
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Flexible Robotic Grasping

Lev Kisselyov

Supervisor: Ing. Ondřej Novák
May 2021

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483610Personal ID number:Kisselyov LevStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Flexible robotic grasping

Bachelor’s thesis title in Czech:

Flexibilní robotické uchopování

Guidelines:
1) Select at least two objects to show-case grasp planning.
2) Select grippers capable of manipulating the objects.
3) Design and implement an algorithm to determine a grasp pose for a gripper mounted on an industrial robot. The grasp
planner
should take into account kinematics of the gripper, environmental obstacles and user-specified object constrains.
4) Design and implement a program for verification of the planning algorithm by simulation for the selected objects.

Bibliography / sources:
[1] Siciliano Bruno, Khatib Oussama - Springer Handbook of Robotics - Berlin Heidelberg 2008
[2] Diankov Rosen - Automated Construction of RoboticManipulation Programs - Pittsburgh, Pennsylvania 2010
[3] Klampt Python API’s documentation - Intelligent Motion Lab - 2018

Name and workplace of bachelor’s thesis supervisor:

Ing. Ondřej Novák, Testbed, CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Ing. Pavel Burget, Ph.D., Testbed, CIIRC

Deadline for bachelor thesis submission: 21.05.2021Date of bachelor’s thesis assignment: 15.01.2021

Assignment valid until:
by the end of summer semester 2021/2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Ondřej Novák
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iv

Acknowledgements
I want to thank my supervisor Ondřej
Novák for his complete support during
the entire project flow. I am grateful for
his guidance, his advice in writing, imple-
mentation, and organizational aspects.

Thanks to Pavel Burget, because
Testbed 4.0 for Industry gave me the op-
portunity and an exciting topic to write
my thesis.

Big thanks to all my CTU friends, who
always motivated me, encouraged me to
solve the most complicated tasks during
the study.

Thanks to Tomáš Musil for advising
the right things at the right moment.

Special gratitude goes to my friend and
colleague Ivan Čermák for all the times
he helped me out of dead-ends.

Last but not least, I am very grateful to
my family and my girlfriend for the great
support during the study and the thesis.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, May 20, 2021

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze, 20. května 2021

v

Abstract
On the wave of an ubiquitous automa-
tion tendency, grasp planning automation
could reduce the time spent by the opera-
tor on planning the movement and manip-
ulation of objects using the robotic arm.
Within the project, grasp planning is sim-
ulated by applying the Klamp’t robotic
software. The thesis introduces two differ-
ent approaches to automate grasp plan-
ning: empirical and analytical. The em-
pirical algorithm is based on creating a
dataset of predefined grasps, while the an-
alytical one focuses on the mesh structure
of an object to find polygons matching
set conditions for a possible grasp. The
presented algorithms support two gripper
types, which are used to grasp several
uniquely shaped objects. To adapt a 3D
object mesh to the application require-
ments, some techniques such as mesh dec-
imation and subdivision are implemented
using Python APIs. Time computational
experiment demonstrates the behavior
each algorithm exhibits in tasks with vary-
ing complexity. Later, examples of possi-
ble applications are proposed and visual-
ized. One of the distinctive features of the
thesis is a method of defining fragile and
forbidden areas of the object by colorizing
its mesh polygons.

Keywords: Klamp’t, grasp, robotic
manipulator, motion planning, flexible
grasp, dataset, mesh, decimation,
subdivision, faces, manipulation, inverse
kinematics, visualization

Supervisor: Ing. Ondřej Novák
Testbed for Industry 4.0,
CIIRC CTU in Prague

Abstrakt
Na vlně všudypřítomné tendence auto-
matizace by mělo být automatizované
také plánování uchopovacích úkolů. To
umožňuje výrazně zkrátit čas strávený
operátorem na plánování pohybu a ma-
nipulace s objekty pomocí robotického
ramene. V rámci projektu je provedena
simulace plánování úchopů pomocí robo-
tického softwaru Klamp’t. Práce předsta-
vuje dva různé přístupy k flexibilnímu
uchopování: empirický a analytický. Em-
pirický algoritmus je založen na vytvo-
ření datové sady úchopů, které jsou pře-
dem definované. Analytický algoritmus
se zaměřuje na geometrickou strukturu
objektu a hledá polygony vyhovující na-
staveným podmínkám pro možné ucho-
pení. Prezentované algoritmy podporují
dva typy chapadel, které se používají k
uchopení několika jedinečně tvarovaných
objektů. Aby síť polygonů 3D objektu
byla přizpůsobena požadavkům aplikace,
pomocí Python API jsou implementované
některé techniky, jako je decimace sítě a
její dělení. Byl proveden experiment na
měření časové výpočetní složitosti, který
demonstruje chování algoritmů v úlohách
s různou prostorovou a polohovou složi-
tostí. Později jsou navrženy a vizualizo-
vány příklady možných aplikací. Zvláštní
pozornost je věnována vývoji metody pro
definování křehkých a zakázaných oblastí
objektu pomocí obarvení jeho síťových
polygonů.

Klíčová slova: Klamp’t, uchopování,
robotický manipulátor, plánování
pohybu, flexibilní uchopování, dataset,
síť polygonů, decimace, manipulace,
vizualizace, inverzní kinematika

Překlad názvu: Flexibilní robotické
uchopování

vi

Contents
1 Introduction 1
1.1 Motivation and goals 1
1.2 Related work 2
1.2.1 Empirical approach 2
1.2.2 Analytical approach 2
1.2.3 Simulation tools analysis 3

2 Tools, Environment, Setup 5
2.1 Device Properties 5
2.2 Software . 5
2.2.1 Klampt modules 5
2.2.2 Klamp’t tools 6

2.3 Robot . 6
2.3.1 Grippers 8

2.4 Grasped objects 10
3 Theoretical concepts 13
3.1 Polygon mesh 13
3.2 Inverse Kinematics 14
3.2.1 Different grasp definitions . . . 15

3.3 Motion-planning algorithms 16
3.3.1 Building a path 17

3.4 Collision-free movements 18
4 Implementation 19
4.1 Project’s structure 19
4.2 Empirical algorithm 20
4.2.1 Dataset generation 20
4.2.2 Using the dataset in a real-time
application 21

4.3 Analytical algorithm 21
4.3.1 Mesh geometry calculation . . 22
4.3.2 Heap creation 23
4.3.3 Subroutines 26

4.4 Fragile and forbidden areas 28
4.5 Tkinter Interface 29
5 Experiments 31
5.1 Experiment: Dataset generation 31
5.2 Experiment: Computational time 32
5.2.1 Simple scenario 33
5.2.2 Average complexity scenario . 35
5.2.3 Hard complexity scenario . . . 37

5.3 Experiment: Fragile areas 39
5.4 Application: Building a simple
sturcture . 40

5.5 Application: Industry line 41
6 Analysis and discussion 43
6.1 Experiment analysis 43

6.1.1 Heap generation results 43
6.1.2 Dataset generation 44
6.1.3 Behavior comparison 44

6.2 Fragile area detection analysis and
application . 45

6.3 Possible improvements 46
Bibliography 47
A User Guides 51
A.1 Creating a new world 51
A.2 Using the dataset algorithm . . . 52
A.3 Using the analytical algorithm . 52
A.4 Uploading and colorizing a new
object . 53
A.4.1 Blender: material assignment 53
A.4.2 Blender: face colors and vertex
array creation 53

vii

Figures
2.1 KUKA LBR iiwa robot links 7
2.2 KUKA LBR iiwa 14 R820 7
2.3 Robot PR2 uses two-fingered
adaptive gripper 8

2.4 Adaptive two-finger gripper
rendered in simulation 8

2.5 Parallel three-point DHDS gripper 9
2.6 RobotiQ adaptive three-finger
robot gripper . 9

2.7 The objects used in the project . 10

3.1 An example of a polygon mesh
used in the thesis 13

3.2 With the use of the IK numerical
solver, the feasible arm configuration
is found to achieve the specified
position of end effector in world
coordinates. 14

3.3 IK constraint formed by three
points: IK solver connects three
points on the robot with three points
in the world coordinate system . . . 15

3.4 IK constraint formed by two points
illustrated by an white axis 16

3.5 Diagram illustrates a task
execution as a combination of solving
IK problems and planning a feasible
trajectory . 17

4.1 The workflow of the empirical
algorithm . 21

4.2 Transformation between coordinate
systems . 22

4.3 Angles between each finger of the
FESTO DHDS gripper 24

4.4 Analytical algorithm summary . 25
4.5 Flashlight mesh decimation: 69%
of polygons is reduced 26

4.6 Cube mesh subdivision: each
polygon is divided into four new
ones . 27

4.7 Creating the convex hull of the
objects can significantly reduce the
number of polygons 27

4.8 The colorized object in Blender
ready to be uploaded 28

4.9 The Tkinter interface helps to
easily upload the objects into the
world. 30

5.1 Creating dataset with the objects
located at both sides of the robot to
achieve grasp configurations from
both sides. 31

5.2 Simple scenario: the object must
be transferred from one white point
to another. 33

5.3 The successful grasp is found . . . 33
5.4 Task execution time comparison
between the algorithms in simple
complexity scenario 34

5.5 Average scenario: the object must
be transferred from one white point
to another. 35

5.6 Successful grasp is performed. . . 35
5.7 Task execution time comparison
between the algorithms in average
complexity scenario 36

5.8 Complicated scenario: the object
must be transferred from one white
point to another. 37

5.9 The arm carefully retrieves the
object from the boxes 37

5.10 Task execution time comparison
between the algorithms in hard
scenario . 38

5.11 Grasping object with and without
colorizing . 39

5.12 The run of structure building
application based on analytical
algorithm . 40

5.13 Building structure with dataset
approach . 41

5.14 A low quality grasp found by the
dataset approach 41

5.15 The main milestones of the
visualization of industrial line
application . 42

6.1 Comparison of two grasps found by
different algorithms 45

viii

Tables
2.1 Properties of computer which was
used for performance evaluation . . . 5

5.1 Dataset generation time for each
object with the use of different
grippers . 32

5.2 Analytical algorithm performance
in simple scenario 34

5.3 Empirical algorithm performance
in simple scenario 34

5.4 Analytical algorithm performance
in average complexity scenario 36

5.5 Empirical algorithm performance
in average complexity scenario 36

5.6 Analytical algorithm performance
in hard scenario 38

5.7 Empirical algorithm performance
in hard scenario 38

6.1 Heap length for each object 44

ix

Chapter 1
Introduction

This chapter immerses the reader in the problems of robotic manipulation in
simulation, defines the goals of this thesis, and the methods that are actively
used to solve related tasks.

