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1  Introduction 
Failure detection, identification and recovery (FDIR) has been an important and necessary 
instrument for space engineering since the first space flight in 1957 and has even gained 
importance in 1961 with the first manned flight. As the research progressed, the satellite 
payload increased in value, hence becoming another strong argument for FDIR. 

Nowadays, an on-board computer is commonly carried by each satellite (except of LAGEOS 
project perhaps), providing basic FDIR procedures in collaboration with ground operator. The 
ability of autonomous FDIR varies with satellite purpose, mission and equipment. However, 
as will be shown in part 3, even in deep-space missions with highly autonomous decisive 
algorithms, the on-board software (OBSW) is barely capable of handling very complex 
situations like multiple failures, chain reactions, externally caused failures or operator’s 
mistakes. The autonomy of the OBSW is related to the satellite’s communication possibilities. 
The time in view of a geostationary spacecraft is 24 hours/day, whereas the majority of the 
satellites merely pass by their ground station(s) several times per day with time in view in the 
order of minutes. Deep space missions, for a change, show the reaction time to a ground 
initiated command in the order of hours, a high autonomy is therefore required. 

Obviously, a fully automated solution of the FDIR is needed, replacing slow reacting or far 
away human operator. The problem is stated as the set of failures the OBSW is incapable of 
preventing, detecting, identifying or recovering from. 

Recently, such failures are to be handled by a human operator in the operating centre, 
requiring a constant attention of highly skilled and mission-specifically trained personnel, 
increasing expenses of the mission by the necessity of hiring and subsequent training of a 
team of highly educated, stress resistant specialists. 

A thought occurs, an FDIR extension could be implemented within the ground control, 
specifically the Mission Control Systems (fig. 1.1) for all near-Earth missions, providing an 
open area for research of similar principle implementation into the deep space missions, to 
aid the operator. Such extension, in a form of a software tool, would provide the operator with 
situation prediction, analysis and recovery recommendations, thus improving the performance 
of the human operator rapidly. 

Once tested and successfully operating, such tool can be tailored for and implemented to any 
mission, either planned or running. After proven its performance, the ground station tool might 
be transformed into an OBSW tool, providing especially deep space missions with higher 
autonomy. 

*Software Development Environment    **On-Board Software Management  

Fig. 1.1 Scope of typical ground segment [18] 
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2  About failures 
A failure is an event in the system that causes one or more unwanted performances of the 
system parts or behaviour. System-related classification of the failures according to Frank [1] 
distinguishes Instrument fault, Actuator fault and Component fault. In the satellite system, 
several types of failures can be defined, based on our knowledge of satellite subsystems, 
communication and interference with the outer space and ground and even operator human 
errors. However, a systematic classification and description [1] of failures is in order first. 

Classification of all possible system errors distinguishes faults, modelling errors and system 
and measurement noise. A fault is the event, which detection is desirable. It is caused by 
misbehaviour of the system based on various causes from communication failure to severe 
hardware destruction. On the other hand, modelling errors and noise are events and 
influences, which are not desirable to be detected, however, can not be avoided in the 
system. A modelling error is an occasional difference between the examined system and its 
mathematical model at our disposal. The number of model errors is possible to be decreased 
by careful model treatment and handling of previous model errors, however, it is not 
avoidable. System and measurement noises are inevitable (usually electronic) noises within 
the system and its communication with the outer world. A noise can be caused by many 
factors, varying from air temperature changes in the operating centre to South Atlantic 
Anomaly. 

Failure caused or alike changes can be abrupt (sudden, step-like) or incipient (slowly 
developing, bias or drift). Another issue obviously arises in recognising the incipient failures 
from naturally slow changes within the system. 

The possibilities of system modelling are distinguished as quantitative (behavioural) and 
qualitative (rule-based). More about these approaches is to be found in the following 
chapters. 

In the world of satellite failure detection, several very specific types of failures are recognised. 
Phantom (pseudo) failures, caused by misconfiguration of the OBSW or operator’s error, are 
no major threat to the mission and are easy to be corrected by new OBSW upload or 
operator’s command correction. 

(Time caused) degradation of the parts, usually appearing either immediately after launch or 
after 10 years in orbit, is the reason why the satellite is equipped by redundant parts. The long 
time window in the failure appearance has been empirically observed and is related to quality 
of the used parts or materials. Naturally faulty part or device fails in encounter with the harsh 
environment of the Space, whereas the well-treated and prepared parts and devices show 
stable performance until the material wear-off.  

Specific HW failures are the most common failures, predictable to some extent and rather 
easy to detect and identify within the system. Usually an OBSW FDIR is provided to handle 
these cases. 

Unmonitored failures or their combinations are the main issue of recent FDIR research, 
failures the system fails to detect explicitly for various reasons, leading to the only possibility, 
which is the reconstruction of the situation from the output.  

 

2.1  FMEA/FMECA 

The theory and standardisation on failures (ECSS [22]), Failure Modes, Effects and Criticality 
Analysis (FMEA/FMECA) distinguishes between failures process, functional and hardware. 
Process failure is caused by a wrong utilisation, basically inevitable human error. Functional 
error is a failure in the functionality of the system or a device, an undesired performance. 
Hardware failure is a damage of a hardware part, necessarily causing subsequent functional 
failure. 
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The entire FMEA/FMECA standardisation has been developed in order to secure failure 
handling in industrial systems. A satellite fulfils such description, as it is an industrial system, 
which is rather hard to reach for manual corrections and the budget invested requires very 
careful error handling. 

Before the system is operated, a HW/SW Interaction Analysis (HSIA) should be performed in 
order to avoid phantom errors or process errors caused by the software ill-behaviour. 

For every part, possible failures have to be predicted and their several parameters have to be 
recognised. Failure severity (S) is the effect the failure causes, rated from 1 to 10, where 10 is 
the most severe impact on the part. Probability of the failure occurrence (P) is calculated, 
using specified methods, and taken into account as a factor on the scale of 1 – 10, where 10 
symbolises the probability of 1. Another factor, inability to detect (D) the failure, or 
detectability, is rated in the inverse manner in order to achieve so called Risk Priority Number, 
valued between 1 and 1000 and describing the priority of the threat such failure can cause. 
Risk Priority Number is to be calculated using the following formula: 

RPN = SxPxD 

in order to provide a stable base for systematic failure classification. The unrecoverable 
failure of a product, designated as Single Point Failure (SPF), is naturally the utmost 
undesirable event. 

The failure recovery on satellites naturally requires presence of redundant parts. This 
redundancy is distinguished as hot and cold and active and standby. Hot redundancy means 
the redundant part is powered in parallel to the nominally used part, whereas cold redundancy 
leaves the redundant part without power until the moment it is needed. Active redundancy 
means the redundant part is actually being used in parallel to the nominal part (for example, 
in TT&C system), whereas standby redundancy leaves the redundant part off until it is 
utilised. 

The FMEA/FMECA standardisation defines certain context of a failure, including causes and 
consequences of each failure, and recommends the following steps: 

• product definition (HW or function description) 

• functional and reliability block diagrams including all items 

• definition of failure modes of each item 

• for each failure mode (context) 

o definition of worst consequences, severity categorisation 

o calculation of occurrence probability, probability categorisation 

o detection methods description 

o compensatory provisions 

o corrective design and actions 

• documentation of analysis, critical item list development 

The difference between compensation and correction in this context is following: correction is 
a set of actions to recover from a faulty state, whereas compensation is a design and active 
approach, lowering the occurrence probability of a given failure. 
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2.2  Failure Management System 

A typical failure management system description is for example Columbus Failure 
Management Systems by Bade [24]. The Failure Management (FM) is being divided into 
three parts, Steady State FM, Reconfiguration FM and Time Critical FM. 

The Steady State FM monitors the parameters and compares them to the pre-set range. In 
case of a failure, this FM system triggers the onboard FDIR. If the situation can not be 
resolved automatically, Caution and Warning (C&W) is triggered in order to await help from 
the station. This basic system is used when no changes are ongoing on board. 

The Reconfiguration, or also called Procedural FM is on in the case the FDIR has been 
triggered already. This system is responsible for ensuring that each required step of recovery 
reconfiguration was carried on successfully. If a failure is detected, an Automated Procedure 
(AP) is triggered in order to start a new attempt for reconfiguration. 

Time Critical (or Reflex) FM is designed to be sensitive to fast happening failures and uses 
the built in SW. This system does not trigger any C&W, it merely prevents any further 
damage. Therefore the Time Critical FM system is always on and operational and is 
impossible to disable or override. 

The onboard FDIR equipment of Columbus project provides HW or SW based detection, 
identification and recovery and also crew initiated reconfigurations or repairs. The presence of 
human crew and the fact Columbus is part of ISS space station is where Columbus FDIR 
differs from satellite FDIR systems. However, the basic principles are well described on this 
example. 

In addition to satellite-like part of the system description, another system principle is worth 
mentioning. As mentioned before, the ISS has the C&W system, handling alarms from various 
parts. However, for the Columbus cell to be self standing, it is equipped with additional 
system, so called EWACS (Emergency, Warning, Caution and Safing). This system 
collaborates with the station on C&W by safety relevant data acquisition, monitoring and 
processing, providing them to C&W management of the station. EWACS is a higher system 
than the previously mentioned 3 systems, more complex and is triggered when these three 
systems fail to provide sufficient reaction.  
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3  Problem fine definition 
The on-board software of the satellite usually has the statistical FDIR methods implemented, 
providing prediction, detection, identification and recovery from failures caused by an obvious 
faulty behaviour of the physical hardware of the spacecraft. The on-ground solution is 
required to go beyond such performance, still keeping the ability to provide the same 
functionality as the OBSW.  

The requirement stands for an extension to so far wide known and used methods. Extension 
being able to handle a situation when nothing is really wrong within the system, but the entire 
situation is utterly wrong due to the rest of the universe. Extension recognising the origin of a 
chain reaction failure and recommending switching to redundancy for the really actually 
damaged part, not the parts showing an error due to malfunction of the hierarchically higher 
parts. 

In most of the satellites, OBSW provides analytical fault detection, therefore the telemetry 
data processed by the ground station is already pre-processed by that. However, the overall 
set of possible failures is not covered by situations happening within the modelled satellite.  
  
 
 
 

3.1  Example 1: Operator’s error 
Example 1: The satellite sends an error message to the ground station and yet its state is 
nominal in every aspect. Explanation: the operator requested a function that is unavailable, 
because he forgot to switch on the device he wanted to use. 
  
 

3.2  Example 2: Loss of attitude 
 
Example 2: The satellite output is nominal, except of somewhat weak performance delivered 
by the solar panels is detected.  
Explanation: The satellite has lost its attitude along with historical data (an utterly small part of 
a dead satellite hit exactly into the memory storage area, partially damaged it and gave the 
satellite a small drift-like torque). And the logical satellite reaction on the detected problem 
was switching to SAM (Sun Acquisition Mode). Using a standard procedure, the satellite 
found the first object bright enough to make its Sun-sensor detect stable voltage. Then, in 
order to recharge the battery while waiting for the recovery procedures to take action, the 
solar panels were turned to the bright object. The recovery procedure switched to a redundant 
memory storage unit, as expected and the satellite reports nominal state. The fact the satellite 
seems only nominal until it runs out of batteries, because the Moon doesn't provide sufficient 
recharge, makes such a situation time-critical. 
 
  

3.3  Example 3: Multiple failure 
 
Example 3: Multiple failures are another issue to be handled. Either a chain reaction of 
failures occurs or one device’s failure proceeds to hierarchically subsequent parts, which 
detect and report an error as well. First case means the necessity to switch to the whole 
redundant branch and never consider any of the damaged devices useable, the other 
situation requires only switching to redundancy for the first, faulty part, that caused the whole 
series of error messages, keeping the entire branch of devices still available for future use. A 
decision is necessary, recognising the two dramatically different cases. 
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3.4  Operators and missions 
 
The solution of above described situations nowadays is employing an operator, who has the 
knowledge and experience sufficient to distinguish cases from each other by observing the 
error message sequence, seemingly unrelated telemetry data, related historical data, 
hierarchically subsequent devices’ behaviour, final functionality, etc. 
 
The idea of using another model-based solution seems odd due to the complexity of 
knowledge, including single specific cases, which does not enable us to create any coherent 
model, along with the fact some model-based method is already implemented on board. 
However, this branch of solutions shall not be excluded. 
  
Elementary errors, explained easily by a model-based method, are handled on board or 
reported to the operator as ready information. Problem comes with operator errors, OBSW 
errors, multiple failures and outer influences that are unpredictable and unmodellable. And 
that is the task for the ground station tool, to provide an operator some aid with deciphering 
what really happened.  
  
Nowadays the operator is required to be experienced and to undertake a demanding training 
(by VEGA company, incidentally) to be aware of all possible situations to be handled. The 
knowledge and experience is stress-taught to future operators within several months, making 
them handle situations on the human-controlled simulator. (The simulator operator provides 
failure combinations to be solved, introduces them to the simulator and observes the 
capability of trainees to solve them.)  
  
For example EUMETSAT, a beacon project of European Space. A satellite monitoring 
weather and providing the European meteorology institutes with meteorological images of 
Earth and measurement data. It is in view of the Svalbard ground station for 8 minutes every 
1.2 hours. This fact causes a very stressful situation, especially considering that each 
specialised payload relies on another responsible expert. An expert tool is a highly desirable 
solution for missions comparable to EUMETSAT. 
 
Developed tool might provide any operator with information sufficient to decide and solve the 
problem within less than 10 minutes, which is extremely vital, as commonly the satellite is in 
view of the ground station (Svalbard, for example) for such time period and stays out of view 
for approximately one hour afterwards. 
  
Ground station tool is not meant to be used for deep space missions, as high autonomy is 
required due to the waiting period for the operator’s command on transmitted error message 
telemetry may take 14 hours (Pluto distance) or even more. 
  
The optimal case of mission, geostationary orbit, does not show the necessity of such tool 
either, as the contact with the satellite is constant. However, it is applicable for such missions 
in order to solve occurring problems faster.  
  
The typical satellite, being on an arbitrary orbit around Earth, having and losing contact with 
the ground several times a day, is the major purpose of this work. 

  

 
3.5  Task identification 
 
The major task of the desired tool is to recognise between the reported and the real data and 
detect and identify whether and why the state and behaviour of the system is not as it should 
be. And the main requirement stands in fast operability of such tool. 
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The objectives of this projects are to create a generic a complex algorithm for FDIR on the 
ground station (specifically Mission Control Systems), which can be used and tailored to 
arbitrary mission. 
 
Once finished, the differences between satellites nowadays allow the finalised tool to be re-
useable, which is a desirable aspect from the commercial point of view. 

 

3.6  Task context 

The following paragraphs are supposed to clear out legal matters.  

The task given in the thesis is to create a tool that might work as a satellite mission control 
operator hint from the FDIR point of view. 

However, the whole research done and the final proof of concept are developed using the 
VEX (Venus Express) simulator and collaborating with VEX simulator. There is no 
requirement and no intention to interfere with the actual VEX Mission Control, the solution of 
this work will merely provide a suggestion for the future development of Mission Control 
Systems or their extensions. No confidential materials or data were used in this work and 
therefore it remains a fully open thesis, available without any restrictions. 
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4  General Classification of FDI techniques 
 

As mentioned by Frank [1], advanced information processing techniques recently used are: 
state estimation, parameter estimation, adaptive filtering, variable threshold logic, statistical 
decision theory, pattern recognition and heuristic reasoning. In the following chapters, all 
these methods will be described and evaluated. 

 
Today satellite onboard FDIR mainly relies on redundancy of hardware components or of 
software functions (e.g. associated to voting mechanisms or simple consistency checks) or on 
simple state vector / signal estimation techniques such as Kalman filters, and on the iterative 
tuning of the monitoring timers levels, quite fixed once validated with all the known delays in 
the signals propagation (acquisition, frequency, filtering). 
 
A very general classification of FDI systems, not only bound to traditional approach, is given 
in fig. 4.1. It allows organizing the various FDI schemes depending on the design stage. 
Passive FDI approaches rely on constant or adaptive residual evaluation functions, in terms 
of threshold for the diagnosis of an occurred fault. Active FDI approaches have a residual 
generation branching in the type relying on hardware redundancy, in contrast to residual 
generation relying on analytical redundancy, produced by the means of a mathematical model 
of the process (incl. faults and dynamics). Hardware redundancy includes multiple copies of a 
same functional unit that perform the same task and can use either similar or dissimilar 
component to ensure robustness. The functional redundancy can be further divided into a 
set of approaches that rely on a mathematical model and those which are model free and with 
logical states, related to finite state machines. Further model free techniques are based on 
signal processing techniques: currently Wavelet based techniques seem to provide very good 
complements to the analytical based techniques. 
 
The analytical redundancy FDI methods can be further specialized to either stochastic or 
deterministic versions depending on the type of the system approximation used (e.g. 
considered disturbance and noise profiles being either stochastic or worst case). 
FDI design or the various techniques used for residual generation and evaluation, aim at 
optimizing a general FDI Metrics, therefore at optimizing set of specific criteria or specific 
metrics, attached to the best suited models representations. (e.g. discrimination of the effects 
causing false alarms, fault isolation, fault detection time and fault isolation time, 
robustness/sensitivity, tbd..) 

 
Fig. 4.1 Classification in the FDI techniques [13] 
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However, Chiang, Russel and Braatz [17] divide the process monitoring into three classes, 
data-driven, analytical and knowledge-based. Data-driven monitoring is a bottom-up 
approach, processing information into conclusions, opposite to knowledge-based, obtaining 
conclusions from given knowledge and comparing them to the data. 

 

4.1  Model based filter FDI methods 

P.M. Frank [1]: Physical redundancy is replaced by analytical (functional) redundancy – static 
and dynamic relationships among the system inputs and outputs 

Analytical methods are of several kinds. The basic property of those methods is creating a 
simplified input-output model of the observed system and in certain way comparing its 
behaviour to the behaviour of the real system. Featuring residuals is typical for analytical 
redundancy methods. Residual is the result of plant observation – mathematical model 
confrontation and is non-zero for faulty states, disturbances, noise or model imprecision. 
Commonly, the fault related residual value overcomes the values of other ground’s based 
residuals by an order. Therefore, setting the proper threshold for an error triggering is the 
issue of analytical redundancy. 

