ = x∗(λ∗). The projected subgradient

method (searching for the minimum of negative dual function) has a form

λ(k+1) = (λ(k) − α(k).h(k))+ (4.10)

h(k) ∈ ∂(−q)(λ(k)),

where (X)+ denotes the projection of X to non-negative values. From explanation in

Section 3.3 can be concluded that (−q) is the supremum of a family of a�ne functions

of λ. The supremum is achieved by

−f0(x∗(λ))−
m∑
i=1

λifi(x
∗(λ)),

CHAPTER 4. SUBGRADIENT METHODS 23

which has the gradient

h = −[f1(x
∗(λ)), . . . , fm(x∗(λ))]T ∈ ∂(−q)(λ).

Projected subgradient method for dual problem can be summarized as

x(k) = x∗(λ(k)) (4.11)

λ
(k+1)
i = (λ

(k)
i + α(k).fi(x

(k)))+.

The iterates x(k) become feasible only in the limit [BOYD08].

Lagrange multiplier λi can be interpreted as the price of the resource i with usage

quanti�ed by fi(x) in Problem 4.7. Then x∗(λ) in Equation 4.8 minimizes the total

cost, consisting of objective function plus resource costs. The algorithm adjusts prices

so that the usage of resources is within the limit (fi(x) ≤ 0). If it is not (fi(x) > 0),

then the price λi is increased by 4.11. The prices never become negative.

It is worth pointing out that if there are equality constraints in the primal Problem

4.7, in dual problem there are no additional constraints on ν (see 3.6) - so it doesn't in-

�uence consequent procedure. For the same reason if there are only equality constraints

(no inequality constraints) in primal problem, then the dual problem is unconstrained.

4.3 Basic step size rules

As was stated in two previous sections, the algorithm chooses a step size α(k) during the

iterates. There are �ve basic ways how to choose it, so called step size rules. The main

di�erence from standard descent methods is that some of those step size rules permit

the steps size computation before the algorithm runs.

In [BOYD08] the convergence analysis of the algorithms using those rules can be

found, here only the results of the analysis are presented. The basic assumption is∥∥g(k)∥∥
2
≤ G (the norm of subgradients is bounded, G is a scalar value). We will

comment in more detail the features of each step size rule in Chapter 6, where two

particular engineering problems will be solved by subgradient methods presented in

this chapter.

4.3.1 Constant step size

The simplest case occurs when α(k) = α, where α > 0. It can be proven that in this

case f (k)
best

converges to within G2α/2 of optimal value.

CHAPTER 4. SUBGRADIENT METHODS 24

4.3.2 Constant step length

This rule,

α(k) = γ/
∥∥∥g(k)∥∥∥

2
, (4.12)

where γ > 0, keeps the distance between the successive points constant,∥∥∥x(k+1) − x(k)
∥∥∥
2

= γ

(substitute α(k) de�nition of this rule to Equation 4.2 and compute absolute value).

This rule makes the subgradient method to converge to within Gγ/2 of optimal value.

4.3.3 Square summable, but not summable step sizes

This rule chooses step sizes that satisfy conditions

α(k) ≥ 0,
∑∞

k=1(α
(k))2 <∞,

∞∑
k=1

α(k) =∞. (4.13)

For example, one sequence satisfying those conditions is

α(k) =
a

b+ k
,

where a > 0, b ≥ 0. For this step size rule the subgradient algorithm converges to the

optimal value, that means limk→∞ f
(k)
best

= f∗.

4.3.4 Non-summable diminishing step sizes

The sequence of steps has to satisfy

α(k) ≥ 0, limk→∞ α
(k) = 0,

∞∑
k=1

α(k) =∞. (4.14)

An example of a sequence with those properties is

α(k) = a/
√
k,

where a > 0. This step size rule also makes the method to converge.

4.3.5 Non-summable diminishing step lengths

It is a combination of two rules mentioned,

α(k) = γ(k)/
∥∥∥g(k)∥∥∥

2
, (4.15)

CHAPTER 4. SUBGRADIENT METHODS 25

f*

~ x
H ~ x

~ xf()

xf()

(k)

(k+1)

x

x

=
x

Figure 4.1: Illustration of Polyak's step size rule

where γ(k) is non-summable diminishing,

γ(k) ≥ 0, limk→∞ γ
(k) = 0,

∞∑
k=1

γ(k) =∞.

This method also converges to the optimum.

4.4 Advanced step size rules

4.4.1 Optimal step size by Polyak - with optimal value known

This dynamic step size rule was introduced by Polyak in 1980s. For minimizing the

objective function it has a form

α(k) =
f(x(k))− f∗∥∥g(k)∥∥2

2

, (4.16)

where f∗ is the optimal value. The step size chosen is optimal in a way that in every

step it minimizes the upper bound of the distance to the optimum
∥∥x(k+1) − x∗

∥∥2
2
.

To interpret the step size from slightly di�erent point of view (based on [NEDI08]),

let's de�ne a hyperplane

Hx̃ =
{
y ∈ Rn : f(x̃) + gT (y − x̃) = f∗

}
,

where x̃ = x(k) is feasible non-optimal point of the problem. The example situation

of one dimensional di�erentiable problem is depicted in the Figure 4.1, where the red

dot represents Hx̃. Then Polyak's step size rule in order to obtain new iterate x(k+1)

projects the feasible point x(k) on the hyperplane Hx̃ by �nding optimal α(k) such that

f(x(k)) + gT (x(k+1) − x(k)) = f∗.

Computing this optimal α(k) is now straightforward, because it can be substituted for

CHAPTER 4. SUBGRADIENT METHODS 26

x(k+1) from Equation 4.2,

f(x(k)) + gT (x(k) − α(k)g − x(k)) = f∗

f(x(k))− α(k)gT g = f∗

α(k) =
f(x(k))− f∗∥∥g(k)∥∥2

2

.

Thus the projection is x(k+1) = x(k) − f(x(k))−f∗

‖g(k)‖2
2

g. It can be proven that this method

converges to the optimum [BOYD08].

To solve the dual problem (thus maximizing the dual function), which will be in our

main focus later, the equation for the step size is

α(k) =
f∗ − f(x(k))∥∥g(k)∥∥2

2

to keep the step size non-negative, or in enhanced form

α(k) = κ(k).
f∗ − f(x(k))∥∥g(k)∥∥2

2

, (4.17)

where the factor κ(k) is added such that 0 < κ(k) < 2 [BERT99].

4.4.2 Optimal step size by Polyak - with optimal value unknown

In most cases the optimal value f∗ is not known, but it can be estimated. One possible

estimate based on previous iterations of the algorithm is

ˆf∗(k) = min
0≤i≤k

f(x(i))− δ, (4.18)

where scalar δ > 0 [NEDI08]. In this estimate we use the minimum value found so far

lowered by �xed value δ, which we will call target parameter. This target parameter

could be also variable, for example it can be lowered if the algorithm didn't meet the

estimate from previous step. The algorithm taken from [NEDI02] (let's call it estimate

by Nedic) de�nes the estimate as

ˆf∗(k) = min
0≤i≤k

f(x(i))− δk, (4.19)

CHAPTER 4. SUBGRADIENT METHODS 27

where δk is updated according to

δk+1 =

σδk if f(x(k+1)) ≤ ˆf∗(k)

max {βδk, δmin} if f(x(k+1)) > ˆf∗(k),

where scalar δ0 > 0 is the initial value of the target parameter, δmin > 0 is its minimal

value, σ ≥ 1 and 0 < β < 1 are constant parameters for target parameter's update.

To summarize this process, in step k we try to reach the estimate that is smaller by

δk than the best value achieved so far. If that level is reached (f(x(k+1)) ≤ ˆf∗(k)), the

target parameter is increased for next step (or kept at the same value if σ = 1). If that

level is not reached, the target parameter is reduced for next iteration (till the value of

δmin, which ensures that α(k) > 0).

There are also various ways how to deal with the estimate of the optimal value

while solving dual problem. For example it can be estimated from above by taking the

function value of f(xF) corresponding to primal feasible point xF. Another estimate

which can be used, taken from [BERT99] (for f (k)
best

= max0≤i≤k f(x(i)) > 0, the best

value found so far positive), is

f̂∗ = (1 + β(k)). max
0≤i≤k

f(x(i)), (4.20)

where β(k) > 0 is a parameter which is increased if the previous iteration improved

f
(k)
best

and is decreased if it didn't. The combination of two estimates presented (again

from [BERT99], let's call it estimate by Bertsekas) is

f̂∗ = min

{
f(xF), (1 + β(k)). max

0≤i≤k
f(x(i))

}
. (4.21)

4.4.3 Algorithm by Nesterov

Nesterov's algorithm for solving a convex problem was presented in [NEST83]. The

aim of the algorithm was to reduce the amount of computation at each step as much

as possible. The algorithm is shown in same form as it was presented in the original

article, for minimizing the unconstrained function, in Algorithm 4.2.

If the Lipschitz constant L is known, then we can take constant step size α(k) = L−1.

Lipschitz constant of a function f(x) is the smallest L > 0, for which

‖g(y)− g(z)‖2 ≤ L ‖y − z‖2 , ∀y, z ∈ dom f(x). (4.22)

With α(k) = L−1 the inequality 4.23 certainly holds (for i = 0), so there is no need

to evaluate it (again from [NEST83]) - the inner iterative part of the algorithm can be

omitted. One possible modi�cation of the original algorithm presented by Nesterov is

CHAPTER 4. SUBGRADIENT METHODS 28

to omit the condition 4.23 as well and to use the basic step size rules for α(k) as they

were de�ned in Section 4.3 [HONE11].

Algorithm 4.2 Nesterov's algorithm for minimizing unconstrained convex function
f(x)

Select points y(0) and z such that y(0) 6= z and g(y(0)) 6= g(z).
Put k = 0, a(0) = 1, x(−1) = y(0), α(−1) =

∥∥y(0) − z∥∥
2
/
∥∥g(y(0))− g(z)

∥∥
2

k-th iteration:

1. Calculate the smallest index i ≥ 0, for which

f(y(k))− f(y(k) − 2−iα(k−1)g(y(k))) ≥ 2−i−1α(k−1)
∥∥∥g(y(k))

∥∥∥2
2

(4.23)

2. Put

α(k) = 2−iα(k−1)

x(k) = y(k) − α(k)g(y(k))

a(k+1) = (1 +
√

4(a(k))2 + 1)/2

y(k+1) = x(k) + (a(k) − 1)(x(k) − x(k−1))/a(k+1)

The method uses local properties of objective function as well as global properties

of convex functions [GONZ08]. It can be shown that the algorithm achieves optimal

complexity with the smallest possible computational time per iteration - only one gra-

dient computation and no function evaluation is needed per iterate (if the inner cycle is

not considered). The proof of optimality of the algorithm is based on complexity theory

and it is beyond the scope of this thesis to provide more explanation - the details can

be found in [NEST04], [YAOL09] or [GONZ08].

Chapter 5

Decomposition methods

5.1 Basic idea, separable problems

The main idea of decomposition methods is to break the original optimization problem

into smaller problems (let's call them subproblems). Those subproblems can be solved in

parallel, which can get substantial savings. Even if the subproblems are solved sequen-

tially, it is possible to get savings if the complexity of original problem is growing more

than linearly. Another bene�t of this approach is the possibility to introduce distributed

solution of an engineering optimization problem - the search for optimal solution by ac-

tions of interconnected systems (agents). This chapter includes the explanation of basic

concepts of decomposition methods, which follows [BOYD07].

A problem is separable (or trivially parallelizable), if it has a form of1

minimize f0(x) =
∑n

j=1 fj((x)j) (5.1)

subject to fi,j((x)j) ≤ 0 i = 1, ...,mj

hi,j((x)j) = 0 i = 1, ..., pj .

The cost function has an additive form, where each term can be considered as a sub-

problem. The problem is formulated in a way where for each part of the vector x

corresponding to the subproblem j (the notation (x)j , j = 1, ..., n will be used) there

is a separate component (term) in the cost function fj((x)j) and separate set of con-

straints. In this case the decomposition is trivial - it consists of solving optimization

problems for each part (x)j separately.

When the components of cost function are interconnected by at least one component

of vector x, or the constraints involve variables from more than one subproblem, then

the optimization problem is not separable. The components which interconnect the
1It is not an exact de�nition, but it is su�cient for the explanation purposes

29

CHAPTER 5. DECOMPOSITION METHODS 30

cost function components are called complicating (coupling, public) variables and the

constraints involving variables from more than one subproblem are called complicating

(coupling) constraints. It is worth pointing out that when the complicating variables

are �xed, then the problem is separable.

The decomposition methods allow us to solve this kind of problems - there are two

approaches, primal and dual decomposition. First, the basic concepts of those methods

will be shown, and then the general framework for decomposition of more complex

problems will be introduced, showing particular algorithms in more detail.