1.1 Motivation and goals

Nowadays, robotic automation enjoys rapidly growing popularity as a funda-
mental part of Industry 4.0. Such colossal popularity provokes an explosion in
the number of tasks required to automate a particular industry. The typical
way to plan a robotic application is to use simulation first. It helps to analyze
all possible outcomes accurately, thereby preventing unwanted damage to the
robot and the workspace. There are many software packages available to allow
the operator to conduct a task within the simulation. Unfortunately, this is
an energy-intensive task that takes a high amount of time to be completed.
This time can be significantly reduced by automating the process of planning
motion, grasping, and manipulating with the object. Many scientific articles
associated with automatic object grasping use neural networks, geometric
analysis, or empirical approaches for contact generation of robotic grasp.
This project focuses on the practical application of theoretical foundations
based on the powerful robotic software, Klamp’t, which enables versatile
robotic operations. Klamp’t allows to numerically solve complex problems
necessary for working with manipulator arms, such as solving an inverse
kinematic problem and planning a trajectory of movement. Moreover, the
whole process is simulated with the use of robust contact detection. The thesis
aims to create and analyze a software tool that can automatically perform a
feasible grasp by applying geometric filters or creating a dataset of predefined
grasps. As the input to the program, objects of various shapes formed by
individual mesh structures are presented. Another important aspect that
should be taken into account is the preservation of a fragile or unreliable area
of an object. The algorithm must prevent interaction with such areas, which
expands the scope of its application to situations where the priority is the
safety of the object. The workflow of the algorithm is applied to differently
shaped grippers suitable for specific tasks and multipurpose.

1

1. Introduction
1.2 Related work

To analyze the state of the art relevant for the implementation, we should
research the existing works on grasp planning and its realization. The problem
of interacting with the object is a prevalent task that was popular over several
decades on the wave of industrial automation and 3D animation. However, it
is not new: the attempts to analyze human hand movements to reproduce it
using a mechanic manipulator occurred more than a hundred years ago [8].
A geometry-driven approach to solving grasping problems is a widespread
way to design, qualify and conduct a prosperous task. Most of the existing
research work can be divided into two main categories.

1.2.1 Empirical approach

Empirical approach to grasp planning is conducted by creating a dataset of
stable predefined grasps. The foundation of the work by Aydin and Nakajima
[2] is that predefined hand postures and trajectories can be computed in
advance and stored as a dataset even for such a complicated task as human
animation. These already computed grasps can be used to adapt and generate
a new, more specific grasp. However, similarly as in [4], or [5], the objects
are represented by a compound of primitive shapes. The aim of this method
is to reduce the complexity of computation and use already implemented
methods for this specific object type. Our approach is not limited to generic
object shapes due to the specifics of the algorithm. Li and Pollard applied the
concept of storing a database [3]. There, a grasp is produced based on adapted
precaptured human movements by matching a hand and an object’s shape.
Later, the recorded motion data were used by Zhao et al. [6] to simulate
physically realistic human grasping. The same idea of saving a dataset of the
IK solver results computed in an "offline" program for a particular object is
used in this thesis’s first naive algorithm. However, as shown later, creating
a dataset for each object has its negative sides, such as a lack of flexibility.

1.2.2 Analytical approach

The central concept of the approach is a metric system, which qualifies grasp’s
potential success based on the object features. Bierbaum, Dillmann, Rambow,
and Asfour [7] applied several geometric feature filters to calculate the grasp
affordance score. Based on the score, irrelevant grasps are filtered. The one
with the highest score is chosen as the first candidate for the simulation.
Another geometric analytical approach was presented by Przybylsky, Asfour
and Dilmann a year later [23]. There, the authors analyzed 3D objects’
symmetry and designed their representation by medial axes. In the second
part of this thesis, symmetric features are used as well to find the most
suitable feasible grasp.

2

.....................................1.2. Related work

1.2.3 Simulation tools analysis

The software foundation of the project that is covered in Chapter 2.2 is based
on the works of Kris Hauser [10] [21] and his team. The package named
Klamp’t is a powerful tool that offered the resources needed for the thesis.
However, several alternatives must be mentioned. Among other robotic
simulation software packages, more widespread ones can be named, e.g., are
Graspit! [17], OpenGRASP [18]. While there are some fundamental works on
grasping based on these platforms [19], Klamp’t has a lot to be explored yet.
Existing works [22] [20] show the advantages of grasp simulation in Klamp’t.
Those papers single out this software among others for its unique approach
to creating robust contacts with objects and terrains. Contacts generated in
the simulation tend to have various artifacts. Those can be jitter, divergence,
or phantom impulses described in [21]. Hauser also offers methods to avoid
these defects.

3

4

Chapter 2
Tools, Environment, Setup

This chapter introduces the project’s setup and describes the foundation of
the work: the software, operating instruments, the robot, and other resources.

2.1 Device Properties

All the experiments within the thesis were conducted on the same device. Its
hardware and software configuration defines the computation speed, therefore
affecting the results directly.

Component Characteristics (version)
CPU Intel Core I5-6200U @ 2.3GHz
RAM 8 GB DDR4
SSD 512 GB
OS Ubuntu 18.04 LTS

Python 3.6.0

Table 2.1: Properties of computer which was used for performance evaluation

2.2 Software

As was mentioned in Section 1.1, main framework used in this thesis is
Klamp’t (Kris’ Locomotion and Manipulation Planning Toolbox). It is a
software package for modeling, simulating, planning, and optimization of
complex robots [9]. The package is implemented in C++ language and has a
SWIG binding to Python providing a Python API. The algorithm presented
in this work is implemented in Python language, and it is limited to the
capabilities of Klamp’t Python API.

2.2.1 Klampt modules

Klampt provides numerous modules for different computational and visual
tasks. The core package is klampt.robotsim, which contains definitions of
essential elements such as models of worlds, robots, simulation, visualization,

5

2. Tools, Environment, Setup...............................
inverse kinematics, and object geometry. All mathematical operations, e.g.,
vector multiplication, cross product as well as rotation operations in SO31 and
SE32 are implemented in klampt.math package providing all the necessary
tools for working with 3D geometry. The package klampt.model is responsible
for the construction of the trajectory of the robot’s movements. One of the
main things this set of functions can offer is a collision control module, which
is the cornerstone of this work.

2.2.2 Klamp’t tools

Klamp’t offers a wide variation of tools to design diverse robotic manipulations.
Within the Klamp’t visualization, the world environment can be built based
on an XML file. This file contains a robot’s definition and initialization, all
the objects’ and structures’ scales and positions, and other helpful simulation
parameters.
One of the most potent aspect of Klamp’t software is that it allows us to
solve inverse kinematics based on predefined constraints. Those may be, e.g.,
three points forming a plane or a specified rotation and translation of any
robot’s link.
Another aspect worth mentioning is a massive part of the software pack -
motion planning. It is a problem of finding a transition between two states
of the model. This transition can be realized as a feasible kinematic path or
dynamic trajectory under certain robot’s workspace limitations [11]. There
are several unique algorithms used to prepare a trajectory (a set of milestones).
Detailed description can be found in Section 3.3.
Klamp’t also provides instruments to model applications considering all
physical characteristics of robots, their control properties, and virtual sensor
data, which are not used in the thesis.

Simulation is a distinctive feature of Klamp’t. The main difference com-
paring with the alternative software packages in the method of generating
contacts: each geometry object has a thin virtual boundary layer around it,
and contacts are detected between those layers [10]. The method makes the
simulation numerically stable and allows to work with low-quality, noisy and
non-watertight 3 meshes.

2.3 Robot

The choice of the robot KUKA LBR iiwa 14 R820 is supported by the robot
characteristics. This robotic manipulator is redundant as it possesses 7 de-
grees of freedom, which is more than it is needed to achieve any possible
position within the robot’s workspace [12]. Redundancy means that inverse
kinematics has an infinite number of solutions. Hence, greater flexibility in

13D rotation group
2Special Euclidean group
3Watertight mesh is a mesh, which consists of one closed surface

6

..2.3. Robot

finding a grasp is achieved.

