
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Quantum machine learning

Bc. Jan Svoboda

Supervisor: Mgr. Jakub Mareček Ph.D.
Field of study: Cybernetics and robotics
January 2025

ii

Acknowledgements

I would like to thank here, in the last
phase of my student life, the people who
have supported me unconditionally dur-
ing my studies. First and foremost, I
must mention my family, who gave me
the opportunities to study and develop
in the fields of my own choice and never
forced me to do anything, without them
I would never have made it to my Mas-
ter’s degree. I would also like to thank
my friends, both those I have met outside
of school and those I have met within it.
Even in moments when I didn’t feel like
singing, I always had people around me
who helped me, gave me advice, or were
just there for me. Finally, I can’t forget
my best friend, whom I met at CTU and
since then she has been the biggest sup-
port I have had in my life. In moments
when I didn’t even believe in myself she
put her trust in me, she was able to make
me laugh and gave me the desire to im-
prove and keep working.

So thank you all, it was worth it.

Declaration

I declare that the presented work is solely
mine and that I have cited all the used
literature.

In Prague, 5. January 2025

iii

Abstract

Although quantum computing is not be-
ing used in the real world yet, it is impor-
tant to study it in order to understand
its concepts and expand our knowledge
of the possibilities it offers us. This pa-
per compares quantum machine learning
methods with kernel methods, as the two
have much in common. It is our intention
to devise a methodology for the genera-
tion of quantum kernels in such a way
that classical simulation of them is #P
hard. The aforementioned methodologies
are subsequently tested on real data sets,
with somewhat disappointing results.

Keywords: quantum computing,
quantum kernels, kernel target alignment,
kernel methods, #P hardness

Supervisor: Mgr. Jakub Mareček Ph.D.

Abstrakt

Přestože se kvantové počítání zatím v re-
álném světě nepoužívá, je důležité jej stu-
dovat, abychom pochopili jeho koncepty a
rozšířili své znalosti o možnostech, které
nám nabízí. Tento článek porovnává me-
tody kvantového strojového učení s ker-
nelovými metodami, protože tyto dvě me-
tody mají mnoho společného. Naším zá-
měrem je navrhnout metodiku generování
kvantových kernelů tak, aby jejich simu-
lace pomocí klasických počítačových sys-
témů byla #P složitá. Výše uvedené me-
tody následně testujeme na reálných sou-
borech dat, přičemž výsledky jsou poně-
kud neuspokojivé.

Klíčová slova: kvantové počítání,
kvantové kernely, cílové kernelové
zarovnání, kernelové metody, #P
složitost

Překlad názvu: Kvantové strojové učení

iv

Contents

1 Introduction 1

2 Quantum computing 3

2.1 The fundamentals 4

2.1.1 Qubit . 4

2.1.2 Quantum circuit 4

2.1.3 Measurement 5

2.2 Quantum computing specifics . . . 5

2.2.1 Advantages 6

2.2.2 Challenges 6

2.3 Current state 7

2.3.1 Superconducting qubits 7

2.3.2 Trapped ions 8

2.4 Possibilities 8

2.4.1 Quantum Fourier transform . . 8

2.4.2 Quantum phase estimation . . . 9

2.4.3 Shor’s algorithm 9

2.4.4 HHL algorithm 9

2.5 Future . 10

3 Quantum kernels 11

3.1 Initial problem 12

3.2 Support vector machine 12

3.2.1 Linearly separable data 13

3.2.2 Linearly non-separable data . 13

3.2.3 Non-linear boundary 14

3.3 Feature map 15

3.3.1 Quantum feature map 15

3.4 Quantum kernel 16

3.5 Projected quantum kernels 16

3.6 Synthesis . 17

4 Kernel quality measures 19

4.1 Kernel target alignment 19

4.2 Asymmetric geometric difference 20

4.3 Model complexity 20

v

4.4 Eigenvalues ratio 21

5 Hardness of random circuits 23

5.1 #P hardness 23

5.2 Circuit architecture 24

5.3 Worst-case and average-case
circuits . 24

5.4 Haar random circuit distribution 25

5.4.1 Sampling from Haar measure 25

5.5 Cayley transformation and Cayley
path . 25

5.6 Theorems . 27

5.7 Summary . 28

6 Main concept 29

6.1 Possible advantages 29

6.1.1 Kernel simulability 29

6.1.2 Time complexity 30

6.1.3 Projected quantum kernels . . 30

6.1.4 Random sampling 31

6.2 Experiment algorithms 31

7 Embeddings 33

7.1 Basis embedding 33

7.2 Amplitude embedding 34

7.3 Rotation embedding 34

7.4 Pauli feature map 35

7.5 ZZ-feature map 35

7.6 Repeated embedding 37

8 Experiment 39

8.1 Preproccessing 39

8.2 Moons dataset 40

8.3 PIMA dataset 41

8.4 Discussion 42

9 Conclusion 47

A Bibliography 49

B Table of used symbols 53

C Project Specification 55

vi

Figures

2.1 Quantum circuit example with
q = 3 qubits and depth 4 5

3.1 Quantum kernel and Quantum
projected kernel comparison 17

5.1 Circuit architecture A blueprint 24

5.2 Cayley path 26

7.1 Pauli Y feature map 36

7.2 Pauli Z feature map 36

8.1 Kernel target alignments for
Moons dataset 40

8.2 t-th eigenvalue ratio for Moons
dataset . 41

8.3 Asymmetric geometric distance of
Kernels . 42

8.4 Model complexity of each kernels 43

8.5 Kernel target alignments for Pima
dataset . 43

8.6 t-th eigenvalue ratio for Pima
dataset . 44

8.7 Asymmetric geometric distance of
Kernels . 44

8.8 Model complexity of each kernels 45

vii

Tables

viii

Chapter 1

Introduction

Over the last few years, quantum computing has gained more and more
scientific focus, lending itself to be the revolutionizer across various artificial
intelligence fields including machine learning. While machine learning is
obviously one of the fastest growing fields of artificial intelligence, it is
not disregarded by quantum computing with much desired properties, with
exponential speedup being one of them. Exponential speedup using quantum
computation is the result of quantum phenomena called entanglement and
superposition. These make it possible to perform computations exponentially
faster compared to classical computers. This may accelerate not only training
but also classification. However, quantum computation does not only bring
benefits. Several disadvantages need to be pointed out, such as hardware
limitations. Although there have been rapid advances, up-to-date quantum
computers still face problems of low computational power stemming from
coherence time, gate fidelity, and limited qubit connectivity. These factors
not only make quantum computers noisy and prone to errors but most
importantly, they impose limits on what problems can and cannot be solved
by quantum computers today. Correcting errors and filtering out noise can be
done, but the utilization of more qubits is needed, making the computation
demanding on more resources, thus inefficient. Another problem with quantum
computing is the same phenomenon that quantum mechanics is based on:
that measurement is part of an experiment. With qubits living in their
own Hilbert space, mapping the results of quantum computation back to
classical data for it to be used by scientists immensely affects the qubit
state, and the development of trustworthy methods for state readout is still a
problem. In order to fully exploit the quantum computational power once
large-scale quantum computers are designed, all of the obstacles listed above
must be tackled. With the rise of quantum computing, several questions have
arisen. One of the most questioned ones is the existence of quantum advantage,

1

1. Introduction
meaning whether there are tasks that can be done on quantum computers that
couldn’t be done on classical computers. While evaluating, several qualitative
measures are taken into consideration, such as time of computation, resources
needed for the task, etc. In this work, we are introducing quantum kernels
that are #P hard to evaluate classically. These findings are then justified by
experiments that aim to show that these kernels are indeed useful and not
only an example of a rather useless tool with hard simulability properties.

2

Chapter 2

Quantum computing

As this thesis revolves around quantum computers, introducing the concept
of quantum computing in general is necessary. Currently, all computation
is performed by classical computers, which are the result of the tireless
development of technological companies. This development has driven the
evolution of computers to a mind-boggling state, where computers and the
models implemented on them are more powerful than ever, affecting our
lives in almost sci-fi ways. This is the big picture; however, companies that
produce computers are on the verge of an interesting event. The problem
that Gordon Moore predicted back in 1965 [?] and revisited in 1975 relates to
the well-known Moore’s Law. Moore’s Law essentially states that the number
of components per integrated circuit doubles over a period of time—initially
stating that annually (1965), later on biennially (1975). The length of this
time period is not really important for this thesis, but rather the fact that
some progress is being made. But a more important implicit consequence is
the size of the circuit components. The majority of the components in an
integrated circuit are transistors. The process of increasing the number of
components in an integrated circuit comes with a reduction in their size. Up
until now, more powerful computers were built simply by adding more smaller
transistors into the same size circuit. We have come to a moment where the
size of the transistors is atomic and it cannot be reduced any further. On
this scale, the laws of classical mechanics cease to make sense, and quantum
mechanics becomes more relevant. This may suggest that by decreasing the
size of transistors, a classical computer will become a quantum computer,
but this is not the case. A quantum computer is a totally different device,
and the transition to using quantum computers from classical ones is not
continuous, but rather a great leap in information technology.