5.2 Complicating variable

Consider the simple example, an unconstrained problem

minimize f0(x) = f1(x1..r, y) + f2(xr+1..n−s, y), (5.2)

where the vector of optimization variable x ∈ Rn is formed as

x = [xT1..r, x
T
r+1..n−s, y

T]T .

Here y ∈ Rs is a vector of complicating (public) variables and x1..r, xr+1..n−s are vectors

of private (local) variables, r < n − s is an index of last private variable belonging to

function f1. Let's have a look how primal and dual techniques deal with this kind of

problem.

5.2.1 Primal decomposition

The primal decomposition algorithm �xes the value of y - the problem is then separable

- and solves subproblems (another notation is used to highlight the variables over which

the optimization is done)

minx1..r f1(x1..r, y)

minxr+1..n−s f2(xr+1..n−s, y)

with optimal values φ1(y) and φ2(y). The original problem (called master problem or

coordinator problem) is

min
y

f0(x) = φ1(y) + φ2(y).

CHAPTER 5. DECOMPOSITION METHODS 31

This problem can be solved by gradient method (for di�erentiable functions), subgradi-

ent method, bisection (when y is scalar) etc., where each iteration means solving of two

subproblems. If the original problem is convex, then the master problem is also convex.

Primal decomposition method corresponds to a direct resource allocation, since the

master problem allocates the existing resources by directly giving each subproblem the

amount of resources that it can use [PALO06].

5.2.2 Dual decomposition

In dual decomposition new variables yone and ytwo (notation y1 is reserved for �rst com-

ponent of y, so it cannot be used here) and their consistency constraint are introduced,

so the original Problem 5.2 is reformulated as

minimize f0(x) = f1(x1..r, yone) + f2(xr+1..n−s, ytwo)

subject to yone = ytwo.

Now the dual problem is separable, because the Lagrangian is

L(x1..r, yone, xr+1..n−s, ytwo, ν) = f1(x1..r, yone) + f2(xr+1..n−s, ytwo) + . . .

. . .+ νT (yone − ytwo).

Thus it is possible to solve subproblems

minx1..r, yone f1(x1..r, yone) + νT yone

minxr+1..n−s, ytwo f2(xr+1..n−s, ytwo)− νT ytwo

with optimal values (Lagrange dual functions, see Section 3.3) q1(ν) and q2(ν). The

dual problem (master problem) is

max
ν

q(ν) = q1(ν) + q2(ν).

Dual decomposition method corresponds to a resource allocation via pricing, since

the master problem sets the price of the resources and each subproblem has to decide

the amount of resources to be used depending on that price [PALO06]. Variable yone is

the amount of resources consumed by �rst subproblem, ytwo is the amount of resources

produced by second subproblem, while the consistency constraint yone = ytwo represents

the economic equilibrium (supply equals demand).

CHAPTER 5. DECOMPOSITION METHODS 32

5.3 Complicating constraint

Let's suppose the problem has a form

minimize f0(x) = f1(x1..r) + f2(xr+1..n) (5.3)

subject to h1(x1..r) + h2(xr+1..n) ≤ 0.

The constraint is not necessarily single - there could be a set of γ complicating con-

straints involving both x1..r and xr+1..n. The scalar r again just splits the vector x into

subvectors.

5.3.1 Primal decomposition

For the primal decomposition, a variable t ∈ Rγ is introduced and the original problem

is decomposed into subproblems

min
x1..r

f1(x1..r)

subject to h1(x1..r) ≤ t

with optimal value φ1(t) and

min
xr+1..n

f2(xr+1..n)

subject to h2(xr+1..n) ≤ −t

with optimal value φ2(t). Variable t represents the amount of resources allocated to the

�rst subproblem from the second subproblem. When t is �xed, the subproblems can be

solved separately. The master problem is

min
t

φ1(t) + φ2(t).

Master can update the resource allocation using the (sub)gradients from the solution of

subproblems.

5.3.2 Dual decomposition

While using dual decomposition, the Lagrangian of the problem is

CHAPTER 5. DECOMPOSITION METHODS 33

L(x1..r, xr+1..n, λ) = f1(x1..r) + f2(xr+1..n) + λT (h1(x1..r) + h2(xr+1..n))

and the Problem 5.3 can be (for �xed λ � 0) separated into subproblems

min
x1..r

f1(x1..r) + λTh1(x1..r)

min
xr+1..n

f2(xr+1..n) + λTh2(xr+1..n)

with optimal values q1(λ) and q2(λ). The master problem is

max
λ

q(λ) = q1(λ) + q2(λ)

and it is solved by the projected subgradient method presented in Section 4.2. As it

was said there, λ can be interpreted as (non-negative) prices of resources, while master

adjusts those prices in order to obtain optimality.

5.4 General form

The problem can be more complicated than the cases we have studied so far. In that

situation, the structure of the problem could be represented by a hypergraph, where the

nodes represent the subproblems - local variables, local objectives and local constraints

- and the edges represent complicating (public) variables or constraints.

The graph can be expressed by a matrix E ∈ Rθ×ϑ, which describes its hyperedges

in the following way (θ is the total number of (scalar) public variables, ϑ is the number

of hyperedges):

Eij =

1 yi is in net j

0 otherwise.
(5.4)

Here yi is the i-th component of vector of all public variables y, which can be expressed

as y = Ez, where z ∈ Rϑ is the vector of common values of public variables on the

hyperedges (vector of net variables, the number of elements of z is the same as the

number of hyperedges ϑ). This equation represents the coupling constraints between

subproblems. Using this representation of the hypergraph, the original optimization

problem for n subproblems has a form

CHAPTER 5. DECOMPOSITION METHODS 34

minimize
∑n

i=1 fi(xlocal i, (y)i) (5.5)

subject to (y)i = (E)iz, i = 1, ..., n,

where (E)i and (y)i are parts of E and y corresponding to the subproblem i. In next

subsections of this chapter we will suppose that subgradient method is used for solving

master problem.

5.4.1 Primal decomposition

In primal decomposition, φi((y)i) is the optimal value of subproblem

min
xlocal i

fi(xlocal i, (y)i).

One hyperedge (net) has one associated variable, an element of z, which is distributed

to i-th subproblem by (y)i = (E)iz. Each subproblem optimizes its cost function using

those values, which are �xed in each step (the problem is then separable). Then it

computes particular gradient and sends it to the master. Master, solving the problem

min
z

φ(z) =
n∑
i=1

φi((y)i), (5.6)

where (y)i = (E)iz, sums up gradients from di�erent subproblems and updates the

public variables in order to obtain better global solution.

The process is described in Algorithm 5.1, where α(k) is the step size during iterates.

It is important to emphasize that the algorithm is distributed - the only communica-

tion needed is between subproblems (in practical imlementations they can be called

subsystems) and nets adjacent to them, there is no communication between di�erent

subsystems or di�erent nets.

5.4.2 Dual decomposition

To obtain problem dual to the original one (Problem 5.5), the Lagrangian is formed as

L(xlocal i, y, z, ν) =
n∑
i=1

fi(xlocal i, (y)i) + νT (y − Ez)

=
n∑
i=1

(fi(xlocal i, (y)i) + (ν)Ti (y)i)− νTEz. (5.7)

where ν∈ Rθ, vector of Lagrange multipliers, has part (ν)i associated with i-th sub-

problem, i = 1, . . . , n. To �nd a dual function, let's �rst minimize over z - this gives

CHAPTER 5. DECOMPOSITION METHODS 35

Algorithm 5.1 Primal decomposition, general form

Given initial net variables vector z(0)

Repeat (k-th iterate)

1. Distribute net variables to subproblems: (y)
(k)
i = (E)iz

(k), i = 1, ..., n

2. Optimize subproblems fi(x
(k)
local i, (y)

(k)
i) - �nd optimal x

(k)∗
local i and gradient

g
(k)
i ((y)

(k)∗
i)

3. Master sums up subgradients over each net: g(k) =
∑n

i=1(E)Ti g
(k)
i

4. Master updates vector of net variables: z(k+1) = z(k) − α(k)g(k)

the condition ET ν = 0, which means that the sum of multipliers over each net should

be zero. Then the dual function is

q(ν) =

n∑
i=1

qi((ν)i),

where qi((ν)i) is optimal value of the subproblem i:

min
xlocal i,(y)i

fi(xlocal i, (y)i) + (ν)Ti (y)i.

The subgradient of qi((ν)i) at (ν)i is (y)i, which is a part of the �global� subgradient y.

This y will be used in next explanation for the sake of simplicity, but the distributive

nature of the algorithm will be still preserved.

The dual problem has a form

maximize q(ν) (5.8)

subject to ET ν = 0.

This problem can be solved by projected subgradient method, which was explained in

Section 4.2. The projection into feasible set ET ν = 0 is a�ne operator, so the Equation

4.6 can be used to compute the update of optimization variable

ν(k+1) = ν(k) + α(k)(Iθ − E(ETE)−1ET)y. (5.9)

The update can be interpreted in the following way - the average values of public

variables over each net ẑ = (ETE)−1ET y are computed and then they are subtracted

from corresponding public variable values, g = y−Eẑ, to form a projected subgradient

- together it means that g = (Iθ −E(ETE)−1ET)y, where Iθ is unit matrix of order θ.

To summarize the algorithm from practical point of view, in dual decomposition each

CHAPTER 5. DECOMPOSITION METHODS 36

Algorithm 5.2 Dual decomposition, general form

Given initial price vector ν(0), such that ET ν(0) = 0 (the sum of Lagrange mulitpliers
is zero over each net)
Repeat (k-th iterate)

1. Optimize subproblems to obtain x(k)∗
local i and (y)

(k)∗
i

2. Master computes average value of public variable at each net:
ẑ(k) = (ETE)−1ET y(k)∗

3. Master updates prices of public variables: ν(k+1) = ν(k) + α(k)(y(k) − Eẑ(k))

subproblem (subsystem) has its own copy of the public variables as well as Lagrange

multipliers subvector (price vector). After the optimizations in subsystems the value

of the public variables are compared and multipliers (prices) are updated. The goal is

to obtain the consistency between local copies of the public variables. The procedure

is presented in Algorithm 5.2, where α(k) is the step size during iterates. Again it

is important to emphasize the distributive nature of the algorithm - the subsystems

interact only with adjacent nets, there is no interaction between di�erent subsystems

or di�erent nets.

5.5 Example

5.5.1 Problem formulation

Let's consider the problem (�rst formulated in standard optimization notation, the

graph representation will follow)

minimize f0 = f1(x1, y1) + f2(x2, y2, y3) + f3(x3, y4) (5.10)

subject to y1 = y2

y3 = y4,

where

f1 = [x1 y1]

[
9 2

2 2

][
x1

y1

]
+ [5 3]

[
x1

y1

]
,

f2 = [x2 y2 y3]

 4 1 2

1 3 1

2 1 3

 x2

y2

y3

+ [−2 −4 −2]

 x2

y2

y3

CHAPTER 5. DECOMPOSITION METHODS 37

y1 y2 y3 y4

Figure 5.1: Graph representation of the Problem 5.10

and

f3 = [x3 y3]

[
4 1

1 5

][
x3

y3

]
+ [1 −2]

[
x3

y3

]
.

So there are three subproblems (subsystems) coupled by two complicating variables -

the situation is depicted on Figure 5.1.

The graph is formed by three nodes and two edges. Matrix E describing the graph

is

E =

1 0

1 0

0 1

0 1

 ,
parts of public variables vector y corresponding to subproblems are (y)1 = y1, (y)2 =

[y2 y3]T , (y)3 = y4 and similarly the graph matrix can be split into

(E)1 =
[

1 0
]
,

(E)2 =

[
1 0

0 1

]
,

(E)3 =
[

0 1
]
.

Slater's condition (see Section 3.3) is satis�ed, since there are no inequality constraints

and the problem is convex - so the strong duality holds.

5.5.2 Solution using primal decomposition

In primal decomposition, the implemented algorithm found the optimal value of

f0 = −3.0163 (5.11)

CHAPTER 5. DECOMPOSITION METHODS 38

for

x1 = −0.6269 (5.12)

x2 = 0.1909

x3 = −0.3644

y1 = y2 = 0.3210

y3 = y4 = 0.4577.

The values of f0 during iterations are shown in the Figure 5.2a, the absolute value

of di�erence between f0(x(k)) and optimal value p∗ in Figure 5.2b. In this �rst example

we use only constant step size rule and present the in�uence of di�erent values of α used

by master algorithm. It is obvious that the value of step size in�uences the number of

iterates needed to obtain the solution with particular accuracy (tolerance). The fastest

convergence was obtained for α = 0.18, where the error is reduced from about 102 to

10−15 in 14 iterations, so it was reduced by factor 10−17/14
.
= 0.06 each iteration.

5.5.3 Solution using dual decomposition

In dual decomposition the initial price vector was chosen ν = 0. The optimal value and

values of variables found are exactly the same as in the case of primal decomposition

(see 5.11 and 5.12), the prices vector converged to

ν =

−2.3883

2.3883

−0.0759

0.0759

 ,
which satis�es the condition ET ν = 0.