Figure 2.1: KUKA LBR iiwa robot links

KUKA LBR iiwa 14 R820 is a
lightweight robot with a maximum
load of 14 kg. It can be classified as a
so-called collaborative robot, mean-
ing it can cooperate with a human,
maintaining a high safety level. Al-
though the manipulator character-
istics are distinctive, the presented
algorithm can be generalized to al-
most every other robot model with
at least 6 degrees of freedom.

(a) : Picture of the robot from the
dataset.

(b) : Robot rendered in the simulation
configured by the ROB file.

Figure 2.2: KUKA LBR iiwa 14 R820

Files with .rob extension represent the model of the robot in Klamp’t.
ROB file for KUKA iiwa robot stores the information about the manipulator,
such as link structure, joint coordinates, geometry, and physical parameters.
The file also defines joint limits and pairs of links, which self-collisions are
ignored.

In the picture 2.2b the robot is illustrated in the way it is uploaded to the
world within the thesis. The initial pose can be specified in the corresponding
ROB file.

7

2. Tools, Environment, Setup...............................
2.3.1 Grippers

The choice of a gripper is crucial as it defines the application and approach
to solving the grasping problem. There is no universal gripper that can be
used in every scenario.

PR2 robot’s gripper

Figure 2.3: Robot PR2 uses two-
fingered adaptive gripper

The first model is a two-finger adap-
tive gripper. This type of gripper
is not as common as the standard
parallel one. Nonetheless, the fact
that they are able to adapt them-
selves to the different shapes of the
object (rectangular, cylinder) makes
adaptive grippers far more flexible
than their parallel alternatives. It
means that the range of applications
is broadening: we can perform sev-
eral equally successful grasps on al-
most every object’s shape without
the need of adjusting the gripper
manually. Gripper consists of five
links, each of them has a driver.

Figure 2.4: Adaptive two-finger gripper rendered in simulation

8

..2.3. Robot

FESTO parallel gripper

The second gripper introduced in this work is three-finger parallel. It is a
popular type of gripper due to its easy construction. The gripper model is
called three-point DHDS created and owned by Festo AG & Co. KG [25].
Each finger is driven by a prismatic joint and has one DOF.

(a) : Gripper rendered in simulation (b) : Gripper picture from the datasheet

Figure 2.5: Parallel three-point DHDS gripper

RobotiQ adaptive tool

The final gripper is also three-fingered. Unlike the previous one, it is more
complicated. It is patented by the company named Robotiq [26]. The gripper
has great flexibility as it consists of 13 links and each one of the fingers is
autonomous. This gripper is supported by the simulation and algorithm GUI.
Due to its high adaptivity, it can be used to conduct a two-finger and or
three-finger grasp. However, the experiments are mostly run on the other
presented grippers as they uniquely define each grasp style. The adaptive
three-finger gripper can be used for future experiments.

(a) : The gripper rendered in simulation (b) : Gripper picture from the datasheet

Figure 2.6: RobotiQ adaptive three-finger robot gripper

9

2. Tools, Environment, Setup...............................
2.4 Grasped objects

The algorithm’s input will be a 3D model of the object, and the whole project
is based on its geometric features. The types of objects presented in this
project are various in terms of model complexity. The range of objects used
starts with a simple cube displayed on the fig. 2.7a with quite simple mesh
structure and ends with objects containing more than 50 thousand mesh
elements.

Work with special gripper types also creates limitations on the shape of
objects. For example, the parallel three-finger hand is primarily used to grasp
objects of cylindric shape or containing some cylindric parts. Therefore, some
primitive-shaped objects were selected for experiments pictured in fig. 2.7b
and 2.7c.

(a) : Cube (b) : Cylinder

(c) : Sphere (d) : Bottle

(e) : Light Bulb (f) : Flashlight

Figure 2.7: The objects used in the project

In order to introduce the algorithms’ capabilities, the most demonstrative
type of object has to be chosen. For this reason, one of the suitable candidates
is a light bulb (fig. 2.7e). The bulb has a big fragile glass area that is easy to
break. Undoubtedly, this area should be avoided to plan the safe grasp in
simulation.

10

................................... 2.4. Grasped objects

Similarly, the bottle (fig. 2.7d) can be easily destructured by a real robot
in case of grasping it by the bottleneck. Moreover, the bottle cap may lead
to an unstable grasp, which means that the force closure state is not likely to
be achieved. Hence, the bottleneck and the cap area should be restricted for
the robot.

The last presented object is a flashlight illustrated in the picture 2.7f. In
this case, the button area is forbidden for grasp planning.

11

12

Chapter 3
Theoretical concepts

3.1 Polygon mesh

In computer graphics and modeling, all objects are represented by a polygon
mesh. The mesh defines the shape of an object and the quality of the object’s
representation in a visualization. Since the thesis is inextricably linked with
the work on the object’s polygon mesh, it is necessary to describe the most
relevant aspects used in it. One of the algorithms works with the triangle mesh
concept in which three vertices form every face of the object. Consequently,
three points in space define a unique plane. This fact will be used in Section
4.3.1 to compute normal vectors for each face and find a successful grasp.

Figure 3.1: An example of a polygon mesh used in the thesis

Working with the mesh is greatly affected by its characteristics. A high
number of polygons forming the object can multiply the computational time
of the algorithm presented in Section 4.3. Accordingly, the mesh is likely to

13

3. Theoretical concepts
be preprocessed1 most of the time. There are several APIs for Python that
provide tools to create, modify, and completely change the mesh structure.
Their use is discussed in Section 4.3.3.

The structure of a mesh is wholly defined in a corresponding file with .obj
extension. The file contains information about the location of vertices, normal
vectors, the vertex indices forming a face, and specified material. Klamp’t
library works with its own unique .obj file type, which contains the object’s
simulation physical parameters. It is linked with the .off file complementing
the main one with information about the faces and vertices. Nevertheless, to
establish a stable and sustainable algorithm, uploading of the object should
be adapted to the standard .obj file format. Trimesh Python library [13] is
used to achieve that. It allows to perform various triangle mesh operations,
e.g., loading different file types, repairing the mesh structure’s mistakes or
holes. With the use of trimesh, there can be uploaded common .obj and
.mtl files. Files with .mtl extension store information about the object’s
textures, colors, and materials and are used as companions to the main .obj
files. Successful loading of both files is necessary to operate on raw vertex
and face data (including face colors).

3.2 Inverse Kinematics

One of the fundamental problems in robotics is solving IK (Inverse Kinematics)
equations. It means that there have to be calculated robot’s joint parameters,
which correspond to the specified position of the end effector. Most of the
time, for complex robots, this process is being computed numerically.

Figure 3.2: With the use of the IK numerical solver, the feasible arm con-
figuration is found to achieve the specified position of end effector in world
coordinates.

Inverse kinematics module in Klamp’t provides IK Solver. It is a numerical
solver that considers arbitrary constraints to be added. The solver uses
the Newton-Raphson root solving method with line search. This numerical

1For example decimated, sub-divided or approximated by its convex hull

14

.................................. 3.2. Inverse Kinematics

method is stable and never diverges [11]. IK solver considers the limitations
of the environment, the robot’s joint limits, and tries to solve the inverse
kinematics task for the conditions specified by a user. The way the solver is
modified, the solver distinguishes algorithms from each other.

3.2.1 Different grasp definitions

For each part of the simulation, grasp is defined uniquely. The design of
the grasp definition is inextricably connected with the way the IK solver is
implemented in Klamp’t. IK constraints can be, e.g., three (or two) local
points placed on the robot and three (or two) points in the world coordinate
system; fixed orientation and translation of any of the robot’s links.
Three points define a plane in space, which has six degrees of freedom. That,
in turn, means that every rotation and translation of these three points in
the world coordinate system is distinguished. This approach to design IK
constraints of the solver is practical when the grasped object’s fixed rotation
is needed. The described points are illustrated at picture 3.3.

Figure 3.3: IK constraint formed by three points: IK solver connects three
points on the robot with three points in the world coordinate system

Two points define an axis (picture 3.4), along which a suitable rotation can
be found. That leaves the IK solver one degree of freedom. This approach is
beneficial when dealing with cylindric or any rounded objects, which can be
grasped from several directions equally.
Constraints on the robot’s links are the best way to conduct an accurate
grasp in more complicated conditions. For example, when a task involves
transferring objects from a box. It would be suitable for this type of application
to grasp objects vertically without causing damage to the environment or
robot.
It is essential to know that the constraint created by modifying the IK

objective applies to a specific robot’s link. Most of the time, it is the last link

15

3. Theoretical concepts

Figure 3.4: IK constraint formed by two points illustrated by an white axis

of the robot connected to the end effector. However, for particular application
types, when it is necessary to operate on any robot’s link, it can be specified
within the IK solver definition.