As deduced by Frank [1], three models are needed: nominal, actual (observed) and faulty. 
Nominal should be updated by actual in order to reduce number of false alarms (analytical 
redundancy) using state or parameter estimation. 

As explained by Lavagna, Sangiovanni and Da Costa [23], a proper I/O model of the system 
can be created by input and output sampling. Each item’s input/output characteristics is to be 
observed with a specific sampling frequency f for a specific time period t. The sampling 
frequency can be derived from system dynamics knowledge and the knowledge of noise 
interfering with the measurement. If an unreasonably high f is required by the system 
dynamics, a low pass filter can be applied. The observation period has to be sufficient in order 
to provide two major aspects to measured data set. The properties required are completeness 
and minimality. Completeness condition only is fulfilled when all trajectories of the system in 
the phase system are included. The minimality condition is related to the curve cardinality 
definition, the number of points measured on each system curve has to be sufficient to 
uniquely describe such trajectory. 

State estimation using methods are following: parity checks, observer schemes and detection 
filters. 

A residual is defined as a difference between the models. Residuals can be used as weights 
for decision function or to be evaluated in a straightforward manner. 

Questions: Can we by any chance model all the systems as linear SISO? Or are we 
supposed to have the overall system model integrated by these into MIMO? 

According to Doraiswami, Diduch and Kuehner [2], FDI is implemented in 3 stages:  

1) diagnostic model is developed to characterize the evolution of a feature vector as 
parameters in each component are subject to failure 

2) residual is generated using a parity equation 

3) residual is compared to a known value created from the knowledge of errors possible 

Fault is detected when the residual exceeds certain threshold. The residual is linear, as long 
as only one failure occurs at a time. Assumption made is also that poles and zeroes of the 
model system are not multiple. For the application on satellite FDI, these two conditions are 
rather unrealistic. 



- 14 - 

The above mentioned article [2] provides full mathematical background for the solution, 
however, considering only an off-line solution. A significant asset of the article is the Isolability 
definition, which might be of a great use. 

According to Frank [1], conditions for the existence of a solution are following: 

• Knowledge of the nominal model 

• Definitiveness of the faulty behaviour 

• Existence of analytical redundancy relations 

• Availability of observation reflecting the fault 

• Reliability of redundant information (robustness towards unknown inputs) 

Dynamical comparison between the model and the actual telemetry provides the possibility to 
detect out-of-limits and stay up-to-date. Such model has to include: dynamic state space 
model of the satellite and knowledge base for both failures and functionalities. The goal of this 
approach stands to find an algorithm that generates error warning under following conditions: 

• The time evolution (mode) of the failure is unknown.  

• The mathematical model of the nominal system is uncertain (unknown tolerances). 

• There is system noise and measurement noise, which are unknown. 

• The residual generation has to be done in a specified time. 

Methods using analytical redundancy for residual generation are: 

• Parity space approach: Requires accessibility of redundant measurement (model) 
directly. This approach is divided to direct redundancy (among redundant sensor 
outputs) and temporal redundancy (dynamic relation between sensor outputs and 
actuator inputs). Closed-loop application leads to state estimation. 

• Dedicated observer approach: Reconstruction of the system output using 
measurement and observers or Kalman filters (estimation error or innovation being 
the residual for detection and identification) – a model feedback is the difference 
between the model and the real plant. 

• Fault detection filter: (fault sensitive filter) Residual of the filter can be only 
unidirectional for actuator or component, not the sensor (only plane detected). 
Finding the matrix for model feedback is an issue of this approach. 

• Parameter identification approach: alternative to the other three approaches, not 
based on state estimation. Faults of the system are reflected in the physical 
parameters. The idea is to identify faults by estimating the parameters of the 
mathematical model. This method very useful in the connection to knowledge base. 

The first three approaches are obviously connected and are widely used in the OBSW FDIR. 

The common, widely-used procedure is based on residuals generation followed by detection 
and isolation (in time, location, type, size and source). 

For state estimation we can use linear or non-linear, full order or reduced order state 
observers in deterministic case or Kalman filters in stochastic state (noise is to be 
considered). 

A useful depiction (fig. 4.2) [1], providing more understanding of the FDI process: I/O transfer 
function involves actuators, which are usually non-linear, therefore actuators are separated 
from the simulated model in order to maintain near-linear representation for the model. 
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Robustness of model based solutions is conditioned by lowering the performance, therefore a 
trade-off between high false alarm rate and low error detectability is necessary. The goal of 
FDI filter design is to generate a residual which is insensitive to external disturbances, internal 
system noise and uncertainties of the system model, but sensitive to fault signals. The 
problem of distinguishing model uncertainty symptoms from fault signals leads to trade-off 
between robustness and sensitivity of such filter. 

After a system is modelled and the filter is designed, the filter analysis improves the filter on-
line and filter validation gives us information about filter performance offline. 
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Fig 4.3  Steps usually performed for Residual Generation and Evaluation from system identification [13] 
 
However, as proven by Johansson, Bask and Norlander [25], the model-based methods do 
not have to lead to a statistical treatment. The residual evaluation can be processed by a non-
statistical manner. 

 

4.2  Knowledge based solutions 
 

According to Frank [1], unlike analytical solutions being designated a quantitative approach, 
knowledge base is recognised as qualitative, an approach using available knowledge of the 
system. 

Mattos [16] states that knowledge-base solutions (meaning expert systems) are considered 
part of AI (Artificial Intelligence) phenomena. However, as Chiang, Russel and Braatz [17] 
claim, the problem of neural nets, according to Stergiou and Siganos [3] representing the 
Artificial Intelligence, is a department of the knowledge base world. These two contradictive 
statements show how incoherent and often intuitive is the environment of related research.  

In this thesis I decided to follow the subordinance given by Chiang, Russel and Braatz [17]. 

 

4.2.1  Causal analysis techniques 

Causal analysis techniques are utilised for system diagnostics. The main principle uses the 
causal modelling of fault-symptom relationships and leads to rather simple inner failure 
identification. 

 

 



- 17 - 

4.2.1.1 Signed Directed Graph 

SDG is a qualitative model-based approach, similar to Petri nets in algorithmisation. When 
applying this method, a graph of nodes and arcs copying the system topology is created in 
order to represent the states, their possible (conditioned or unconditioned) changes and even 
weights on arcs representing the probability of the changes. The output of such graph is a list 
of most likely fault candidates. However, the main disadvantage of this method is a single 
fault assumption. Looking back to the method capabilities required, this method is insufficient 
in two main points, as it does not cover multiple neither external failure causes. However, this 
clumsy method can be compiled into a set of rules, which is a more agreeable modern 
engineering method. 

 

4.2.1.2 Symptom tree model 

Symptom tree model is a real-time version of an offline fault tree model. The root cause of a 
fault is determined by taking the intersection of causes of observed symptoms. However, 
even this method leads to an uncertain result, as a list of candidates is generated as the 
output. A version taking probabilities of symptom-fault pairs into account as weights on the 
connections. A pattern matching algorithm is a usual companion of such version. 

 

4.2.2  Expert systems 

Expert systems (often referred to as the only knowledge-based solution) imitate the human 
expert reasoning rules in order to reach comparable performance. Historically, the first 
implementations were concentrated on medical diagnostic systems. Effort has been made to 
expand the principle usage to other fields. 

The right implementation of such system interprets the existing knowledge, accommodate 
existing databases, collect new knowledge, process logical inferences and provide reasoning 
decision. We distinguish between deep knowledge and shallow knowledge expert systems. 
Shallow knowledge is a rather uninformed system, deciding upon heuristics and expert 
delivered rules. Deep knowledge systems are provided as precise model of the problem as 
possible, a model either mathematical, behavioural or structural. 

As mentioned by Frank [1], knowledge-base consists of: 

• Sets of facts and rules 

• Database of the present state of the process 

• Inference engine (algorithm) 

• The explanation component (to inform user) 

The inference engine combines the analytical approach with the knowledge, it has to have an 
access to  the analytical model structure and parameters, heuristic knowledge of fault 
propagation, statistics operational and environmental conditions, process history, etc. and 
actual data (input, output, operating conditions, …) 

 

4.2.2.1 Shallow-knowledge expert systems 

Also known as experiential knowledge or empirical reasoning systems. The expert experience 
and knowledge is formulated into a set of IF-THEN rules, which are used to achieve 
diagnostic deduction. The reasoning of such system is flexible and transparent, as the 
knowledge is presented as a data processing rule from the very beginning. The efficiency and 
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results of such system depends strongly of the quality of the given rule set, the adequacy and 
well-formulation of the knowledge provided. 

Shallow-knowledge expert systems are not intended to produce solutions that have not been 
delivered previously. Therefore the proper knowledge acquisition becomes the crucial step in 
a construction of such system. Especially for a large scale system, the proper knowledge 
base development is a time consuming, demanding matter. 

However, once constructed, such expert system provides the same performance as a human 
expert, acting based upon experience. 

 

4.2.2.2 Deep-knowledge expert systems 

Also known as model-based, functional reasoning or diagnosis-from-first-principles. A deep 
knowledge expert system is based on engineering fundamentals of the given plant, like 
structural description and behavioural rules of its components in both faulty and nominal 
state. 

Deep knowledge systems are utilised when a complex, novel or explanation requiring 
situation occurs. Reasoning on causal and functional information is involved in the data 
processing. 

 

4.2.2.2.1 Functional reasoning 

Not very different from analytical methods, functional reasoning uses the knowledge of the 
principles, which govern the observed process, processed into a set of equations using 
physical laws. Such equations determine constraints for the process variables, which can 
then be observed and compared. Each constraint violation has a known set of causes within 
the observed system. 

 

4.2.2.2.2 Causal reasoning 

This method requires definition of one rule for each possible fault origin. Such rules are 
combined in order to deduce all failure suspects. 

 

4.2.2.3 Shallow-deep-knowledge systems combination 

Practical implementation of the knowledge-based systems shows that the most efficient 
solution is the combination of the deep and shallow knowledge. A complex system is then 
developed, using information on system documentation, functionalities of particular 
components, system interrelationships and device failure history and heuristics. 

Developing a first-principles model of a large-scale system is costly and demanding. 
Therefore the deep knowledge can be converted into production rules in order to support the 
shallow-knowledge-based system’s performance. 

 

4.2.2.4 Machine learning techniques 

The main issue in knowledge based solutions is the knowledge acquisition and interpretation. 
Formulating life-long experience into simple rules can be a very demanding task. Neural 
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network development allows automatisation of the process, recognising patterns in data in 
order to figure out the rules. Fuzzy rules can be employed.  

 

4.2.2.5 Knowledge representation 

4.2.2.5.1 Rule based systems 

The simplest representation of the expert information is a set of IF-THEN rules. Therefore a 
common design of the expert system is based on the following parts: rule base, working 
memory, rule interpreter. 

The rule base consists of rule clusters, each responsible for encoding the knowledge required 
for a certain task. 

Working memory is the actual database including data, inferred hypotheses and internal 
information about the program. 

Rule interpreter is a mechanism designed to select and evaluate rules. 

The rule-based system design requires a homogeneous knowledge representation and allows 
knowledge growth through new rules implementation. 

 

4.2.2.5.2 Semantic network 

A semantic network is a method of knowledge representation in which concepts and relations 
are represented as nodes and arcs, respectively. Additional program, able to maintain the 
relationship between the network and the meaning it represents, is necessary. 

Good implementation of such program is a system of frames, collections of related nodes, 
providing a description of an object or event. Hierarchical structure of such frames provides 
relationships between domain objects in order to complement set of rules as a description of 
the objects which comprise the domain. 

 

4.2.2.6 Inference engine 

The inference engine mechanism gathers the needed information in order to draw inferences 
or conclusions for the process involved and presents obtained inferences or conclusions with 
explanation or bases. 

There are several approaches of the inference reasoning, leading to two most used solutions. 

The backward/forward reasoning combines two approaches. The backward chaining 
searches for evidence for a hypothesis, whereas forward reasoning creates the hypothesis 
based on the data. 

Another approach [28] is the hypothesis/test method, approximating human diagnostic 
reasoning. After the observation, a hypothesis is deduced and subsequently its known 
symptoms are checked against the data. If the hypothesis does not hold for the sufficient 
proof, another hypothesis is created until the whole space of hypotheses is exhausted. 
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4.2.2.7 Application 

According to Mattos [16], Knowledge Base Management requires specification of 3 classes of 
functions to process, KB online construction, Knowledge use and KB maintenance (ensuring 
the base efficiency and integrity). 

A Knowledge system should offer KR schemes that permit an appropriate representation of 
all types of knowledge and allow a description of knowledge which is independent of the 
application programs. 

 
Operations provided by the fully implemented knowledge system functions are storing, 
retrieving and deriving new knowledge. 
 
On page 60 Mattos [16] mentions the possibility to use the knowledge systems for diagnostics 
in medicine – that means usefulness for satellite diagnostics – and planning in robotics – that 
might mean predictive ability. 

 

4.2.3  Pattern recognition 

Pattern recognition provides a non-rule-based reasoning, failure detection and identification 
based on observation of significant patterns. All known approaches to FDI are able to 
incorporate pattern recognition to some extent. However, the widely used approaches, 
implementing pattern recognition in order to avoid modelling the internal process states or 
structure explicitly, are Artificial Neural Networks and Self-organising Maps. These 
approaches are recommended to be used for abundant data cases or expert knowledge lack. 

The definition of Neural Networks according to Sarle [9] is following: 

“There is no universally accepted definition of an NN. But perhaps most people in the field 
would agree that an NN is a network of many simple processors ("units"), each possibly 
having a small amount of local memory. The units are connected by communication channels 
("connections") which usually carry numeric (as opposed to symbolic) data, encoded by any 
of various means. The units operate only on their local data and on the inputs they receive via 
the connections. The restriction to local operations is often relaxed during training.  
Some NNs are models of biological neural networks and some are not, but historically, much 
of the inspiration for the field of NNs came from the desire to produce artificial systems 
capable of sophisticated, perhaps "intelligent", computations similar to those that the human 
brain routinely performs, and thereby possibly to enhance our understanding of the human 
brain.  
Most NNs have some sort of "training" rule whereby the weights of connections are adjusted 
on the basis of data. In other words, NNs "learn" from examples, as children learn to 
distinguish dogs from cats based on examples of dogs and cats. If trained carefully, NNs may 
exhibit some capability for generalization beyond the training data, that is, to produce 
approximately correct results for new cases that were not used for training.” 

 

4.2.3.1 Medical application of the neural nets 

An interesting relation occurs between the medical utilisation of the Neural nets and the 
satellite FDIR purposes. Citing from [3]: “Artificial Neural Networks (ANN) are currently a 'hot' 
research area in medicine and it is believed that they will receive extensive application to 
biomedical systems in the next few years. At the moment, the research is mostly on modelling 
parts of the human body and recognising diseases from various scans (e.g. cardiograms, 
CAT scans, ultrasonic scans, etc.). Neural networks are ideal in recognising diseases using 
scans since there is no need to provide a specific algorithm on how to identify the disease. 
Neural networks learn by example so the details of how to recognise the disease are not 
needed. What is needed is a set of examples that are representative of all the variations of 
the disease.  
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The quantity of examples is not as important as the 'quantity'. The examples need to be 
selected very carefully if the system is to perform reliably and efficiently.  

Neural Networks are used experimentally to model the human cardiovascular system. 
Diagnosis can be achieved by building a model of the cardiovascular system of an individual 
and comparing it with the real time physiological measurements taken from the patient. If this 
routine is carried out regularly, potential harmful medical conditions can be detected at an 
early stage and thus make the process of combating the disease much easier.  

A model of an individual's cardiovascular system must mimic the relationship among 
physiological variables (i.e., heart rate, systolic and diastolic blood pressures, and breathing 
rate) at different physical activity levels. If a model is adapted to an individual, then it becomes 
a model of the physical condition of that individual. The simulator will have to be able to adapt 
to the features of any individual without the supervision of an expert. This calls for a neural 
network.  

Another reason that justifies the use of ANN technology, is the ability of ANNs to provide 
sensor fusion which is the combining of values from several different sensors. Sensor fusion 
enables the ANNs to learn complex relationships among the individual sensor values, which 
would otherwise be lost if the values were individually analysed. In medical modelling and 
diagnosis, this implies that even though each sensor in a set may be sensitive only to a 
specific physiological variable, ANNs are capable of detecting complex medical conditions by 
fusing the data from the individual biomedical sensors.  

ANNs are also used experimentally to implement electronic noses. Electronic noses have 
several potential applications in telemedicine. Telemedicine is the practice of medicine over 
long distances via a communication link. The electronic nose would identify odours in the 
remote surgical environment. These identified odours would then be electronically transmitted 
to another site where an door generation system would recreate them. Because the sense of 
smell can be an important sense to the surgeon, telesmell would enhance telepresent 
surgery.  

Another application developed in the mid-1980s called the "instant physician" trained an 
autoassociative memory neural network to store a large number of medical records, each of 
which includes information on symptoms, diagnosis, and treatment for a particular case. After 
training, the net can be presented with input consisting of a set of symptoms; it will then find 
the full stored pattern that represents the "best" diagnosis and treatment.” 

 

4.2.3.2 Mathematical background on learnability theory 

The goal of Valiant’s paper [15], a beacon of neural network theoretical works, is to state 
conditions for learning, create a concept of learnability, comparable to computability, which 
answers what can be calculated. Learning machines are bound to the topic of human 
experience interpretation. Human being behaviour consists of genetically given reactions, 
memorised actions and remaining large area of skill acquisition, which can be called learning. 
The learning can be simplified to an answer to whether a concept Q is true or not for given 
data. We say that concept Q has been learned if a program for recognising has been 
developed. 

Several terms have been defined to support this theory:  

Learning machine description: It can provably learn whole classes of concepts, which can 
be characterised. The classes are appropriate and non-trivial for general-purpose knowledge. 
The resulting computational process for the machine to deduce the required program is 
feasible (has feasible or polynomial number of steps. 