3

2. Quantum computing
2.1 The fundamentals

2.1.1 Qubit

The most basic unit of information stored in a classical computer is a bit,
which stores either a 1 or a 0. The quantum equivalent is called a qubit.
However, a qubit is not just an ordinary unit for storing information. A
qubit obeys quantum mechanical laws, enabling it to be not only 1 or 0 but
also any state in between. It can be in a superposition of these two states
simultaneously. We often define two orthogonal states, which are also referred
to as the computational basis:

|0⟩ =
(

1
0

)
|1⟩ =

(
0
1.

)

A quantum state |ψ⟩ is part of the two-dimensional complex Hilbert space H2

|ψ⟩ = α |0⟩+ β |1⟩

with |α|2 + |β|2 = 1, α, β ∈ C. This representation is sufficient if we discuss
pure states. However, quantum computers can also exploit mixed states. In
such cases, it is more advantageous to use the density matrix ρ = ⟨ψ| |ψ⟩
when representing qubits.

2.1.2 Quantum circuit

A quantum circuit connects a set of qubits, which means that it captures
the initial circuit state |ψ⟩ =

⊗q
i=1 |ψi⟩, where |ψi⟩ are the states of each

individual qubit. In this work, we assume that each qubit is initialized to the
state |0⟩. Also worth mentioning is the dimensionality of this state—since it
is the tensor product of q 2-dimensional Hilbert spaces, the resulting space is
a Hilbert space H2q with dimension 2q. The quantum circuit then performs
the computation via unitary matrices U ∈ C2q×2q . Here, q represents the
number of qubits in the circuit. A unitary matrix is any matrix that satisfies
UU † = I, where U † is the Hermitian adjoint and I is the identity matrix. A
quantum circuit then prepares the quantum state:

|ψ⟩ = U |0⟩ . (2.1)

However, in real applications, the circuit’s unitary matrix results from applying
many unitary matrices, each targeting specific qubits. To clarify, we often

4

............................. 2.2. Quantum computing specifics

visualize a quantum circuit using a diagram, which adds clarity to the circuit’s
operations. This diagram arranges qubits on horizontal lines, with interactions
between the qubits represented by gates. The relevant gates’ unitaries are
introduced in 7; however, for now, the reader should simply be aware of the
quantum circuit diagram representation, as shown in example 2.1.

Figure 2.1: Quantum circuit example with q = 3 qubits and depth 4

2.1.3 Measurement

In the previous subsection, we introduced the terms quantum circuit and
quantum state |ψ⟩, which is prepared by the quantum circuit. One might
wonder how we leverage this state in real-world applications. We have not
mentioned the last step of quantum computation yet. It is evident that the
state of a quantum circuit, even for a small number of qubits, may exist in
dimensions far beyond human comprehension. To utilize this state and the
computation it represents, we need to measure it. In quantum mechanics,
measurement is a critical component of its theory. Once a measurement is
applied, the entire state collapses to the measured state. In the diagram,
measurement is even shown as the last gate applied to qubits 1 and 2.
This measurement is realized using a Hermitian matrix M , and the possible
outcomes of the measurement are the eigenvalues of the operators. Throughout
this work, we assume measurement on a computational basis |0⟩ , |1⟩, although
other bases are possible as well.

2.2 Quantum computing specifics

Quantum computing research is extensive and led by technological giants such
as Google and IBM, but what fuels their excitement? Quantum computing
offers an undeniable speed-up that is tempting. The main challenge lies in
the hardware, which lacks the desired properties. In this section, we explore
the possibilities of quantum computing as well as its significant challenges.

5

2. Quantum computing
2.2.1 Advantages

We have already mentioned some of the advantages of quantum computing.
One of them has to be the superposition of states. Qubits can be at the
superposition of two states. With a growing number of qubits the dimension
of space that can be searched using quantum computers grows exponentially.
Another significant concept is the quantum entanglement which cannot be
omitted from a thesis regarding quantum computing. Quantum entanglement
is a physical phenomenon occurring when two or more particles become
linked in such a way that we cannot describe one particle independently
of the others. Entangled particles then obtain specific behavior such that
the measurement of one particle determines the state of the other particle.
This phenomenon shatters our thinking of classical mechanics, and even the
greatest physicians, such as Albert Einstein, were not sure about this idea.
But entanglement exists, and we can make use of it, which most quantum
algorithms offering advantage do. Superposition and entanglement hand in
hand enable the quantum computer to make computations of many states all
at once - providing parallelism. This is something we need to consider. There
are some tasks, for example, finding an element in an array, that require
looking at every element separately. Quantum computers offer a remarkable
possibility - to look at every element in an array in a single computational
task. This unlocks possibilities of quantum speed-up, such as Lov Grover’s
algorithm, which takes advantage of parallelism and shrinks time complexity
for searching for an element in an unsorted array from classical O(N) to
quantum O(

√
N).

2.2.2 Challenges

Until now, we have discussed only the advantages and possibilities of quantum
computing. However, as intriguing as these may seem, quantum computing
still lacks real-world applications, since creating a reliable quantum computer
may be one of the most challenging engineering tasks of the 21st century.
Since the first proposal by Richard Feynman in 1981, the quantum computing
industry has come a long way, yet we are not there yet. We are on the verge
of what some call the NISQ era, with NISQ standing for Noisy Intermediate-
Scale Quantum. The intermediate scale is often defined as a range from
50 up to a few hundred qubits that may be used in a quantum computer.
Even though there are computers with more than 50 qubits already, it is still
the lowest limit, and we are still discovering what quantum computers are
capable of. The term ’Noisy’ may be even more determining with respect to
the power of quantum computers. Even with the limited number of qubits
we are able to construct, we cannot do so reliably. Qubits suffer from several

6

.................................... 2.3. Current state

deficiencies such as error per gate, gate execution time, qubit initialization,
connectivity of qubits, etc. Error per gate is one of the properties that are
primary for optimization. We need to ensure that we apply certain quantum
gates with high accuracy, but even in the best hardwares, the error per gate
remains above 1%. On one hand, with the growing number of qubits q, we
may use these qubits for error correction. On the other hand, this approach
will backfire due to the qubit connectivity problem. Connecting all the qubits
in a quantum computer is demanding, and to use error correction effectively,
we assume the qubit connection graph to be dense, which is a challenging
engineering problem. Gate execution time is important as well, with time
often being one of the complexity arguments that determines the algorithm’s
performance. The last challenge we mention is qubit initialization, as even
initializing a quantum computer to the |0q⟩ state needs to be considered as a
part of quantum computation.

2.3 Current state

Currently, there are several approaches to creating general quantum comput-
ers, but we will only mention two of the most widely used ones.

2.3.1 Superconducting qubits

Superconducting qubits use a circuit of superconducting materials, giving
them the property of carrying an electric current with zero resistance. This
comes with a trade-off of having to operate at extremely low temperatures
close to absolute zero, which imposes challenging conditions on cooling the
system down. A qubit is represented as a Cooper pair - a pair of electrons
and gates are applied to qubits via microwave pulses. This approach offers
great speed with circuits operating at GHz frequencies. Also, it is believed
that the number of qubits can scale up easier than other techniques with the
IBM Condor computer having 1121 qubits. The biggest disadvantage is the
decoherence of qubits due to the interactions with the environment, which
may ruin experiments. For example, error rates per single gate are generally
around 0.1%. This procedure is mainly used by IBM and Google. Since this
work experiments are run using Qiskit, IBM’s quantum computing library,
this is the approach used in this thesis as well.

7

2. Quantum computing
2.3.2 Trapped ions

Another approach to creating quantum computers is trapped ions. Where
superconducting qubits come up short, trapped ions excel and vice versa.
This approach allows for high-fidelity and longer coherence times. Trapped
ions offer the lowest error rates in the quantum computing industry with
companies using them claiming an error rate of 0.001%. The disadvantage is
operation times - for one-qubit gate up to 20ns, and for two-qubit gates even
200ns. Also, scalability appears to be harder than on superconducting qubits,
with the highest number of qubits at a trapped ions computer right now 56.
The leading companies using this technique are IonQ and Quantinuum.

2.4 Possibilities

As mentioned earlier, the Hilbert space of a quantum computer grows expo-
nentially with the number of qubits. With the most powerful computer of
IBM harnessing a power of more than 1200 qubits [Bro24], quantum circuit
state lives in a dimension that is higher than the number of all atoms in the
known universe. We are dealing with an extremely complex quantum world,
but this does not necessarily ensure that quantum computers are more power-
ful. In this section, we show several applications of quantum computing that
may lead to quantum computing being advantageous compared to classical
computers.