As in the case of primal decomposition, the values of f0(x(k)) during iterations for

the di�erent values of constant step size α are shown in the Figure 5.3a and the absolute

value of di�erence to the optimal value in the Figure 5.3b. It is worth noting that the

dual problem solution gives lower bound of the original optimization problem solution,

what is in accordance with the theoretical explanation. The fastest convergence occurs

for α = 2.2, where the error was reduced by factor 10−15/11
.
= 0.04 each iteration.

CHAPTER 5. DECOMPOSITION METHODS 39

0 1 2 3 4 5 6 7 8
−5

0

5

10

Value of f
0
 during iterates

f 0(x
(k

))

iterates

α = 0.2
α = 0.18
α = 0.15
α = 0.1

(a) Values of f0 during iterates

0 5 10 15 20 25 30 35 40 45

10
−10

10
−5

10
0

10
5

Suboptimality for different values of α

|f 0(x
(k

))
−

 p
*|

iterates

α = 0.2
α = 0.18
α = 0.15
α = 0.1

(b) Suboptimality during iterates

Figure 5.2: Primal decomposition

CHAPTER 5. DECOMPOSITION METHODS 40

0 1 2 3 4 5 6 7 8
−4

−3.9

−3.8

−3.7

−3.6

−3.5

−3.4

−3.3

−3.2

−3.1

−3

Value of f
0
 during iterates

f 0(x
(k

))

iterates

α = 3
α = 2.2
α = 2
α = 1

(a) Values of f0 during iterates

0 5 10 15 20 25 30 35 40 45

10
−10

10
−5

10
0

10
5

Suboptimality for different values of α

|f 0(x
(k

))
−

 p
*|

iterates

α = 3
α = 2.2
α = 2
α = 1

(b) Suboptimality during iterates

Figure 5.3: Dual decomposition

Chapter 6

Applications to engineering

problems

This chapter forms the main implementation part of the thesis. Here we will apply the

methods described in previous chapters to two selected engineering problems. The �rst

one is dynamic - distributed MPC (described in Section 6.1), while the second one is

static - industrial energy network optimization (described in Section 6.2).

6.1 Dynamic control - MPC

In this section the dual decomposition method for control of three interconnected dy-

namic subsystems will be presented. After the problem formulation, the algorithm de-

scribed in Subsection 5.4.2 will be used to obtain the solution of master problem. Then

this solution will be compared to the solution of centralized approach, while di�erent

deployment options of the decentralized algorithm will be examined as well. In addition,

di�erent step size rules used to obtain the solution will be analysed and convergence of

those step size rules will be compared.

6.1.1 Problem formulation

The inputs, outputs and interconnections of subsystems are depicted on Figure 6.1.

The dynamics of the subsystems is shown in the Figures 6.2, 6.3 and 6.4 (subsystems

were discretized with sampling period T = 0.1 s). Each subsystem has one manipulated

input and one controlled output (the reference signal yref for that output is given as a

unit step at time step 20 for all subsystems).

For each subsystem we use MPC controller with following parameters: prediction

horizon N = 50 steps, the tracking weight q(i) = 1, i = k, . . . , k + N − 1 (for all

k for tracked outputs), the input weight r(i) = 1, i = k, . . . , k + N − 1 (for all k

for controlled inputs), with no constraints on inputs, no soft constraint on the output

41

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 42

and no blocking. The constraints are omitted, because for the demonstration of the

decomposition method they lack signi�cance, but it would be easy to deal with them.

The blocking is not used for easier comparison to centralized approach.

We want to �nd the solution of optimization problem

minimize JI.((uI.)k+N−1k) + JII.((uII.)k+N−1k) + JIII.((uIII.)k+N−1k) (6.1)

subject to (yI.1)k+N−1k = (uII.1)k+N−1k

(yI.2)k+N−1k = (uIII.1)k+N−1k

(yIII.1)k+N−1k = (uI.1)k+N−1k

x(k + 1)M = AMx(k)M +BMu(k)M

y(k)M = CMx(k)M +DMu(k)M

for all k, where the superscripts indicate the subsystems (I., II. or III., while M takes

all values I., II., and III.), uM = [uM1 uM2]T and

JM =
1

2
{[(yMref)k+N−1k − (yM)k+N−1k]TQM [(yMref)

k+N−1
k − (yM)k+N−1k] + . . .

. . .+ [(∆uM)k+N−1k]TRM [(∆uM)k+N−1k]},

where matrices QM and RM are formed with respect to weights q(i), r(i) and tracked

outputs and controlled inputs, for example diagonal matrix

QI. ∈ R3N×3N = R150×150

QI. =

0

0

1
. . .

0

0

1

,

because we track only the last output from three outputs of subsystem I.

To rephrase the problem formulation, we are searching for the minimum of additive

cost function of three controllers, that are controlling three interconnected subsystems.

Those interconnections represent complicating constraints, which have to be met in

order to obtain physically realizable solution. It is important to keep in mind that this

solution is the solution of one (!) sampling period of MPC (as is depicted in the Figure

2.2), without implementing the receding horizon (this would need to apply only the �rst

input of the solution and compute solution of new problem in next step).

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 43

Figure 6.1: MPC example situation

0

0.5

1

From: u
1
I

T
o:

 y
1I

0

0.5

1

T
o:

 y
2I

0 5 10 15 20 25
0

0.5

1

time [s]

T
o:

 y
3I

From: u
2
I

0 5 10 15 20 25
time [s]

Step Response

 (sec)

A
m

pl
itu

de

Figure 6.2: Unit step response of subsystem I.

0

0.5

1

1.5

2

From: u
1
II

T
o:

 y
1II

0 5 10 15 20
0

0.5

1

1.5

2

2.5

time [s]

T
o:

 y
2II

From: u
2
II

0 5 10 15 20
time [s]

Step Response

Figure 6.3: Unit step response of subsystem II.

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 44

0

0.5

1

1.5

From: u
1
III

T
o:

 y
1III

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

time [s]

T
o:

 y
2III

From: From: u
2
III

0 5 10 15
time [s]

Step Response

Figure 6.4: Unit step response of subsystem III.

6.1.2 Distributed algorithm and its solution

Algorithm 5.2 was implemented in order to get solution of the optimization Problem

6.1. The hypergraph is formed by three nodes and three edges and is described by

matrix

E =

IN 0 0

IN 0 0

0 IN 0

0 IN 0

0 0 IN

0 0 IN

,

where IN is the unit matrix of order N (in this particular case N = 50). The step

was chosen constant with value α = 0.00395 (we will focus on various step size rules in

Subsection 6.1.5) and initial price vector was set to a zero vector.

The situation at the beginning of the algorithm is shown in the Figure 6.5, where

the colors (same as in Figure 6.1) represent pairs of signals which connect subsystems

(except of blue color representing reference signals and red color showing non-connecting

signals). In the beginning of the algorithm each MPC solves its particular optimization

problem, without any information about the interconnections (we can say that the

complicating constraints are neglected). Those subsystems' solutions are not realizable,

because the interconnections imply the need for consistency of interconnecting signals,

which is not satis�ed.

During the algorithm (see Subsection 5.4.2 for rigorous explanation) the subsystems

receive updates of Lagrange multipliers of shared signals (in other words �prices� of

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 45

public variables, which are stored locally in subsystems) from master algorithm and

they change their optimal solutions accordingly. Subsystems return their subgradients

to master, who computes next update of Lagrange multipliers in order to obtain the

consistency between shared signals. For measuring the inconsistency of signals during

iterates we will use a norm ‖y − Ez‖2 (the meaning of this term should be clear after

reading the Chapter 5). This norm can be used as a stopping criterion, together with

limited number of iterations.

After 1020 iterations the algorithm reaches the value of the norm of inconsistency

‖y − Ez‖2 = 0.01, which ensures the reasonable precision of the solution - the results for

all three subsystems are depicted in the Figure 6.6. There the consistency between in-

terconnecting signals can be easily veri�ed. In next subsection we compare this solution

to the solution obtained by the centralized approach.

6.1.3 Comparison to centralized approach

As we can see from the Figures 6.7 and 6.8, which show the situation during the it-

erations (centralized solution in red, distributed solution in green, reference signals in

blue), the solution obtained by the distributed approach converges to the centralized

solution. The constant step size with α = 0.00395 was used, with no blocking (for de-

tails of the solution see previous subsection). For the illustration the number of iterates

was chosen as k ∈ {1, 250, 500, 1020}, which corresponds to the values of inconsistency

‖y − Ez‖2 ∈ {6.850, 0.316, 0.088, 0.010} (in the same order).

It would be beyond the scope of this thesis to provide some quantitative analyses,

which could be for example the memory requirements comparison or communication

demands. On the other hand in next subsection we will provide qualitative description

of the possible practical implementation and deployment of the algorithm used, to make

an overview of the distributed approach and to emphasize its bene�ts.

6.1.4 Illustration of possible deployment

In the Subsections 5.4.1 and 5.4.2 we pointed out the distributive nature of the algo-

rithms presented. Now at this particular example we can demonstrate it more specif-

ically. In the case of �ordinary� step size rules (mostly basic step size rules, we will

specify this term at the end of this subsection) there is no need for master algorithm to

be situated at one location, as �central� master algorithm collecting information from

all nets, see red circle on a Figure 6.9. It could be distributed on the nets, as is depicted

on the Figure 6.10, or situated in the selected node(s) - the situation on the Figure 6.11.

On the last �gure the master could be spread into all nodes, coordinating the particular

nets.

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 46

Figure 6.5: Subsystems' inputs and outputs, �rst iterate

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 47

Figure 6.6: Subsystems' inputs and outputs, 1020th iterate

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 48

0 10 20 30 40 50

0

0.5

1

1.5

2

Manipulated variable u
2
I

[−
]

0 10 20 30 40 50
−0.5

0

0.5

1

Manipulated variable u
2
II

[−
]

0 10 20 30 40 50
−0.5

0

0.5

1

Manipulated variable u
2
III

[−
]

time steps

0 10 20 30 40 50

0

0.5

1

Controlled variable y
3
I

0 10 20 30 40 50

0

0.5

1

Controlled variable y
2
II

0 10 20 30 40 50

0

0.5

1

Controlled variable y
2
III

time steps

(a) First iterate

0 10 20 30 40 50

0

0.5

1

1.5

2

Manipulated variable u
2
I

[−
]

0 10 20 30 40 50
−0.5

0

0.5

1

Manipulated variable u
2
II

[−
]

0 10 20 30 40 50
−0.5

0

0.5

1

Manipulated variable u
2
III

[−
]

time steps

0 10 20 30 40 50

0

0.5

1

Controlled variable y
3
I

0 10 20 30 40 50

0

0.5

1

Controlled variable y
2
II

0 10 20 30 40 50

0

0.5

1

Controlled variable y
2
III

time steps

(b) 250th iterate

Figure 6.7: Centralized (red) and distributed (green) solution (part 1)

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 49

0 10 20 30 40 50

0

0.5

1

1.5

2

Manipulated variable u
2
I

[−
]

0 10 20 30 40 50
−0.5

0

0.5

1

Manipulated variable u
2
II

[−
]

0 10 20 30 40 50
−0.5

0

0.5

1

Manipulated variable u
2
III

[−
]

time steps

0 10 20 30 40 50

0

0.5

1

Controlled variable y
3
I

0 10 20 30 40 50

0

0.5

1

Controlled variable y
2
II

0 10 20 30 40 50

0

0.5

1

Controlled variable y
2
III

time steps

(a) 500th iterate

0 10 20 30 40 50

0

0.5

1

1.5

2

Manipulated variable u
2
I

[−
]

0 10 20 30 40 50
−0.5

0

0.5

1

Manipulated variable u
2
II

[−
]

0 10 20 30 40 50
−0.5

0

0.5

1

Manipulated variable u
2
III

[−
]

time steps

0 10 20 30 40 50

0

0.5

1

Controlled variable y
3
I

0 10 20 30 40 50

0

0.5

1

Controlled variable y
2
II

0 10 20 30 40 50

0

0.5

1

Controlled variable y
2
III

time steps

(b) 1020th iterate

Figure 6.8: Centralized (red) and distributed (green) solution (part 2)

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 50

Figure 6.9: Central master algorithm

Figure 6.10: Master algorithm distributed to nets

One of the main advantages of these approaches is modularity - when a new sub-

system is added into the network, then in the case of central master algorithm only the

matrix E has to be updated (and new Lagrange's multipliers have to be added). In

case of master distributed to nets, master is extended to the new net, and similarly in

case of master distributed to nodes it is necessary to decide, which node will play role

of master for the new net. The latter case is the most interesting one, so we describe it

with other two �gures - on Figure 6.12 shows the situation when it is still possible to

coordinate the nets from one node, but on the Figure 6.13 it is necessary to add new

part of master algorithm to the node II. or V. (from the �gure it is obvious that node

V. was chosen).

By �ordinary� step size rules we meant the rules which are not using function values

to determine the sequence α(k), that means all the step size rules that were mentioned

except Polyak's rule and original Nesterov's rule. The reason is that when the value

of α(k) is determined by function values (see Equations 4.16 or 4.23) the master algo-

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 51

Figure 6.11: Master algorithm distributed to node(s)

rithm needs the information from all subsystems - thus it is not possible to make the

computation fully distributed with the approach we presented and it is necessary to

use centralized master algorithm (as in the Figure 6.9). Possible solution could bring

incremental subgradient methods presented in [NEDI02], but this is out of scope of this

master thesis.