3.3 Motion-planning algorithms

To plan the trajectory connecting two robot states, a set of milestones must
be calculated to interpolate through. A milestone is a state of a robot at a
certain point of movement. Each robot configuration is defined as an array
of the robot’s joint parameters.
Klampt offers a wide selection of motion planning algorithms. The reason
to investigate different planners is that their choice significantly affects the
computational time. In some cases, the time required to complete the task can
be reduced at the cost of a more complicated trajectory containing redundant
milestones. Based on this principle, all motion planners can be divided into
two categories. Feasible algorithms are the ones that aim to choose the very
first possible path without optimization. As a result, the path can be quite
unnecessarily complicated. As soon as the optimizing algorithm finds the
path, all the next iterations are spent improving the path’s quality. Such
algorithms are asymptotically optimal but have various convergence rates.
Given the time, the solution always has a less or equal number of milestones
than a path generated by a feasible algorithm.
Some examples of planners used in the project:. SBL, which stands for Single-query, Bi-directional, Lazy in collision

checking algorithm [14]. Its simulation behavior is suitable for fast
applications, in case the simplest trajectory is not a priority.. RRT*, PRM* - optimizing planners that asymptotically converge to the

16

.............................. 3.3. Motion-planning algorithms

optimum, unlike their predecessors RRT, PRM respectively [16].. Lazy-PRM* and Lazy-RRG* are lazy optimizing planners. The key differ-
ence from PRM* is that collisions with the edges of constraints are not
constantly checked. It happens only when a better path is found [15],
which significantly decreases the computational time.

3.3.1 Building a path

The most common case of robotic manipulation with objects and environment
consists of three stages. Firstly, a transit (or pregrasp) trajectory must
be built to interpolate from the initial position of the robot to the fixed
position defined by the output of the IK solver. The part of the transit
stage is also to close the gripper, therefore conducting the grasp. When the
interaction with the object is detected, the joints of the robot’s gripper stop
their movement. The contact is generated, which means that the robot and
the attached object are ready for the subsequent motion stage - transfer
(or ungrasp) trajectory. Similarly, the motion planning algorithm relies on
the IK solver outcome. It starts planning a trajectory only in case the final
configuration is found. Finally, when the transit and transfer paths are built,
the last stage is returning the arm to the initial (or other desired) position -
retract trajectory. If the motion planning algorithm successfully finds all
feasible trajectories, the complete path is concatenated, and the motion takes
place.

Figure 3.5: Diagram illustrates a task execution as a combination of solving IK
problems and planning a feasible trajectory

17

3. Theoretical concepts
3.4 Collision-free movements

To preserve the object’s initial shape and keep the structures around them
intact, all types of collisions should be avoided unless they are designed2

to be. Therefore, the motion planning algorithms mentioned in Section 3.3
search for a non-collision trajectory based on captured robot-object, robot-
terrain, robot-robot (including self-collision), object-terrain, and object-object
interactions.
In a running program, collisions are checked at each simulation step, and the
collision takes space in case two (or more) objects’ geometries collide with a
set padding around them. Padding is used to keep a safe distance from each
other, leaving a potential implementation on a real robot.
The collision detection can be used for several other purposes, e.g., indicating
the contact of the gripper fingers with the object or checking the interaction
between the objects involved in a structure construction.

2For example collision between the robot’s gripper and the grasped object

18

Chapter 4
Implementation

This chapter introduces an insight into how two algorithms, empirical and
analytical, are designed from the programming point of view. For better
understanding, the programs’ workflow is illustrated in a scheme. There are
also presented several support programs required for the algorithm to work
in the best possible way.

4.1 Project’s structure

Each essential utility functions module, class, or wrapper is stored in a
corresponding Python module in the project folder. To understand the basic
principles of the introduced algorithms, it is necessary to get acquainted with
the relevant utility modules:. Hand_analyt.py and Hand_emp.py contain information relevant to the

application about the gripper and stores its local parameters. It is special
for each type of gripper. The IK solver configuration occurs here as it
is inseparable from connecting the gripper’s local points to the points
defined in the world coordinate system.. Motionplanning.py is a set of functions, which build every part of the
path of the robot: transit, transfer and retract.. TransitUtility.py and TransferUtility.py are modules that design
a configuration space (CSpace) of the robot for the current operation.
Here can be activated the collision checking between all structures in the
simulation world. The user can adjust Cspace to the current task, e.g.,
turn off the collision checking between objects while building a structure
with multiple elements.. Tk_Wrapper.py is responsible for the algorithm’s startup GUI window.

19

4. Implementation....................................
4.2 Empirical algorithm

The first introduced algorithm is a dataset-driven approach based on brute-
force searching and attempting to grasp an object. Work with the algo-
rithm is divided conceptually and practically into two main scripts: offline
(dataset_generation.py) and online (online_ask.py) parts. This algo-
rithm’s typical workflow consists of creating a dataset of successful grasps by
running dataset_generation.py and then using them in the online situation
considering only the environment’s current constraints.

4.2.1 Dataset generation

In the offline program, a dataset is created individually for each object. The
central concept is that there is a virtual bounding box sampled into a set
of points. Every point is considered as a place for potential grasping. The
points, which are outside of the mesh of the object, are filtered out. We create
an IK solver triangle constraint discussed in Section 3.2.1 in the remaining
points iteratively. This triangle plane is then rotated by all Euler angles
with respect to a fixed coordinate system placed in each point. Therefore,
we try every translation and orientation of the robot’s end-effector inside the
virtual bounding box. Each step has a fixed offset from the previous one.
The concept of the algorithm is illustrated in the next pseudocode:
Algorithm 1: Brute Force search for a grasp
Result: Array with successful grasps
Define the bounding box;
Define the step between angle samples;
for each roll angle do

for each pitch angle do
for each yaw angle do

for each point do
Define IK constraint;
Solve IK task;
if the task is solved then

Store the grasp
end

end
end

end
end

For any current constraint, the output of the IK solver is binary. Hence,
we can store the successful grasp defined by the IK constraint in a structure.
To make the algorithm more flexible, the constraint should be specified with
respect to the object’s coordinate system. Therefore, it is translated to the
origin of the world coordinate system by subtracting the object position
from each point forming the constraint. In the algorithm, the data storage

20

................................. 4.3. Analytical algorithm

structure is a NumPy array with 3xNxM dimensions, where N is a number of
point samples, and M is a number of orientation samples. Once the whole
bounding box is examined, we store the grasps in a .csv file. This file is
going to be used in the real-time program.

4.2.2 Using the dataset in a real-time application

The online_task.py is designed in a way that a user can adjust it to any ap-
plication. The objects with the corresponding dataset can be loaded through
the world file or on the run. Initialization of the program includes loading
the dataset of grasps from the .csv file and sorting them by the cumulative
distance from each simulation’s geometry element. Sorting the array increases
the possibility of finding the successful grasp faster as we first try the ones
remoted from potential environment constraints. As the grasps are predefined,
we only have to avoid those that lead to collisions with the environment’s
current state. The first suitable non-collision grasp is executed.

To summarize the empirical approach, the diagram below illustrates the
way algorithm is designed to be used:

Figure 4.1: The workflow of the empirical algorithm

4.3 Analytical algorithm

In the second part of the thesis, the goal was to eliminate the need to
create datasets. Usually, the problem of finding a suitable grasp has a
bad computational complexity. The computational time can be reduced
by applying geometric filters, thereby avoiding trying by-default infeasible
grasps.

Section 3.1 introduced the way 3D objects are represented by a polygon
mesh (in this case, triangle polygon mesh). The polygons are used as a
feature for planning grasp positions for the robot’s end-effector. The central
concept is to select the faces of the object suitable for creating contact with
the robot’s gripper. That means that the algorithm differs depending on the
number of fingers of a gripper. For example, to create a stable contact with
each finger of a two-finger gripper, a pair of faces should be found. As a
result, the complexity of the algorithm increases with the increasing number
of contacts needed.

The first crucial step is to compute the needed parameters and geometry
features of the object.

21

4. Implementation....................................
4.3.1 Mesh geometry calculation

The orientation of a face of an object is defined by its normal vector. It is
a vector that is perpendicular to the surface of a polygon. To analyze and
continue working with the mesh, a normal vector should be computed for each
face element. The required information for the computation is the position of
three vertices v1, v2, v3 forming the polygon in the world coordinate system.

~a = ~v3 − ~v1 (4.1)
~b = ~v2 − ~v1 (4.2)

~n = ~a×~b

|~a×~b|
(4.3)

Similarly, the center of mass of a face is extracted from the placement of
vertices. It is an average of all three coordinates.

~cm = 1
3 · (~v1 + ~v2 + ~v3) (4.4)

Working with the object in simulation involves translation and changing its
orientation. Hence, the position of all geometry features with respect to the
world coordinate system must be aligned with the object’s position to conduct
the operation correctly. However, on the input, the position of vertices is
defined in the object’s coordinate system. Therefore, the coordinates of each
vertex should be transformed by a corresponding translation and rotation
matrix. The rotation matrix R represents the orientation of the object relative

Figure 4.2: Transformation between coordinate systems

to the world coordinate system. Likewise, the position of the object’s origin
represents the translation ~t. The following computation:

~vworld = R · ~vobj + ~t, (4.5)

22

................................. 4.3. Analytical algorithm

where ~vworld is a position of a vertex in the world coordinate system and ~vobj

is a position of the same vertex in the object coordinate system. Each face is
saved as a Python object, and all geometry features and polygon color are
object variables.

4.3.2 Heap creation

Now that all faces with their geometry features are available, they are used
to distinguish the polygon groups suitable for creating a contact. An array of
possible polygon combinations must be built and sorted. For this purpose,
heapsort is chosen among the other sorting algorithms due to its efficiency in
sorting large data. With the increasing number of array elements, the time
required to perform heapsort increases logarithmically, and the algorithm
performs equally decent results in the worst, average, and best cases.