Learning protocol: manner of obtaining the information from the outside 

Deduction procedure: mechanism of the final program development 
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The network learning concept consists of two parts, protocol definition and delivering a class 
of concepts learnable in polynomial time. 

Two methods for neural net learning are known, a set of examples fulfilling the concept or 
oracle, set of random examples with information whether the concept is fulfilled by them. 

Deduction procedure results in an expression that approximates the real learned algorithm as 
close as possible. The result of such expression is yes when it shouldn’t be no, but can be no 
when positive answer is appropriate. The false no rate can be arbitrarily diminuated by 
introducing more learning steps. This is called one sided error learning. 

Neither examples nor oracle’s answers should be filling the whole space of possible, only 
describing the naturally possible. 

However, a well defined, easy to describe and compute function might be not computable 
without knowing a key (cryptography) and therefore not learnable by example or oracle. 
Therefore if we know an algorithm, we preferably not use a learning algorithm to discover it 
again. A program is learnable if and only if there is an algorithm A invoking the protocol with 
properties: 

According to Haykin [21], time of algorithm is polynomial in an adjustable parameter h. 
Probability of (1-h-1) of creating a program that never gives 1 when it shouldn’t and almost 
each time gives 1 when it should. This definition leads to Probably Approximately Correct 
learning, part 4.2.3.4. 

 

4.2.3.3 Criticism 

Citing from Wikipedia [4]: 

“A. K. Dewdney, a former Scientific American columnist, wrote in 1997, “Although neural nets 
do solve a few toy problems, their powers of computation are so limited that I am surprised 
anyone takes them seriously as a general problem-solving tool.” (Dewdney, p.82) 

Arguments against Dewdney's position are that neural nets have been successfully used to 
solve many complex and diverse tasks, ranging from autonomously flying aircraft to detecting 
credit card fraud. 

Technology writer Roger Bridgman commented on Dewdney's statements about neural nets: 
"Neural networks, for instance, are in the dock not only because they have been hyped to 
high heaven, (what hasn't?) but also because you could create a successful net without 
understanding how it worked: the bunch of numbers that captures its behaviour would in all 
probability be "an opaque, unreadable table...valueless as a scientific resource". 

In spite of his emphatic declaration that science is not technology, Dewdney seems here to 
pillory neural nets as bad science when most of those devising them are just trying to be good 
engineers. An unreadable table that a useful machine could read would still be well worth 
having." 

According to Karel Macek, employee of Advisory Services, PricewaterhouseCoopers, Czech 
Republic, a neural network specialist, there are important aspects of the use of neural 
networks that are necessary to be mentioned:  

“1) Neural network simulates the process of learning. For its use, usually some (large) set of 
data is necessary to provide “study materials”. 

2) Neural network is suitable for solving problems uncertain, complicated (complex) or 
resource demanding in the direct approach. A neural network could be used for 1+1 
calculation, but is not due to the higher system costs and certain uncertainty of such solution. 

3) There are various architectures of NN, which can be used for various purposes. 
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The power of NN is mainly in the following aspects: 

1) Searching for relations (function approximations): if a y is dependant on an x, most of the 
architectures are able to discover this relation and then “guess” a y for unknown x. Moreover, 
the net can, when treated with attention, generalise well, meaning it has no “unreasonable 
prejudice”. 

2) It is possible to use NN for the input dimension reduction. If it is x being of a subset of Rn 
and the n is large, it can cause trouble. NN can help to estimate which elements are relevant 
and which can be neglected. 

3) NN can be used for fuzzy rules extraction. In my opinion, this contribution to the control 
theory is quite major. An inverse pendulum (balancing a club on a palm) can be controlled 
upon trivial rules, whereas solution using differential equations is extremely complex. 

4) NN are commonly used in robotics, e.g. controlling a robot arm (the relation between the 
moves and the goal is complicated, but thanks to the net the arm learns to succeed) or when 
recognising a surface (control parameters).” 

Regarding the satellite failure detection application, Mr. Macek believes the NN is able to 
learn primarily what “feeling” it has about each component. Then the technology offers the 
possibility to extract this feeling, express it explicitly and apply it in the final control algorithm. 
It is a possible alternative to ease the development part, which is very demanding, or to 
provide a better solution if the final algorithm is time consuming. The neural networks can 
simplify the whole problem in such cases. However, no capability of overall solution is 
provided by the neural net methods. 

 

4.2.3.4 Probably approximately correct learning 

A more scientific argument against the usage of Neural networks is simply the calculation of 
Probably approximately correct learning requirements. 

Citing from Wikipedia [11]: “Probably approximately correct learning (PAC learning) is a 
framework of learning that was proposed by Leslie Valiant in his paper A theory of the 
learnable. 

In this framework the learner gets samples that are classified according to a function from a 
certain class. The aim of the learner is to find a bounded approximation (approximately) of the 
function with high probability (probably). The learner must be able to learn the concept given 
any arbitrary approximation ratio, probability of success, or distribution of the samples. 

The model was further extended to treat noise (misclassified samples). The PAC framework 
allowed accurate mathematical analysis of learning. 

Also critical are definitions of efficiency. In particular, finding efficient classifiers (time and 
space requirements bounded to a polynomial of the example size) with efficient learning 
procedures (requiring an example count bounded to a polynomial of the concept size, 
modified by the approximation and likelihood bounds). 

PAC learning framework is part of computational learning theory.” 

Citing Sarle [9]: “Feedforward NNs are restricted to finite-dimensional input and output 
spaces. Recurrent NNs can in theory process arbitrarily long strings of numbers or symbols. 
But training recurrent NNs has posed much more serious practical difficulties than training 
feedforward networks. NNs are, at least today, difficult to apply successfully to problems that 
concern manipulation of symbols and rules, but much research is being done.”  

The following definition by Valliant [15] is of interest: 
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L(h, s) is defined (for R ∋ h > 0, Z+ ∋ s) as the smallest integer such that in L independent 
Bernoulli trials each with probability 1/h of success, the probability of having fewer than s 
successes is less than 1/h. For s � 1 and h > 1,  
 
L(h, s) � 2h(s+log h).      (1) 
 
Citing [12]: “A conjunctive normal form (CNF) is a product of sums, meaning an and of ors. 
Valiant [15] requires each clause cj in a CNF to be a sum of literals, where a literal is either a 
variable pj or a negation of a variable. For example, p2+p’3+p6 is a clause. In a k-CNF, each 
clause contains at most k literals. Theorem: for each k > 0, any k-CNF is learnable via an 
algorithm that uses L(h, (2t)k+1) calls of EXAMPLE and no call of ORACLE.” 
 
For a satellite, receiving 27000 pieces of independent information (Venus Express) in single 
telemetry set, for ease considering them Boolean values and only one third of them being 
relevant and required to be processed by the neural net, the learnability of the algorithm of 
80%, k = 9000, we can provide the learning success rate of 0.5, therefore h = 2. 
 
The value of L(2, (2t)9001) is reached and applying (1), the following result is obtained: 
 
L(h, s) � 4((2t)9001+log 2).                                                               (2) 
 
The value of t is defined as polynomial time of algorithm, which brings to the overall 
calculation another complication, as with increasing t the L increases, leading to increase in t, 
etc. 
Obviously the � sign shows the possibility to obtain a lower number of examples needed, 
however, this algorithm calculates the necessary number of examples to be provided to the 
neural net in order to reach the probability of learning over a given limit. 
Such number of examples is rather unavailable for any mission, as the satellite lifetime is 
limited to several decades. The amount of examples necessary for such cardinality neural 
network to learn is comparable to 103000 years of standard near-Earth telemetry data 
transmission. 
 
 

4.2.3.5 Inductive logic programming 
The world of automated learning and data mining is however not limited to neural approach. 
Alternative methods have been developed, surprisingly using the “traditional”, algorithmic 
approach. According to Muggleton [14], Inductive Logic Programming (ILP) is a research area 
formed at the intersection of Machine Learning and Logic Programming. ILP systems develop 
predicate descriptions from examples and background knowledge. The examples, 
background knowledge and final descriptions are all described as logic programs. A unifying 
theory of Inductive Logic Programming is being built up around lattice-based concepts such 
as refinement, least general generalisation, inverse resolution and most specific corrections. 
In addition to a well established tradition of learning-in-the-limit results, some results within 
Valiant's [15] PAC-learning framework have been demonstrated for ILP systems. U-
learnability, a new model of learnability, has also been developed.  

According to Lavra� and Džeroski [20], recently successful applications areas for ILP systems 
include the learning of structure-activity rules for drug design, finite-element mesh analysis 
design rules, primary-secondary prediction of protein structure and fault diagnosis rules for 
satellites.  
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5  Intrusion detection phenomena comparison 
 
There is a significant conceptual similarity between the phenomena of satellite failure 
detection and network intrusion detection. Both problems require operation in a 
communication environment with uninsured, yet robust protocol, both are an important 
protection against a huge investment loss, both operate with packets of data, processing 
them into information about a health status, both are to some extent using and considering 
similar approaches. The difference happens to be the fact that a living hacker shows more 
invention and interactivity than nearly empty space environment. However, as the methods 
used in intrusion detection are designed to handle the worse of the cases, satellite failure 
detection can only profit from this comparison. 
 
Unlike workflow system exception handling system [10], for example, intrusion detection 
methodology provides a whole branch of experience, very useful for spacecraft FDIR 
purposes. 
 
James Cannady [19] defines misuse detection as follows: 
“Misuse detection is the process of attempting to identify instances of network attacks by 
comparing current activity against the expected actions of an intruder. “ 
However, intrusion detection is properly defined as an attempt to discover an unwanted or 
extraordinary activity within the usual network traffic. Nowadays threat of data manipulation, 
copying or even destruction has the background in the general digitalisation of the society. 
Hackers, network attackers, are able (when successful) to access, change or delete 
confidential data like bank accounts, government or army related information or even private 
e-mail accounts and web pages. The trust in data of nowadays society requires well operating 
data and network anti-intrusion protection. 
 
Halme and Bauer [7] define the main anti-Intrusion concepts as following: 

Prevention precludes or severely handicaps the likelihood of a particular intrusion’s success.  

Pre-emption strikes offensively against likely threat agents prior to an intrusion attempt to 
lessen the likelihood of a particular intrusion occurring later.  

Deterrence deters the initiation or continuation of an intrusion attempt by increasing the 
necessary effort for an attack to succeed, increasing the risk associated with the attack, 
and/or devaluing the perceived gain that would come with success.  

Deflection leads an intruder to believe that he has succeeded in an intrusion attempt, 
whereas instead he has been attracted or shunted off to where harm is minimized.  

Detection discriminates intrusion attempts and intrusion preparation from normal activity and 
alerts the authorities.  

Countermeasures actively and autonomously counter an intrusion as it is being attempted.  

Obviously, prevention as defined here is not of our concern, as in the satellite failure detection 
parallel, such procedures can only be performed in the HW/OBSW construction stage. 
 
Pre-emption, however, fulfils an important function, seemingly comparable to what we call 
prevention, composed of prediction and operator warning. Unlike intrusion pre-emption, 
predictive algorithm of failure detection itself does not operate in an offensive meaning. The 
operator, provided a warning, can start a preventive operation (switching to redundant 
reaction wheel when the operating wheel’s temperature sensor notices increase over certain 
boundary) or decide not to take the warning into account, if false alarm situation is apparent. 
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Thus leading to what we define as prevention of satellite failure being classified as Intrusion 
Detection. 
 
Deterrence and deflection are to be considered solely for the cases of the S/C encountering 
extra terrestrial life form or competition agency astronaut or an alien S/C trying to use the 
ground station fault detection for itself. As mentioned previously, very improbable cases are to 
be omitted. 
 
Detection definition is exactly following the meaning of fault detection, leading to significant 
similarity between the two explored phenomena. 
 
Countermeasures lead to a fully autonomous system, which is highly desirable for the OBSW, 
however, not necessary and due to higher risk of missed alert or counter measuring a 
phantom fault not eligible on ground.  
 
Halme and Bauer [7] distinguish methods of Intrusion detection, described in the following 
chapter, which might lead to parallels in the world of fault detection. 
 
 
5.1  Anomaly detection 
 
Anomaly detection, also referred to as behaviour-based [6] or statistical [8] – the normal 
network traffic is known and anything extraordinary is reported (discovers extraordinary 
behaviour even if that is not defined as a known misuse) 
 
Anomaly detection methods:  
Threshold detection: observes values of system variables and triggers alarm if they reach a 
threshold. 
Threshold detection is defined identically with the same method in satellite failure detection. 
However, such simple detection and identification is the matter of OBSW, not needed to be 
done on the ground station. 
User work profiling: compares particular user’s standard behaviour to the recent one in 
short and long term. 
User behaviour can be closely related to device behaviour onboard the satellite. This is a very 
common method, implemented in the OBSW. 
Group work profiling: assigns users to groups with similar behaviour. 
The idea of grouping devices by behavioural patterns and not their particular functions brings 
a simplification into final solution definitions. 
Resource profiling: monitoring and generalisation of the usage of system resources 
Monitoring the systems resources is one of the naturally implemented OBSW tools. 
Executable profiling: user-independently observes programs executed in order to reach 
resources. 
This application specific method is inapplicable for the majority of the satellite subsystems 
and senseless for the remaining ones. 
Static work profiling: monitoring users does not allow them to slowly broaden their activities 
without informing the administrator. 
In the means of satellite fault detection, a stable set of boundaries is only changed when 
change of mission stage or required functionality is upcoming. 
Adaptive work profiling: pre-filters incoming events into three categories, passing the filter 
and broadening the furthermore filtering, passing the filter and not being used to broaden the 
statistical set and finally not passing the filter. 
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Without incorporating any knowledge of the system, the system is taught to distinguish the 
key types of events. This application can be successfully replaced by a knowledge-based 
solution. 
Adaptive rule based profiling: creating rules in the training period and observing their 
breaking. 
A system capturing the rules of the behaviour leads to inability of the operator to re-define a 
mission stage or functionality change. 
 
 
5.2   Misuse detection 
 
Misuse detection, also known as knowledge-based [5] – known symptoms of intrusion are 
described and being searched for in the network traffic (reliably discovers slower intrusion 
processes undetectable by Anomaly detection) 
 
Misuse detection methods: 
Expert systems: if-then implication rules based on previous knowledge, events might be 
sequential or of certain class or specific. 
The simplest incorporation of human knowledge and experience into the fault detection 
system. Enables definition of known and predictable internal faults of the system, but is 
limited in the means of outer effects interference. 
Model based reasoning: implies the vulnerability of the misuse from higher abstraction of 
attack behavioural pattern (what the hacker does). 
Comparable to defining hierarchy of functionalities, however, in an overall inverse meaning. 
The system behaviour can be captured into set of actions that is always performed if healthy. 
State transition analysis: detects attack by states of the system the attacker has to reach in 
order to get to the final state (what are the partial results of hacker’s activity). 
States of failures, especially those causing chain error reports, can be hierarchically captured 
using a state transition analysis. 
Neural networks: a learning net of neurons, which provides flexible rule keeping. 
A neural network, comparable to adaptive rule based profiling, does not enable interference 
with the knowledge once the network is learned. More about the discussed application of 
neural networks can be found in Cannady [19]. 
 
 
5.3  Hybrid misuse/anomaly detection 
 
Hybrid misuse/anomaly detection is a logical connection of the two previous in order to 
gain the advantage from both. 
 
 
5.4  Continuous system health monitoring 
 
Continuous system health monitoring – observation of abstracted key factors of the 
system. 
Continuous system health monitoring detects changes in the system abstraction and 
compares to the model. In the means of failure detection, this method is comparable to finding 
a corrective vector to be applied to the system in order to make it behave like the model. Like 
anomaly detection methods, this approach does not enable human experience to be used to 
strengthen the detection ability. 
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5.5  Comparison 
 
According to Jamil Farshchi [8], rule – based intrusion detection approach, which is 
comparable to a knowledge base approach [5] to failure detection of the satellite, has a main 
fault in the inflexibility. New types of intrusions evolve every day, which makes a known set of 
previously encountered failures obsolete. Keeping such a set up to date is an unreasonable 
requirement, especially facing the fact a statistical method like Kalman filter can simply detect 
all the non-typical behaviour of the network and show warnings for each event that exceeds 
the limit of normality. 
 
However, a satellite system in space can be only influenced by a limited number of well-
known situations. Some very improbable situations could be omitted from the given 
knowledge system due to knowledge base responsible scientist’s attention loss, nevertheless, 
as such highly improbable situation occurs and its absence in the knowledge base is 
discovered, a new subset of information can be simply added to the working knowledge 
system for correction. The fact the knowledge base is a ground station tool provides this 
freedom. 
 
Herve Debar summarises the comparison of knowledge-based [5] and behaviour-based [6] 
approaches to intrusion detection as following:  
Behaviour-based detection suffers the necessity of unneglectable false alarm rate, but 
provides the capability to discover unknown intrusions. However, in its flexibility it might be 
inflexible from the point of view of changing the activity pattern for known reasons. Also slowly 
progressing attack can be even considered normal and incorporated into the behavioural 
scheme.  
Knowledge-based detection leads to minimum of false alarms and provides the potential for 
predictive observations. However, an attack that has not been experienced previously can 
remain undetected. Also creation and maintenance of the knowledge base is a very 
demanding task, as new information needs to be incorporated daily. 
Using the parallel to the satellite failure detection, unpredictable inner failures are easy to be 
excluded. However, certain failure combinations disable the detectability of single events, 
leading to inclination to a knowledge-based solution, which provides a tool for such case. The 
satellite failure detection topic is significant for: 

• Sufficient knowledge of the system 
• Sufficient knowledge of the expected inner behaviour and its changes 
• Sufficient knowledge of possibly occurring inner failures 

These points necessarily lead to the choice of the knowledge-based solution over the 
statistical. However, the issues of knowledge-based solution remain in the uncertain field of 
outer failures possible. Unlike the statistical approach, incorporating the outer failures into 
standardised reactions, knowledge approach offers the feature of defining not only contexts of 
known failures, but also contexts of known functionalities, thus leaving almost no space for an 
undetectable failure. However, the complex problem of satellite failure prevention, detection, 
identification and recovery is more demanding for a single method to cover the entire set of 
possibilities and needed functions. Hence an additional method has to be provided to cover 
the outer failures that are impossible to detect by means of knowledge-base. 
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6  Method evaluation 

6.1  Applicable methods 

In this part the applicable methods are summarised and in the next one an evaluation is 
provided. 