Figure 6.12: Extension of the network (one subsystem added)

Figure 6.13: Extension of the network (two subsystems added)

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 52

0 200 400 600 800 1000 1200 1400 1600 1800

10
−2

10
−1

10
0

10
1

10
2

Norm of inconsistency for constant step size

iterates

|y
−

E
z|

α = 0.003
α = 0.00395
α = 0.004

Figure 6.14: Constant step size convergence - basic comparison

6.1.5 Analysis of di�erent step size rules

In this subsection we will analyse separately di�erent step size rules used for solving

the problem described in 6.1.1. That means that the dependence of convergence of

each step size rule on its parameters will be shown. We will use the same measure

of inconsistency between interconnecting signals, ‖y − Ez‖2, during the iterates. As a

stopping criterion the value of this term was chosen (in particular ‖y − Ez‖2 = 0.01)

together with the reasonable number of iterates (maximum number of iterates was set

to 12000). For the comparison of di�erent step size rules we will use the number of

iterations needed to achieve the value ‖y − Ez‖2 = 0.01. The graphs will be plotted as

continuous for simplicity and the vertical axis on graphs will be in logarithmic scale.

Constant step size convergences for di�erent values of parameter α are shown in the

Figure 6.14. We can see that the bigger the step, the faster is the convergence. But

for one particular value of α the algorithm begins to be unstable and it diverges. This

value is speci�c for each optimization problem, in our case the critical value of α is in

interval αcrit ∈ (0.00395, 0.004). It is also important to remember that this step size

rule gives only a suboptimal solution (see 4.3.1) - the situation is depicted in the Figure

6.15, where we can easily see the trade-o�, when the lower the value of α makes the

convergence slower, but the algorithm converges to smaller neighborhood of optimal

solution. In practical situations we probably won't need such accuracy, we only want

to emphasize that the observation corresponds to the theoretical conclusion. For the

mutual comparison of all di�erent step size rules, which will be provided in Subsection

6.1.6, let's choose the value α = 0.00395, which makes the algorithm to reach the norm

‖y − Ez‖2 = 0.01 in 1020 iterations.

Figure 6.16 shows the convergence of constant step length rule for di�erent values

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 53

2000 4000 6000 8000 10000 12000
10

−15

10
−10

10
−5

10
0

Norm of inconsistency for constant step size

iterates

|y
−

E
z|

α = 0.003
α = 0.00395

Figure 6.15: Constant step size convergence - suboptimality of the solution

of γ (distance between the successive points). We can see that the method provides

suboptimal solution - in 4.3.2 it was stated that it converges to within Gγ/2 to optimal,

where G is the upper bound of subgradients. Our observation corresponds to that,

because for example for value γ = 0.0001 the measure of inconsistency stops decreasing

in 8485th iterate (highlighted in the �gure), when the subgradient oscillations begin

to have major impact on it. The oscillations can be identi�ed in Figure 6.17a, that

depicts the behavior of selected components of subgradient during all iterates. There

the feature of the projected subgradient method can be observed - the sum of the

pair of corresponding components of subgradient gives zero (the pairs are in colors of

appropriate connections in Figure 6.1). We can also notice the slope change of the

curves around the iterate number 5300 (precisely at 5286), which has an impact on the

behavior of the norm of inconsistency for γ = 0.0001. Figure 6.17b presents the detailed

view, showing that the subgradient is oscillating even before 8485th iterate.

From the Figure 6.16 it is obvious that the higher value of the parameter γ en-

sures faster convergence in the beginning, but then the solution begins to oscillate in a

bigger neighborhood around the optimal solution. Thus in practical implementations

the choice of the parameter should depend on desired size of neighborhood of optimal

value, what the algorithm should reach. We can also see that during 12000 iterations

no value of the parameter reached the desired threshold ‖y − Ez‖2 = 0.01. For the

comparison of di�erent step size rules we choose the value of parameter γ = 0.0001,

which represents �the best� trade-o� (by engineering guess) between fast convergence

in the beginning and small neighborhood of the optimum.

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 54

0 2000 4000 6000 8000 10000

10
−2

10
−1

10
0

X: 8485
Y: 0.04256

Norm of inconsistency for γ/|g(k)| step sizes

iterates

|y
−

E
z|

γ = 0.00005
γ = 0.00008
γ = 0.0001
γ = 0.0002

Figure 6.16: Constant step length convergence

0 2000 4000 6000 8000 10000 12000
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
Values of n−th component of gradient during iterates

iterates

n−
th

 c
om

po
ne

nt
 o

f g
ra

di
en

t

n = 8
n = 58
n = 108
n = 158
n = 208
n = 258

(a) During all iterates

8200 8400 8600 8800 9000 9200 9400

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−3Values of n−th component of gradient during iterates

iterates

n−
th

 c
om

po
ne

nt
 o

f g
ra

di
en

t

n = 8
n = 58
n = 108
n = 158
n = 208
n = 258

(b) Detailed view

Figure 6.17: Selected components of gradient for γ = 0.001

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 55

200 400 600 800 1000 1200

10
−2

10
0

10
2

Norm of inconsistency for a/(b+k) step sizes

iterates

|y
−

E
z|

a = 40, b = 9800
a = 40, b = 9900
a = 40, b = 10000
a = 40, b = 10100

(a) Fixed parameter a

200 400 600 800 1000 1200 1400

10
−2

10
−1

10
0

10
1

Norm of inconsistency for a/(b+k) step sizes

iterates

|y
−

E
z|

a = 39, b = 10100
a = 40, b = 10100
a = 41, b = 10100

(b) Fixed parameter b

Figure 6.18: Square summable, but not summable step size convergence

Figure 6.18 presents di�erent convergences for square summable, but not summable

step size rule. The sequence α(k) = a/(b + k), where k is the iteration number and

a, b are parameters, was chosen for the analysis. In that case we can observe various

situations, which are corresponding to the properties of the sequence α(k) = a/(b+ k).

First, the value of parameter a is �xed to the value a = 40 and the behavior for

di�erent values of b is investigated in the Figure 6.18a, in particular for the values

of b ∈ {9800, 9900, 10000, 10100}. For the lower value of b there is a higher peak

of inconsistency at the beginning of the iterative process - this could be explained by

relatively large values of steps α(k) in the beginning, which make the method almost

to diverge, but then the values of α(k) are decreased when the number of iteration is

higher. After this e�ect disappears, the convergence is slightly better for lower value

of b. When the value of b is �xed (to the value b = 10000), the situation for di�erent

values of a (a ∈ {39, 40, 41}) is depicted in the Figure 6.18b. There similar e�ect

can be observed - the di�erence is that the peak is higher for the higher values of a,

because the parameter is in nominator. Last observation is for ratio a/b �xed to the

value a/b = 0.004. We can change the absolute value of the nominator and denominator

keeping the ratio constant. This adjusts the in�uence of number of iterations k in the

equation for α(k). In the Figure 6.19 di�erent situations for pairs satisfying this condition

are demonstrated - in particular for b ∈
{

102, 103, 104, 105
}
and a = 0.004 · b. For the

�rst case the convergence is slower in comparison with other situations, because the

in�uence of number of iterations is big and makes the values of α(k) converge to zero

rapidly. For higher values of b the peak e�ect can be observed again, because higher

b (and thus a) means more delay for the in�uence of number of iteration. For the

later comparison of di�erent step size rule let's choose the combination of parameters

a = 40, b = 10000, which reaches the threshold ‖y − Ez‖2 = 0.01 in 1059 iterations.

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 56

0 500 1000 1500 2000

10
−2

10
−1

10
0

10
1

Norm of inconsistency for a/(b+k) step sizes

iterates

|y
−

E
z|

b = 102, a = 0.4

b = 103, a = 4

b = 104, a = 40

b = 105, a = 400

Figure 6.19: Square summable, but not summable step size convergence - �xed ratio a
b

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

10
0

10
5

10
10

10
15

10
20

Norm of inconsistency for a/sqrt(k) step sizes

iterates

|y
−

E
z|

a = 0.010
a = 0.020
a = 0.030
a = 0.035

Figure 6.20: Non-summable diminishing step size convergence

Convergences for the non-summable diminishing step sizes are depicted in Figure

6.20. As we know from 4.3.4, the method converges to the optimal value. The sequence

α(k) = a/
√
k was chosen, where k is iteration number and a is the parameter. In

the �gure convergences for the values of a ∈ {0.01, 0.02, 0.03, 0.035} are shown. We

can identify similar e�ect as in the previous case - for higher value of the parameter

a there is higher peak in the beginning of the algorithm (again the reason for this

are the properties of the sequence). It also has an impact on the number of iterates

needed for reaching the threshold, but not necessarily the higher value of a means faster

convergence - we can see it on the example of the parameter value a = 0.035, which

doesn't reach the threshold in a reasonable number of iterations. For the comparison of

di�erent step size rules let's choose the value of parameter a = 0.03, which makes the

algorithm to converge to desired value of inconsistency in 4969 iterations.

Next �gure of this subsection, 6.21, shows the convergence of the non-summable

diminishing step length rule. This rule is de�ned in 4.3.5, the sequence of γ(k) = a/
√
k

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 57

0 2000 4000 6000 8000 10000 12000

10
−2

10
−1

10
0

X: 7492
Y: 0.02451

Norm of inconsistency for a/(sqrt(k)*|g(k)|) step sizes

iterates

|y
−

E
z|

a = 0.003
a = 0.004
a = 0.005
a = 0.006

Figure 6.21: Non-summable diminishing step length convergence

was used. The situation is similar to the constant step length rule (Figure 6.16) -

the lower value of the parameter a means slower convergence in the beginning, but

the algorithm can reach the smaller neighborhood of the optimum before it begins to

oscillate. Then when the diminishing step length converge to the optimal value (we know

from 4.3.5 that this method converges to the optimum), the lower parameter ensures

faster convergence. Thus in practical implementations the choice of the parameter

should depend on desired size of neighborhood of optimal value and possible limit of

number of iterations. From Figure 6.21 it is also obvious that during 12000 iterations

no value of the parameter reached the desired threshold ‖y − Ez‖2 = 0.01. For the

comparison of di�erent step size rules we choose the value of parameter a = 0.005,

which represents the compromise between fast convergence in the beginning and small

neighborhood of the optimum (the point where the algorithm changes its behavior for

this particular case, at iteration number 7492, is highlighted in the �gure).

Figure 6.22 presents the convergence of the algorithm by Nesterov. The comparison

of the original Nesterov's method together with the algorithm in its modi�ed form - for

various basic step size rules used for de�ning the sequence of α(k) - is depicted there.

Particular values of parameters of those rules were chosen in order to obtain as fast

convergence as possible (without the proof, only by engineering guess). On the �gure

we can identify some features of the particular step size rules which we already described.

The fastest convergence was achieved by the original Nesterov's algorithm (reaching the

threshold in 272th iterate), followed by constant step size rule with α = 0.0026 (reaching

threshold in 273th iterate). The original Nesterov's algorithm was chosen for comparison

in Subsection 6.1.6.

As we already explained in Subsection 6.1.4, applying the Polyak's step size rule by

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 58

0 100 200 300 400 500

10
−2

10
−1

10
0

Norm of inconsistency for algorithm by Nesterov

iterates

|y
−

E
z|

α = 0.0026
α(k) = 0.0001/|g(k)|
α(k) = 1/(350+k)
α(k) = 0.01/sqrt(k)
α(k) = 0.002/(sqrt(k)*|g(k)|)
original algorithm

Figure 6.22: Convergence for algorithm by Nesterov

de�nition needs the central master algorithm. The norm of inconsistency during iterates

is depicted in Figure 6.23, both for the algorithm with f∗ known and with f∗ unknown.

The Polyak's algorithm for f∗ known reaches the threshold in 252th iteration, while for

f∗ unknown in 395th iteration.

For the optimal value unknown it is not possible to use the estimate by Bertsekas,

because the assumption f (k)best = max0≤i≤k f(x(i)) > 0 does not hold (see 4.4.2 for de-

tailed explanation), so the estimate by Nedic was used, modi�ed for searching for the

maximum. As we described in 4.4.2, the algorithm uses four parameters - initial value

of the target parameter δ0, its minimal value δmin, and parameters for its update σ and

β (�fth parameter could be κ(k) from 4.17). Those parameters should be adjusted in

order to get �the best� result, which can make the implementation a bit tricky. In this

particular case the values

δ0 = 1, δmin = 0.05, σ = 1.4, β = 0.9 (6.2)

(and κ = 1 for all iterations) were chosen.