Heap for two-finger gripper

The goal of this part of the program is to find suitable pairs of faces. In order
to achieve it, the combinations of two faces are examined with the use of the
itertools Python module. The next step is filtering out the pairs based on
conditions:. The color of the faces - red-colored faces indicate the areas of the object

forbidden for the grasp;. The direction of the faces normal vectors - the faces suitable for contact
generation must be oriented in the opposite direction;. The level of parallelism of normal vectors - to ensure the grasp is stable,
the faces must be parallel;

The faces’ direction is determined by calculating the dot product of the
normal vectors.

~n1 · ~n2 = c (4.6)
The operation’s output is a scalar c, which must be negative for the faces
to be oriented in the opposite direction. Without this condition, the faces
aimed in the same direction will not be filtered out, and the gripper may get
an infeasible goal configuration.

The cross product defines the parallelism of the faces. Two collinear vectors,
i.e., vectors that lie on the same line, have zero cross product.

~n1 × ~n2 =
{

~0, for collinear ~n1, ~n2

~n3, for other ~n1, ~n2
(4.7)

In the program, the cross product of the vectors is considered zero if the
norm of the output vector is equal to zero with predefined tolerance.

If all conditions are met, the pair of faces is appended to the Heap. The
sorting factor is the distance between the centers of two faces. It helps to
prioritize the polygons located on the same line amongst all other parallel
pairs.

23

4. Implementation....................................
Heap for three-finger gripper

The foundation for this part is the analysis of the shape of the parallel
three-finger gripper discussed in Section 2.3.1. Each finger is attached to the
circle-shaped gripper body. The angle between the radii connecting every
two fingers to the center of the circle is 120 degrees.

Figure 4.3: Angles between each finger of the FESTO DHDS gripper

Due to this geometry construction, the algorithm is searching for groups of
three faces, which also have 120 degrees between each other.

To reduce the computational time, the algorithm does not iterate through
the combinations of three faces, but similarly, as in the case of the two-finger
gripper, it starts by searching the combination of two polygons. If the angle
between two faces’ normal vectors is equal to 120 degrees within the specified
tolerance, the mesh is examined again to complete the group with the third
face.

When the whole group of three faces that satisfy the condition is found,
the Heap can be initialized. The Heap is sorted by the area of the triangle
formed by the centers of the three faces to ensure that they lie on the same
plane.

The tolerance is not a fixed parameter as it is closely connected with the
structure of the mesh. The less elements the mesh has - the higher the
tolerance should be. On the other hand, to filter out more irrelevant face
pairs, the tolerance can be lowered.

Unwrapping the Heap

Once the Heap is initialized, the program is ready and waiting for the user
to define the goal position, i.e., the position of the object at the end of the
transfer. When the goal is set, the most prioritized group of faces is popped

24

................................. 4.3. Analytical algorithm

from the Heap to design an IK constraint. Aside from the unique gripper
parameters, such as the offset between the contacts and the gripper body,
the concept of the IK constraints definition is also different for two and
three-finger grippers.

As the pair of faces in Section 4.3.2 define a single axis, the IK constraint
is formed by two points lying on it. That means that one rotation is left
free for the IK solver. The principle of the constraint design is discussed in
Section 3.2.1.

Even though the two points are more flexible for the solver, this method
cannot be used when working with a three-finger gripper. In this case, the
group of three faces lies on a plane that has its fixed rotation and position.
The IK constraint is defined by three points that belong to that plane.

Summary

The diagram below summarizes all stages described earlier.

Two-finger
gripper Three-finger gripper

Mesh
analysis

Heap: pairs of faces Heap: triplets of faces

IK solver

Motion planner

pop one
pair

pop one
triplet

Solved
No

Yes

Found

No

Any positions
left

Yes

Grasp Execution

No

Yes

Normal vectors and face
centers are computed. Vertices

position is aligned with the
object

The pairs of faces are found
and sorted by distance

IK solver tries a pair popped
from the heap

Motion planner attempts to
build a path untill no possible

positions left

The grasp is performed and
visualized

The gripper is chosen

The group of
polygons is
infeasible

Figure 4.4: Analytical algorithm summary

25

4. Implementation....................................
4.3.3 Subroutines

The main problem with the concept of the algorithm is that the computational
time increases polynomially with the number of polygons the mesh has. In
contrast, some of the objects, especially those formed from primitive shapes,
may lack flexibility in the positioning of the gripper. In other words, to
achieve the most desirable results, the mesh should be preprocessed to reach
the uniform state. There are several techniques implemented in the algorithm
beneficial in various cases.

Mesh decimation

Frequently, the mesh consists of a huge number of polygons. It significantly
affects the time required to find a suitable group of faces. Furthermore, most
of the triangles would have too little area, which lowers the precision of the
contact generation. The solution is to reduce the number of polygons, i.e.,
decimate the mesh. The mesh decimation within the algorithm is conducted
with the use of PyVista Python API [27]. It offers a powerful tool for reducing
the number of polygons with several implemented methods. The decimation
rate is defined by a real number in the range from 0 to 1, which is the ratio
between the new and old number of polygons. The Figure 4.5 illustrates the
flashlight used as an example of a mesh decimation. Each face is colored in
random color to emphasize the decimate effect.

(a) : Original mesh (b) : Decimated mesh

Figure 4.5: Flashlight mesh decimation: 69% of polygons is reduced

Subdivision

Primitive shapes bring up the problem that extensive triangle areas only have
one possible position for a finger. The number of potential grasps along one
polygon plane can be increased by the PyVista subdivision tool that splits
the polygon into several new ones. In addition, they have the same orientation
as their predecessor, meaning the normal vector is preserved. Trimesh library
mentioned earlier also has a subdivision tool, but it is far less manageable.

26

................................. 4.3. Analytical algorithm

(a) : Original mesh (b) : Subdivided mesh

Figure 4.6: Cube mesh subdivision: each polygon is divided into four new ones

Convex Hull

For the objects with too complex structure, the strong decimation might
not help. Moreover, it can worsen the quality of the mesh and lead to some
visible defects. These defects may affect the direction of normal vectors and
cause the undesired behavior of the program. For this reason, the mesh of
an object can be simplified to its convex hull. This method significantly
reduces the number of faces. The case that benefits the most is when the
object’s polygons are not evenly distributed. For example, most of the faces
are concentrated in the cap of a bulb, and much fewer of them in the glass
bulb itself. With the use of a convex hull, the polygons become evenly spread.
One of the possible side effects can be that the fragile area might not be
easily distinguished, e.g., Figure 4.7d.

(a) : The original mesh of the flashlight (b) : A convex hull of the flashlight mesh

(c) : The original mesh of the bulb (d) : A convex hull of the bulb mesh

Figure 4.7: Creating the convex hull of the objects can significantly reduce the
number of polygons

27

4. Implementation....................................
4.4 Fragile and forbidden areas

Some of the objects with complicated or heterogeneous structure require
more delicate handling than usual. It implies that some fragile, brittle parts
of the object should not be interacted with. As for working in simulation,
those parts should be visualized and avoided during the process of contact
generation. Therefore, the most suitable way is for the user to colorize some of
the faces, marking the forbidden area for grasp with a predefined color. The
color chosen for this purpose is red1. That means that whenever the program
discovers the red color of a face, the face can no longer participate in grasp
planning. During the simulation, the red color is associated with collisions on
each stage of the trajectory building. The easiest and most common way to
colorize the object is to use the Blender application [28]. Blender is a popular
and complex software that is applied for every additional mesh upgrade in
the project. Using a simple script blender_colors.py those colors can be
converted into an array and used inside the simulation. A step-by-step guide
on emphasizing fragile areas in Blender is included in Section A.4

Figure 4.8: The colorized object in Blender ready to be uploaded

1In the algorithm red color is represented as RGBA array [1.0, 0.0, 0.0, 1.0]

28

................................... 4.5. Tkinter Interface

4.5 Tkinter Interface

Tkinter [?] is the standard Python package, which allows to create GUI
windows and integrate them with the project. It has been used to build a
GUI application, which simplifies the process of starting the algorithm and
uploading the objects. For the most common type of application, a user
can create a world with one of the presented grippers; change, preprocess
and upload several objects into it. The interface is connected to the Blender
application2 in case the user wants to define some forbidden areas of the
object or conduct a more complex mesh upgrade. The interface is depicted
in Figure 4.9.

2For correct use the Blender must be installed.

29

4. Implementation....................................

Figure 4.9: The Tkinter interface helps to easily upload the objects into the
world.

30

Chapter 5
Experiments

The chapter introduces the possible use of the algorithms. Firstly, the average
execution time is examined in different cases. The results give a deeper
understanding of how the algorithms work and what can be expected while
working with them. Secondly, some examples of possible applications are
introduced to present possible simulation scenarios. Note that the quality of
the final path received from the motion planner is not a priority. Consequently,
the time was not spent on optimizing the trajectory. Each object involved
in grasp planning is manipulated by a suitable gripper. For this reason, the
cylinder and sphere are grasped by the three-finger parallel gripper, while
the flashlight, bottle, and bulb are grasped by the two-finger adaptive one.

5.1 Experiment: Dataset generation

Figure 5.1: Creating dataset with the objects located at both sides of the robot
to achieve grasp configurations from both sides.

To initialize the experiment, the empirical algorithm should be prepared,
i.e., datasets must be created for all objects. There are many ways to create a

31

5. Experiments
complete dataset of grasps. In this case, the simulation configuration depicted
in Figure 5.1 was selected.