System diagnostic model of the satellite:  

1) basically a matrix of functional (1) and non-functional (0) devices onboard, simple path 
finding algorithm for breaching the failed part. Advantages: immediate identification, 
immediate recovery Disadvantages: impossible prediction.  

2) If not a 1-0 model, a model expecting and providing more complex behaviour is requested: 
a matrix representing the state as it should look and a matrix representing the state as it 
looks. Error detection: difference. Recovery: finding a vector to multiply the faulty matrix with. 
Issues: very complex model, model faults robustness, modelling each device (is it possible?) 
Leads to statistical methods. 

Statistical methods: Kalman filter related method, making a choice between failed system 
and working system. Once the filter starts to converge to the failure state, the failure warning 
is triggered. Advantages: predictive once convergent, Disadvantages: unlike previous case, 
model abstraction of the sat is needed, long convergence time, no possibility for experimental 
setting of the probability matrices, delayed reaction at step changes in improbable cases. 
Identification? 

Neural network solution: Assisted learning neural network. Might use the knowledge base, 
but how? The question stands, is this case of data uncertain or too complex for a classical 
computer approach? The cost for making the complex task easier for human is the high risk 
of wrong learning, leading to a risk of mission loss. Detailed analysis of the similarities in 
satellite subsystem hierarchy is necessary to answer this question. Neural networks learns 
online -> SW would learn as the satellite is operated = too late. How to explain mission 
changes to the network? However, we can learn from the neural network programming 
methodology (weights on the connections would correspond to probabilities of certain 
information in our database is real). 

Other learning algorithms, based on classical programming approach, not neural nets, can 
be considered highly useful. A decisive tree for diagnostic based on knowledge base, for 
example. 

Knowledge based method: A context definition for each failure and functionality, including 
Environment and system properties, state and changes, hierarchically preceding and 
consequent failures and functionalities, all of that necessarily or possibly occurring.  
Prediction and detection. Hard work making the knowledge base, but we can consider the 
subsystem patterns and try to generate a systematic solution. 

 

6.2  Issues and cons of approaches 

The applicable approaches summarised in the previous paragraphs have several negative 
aspects or unanswered questions that need to be solved before the implementation. Some 
cons of the methods, as will be revealed, are not suitable for the given problem at all. 

 

6.2.1  State diagnostic model 

How to model the entire satellite and the units? 
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Can the state matrix be a part of knowledge base? 

 

6.2.2  Statistical methods 

How to compensate for outer influences unmodellability? 

Why to create a redundant approach to the one used on-board? 

Statistical methods are a well-known, widely used, powerful tool in 4 of 5 requirements the 
task demands. However, the most important part, facing rather unmodellable interferences 
with human errors, environment changes, outer AOCS related failures or multiple errors, is 
not covered, as statistical methods only process the information about the satellite system 
and physical behaviour. 

 

6.2.3  Knowledge-base 

How to connect the solution with one providing simple case recovery? 

How large will the resulting database be? 

How to provide complete process information regarding outer influences? 

How to implement the knowledge base architecture? 

Knowledge based solutions nowadays encounter several relevant management demands, 
mentioned by Mattos [16]: 

• Efficiency of management for large scale bases 

• High reliability and robustness towards memory media loss 

• Distributed knowledge base problem 

• Knowledge independence 

 

6.2.4  Neural network  

How to make it learn on ground before the mission? 

How to assure the learning was right for every possible case? 

How to secure mission phase changes are known for the net? 

How to provide 103000 years of standard telemetry data for learning? 

Stergious and Siganos [3] define the purpose of neural nets as following (cited in italic): 

“Neural networks, with their remarkable ability to derive meaning from complicated or 
imprecise data, can be used to extract patterns and detect trends that are too complex to be 
noticed by either humans or other computer techniques.” 

Deducing from such definition, it is a technique barely suitable to satellite FDIR case, as 
precise data and capability of orientation in them is present. Extracting patterns ability offers a 
platform for creating the knowledge base for a traditional computation algorithm, however, 
only in case it can not be done more reliably by a human. 
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“The problem solving capability of conventional computers is restricted to problems that we 
already understand and know how to solve. But computers would be so much more useful if 
they could do things that we don't exactly know how to do.” 

However, the problem stands in human expert having all the needed knowledge. 

“Neural networks learn by example. They cannot be programmed to perform a specific task. 
The examples must be selected carefully otherwise useful time is wasted or even worse the 
network might be functioning incorrectly. The disadvantage is that because the network finds 
out how to solve the problem by itself, its operation can be unpredictable.” 

Creating a knowledge based system of examples is unreasonably complicated task leading to 
barely the same solution as the knowledge base provides by itself. If the examples are 
present due to mission duration, the lower reliability of the solution leads to neural net 
technique discrimination. 

“On the other hand, conventional computers use a cognitive approach to problem solving; the 
way the problem is to solved must be known and stated in small unambiguous instructions. … 
These machines are totally predictable; if anything goes wrong is due to a software or 
hardware fault.” 

As the expert knowledge provides the algorithmic solution and the requirement of predictable 
behaviour is obviously stated, conventional solution is necessarily preferred by the neural net 
experts. 

“Neural networks and conventional algorithmic computers are not in competition but 
complement each other. There are tasks are more suited to an algorithmic approach like 
arithmetic operations and tasks that are more suited to neural networks.” 

Exactly following this statement, satellite FDIR task is suitable for the classical approach and 
on the contrary. 

A thought might occur, that medical application of neural nets, so comparable to satellite 
FDIR application, is progressing. However, a major difference discriminates between the two 
utilisations. The expert knowledge provides the algorithm, not the examples, not even taking 
properly chosen examples requirement into account. 

 

6.2.5  Inductive Logic Programming 

How to interconnect outer influences knowledge with system knowledge base? 

Inductive Logic Programming offers an alternative to the non-applicable neural net, however, 
still remaining within the necessary field of artificial intelligence. Formulating algorithmic 
descriptions of usually encountered problems with human errors, environment changes, outer 
AOCS related failures or multiple errors can, however, be a rather demanding, long term task. 

 

6.3  Requirements and performances of approaches 

System diagnostic method: huge matrix of all the functional parts onboard, redundant parts 
and their states (0 – unavailable, 1 – working, 2 – ready power on, 3 – ready power off) 

Requirements reachable: 100% 

Performance provided: Detection, Isolation, Recovery, 50% 

Final decision: APPLICABLE AS A TOOL 

Replaceable by other solutions: 100% 
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Statistical methods: State space representation of the whole system, comparable to the 
satellite output, experimentally determined probability matrices, interfering influences 
behaviour model. 

Requirements reachable: ~75%  

Performance provided: Prediction, Detection, Isolation, Recovery, 66% 

Final decision: APPLICABLE AS A TOOL 

Replaceable by other solutions: 100% 

Knowledge base: context of each failure and functionality OB + part hierarchy + outer 
influences knowledge + operator monitoring 

Requirements reachable: 100% 

Performance provided: Prediction, Detection, Isolation, Recovery, partially Outer influences 
interference reactability, Operator check, 91% 

Final decision: APPLICABLE AS A TOOL 

Replaceable by other solutions: 50% 

Neural net: large amounts of data from a simulator or previously running mission, 
comparable to 103000 years of mission to reach 80% probability the system has learned. 

Requirements reachable: <1% 

Performance provided: Prediction, Detection, Isolation, Recovery, Outer influences 
interference reactability, 83% 

Final decision: NOT APPLICABLE! 

Replaceable by other solutions: 100% 

Inductive Logic Programming: knowledge base covering the system of the S/C, mission 
and operator + algorithmic descriptions of impacts the outer influences can have 

Requirements reachable: 100% 

Performance provided: Prediction, Detection, Isolation, Recovery, Outer influences 
interference reactability, Operator check 100% 

Final decision: APPLICABLE! 

Replaceable by other solutions: 0% 
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6.4  Suggested solutions 

 

  

Neural network using a knowledge base in a fashion. Proven unreachable according to 
Valiant [15]. Leads to ILP. 

System diagnostic model providing detection and basic recovery, interconnected with 
knowledge base, providing prediction, identification and partial outer interference handling. 

Statistical data processing connected with a knowledge base. Leads to redundant data 
processing and incomplete coverage of the problem. Unsuitable solution. 

Inductive Logic Programming (connected with a predictive method, Kalman like predictor for 
example). Knowledge base connected with learning algorithm. 
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7  Venus Express failure categorisation 
Venus Express is a project of Venus observation. On November 9th of 2005 it was launched 
from the Baikonur Cosmodrome in Kazakhstan. After several orbits around Earth the satellite 
gains the sufficient energy for a trip to Venus from an Earth bypass. Successful insertion into 
Venus' orbit took place on April 11th 2006. Venus Express achieved its desired orbit in May 
2006 and has been sending routine data from its science instruments. The mission is 
expected to provide data on the Venus atmosphere for several of the planet's days each. The 
expected end of mission is May 2009. 

Fig 7.1 Venus Express prepared for shipping to Baikonur [26] 

 

7.1  FDIR System onboard 

The failure handling system onboard of Venus Express (Fig.7.1) has two distinguished layers, 
a SW and a HW one. The most sensitive subsystem is AOCS (Attitude and Orbit Control 
System), followed by Power and Thermal subsystems, as these are vital subsystems of the 
satellite. The onboard FDIR has several specific modes to contain the faulty situations. The 
main FDIR strategy is as follows: 

1) Mission integrity 

2) Mission continuation 

3) Ground intervention between 2 error events expected 

4) Minimum reconfiguration necessary 

The points 1 and 2 are the same in the phase of Venus orbit insertion. Every unit is defined as 
nominal or redundant in order to distinguish the original setting. On the ground station 
software, a Redundancy table is maintained in order to keep track of these two statuses of the 
units. The FDIR has five levels of autonomous reactions.  
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The most significant of them is the Safe mode, a mode caused by severe subsystem damage, 
leading to a reconfiguration and reboot/restart of the systems, followed by Sun Acquisition 
Mode (SAM) in order to recharge batteries while waiting for ground commands. A SW and 
HW Safe modes are recognised. Software safe mode is a reboot of the system, whereas 
hardware inhibited safe mode means stopping the DMS processor, which triggers the 
watchdog reconfiguration modules. 

If the damage is not as severe, a simple reconfiguration is triggered, bypassing the set of 
suspected units by a set of redundant units. The summarisation is: 

Level 1: after the reconfiguration the mode is unchanged 

Level 2: suspected units reconfiguration followed by SAM (SW Safe mode) 

Level 3: SAM followed by another surveillance leading to a global reconfiguration and another 
SAM with all the units switched to redundant 

Level 4: after the preceding level, another surveillance is pending, leading to HW safe mode 
being triggered by DMS (PM reboot), followed by SAM with all nominal units used 

Level 5: after the level 4 procedures fail to contain of the situation, another PM reboot is 
triggered with all redundant units being used. The further surveillance is inhibited, along with 
the SAM – SHM (Safe/Hold Mode) transfer. 

These 5 levels are supposed to cover for every situation possible, other recovery procedures 
are to be handled by the operator. 

Also, in order to prevent a SEU (single event upset) caused reconfiguration, a filter is applied 
onboard to the relevant data. Therefore no surveillance is triggered based on a random, one-
time malfunction of a sensor. 

 

7.2  Telemetry 

The Venus Express telemetry includes 28830 parameter blocks that can reach several levels 
in value. It is a large set of data, however, every bit has its meaning. 

Using the appropriate queries, housekeeping data can be separated from other, failure 
detection irrelevant information. In the database of telemetry data, a column named SERVICE 
provides the information on which system is the data related to. For FDIR, the service values 
of 3 and 5 are used. Using this filter for incoming data, along with the unique values 
requirement enforcement, the number of parameters (with all value levels they can obtain) is 
eliminated to cca 6480. Further elimination with respect to certain subsystem is possible as 
well, leading to an ease in the implementation of a proof-of-principle program, providing a 
one-subsystem solution. 

The telemetry data varies in the frequency of updates, for example Thermal relevant data is 
sent every 256 seconds, whereas Status comes in the intervals of 4 seconds. An agreement 
exists, that every downlink frequency will be given by a period of 2n seconds in order to 
prevent confusion, however the operator has the ability to change the given frequency if 
necessary. It is possible to perform a database update every time a new relevant packet is 
detected, as the Mini Control System already delivers not only TM Packet History, but also 
packet counter, which provides the information on whether a packet related to given table cell 
has been updated or not. 

As mentioned in 7.3, the Mission Control Systems already provide telemetry pre-processing 
mechanisms and deliver data that are more comprehensible and easy to process further. For 
example, for each device, its each mode and each mission stage, there are different limit 
values for situation criticality. In the pre-processed database, these boundaries are provided 
along with the real values. Most of the parameters have 4 boundaries, naturally lower and 
upper limit, but also distinguished into soft limit (warning is raised, but the situation is not 
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critical) and hard limit (at this value, there is no guarantee the device continues to work). 
Some parameters need no soft limits or even do not need any limits, as their value is more 
like a binary flag. These can be distinguished due to the TMPA-SIZE parameter, which tells 
the data size of the boundary values and DTYPE, which provides information on the number 
of limits by its value. For the limit exceeding values of parameters, the LIMIT flag is raised to 
1, which makes the critical data observation triggering an easy task. 

 

7.3  Tools available 

As mentioned earlier, there are several on-ground tools that might be of help. As the new tool 
is not intended to re-invent things or to run redundant functionalities, these tools are to be 
examined before the start of the actual work. Firstly, the Mission planning tool, providing the 
mission planning from a rough outline during the preparation down to fine-tuning of the 
attitude in every second of the mission. The MP provides warnings for intended manoeuvres 
that might endanger any of the sensitive devices (e.g. pointing a star tracker into the Sun). 
However, such protection is but one part of the knowledge that has to be involved in the 
overall warning system.  

Another useful tool is the Sun vector tool, providing information on the direction to the Sun at 
every moment. The use of such tool is obviously in improving a fine-limit setting for 
temperature sensors onboard. However, implementing the use of this tool into the FDIR 
procedures would require detailed knowledge on device placement onboard and therefore will 
not be considered in this work. 

Before obtaining the data from the satellite simulator, certain pre-processing is done by 
another tool, Mini Control System built on Satellite Training Centre, providing translation from 
a stream of hexadecimal digits into real values, calculating the current limits and providing 
even the information on which packet updates which cell of the table and how often. 

A useful tool is also a Pre-transmission Validation (PTV), which stand between the operator 
and the satellite and provides warnings on intended actions, which are impossible or harmful. 
However, this tool doesn’t provide a sufficient knowledge and deserves to be extended. 

 

7.4  VEX propulsion subsystem 

The propulsion subsystem is the one that has been chosen for a proof-of-concept software 
tool, created as a part of this work. 

For Venus Express the propulsion subsystem is based on a conventional bi-propellant 
technology, and the propulsion subsystem schematic is unchanged from Mars Express. For 
the Venus mission the total propellant mass is increased up to about 530 kg compared to the 
480 kg mass on Mars Express, this increased mass is still inside the tank qualification 
heritage. 
The propulsion units are the same on Venus Express and Mars Express with just one 
exception. The pyrotechnic valves are of a different type. However, a problem appeared 
during the Venus Express mission, as a specific kind of explosive was planned to be used 
and tested and another kind was applied in the final stage. The untested explosive is of higher 
strength, therefore pyro-valves are an issue on the VEX mission. 

However, the use of the propulsion system is fluent. It consists of the following units (fig 7.4):  

• The High Pressure Pressurant Control Assembly, composed of :  

o One pressurant tank (HE) 

o One high pressure fill and drain valve (FDV1) 
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o One high pressure transducer (PT1) 

o One normally open pyrotechnic valve (PVNO15) 

o Two normally closed pyrotechnic valves (PVNC1 and PVNC2) 

o One pressure regulator (PR) 

• The Low Pressure Pressurant Control Assembly, composed of:  

o Four Non Return Valves (NRV) 

o Two low pressure fill and vent valves (FVV9 and FVV8) 

o One low pressure transducer (PT2) 

o Two Low Flow Latch Valves (LV1 and LV2) 

o Four normally closed pyrotechnic valves (PVNC3, PVNC4, PVNC5, PVNC6) 

• Two Propellant Control Assembly, composed of:  

o One titanium propellant tank × 2 (NTO and MMH) 

o Two normally closed pyrotechnic valves × 2 (PVNC7 and PVNC9 for NTO1, 
PVNC8 and PVNC10 for MMH2) 

o One propellant filter × 2 (F1 for NTO1 and F2 for MMH2) 

o Two low pressure transducers (PT3 for NTO1, PT4 for MMH2) 

• The Prime and Redundant Thruster Assembly:  

o 2 × 4 Flow control valves (FCV) 

o 2 × 4 Thrusters Latch valves (TLV) 

• The Main Engine Assembly:  

o Four normally closed pyrotechnic valves (PVNC11 and PVNC13 for NTO1, 
PVNC12 and PVNC14 for MMH2) 

o Two normally open pyrotechnic valves (PVNO16 for NTO1 and PVNO17 for 
MMH2) 

o One Nominal and one Redundant Flow Control Valves (FCV) 

 

Venus Express has a bi-propellant propulsion system. That means, two propellant tanks are 
onboard, one for oxidiser (NTO) and one for fuel (MMH). VEX has one high specific impulse 
Main Engine (414 N, fig 7.2), used for all the large trajectory corrections and 4 Nominal and 4 
Redundant 10 N thrusters (fig. 7.3) to complete the system for attitude control, finer trajectory 
corrections and Reaction Wheels off-loading. 
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Fig 7.2 The main engine      Fig 7.3 10-Newtons Thruster 
 
High pressure helium is stored in a single 35.5 litre pressurant tank. The pyrotechnic valves 
are recognised as normally open (N/O) and normally closed (N/C) valves. The normally open 
can be closed and normally closed can be opened by a small explosion, causing the valve 
either to block or to unblock, thus why they are recognised as pyrotechnic valves. The 
normally closed valves are opened during the propulsion system initialisation. The 
unidirectional valve only allows the flow in the direction of the arrow and flow control valve is 
what allows the thrust intensity to be influenced. Low flow latch valves are valve equivalents 
of switches and at least one of the redundant valves is open in normal regime. The 
pressurised helium from the helium tank is used to push the fuel and the oxidiser from their 
tanks, using a membrane. After the launch, the initialisation starts by opening the normally 
closed valves under the helium tank, which causes a rapid change of pressure inside the 
system, followed by equilibrium state. Subsequently, other valves are opened in order to 
pressurise the bipropellant tanks and finalise the initialisation. The blue flow control valves are 
certainly not pyrotechnic, as it is crucial to control the opening of these. The regulator controls 
the downstream pressure in the propellant tanks and liquid lines to 17.5 bars.  