For this algorithm it can be interesting to observe the function values - in the Figures

6.24 and 6.25 we can see the distance to the optimal value during iterates for the f∗

known and f∗ unknown.

6.1.6 Comparison of di�erent step size rules

In this subsection we compare together convergences of all the step size rules presented.

This comparison is provided in the Table 6.1 and the Figure 6.26, where we used those

parameters of various step size rules, which were identi�ed by red color in previous

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 59

50 100 150 200 250 300 350 400

10
−2

10
−1

10
0

10
1

10
2

Norm of inconsistency for algorithm by Polyak

iterates

|y
−

E
z|

f* known
f* unknown

Figure 6.23: Convergence for algorithm by Polyak

50 100 150 200 250

10
−4

10
−3

10
−2

10
−1

10
0

Distance to optimum during iterates

|p
*−

f(
x(k

))|

iterates

f(x(k))

f
best

(x(k))

Figure 6.24: Distance to the optimum - Polyak, f∗ known

0 50 100 150 200 250 300 350 400
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Distance to optimum during iterates

|p
*−

f(
x(k

))|

iterates

f(x(k))

f
best

(x(k))

Figure 6.25: Distance to the optimum - Polyak, f∗ unknown

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 60

200 400 600 800 1000 1200 1400 1600 1800 2000

10
−2

10
−1

10
0

Norm of inconsistency − comparison of various algorithms

iterates

|y
−

E
z|

α = 0.00395
α(k) = 0.0001/|g(k)|
α(k) = 40/(10000+k)
α(k) = 0.030/sqrt(k)
α(k) = 0.005/(sqrt(k)*|g(k)|)
Nesterov original
Polyak f* known

Figure 6.26: Comparison of convergences of all step size rules used

step size rule α(k) = . . . parameter(s) # of iterates to reach threshold

α α = 0.00395 1020

γ/
∥∥g(k)∥∥

2
γ = 0.0001 > 12000

a/(b+ k) a = 40, b = 10000 1059

a/
√
k a = 0.030 4969

a/(
√
k
∥∥g(k)∥∥

2
) a = 0.005 > 12000

Nesterov - original - 272

Nesterov - modi�ed α = 0.0026 273

Polyak - f∗ known - 252

Polyak - f∗ unknown see Eq. 6.2 395

Table 6.1: Comparison of convergences of all step size rules used

subsections. The algorithms by Polyak (with f∗ known) and Nesterov give the fastest

convergence. The algorithm by Polyak has an obvious advantage - it already knows the

optimal value. In addition, both of those algorithms (together with version of Polyak

with f∗ unknown) use the information from all subsystems, as we said in Subsection

6.1.4. This can be one of the factors that makes their convergence that fast. Mod-

i�ed Nesterov's algorithm (with constant step size) has good convergence properties,

although it does not need the function values of subsystems and thus the coordinator

does not need to be implemented centrally. Polyak's algorithm with f∗ unknown and

modi�ed Nesterov's algorithm are not depicted in the Figure 6.26 for sake of simplicity.

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 61

As we already indicated in last subsection, the number of parameters which have to

be tuned in case of particular step size rule, is relevant for practical application. The

most parameters (four) are needed in case of Polyak's algorithm with f∗ unknown. For

the square summable, but not summable step size rule, using the sequence a/(b + k),

there are two parameters, for other basic step size rules there is only one parameter

to be tuned. In case of Nesterov's algorithm in its original form there is no particular

parameter, although as we stated in Subsection 4.4.3, the Lipschitz constant could

simplify the computation. In case of its modi�cation the situation is the same as in the

case of basic step size rules. In case of Polyak's algorithm with f∗ known only that f∗

can be perceived as the parameter, but it is not subject to tuning in a common sense.

We can conclude this section by stating that for this engineering problem the mod-

i�ed Nesterov's algorithm (with constant step size) was the most suitable, ensuring

reasonably good convergence properties with relatively easy implementation.

6.2 Static control - industrial energy network

6.2.1 Problem formulation

The second problem of practical part of the thesis is based on the industrial energy

network consisting of three boilers, three headers, three turbines, one condensation unit

and duct connecting them, see Figure 6.27. The steam produced by boilers (let's mark

them B1, B2 and B3) is stored in headers (H0, H1 and H2), and is used by turbines (T1,

T2 and T3) to produce electric energy. There is also demand on steam from headers

(values D0, D1 and D2, together D = [D0, D1, D2]
T), which has to be satis�ed. The

condenser C, where surplus of steam can be condensed, is connected to turbine T2. We

want to maximize the pro�t in the network ensuring that the demand is satis�ed and

�ows in the duct are within speci�ed limits.

B3

B1 B2

H0

T2 T1

T3

H1

H2

D1

D2

C

D0

Figure 6.27: Industrial energy network scheme

For all boilers cost functions are de�ned representing the costs of producing the

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 62

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4 Cost curves for boilers

Steam flow [ton/h]

C
os

t [
C

Z
K

/h
]

Subsystem I. − B1
Subsystem II. − B2
Subsystem V. − B3

Figure 6.28: Cost curves for boilers

steam �ow. The cost curves were derived from e�ciency curves, which are part of

boiler static tests in [BOIL10], using the equation

C = CF.
dH
Vhh

.
y

η(y)
, (6.3)

where the scalar values' meaning is

C total cost of produced steam [CZK/h],

y steam �ow produced [ton/h],

η = η(y) e�ciency, η ∈ 〈0, 1〉[-],

CF price of fuel [CZK/ton],

dH steam enthalpy di�erence (gain) [kJ/kg],

Vhh fuel higher heating value (HHV) [kJ/kg].

Reasonable practical values Vhh = 17400 kJ/kg, dH = 2517 kJ/kg, CF = 400CZK/ton

were considered, giving the equation

C = 57.86
y

η(y)
, (6.4)

for what the e�ciency curve for oxygen level LO2 = 3.0 % was selected. The result was

adjusted for three di�erent boilers, depicted in Figure 6.28. There it can be seen that

the curves are not convex - it is necessary to omit the part of the curves below 30 ton/h

to preserve the convex nature of the problem. This is completely acceptable from the

practical point of view, because the boilers are not working at those low values of steam

�ow.

In case of turbines the revenue from production of electric power is de�ned - the

quadratic model of turbine was taken from [TURB10], where for two sections it has a

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 63

F1 F2

yy
1 2

yin

Figure 6.29: Two-section turbine scheme

form of

P = a0 +

2∑
i=1

biFi +

2∑
i=1

ciF
2
i , (6.5)

where P is the power generated in [MW] and Fi are �ows through sections in [ton/h].

The equation was transformed to have the �ows through outputs y1 = F1 − F2 and

y2 = F2 as the independent variables (see Figure 6.29). The revenue as the function of

steam �ow through outputs is then

R = CE.P (y1, y2), (6.6)

where CE is the price of electricity [CZK/MW]. The resulting revenue curves for price

CE = 1440CZK/MW were adjusted for di�erent two-stage turbines and depicted in

Figure 6.30. One-stage turbine revenue curve is shown in Figure 6.31.

For the problem formulation, we can choose the formulation for maximizing the

pro�t (revenues minus cost (expenditures) [GAAP11]) for all network, or minimizing

its negative value (cost minus revenues). Let's choose the second option, so we want to

minimize J =
3∑
i=1

Ci −
3∑
j=1

Rj ,

where the values Ci and Rj correspond to Equations 6.3 or 6.6 for particular device.

The objective function is measured in [CZK/h]. When the notation JM is introduced

(againM is indexing all subsystems,M ∈ {I., ..., V I.}, see Figure 6.32), then for boilers
(MB ∈ {I., II., V.}) the objective function is

JM = JMB((y)MB
) = CMB((y)MB

),

and for turbines (MT ∈ {III., IV., V I.})

JM = JMT((y)MT
) = −RMT((y)MT

).

As we said, there is a demand, which is speci�ed as D = [50, 150, 200]T , and the steam

�ow in duct y is limited (to not damage the duct) by the interval y ∈ 〈10, 200〉 ton/h.

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 64

0

50

100

150

200

0
50

100
150

200

−3

−2.5

−2

−1.5

−1

−0.5

x 10
4

Output y
2
 [ton/h]Output y

1
 [ton/h]

N
eg

at
iv

e
re

ve
nu

e
[C

Z
K

/h
ou

r]

Subsystem III. − T1

Subsystem IV. − T2

Figure 6.30: Revenue functions of turbines T1 and T2

0 50 100 150 200

−15000

−10000

−5000

0

Revenue curve for subsystem VI. − T3

Steam flow [ton/h]

N
eg

at
iv

e
re

ve
nu

e
[C

Z
K

/h
ou

r]

Figure 6.31: Revenue curve for turbine T3

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 65

B1 B2

T1T2

I. II.

III.IV.

V.

VI.

B3

T3

H0

H1

H2

y y

yy

y yy

y

y

y

y

1 2

34

5

8

9

10

cond

6

7

Figure 6.32: Industrial energy network - block diagram

Now we have all information needed to formulate the optimization problem:

minimize
∑
M

JM ((y)M) (6.7)

subject to 10 � y � 200

y3 = y5 + y9

y4 = y7 + ycond

y8 = y10

50 = y1 + y2 − y3 − y4
150 = y5 + y6 + y7 − y8
200 = y9 + y10,

where �rst three equality constraints represent the balance equations (sum of inputs

must equal to the sum of outputs) in turbines and the last three equality constraints

balance equations at headers - to ensure the physical feasibility. To sum up, we are

searching for the optimal amount of steam �ows in duct (vector y) satisfying the physical

constraints and the demand.

6.2.2 Distributed algorithm and its solution

To solve this problem we derive the graph corresponding to the problem formulation

- as depicted in Figure 6.32. On that graph there are two types of nodes - �standard�

nodes, where the local optimization takes place, and �net constraint� nodes representing

the condition of the net adjacent to them, which has to be satis�ed. Balance equations

at turbines can be incorporated into optimization of subproblems, as well as inequality

constraints on y. On the other hand balance equations at headers involve di�erent

elements of vector y, implying the �net constraint�.

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 66

The graph can be represented by matrix (we are not considering the �ow ycond which

is not connecting two nodes and can be derived from values y4 and y7)

E = I10

together with net constraint matrix

EC =

 1 1 −1 −1 0 0 0 0 0 0

0 0 0 0 1 1 1 −1 0 0

0 0 0 0 0 0 0 0 1 1

 .
This means that we want to solve the problem (supposing that the balance equations

of turbines and duct constraints on y are incorporated into subproblems)

minimize
∑

M JM ((y)M) (6.8)

subject to (y)M = (E)Mz

D = ECz.

The cost function is f : Rn → R, where in this particular case n = 10, and let r denote

the rank of EC , in this case r = 3.

We know from Section 5.4 that z is the vector of common values of public variables

on the hyperedges. We can incorporate the net constraints to the algorithm described

in 5.4.2 and solve it in a way presented there, if we notice that the set

{z|F = ECz, z ∈ Rn} =
{
z0 +Nw|w ∈ Rn−r

}
. (6.9)

There z0 is any particular solution of F = ECz and N is a matrix whose range is null

space of EC . Then the problem

minimize f̃(w) = f(z0 +Nw)

is an unconstrained problem with w ∈ Rn−r. From its solution w∗ we can calculate

solution of the constrained Problem 6.8 as

z∗ = z0 +Nw∗.

So during the algorithm 5.2 the master computes values of public variables at each net

from the equation

y = Ez = E(z0 +Nw) = Ez0 + ENw.

Let's introduce matrix EN = EN . Then

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 67

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180
Steam flows

st
ea

m
 fl

ow
 [t

on
/h

]

iterates

y
1

y
2

y
3

y
4

y
5

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180
Steam flows

st
ea

m
 fl

ow
 [t

on
/h

]

iterates

y
6

y
7

y
8

y
9

y
10

y
cond

Figure 6.33: Distributed solution obtained by constant step size rule

y − Ez0 = ENw

ETN (y − Ez0) = ETNENw

(ETNEN)−1ETNy − (ETNEN)−1ETNEz0 = w. (6.10)

The vector (z0 + Nw) contains the values of common public variables at each net re-

specting the net constraints and is used for updating the prices (Lagrange's multipliers).

This approach corresponds to the explanation in Chapter 10 of the book [BOYD09].