2.4.1 Quantum Fourier transform

A gateway to harnessing quantum advantages is the Quantum Fourier Trans-
form (QFT) [Cop02]. Like its classical counterpart, it transforms data from
the computational basis into the Fourier basis. A QFT circuit with q qubits ex-
ploits parallelism by computing Fourier coefficients simultaneously, usingO(q2)
gates, compared to the classical O(q2q), thus offering exponential speedup.
Assuming that the quantum computer natively implements the controlled
phase gate, the complexity can be further reduced to O(q log(q)) [HH00]. The
QFT, while advantageous on its own, merely serves as a gateway, with many
algorithms linked to this foundational algorithm.

8

..................................... 2.4. Possibilities

2.4.2 Quantum phase estimation

Quantum phase estimation (QPE) appears to be the next step to obtaining
quantum advantage. QPE is used to estimate the eigenvalues of unitaries
U , with quantum computers capitalizing on the fact that all eigenvalues of
unitaries are of the norm ∥λi∥ = 1. Estimating eigenvalues is thus equivalent
to finding their phases. QPE uses two registers, the first being the output
register, and the second being the input. The first register is an applied set
of Hadamard gates, then controlled unitaries U2j are applied to the second
register with qj being the control qubit. After the controlled operations
are done, inverse QFT is applied and the results are obtained by using
measurement on the first register. QPE is a backbone of more complex
quantum algorithms such as Shor’s algorithm, HHL algorithm, etc. [NC10]

2.4.3 Shor’s algorithm

We recognize that one of the most important algorithms fully utilizing quan-
tum computers is Shor’s algorithm [Sho94]. This algorithm solves the problem
of finding the prime factors of a large integer S , which is widely known
as the key to modern-day encryption systems [RSA78]. The best-known
non-quantum algorithm for this task is a general number field sieve that
works in subexponential time O(e1.9(log(S))1/3(log(log(S)))2/3). Shor’s algorithm
offers the speed-up of O

(
(logS)2(log logS)

)
using the fastest multiplica-

tion algorithms. [HvdH21]. Shor’s algorithm leverages quantum superposi-
tion by raising an initial guess a up to S powers at once. The Quantum
Fourier transform [CEMM98] then finds a period r in the resulting function
f(x) = ax mod S present in the superposition. With a recently established r,
we may improve the initial guess to ar/2 ± 1. This updated guess, together
with the original number, S gives the desired factors. For finding the factors,
a classical computer is used utilizing common algorithms such as a general
number field sieve.

2.4.4 HHL algorithm

The Harrow-Hassidim-Lloyd algorithm [HHL09] solves the problem of finding
a solution to the system of linear equations Ax = b with N variables. The
HHL algorithm, under the assumption that the matrix A is sparse and well
conditioned, i.e., has a low number κ, offers an exponential speed-up with time

9

2. Quantum computing
complexity being O(log(N)κ2), as opposed to classical algorithms O(Nκ).
HHL uses the aforementioned QFT and QPE to approximate the result x
by preparing an inverse matrix A−1 and measuring on an ancilla qubit. The
measuring happens to be a crucial part since to get full information about
xthe HHL algorithm needs to be run O(n) times, which ruins the exponential
speed-up. However, mostly only some traits of the solution are needed, or we
only need a sample. In this case, HHL may lead to new research in physics,
chemistry, computational science, and more.

2.5 Future

We have only mentioned a minor part of quantum computing possibilities,
but we need to mention that all of them require advanced quantum computer
technology with better decoherence times and error correction, a technology
that will be more reliable overall. IBM has already announced their goal for
the next 10 years - to create a quantum computer with more than 105 [Rev23]
qubits. Recent improvements show that they may be able to do that. Maybe
not in ten years, but someday, it will certainly happen. In the meantime, our
work is to find what we could do with reliable quantum computers once we
have them. We believe that quantum computers will not replace classical
computers anytime soon but rather become another layer of computation
with its own properties. Methods that shall excel will be doing so by using
a partnership between classical and quantum computation, as does Shor’s
algorithm for example. We take a similar approach in this work, using
quantum computers to define a function that no classical computer can
reliably estimate and using classical computers to utilize this function in a
supervised machine learning task. The settings and further description of
such tasks are defined in the next chapter.

10

Chapter 3

Quantum kernels

Quantum supervised machine learning can be described in many ways. In
this paper, we rely on the strong similarity to kernel methods, which we will
be introducing in this section. Even though the usage of kernel methods is on
its decline with neural networks being vastly used across artificial intelligence
fields, its advantages are still undeniable. In addition, quantum neural
networks (QNN) are set to be more prone to suffer from the phenomenon of
barren plateaus than their classical counterparts [MBS+18]. These indications
can cause us to witness kernel methods become significantly more efficient
and frequently used in quantum computing. Let’s introduce some important
concepts that will help us understand more deeply the similarities between
quantum-supervised machine learning and kernel methods and how we can
leverage these similarities in the applications we need. The previous chapter
aimed to introduce quantum computing in general. In this chapter, we focus
on more specific tasks of quantum computing - supervised machine learning
in the quantum domain. More specifically, we lay the foundations on which
the main part of this thesis lies. The main concept of this thesis is to show
that quantum computers can be handy when classifying data. Furthermore,
we wish to show that quantum computing can not only be useful but, more
importantly, more advantageous over conventional methods. The first step is
to define the problem that we want the quantum computer to solve.

11

3. Quantum kernels
3.1 Initial problem

The initial problem is a notoriously known data classification problem. We
are given training data Xtrain = {x1, . . . , xn} from data space Ωd with its
assigned labels Ytrain = {y1, . . . yn}. Data space Ωd can be any space, but in
this thesis, we assume it to be real Rd with dimension d, and the labels are
from binary space B with slight notation change B = {−1, 1} since binary
classification in machine learning often uses ±1 labels. Generally, the label-
assigning function f : Rd → B is not known, but we are certain it satisfies
f(X) = Y. The goal for the algorithm is to learn the classifier utilizing an
approximate map f̂so that when the classifier sees new data (often called
test data), Xtest = {x1t, . . . , xnt} it classifies this data with labels f̂(X) that
match the real labels f(Xtest) = Ytest = {y1t, . . . , ynt} with high probability.
Model performance is often evaluated using generalization error.
Definition 3.1 (Generalization error). Generalization error or the expected
loss of a model f̂ is

Eg(f̂) =
∫
⩽̸×B
L(f̂(x), y)p(x, y)dxdy, (3.1)

where L(f̂(x), y) is the loss function which outputs the loss of the model’s
classification - in this thesis, we will use hinge-loss = Lh(f̂(x), y) = max(0, 1−
f̂(x)y) and p(x, y) is the joint probability distribution of the data sample x
and its label y.

In real-world application, we often do not have access to the exact joint
probability distribution. That is why instead of generalization error, empirical
error is used.
Definition 3.2 (Empirical risk). Given t data points, the empirical risk of a
model f̂ is

Ee(f̂) = 1
t

t∑
i=1
L(f̂(xi), yi) (3.2)

3.2 Support vector machine

To explain this next part, we will assume that the data are separable. We will
use this example to explain how the support vector machine (SVM) works.
We will then extend the principle to linearly non-separable data.

12

................................ 3.2. Support vector machine

3.2.1 Linearly separable data

Given the setup as in the initial problem, we assume an X that is linearly
separable. The optimal model f̂ is classifying the data based on a hyperplane

wx− b = 0, (3.3)

where w ∈ Rn is the normal vector to the hyperplane, called the weight vector.
b ∈ R defines a hyperplane’s offset - bias. This definition of a hyperplane is
still not sufficient since we want the best classifier possible. To achieve this,
we want to create two hyperplanes

y(wx− b) ≥ 1, (3.4)

where y ∈ B so this equation really represents two hyperplanes. In order to
have the best classifier possible, maximizing the margin between these two
parallel hyperplanes is necessary. The margin between the two hyperplanes is
geometrically given by 2

|w| . Maximizing the margin is the same as minimizing
the inverted value of a margin, so we obtain an optimization problem:

w∗, b∗ = arg min
w,b

∥w2∥
2 (3.5)

subject to yi(wxi − b) ≥ 1. (3.6)

The minimizer that solves this problem is called the Hard margin support
vector machine. The classifier of this type splits the space Rn into two
subspaces and finds in which subspace the data lies: f̂(x) = sign(w∗x− b∗).