The pyro valves are placed for protection of the fuels and helium reserves, as in case of flow 
control failure, the precious contents of the tanks has to be saved from leakage. Every pyro 
valve has two pistons to close/open it, controlled by explosives of two different dates of 
production in order to assure no accident can happen when the firing is required. For safety 
reasons, all thrusters are in hot redundancy. 

The power to the pressure sensors is delivered through switch LCL14B or redundant switch 
LCL14A. The current through these switches is measured in order to detect a failure. The 
temperature is measured on all four pressure sensors, all 18 flow control valves and on 
several places in each of tanks. 
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 Fig 7.4 Propulsion system of Venus Express 

 

7.5  VEX propulsion subsystem relevant TC/TM 

To detect the relevant telemetry and telecommand for the given subsystem in the normal 
traffic is not an easy task. First, the simulator telemetry database, consisting of 28829 
parameters was processed to obtain the proper packet header names, using also the 
assistance of skilled experts Joachim Ochs and Carol Quirke. A good idea is to realise, that 
the given subsystem only has telemetry values measured in bars, degrees Celsia and mA 
(the power supply to the subsystem) and simple Boolean on/off or true/false expressions. This 
leads to a useful query, filtering only these parameters that are expressed by such types. Also 
certain patterns are useful to observe in the parameter name, like for example strings SAS, 
SADE or RW are relevant for Sun acquisition system, Solar arrays and Reaction wheels, 
respectively. When considering all the possibly measurable values within the system, a final 
number of parameters to observe can be obtained. In total there are [Appendix A] 4 pressure 
readings, 58 temperature readings and 38 active devices, which are powered through a 
switch that is ON or OFF and has a value of current coming through. 
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8  Algorithm description 
Once knowledge is summarised and the solution chosen, what remains is the algorithm fine 
definition based on the gained knowledge. First, a detailed application theory on Expert 
system development and Logic programming extension is necessary. 

8.1  Theory 

As already mentioned in chapters 4 and 6, knowledge base is the necessary component of 
the solution. Therefore various knowledge base algorithms have to be evaluated and the 
optimal solution chosen. 

 

8.1.1  Introduction to expert system application 

According to Mattos [16], a knowledge system is implemented based upon three major steps: 
knowledge acquisition, KB structuring and KB evaluation and feedback. Just like human 
expert, a knowledge base starts by implementing a single piece of knowledge and exploiting 
this into a bigger database, later improving and broadening the knowledge.  

The essential two focal points to be grasped by the knowledge system (KS) development are 
knowledge and the process of solving problems. Only and only if the KS tracks these two 
concepts of expert insight of the situation, it can become a successful implementation. 

Mattos [16] analyses human knowledge and problem solving capabilities and distinguishes 
the problem solving knowledge into domain knowledge and problem solving methodologies, 
which are further divided into problem solving strategies (known algorithms) and heuristics 
(unknown exact algorithm approximation or known complicated algorithm simplification). 

The resulting system should: 

• support the acquisition of the new knowledge 

• assume its storage and management 

• apply it to solve problems 

• explain the solving process 

Typically, knowledge base, grasping the knowledge domain part of the algorithm, includes the 
domain knowledge, the current state of the problem and its solution and finally heuristic rules 
of information processing. 

The gradual increase of the KB volume is explainable by the fact that every inference result is 
stored in the knowledge base and every additional piece of information is hence put into 
relations with the information available previously, thus the growth of the knowledge base is 
approaching rather exponential behaviour than linear.  

The problem solving component (inference engine) should consist by a cognitive program, 
creating and checking hypotheses, and an additional control mechanism, ensuring the 
inference engine does not generate unwanted or unimportant conclusions or steps leading to 
them. 

The system interfaces are designed for 3 groups of dialogs. Firstly, the knowledge base 
engineer providing well-formulated knowledge on one side and the data acquisition tool on 
the other side. Secondly, the explanation component providing information about the 
reasoning from the first impulse until the conclusion. And thirdly, a user-dialog, providing the 
final conclusions in a user friendly form to a user without deeper knowledge of the problem. 
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8.1.2  Knowledge base development 

The development of a knowledge base starts with a rapid construction of a small prototype, 
usually in presence of a knowledge engineer and an expert, followed by performance 
observation and comparison to a human expert behaviour. After the performance is 
comparable, the prototype is put into process of knowledge broadening. 

Being already run as ready expert software, the knowledge system is provided a constant 
feedback in order to acquire new knowledge, incorporate it into the knowledge base, 
applying it subsequently and explaining the new steps. 

The previously loosely described procedure can be identified as the following 4 step 
sequence (fig. 8.1): 

Knowledge acquisition – gathering domain knowledge and generating heuristic rules 

Expert system design – creating a knowledge representation scheme, the inference engine 
and implementing problem solving strategy 

Knowledge modelling – knowledge base implementation 

Knowledge refinement – heuristic rules and knowledge revision based on feedback 

The key product of the knowledge engineer interference with the human expert is the problem 
solving heuristics, as any other information within the field can be obtained from literature. 
Human experience in problem solving is irreplaceable. 

Subsequently, the optimal solving strategy is chosen, as will be discussed later, and 
implemented. This prepares the situation for the knowledge insertion. After the introductory 
steps, the system is improved by knowledge refinement, leading an imperfect prototype into 
expertise. Figure 8.1 provides the schematic understanding of above mentioned [16]. 
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The contents of knowledge base can be distinguished into three types: declarative (passive) 
data, behavioural (active) data and structural (organisational) data. Therefore, 
understanding of the world through the view of an expert system can be divided into four 
phenomena: 

Entities – objects that exist. Usually have some properties (frames of properties), can be 
classified into classes, subclasses and superclasses and have some dependencies on other 
objects. 

Roles – generic entities becoming specific in the meaning of some action or event. Object 
dependencies are described by roles. 

Actions – events that happen to objects, being caused by objects or between objects. Every 
action has preconditions and consequences. 

Situations – states of the world in certain time instants. Values of all the properties of all the 
objects involved in the observed system. 

Independent of these types, certain definitions are valid for any kind and form of the 
knowledge base. A summary of true statements from the knowledge base can be interpreted 
by so called models of the base. An inconsistent knowledge base is defined as a base 
inducing no model, e.g. having contradictive statements. The fact an inference scheme only 
deduces true sentences from the base is called inferential validity or soundness. The 
knowledge base is said to be complete if every statement expressible by the inference 
engine can be derived from the knowledge base contents. 

From the declarative knowledge base structures is the semantic network of our interest and 
procedural schemes provide a very useful model of production systems. 

A Semantic network structure interconnects all pieces of information by certain relations, as 
shown on fig. 8.2. A Production system is a set of IF-THEN rules, describing meanings and 
actions. For such semantic structure as the one on fig. 8.2 a production system could be:  

if  solarcell_1_b is_faulty then  

(report(decrease(functionality(solararray_1_b)))  

and if functionality(sun_sensor_1) < limit  

then recommend(switch_on(sun_sensor_2))) 
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However, as given problem is very complex, a frame structure is to be considered as well. A 
frame is a set of information related to a stereotypical situation (a failure has a consequence), 
organised into a block structure (failure contexts). Such frame can then be applied to multiple 
situations, providing coherent contents of the knowledge base.  

Taking advantage of the Data-oriented paradigm and the Production system, we achieve a 
coherent knowledge base, which is dynamically updated and maintained in order to reflect the 
circumstances of the real world. 

 

8.1.3  Inference engine 

The inference is a word used for the reasoning, drawing conclusions or generating new 
knowledge. The problem is obviously in the difference between human and computer 
approach to the knowledge processing. Unlike human, a computer has no preferred rules, as 
no rules “seem” more likely to lead to the conclusion. 

There are several strategies, how to approach the reasoning. Either data- or goal-driven 
strategies, choosing cyclically a random rule, whose condition is fulfilled, to reach conclusion 
and compare it with the wanted one, or on the contrary, or so called conflict resolution 
strategies, attempting to determine the right rule to be applied. 

The data-driven strategy, also called forward, bottom-up or antecendent reasoning, is a 
method reaching from the conditions to the goal by trying all applicable rules, independently 
of the relevancy of those. If is of use for diagnostics, as it implies all possible failures from the 
symptoms.  

The goal-driven approach, also called backward, top-down or consequent reasoning, is the 
opposite. Using this method, a desired goal is chosen and rules applied backwards in order to 
achieve the conditions and compare them to the actual state of the system. This approach 
creates less irrelevant branches of possibility. 

The search strategy is a method applied to either forward or backward reasoning. It either 
supports building the entire branch possible first (depth-first) or builds all possible new 
elements in all the branches at the same time (breadth-first). However, also heuristic search 
is available, putting weights on the rules according to their probable usefulness. 

Conflict solving strategies are used to determine the very rule to be applied first or a 
sequence or set of rules to be preferred or discriminated. 

Unlike inference, a problem solving strategy is a method taking the problem stated into 
account and therefore is task specific. 

 

8.1.4  Structure 

As mentioned in 6.3, nowadays the possibilities of knowledge based solutions are broadened 
by ILP in such manner that makes the bare knowledge based approach cover only certain 
part of the whole set of actions provided by ILP approach. Nevertheless, even in the 
knowledge base domain, Spacecraft and Mission knowledge is but one part of the knowledge 
existing. A very crucial task is to handle operator failures and interactions of the spacecraft 
and the outer environment, that might be extraordinary and in a fashion, unpredictable. 
Merely monitoring the inner S/C system and its relation to the mission is 2x more than an 
analytical approach allows, however, there is still space for improvement. 

Therefore there are four knowledge domains to be implemented, necessary for a sufficient 
tool:  



- 44 - 

Spacecraft Systems Model – a hierarchical description of the inner system of the S/C and its 
components; using the engineering knowledge of the satellite system, its subsystems and 
their related behaviour, the FDIR can be performed 

Mission Model – a hierarchical description of the mission, its phases and their subparts; 
using the knowledge of the mission model, phases, procedures and TC/TM, the resource 
evaluation can be performed. The main issue of this part is a constant implementation of the 
new knowledge from the fine mission planning. 

Functional Model – connecting engineering and mission related data in order to provide 
trend analysis and failure prediction, detection, identification and recovery recommendations 
to the operator, as well as to discover and describe possible failure propagation 

Operator Behaviour Check – based on functionality hierarchy knowledge and device state 
monitoring; in order to prevent human error related failures, when an action is required by the 
operator, a check is triggered to generate warning in case such requirement is impossible or 
endangering the S/C. The possibility check simply compares the preconditions of a command 
with the current state of the satellite. The endangerment check is nothing else than a 
simulator, running an intended operation and providing feedback before the command is 
actually applied. 

As an extension to the knowledge base a very important part derived from ILP theory is 
tailored on the knowledge base, a set of algorithmic description of known possible 
extracurricular failures and states, both spacecraft and mission related. The issue of this 
module is the ability to accept new algorithmic descriptions of the yet unknown failures. The 
fashion of definition of knowledge base allows us to consider and name this part a knowledge 
base as well; however, the major principle difference in the knowledge incorporation is to be 
pointed out in this work. 

 

8.1.5  Logic programming extension 

Inductive logic programming is a synthesis between a knowledge based inducing expert 
system and an algorithmic approach, traditionally leaving the knowledge implicitly in the code. 
Obviously, this synthesis is not difficult, as the use of knowledge base can be performed by 
several processes, running in parallel. For example, at the same time an inference engine of 
the mission production system changes the boundaries for failure suspicion with regard to a 
new mission stage, a comparator makes note of a valve temperature change, a simulator 
performs operator check and a specific failure check is triggered by a set of failures, which 
might lead to its conclusion.  

 

8.2  Practical algorithm description 

8.2.1  Failures 

In order to understand the meaning of algorithm definition in chapter 9, an overview of failure 
types, as well as the simple algorithm of their identification is necessary. Several 
understandings of failures need to be taken into consideration. 

Firstly, a common sense classification: 

• phantom (pseudo failures), caused by either  

o mis-configuration of the OBSW (can be solved by a new OBSW upload) 

o operator mistake like  

� wrong action (can be solved by operator correction) 
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� situation misunderstanding (can be solved by operator support) 

• time caused degradation of materials (usually happens after 10 years of mission) 

• specific HW failures, simple and easy to pin out 

• unmonitored failures or their combinations, allowing merely a monitoring of their outputs 

Another classification is derived from the overall understanding of errors, not the experience 
related approach: 

• process – something is being done wrong 

• functional – some functionality is not fulfilled 

• HW – some specific piece of hardware is damaged 

 

8.2.2  Failure recognition methods 

In this point, an algorithm becomes explained. For every failure possible within the system, 
certain context (mode [22], frame [16]) can be defined, meaning a set of necessary conditions 
and consequences the given failure has. The same can be done for functionalities, leading to 
a simple algorithm of decisions: 

• If the necessary settings conditions for the functionality are fulfilled, it is not the process 
failure.  

• If the functionality consequences are not present, it is a functionality failure. 

• If the error consequences are fulfilled, it is a HW failure. 

In other, more algorithmic approach: 

0) Check conditions necessary for failure occurrence.  

a. YES -> it is an error 

b. NO -> it is not an error (it is a phantom error) 

1) Check settings necessary for functionality state. 

a. YES -> it is not a process error, it is a functionality error 

b. NO -> it is a process error 

2) Check HW preceding and subsequent failures in hierarchy for identification. 

a. Preceding fulfilled  -> move up in hierarchy, likely NOT an error here 

b. Subsequent fulfilled -> HW error 

c. Subsequent not fulfilled -> simply weird functionality, repeating the command 
recommended 

The failure identification can be complicated, however, solutions are available from the 
following points of view: 

• Trivial cases the only require detection and failure mode analysis 

• Undetected failures are detected through methods experienced by operators or by simple 
functionality mode analysis 
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• Multiple errors are possible to discover as chain reactions (hierarchical behaviour) or 
random coincidence (where the question stands which combinations are relevant to take 
into account) 

Failure prediction requires a simple observation of values that exceed their limits. As this 
information is provided in the telemetry already, the observation can be triggered by “out of 
limit” warning. Such observation would consist of applying a low pass filter on the relevant 
value and calculating a trend, which leads to an ability to predict the intersection between the 
predicted evolution of observed parameter and its critical value level. 

 

8.2.3  Subsystem specific requirements 
Points of interest are as follows:  
 

• pressure and temperature readings should be corresponding to: 
o mission phase 
o telecommands performed 
o each other 
o other readings within the system 
o the hot redundancy readings 

 
• the sensors should be checked to have: 

o power 
o redundancy 
o value reading 

 
These requirements require reading and processing of the following data: 

 
• telemetry 

o power subsystem parts related to the valve and tank sensors 
o position and attitude data 
o sensor and hot redundant data from the whole subsystem 

• telecommands 
 
The reading of the data requires careful filtering of telemetry and telecommand. From the 
Venus Express simulator specifications it becomes obvious that there are only very few 
packets to be observed and that all the tank temperature sensors, for example, are powered 
and read data from by one node called RTU, Remote Terminal Unit, therefore once the power 
is provided to RTU, all the tank temperature sensors can be considered powered. 
 
 

8.2.4  Low pass filter design 
The incoming telemetry data requires a low pass filter, as the sensor data are noisy due to many 
factors. Reasonable solution is to group the sensor data according to their overall behaviour and 
set the low pass filter for each group, for example, thruster temperature sensors are expected to 
encounter rapid reading changes in short time periods, therefore a less sensitive filter (up to 30 last 
values) is suitable, whereas the pressure sensor temperature readings are expected to stay strictly 
within the limits, as higher temperature might damage the sensor, therefore a more sensitive 
filter, working with cca 5 last values' average, is to be used. Slight differentiation between the 
pressure sensors and the temperature sensors filter is desirable as well, as the relation between a 
usual value and its boundaries differs. 
A proper extrapolation method has to be used as well, which is to be applied after the filtering.  
Fortunately, the choice of the method is heavily influenced by the fact that very few situations really 
occur in space, leading to our ability to predict the data behaviour for each of them. The 
polynomial extrapolation appears to bring the results approaching the real data behaviour for the 
possible cases. Obviously, some balance has to be found, providing an extrapolation method 
as well. 
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The most common methods of extrapolation are Linear extrapolation, Conic extrapolation and 
finally Polynomial extrapolation. The linear extrapolation provides an extension of the trend 
line, assuming the behaviour of the system can be considered linear-like. The conic 
extrapolation uses conic sections as patterns to be observed on the data behaviour, leading 
to a more probable extrapolation in many cases. The Polynomial extrapolation creates an 
addition of polynomial curves, fitted to the observed set of points, leading to very precise 
estimation in cases, when the behaviour really is polynomial-like. 
However, the pressure and temperature behaviour can be described very accurately by a set 
of linear or linear-like trends, without the risk of reliability loss. A nice implementation is the 
method of triangles, calculating the centre of masses of the last three values, thus obtaining a 
smoothed curve (low pass filter), easy to be fitted with a linear extension. As this practical 
approach provides both low pass filtering with an adjustable sensitivity (the triangle size) and 
a good ground for linear extrapolation, it seems to be the optimal solution for desired filtering 
module.  
To prevent failures and false alarms in the filter, the two-limit property of parameters can be 
used. Every parameter is delivered with a set of two soft limits (their crossing raises a 
warning) and two hard limits (the value that is fatal for the system). These limits have been 
pre-calculated from the knowledge of mission phases and of the housekeeping values 
considered normal and those not normal, yet still feasible for the normal operational state of 
the devices. 
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9  Implementation and testing 
As revealed in chapter 8, expert system development stages are: 

• Knowledge acquisition  

• Expert system design  

• Knowledge modelling  

• Knowledge refinement 

 
The design part is considering the Expert system design and Knowledge modelling.The 
implementation of any software project has a well-known lifecycle, starting with user 
requirements and ending with system testing, as shown on fig. 9.1. The contents of such 
lifecycle is a drift in understanding the problem from the satellite operator point of view, from 
the point of view of a knowledge base expert and finally from a programmer’s point of view. 
The steps undertaken on the left branch of the V cycle are broadening and fine-specifying 
iterations leading from a simple user requirement definition, over the theoretical background 
of the solution to the actual coding. Certain tradeoffs, corrections, improvements and 
simplifications are necessarily a part of this cycle. 
 