The computational time was measured based on ten equivalent dataset
generations for each object. Average, worst, and best cases are introduced in
the Table 5.1.

Two-finger adaptive

Object Computational Time Valid
graspsmin [s] average [s] max [s]

Cube 35.6101 38.2553 40.7109 89
Flashlight 31.1756 32.87 34.1096 82
Bottle 15.3425 18.2547 21.4158 45

Light Bulb 34.3231 36.7529 40.0723 58
Three-finger parallel

Object Computational Time Valid
graspsmin [s] average [s] max [s]

Cylinder 28.0765 38.3561 42.4624 78
Sphere 21.0843 23.3132 25.4140 52

Table 5.1: Dataset generation time for each object with the use of different
grippers

5.2 Experiment: Computational time

The goal of this subsection is to show the results of the analytical algorithm
in differently complicated scenarios and compare them with the dataset
approach in terms of time efficiency. For the equivalent input, the results may
differ, showing stochastic behavior due to numerical inconsistency. Within
the experiment, three different worlds are generated. The experiment is
performed on various types of objects and two grippers presented in the thesis.
For each situation, ten iterations are conducted, and the task execution time
is saved.

While working with the analytical algorithm, the task compounds of two
main parts, for which the time is measured separately. The first part is the
Heap initialization, and the second one is a combination of the transit, transfer,
and retract path planning, including the IK problem solution. On the other
hand, as the datasets for the empirical algorithm have been precomputed,
there has to be found a feasible grasp among them in the online part.

32

............................ 5.2. Experiment: Computational time

5.2.1 Simple scenario

In this scenario, the task is relatively straightforward. The aim is to examine
the diversity level among the simulations with the same primitive input. The
situation is captured in Figure 5.2.

Figure 5.2: Simple scenario: the object must be transferred from one white
point to another.

Figure 5.3: The successful grasp is found

The time required to plan the whole task using the analytical algorithm
for each object is presented in Table 5.2. The results achieved with the use
of datasets in the empirical approach are displayed in Table 5.3. Then, the
total time spent on searching for a feasible grasp is compared in Figure 5.4.

33

5. Experiments
Two-finger adaptive

Object Number
of faces

Heap Creation Grasp Search
min [s] average [s] max [s] min [s] average [s] max [s]

Cube 48 0.0275 0.0362 0.0575 1.0192 1.973 3.2091
Flashlight 788 6.6034 6.7547 7.419 0.9797 1.3947 1.662
Bottle 832 4.9176 5.2628 6.2031 0.9746 1.6547 2.1789

Light Bulb 811 12.5136 12.6318 12.9757 0.7458 1.3664 2.2448
Three-finger parallel

Object Number
of faces

Heap Creation Grasp Search
min [s] average [s] max [s] min [s] average [s] max [s]

Cylinder 128 1.4294 1.589 1.9715 0.935 1.2788 1.9469
Sphere 184 23.5981 25.5957 31.2299 1.1595 1.6583 2.4828

Table 5.2: Analytical algorithm performance in simple scenario

Two-finger adaptive

Object Grasp Search
min [s] average [s] max [s]

Cube 0.9064 1.338 1.8306
Flashlight 0.804 1.4147 2.1532
Bottle 0.8879 1.503 1.9527

Light Bulb 1.1527 1.7414 2.7707
Three-finger parallel

Object Grasp Search
min [s] average [s] max [s]

Cylinder 0.9356 1.4737 2.0159
Sphere 0.7423 1.2435 2.9839

Table 5.3: Empirical algorithm performance in simple scenario

Figure 5.4: Task execution time comparison between the algorithms in simple
complexity scenario

34

............................ 5.2. Experiment: Computational time

5.2.2 Average complexity scenario

The task is more complex as the robot has to achieve a more unnatural
position in joint coordinates. Moreover, the possible grasp is located near the
wall, which complicates the possible end effector orientation. The situation is
captured in Figure 5.5.

Figure 5.5: Average scenario: the object must be transferred from one white
point to another.

Figure 5.6: Successful grasp is performed.

The execution time of the analytical algorithm is presented in Table 5.4 and
compared with the results achieved by using the predefined dataset displayed
in Table 5.5.

35

5. Experiments
Two-finger adaptive

Object Number
of faces

Heap Creation Grasp Search
min [s] average [s] max [s] min [s] average [s] max [s]

Cube 48 0.0278 0.0313 0.0547 1.372 3.228 6.7185
Flashlight 788 6.4394 6.5067 6.6389 1.1761 3.028 4.3791
Bottle 832 4.9113 5.8035 6.5252 1.9871 7.1452 19.0238

Light Bulb 811 12.6542 12.7789 12.9685 1.2329 1.921 2.8054
Three-finger parallel

Object Number
of faces

Heap Creation Grasp Search
min [s] average [s] max [s] min [s] average [s] max [s]

Cylinder 128 1.6261 2.2135 3.3801 1.1451 2.2129 3.3603
Sphere 184 20.8357 23.1187 29.0583 1.1931 2.133 3.0299

Table 5.4: Analytical algorithm performance in average complexity scenario

Two-finger adaptive

Object Grasp Search
min [s] average [s] max [s]

Cube 3.5046 4.9682 6.8654
Flashlight 1.7575 3.3571 5.2328
Bottle 2.1485 3.5008 4.57

Light Bulb 2.3949 4.2311 6.4692
Three-finger parallel

Object Grasp Search
min [s] average [s] max [s]

Cylinder 1.1734 1.8645 2.4885
Sphere 0.8649 3.9637 7.9895

Table 5.5: Empirical algorithm performance in average complexity scenario

Figure 5.7: Task execution time comparison between the algorithms in average
complexity scenario

36

............................ 5.2. Experiment: Computational time

5.2.3 Hard complexity scenario

The object is located inside the box, limiting the number of possible solutions
for the IK problem. The last links of the robot have to be oriented perpen-
dicularly to the table’s surface to grasp the object without causing a collision
with the box. The situation is captured in Figure 5.8.

Figure 5.8: Complicated scenario: the object must be transferred from one
white point to another.

Figure 5.9: The arm carefully retrieves the object from the boxes

The execution time of the analytical algorithm is presented in a Table 5.6
and then compared to the task performance time of the empirical algorithm
presented in Table 5.7.

37

5. Experiments
Two-finger adaptive

Object Number
of faces

Heap Creation Grasp Search
min [s] average [s] max [s] min [s] average [s] max [s]

Cube 48 0.0275 0.0294 0.0418 7.4163 12.0252 21.7062
Flashlight 788 6.5287 7.1078 8.7429 7.4 13.3271 22.1319
Bottle 832 5.1008 5.8233 7.0272 8.9978 14.0996 22.2311

Light Bulb 811 12.418 12.778 14.9742 4.2864 8.8352 16.8706
Three-finger parallel

Object Number
of faces

Heap Creation Grasp Search
min [s] average [s] max [s] min [s] average [s] max [s]

Cylinder 128 1.5469 1.729 2.4684 2.0392 5.5146 9.8367
Sphere 184 21.2435 21.6097 22.2232 4.8747 8.9268 12.9684

Table 5.6: Analytical algorithm performance in hard scenario

Two-finger adaptive

Object Grasp Search
min [s] average [s] max [s]

Cube 2.1734 4.0905 5.6801
Flashlight 4.1126 9.125 15.6189
Bottle 3.4374 6.4495 12.2287

Light Bulb 5.5681 12.6943 15.3445
Three-finger parallel

Object Grasp Search
min [s] average [s] max [s]

Cylinder 4.8143 6.8166 11.267
Sphere 3.4985 7.1985 13.1791

Table 5.7: Empirical algorithm performance in hard scenario

Figure 5.10: Task execution time comparison between the algorithms in hard
scenario

38

............................... 5.3. Experiment: Fragile areas

5.3 Experiment: Fragile areas

In this experiment, the objects are grasped with and without fragile area
definition. The goal is to examine the performance of the colorizing method.
Hence, a grasp is planned in identical conditions on the same objects to
compare whether the arm detects the forbidden area. The results are pictured
in Figure 5.11.

(a) : The bulb is grasped by the glass
area

(b) : The fragile area is avoided, the
bulb is grasped by the cap

(c) : The grasp is placed at the button
of the flashlight

(d) : Button is avoided and the grasp is
placed on the body of the flashlight

Figure 5.11: Grasping object with and without colorizing

Within the experiment, the first feasible grasp is executed. In both cases, the
fragile area is detected and avoided.

39

5. Experiments
5.4 Application: Building a simple sturcture

The experiment is designed to show the basic concept of manipulation with
objects in the robot workspace using the analytical algorithm. The structure
is surrounded by walls, which complicates the motion planning task as all the
robot-terrain collisions must be detected and avoided. It is crucial to remark
that the motion planning algorithm used in the experiment is Lazy-Prm* as
it affects the computational time as it was discussed in Section 3.3. This
algorithm executes an acceptable quality trajectory after a small number of
iterations. The robot managed to find a suitable pair of faces to grasp, solve
the IK task, and plan the motions to perform the task. The blocks were
picked up and placed at the top of each other. The whole experiment run is
displayed in Figure 5.12.