3.2.2 Linearly non-separable data

In the case of data that is linearly non-separable, we extend the Hard margin
SVM using the previously mentioned hinge loss. This loss is useful because
it gives us information about the distance from the margin. We want to
minimize

∥w∥2 + C[1
n

n∑
i=1
Lh(wxi − b, yi)], (3.7)

where C > 0 is the hyperparameter defining the trade-off between forcing the
xi to lie on the correct side of the hyperplane and increasing the margin size.
We further deconstruct the hinge-loss and introduce the slack variable ςi to
define the update primal optimization problem:

w∗, b∗, ς∗ = argmin
w,b,ς
∥w∥22 + C

n∑
i=1

ςi

subject to yi(wxi − b) ≥ 1− ςi, (3.8)
ςi ≥ 0, ∀i ∈ {1, ..., n}. (3.9)

13

3. Quantum kernels
Such minimizer is called the Soft-margin SVM.

3.2.3 Non-linear boundary

The soft-margin SVM is just one step from the approach used in this work later.
The primal problem is intuitive but suffers from computational complexity. To
overcome these obstacles we further define the Dual problem using Lagrange
multipliers. We define Lagrangian:

L(w, b, ς, α, µ) = ∥w∥
2

2 +C
n∑

i=1
ςi−

n∑
i=1

αi[yi(wxi +b)−1+ςi]−
n∑

i=1
µiςi. (3.10)

Where αi, µi ≥ 0 are Lagrange multipliers for constraining hyperplane and
slack variables respectively. In order to minimize the Lagrangian we use
derivatives ∂L

∂w ,
∂L
∂b ,

∂L
∂ςi

.

∂L

∂w
= w −

n∑
i=1

αiyixi = 0

∂L

∂b
=

n∑
i=1

αiyi = 0

∂L

∂ςi
= C − αi − µi = 0

Using previous results we can substitute into the 3.10 and obtain the dual
problem:

α∗
i = arg max

αi

∑
i

αi −
1
2

|X |∑
i,j

αiαjyiyjk(xi, xj) (3.11)

subject to
∑

i

yiαi = 0

0 ≤ αi ≤ C,∀i..

An important thing to mention here is the kernel function k(xi, xj). Its
introduction is seemingly unnecessary, but its rationale is so important that
we want to emphasize it. As we mentioned earlier, the data may be linearly
separable. In this case, the soft-margin SVM can utilize k(xi, xj) = xT

i xj

- simple inner product. The importance of the kernel function k arises in
the case of linearly non-separable data. We can use some transformation
to map the data to a higher dimensional feature space, where the data
becomes linearly separable - an example of such approach is radial basis
function [AC02]. In this higher dimensional space, we can find a hyperplane
separating the data. If this hyperplane is mapped back to the original space,

14

.....................................3.3. Feature map

it becomes non-linear. This is called the kernel trick and it is the key essence
of using SVMs. Mapping to a feature space using a feature map is defined in
the following section.

3.3 Feature map

The kernel function k that appeared in the previous section is closely related to
the feature map, as mentioned in the linearly separable case k(xi, xj) = xT

i xj .
But to fully utilize the kernel trick, we wish to create a feature map that will
map our data to the higher dimensional feature space F whose dimension
may be arbitrary, even infinite. To achieve this we introduce the feature map
ϕ(x) : Rd → F , the kernel function then corresponds to the inner product in
the feature space k(xi, xj) = ⟨xi|xj⟩.

3.3.1 Quantum feature map

The quantum computer steps in right at this time. As we mentioned earlier,
the quantum computer state lives in the Hilbert space H whose dimension
grows exponentially with the number of qubits m. To use classical data in a
quantum computer, we need to map this data to the quantum circuit. For this
purpose, we can incorporate a quantum circuit with the quantum embedding
ϕ(x). The quantum embedding is further described in section 7. For this
moment we only need to know that it is a map ϕ(x) : Rd → F .

Definition 3.3 (Quantum feature map). Let x be data from data space X
that we want to encode into the quantum circuit. F is the space of complex
density matrices C2q×2q . The circuit realizing this embedding prepares the
quantum computer in the state:

|ϕ(x)⟩ = E(x) |0q⟩ (3.12)

where E(x) is a unitary operator defined based on data x, and q is the number
of qubits.

15

3. Quantum kernels
3.4 Quantum kernel

We can further introduce a quantum kernel once we can map classical data
to a quantum computer. Quantum kernels are the key components of this
work. This feature map gives rise to a kernel-distance metric based on the
dot product.
Definition 3.4 (Quantum kernel). Let ϕ be a quantum feature map. Then
quantum kernel κ(xi, xj) ∈ R is the fidelity between two data encoding feature
vectors ϕ(xi), ϕ(xj):

κ(xi, xj) = tr[ρ(xi)ρ(xj)]2, (3.13)

which for the case of mixed states simplifies:

κ(xi, xj) = ∥⟨ϕ(xi)|ϕ(xj)⟩∥2. (3.14)

Subsequently, we define a kernel matrix K with rows and columns correspond-
ing to fidelity between states raised by individual samples:

K(X)ij = κ(xi, xj). (3.15)

This kernel matrix K(X), commonly referred to as Gram matrix, is positive
definite.

3.5 Projected quantum kernels

Quantum kernels often exhibit an issue of being exponentially concentrated.
[HBM+21] Meaning that the kernel values outside the kernel diagonal are
vanishingly small. Support vector machines suffer from this, so they cannot
learn the function properly. To ease this problem, a family of projected
quantum kernels is used. Projected quantum kernels are an easy concept
of measuring only some part of qubits. This step is executed by t-reduced
density matrix:

ρt(x) = trt[ρ(x)], (3.16)

which can be considered as a measurement on just a subset of qubits t ⊂ q,
with trt being a partial trace over qubits t. The kernel entries then are:

κt(xi, xj) = trt[ρ(xi)ρ(xj)]. (3.17)

Results from these projected quantum kernels can be used as features in
traditional SVMs.

16

...................................... 3.6. Synthesis

Figure 3.1: Quantum kernel and Quantum projected kernel comparison

3.6 Synthesis

With the quantum kernel κ(., .) being defined we can plug this into the
3.11. As mentioned, k(xi, xj) can have numerous forms, let us name the
Gaussian kernel function k(xi, xj) = e−γ||xi−xj ||22 , the radial basis function

k(xi, xj) = e−
||xi,xj ||2

2σ2 , or even the linear kernel function k(xi, xj) = ⟨xi|xj⟩.
But in the previous section, we showed that a quantum computer armed with
data embedding ϕ(x) naturally defines its own kernel function k(xi, xj) =
κ(xi, xj) = ⟨ψ(xi)|ψ(xj)⟩. The subject of the next section is the use of
quantum kernel and its properties.

17

18

Chapter 4

Kernel quality measures

An essential part of this thesis is determining the quality of a kernel. We
don’t want to jump forward, but the main idea is to basically generate a lot
of kernels and then keep just a fraction of those that acquire a certain quality.
This chapter dives into the realm of kernel quality measures and it introduces
principles on which we decide whether the kernel we have is useful or not. We
use the kernel target alignment [CSTEK01], model complexity [HBM+21], the
asymmetric geometric difference [HBM+21] , and the eigenvalues ratio [LL15].

4.1 Kernel target alignment

Definition 4.1 (Kernel target alignment). The kernel target alignmentKTA(k, f)
is then defined as follows:

KTA(k, f) = ⟨k, f ⊗ f⟩
⟨k, k⟩1/2⟨f ⊗ f, f ⊗ f⟩1/2 =

∑
i γiα

2
i

(
∑

i γi)1/2∑
i α

2
i

, (4.1)

where k is the quantum kernel as defined and f is the target function.

Since this measure may be the sum of infinite dimensions we can use a
more straightforward definition that utilizes the Gramm matrix K belonging
to a kernel, and the so-called target matrix K∗

K∗
ij = yiyj . (4.2)

19

4. Kernel quality measures
Kernel target alignment then takes the form of:

KTA(K,K∗) = ⟨K|K∗⟩F√
⟨K∗|K∗⟩F ⟨K|K⟩F

, (4.3)

which is the notion that will be used throughout this work. ⟨K1,K2⟩F =∑n
i,j=1K1(xi, xj)K2(xi, xj) is the Frobenius inner product of two matrices.

Kernel target alignment can be interpreted as a measure of similarity based
on the cosine of the angle. From such knowledge we already know the range
of output for general matrices - resulting in KTA(A,B) ∈ [0, 1].

4.2 Asymmetric geometric difference

Asymmetric geometric difference is the first obstacle a quantum kernel needs
to overcome in order to achieve an advantage over its classical counterpart
[HBM+21]. It is defined as follows:

gab = g(Ka||Kb) =
√
||
√
KbK

−1
a

√
Kb||∞, (4.4)

where || · ||∞ is the spectral norm of a matrix. Ka and Kb are corresponding
kernels. It is important to mention the assumption that Tr(Ka) = Tr(Kb) =
N , which can be enforced using regularization. The first sign of a step towards
quantum advantage is when gcq (the asymmetric geometric difference between
a classical Kc and a quantum kernel Kq) is proportional to qcq ∝

√
n.

4.3 Model complexity

Model complexity is bound to the asymmetric geometric difference. If the
condition of qcq ∝

√
n is met, we wish to examine each of the kernels separately

by finding its model complexity:

sK(n) =
N∑

i,j=1

t(xi)t(xj)
Kij

, (4.5)

where t(x) = Tr(Oρ(x)). The models’ complexity is an important measure
since smaller values demonstrate a better generalization to new data, while
bigger values indicate overfitting. Informally, model complexity tells us
whether the distance in feature space is connected to the kernel function
value k(xi, xj). Quantum kernels exhibit advantage when the asymmetric
geometric difference is proportional to the training dataset n, the quantum
model complexity is much smaller sQ ≪ n, and the classical model complexity
is proportional to sC ∝ n [HBM+21].