An important first step is a name of the software product as well, as that is how users and 
developers refer to it. Of course a name like MiCoFaPrDIR (standing for Mission Control 
Failure Prediction, Detection, Isolation and Recovery) could be applied, however, much 
shorter and more decent Failure PreDetIR or PreDIdeR (Prediction, Detection, Isolation and 
Recovery) are terms more sounding and easy to remember due to pronunciation revoking the 
word “predator”. As a matter of fact, a failure predator is a very fitting name for such project. 
 
The issue of any software implementation is to select the proper tools for such activity. A 
database system is obviously a necessity for the knowledge base implementation, therefore 
SQL query system could be chosen as the fastest, most stable possible tool. To handle the 
inference engine, a well-standardised language with real-time extension possibilities is 
required. A high level language obviously creates a possibility of re-usability, however, 
popular Java approach is unnecessarily overlapping the easy task and limits the real-time use 
options. After considering the environment and the tool already implemented in other 
languages, the idea of SQL database has been rejected for a high computational cost of the 
incoming data conversion into 2 different database systems with 2 different engines. 
Therefore a step towards commercial tools has been made, promoting MS Access database 
system and its queries and macros, though the performance meets the limitations of this tool 
in several points, most significantly in the lack of Transaction mode, allowing a proper 
simulation environment. Fortunately, the VEX simulator is already implemented in MCS. A 
decision has been made to maintain the detailed design within SQL understanding of the 
problem in order to provide a possibility of an extension in the future. As in many aspects, 
even in the choice of tools, this work is supposed to provide an analysis to be re-usable. The 
final implementation is merely a proof of concept, however, even there space for extensions 
will be provided on several places. 
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9.1  Failure PreDetIR development 
 

9.1.1  User requirements 

A tool to aid the ground station operator with FDIR, providing also a predictive behaviour and 
a check of correctness of telecommands is the main objective. A neat interface providing the 
user with information in case of failure (imminent or approaching) and recommended recovery 
procedure would be of use, as well as intended action simulator interface. 
 
 

9.1.2  Software requirements 

• knowledge based solution for  
• Mission Control Systems,  
• providing failure: 

o prevention 
o detection 
o identification 
o recovery hints to the operator 

• for failures caused by: 
o inner systems of the S/C (declarative, structural knowledge) 
o outer conditions (behavioural knowledge, logic programming) 
o operator (simulator) 
o unpredictable situations (logic programming) 

• tool has to obtain and process data from: 
o Mission Planning tool 
o Mini Control System 
o Pre-transmission Validation tool 
o VEX simulator 
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9.1.3  Architectural design (fig. 9.2) 
• knowledge modules describing: 

o S/C engineering knowledge, declarative and structural 
o mission related knowledge, behavioural 
o S/C subsystem – mission relation knowledge model, behavioural 
o operator action consequences, simulator 
o extracurricular events knowledge, logic programming 

• inference engine using following methods: 
o bottom up production rules 
o logic programming 
o simulator run 

• user interface 
o graphics 
o identification or prediction 
o recovery suggestion 
o action input 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

9.1.4  Detailed design 
As mentioned in the beginning of chapter 9, each step of the V design is a shift from a wish to 
its realisation. Architectural design provides the in-view of the knowledge base theory, 
whereas Detailed design step is merging these requirements into a realistic software module 
description. Following the schematics on fig. 9.2 (keywords in bold), a detailed description 
of modules is provided in this chapter, using and explaining the terms provided in the previous 
part (keywords in Italic).  
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The knowledge base consists of: 

• Spacecraft Systems Model developed as a set of knowledge holding frames:  

 

The frame (fig 9.3) of each device will be implemented as a table on the SQL server, 
maintained and changed by the updater and rules (with the influence of the operator). The 
Parameters item provides space for eventual extensions in the further overall system 
implementation, therefore will not be analysed in this work. Functionality and failure contexts 
are to be implemented as additional tables, providing nothing but logical addition or 
multiplication of other parts of the database, namely conditions of the failure/functionality and 
consequences of the failure/functionality. For example, a pressure sensor’s functionality 
context requires the acknowledgement of the relevant power switch being on and delivering 
current (logical multiplication) and the consequent delivery of a measured value. For the value 
reliability check, also a cross-correlation with the relevant temperature sensors is made and if 
this proves the pressure sensor delivers non-reliable data, again, the functionality is 
questioned by changing the logical value of the final multiplication to 0. Unlike functionality 
context, the failure context is based mostly on logical addition, not demanding all the failure 
conditions to be fulfilled to raise an alert. Raising a parallel to the Intrusion detection systems 
described in chapter 5, this system is to be considered “paranoid”. The entire cross 
correlation between the sensor readings is to be done by the updater filter. 

• Mission Model – observed values changing boundaries dynamically, implemented as a 
combination of functionality frames and production system. This part is already partially 
reliably provided by the Mini Control System and OBSW, therefore it won’t be part of this 
work’s proof of concept prototype. However, for example the thermal testing and pre-
calculated mission phase-related thermal behaviour check is a knowledge which should 
be incorporated in the overall finished product. 

The inference production rules engine consists of: 

• Functional Model – implemented in the production rules. 

• Operator Behaviour Check – implemented by the combination of rules and database with 
the ability to undo the tested change. This functionality is already partially provided by the 
Pre-transmission validation tool. 

The ILP extension called Experience database consists of: 

A set of algorithmic descriptions of known possible extracurricular failures, both spacecraft 
and mission related. The yet undefined errors are to be reported by the operator in order to be 
automatically detectable by the second occurrence. The user interface input is crucial in 
creating such base.  

The Database updater and filter consists of: 

Part:  reaction wheel 
Power:  ON 
Usage:  ON 
Failed: NO 
Functionality context(s) 
Failure context(s) 
Parameters 

FRAME 

Fig 9.3 Common frame design 
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A filter of telemetry data, choosing the relevant items and translating them into a desired 
database form, another filter provides an alert handling for “out of limit” values, that is, a low 
pass filter of the received failure relevant data and interpolation to predict the probable fatal 
failure time of the part. Fortunately, a tool providing the mission-dependant, time-varying limits 
is available, therefore the filter simply compares such values. The updater will check every 
second (the highest frequency of realistic data download) and search for packet counter 
increase in every related observed table cell. The low pass filter will then be performed over a 
certain number of last values of the watched parameter, not over any given time period, as 
the frequency of data downlink might differ. 

The user interface consists of: 

An interface providing information on predicted and detected failures and recommended 
recovery procedures, as well as intended action feedback from the simulator, along with input 
possibility of intended operator actions and extracurricular failure database input. 

The meaning of mission planning connection is: 

A simple check can be implemented and run to compare the telemetry reported position and 
attitude to the planned one. However, as the mission planning tool is commonly not updated, 
the result of the check might lead rather to mission planner use enforcement than to a serious 
failure discovery. The use of mission planning tool with connection to an existing and 
available Sun vector tool might serve to improve the fine setting of limits for temperature 
ranges, leading to more sensitive anomaly detection. This part is only a suggestion for future 
improvement and will not be covered by the implementation. 

 

9.2  Implementation 

The implementation is surprisingly simple thanks to the structure of the database, which 
allows the implemented rules to be as simple as possible. The actual structure of 
programmed part consists mainly of filters (using a small database to be compared with 
another database), implemented as SQL queries, TC evaluators (again, calling a query to 
compare the TC with an existing one and another query to run a simulation of a given 
command), and DB checks, performed autonomously or upon request and again providing a 
DB query. The only two modules not working with the database in a straightforward manner 
are the one interfering with the user (GUI) and the one containing the simple production rules 
of detection. 

As the structure will be mainly included in the SQL database and queries, a typical 
functionality and failure context is to be described first (continuing the frame description from 
fig. 9.3). A part of a typical context frame can be seen on fig. 9.4. Each context has two parts, 
conditions set and consequences set. The fields describing values derived from telemetry and 
from other fields will actually be cells of tables within a database. Obviously, a pressure 
sensor functionality cell is dependant on the entire functionality contexts of relevant 
temperature sensors, as the performance of the sensor depends heavily on its thermal 
comfort. Two contexts are therefore described by the figure at the same time. 

The structure of the Experience database and the Knowledge base, as named on fig. 9.2, can 
be in the case of satellite FDIR connected into one database, assuming of course the 
possibility to distinguish between a failed part and a general failure case. As will be shown 
later, the tables implemented in the module structure of the system include item (part) 
understanding of the system as well as the event (case) approach, providing extendibility, 
thus being compliant to the Inductive Logic Programming theory described by Lavra� and 
Džeroski [20]. 
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Fig 9.4 Pressure sensor functionality conditions example 

The strict logical AND in most of the frames is typical for functionality context, as the 
functionality conditions and consequences have to be fulfilled all. To make the strictness of 
the schematic more obvious, fig. 9.5 provides a slightly less detailed flow chart of the same 
functionality conditions context. As can be seen, except of the redundant parts, every 
negative response leads to a non-functionality report. 

On the other hand, a failure context provides several possible failure conditions, therefore a 
typical logical operation is OR. The formulation of both functionality and failure context might 
seem rather redundant, however, as explained in chapter 8, both of the definitions are needed 
for specific diagnostics. 

It should be emphasized, that both functionality and failure contexts consist of conditions and 
consequences. However, as functionality contexts are simpler to derive (usually the device 
does or does not deliver a performance in expected values), the conditions contexts are more 
complex and therefore interesting for analysis. 

Because most of the functionality contexts require temperature, power and sometimes 
pressure constraints, power and temperature sensors are considered the lowest level. Typical 
temperature sensor functionality condition is merely a power input. Typical power switch 
functionality condition is a current going through when the switch is on. As the target 
subsystem is the propulsion system, not power or thermal, the functionality check of related 
devices will be rather shallow compared to propulsion related devices. 
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Fig 9.5 Pressure sensor functionality conditions flow chart 

Unlike the database relations, the overall structure of the software is easy to depict and 
process using UML.  

As visible from the detailed block scheme on fig. 9.6, not too different from 9.2, several 
modules will be created to communicate with each other, the user and the database. The 
communication with the satellite is simplified to an output that will be fed to simulator TC and 
input from TMCatcher database. 
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Fig 9.6 Detailed schematics 

 

9.2.1  Modules details 

TM Filter: A small, extendable database provides the list of parameters to be selected and 
copied from TMCatcher and TMHistory database. A TMHistory check is performed in a loop 
to detect an increase in a packet number at any relevant parameter. For fast search in the TM 
database, two simplified tables are dynamically created by queries, a table of relevant packet 
numbers (can be increased by the user extension) and the table of parameters being 
downloaded for the given packet number increase detected. The increased packet number 
parameters are updated into the Knowledge base into known frames. Any out of limit in 
relevant parameters triggers a call of Observer, for which another small working table is used 
as a trans-storage between the original database and the main knowledge base. 

Observer: For any out of limit reported in TMCatcher, observer is called by the TM Filter. 
Observer stores a set of several last values of such parameters and provides an 
extrapolation, calculating the time left before the hard limit is reached from the trend of the 
value observed. If the out of limit state is over, the Observer keeps storing the values until the 
floating average reaches within limit state. This information is included to dedicated cells in 
the Main and Checker table. 

Commander: The user input interface, providing the access to the simulator. Considering the 
user not capable of responsible behaviour, every command is first fed to the Simulator and 
feedback is provided, requiring the user to approve that this is the state of the system desired. 
First after the feedback is shown (by Shower), the user is theoretically allowed to click a 
“Really send” button. 

Simulator: Called by the Commander, induces the DB “transaction mode” and remains in it 
until user approval. Performs a given command in the transaction mode and calls the Checker 
on the transaction protected database to obtain a feedback. If the feedback doesn’t show any 
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failure or danger, optionally this module can send the command without further user 
verification, however, by default, this option won’t be implemented. 

Checker: Either called by the Simulator or running in a loop, performs a check of the failure 
and functionality context relevant cells of the frames (which are grouped into an external 
table, which is actually queried by this module) and in case of an unwanted value performs a 
search among the grouped values to detect the failure/non-functionality source. This 
information is then used in a call of the Ruler. Checker passes all the out of limit time 
warnings to the Ruler. 

Ruler: Ruler applies the rules, described in chapter 8, to detect the type of failure and 
evaluate. Then accesses the separate Recovery database to obtain the whole set of 
information and calls the Shower to pass this information to the user. All the out of limit 
countdown time warnings are passed to the Shower. 

Shower: Called by the Ruler or by the Simulator, the Shower merely shows the detection 
results and when called by the Simulator, enables the Commander “Really send” button 
afterwards to allow user to validate the TC based on the feedback. 

Reporter: Induced by the user, enables the expert knowledge extension. Physically, the 
Reporter adds cells to the Checker table, to the Ruler table (to verbally explain the recovery) 
and if necessary, to the TM Filter table. The Checker table extensions are filled with logical 
additions or multiplications of other known cells and the TM Filter table extensions are merely 
those parameters, that have not been downloaded from the TMCatcher database before, as 
previous knowledge did not consider them relevant. This property of the expert system is 
derived from the Inductive logic programming theory and enables even the broadening of this 
subsystem’s model onto the whole satellite. 

However, the overall satellite knowledge base would require an optimalisation of the 
computations and database organisation, therefore using the expert system “as is” and 
merely adding knowledge would not be wise. This prototype is only a proof of concept model 
and further broadening requires higher programming skills and computational capacities. 

Obviously, six tables will be used in the database structure. First and the most important is 
the main knowledge base, including previously well defined frames, consisting of item name, 
ON/OFF information, power information, parameters and failure and functionality contexts.  

This database is updated either by the Ruler (an item is detected to be failed is denoted as 
failed not to be used again) or by the TM Filter, which uses its own simplified, extendable 
database, including only relevant parameter names and their packet count numbers. Based 
on this, any change in TMCatcher database induces an update of the knowledge base. When 
extended, TM Filter table is informed about a new parameter to observe and simply has a 
cell added in order to update the main database with the defined parameter. However, such a 
parameter in the database would only be a conditional type of information, used in a failure or 
functionality context, not a whole new added item. 

The following table of an insignificant size is the Observer table. Parameters incoming with 
an out of limit information are monitored by storing a set of several last TM values. The table 
will only consist of parameters and their maximum of 128 values. A tool should be provided to 
erase the old records once the sliding average of the value gets under the limit. The low pass 
filter will be designed less sensitive (more values involved) for the thrusters and the main 
engine temperatures. 

The main database needs to be observed for failure and functionality context, which is 
optimalised by the Checker table existence. The Checker table is again only a simplification 
of the main database table, including only item name and functionality and failure context 
cells in order to be faster to read in a cyclic manner. Checker evaluates the values and if any 
of the contexts turns to the wrong value (functionality to 0 or failure to 1), it triggers the 
production rules application. The Checker table can be extended in an item-free manner as 
well, defining not a failed item line, but a general failure name and its context. 
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That leads to the utilisation of the last table in the process, the Ruler table, including again a 
table of possibly failed items (or generally failures) and cells with plain text description of 
recovery procedures. Specific recovery actions can thus be defined either when creating the 
database or by the user interface. 

And as an extra, a rather different from the others, the Simulator table is incorporated, to 
provide known relevant TC and its effect on TM for simulation purposes. For example, TC that 
is not in the database is reported as invalid, TC leading to an increase of temperature in a 
part that is overheating raises a warning, etc. The structure of such table is simply 
telecommand and the names of parameters that are influenced along with the parameter 
influences, described in an algorithmic way. 

As mentioned before, the tables are the part holding the knowledge, whereas the inference 
engine merely provides a cyclic comparison of obtained results. The inference engine, 
consisting of the Checker and the Ruler, is one of the two cyclically running processes. The 
other one, the database updater module, consisting of TMFilter and Observer, is no less of an 
importance. Access macros allow the run of two cyclic operations at the same time, however, 
the transaction mode of the MAIN database table can not be implemented, therefore the 
same functionality will be used within MCS (Mini Control System). An important note is, that 
for the prototype, MCS is used as a source of data instead of a satellite, therefore the 
Simulator part implementation might be implemented as a stub of interconnection to the MCS 
instead of re-programming the entire tool. However, the actual MCS simulator in principle 
complies with the one depicted on fig. 9.6. 

 

9.2.2  Issues considered and encountered 

During the implementation of the knowledge based expert system, shown in the Appendix B, 
several issues have been encountered. Firstly, the necessity of MS Access usage lead to 
unavailability of SQL transaction mode, which is the main essence of the simulator part. 
However, as the data, considered by the project to be incoming telemetry, are actually 
generated by a simulator much more advanced than the simple intended model, the simulator 
part was decided to be removed from the project as an unnecessary proof of already 
implemented concept. The implementation designed in this work is not entirely followed in the 
simulator, however, re-designing would be a matter of manual work, as the difference 
between the knowledge based approach and the actual state of the simulator software is 
merely a difference in denotation of used data in the database. 