Figure 6.33 shows how the allocation in the network is changing during iterates of

the algorithm, using constant step size rule with α = 0.45. At the �rst iterate the

subsystems' separate optimal solutions are obtained - the boilers (y1, y2 and y6) have

the initial amount of steam �ow at the lowest possible value (because the production

of steam only induces costs), but after a few iterates they have to produce the steam

in order to satisfy the demand and obtain physically realizable solution. The boiler

B3 (subsystem V., �ow y6) initiates its production as the last one (because its price

curve is the most expensive from the three boilers), in�uencing the allocation of steam

to turbines - for example in case of turbine T1 (subsystem III., �ows y3, y5 and y9)

the splitting into two output �ows is then changed making the �ow y9 more favorable,

because it creates more revenue. Particular values after the 60th iterate, which we

consider as a solution, are shown at Table 6.2. The norm of inconsistency reaches the

value of ‖y − Ez‖2 = 0.0103. The optimal function value (negative pro�t) is f∗
distrib

=

−25.1 · 103CZK/h.

6.2.3 Comparison to centralized approach

The solution obtained by centralized approach can be seen in the Table 6.3. Comparing

it with the Table 6.2 we can see that the biggest di�erence is 0.77 ton/h in the ycond value,

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 68

Flow Value [ton/h] Flow Value [ton/h]

y1 152.13 y6 110.37

y2 170.86 y7 110.46

y3 129.15 y8 114.40

y4 143.85 y9 85.60

y5 43.55 y10 114.40

ycond 33.39

Table 6.2: Distributed solution - α = 0.45, after 60th iterate

Flow Value [ton/h] Flow Value [ton/h]

y1 151.98 y6 109.89

y2 170.74 y7 111.14

y3 128.96 y8 114.40

y4 143.76 y9 85.60

y5 43.36 y10 114.40

ycond 32.62

Table 6.3: Centralized solution

which is not exceeding the relative error 3 %. In case of other steam �ows the situation is

better, so we can conclude that the solution obtained by decentralized solution after 60

iterates is acceptable (higher precision could be reached by higher numbers of iterates).

Thus in next subsection the threshold for measure of inconsistency will be set to the

value ‖y − Ez‖2 = 0.01 for selected step size rules comparison. The optimal function

value (negative pro�t) is f∗
central

= −24.7 · 103CZK/h.

6.2.4 Comparison of selected step size rules

In this subsection the comparison of selected step size rules is provided. Step size rules

easily implementable and with reasonably fast convergence were selected - the constant

step size (with α = 0.8), the square summable, but not summable step size (with the

sequence α(k) = a/(b+k) = 30/(20+k)), the non-summable diminishing step size (with

the sequence α(k) = a/
√
k = 2/

√
k) and modi�ed Nesterov's algorithm with constant

step size (α = 0.55). The values of parameters were again chosen to obtain �the best�

results for each step size rule (by engineering guess, without proof).

Figure 6.34 shows the convergence of those step size rules, with stopping criterion

‖y − Ez‖2 = 0.01. The number of iterates needed to reach this stopping criterion is

pointed out in the Table 6.4. Nesterov's modi�ed rule with constant step size reaches

the threshold in the lowest number of iterates. Second best convergence is provided by

constant step size rule, while the two last rules have the same number of iterates for

given threshold.

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 69

5 10 15 20 25 30 35 40

10
−2

10
−1

10
0

10
1

10
2

Norm of inconsistency − comparison of various algorithms

iterates

|y
−

E
z|

α(k) = 0.8
α(k) = 30/(20+k)
α(k) = 2/sqrt(k)
Nesterov, α = 0.55

Figure 6.34: Comparison of convergences of all step size rules used

step size rule α(k) = . . . parameter(s) # of iterates to reach threshold

α α = 0.8 33
a
b+k a = 30, b = 20 43
a√
k

a = 2 43

Nesterov - modi�ed α = 0.55 30

Table 6.4: Comparison of convergences of all step size rules used

6.2.5 In�uence of electricity price

As an additional problem, let's investigate how the allocation in steam network would

be in�uenced by di�erent prices of electricity. For example there could be three tari�s,

which in�uence the revenue we get from turbines and thus the optimal allocation of

steam �ows. We choose three values of price CE ∈ {1440, 2000, 2500} CZK/MW and

compare the solutions. In practice it would be possible to prepare the solutions for

di�erent situations (di�erent price of electricity, or price of fuel) o�ine and then to use

allocation tables to select appropriate optimal allocation for particular conditions.

The part of results obtained for the di�erent prices of electricity is shown in the

Table 6.5, as well as in Figure 6.35 (for the price CE = 1440CZK/MW the results were

already shown in Figure 6.33). There we see that for higher prices of electricity the

higher amount of steam is produced in boilers and higher volume goes to the condenser

- satisfying the demand in headers the condenser presents the degree of freedom of the

system. The di�erence in revenue generated by turbines is big enough to overcome the

di�erence of costs implied in boilers, which have to work in less e�cient area. That

makes the bigger pro�t, which is depicted in the Table 6.6.

CHAPTER 6. APPLICATIONS TO ENGINEERING PROBLEMS 70

Subsystem CE = 1440 CE = 2000 CE = 2500

B1 152.13 158.74 162.53

B2 170.86 176.35 179.52

B3 110.37 124.83 133.14

T1 - �rst output 43.55 51.17 55.68

T1 - second output 85.59 85.55 85.47

T2 - �rst output 110.46 88.28 75.26

T2 - condenser 33.39 60.19 75.91

T3 - �rst output 114.40 114.37 114.32

Table 6.5: Flows [ton/h] at selected subsystems for di�erent CE [CZK/MW]

CE = 1440 CE = 2000 CE = 2500

Pro�t [CZK/h] 25.1 · 103 49.0 · 103 71.1 · 103

Table 6.6: Pro�t for di�erent CE [CZK/MW]

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180
Steam flows

st
ea

m
 fl

ow
 [t

on
/h

]

iterates

y
1

y
2

y
3

y
4

y
5

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180
Steam flows

st
ea

m
 fl

ow
 [t

on
/h

]

iterates

y
6

y
7

y
8

y
9

y
10

y
cond

(a) CE = 2000CZK/MW

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180
Steam flows

st
ea

m
 fl

ow
 [t

on
/h

]

iterates

y
1

y
2

y
3

y
4

y
5

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180
Steam flows

st
ea

m
 fl

ow
 [t

on
/h

]

iterates

y
6

y
7

y
8

y
9

y
10

y
cond

(b) CE = 2500CZK/MW

Figure 6.35: The solutions for di�erent CE

Chapter 7

Conclusion

7.1 Investigative part

The �rst objective of this thesis was to investigate the decomposition methods for

optimization problems and apply this framework into model predictive control. The

overview of model predictive control was done �rst (in Chapter 2), as well as the review

of basic optimization terms such as duality, Lagrangian or KKT conditions (Chapter

3). Overview of both topics was supported by examples to get better insight into the

subject matter - the MPC with blocking and soft constraint and the physical meaning

of Lagrange multipliers were presented.

Based on the background research, which was focused on decomposition methods

and distributed MPC, its historical roots and state-of-the-art (presented in Appendix

A), the subgradient methods were chosen to solve the master problem of distributed

algorithm. Those subgradient methods were investigated in more detail (in Chapter

4), especially the projected subgradient method for dual problems (in Subsection 4.2).

In addition, di�erent step size rules were presented, together with advanced step size

rules by Polyak and Nesterov. The decomposition methods were summarized and the

general form for both primal and dual decomposition was applied to basic example of

interconnected systems (Chapter 5).

7.2 Implementation part

The core of the application part was to apply the decomposition concepts to engineer-

ing problems, which in the large scale can be too demanding (even intractable) for

centralized solution (Chapter 6) - the ability to handle large problems is the �rst main

advantage of decomposition methods. The �rst problem was the control of three in-

terconnected systems with given reference signals, that are controlled by MPC. Dual

decomposition algorithm was implemented in MATLAB to solve the problem of optimal

71

CHAPTER 7. CONCLUSION 72

control in one sampling period, using projected subgradient method with a�ne projec-

tion to solve that dual problem. As the stopping criterion the norm of inconsistency

was the most suitable. The solution was compared to the centralized one and it was

shown that for su�cient number of iterations they are the same. All the step size rules

mentioned were implemented.

The second example was the static optimization of industrial energy network, com-

posed of three boilers, three turbines and three headers. The problem was to �nd

optimal load allocation for steam produced by boilers and used by turbines to maxi-

mize the pro�t, respecting given physical constraints and satisfying the steam demand.

The framework of decomposition techniques had to be enhanced by �net constraint� in

this case. The solution obtained by the distributed approach was again successfully

compared to the centralized solution.

7.3 Innovative part

Di�erent possibilities of practical deployment of decomposition methods were depicted

- master algorithm can be situated centrally, distributed to nets or located in particular

subsystems. This brings the second advantage of the concept, the modularity. Various

features of those solutions were commented, giving the reasons why for the algorithms

by Nesterov (in original form) and Polyak the master have to be located centrally.

Convergence properties (in terms of inconsistency norm) of all the step size rules

were investigated thoroughly using the MPC problem. The features of all step size

rules were commented. The comparison of the convergences was provided, showing

that the algorithms of Nesterov and Polyak with f∗ known give the fastest convergence

rates. One of the reasons is that they use the function values from all subsystems (thus

located centrally). The modi�cation of Nesterov's algorithm (with constant step size

or square summable, but not summable step size rule) gives comparable convergence

rates without need for those function values. In case of basic step size rules the fastest

convergence was achieved by the constant and the square summable, but not summable

step size rule. From practical point of view the number of parameters, which have to

be tuned for particular problem, is also important and was commented. Nesterov's

modi�ed algorithm needs only one (or two) parameters to tune, so from the analysis it

looks as the most suitable option for solving the master algorithm.

In the industrial energy network problem the convergence properties of selected step

size rules were also compared, the good performance of Nesterov's modi�ed algorithm

was repeated even in solution of this problem. The in�uence of price of electricity to

steam �ow allocation was investigated - the higher price of electricity makes boilers

to work even in the lower e�ciency zone, because turbines then generate revenues

overcoming the increase in costs.

Bibliography

[BAKU08] BAKULE, L. Decentralized control: An overview, Annual Reviews in Con-

trol, Volume 32, Issue 1, April 2008, Pages 87-98, ISSN 1367-5788.

[BEND62] BENDERS, J.F. Partitioning procedures for solving mixed-variables pro-

gramming problems. Numerische Matematik. 1962, 4, s. pp. 238-252.

[BERT99] BERTSEKAS, Dimitri. Nonlinear Programming. Second edition. Belmont,

Massachusets : Athena Scienti�c, 1999. 791 p. ISBN 1-886529-00-0.

[BOIL10] Boiler Static Tests: Report, Release 110 Draft. Honeywell International Inc.

2010, HPL-21-307-0311-01, p. 1-29.

[BOYD07] BOYD, Stephen, et al. Notes on Decomposition Methods [online]. Stanford

: Stanford University, 2007-02-12 [retrieved 2011-01-28]. Accessible from:

<http://www.stanford.edu/class/ee364b/...

...notes/decomposition_notes.pdf>.

[BOYD08] BOYD, Stephen; MUTAPCIC, Almir. Subgradient Methods. In

Notes for EE364b, Stanford University, Winter 2006-2007. [on-

line] April 13, 2008 [retrieved 2011-04-08]. Accessible from:

<http://www.stanford.edu/class/ee364b/...

...lectures/subgrad_method_notes.pdf>

[BOYD09] BOYD, Stephen; VANDENBERGHE, Lieven. Convex optimization

[online]. Seventh printing with corrections 2009. New York, USA

: Cambridge University Press, 2004 [retrieved 2011-01-28]. Accessi-

ble from: <http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf>.

ISBN 0521833787.

[CHAL10] CHALOULOS, Georgios; HOKAYEM, Peter; LYGEROS, John. Distributed

Hierarchical MPC for Con�ict Resolution in Air Tra�c Control. 2010 Amer-

ican Control Conference : Baltimore, MD, USA .

[CHEN82] CHEN, C.C.; SHAW, L. On receding horizon control. Automatica,

16(3):349�352, 1982.

I

BIBLIOGRAPHY II

[CUTL80] CUTLER, C.R.; RAMAKER, B.L. Dynamic matrix control - a computer

control algorithm. Proceedings of the Joint Automatic Control Conference,

1980. Vol. 1. San Francisco, CA. Paper No. WP5�B.

[DANT60] DANTZIG, G.B.; WOLFE, P. Decomposition principle for linear programs.

Operations Research, 8: 101-111, 1960.

[DING10] DING, Bao-Cang. Modern Predictive Control. USA : CRC Press, 2010. 276

p. ISBN 978-1-4200-8530-3.

[EVER63] EVERETT, Hugh. Generalized Lagrange Multiplier Method for Solving

Problems of Optimum Allocation of Resources. Operations Research. May-

June 1963, Vol. 11, No. 3, , s. pp. 399-417.

[GAAP11] GAAP [online]. 2011-10-24 [retrieved 2011-12-19]. Rozdíl v £eských a an-

glických pojmech. Accessible at:

<http://www.gaap.cz/index.php?ln=1&tm=5&om=191...