20

................................... 4.4. Eigenvalues ratio

4.4 Eigenvalues ratio

The eigenvalues ratio is of simple definition, but it helps find the best possible
kernel [LL15]. We define t-th eigenvalues ratio βt:

βt(K) =
∑t

i=1 λi∑n
i=t+1 λi

, (4.6)

where λi is the i-th eigenvalue of the Gramm matrix K corresponding to the
kernel we wish to inspect, we assume the set of eigenvalues {λi}i to be of
ascending order. The eigenvalues ratio is the ratio between the main eigen-
values and the tail values. Lower values of βt(K) indicate better performance
of a particular kernel. Of course, during optimization, we need to find the
optimal value t which will also be part of the optimization.

21

22

Chapter 5

Hardness of random circuits

Before we dive into the next section, which acquaints us with the main idea of
this work and our way of thinking about quantum advantage, let us build the
last pillar of its foundations - hard classical simulability. More precisely, the
hard classical simulability of a quantum kernel κ(xi, xj). We want a quantum
computer to have a head start over a classical computer while evaluating
kernel function. We take advantage of using random unitaries and their
capacity of being hardly simulable using classical computing. In this section,
we propose findings from [Mov20]. Let us introduce several concepts that are
the foundation of the theorems that are utilized later.

5.1 #P hardness

We later classify that quantum kernel κ(x,xj) is formidably hard to simulate
on classical computers. The task of simulating kernel output lies in the #P
complexity class, which is part of NP . The complexity class NP is defined as
the set of decision problems for which a solution can be verified in polynomial
time by a deterministic Turing machine. Roughly said, the NP complexity
class asks whether a solution exists to our problem. #P complexity class
goes deeper and answers the question of how many solutions exist.
Definition 5.1 (#P [AB06]). #P is the set of all functions f : 0, 1∗ → N such
that there is a polynomial time nondeterministic Turing machine T for all
x ∈ 0, 1∗, f(x) equals the number of accepting branches in T ’s computation
graph on x.

23

5. Hardness of random circuits
Intuitively, this complexity set lies in NP . Later on, we will prove that

estimating a quantum kernel, which uses random unitaries, is #P hard for
classical computers.

5.2 Circuit architecture

Circuit architecture is mentioned throughout this section and is essential
to define. First, we assume that each circuit has q qubits. 1-qubit and
2-qubit gates can be applied to these qubits. Regarding the fact that any
quantum computation can be translated to a circuit using solely universal
gates, [Wil11], we can see this model as a general instance of a quantum
computing model. Architecture A refers to an arbitrary layout of m gates
in the circuit. At this point, we define gates only as black boxes, and when
we mention architecture A, we don’t consider the gates’ definition. So when
talking about architecture A, we mean something like in figure 5.1, some sort
of a blueprint. We can say that architecture A with a description of each
gate defines a particular quantum circuit. The architecture becomes a circuit

Figure 5.1: Circuit architecture A blueprint

once the gates are defined using unitaries. The circuit itself can be described
by a single unitary given the equation:

C = CmCm−1 . . . C1, (5.1)

Where Ci is a single gate. If a gate is applied only to 1 qubit, the unitary is
Ci = Cî⊗ I, where Cî is simply the 1-qubit gate, which means it does nothing
to the second qubit.

5.3 Worst-case and average-case circuits

In the literature [TD04] it has been proven that for architecture with depth
m = 4, a worst-case circuit exists, for which to classically approximate a
quantity p = |⟨0n|C|0n⟩|2 is #P-hard up to constant relative error. How-
ever, talking about worst-case circuits is not sufficient to achieve quantum

24

............................ 5.4. Haar random circuit distribution

supremacy. Quantum supremacy expects that estimating probability distribu-
tion induced by the random circuit is computationally hard for any classical
algorithm that inputs the classical description of the gates. [Mov20] We need
to extend this finding to most circuits. Thus, we introduce the idea of an
average case circuit. This circuit is generated completely at random by the
QR decomposition of a random Gaussian matrix.

5.4 Haar random circuit distribution

The Haar random circuit distribution is defined on architecture over circuits
A. We have the Haar random circuit distribution HA over circuits A whose
local gates are independently drawn from the Haar measure.

5.4.1 Sampling from Haar measure

For generating random unitaries U ∈ C2q×2q QR decomposition approach is
utilized [Mez07]. The procedure is as follows:..1. Generate 2q × 2q matrix Z with complex entries such that both real and

complex parts are normally distributed with mean 0 and variance 1..2. Compute a QR decomposition of Z = QR..3. Generate diagonal matrix Λ = diag(Rii/|Rii|)..4. Compute U = QΛ, which is a random unitary.

5.5 Cayley transformation and Cayley path

The Cayley transformation is a projective map

f(θ) : R→ C : 1 + iθ

1− iθ (5.2)

25

5. Hardness of random circuits
that maps a line of points to a unit circle. This function is used when trans-
forming between two unitary matrices through a path θ ∈ [0, 1]. Following
the definition of Cayley transformation, we further introduce:

H = τ(h) =
N∑

α=1
f(λα) ⟨ψα|ψα⟩ , (5.3)

where H is a unitary matrix generated from a hermitian matrix h, λα and ψα

are the eigenvalues and eigenvectors of h. The generated unitary matrix H
is of Haar measure and it represents the previously mentioned average case
circuit. Lastly, we want to define the Cayley path, which is parameterized by
the parameter θ ∈ [0, 1]:

C(θ) = Wτ(θh), (5.4)

where W is the fixed worst-case circuit and h is a randomly generated
hermitian matrix generating H = τ(θh) which is of average case circuit
instance. From this equation, we can point out the fact that this Cayley
path truly oscillates between the worst-case circuit W and the average-case
circuit with Wτ(0) = W I = W and Wτ(1) = WH. Wτ(1) is a random Haar
unitary due to the left-translation invariance, thus an instance of an average
case circuit. This is an important concept worth stressing. What Cayley

Figure 5.2: Cayley path

transformation does is that it makes the worst-case circuit and random-case
circuit defined on the architecture A equivalent. The equation for a circuit
unitary becomes:

C(θ) = Wmτm(θ)Wm−1τm(θ) . . .W1τ1(θ). (5.5)

We assume that τi(1) is a unitary matrix according to the Haar measure.
Then, the distribution over Wmτi(θ) for |1− θ| ≤ ∆≪ 1 is O(∆)-close to the
Haar in total variation distance.

26

...................................... 5.6. Theorems

5.6 Theorems

I will introduce the main results presented in [Mov20].

Theorem 5.2 (Hardness of random quantum circuits (informal) [Mov20]). Sup-
pose there exists an architecture A for which it is #P hard to compute
arbitrary output probabilities within a small multiplicative error. Then it is
#P hard to calculate the probability amplitude for most circuits with the
same architecture within ϵ = 2−Ω(m) where m is the number of gates.

This states that, indeed, most circuits have the property that their ampli-
tudes are #P hard to calculate. The reasoning behind this theorem is that if
there exists a classical algorithm that efficiently computes p0(θ) = |⟨0n|C|0n⟩|2
for θ ≈ 1 - an instance of an average-case circuit, then we could call this
algorithm poly(n) times on θi, and with the use of the Berlekamp-Welch
algorithm we obtain p0(θ),∀θ [Mov20]. However, this would cause a collapse
of the polynomial hierarchy, which means that there cannot be such a classical
algorithm. This theorem is built upon the foundation of the two following
ones. It merges both of them while making them more tractable.

Theorem 5.3 (#P hardness of Haar random circuits [Mov20]). Let A be
an architecture such that computing p0 = |⟨0n|C|0n⟩|2 is #P hard in the
worst-case. Then, it is #P hard to output |⟨0n|C|0n⟩|2 with the probability
α = 3

4 + 1
poly(n) over the choice of circuits H ∈ HA.

The proof of this theorem is based on the fact that given the Berlekamp-
Welch algorithm, outputting the rational function p0(θ) is possible when
given a sufficient number of measurements |θi|i = poly(n). However, this fact
implies that BPP = #P . This is highly unlikely. To mention the second
theorem once again, we need to define a new concept, which is the classical
algorithm U . This algorithm has the following property:

Pr[|U(C(zi))− p0(zi) ≤ ϵ] = 1− 1
poly(n) ; |zi| ≤ ∆, (5.6)

where zi = 1 + θi, a parameter defining Cayley path and ∆ is defined as the
upper bound on the interval on which we take θi: |1− θi| ∈ [0,∆].

Theorem 5.4 (Robustness of #P hardness [Mov20]). Assuming access to an
oracle U as described above, it is #P hard to compute p0(C(θ)) over HA
within ϵ = 2−Ω(m2) additive error.