The implementation of knowledge based approach (algorithm should be simple and the 
knowledge should be stored in a database) does not allow using any knowledge to create the 
macros within Access. However, a table can carry an information on which query is supposed 
to be used for specific cases and various kinds of queries can be applied, using the fact that 
similar parts of the satellite provide similar behaviour. 

Another problem encountered is the information redundancy. For example, a parameter 
providing information on power switch LCL14A is delivered independently in two telemetry 
packets. However, the redundancy of information is already handled by the MCS, therefore in 
the framework of this project, the redundant data will be considered unique. 

Different redundancy in information evolves even within the constructed knowledge base. For 
example, a temperature sensor on a tank has some reading, which is important for both the 
tank status and the temperature sensor status. In case the temperature reaches an out-of-
limit for a temperature sensor proper functionality, the temperature sensor should be denoted 
as failed. However, the tank has different temperature constraints and therefore its 
temperature information is handled in another way. Nevertheless, both of these two 
parameters, belonging to two different units, are actually the same value, coming as one 
parameter in one packet. The redundancy issue within the knowledge base might require 
further optimalisation from the performance point of view. However, from the point of view of 
this limited project, the redundant data are allowed to be stored, decreasing the performance, 
but providing more transparent information inside observed tables, which is an important 
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aspect for a pattern project to be enhanced and copied in the future. The trade-off between 
transparency and performance is easy to decide as the finished tool should preferably provide 
transparency. 

For the same reason, many innuendos for extensions were implemented within the tables (for 
example COUNTSTEPS column, placed for the future use, meant to store the failure 
countdown value re-calculated into the number of times the operator is able to react). Also 
distinguishing between ON/OFF and IN_USE states might seem irrational, however, the 
extension is needed for other parts of the satellite, when an item can be turned on or off and 
used or not. The combination of various values of these two columns and the POWERED 
column enables the fine definition of redundancy types. The extensions are not meant to be 
performed on the very same tables and queries, however, certain inheritance from this project 
is to be expected. 

It should be emphasized that the task of the model is not to provide a full knowledge of the 
selected subsystem, but merely show that with sufficient knowledge, such expert system 
would be a useful tool. The knowledge gathered about the subsystem is sufficient to provide 
simple comparisons based on gas law, limits knowledge and extrapolation, an expert using 
the delivered system is expected to provide more thorough and interconnected knowledge 
which might be out of knowledge range of the expert system programmer.  

Another issue of the limited model is its incompleteness, leading to the need to take certain 
parameters for given, as verifying them would lead to further broadenings of the subsystem 
observed, until the majority of the satellite would be involved. For example the temperature 
readings are taken for granted as long as the Remote Terminal Unit is powered, as evaluating 
the quality of the temperature reading translation and transmission is far beyond the frame of 
this small prototype. 

The environment to operate with is another field raising issues to be solved. As the final tool 
should provide even pre-transmission validation extension, the power to interfere with sent 
telecommands is necessary. However, the prototype is not given such privileges, as it is only 
meant to prove the ability to do so. Therefore the whole TC related function of the PreDetIR is 
to be omitted, left to be proven as easily possible by the similar functionality over TM. 

Figure 9.7 provides detailed schematics of the fully functional tool, even broader than the 
overall descriptive design, whereas figure 9.8 shows the actual implementation for the 
prototype purposes.  

The originally intended SQL implementation would provide the transaction mode possibility, 
however, the Access only enables the option to create a copy of a table and induce changes 
on it. That is a very poor and limited version of the same, leading to, as mentioned before, 
omitting the Simulator part, as it would be redundant to an existing simulator functioning on 
the very same principle within the MCS. 

Inside the Observed table, an implementation of FIFO was added [27], handling the observed 
data and the low-pass filter in a very transparent way. 
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Fig 9.7 Full implementation of the system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 9.8 Actually implemented prototype 
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9.3  Debugging and testing 

The testing stage, preceded by the debugging stage, had requirements on the staff of VEGA 
company, as the need of the satellite simulator data appeared. As the GUI (Graphical User 
Interface) of the tool has been developed and first results have been obtained (fig. 9.9), using 
quite simple situations results, new ideas for the failure interpretation methods and 
requirements appeared. The necessary equipment of such tool is a control panel, providing at 
least start and restart buttons (fig 9.9). Such part of the GUI has been developed and 
surprisingly provides the full access to all functionalities of the knowledge system. 

 

 

 

 

 

 
Fig 9.9 Control panel 

The detected failures are notifying the user by a pop-up window (fig. 9.10), an annoying, but 
important tool, forcing the operator’s immediate reaction. The decision is to be made whether 
to display the failure window for all kinds of failures (potential, functional, process and 
hardware) or just for these requiring the immediate reaction (hardware and functional). 

 

 

 

 

Fig 9.10 Pop-up window 

After individual notifications, all reported failures are stored in a history log table along with 
their timestamps and displayed by the form (fig 9.12). Countdown information is naturally 
included in both cases, as long as the countdown is relevant. 

All the mentioned parts are fully functional and deliver failure prediction, detection, 
identification and recovery hints for all the cases known to the database creator. 

However, the entire expert system is not just a tool for the operator, the major functionality is 
given by the interface allowing the user to enhance the knowledge by extending either the 
simple knowledge base or the experience base. These two options are virtually identical, only 
the experience data allow the user to define the knowledge and principles in an algorithmic 
way, using the string handling power of nowadays programming tools. 
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Fig 9.11 GUI with the first results 

 

The testing of the tool has been performed in the offices of VEGA on 25. 5. 2007. First 
random packetstream of data didn’t contain all the information required by the system, leading 
to series of warning messages. Therefore a method of testing has been chosen to prevent 
such floods of messages (fig 9.11), which were causing difficulties in the real testing and 
debugging process.  

A set of nominal behaviour data was created by the simulator and introduced to the system. 
Afterwards, several sets of data were generated by the simulator, showing faulty behaviour of 
chosen parts or their combinations. The output of the system has shown as a success 
(especially different limit settings for interconnected parts, allowing the tool to distinguish 
between the real part failure and the failure of a housekeeping system), though more 
thorough information on the failures and their background was pointed out as an issue, as the 
formulations provided by the knowledge base were somewhat vague. However, the PreDetIR 
system has proven its full functionality, thus proving the concept of the knowledge based 
expert system as applicable. 
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Fig 9.12 GUI with performance proving results 

 

Another part of the knowledge based system is a learning mechanism. This has been 
implemented as a form, where a human expert can type or choose items to add knowledge 
about. Specifically, the relevant and main tables are updated if the expert claims more items 
to be needed to be observed, the checked table and recovery table are broadened by the 
knowledge on how to recognise a failure within the observed part of the system. The entire 
user interface is implemented as one form window with an intuitive communication (fig. 9.13). 

To access this editing form, extra control has been added to the main window. Also an extra 
button for a self-standing check without a download of new data has been implemented for 
repeated experiments (fig. 9.14). 
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Fig 9.13 Editing user interface 

 

 

 

Fig 9.14 Final control panel 
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10  Conclusion 
An evaluation of the available FDIR methods has been performed (Chapter 4) and the optimal 
strategy for on-ground satellite operator tool has been chosen (Chapter 6). A simple proof of 
concept prototype has been developed (Chapter 9), providing all the functionalities of the 
chosen knowledge based, inductive logic programming extended solution (Appendix B). 
Desired performance has been tested, using the Venus Express simulator (Chapter 7) and 
positive results have been reported. 

The tool has been implemented using MS Access and Visual Basic for Applications (VBA), 
following in detail the requirements of the knowledge base approach, as well as inductive 
logic programming. 

In case of the whole system implementation, the resulting tool would support the mission 
control operator with fast failure prediction, detection, identification and recovery suggestions.  

The MS Access tool has proven itself to be powerful and suitable, though several 
functionalities of the designed system must have been omitted or limited. The option of using 
a GUI (Graphical User Interface) made the entire tool very valuable for future usage by non-
computer background satellite system operators. 

However, a thought occurs that the operator’s comfort and aid might cause a degradation of 
the future satellite operator’s qualities, thus lowering the overall requirements on human 
education and understanding of the world and the tools used for its observation. Decisions 
have to be made by the authorities, whether such approach is the desired future of the 
mankind. 
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Appendix A: Telecommand and telemetry considered 
The propulsion system uses the following telecommands: 
Open LFLV-01 
Close LFLV-01 
Open LFLV-02 
Close LFLV-02 
Fire PVNC-01 Prime & Redundant and associated pre-arming, arming and dis-arming of pyro 
firing circuits/TC 
Fire PVNC-02 Prime & Redundant and associated pre-arming, arming and dis-arming of pyro 
firing circuits/TC 
Fire PVNC-03 Prime & Redundant and associated pre-arming, arming and dis-arming of pyro 
firing circuits/TC 
Fire PVNC-04 Prime & Redundant and associated pre-arming, arming and dis-arming of pyro 
firing circuits/TC 
Fire PVNC-05 Prime & Redundant and associated pre-arming, arming and dis-arming of pyro 
firing circuits/TC 
Fire PVNC-06 Prime & Redundant and associated pre-arming, arming and dis-arming of pyro 
firing circuits/TC 
Fire PVNC-07 Prime & Redundant and associated pre-arming, arming and dis-arming of pyro 
firing circuits/TC 
Fire PVNC-08 Prime & Redundant and associated pre-arming, arming and dis-arming of pyro 
firing circuits/TC 
Fire PVNC-09 Prime & Redundant and associated pre-arming, arming and dis-arming of pyro 
firing circuits/TC 
Fire PVNC-10 Prime & Redundant and associated pre-arming, arming and dis-arming of pyro 
firing circuits/TC 
Fire PVNC-11 Prime & Redundant and associated pre-arming, arming and dis-arming of pyro 
firing circuits/TC 
Fire PVNC-12 Prime & Redundant and associated pre-arming, arming and dis-arming of pyro 
firing circuits/TC 
Fire PVNC-13 Prime & Redundant and associated pre-arming, arming and dis-arming of pyro 
firing circuits/TC 
Fire PVNC-14 Prime & Redundant and associated pre-arming, arming and dis-arming of pyro 
firing circuits/TC 
Fire PVNO-15 Prime & Redundant and associated pre-arming, arming and dis-arming of pyro 
firing circuits/TC 
 

Fire PVNO-16 Prime & Redundant and associated pre-arming, arming and dis-arming of pyro 
firing circuits/TC 
Fire PVNO-17 Prime & Redundant and associated pre-arming, arming and dis-arming of pyro 
firing circuits/TC 
Open TLV1A 
Close TLV1A 
Open TLV1B 
Close TLV1B 
Open TLV2A 
Close TLV2A 
Open TLV2B 
Close TLV2B 
Open TLV3A 
Close TLV3A 
Open TLV3B 
Close TLV3B 
Open TLV4A 
Close TLV4A 
Open TLV4B 
Close TLV4B 
Fire RCT-1A 
Fire RCT-1B 
Fire RCT-2A 
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Fire RCT-2B 
Fire RCT-3A 
Fire RCT-3B 
Fire RCT-4A 
Fire RCT-4B 
Fire Main Engine (400N-ME) Prime 
Fire Main Engine (400N-ME) Redundant 
 
The propulsion system requires the following signals to be telemetered based on unit supplier 
provided equipment: 
HPTD-01 Pressurant tank pressure 
LPTD-02 Regulator outlet pressure 
LPTD-03 Oxidiser tank pressure 
LPTD-04 Fuel tank pressure 
HPTD-01 Temperature 
LPTD-02 Temperature 
LPTD-03 Temperature 
LPTD-04 Temperature 
LFLV-01 Status 
LFLV-02 Status 
TLV1A Status 
TLV1B Status 
TLV2A Status 
TLV2B Status 
TLV3A Status 
TLV3B Status 
TLV4A Status 
TLV4B Status 
RCT-1A Chamber temperature 
RCT-1B Chamber temperature 
RCT-2A Chamber temperature 
RCT-2B Chamber temperature 
RCT-3A Chamber temperature 
RCT-3B Chamber temperature 
RCT-4A Chamber temperature 
RCT-4B Chamber temperature 
400N-ME Chamber temperature 
 
In addition to the above the following propulsion system temperatures are also monitored 
using sensors provided by the thermal control system: 
MMH tank top - nominal and redundant 
MMH tank bottom - nominal and redundant 
NTO tank top - nominal and redundant 
NTO tank bottom - nominal and redundant 
Helium tank - nominal and redundant 
Pressure regulator outlet - nominal and redundant 
LFLV 01 
LFLV 02 
CPS line 1 - nominal and redundant 
CPS line 2 - nominal and redundant 
CPS line 3 - nominal and redundant 
CPS line 4 - nominal and redundant 
CPS line 5 - nominal and redundant 
CPS line 6 - nominal and redundant 
RCT 1A valve 
RCT 2A valve 
RCT 3A valve 
RCT 4A valve 
RCT 1B valve 
RCT 2B valve 
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RCT 3B valve 
RCT 4B valve 
ME MMH valve 
ME NTO valve 
ME flange (low) 
ME flange (high) 
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Appendix B: The source code 

 

Option Compare Database 

 Dim X1 As Variant 'parameter values 

 Dim X2 As Variant 

 Dim X3 As Variant 

 Dim X4 As Variant 

 Dim X5 As Variant 

 Dim X6 As Variant 

 Dim PRECEDING1 As String 

 Dim SUBSEQUENT1 As String 

 Dim PRECEDING2 As String 

 Dim SUBSEQUENT2 As String 

 Dim PRECEDING3 As String 

 Dim SUBSEQUENT3 As String 

 Dim PRECEDING4 As String 

 Dim SUBSEQUENT4 As String 

 Dim item As String 

 Dim param_id As String 'unique address of a record in all the tables 

 Dim whatswrong As String 'for failure identification 

 Dim NoInfor As Boolean 

 Dim TIME As String 

 Dim db As Database 

 Dim rs_relevant As Recordset 'lookup table of items and their relevant parameters 

 'Dim rs_main As DAO.Recordset 

 Dim rs_main As Recordset     'table of system knowledge 

 Dim rs_qselrel As Recordset  'result of qry_first, a selestion of the relevant table 

 Dim rs_observed As Recordset 'table of observed out-of-limits values 

 Dim rs_recovered As Recordset 'table of recovery hints 

 Dim rs_VEX_TM As Recordset     'table of the fresh TM data 

 Dim rs_checked As Recordset    'checking lookup table 

 Dim rs_records As Recordset    'table of history log 

 'for FIFO purposes 

 Dim topix As Integer ' Where the NEXT thing goes on top 

 Dim bumix As Integer ' Where the CURRENT thing is at the bottom 

  

Private Sub Form_Load() 

  Form_Timer 

End Sub 

Private Sub Form_Timer() 

Main 

End Sub 
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'the main sub, called periodically by the Form_Timer, calls the qry_first query, which 
compares packetnumbers saved in this DB with these saved in VEX_TmPacketDescription 

'once difference is detected, the query generates a selection from the relevant table, 
including packet relevant names of parameters and their addresses in the main table 

'the placement inside the main table is uniquely described by item name and param_id 

'the values of the parameters are read out of VEX_TM and updated into the main table 

'after updating the value, this is compared to its upper and lower limits and in case of 
out-of-limits being detected in the last or recent data, the Observer procedure is 
started 

'after comparing the data, the previously changed packetnumber is updated from 
VEX_TmPacketHistory into the relevant table 

'the Checker is called after the update to perform a failure detection in the new main 
table 

'the functions Seeker and Searcher are providing the record number of the record 
addressed by item and param_id in observed and selected relevant table, respectively 

 

Private Sub Main() 

Dim rs_qtranTM As Recordset 

Dim sqlString As String 

Dim something As Variant 

Dim poser As Integer 

Dim j As Variant 

Dim numerouno As String 

Dim Critter As String 

 'definitions 

 Set db = CurrentDb 

 Set rs_relevant = db.OpenRecordset("qry_relevant") 

 Set rs_main = db.OpenRecordset("qry_main") 

 Set rs_observed = db.OpenRecordset("qry_observed") 

 Set rs_recovered = db.OpenRecordset("qry_recovery") 

 Set rs_VEX_TM = db.OpenRecordset("qry_VEX_TM") 

 'qry_first is a query selecting part of relevant table that is related to the newly 
incoming packet 

 Set rs_qselrel = db.OpenRecordset("qry_first") 

 'qry_second is a query that takes TMPacketDescription table and translates its received 
tim into a time-like value 

 Set rs_qtranTM = db.OpenRecordset("qry_second") 

 Dim n As Double 

 'if the qry_first detects a new incoming packet 

 If rs_qselrel.RecordCount > 0 Then 

  'Call frm_TestFailures 

 DoCmd.Close acForm, "frm_TestFailures" 

 DoCmd.OpenForm "frm_TestFailures" 

  rs_qselrel.MoveFirst 

  PACKET = rs_qselrel!PACKET1 
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   With rs_qtranTM 

    .MoveFirst 

    .FindFirst ("[PACKET] ='" & PACKET & "'") 

    If Not IsNull(!ReceivedTime) Then 

                             TIME = CDate(!ReceivedTime) 

                             Else: 

                             TIME = "01/01/2000 09:25:27" 

                             End If 

   End With 

    

 'cycle on the selection of relevant table 

 rs_qselrel.MoveFirst 

  Do 

 'HOW DO I KNOW WHICH ITEM??? 

   item = rs_qselrel!item 

   param_id = rs_qselrel!param_id 

 'looking up the values of the parameters inside VEX_TM 

   Call Looker(item, param_id) 

 poser = Positioner(param_id) 

  'updating the main with new values from VEX_TM 

  rs_main.FindFirst ("[ITEM] ='" & item & "'") 

 something = VALEX(item, param_id) 

 something = Trim(something) 

 If (poser < 4) And (poser > 0) Then 

                                    If IsNull(something) Then 

                                                         j = False 

                                                         Else: 

                                                         j = something 

                                                         End If 

                                Else: 

                                j = something 

                                End If 

  If j = rs_main.Fields(poser).Value Then 

                                    j = 0 

                                    Else 

                                    With rs_main 

                                    .Edit 

                                    .Fields(poser).Value = j 

                                    .Update 

                                    End With 

                                    End If 

With rs_qselrel 

Critter = "[NO] =" & Searcher(item, param_id) 