...&z_id=a_diskuse_c&msg=4101&sl=4101>

[GONZ08] GONZAGA, Clovis; KARAS, Elizabeth. Optimal steepest descent algo-

rithms for unconstrained convex problems: �ne tuning of Nesterov's method.

[online] Optimization Online, 2008. [retrieved 2011-12-26]. Accessible at:

<http://www.optimization-online.org/DB_FILE/2008/08/2062.pdf>

[HAVL96] HAVLENA, Vladimír; �TECHA, Jan. Moderní teorie °ízení. Praha : Vyda-

vatelství �VUT, 1996. 291 s. ISBN 80-01-01076-7

[HAVL05] HAVLENA, Vladimír; LU, Joseph. A distribute automation framework for

plant-wide control, optimisation, scheduling and planning. Proceedings of the

16th IFAC World Congress : Prague, Czech Republic. July 2005.

[HONE11] HONEYWELL PRAGUE LABORATORY. Test of Nesterov Accelerated

Gradient Method. M-�le. Prague, 2011.

[INST10] Institut fur Automatic [online]. 2010-04-05 [retrieved 2011-01-12]. Stochastic

MPC Group. Accessible at: <http://control.ee.ethz.ch/~smpc/>.

[JADB09] JADBABAIE, Ali; OZDAGLAR, Asuman; ZARGHAM, Michael. A Dis-

tributed Newton Method for Network Optimization. Joint 48th IEEE Con-

ference on Decision and Control and 28th Chinese Control Conference :

Shanghai, P.R. China, December 16-18, 2009.

[JAVA10] JAVALERA, Valeria; MORCEGO, Bernardo; PUIG, Vicenç. Negotiation

and Learning in Distributed MPC of Large Scale Systems. 2010 American

BIBLIOGRAPHY III

Control Conference : Marriott Waterfront, Baltimore, MD, USA June 30-

July 02, 2010.

[KEVI05] KEVICZKY, Tamas; BORRELLI, Francesco; BALAS, Gary J. Stability

analysis of decentralized RHC for decoupled systems : Proceedings of the

Joint 44th IEEE Conference on Decision and Control and European Control

Conference, pages 1689�1694, Seville, Spain, December 2005

[KULH11] KULHÁNEK, Petr. TF1: Teoretická mechanika: Studi-

jní text pro doktorské studium [online]. 2. dopln¥né vydání.

Praha: FEL �VUT, 2011 [retrived 2012-01-02]. Accessible at:

<http://www.aldebaran.cz/studium/mechanika.pdf>

[LANG03] LANGBORT, C.; D'ANDRE, R. Distributed control of heterogeneous sys-

tems interconnected over an arbitrary graph. Decision and Control, 2003.

Proceedings. 42nd IEEE Conference, pp. 2835- 2840 Vol.3, 9-12 Dec. 2003

[LANG04] LANGBORT, C., et al. A decomposition approach to distributed analysis

of networked systems. 43rd IEEE Conference on Decision and Control. De-

cember 14-17, 2004, pp. 3980-3985.

[LAU72] LAU, R.; PERSIANO, R. M.; VARAIYA, P. Decentralized information and

control: A network �ow example. IEEE Trans. Autom. Control., vol. AC17,

pp. 466-473, August 1972

[LASD68] LASDON, Leon. Duality and Decomposition in Mathematical Programming.

IEEE Transactions on Systems and Cybernetics. JuIy 1968, Vol. ssc-4, No.

2.

[MACE02] MACIEJOWSKI, Jan. Predictive Control : with Constraints. 2nd edition.

Essex, England : Pearson Education Limited, 2002. 309 p. s. ISBN 0-201-

39823-0.

[MAES09] MAESTRE, J. M.; MUNOZ DE LA PENA, D.; CAMACHO, E. F. . Dis-

tributed MPC based on a cooperative game. Joint 48th IEEE Conference

on Decision and Control and 28th Chinese Control Conference : Shanghai,

P.R. China, December 16-18, 2009.

[MATH11] Mathworks [online]. 1994-2011 [cit. 2011-10-07]. MATLAB

- The Language Of Technical Computing. Accessible at:

<http://www.mathworks.com/products/matlab/>

[MESA70] MESAROVI�, M. D.; MACKO, D; TAKAHARA, Y. Theory of Hierarchical,

Multilevel Systems. Academic Press, New York, London, 1970.

BIBLIOGRAPHY IV

[MENI09] MENINGHED, K.; AUBRUN, Ch.; YAME, J. . Distributed State Es-

timation and Model Predictive Control : Application to Fault Tolerant

Control. 2009 IEEE International Conference on Control and Automation

Christchurch, New Zealand, December 9-11, 2009.

[NECO08] NECOARA, Ion; SUYKENS, Johan. A proximal center-based decomposi-

tion method for multi-agent convex optimization. 47th IEEE Conference on

Decision and Control : Cancun, Mexico, Dec. 9-11, 2008

[NEDI02] NEDIC, Angelia. Subgradient Methods for Convex Minimization [online].

Massachusetts Institute of Technology, 2002. 174 p. Dissertation. Accessi-

ble at: <https://net�les.uiuc.edu/angelia/www/mit_thesis.pdf>

[NEDI08] NEDIC, Angelia. Lecture 19: Subgradient methods [on-

line]. MIT, 2008 [retrieved 2011-05-12]. Accessible at:

<https://net�les.uiuc.edu/angelia/www/>

[NEST83] NESTEROV, Y. A method for unconstrained convex minimization problem

with the rate of con- vergence O(1/k2). Doklady AN SSSR (translated as

Soviet Math Docl), 269:543 � 547, 1983.

[NEST04] NESTEROV, Y. Introductory lectures on convex optimization.

Boston/Dordrecht/London: Kluwer Academic Publishers, 2004. ISBN

1-4020-7553-7.

[NEST05] NESTEROV, Y. Smooth minimization of non-smooth functions. Mathemat-

ical Programming (A), 103(1):127�152, 2005.

[NOCE06] NOCEDAL, Jorge; WRIGHT, Stephen. Numerical Optimization. 2nd edi-

tion. USA : Springer, 2006. 664 p. 85 illus s. ISBN 978-0-387-30303-1.

[PALO06] PALOMAR, Daniel; CHIANG, Mung. A Tutorial on Decomposition Meth-

ods for Network Utility Maximization. IEEE JOURNAL ON SELECTED

AREAS IN COMMUNICATIONS, VOL. 24, NO. 8, AUGUST 2006.

[POLY87] POLYAK, Boris. Introduction to Optimization. USA : Optimization New

York, 1987. 464 p. ISBN 0-911575-14-6.

[RANT09] RANTZER, Anders. Dynamic Dual Decomposition for Distributed Control.

American Control Conference : St.Luis, USA, June 10-12, 2009.

[ROSS03] ROSSITER, J. A. Model-based predictive control, a practical approach. CRC

Press, 2003. Boca Raton-London-New York. 318 p. ISBN 0-8493-1291-4

BIBLIOGRAPHY V

[SCHO85] SCHOR, N. Z. Minimization Methods for Non-Di�erentiable Functions.

Springer- Verlag, 1985. Berlin-Heidelberg-New York-Tokyo. 162 p. ISBN 3-

540-12763-1

[SCAT09] SCATTOLINI, R. Architectures for distributed and hierarchical Model Pre-

dictive Control - A review. Journal of Process Control, Volume 19, Issue 5,

May 2009, Pages 723-731, ISSN 0959-1524.

[STECH00] �TECHA, Jan . Optimální rozhodování a °ízení. Vyd.1. Praha : �VUT,

2000. 242 p. ISBN 80-01-02083.

[STECH10] �TECHA, Jan; PEKA�, Jaroslav. Short Course on Model Predictive Con-

trol. Prague : 2010. 54 p.

[TEBB01] TEBBOTH, James Richard . A Computational Study of Dantzig-Wolfe De-

composition [online]. University of Birmingham : 2001. 237 p. Dissertation.

Accessible at: <http://www.blisworthhouse.co.uk/...

...OR/Decomposition/tebboth.pdf>.

[TURB10] Turbine Static Tests : Report; Release 2Draft. Honeywell International Inc.

2010, HPL-21-307-0322-01, p. 1-13.

[VENK06] VENKAT, Aswin. Distributed Model Predictive Control: Theory and Appli-

cations [online]. University of Wisconsin-Madison : 2006. 352 p. Dissertation.

Accessible at: <http://jbrwww.che.wisc.edu/theses/venkat.pdf>.

[WAKA08] WAKASA, Yuji, et al. Decentralized Model Predictive Control via Dual

Decomposition. Proceedings of the 47th IEEE Conference on Decision and

Control Cancun, Mexico, Dec. 9-11, 2008

[WAKA10] WAKASA, Yuji; TANAKA, Kanya; NISHIMURA, Yuki. A Distributed

Consensus Algorithm via LMI-Based Model Predictive Control and Pri-

mal/Dual Decomposition Methods. 2010 IEEE International Conference on

Control Applications : Yokohama, Japan, September 8-10, 2010.

[WANG73] WANG, S.; DAVISON, E.J. On the stabilization of decentralized control

systems. IEEE Trans. Automatic Control, vol. 18, no. 5, p. 473�478, 1973.

[YAOL09] YAO-LIANG, Yu. Nesterov's optimal gradient method [online].

University of Alberta, 2009 [retrieved 2011-12-26]. Accessible at:

<http://webdocs.cs.ualberta.ca/~yaoliang/Non-smooth Optimization.pdf>

[ZENG08] ZENG, Jing; XUE, Ding-Yu; YUAN, De-Cheng. Research and Develop-

ment Trend of Distributed MPC. Fourth International Conference on Natu-

ral Computation, 2008.

Appendix A

Background research

The purpose of this appendix is to give an overview of state-of-the-art in the �elds

of our interest - the decomposition methods and distributed MPC. The appendix is

divided into two sections, which contain description of recently published papers. The

two sections are not disjoint, so in some cases the papers were placed into one group

subjectively.

A.1 Decomposition methods

A.1.1 Distributed Newton method for network optimization [JADB09]

In this paper the distributed methods for solving minimum cost network optimization

problem are investigated. The problem can be formulated as convex optimization prob-

lem with linear equality constraints.

The authors compare two methods - dual decomposition method using subgradients

and constrained Newton method. The major shortcoming of the former method is slow

convergence rate. The latter method, which is of main interest in this paper, is based

on representation of the dual Newton direction as the solution of a discrete Poisson

equation. This representation is possible because of the sparsity of the incidence matrix

of a network, and it makes possible local computation of Newton directions.

It is shown that the Newton method has good convergence properties even when

the direction is computed with some (su�ciently small) error. To get the superlinear

local convergence properties, the backtracking step size rule is used. The simulations on

di�erent graphs show that the Newton method used outperforms the dual subgradient

method algorithm - not only in terms of a run time, but it also exhibits a tighter

variance.

VI

APPENDIX A. BACKGROUND RESEARCH VII

A.1.2 A proximal center-based decomposition method for multi-agent

convex optimization [NECO08]

In this paper new proximal center-based method is introduced for dual decomposition

of separable convex optimization problems. This method is inspired by smoothing

the Lagrangian, which was introduced by Nesterov [NEST05]. Its main advantage is

that it selects step parameters optimally (in contrast to older methods, where the step

parameter is di�cult to tune), thus improves the bounds on the number of iterations.

The method is a two-level algorithm and contrary to most other proximal-based

methods it gives more freedom to the selection of next iterates (they are not forced to

be close to the previous ones). It uses an optimal �rst-order oracle scheme to update

the multipliers (�rst-order oracle returns f(x) and the gradient).

The authors present e�ciency estimate results for general case of this method. They

prove the theorems about the bounds on the duality gap for the method. Next they

show how to choose the smoothness parameter optimally.

In the last part some applications of this method are brie�y presented � the dis-

tributed MPC framework and network optimization problem. The results of numerical

experiment in case of network optimization are presented, examining the number of

iterations needed and the accuracy of the approximation of the optimum.

A.1.3 A decomposition approach to distributed analysis of networked

systems [LANG04]

The article presents distributed algorithm for analysis of well-posedness and stability in

case of a system composed of di�erent sub-units, interconnected over an arbitrary graph.

It follows the notation, theorems and the framework introduced in paper [LANG03]

- those are reviewed in the beginning, together with the theorem about conditions,

when the system is well-posed and stable (well-posedness guarantees that all signals

circulating in the loops of the interconnected system are uniquely determined for any

initial conditions). The authors then use a decomposition method to solve analysis

conditions of this theorem in a distributed fashion.

The primal decomposition with subgradient method is used to solve a set of coupled

linear matrix inequalities coming from the analysis. The LMI conditions are reformu-

lated as an optimization problem. The master problem obtained by primal decomposi-

tion is not di�erentiable (although its decomposed parts are convex), the subgradient

method used for the solution keeps the parallelizable fashion of the algorithm.