Figure 5.12: The run of structure building application based on analytical
algorithm

The task was also conducted using the dataset approach. As a continuation
of the previous experiment, the dataset for the cubes is the same described
in Section 5.1.
Despite the fact that the task was completed, the grasp quality was slightly
lower than in the analytical algorithm. The situation captured in the picture
5.14 is an example of a grasp that might cause problems with force closure in
a physical simulation.

40

............................... 5.5. Application: Industry line

Figure 5.13: Building structure with dataset approach

Figure 5.14: A low quality grasp found by the dataset approach

5.5 Application: Industry line

In this task, a simplified version of an industrial line is visualized. The
experiment aims to present the possibility of multi-robot cooperation within
the application. Specifically, the path is built for the object to transport
it from one industrial line to another using two KUKA LBR iiwa robots.

41

5. Experiments
Automatically computed grasps and paths are constructed by the analytical
algorithm and Lazy PRM* motion planner accordingly. The main milestones
of the experiment are captured in the Figure 5.15

(a) : The object is transported to the arm (b) : The first grasp is performed

(c) : The object is transferred to the
common point

(d) : Second collisionless grasp configu-
ration is found

(e) : The object is placed at the second
industrial line

(f) : The object continues its movement
as the pipeline continues

Figure 5.15: The main milestones of the visualization of industrial line applica-
tion

42

Chapter 6
Analysis and discussion

This chapter analyzes the results achieved in the experiments. The algorithms’
behavior is interpreted in terms of advantages and downsides. Based on that,
there can be made an assumption on which is the most suitable situation for
each approach. It is also necessary to underline the limitations of the project
to preserve its efficient performance in practical applications. Later in the
chapter, a few potential improvements are discussed.

6.1 Experiment analysis

To investigate the outcome of the computational time experiment conducted
in Section 5.2 each individual table should be examined. The algorithms
performed differently and show diverse tendencies with the increasing com-
plexity of a task. Firstly, the measurements are analyzed separately for each
algorithm and, secondly, compared with each other.

6.1.1 Heap generation results

As displayed Tables 5.2, 5.4, 5.6, the program is divided into two parts: heap
creation and grasp searching. The initialization of a heap shows a strong
trend towards increasing time associated with a growing number of polygons.
However, this is not the only parameter affecting the computational time.
Operating with various shapes leads to a different number of groups of faces
that meet the set conditions. In turn, the more groups of faces are suitable,
the slower the heap is constructed. Table 6.1 displays the number of suitable
grasp groups found during each heap generation:

The numbers may vary depending on the initial mesh shape and the level of
decimation or subdivision applied. For example, the bottle is introduced as an
extreme case of mesh preprocessing. The initial structure of the mesh is quite
heterogeneous as most of the polygons are located near the cap. Following
reduction of some of them may affect undesirable areas resulting in loss of
potential grasp candidates. Consequently, the heap length is notably smaller.
Despite the successfully found grasps within experiments, the risk of grasp
search failure is higher.

43

6. Analysis and discussion
Object Heap length
Cube 192

Flashlight 9092
Bulb 1366
Bottle 26

Cylinder 768
Sphere 3420

Table 6.1: Heap length for each object

On the other hand, generating too many potential grasp groups may result
in a bad computational complexity of the second part of the program, the
task itself. Heap prevents this from happening by sorting the array based
on the distance between two faces so that the parallel polygons lying on the
same line have a higher priority.

A complicated mesh structure of an object is an important problem, which
should be respected and solved when uploading a new object into a simulation.

6.1.2 Dataset generation

The performance of the empirical algorithm utterly depends on the quality
of the predefined dataset. While creating it, the position of an object in
the world should be neither too distant nor too close. The object can be
searched for grasps from several orientations (in Section 5.1 only two were
used). Therefore, the time needed to create a new dataset can differ from the
results displayed in Table 5.1.

6.1.3 Behavior comparison

Both algorithms were tested on the numerical inconsistency of the simulation.
The numbers enlisted in the tables prove that even performing the task with
the same input in the same simulation world results in unique outcomes. In
some cases, it can lead to a result similar to what was witnessed in the grasping
the bottle in the average complexity scenario. The more prioritized feasible
grasp failed the grasp planning and the algorithm continued searching for
another one. Generally, the computational time difference is not critical, as in
both simple and average complexity scenarios the algorithms perform similarly.
Nevertheless, the variety between the best and the worst computational time in
the dataset approach is slightly lower, as opposed to the analytical algorithm.
The reason for this phenomenon is that fewer mathematical operations are
needed to plan a grasp, leaving less space for numerical inconsistencies.
Moreover, more complicated situations are solved much faster. It is connected
with the fact that all of them are already suitable and sorted based on the
distance from the other objects. Thus, the only reason for grasp failure is
an environmental constraint. The time is not wasted on trying infeasible
by default grasps. Assuming a whole and carefully created dataset, the

44

...................... 6.2. Fragile area detection analysis and application

computational results are more constant than the ones achieved by the
analytical algorithm.

(a) : Bad quality grasp executed by
empirical algorithm

(b) : The grasp performed by the ana-
lytical algorithm is stable

Figure 6.1: Comparison of two grasps found by different algorithms

The disadvantage of the dataset approach is grasp quality. In non-physical
visualization, the outcome of the grasp cannot lead to failing force closure,
because the mass of an object and gripper force are not taken into account.
Consequently, some of the grasped in the dataset may have low quality. One
of those grasps was shown in the application described in Section 5.4. For a
slightly more expensive computational cost, the analytical approach plans
grasp at positions fulfilling the set conditions, therefore, providing their higher
quality. Compare the two situations in Figure 6.1. In such a case, it is evident
that the grasp from the dataset will lead to an undesirable outcome.

The analytical approach benefits from the lack of preliminary preparation.
There is no need to compute anything in advance. This feature makes
this algorithm far more flexible than the empirical one. Grasp quality and
flexibility of the analytical algorithm make it a universal tool in numerous
applications, e.g., bin-picking, structure assembling, and common object
manipulation. Unless the empirical method is supported with some physical
filtering criteria, it is only applicable in some particular cases to quicken the
task execution.

6.2 Fragile area detection analysis and application

Finally, one of the most potent tools presented in the thesis is the method
allowing to forbid any area of the object for grasp planning. The experiments
5.3 and 5.5 show the user-defined area is detected and correctly interpreted.
Considering the method from another point of view, colorizing the object
can also be used to highlight specific places for grasp planning with a special
color in applications, where the precision of a grasp is a priority.

45

6. Analysis and discussion
6.3 Possible improvements

To achieve lower computational time, both algorithms could be run in parallel
on more computer cores. Such parallelisation is possible because individual
computations are independent. Generally, the hardware setup can also be
upgraded.

For the empirical approach, the best improvement would be a generation
of a dataset considering the physical aspects of a simulation. This way, the
unstable grasps will be filtered out.

46

Bibliography

[1] FAN, Yongxiang, Masayoshi TOMIZUKA. Efficient Grasp Planning
and Execution With Multifingered Hands by Surface Fitting. IEEE
Robotics and Automation Letters. 2019, 4(4), 3995-4002. ISSN 2377-
3766. Available from: doi:10.1109/LRA.2019.2928210

[2] AYDIN, Yahya, Masayuki NAKAJIMA. Database guided computer
animation of human grasping using forward and inverse kinematics.
1999, 23(1), 145-154. ISSN 00978493. Available from: doi:10.1016/S0097-
8493(98)00122-8

[3] LI, Ying, Jiaxin L. FU a Nancy S. POLLARD. Data-Driven Grasp
Synthesis Using Shape Matching and Task-Based Pruning. IEEE Trans-
actions on Visualization and Computer Graphics. 2007, 13(4), 732-747.
ISSN 1077-2626. Available from: doi:10.1109/TVCG.2007.1033

[4] IBERALL, Thea. Human Prehension and Dexterous Robot Hands. The
International Journal of Robotics Research. 1997, 16(3), 285-299. ISSN
0278-3649. Available from: doi:10.1177/027836499701600302

[5] Presence: Teleoperators and Virtual Environments. 5. 1996. ISSN
1054-7460. Available from: https://direct.mit.edu/pvar/article/5/4/416-
430/92620

[6] ZHAO, Wenping, Jianjie ZHANG, Jianyuan MIN and Jinxiang CHAI.
Robust realtime physics-based motion control for human grasping. ACM
Transactions on Graphics. 2013, 32(6), 1-12. ISSN 0730-0301. Available
from: doi:10.1145/2508363.2508412

[7] BIERBAUM, Alexander, Matthias RAMBOW, Tamim ASFOUR
and Rudiger DILLMANN. Grasp affordances from multi-fingered
tactile exploration using dynamic potential fields. 2009 9th
IEEE-RAS International Conference on Humanoid Robots. IEEE,
2009, 2009, , 168-174. ISBN 978-1-4244-4597-4. Available from:
doi:10.1109/ICHR.2009.5379581

[8] SCHLESINGER, G, R.R DUBOIS, R RADIKE and S VOLK. Der
mechanische Aufbau der künstlichen Glieder (the mechanical building

47

6. Analysis and discussion
of artificial limbs). Ersatzglieder und Arbeitshilfen für Kriegsbeschädigte
und Unfallverletzte. Julius Springer-Verlag, 1919.