27

5. Hardness of random circuits
5.7 Summary

In this section, we have highlighted the results [Mov20], which show that
using random circuit sampling, we can generate circuits that are #P hard to
simulate classically. The importance of the aforementioned is depicted in the
next section, where we finally get to the core of the thesis.

28

Chapter 6

Main concept

Moving from the previous section, we can finally show the main concept of
this work. The key idea is to construct the kernel κR(xi, xj) such that the
kernel output is #P hard to evaluate on a classical machine. We intend to use
this kernel output with a classical support vector machine and solve the initial
problem 3.1. Hence, the procedure employs a quantum computer to evaluate
the kernel κR(xi, xj) and a classical computer to solve the optimization task
3.11.

6.1 Possible advantages

Our approach to this problem offers not only one but four advantages.

6.1.1 Kernel simulability

A kernel is constructed as follows:

κR(xi, xj) = ⟨ψ(xi)|U |ψ(xj)⟩ , (6.1)

with U being a randomly generated unitary. We claim that simulating the
output of this kernel on a classical computer is #P hard. As proof, we use
the previously mentioned theorems 5.3 and 5.4. Since these proofs take into

29

6. Main concept.....................................
account the estimating probabilities of | ⟨0n|C|0n⟩ |2, we need to extend it to
our case, where we wish to estimate the probabilities | ⟨ψ(x)|C|ψ(y)⟩ |2. The
proof is fairly simple. If we assume the fact that estimating |⟨0n|C|0n⟩|2 is
#P hard, we can rewrite the

| ⟨ψ(x)|C|ψ(y)⟩ |2 = |⟨0n|E†(x)CE(y)|0n⟩|2 (6.2)
= | ⟨0n|C|0n⟩ |2. (6.3)

This means that only by applying unitary operations (which we know from the
data, and we can easily compute their conjugate transpose) we can translate
our problem to estimating | ⟨0n|C|0n⟩ |2. If estimating | ⟨ψ(x)|C|ψ(y)⟩ |2
wasn’t #P hard, estimating | ⟨0n|C|0n⟩ |2 would not be #P hard either.

6.1.2 Time complexity

In addition to the kernel being #P hard to evaluate classically, it also enables
exponential speed-up. If we are able to prepare a quantum system |ψ(x)⟩ in
linear time O(n), we can take advantage of the ability of quantum computers
to compute an inner product in constant time O(1) and therefore evaluate
the Gram matrix K(X) in time O(n) instead of O(n2) as on a classical
computer. [Sch21]

6.1.3 Projected quantum kernels

On top of that, we may employ the projected kernels κP
R with corresponding

Gram matrices K(X) having eigenvalues satisfying these rules [KBS21]:

.One eigenvalue 2−p +O(2−2q) with constant eigenfunction

. 22p − 1 eigenvalues 2−p−q +O(2−2d),

where p and q follow notation and represent the number of measured qubits
in the projected kernel and the number of qubits in the circuit, respectively.

30

................................ 6.2. Experiment algorithms

6.1.4 Random sampling

Using a sampling of U , which is a random unitary, we wish to achieve much
better spectral properties 4. The main idea is to sample random Haar
unitaries for a sufficient number of trials to strictly improve kernel qualitative
measurements such as kernel target alignment or eigenvalue ratio. We use
rejection sampling, throw away unitaries that do not improve the model’s
performance, and keep only the promising ones.

6.2 Experiment algorithms

We prepared several experiments to support our findings. The experiment
procedure goes as follows:

31

6. Main concept.....................................
Algorithm 1 Classifying data

Inputs:
Labelled data (xi, yi)
Unlabelled data (x̂i)

Output:
Unitary U increasing accuracy of prediction

Classified data (x̂i, ŷi)
procedure Training

for all xi do
ψi ← E(xi) |0n⟩ ▷ We obtain state vectors of mapped data

end for
t← 0
while t = maxiter do ▷ Boolean variable for train ending

C ← random unitary
for all ψi,ψj do

Kij ← ⟨ψi|C|ψj⟩ ▷ We get kernel matrix
end for
KTAC ← KTA(K, y) ▷ Evaluate kernel-target alignment
MCC ← KTA(K, y) ▷ Evaluate model complexity
AGDC ← KTA(K, y) ▷ Evaluate asymmetric geometric distance
ERkC ← KTA(K, y) ▷ Evaluate k-eigenvalue ratio
t← t+ 1

end while
end procedure
procedure Evaluating

for all x̂i do
ψ̂i ← E(x̂i) |0n⟩
ŷi ← 0
for all ψj do

ŷi ← ŷi + ⟨ψj |U |ψ̂i⟩
end for
ŷi ← sign ŷi

end for
end procedure

32

Chapter 7

Embeddings

Embedding plays a key role in mapping classical data to a quantum circuit.
For each of the embeddings, we describe its functionality and also present
the kernel it naturally generates. All the approaches mentioned below will
then be used in the experiments in the next section. It is important to
mention that the role of embedding is often overlooked, and not many works
are dedicated to this issue. Among the exceptions, we should mention for
example: Maria Schuld. We have drawn on the insights contained in the
aforementioned works in the construction of this chapter. We believe that
testing embeddings against each other on different types of data can help
future work push quantum computing towards better results.

7.1 Basis embedding

One of the simplest embeddings is basis embedding. Basis embedding takes a
discrete input and encodes it in the quantum circuit. In the literature [Sch21]
it is often defined as binary basis embedding but can, in general, use any
numeral system. The idea behind basis embedding is simple - each digit is
mapped to its predefined quantum state. The only restriction is that the set
of quantum states we map to is orthogonal. For example, we can use the
aforementioned binary basis embedding. We choose an arbitrary orthogonal
basis {|0⟩ , |1⟩}. The binary string x ∈ Bn is then mapped to the quantum
state:

ψ(x) =
N⊗

i=1
m(xi), (7.1)

33

7. Embeddings
where m(xi) is the mapping function:

m(xi) =
{
|0⟩ if xi = 0,
|1⟩ if xi = 1.

(7.2)

As mentioned, we can use an arbitrary set of orthogonal basis states, e.g.
{|+⟩ , |−⟩}, {|l⟩ , |r⟩}. What is more, we are not bound only to binary string
inputs but can choose other numeral systems with a simple example being
the quaternary system - with x = {0, 1, 2, 3}n, and the orthogonal basis being
{|00⟩ , |01⟩ , |10⟩ , |11⟩}. Basis embedding generates a kernel corresponding to
Kronecker delta:

κ(x, x′) = δx,x′ . (7.3)

7.2 Amplitude embedding

Another possible, and a bit more sophisticated, embedding is amplitude
embedding [Sch21]. It maps N -dimensional data D(x) ∈ C such that each
dimension of input gets mapped to a quantum state. Mapping can be defined
via the equation:

|ψ(x)⟩ = 1
|x|

N∑
i=1

xi |ϕi⟩ , (7.4)

where ϕi is from an orthogonal basis of the quantum space. For example,
data x = (0, 3, 0, 4) then gets mapped to the state ψ(x) = 1√

5(3 |01⟩+ 4 |11⟩).
Amplitude embedding generates a kernel corresponding to the absolute square
of a linear kernel:

κ(x, x′) = |x†x∥2 (7.5)
Since this embedding is not defined by a set of gates, but rather a unitary
operator, obtaining a unitary that maps state R |0n⟩ → |ψ(x)⟩ is important.
Generating such unitary is done via the Householder transformation [Mez07].
The equation of the projector R is:

R = I− 2|v⟩⟨v| (7.6)

where |v⟩ = |0n⟩ − |ψ(x)⟩ is the difference between the input and the desired
state.

7.3 Rotation embedding

Rotation encoding can encode data X ∈ Rn [Sch21]. The data should be
precomputed in a way that each xi ∈ X is in the interval ⟨0, 2π). For this

34

.................................. 7.4. Pauli feature map

data, each i-th component xi gets mapped to the superposition of |0⟩ and |1⟩
regarding its value. The embedding can be described by the equation:

|ψ(x)⟩ =
N⊗

i=1
cos(xi) |0⟩+ sin(xi) |1⟩ . (7.7)

Again, as in the example of basis embedding, this mapping can be slightly
changed, and the resulting state can be a superposition of different basis
({|+⟩ , |−⟩}, etc.) The corresponding kernel of rotation embedding is the
cosine kernel:

κ(x, x′) =
n=|X|∏

i=1
| cos(xi − x′

i)|2 (7.8)

7.4 Pauli feature map

A much more sophisticated encoding feature map is a family of Pauli feature
maps. These transform data x ∈ Rn, where n is the feature dimension, as:

UΦ(x) = exp(i
∑
S∈I

ψS(x)
∏
i∈S

Pi), (7.9)

where S is a set of qubit indices that describes the connections in the feature
map (e.g. ZZ, Y , ZY), I is a set containing all these index sets and
Pi ∈ {I,X, Y, Z}. The data mapping ψs is defined as:

ψ(x) =

 xi if S = {i}∏
j∈S(π − xj) if |S| > 1

(7.10)

Some examples include using P = Y or P = Z in one qubit setting. These
map the interval [−π, π] to the corresponding states visualized on the Bloch
sphere:

The corresponding colors of state vectors correspond to the gradient between
green (x = −π) and blue (x = π) color.