Authors solve an example problem - �ve interconnected subsystems with large di-

mension of interconnection signals - with the algorithm presented (on one machine),

while centralized approach fails because of lack of memory. In future work they plan to

investigate the role of synchronization in truly distributed algorithms in more detail.

APPENDIX A. BACKGROUND RESEARCH VIII

A.1.4 Distributed consensus algorithm via LMI-based model predic-

tive control and primal/dual decomposition methods [WAKA10]

This paper focuses on a consensus problem - a design of distributed strategies of a group

of systems, which asymptotically converge to a common value, a consensus point. The

systems/agents have general dynamics and are organized into a cycle graph, where they

can communicate with the neighboring systems/agents.

The paper presents a centralized model predictive consensus based on linear matrix

inequality (LMI) method. Then it focuses on the solution by decomposition meth-

ods - the primal decomposition (which gives an upper bound of the optimal value of

optimization problem) and dual decomposition method (which gives the lower bound).

The algorithm combining the two methods is proposed to reduce the number of

iterations, which means the reduction of communication between the systems/agents,

while keeping the convergence to a consensus point. The e�ectiveness of the proposed

algorithm is illustrated on the numerical example.

A.1.5 Dynamic dual decomposition for distributed control [RANT09]

In the beginning the article explains basic concepts of dual decomposition techniques,

also from the game theory point of view. It uses dual decomposition technique for

decomposition of feedback systems including dynamics in both decision variables and

prices.

The author presents and proves the theorem, which shows how bounds on the

global distance from optimality can be derived from corresponding bounds for indi-

vidual agents, as well as it presents another possibility of introducing prices. Those

theorems are used to perform distributed performance validation of decentralized con-

trol laws for the linear system. Then the approach for synthesis of feedback controllers

is depicted by presenting the distributed gradient algorithm.

A.1.6 A tutorial on decomposition methods for network utility max-

imization [PALO06]

This paper gives an overview of decomposition methods and deals with the application

of those methods into network utility maximization (NUM).

First, the convexity, Lagrange duality and Jacobi and Gauss�Seidel iterations are

reviewed, as well as an implication of di�erent time scales of variable updates. The

authors then present basic �blocks� for distributed algorithm design based on primal

and dual decomposition, as well as indirect decomposition (reformulation the original

problem by introducing of auxiliary variables). From those blocks the hierarchical de-

composition with di�erent schemes can be implemented, resulting in di�erent speed

APPENDIX A. BACKGROUND RESEARCH IX

and robustness of convergence, amount and symmetry of message passing, amount and

symmetry of local computation, implications to engineering implementations, etc.

The understanding of the decomposable structures in NUM is crucial to both re-

source allocation and functionality allocation. In the last part of the paper, authors

present recent examples from the �eld of NUM on systematic search for alternative

decompositions (on the example of quality of service rate allocation), decoupling tech-

niques for coupled objective functions and decoupling techniques for coupled constraint

sets that are not readily decomposable by re-parametrization (on the example of uplink

power control wireless networks).

A.2 Distributed MPC

A.2.1 Research and development trend of distributed MPC [ZENG08]

The paper gives an overview of actual development in distributed MPC and presents

how recent literature deals with problem decomposition and assignment as well as co-

operation/communication between controllers.

Three classes of MPC framework are introduced, depending on di�erent domains

of application - single MPC controller used as a replacement of decentralized PID con-

trollers, multiple MPC controllers engineered as a replacement of decentralized PID

controllers and MPC used as supervisory layer in a cascaded setting. The authors

treat the term �distributed� (system consisting of subsystems) as more general than

�decentralized� (system consisting of strictly independent subsystems).

Authors distinguish centralized system model decomposition, when centralized model

is constructed �rst and then decomposed into subsystems, and decomposition by direct

design of subsystems and connections between them. They also present various control

strategies for distributed problems found in the literature, regarding mainly the commu-

nication between agents � for example partitioning controllers into groups, coordination

of controllers or control network capacity. Di�erent methods for system analysis of

distributed MPC are also described.

A.2.2 Distributed model predictive control: theory and applications

[VENK06]

In this dissertation the framework for control of large systems is developed through the

suitable integration of subsystem-based MPCs. The author shows that modeling the

interactions between subsystems and exchanging trajectory information among MPCs

is not su�cient to improve controller performance and does not provide even closed-loop

stability.

A cooperative distributed MPC framework, in which the objective functions of the

APPENDIX A. BACKGROUND RESEARCH X

local MPCs are modi�ed to achieve system-wide control objectives, is proposed. For

this framework properties such as feasibility, optimality and closed-loop stability are

established.

Two distributed state estimation strategies are presented, as well as subsystem

based disturbance modeling framework. Distributed MPC algorithm is extended for

distributed constrained LQR (linear quadratic regulation) and also augmented to allow

asynchronous operation among MPCs (integration of MPCs with varying computational

time requirements without requiring all MPCs to operate at the slowest computational

rate). The partial cooperation is described, which results in simpler controller network

structure and reduction in communication, but on the other hand there is no stability

guarantee (except of special cases).

A.2.3 Decentralized model predictive control via dual decomposition

[WAKA08]

The article uses dual decomposition algorithm for decentralized model predictive con-

trol, particularly the case when control outputs of subsystems have coupling constraints

represented by linear equations. Those constraints can represent a formation constraints

of multiple vehicles. The case when neighboring SISO (single input and single output)

subsystems communicate is considered - those pairs (groups) form a chain structure (so

in fact it is a distributed approach).

The procedure of derivation of the algorithm follows [BOYD09] - the Lagrangian

is formed and then dual function and dual problem are formulated (strong duality is

assumed). Because the objective function of the dual problem is not di�erentiable, the

subgradient method is used to solve the problem, with subgradient projection to the

hyperplane associated with the equality constraint. The subgradients are communicated

in each pair (group). This framework is modular - new subsystem can be added easily.

The case of subsystems with the same dynamics is considered, what simpli�es the

computations. Moreover, the extension of a chain structure is introduced - the case of

subsystem belonging to more than two communication groups. The method is illustrated

on two numerical examples - with 3 and 15 subsystems.

A.2.4 Stability analysis of decentralized RHC for decoupled systems

[KEVI05]

The article deals with system composed of distinct dynamical subsystems that can be

independently actuated, having common objective and (input and state) constraints

(RHC stands for receding horizon control). The interaction between the subsystems

is local and is represented by an interaction graph. The centralized MPC problem is

decomposed so that each controller is associated to a di�erent subsystem, local control

APPENDIX A. BACKGROUND RESEARCH XI

inputs are computed based on the states of the subsystem and its neighbors.

However, local MPC designs can lead to instability of the overall system and the

inputs computed locally are not guaranteed to be globally feasible (because at the

particular controller the prediction of neighboring states is done independently from

their subproblem solutions).

Three di�erent approaches to analyzing the stability of the entire system are pre-

sented and the theorem stating su�cient conditions for the asymptotic stability of the

closed-loop system is proved - the stability is related to the prediction mismatch (be-

tween the predicted and actual control solutions of neighbors) and the initial conditions

of the overall system. The smaller the mismatch, the larger the set of initial states for

which the system is asymptotically stable.

Authors investigate the in�uence of exchanging the optimal solutions between neigh-

bors � it has bene�cial e�ect on proving the stability, if it leads to reduced prediction

mismatch. They present rather counter-intuitive fact that approaching equilibrium

might need increasing exchange of information. However, the simulations don't show

this need, because the prediction error converges to zero at a fast rate. The predic-

tion length is also discussed � the prediction errors can increase with longer prediction

horizon, which causes worse performance or can even lead to instability. Proposed de-

centralized (distributed) framework was applied to a number of control problems, for

example formation �ight or paper machine control.

A.2.5 Distributed MPC based on a cooperative game [MAES09]

The paper presents distributed MPC algorithm for control of two constrained linear

systems coupled through inputs (this class of systems is used in modeling of supply

chains). The algorithm presented keeps the communication between two controllers

low, while obtaining a Pareto optimal solution. In terms of game theory, both agents

play cooperative game at each time step � they share information about their strategies

and cost functions in order to choose the strategy minimizing global cost function.

The authors state and proof su�cient conditions for (practical) stability of the

closed-loop system, which were obtained by terminal constraint/terminal region ap-

proach. They also provide the procedure of controller design to satisfy these conditions.

The approach is illustrated by an example with system consisting of two double inte-

grators with coupled inputs, with state and input constraints.

A.2.6 Distributed state estimation and model predictive control: ap-

plication to fault tolerant control [MENI09]

This paper deals with unconstrained distributed model predictive control of complex

and interconnected systems (�ows of material/energy/information, the linear intercon-

APPENDIX A. BACKGROUND RESEARCH XII

Figure A.1: Block diagram of controller

nections are supposed).

The cooperative strategy between controllers is used to achieve desired performance;

local state feedback is employed, using distributed Kalman �lters for unmeasurable

states. Each controller is divided into three function blocks � the optimizer, the state

predictor and the interaction predictor (see Figure A.1).

The basic idea of the algorithm is as follows: in one step, each sub-controller receives

predicted future state trajectories and control inputs from other controllers. It combines

it with its local state trajectory and control input � computes the prediction of the

subsystem interactions. It receives state estimate from local Kalman �lter and desired

trajectory (reference) over the horizon, computes the optimal control strategy and sends

it to the network (to other controllers). Then it applies the �rst element of the optimal

control strategy, computes the (local) future state trajectory and broadcasts it to other

controllers.

Presented approach is applied to a Fault Tolerant Control (FTC) problem in a dis-

tributed framework. In the numerical simulation, the actuator failure is simulated. Au-

thors would like to explore the distributed detection and isolation based on distributed

MPC formulation in the future work.

A.2.7 Negotiation and learning in distributed MPC of large scale sys-

tems [JAVA10]

The authors give a review of distributed MPC algorithms together with reasons why

they are used for control of large scale systems. They describe the Multi Agent MPC

APPENDIX A. BACKGROUND RESEARCH XIII

architecture based on partitioning of the large scale system. The architecture consists

of two main types of elements - the MPC Agent, who controls its particular partition

of the system, and Negotiator Agent, who determines the value of one or more shared

variables between two MPC Agents.

The presented architecture is non-iterative (information is distributed among regu-

lators only once at each sampling period) and cooperative (regulators optimize global

objective function). Negotiator Agents are using reinforced learning techniques based

on their experience - the algorithm used comes from Q-learning algorithm, which keeps

the reinforcement gained for each state and action (the data from centralized MPC

could be used for initializing the algorithm).

Exploiting this approach the model of water network consisting of 8 tanks (states)

and 11 valves (control variables) is controlled, partitioned into two subsystems. The

results of distributed control are compared with the centralized MPC - the decentralized

approach converges to the centralized MPC; it gives worse value of objective function,

but on the other hand in some states the distributed control gives lower error.

The control architecture described in this paper is actually being deployed on the

water network in Barcelona, with about 200 sectors and about 400 control points.

A.2.8 Distributed hierarchical MPC for con�ict resolution in air traf-

�c control [CHAL10]

The paper presents the control scheme for the con�ict resolution in air tra�c man-

agement. The control hierarchy comprises three levels � the lowest level is the Flight

Management System, which simulates the real aircraft dynamics. It uses inputs gen-

erated by middle level, the navigation functions. The navigation function (often used

in robotics) uses simpli�ed planar dynamics of the aircraft and computes a potential

�eld, where negative gradient guides the aircraft to the target, avoiding obstacles. The

main drawback of this method is that it doesn't comprehend the constraints, which are

crucial for the aircraft motion � for example minimum and maximum speed, thrust or

turning radius. That is why MPC is used at a highest level, to ensure the trajectories

respect those aerodynamic constraints.

MPC problem formulated by centralized approach (navigation functions) is non-

convex, with unbounded noise (from the wind). In order to deal with this, variation

of simulated annealing is used, based on Markov Chain Monte Carlo methods. The

optimization problem is then solved in a distributed way in each aircraft. Trajectories

are solved sequentially in each aircraft (in a round-robin fashion) � the �rst aircraft

minimizes its own cost function taking into account only the dynamic constraints of

other aircrafts, then it broadcasts the solution to all other aircrafts. This solution is

used as a constraint for the second aircraft optimization problem etc. To not prioritize

the �rst aircraft, the sequence of aircrafts could be random in each step or the �fairness�

APPENDIX A. BACKGROUND RESEARCH XIV

factor could be incorporated into the cost function of the aircrafts.

The results of presented algorithms are presented in comparison with centralized

solution, together with computation times. The best results are achieved by the fairness

factor introduced into cost function. Distributing of the problem didn't change the

feasibility of the original centralized problem. In future work the stochastic alternative

will be investigated.

Appendix B

Contents of the CD attached

The CD attached contains an electronic version of this thesis - �le Petr_Endel_2012.pdf.

The MATLAB source codes are treated as con�dential and are property of Honeywell

company.

XV