[9] HAUSER, Kris. Klamp’t. Intelligent Motion Laboratory [online]. [cit.
2021-04-04]. Available from: http://motion.cs.illinois.edu/klampt/

[10] HAUSER, Kris. Fast Interpolation and Time-Optimization on Implicit
Contact Submanifolds. Robotics: Science and Systems IX. Robotics: Sci-
ence and Systems Foundation, 2013, 2013-06-23. ISBN 9789810739379.
Available from: doi:10.15607/RSS.2013.IX.022

[11] HAUSER, Kris. Klamp’t Manual [on-
line]. [cit. 2021-04-04]. Available from:
http://motion.cs.illinois.edu/software/klampt/latest/pyklampt_docs/

[12] LBR iiwa [online]. [cit. 2021-04-04]. Available from:
https://www.kuka.com/en-at/products/robotics-systems/industrial-
robots/lbr-iiwa

[13] Trimesh Python API [online]. [cit. 2021-04-04]. Available from:
https://trimsh.org/trimesh.html

[14] SÁNCHEZ, Gildardo and Jean-Claude LATOMBE. A Single-Query Bi-
Directional Probabilistic Roadmap Planner with Lazy Collision Check-
ing. Robotics Research. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, 2003-6-30, 403-417. Springer Tracts in Advanced Robotics. ISBN
978-3-540-00550-6. Available from: doi:10.1007/3-540-36460-9_27

[15] HAUSER, Kris. Lazy collision checking in asymptotically-optimal mo-
tion planning. 2015 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2015, 2951-2957. ISBN 978-1-4799-6923-4.
Available from: doi:10.1109/ICRA.2015.7139603

[16] KARAMAN, Sertac and Emilio FRAZZOLI. Sampling-based algo-
rithms for optimal motion planning. The International Journal of
Robotics Research. 2011, 30(7), 846-894. ISSN 0278-3649. Available
from: doi:10.1177/0278364911406761

[17] MILLER, A.T. and P.K. ALLEN. GraspIt!. 2004, 11(4), 110-122. ISSN
1070-9932. Available from: doi:10.1109/MRA.2004.1371616

[18] LEÓN, Beatriz, Stefan ULBRICH, Rosen DIANKOV, et al. Open-
GRASP: A Toolkit for Robot Grasping Simulation. Simulation, Mod-
eling, and Programming for Autonomous Robots. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, 2010, , 109-120. Lecture Notes in Com-
puter Science. ISBN 978-3-642-17318-9. Available from: doi:10.1007/978-
3-642-17319-6_13

[19] LEÓN, Beatriz, Antonio MORALES and Joaquin SANCHO-BRU.
Robot Grasping Simulation. From Robot to Human Grasping Simula-
tion. Cham: Springer International Publishing, 2014, 2014-9-29, 33-65.

48

................................ 6.3. Possible improvements

Cognitive Systems Monographs. ISBN 978-3-319-01832-4. Available
from: doi:10.1007/978-3-319-01833-1_3

[20] BONILLA, Manuel, Cosimo Della SANTINA, Alessio ROCCHI, et al.
Advanced Grasping with the Pisa/IIT SoftHand. Robotic Grasping and
Manipulation. Cham: Springer International Publishing, 2018, 2018-07-
15, 19-38. Communications in Computer and Information Science. ISBN
978-3-319-94567-5. Available from: doi:10.1007/978-3-319-94568-2_2

[21] HAUSER, Kris. Robust Contact Generation for Robot Simulation with
Unstructured Meshes. Robotics Research. Cham: Springer International
Publishing, 2016, 2016-04-23, , 357-373. Springer Tracts in Advanced
Robotics. ISBN 978-3-319-28870-3. Available from: doi:10.1007/978-3-
319-28872-7_21

[22] LIANG, Beatrice. Robot Learning in Simulation for Grasping and
Manipulation. Columbia University, Department of Computer Science.

[23] PRZYBYLSKI, Markus, Tamim ASFOUR and Rudiger DILLMANN.
Unions of balls for shape approximation in robot grasping. 2010
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems. IEEE, 2010, 1592-1599. ISBN 978-1-4244-6674-0. Available from:
doi:10.1109/IROS.2010.5653520

[24] Graphical User Interfaces with Tk [online]. Python Soft-
ware Foundation, 2021 [cit. 2021-04-12]. Available from:
https://docs.python.org/3/library/tkinter.html

[25] Three-point gripper DHDS. FESTO, 2020/02. Available from:
https://www.festo.com/cat/en-gb_gb/data/doc_engb/PDF/EN/
DHDS_EN.PDF

[26] 3-Finger Adaptive Robot Gripper Instruction Man-
ual [online]. Robotiq, 2020 [cit. 2021-04-12]. Avail-
able from: https://assets.robotiq.com/website-
assets/support_documents/document/3-
Finger_PDF_20201208.pdf?_ga=2.122470219.1354482457.1618261049-
1070373188.1618261049

[27] PyVista [online]. [cit. 2021-04-18]. Available from:
https://docs.pyvista.org/

[28] Blender [online]. [cit. 2021-04-19]. Available from:
https://www.blender.org/

49

50

Appendix A
User Guides

A.1 Creating a new world

The world for an application can be easily created based on the pattern of the
existing words located in the corresponding folder at the root of the project.
The main terrain can be easily uploaded from the terrain file in the objects
folder.

<terrain file="objects/terrains/plane.off">
<display color="0.3 0.3 0.2 0.5"/>

</terrain>

The terrains are constructed from primitive blocks, so that adding a new one
would be:

<terrain file="objects/terrains/cube.off"
scale="0.4 0.02 0.15"
translation="0.565 0.145 0.2">

<display color="0.3 0.3 0.2 0.5"/>
</terrain>

Adding a robot to the world with the specified color, position, and orientation
in the world coordinate system:

<robot name="kuka" file="robots/kuka/kuka.rob"
translation="0 0 0.01">

</robot>

Rigid objects can also be specified in the world file. However, to correctly
upload them into the world, running one of the algorithms is advised.

51

A. User Guides

A.2 Using the dataset algorithm

. In the folder project, run the script named dataset_generation.py.
The dataset is going to be stored in the grasping_database folder.. Choose the object to create the dataset from. The program will start to
compute grasps and store the successful ones into an array. At the end
of the program, the array is written into the specified directory.. The offline part is finished, so now the main application can be started
by running online_task.py. Choose the world file prepared for the
application or one of the default ones.. Run the script and select the objects in the Tkinter window. Each
uploaded object must have its dataset in the grasping_database folder.

A.3 Using the analytical algorithm

The application supported by the analytical algorithm can be visualized by:. Run the script named "analytical_algorithm" with the way to the
world specified in the main function.. In the Tkinter window, choose the number and type of objects.. Select the object and use a keyboard1 to specify the final position for the
transfer. Everything, including the transit, transfer and retract paths,
will be constructed automatically.

1To choose the object, press the number of the object, e.g., press "1" to choose the first
uploaded one. Press one of the letters: "a", "b", "c", "d" to select the goal.

52

......................... A.4. Uploading and colorizing a new object

A.4 Uploading and colorizing a new object

The guide assumes that the input for this part is a 3D object with .obj
extension. Blender version 2.83 used in the thesis is installed in advance.

A.4.1 Blender: material assignment

To define a fragile area for a new object, a few steps should be completed:. Import the object represented by an OBJ file.. Add new material and change the base color of it into red (RGB settings
are advised). Select the faces that must be marked, and assign the newly created
material to them.. Add the Triangulate modifier to make sure that all polygons have a
triangle shape.. Export the object as an OBJ file into the corresponding folder.

A.4.2 Blender: face colors and vertex array creation

Now that the color materials are attached to the faces, they have to be correctly
imported into the simulation. Therefore, the colors, corresponding faces, and
vertices are saved and stored in the NumPy .npy extension file in the object
folder. This process is implemented in the utility script blender_colors.py.
It is located in the utilities project folder. All the arrays must be saved
into the folder inside the object directory. There are two ways the script can
be executed:. Using the bpy library, the Python API for Blender, installed in the

current virtual environment. Using the Python editor inside the Blender.

Note that the Python version 3.6.0 of the project’s virtual environment was
not compatible with the API at the time of writing this thesis. Consequently,
the Blender built-in editor was used.

53

	Introduction
	Motivation and goals
	Related work
	Empirical approach
	Analytical approach
	Simulation tools analysis

	Tools, Environment, Setup
	Device Properties
	Software
	Klampt modules
	Klamp't tools

	Robot
	Grippers

	Grasped objects

	Theoretical concepts
	Polygon mesh
	Inverse Kinematics
	Different grasp definitions

	Motion-planning algorithms
	Building a path

	Collision-free movements

	Implementation
	Project's structure
	Empirical algorithm
	Dataset generation
	Using the dataset in a real-time application

	Analytical algorithm
	Mesh geometry calculation
	Heap creation
	Subroutines

	Fragile and forbidden areas
	Tkinter Interface

	Experiments
	Experiment: Dataset generation
	Experiment: Computational time
	Simple scenario
	Average complexity scenario
	Hard complexity scenario

	Experiment: Fragile areas
	Application: Building a simple sturcture
	Application: Industry line

	Analysis and discussion
	Experiment analysis
	Heap generation results
	Dataset generation
	Behavior comparison

	Fragile area detection analysis and application
	Possible improvements

	Bibliography
	User Guides
	Creating a new world
	Using the dataset algorithm
	Using the analytical algorithm
	Uploading and colorizing a new object
	Blender: material assignment
	Blender: face colors and vertex array creation