7.5 ZZ-feature map

A very famous embedding throughout the quantum computing community is
the 2-qubit ZZ-feature map [HCT+19]. This embedding is part of the Pauli

35

7. Embeddings

Figure 7.1: Pauli Y feature map

Figure 7.2: Pauli Z feature map

feature map family, it maps the data with the set of single qubit rotations
P (λ) about the Z axis depending on data and a set of CNOT gates. P (λ) is
defined as:

P (λ) =
(

1 0
0 eiλ.

)
(7.11)

A circuit realizing a ZZ-feature map is then depicted in the figure below:

q0 H P (2x[0]) • •

q1 H P (2x[1]) P (2(π − x[0])(π − x[1]))

(7.12)

with (x0, x1) = x ∈ X .

36

................................. 7.6. Repeated embedding

7.6 Repeated embedding

Another option is to use repeated embeddings. These work simply by applying
embedding circuits one after the other. The resulting kernel corresponds
to the original kernel raised to the power of the number of repetitions. For
example, considering an amplitude embedding with 3 repetitions, the resulting
kernel is:

κ(x, x′) = (|x†x∥2)3 (7.13)

37

38

Chapter 8

Experiment

In this section, we introduce findings based on experiments. Experiments were
run on two datasets - one trivial, the Moon dataset from sklearn [PVG+11]
and one rather challenging, the Pima indians diabetes dataset [Rep16], with
the best algorithms performing only a ≈ 82% success rate of classifying the
data. The goal of the experiments was to use a quantum computer to evaluate
kernels and a classical computer to use these kernels to train an SVM classifier.
The obtained quantum kernels were then classified based on quality measures
introduced in 4. The SVM classifier was run with parameter 104 iterations.
All experiments were run in the Qiskit Aer simulator.

8.1 Preproccessing

Since the Pima dataset sometimes contains NaN values, we have replaced
those with mean values of corresponding features, which we believe does not
harm the experiments but enables encoding data into the circuit.

In case of amplitude encoding, each sample was normalized. While using
Pauli feature maps, we scaled the training dataset across all features to the
interval [0, 2π] since otherwise encoding data may suffer from being periodic.

39

8. Experiment
8.2 Moons dataset

The Moons dataset consists of samples with 2 features - x and y coordinates.
Our training and test datasets consisted of 70 and 30 samples respectively.
We used several approaches for embedding the data into the circuit:

.XY -feature map.XY -feature map with two repetitions. ZZ-feature map. ZZ-feature map with two repetitions.Amplitude encoding

Because the Moons dataset can be encoded into the circuit of just 2 qubits,
we were able to run 50 experiments for each embedding, with each experiment
using a different random unitary U . Since we used only 2 qubits we did not
use projected kernels as they should not be behaving much differently. From
the results 8.1 we can see that there is a clear connection between kernel
target alignment and kernel accuracy, but we observe the fact that not all
embeddings offer the same efficiency. Another measure we evaluated was

Figure 8.1: Kernel target alignments for Moons dataset

t-th eigenvalue ratio of matrix K70×70. For this, we used several settings
ending with t = 10, which exhibited the biggest impact across all possible

40

.................................... 8.3. PIMA dataset

Figure 8.2: t-th eigenvalue ratio for Moons dataset

options, but still lacked the desired behavior of determining kernel capabilities
definitely. We then used the classical radial basis function SVM to evaluate
the optimal ’classical’ Gramm matrix. The classical SVM was able to classify
all samples in the test dataset correctly, so we could compare this kernel to
the quantum ones. Unfortunately, we did not observe any correlation between
the quality measures from [HBM+21] and kernel’s performance.

8.3 PIMA dataset

As the second dataset we chose the Pima indians diabetes dataset. This
dataset consists of 768 samples with 8 features per sample. We chose this
dataset because it is hardly classifiable and online resources [Rep16] claim
best performance of classical methods ≈ 82% offering enough space for
improvement. We split the dataset into a 70% training and a 30% testing
dataset, and tested several embedding approaches.

.XY -feature map. ZZ-feature map.Amplitude encoding. Projected XY -feature map. Projected amplitude encoding

41

8. Experiment

Figure 8.3: Asymmetric geometric distance of Kernels

With Pauli embeddings executed on 8 qubits, we can see that the embeddings
that are not projected lack in performance and are overtaken by projected
kernels. We emphasize this since it is the result of the kernel matrix being
concentrated around the matrix diagonal as mentioned in 3.1. Results of
using t-th eigenvalue ratio were disappointing as the performance was not
correlated to the measure at all. Using the asymmetric geometric distance
and model complexity did not yield good results either.

8.4 Discussion

In this section, we have introduced our experiments that have showed some-
what sobering results. From the introduced quality measures that could be
used to randomly sample kernels using a quantum computer, only kernel
target alignment and t-th eigenvalue ratio appeared to be of any use. However,
it is at least clear from the experiments that different embeddings will be ideal
for different datasets. In our case, the amplitude embedding was the best
choice for both datasets, but this may not always be the case. We should also
note that the experiments were not as extensive as would have been desirable,
and we can assume that with an increased number of samples we would have
found more random unitary matrices that would have improved the kernel
performance. Nevertheless, it is important to point out that random unitary
operations can indeed be useful, as they can turn the kernel structure into a
position where the kernel shows signs of high performance.

42

......................................8.4. Discussion

Figure 8.4: Model complexity of each kernels

Figure 8.5: Kernel target alignments for Pima dataset

43

8. Experiment

Figure 8.6: t-th eigenvalue ratio for Pima dataset

Figure 8.7: Asymmetric geometric distance of Kernels

44

......................................8.4. Discussion

Figure 8.8: Model complexity of each kernels

45

46

Chapter 9

Conclusion

In this paper, we focused on the use of quantum kernels to classify classical
data. After a general introduction to quantum computing and a description
of the current challenges of quantum computing, we focused on the similarity
of quantum machine learning to classical kernel methods. We have extended
the original idea of quantum kernels to include the possibility of these kernels
being P hard in terms of computational complexity. We attempted to apply
these results to the real data classification problem. However, in light of the
experiments we have carried out, we regret to point out that we have been
unsuccessful and in our experiments we have not proved that hard-to-simulate
kernels can be useful. We assume that the classification problems stemmed
from the inappropriate use of the embeddings we used, and for future efforts
to improve the experiment, we recommend extending the work to thoroughly
investigate the compatibility of different embeddings depending on the type
of data we are trying to encode. On the other hand, we have to mention the
fact that the kernels we used took advantage of quantum computing, such
as the principle of superposition, quantum entanglement and parallelism, so
that on real quantum hardware, evaluating these kernels would result in an
exponential speedup.

Despite the failed experiments, we want to mention that quantum machine
learning currently represents a great opportunity to push computer science
further towards possibilities we cannot imagine. Governments and companies
are investing resources in quantum computing, which can only accelerate the
progress in computer sciences. Quantum computers are increasing their qubit
count almost every year, and it can be assumed that this trend will not stop,
but rather the opposite. With more computing power, quantum computing
will become more relevant and it will offer countless possibilities. Although

47

9. Conclusion......................................
the focus is currently on crypto-security, for which quantum computers pose
a significant risk, it would be a mistake to give this issue all the attention. I
believe that in the future, quantum computers and the algorithms developed
on them will be used to enhance not only information sciences but also
physics, chemistry, drug discovery, materials science, finances, healthcare and
many more, with an incredible potential to improve the quality of our lives
in general.

48

Appendix A

Bibliography

[AB06] Sanjeev Arora and Boaz Barak, Complexity of count-
ing, https://www.cs.princeton.edu/courses/archive/
spring06/cos522/count.pdf, 2006, Accessed: 2025-01-07.

[AC02] First Author and Second Coauthor, Title of the paper, Complex
Systems 16 (2002), no. 3, 321–336.

[Bro24] Michael Brooks, Bring on the noise, MIT Technology Review
127 (2024), no. 1, 50.

[CEMM98] Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele
Mosca, Quantum algorithms revisited, Proceedings of the Royal
Society of London. Series A: Mathematical, Physical and Engi-
neering Sciences 454 (1998), no. 1969, 339–354.

[Cop02] Don Coppersmith, An approximate fourier transform useful in
quantum factoring.

[CSTEK01] Nello Cristianini, John Shawe-Taylor, André Elisseeff, and Jaz S.
Kandola, On kernel-target alignment, Neural Information Pro-
cessing Systems, 2001.

[HBM+21] Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan
Babbush, Sergio Boixo, Hartmut Neven, and Jarrod R. McClean,
Power of data in quantum machine learning, Nature Communi-
cations 12 (2021), no. 1, 21–23.

[HCT+19] Vojtěch Havlíček, Antonio D. Córcoles, Kristan Temme, Aram W.
Harrow, Abhinav Kandala, Jerry M. Chow, and Jay M. Gam-
betta, Supervised learning with quantum-enhanced feature spaces,
Nature 567 (2019), no. 7747, 209–212.

49

https://www.cs.princeton.edu/courses/archive/spring06/cos522/count.pdf
https://www.cs.princeton.edu/courses/archive/spring06/cos522/count.pdf

A. Bibliography.....................................
[HH00] Lisa Hales and Sean Hallgren, An improved quantum fourier

transform algorithm and applications, Proceedings 41st Annual
Symposium on Foundations of Computer Science (2000), 515–
525.

[HHL09] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd, Quantum
algorithm for linear systems of equations, Physical Review Letters
103 (2009), no. 15, 150502.

[HvdH21] David Harvey and Joris van der Hoeven, Integer multiplication
in time o (n log n), Annals of Mathematics 193 (2021), no. 2.

[KBS21] Jonas Kübler, Simon Buchholz, and Bernhard Schölkopf, The in-
ductive bias of quantum kernels, Advances in Neural Information
Processing Systems (M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan, eds.), vol. 34, Curran
Associates, Inc., 2021, pp. 12661–12673.

[LL15] Yong Liu and Shizhong Liao, Eigenvalues ratio for kernel selec-
tion of kernel methods, Proceedings of the AAAI Conference on
Artificial Intelligence 29 (2015), no. 1.

[MBS+18] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan
Babbush, and Hartmut Neven, Barren plateaus in quantum
neural network training landscapes, Nature Communications 9
(2018), no. 1.

[Mez07] Francesco Mezzadri, How to generate random matrices from the
classical compact groups, 2007.

[Mov20] Ramis Movassagh, Quantum supremacy and random circuits,
2020.

[NC10] Michael A. Nielsen and Isaac L. Chuang, Quantum computa-
tion and quantum information, 10th anniversary edition ed.,
Cambridge University Press, 2010.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
et al., sklearn.datasets.make_moons, Scikit-learn 1.5 documenta-
tion, 2011.

[Rep16] UCI Machine Learning Repository, Pima indians diabetes
database, Kaggle, 2016.

[Rev23] MIT Technology Review, Ibm wants to build
a 100,000 qubit quantum computer, https://
www.technologyreview.com/2023/05/25/1073606/
ibm-wants-to-build-a-100000-qubit-quantum-computer/,
May 2023, Accessed: 2023-12-31.

50

https://www.technologyreview.com/2023/05/25/1073606/ibm-wants-to-build-a-100000-qubit-quantum-computer/
https://www.technologyreview.com/2023/05/25/1073606/ibm-wants-to-build-a-100000-qubit-quantum-computer/
https://www.technologyreview.com/2023/05/25/1073606/ibm-wants-to-build-a-100000-qubit-quantum-computer/

..................................... A. Bibliography

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman, A
method for obtaining digital signatures and public-key cryptosys-
tems, Communications of the ACM 21 (1978), no. 2, 120–126.

[Sch21] Maria Schuld, Supervised quantum machine learning models are
kernel methods, 2021.

[Sho94] Peter W. Shor, Algorithms for quantum computation: Discrete
logarithms and factoring, Proceedings 35th Annual Symposium
on Foundations of Computer Science, IEEE, 1994, pp. 124–134.

[TD04] Barbara M. Terhal and David P. DiVincenzo, Adaptive quantum
computation, constant depth quantum circuits and arthur-merlin
games, 2004.

[Wil11] Colin P. Williams, Quantum gates, pp. 51–122, Springer London,
London, 2011.

51

52

Appendix B

Table of used symbols

53

B. Table of used symbols.................................

D(X ,Y) Dataset with samples and its labels
X ⊂ Rd Set of data
Y ⊂ {−1, 1} Labels of data

§⟩ i-th sample of dataset X
†⟩ Label for a sample §⟩
L Loss function
A Circuit’s architecture
HA Haar random distribution on architecture A
H Set of considered strategies for classification

h, (h∗) Single (optimal) strategy of H
w, b Weight and bias
ς Slack variable in soft-margin SVM
ϕ Feature map

C,E(x), Unitaries
n Number of samples in dataset
q Number of qubits in quantum circuit
Q Set of qubits in circuit

L(yi, ŷi) Hinge loss
d Dimension of sample space Rd

ρ Density matrix
gab Assymetric geometric difference of two kernels Ka,Kb

KTA(Ka,Kb) Kernel target alignment of kernels Ka,Kb

k(xi, xj) Kernel value for points xi, xj

S Composite number in Shor’s algorithm
a Initial guess in Shor’s algorithm
r Period of function f(x) = axmodN in Shor’s algorithm
N Dimensionality of problems in HHL algorithm
t Set of measured qubits in quantum projected kernels

54

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

474750 Personal ID number: Svoboda Jan Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and Robotics Study program:

II. Master’s thesis details

Master’s thesis title in English:

Quantum machine learning

Master’s thesis title in Czech:

Kvantové strojové učení

Guidelines:

There is much recent interest in the possibility of the use of quantum computers in machine learning. While early
papers such as Havlíček et al. (Nature 2019) were broadly positive, more recent papers (e.g., Kübler et al.,
NeurIPS 2021) present the challenges involved rather clearly. Notably, Kübler et al. introduced a number of
conditions that need to be satisfied by the quantum kernel in order to improve the statistical performance compared
to kernels computable classically in polynomial time.
In the present dissertation, the student will develop a method for rejection sampling of random unitaries to satisfy
the properties of Kübler et al. (NeurIPS 2021). Notably, the process will start with an ensemble of random
unitaries that are hard to simulate classically in polynomial time (Movassagh, 2023). Then, the unitaries that do
not satisfy the other properties of Kübler et al. (NeurIPS 2021) will be rejected. The properties of such random
quantum kernels will be studied. In the computational testing, a variety of encoding of the inputs should be
considered, as well as the ML Reproducibility checklist.

Bibliography / sources:

[1] Vojtěch Havlíček, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala, Jerry M. Chow &
Jay M. Gambetta: Supervised learning with quantum-enhanced feature spaces. Nature volume 567, pages209–212
(2019).
https://www.nature.com/articles/s41586-019-0980-2
[2] Jonas M. Kübler, Simon Buchholz, Bernhard Schölkopf: The Inductive Bias of Quantum Kernels. NeurIPS 2021,
https://proceedings.neurips.cc/paper/2021/file/69adc1e107f7f7d035d7baf04342e1ca-Paper.pdf
[3] Ramis Movassagh: The hardness of random quantum circuits. Nature Physics 19 (11), 1719-1724
[4] Vojtěch Havlíček et al., https://github.com/qiskit-community/qiskit-machine-
learning/blob/main/qiskit_machine_learning/kernels/trainable_fidelity_quantum_kernel.py (2023)
[5] Vyacheslav Kungurtsev, Georgios Korpas, Jakub Marecek, Elton Yechao Zhu: Iteration Complexity of Variational
Quantum Algorithms. Quantum 2024. https://arxiv.org/pdf/2209.10615.pdf

Name and workplace of master’s thesis supervisor:

Mgr. Jakub Mareček, Ph.D. Artificial Intelligence Center FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 07.01.2025 Date of master’s thesis assignment: 01.03.2024

Assignment valid until:
by the end of summer semester 2024/2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
doc. Ing. Zdeněk Hurák, Ph.D.

Head of department’s signature
Mgr. Jakub Mareček, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

	Introduction
	Quantum computing
	The fundamentals
	Qubit
	Quantum circuit
	Measurement

	Quantum computing specifics
	Advantages
	Challenges

	Current state
	Superconducting qubits
	Trapped ions

	Possibilities
	Quantum Fourier transform
	Quantum phase estimation
	Shor's algorithm
	HHL algorithm

	Future

	Quantum kernels
	Initial problem
	Support vector machine
	Linearly separable data
	Linearly non-separable data
	Non-linear boundary

	Feature map
	Quantum feature map

	Quantum kernel
	Projected quantum kernels
	Synthesis

	Kernel quality measures
	Kernel target alignment
	Asymmetric geometric difference
	Model complexity
	Eigenvalues ratio

	Hardness of random circuits
	#P hardness
	Circuit architecture
	Worst-case and average-case circuits
	Haar random circuit distribution
	Sampling from Haar measure

	Cayley transformation and Cayley path
	Theorems
	Summary

	Main concept
	Possible advantages
	Kernel simulability
	Time complexity
	Projected quantum kernels
	Random sampling

	Experiment algorithms

	Embeddings
	Basis embedding
	Amplitude embedding
	Rotation embedding
	Pauli feature map
	ZZ-feature map
	Repeated embedding

	Experiment
	Preproccessing
	Moons dataset
	PIMA dataset
	Discussion

	Conclusion
	Bibliography
	Table of used symbols
	Project Specification