- 73 - 

.FindFirst (Critter) '(!item = item) And (!param_id = param_id)) 

 'value is compared to the limits 

 If Not IsNull(!HS) Then 

If (CDbl(something) < !LS) Or (CDbl(something) > !HS) Then 

                     Call Observer(item, param_id, !LH, !LS, !HS, !HH, CDbl(something)) 

                           Else: 

 'if the value is in the limits, but the average still isn't, the observation continues 

                            If (Seeker(item, param_id) <> 0) Then 

                            If (CDbl(Average(item, param_id)) < !LS Or 
CDbl(Average(item, param_id)) > !HS) Then Call Observer(item, param_id, !LH, !LS, !HS, 
!HH, CDbl(something)) 

                                                                 

'if the value is in the limits and the average is in the limits, the record is emptied 
in observed table 

                                        If (CDbl(Average(item, param_id)) > !LS And 
CDbl(Average(item, param_id)) < !HS) Then Call EmptyQ(item, param_id) 

                                                            End If 

                           End If 

 End If 

 End With 

 'if the value is in limits, but recently has been out of limits, Observer is called 
anyway 

 'updating the packet counter 

 'input: VEX_TmpacketDescription 

 'output: relevant 

 With rs_relevant 

 .FindFirst (Critter) 

  .Edit 

 !LAST_PACKETNR = DLookup("[Counter]", "qry_second", "[PACKET] ='" & !PACKET1 & "'") 

 .Update 

 End With 

  'qry_update_first = "UPDATE relevant " & _ 

  '"INNER JOIN VEX_TmpacketDescription " & _ 

  '"ON relevant.PACKET1 = VEX_TmpacketDescription.NAME " & _ 

  '"SET relevant.LAST_PACKETNR = [VEX_TmpacketDescription].[Counter] " & _ 

  '"WHERE (((relevant.LAST_PACKETNR)<>[VEX_TmpacketDescription].[Counter]))" 

  'DoCmd.RunSQL qry_update_first, 0 

 rs_qselrel.FindFirst (Critter) 

 rs_qselrel.MoveNext 

 Loop While (Not rs_qselrel.EOF) 

  

 Call Checker 

    

 End If 
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rs_qselrel.Close 

rs_main.Close 

rs_relevant.Close 

End Sub 

Public Function Searcher(item, param_id) As Long 

'returns the number of record where item = item and param_id = param_id in the relevant 
selection, same as Seeker 

'input: global variables item and param_id as Strings 

'output: record number as integer 

With rs_qselrel 

Dim n As Long 

n = 0 

.MoveFirst 

.FindFirst ("[ITEM] ='" & item & "'") 

Do 

  If (!param_id = param_id) Then 

                                    n = !NO 

                                    Exit Do 

                               Else: 

                                    .FindNext ("[ITEM] ='" & item & "'") 

                                    End If 

Loop Until (.EOF) 

End With 

Searcher = n 

End Function 

Public Sub Looker(item, param_id) 

 'reading the relevant parameter names (String) from the relevant table generated lookup 
table 

 'looking up the values of the parameters in VEX_TM 

 'input: table readings 

 'output: values X1 to X6 as Variant, parameters of a given item 

With rs_qselrel 

.FindFirst ("[NO] =" & Searcher(item, param_id)) 

X1 = DLookup("[VALUE]", "qry_VEX_TM", "[PARAMETER] ='" & !parameter1 & "'") 

If X1 = "ON state" Or X1 = "Active" Then X1 = True 

If X1 = "Inactive" Or X1 = "OFF state" Then X1 = False 

If Not IsNull(!parameter2) Then 

                            X2 = DLookup("[VALUE]", "qry_VEX_TM", "[PARAMETER] ='" & 
!parameter2 & "'") 

                            If X2 = "ON state" Or X2 = "Active" Then X2 = True 

                            If X2 = "Inactive" Or X2 = "OFF state" Then X2 = False 

                            End If 
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If Not IsNull(!parameter3) Then 

                            X3 = DLookup("[VALUE]", "qry_VEX_TM", "[PARAMETER] ='" & 
!parameter3 & "'") 

                            If X3 = "ON state" Or X3 = "Active" Then X3 = True 

                            If X3 = "Inactive" Or X3 = "OFF state" Then X3 = False 

                            End If 

If Not IsNull(!parameter4) Then 

                            X4 = DLookup("[VALUE]", "qry_VEX_TM", "[PARAMETER] ='" & 
!parameter4 & "'") 

                            If X4 = "ON state" Or X4 = "Active" Then X4 = True 

                            If X4 = "Inactive" Or X4 = "OFF state" Then X4 = False 

                            End If 

'If !parameter5 <> Null Then X5 = DLookup("[VALUE]", "qry_VEX_TM", "[PARAMETER] ='" & 
!parameter5 & "'") 

'If !parameter6 <> Null Then X6 = DLookup("[VALUE]", "qry_VEX_TM", "[PARAMETER] ='" & 
!parameter6 & "'") 

End With 

End Sub 

Public Function Positioner(param_id) As Integer 

Dim n As Integer 

'holding the information on which column in main has which number 

'input: global variablr param_id as string 

'output: column number as integer 

Select Case param_id 

Case "POWERED" 

        n = 1 

Case "ON_OFF" 

        n = 2 

Case "IN_USE" 

        n = 3 

Case "PARAM_1" 

        n = 7 

Case "PARAM_2" 

        n = 8 

Case "PARAM_3" 

        n = 9 

Case "PARAM_4" 

        n = 10 

Case "FAILED" 

        n = 4 

Case "COUNTSTEPS" 

        n = 6 

Case "PARAM_5" 

        n = 11 



- 76 - 

Case "PARAM_6" 

        n = 12 

Case "PARAM_7" 

        n = 13 

Case "PARAM_8" 

        n = 14 

Case "PARAM_9" 

        n = 15 

        End Select 

Positioner = n 

End Function 

Public Function VALEX(item, param_id) As Variant 

'handling the parameter values in known queries 

'input: relevant table selection, X1 to X6 

'output: VALEX As Variant, calculated value of an item parameter 

 Dim X As Variant 

 Dim T As Double 

 Dim P As Double 

 Dim V As Double 

 Dim M As Boolean 

  With rs_qselrel 

 .FindFirst ("[NO] =" & Searcher(item, param_id)) 

 Query = !Query 

 End With 

 Select Case Query 

 Case "Default" 

        X = X1 

 Case "Power" 

        X = X1 And (CDbl(X2) > 0#) Or X3 And (CDbl(X4) > 0#) 

 Case "Power2" 

        X = X1 And (CDbl(X2) > 0#) 

 Case "Pyro" 

        X = X1 Or X2 

 Case "PyroNeg" 

        X = Not X1 And Not X2 

 Case "Relay" 

        If X1 = Not X2 Then 

                            X = X1 

                    Else: X = Null 

                    End If 

 Case "Thruster" 

        X = X1 And X2 And Not X3 
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 Case "Meng" 

        X = (X1 Or X2) And (X3 Or X4) 

 Case "Average" 

        X = (X1 + X2) / 2 

 Case "Average3" 

        X = (X1 + X2 + X3) / 3 

 Case "Current" 

        X = (CDbl(X1) > 0#) 

 Case "GasLaw" 

 'specific case comparing the calculated volume of a tank to the previous one 

 'calls Observer independently and accesses the previous values in the main table 

 'this case is created as a proof of extendability of the concept 

 'input: item name 

 'output: volume of the gas/liquid as double 

        With rs_main 

         .FindFirst ("[ITEM] ='" & item & "'") 

         If Not (IsNull(!PARAM_1) Or IsNull(!PARAM_2) Or IsNull(!PARAM_3)) Then 

          T = CDbl(!PARAM_1) 

          P = CDbl(!PARAM_2) 

          V = CDbl(!PARAM_3) 

           .FindFirst ("ME") 

            M = !POWERED 

        X = P * CDbl(X1) * V / (CDbl(X2) * (T + 273.15)) 

        If Abs(X - V) > 5 And M = False Then 

                          Select Case item 

                            Case "ACM PT1" 

                              Call Observer(item, param_id, 0, 0.001, 0.035, 0.0355, X) 

                            Case "ACM PT3" 

                              Call Observer(item, param_id, 0, 0.001, 0.35, 0.37, X) 

                            Case "ACM PT4" 

                              Call Observer(item, param_id, 0, 0.001, 0.58, 0.6, X) 

                          End Select 

                        End If 

                Else: 

                   Select Case item 

                   Case "ACM PT1" 

                               X = 0.025 

                   Case "ACM PT3" 

                               X = 0.48 

                   Case "ACM PT4" 

                               X = 0.25 

                          End Select 

                End If 
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             End With 

        End Select 

 VALEX = X 

End Function 

Private Sub Observer(item, param_id, LH, LS, HS, HH, X) 

'Updates the main table with countdowns and keeps its own table of observed values 

'input: item and param_id as Strings defining uniquely the record, LH, LS, HS and HH as 
double, defining the soft and hard, lower and upper limits and the value X as Double 

'output: record in the observed table, including the record of averages, simple 
extrapolation result is updated into the main table 

 Set rs_observed = db.OpenRecordset("observed") 

 Dim param As String 

 Dim T As Integer 

 Dim H As Double 

 Dim countdown As Double 

 param = param_id 

'creating a record or adding to a record 

 Call Push(X, item, param_id) 

  If X < LS Then H = LH - X 

  If X > HS Then H = HH - X 

  T = 1 'step size unimplemented 

   

'primitive extrapolation 

With rs_observed 

  .FindFirst ("[NO] =" & Seeker(item, param_id)) 

  avgtopix = !avgtopix 

  If .Fields(avgtopix - 1) <> Null Then 

            countdown = H * T / (.Fields(avgtopix) - .Fields(avgtopix - 1)) - 1 

                                   Else: 

            countdown = 99999999 

                                   End If 

  If countdown < 0 Then countdown = 100000000 

  .Edit 

  !Count = countdown 

  .Update 

End With 

'in case one item has more countdowns, the lowest one is significant 

  If (Twins(item, param_id) > 0) Then 

                countdown = 100000000 

                With rs_observed 

                .FindFirst ("[ITEM] ='" & item & "'") 

                Do 

                If countdown > CDbl(!Count) Then 
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                                        countdown = CDbl(!Count) 

                                        param = !param_id 

                                        End If 

                .FindNext ("[ITEM] ='" & item & "'") 

                Loop Until (.EOF) 

                End With 

              End If 

' countdown is updated to Countsteps in main 

  With rs_main 

  .FindFirst ("[ITEM] ='" & item & "'") 

  .Edit 

  .Fields(6) = countdown 

  .Fields(16) = param 

  .Update 

  End With 

End Sub 

Private Sub Checker() 

'checker is independent of provided information, it processes the current state of the 
main table 

'input: main table 

'output: 4 values of different checks as boolean 

Set db = CurrentDb 

Set rs_checked = db.OpenRecordset("qry_checked") 

With rs_checked 

.MoveFirst 

Do 

 'checker: calculates values from its lookup table and only reports if they differ from 
an expected one 

 '          distributed into 4  checks 

 '         reporting: ruler 

 item = !item 

If (FAILURE_CONSEQUENCE_CHECK(item) = True) Or (FAILURE_CONDITION_CHECK(item) = True) Or 
(FUNCTIONALITY_CONSEQUENCE_CHECK(item) = False) And (FUNCTIONALITY_CONDITION_CHECK(item) 
= True) Then Call Ruler(item) 

 If (NoInfo = True) Then Call Shower(0, item, whatswrong, "Try to obtain more data on 
this part.") 

 .MoveNext 

Loop Until .EOF 

End With 

End Sub 

Public Function FAILURE_CONDITION_CHECK(item) As Boolean 

'reads the values of failure conditions marked by checked table inside the main table 
and reasons from them 

'input: item as string, checker table, main table 
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'output: boolean value saying whether conditions for a failure are fulfilled 

Dim n As Boolean 

Dim Y1 As Boolean 

Dim Y2 As Boolean 

Dim Y3 As Boolean 

Dim Y4 As Double 

Dim Y5 As Boolean 

n = True 

If (item = "") Then 

                    n = False 

Else: 

With rs_checked 

 .FindFirst ("[ITEM] ='" & item & "'") 

 Y1 = DLookup(!FAILURE_CONDITION_1, "qry_main", "[item] ='" & item & "'") 

 If Not IsNull(!FAILURE_CONDITION_2) Then Y2 = DLookup(!FAILURE_CONDITION_2, "qry_main", 
"[item] ='" & item & "'") 

 If Not IsNull(!FAILURE_CONDITION_3) Then Y3 = DLookup(!FAILURE_CONDITION_3, "qry_main", 
"[item] ='" & item & "'") 

 If Not IsNull(!FAILURE_CONDITION_4) Then Y4 = DLookup(!FAILURE_CONDITION_4, "qry_main", 
"[item] ='" & item & "'") 

 If Not IsNull(!FAILURE_CONDITION_5) Then Y5 = DLookup(!FAILURE_CONDITION_5, "qry_main", 
"[item] ='" & item & "'") 

End With 

If Not IsNull(Y4) Then 

 If (Y1 = False And Y2 = True Or Y1 = False And Y3 = True Or Y3 = False And Y2 = True Or 
CDbl(Y4) <> 100000000 Or Y5 = True) Then 

                                                                                n = True 

                                                                                Else: 

                                                                                n = 
False 

                                                                                End If 

     Else: 

          n = True 

          whatswrong = "My table is corrupted on this place, please, use the reset 
button." 

    End If 

End If 

FAILURE_CONDITION_CHECK = n 

End Function 

Public Function FAILURE_CONSEQUENCE_CHECK(item) As Boolean 

'reads the values of failure consequences marked by checked table inside the main table 
and reasons from them 

'input: item as string, checker table, main table 

'output: boolean value saying whether consequences of a failure are fulfilled 

Dim n1 As Boolean 
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Dim n2 As Boolean 

Dim n3 As Boolean 

Dim Y1 As Variant 

Dim Y2 As Variant 

Dim Y3 As Variant 

Dim Y4 As Variant 

Dim Query1 As String 

Dim Query2 As String 

n1 = True 

n2 = False 

n3 = True 

If (item = "") Then 

                n1 = False 

                n2 = False 

                n3 = False 

            Else: 

    With rs_checked 

     .FindFirst ("[ITEM] ='" & item & "'") 

     Y1 = DLookup(!FAILURE_CONSEQ_PARAM_ID1, "main", "[item] ='" & item & "'") 

     If Not IsNull(!FAILURE_CONSEQ_ITEM2) Then Y2 = DLookup(!FAILURE_CONSEQ_PARAM_ID2, 
"qry_main", "[item] ='" & !FAILURE_CONSEQ_ITEM2 & "'") 

     If Not IsNull(!FAILURE_CONSEQ_ITEM3) Then Y3 = DLookup(!FAILURE_CONSEQ_PARAM_ID3, 
"qry_main", "[item] ='" & !FAILURE_CONSEQ_ITEM3 & "'") 

     If Not IsNull(!FAILURE_CONSEQ_ITEM4) Then Y4 = DLookup(!FAILURE_CONSEQ_PARAM_ID4, 
"qry_main", "[item] ='" & !FAILURE_CONSEQ_ITEM4 & "'") 

     Query1 = !FAILURE_CONSEQ_QUERY1 

     If Not IsNull(!FAILURE_CONSEQ_QUERY2) Then Query2 = !FAILURE_CONSEQ_QUERY2 

    Select Case Query1 

    Case "Countdown" 

     If Not IsNull(Y1) Then 

      If CDbl(Y1) <> 100000000 Then 

                        n1 = True 

                        WORST = DLookup("[WORST]", "qry_main", "[item] ='" & 
!FAILURE_CONSEQ_ITEM2 & "'") 

                        whatswrong = "Countdown on " & WORST & " property of the item." 

                       Else: 

                        n1 = False 

                       End If 

     Else: 

          n1 = False 

        NoInfo = True 

          whatswrong = "My table is corrupted on this place, please, use the reset 
button." 

    End If 
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    End Select 

    Select Case Query2 

    Case "Extreme" 

       If Not IsNull(Y2) Then 

        If n2 = False Then n2 = False 

        Else: 

        n2 = False 

        NoInfo = True 

        whatswrong = "No data to be compared to the limits." 

        End If 

    Case "Switch" 

     If Not (IsNull(Y1) Or IsNull(Y2) Or IsNull(Y3)) Then 

      If (Y2 = False And Y3 = True Or Y2 = True And Y3 = False) Then 

                                                            n3 = True 

                                                            If Y2 = False Then 

                                                                            whatswrong = 
"Switch is off, but there is a stray current." 

                                                                            Else: 

                                                                            whatswrong = 
"Switch is on, but there is no current." 

                                                                            End If 

                                                            Else: 

                                                            n3 = False 

                                                            End If 

      Else: 

      n2 = False 

        NoInfo = True 

      whatswrong = "Not enough data to verify the switch behaviour." 

      End If 

    End Select 

    End With 

        End If 

FAILURE_CONSEQUENCE_CHECK = n1 Or n2 Or n3 

End Function 

Public Function FUNCTIONALITY_CONDITION_CHECK(item) As Boolean 

'reads the values of functionality conditions marked by checked table inside the main 
table and reasons from them 

'input: item as string, checker table, main table 

'output: boolean value saying whether conditions for a functionality are fulfilled 

Dim n As Boolean 

Dim Y1 As Boolean 

Dim Y2 As Boolean 

Dim Y3 As Boolean 



- 83 - 

n = False 

If (item = "") Then 

                    n = True 

                Else: 

With rs_checked 

 .FindFirst ("[ITEM] ='" & item & "'") 

 Y1 = DLookup(!FUNC_CONDITION_1, "main", item = item) 

 If Not IsNull(!FUNC_CONDITION_2) Then Y2 = DLookup(!FUNC_CONDITION_2, "qry_main", 
"[item] ='" & item & "'") 

 If Not IsNull(!FUNC_CONDITION_3) Then Y3 = DLookup(!FUNC_CONDITION_3, "qry_main", 
"[item] ='" & item & "'") 

End With 

If Y1 = True And Y2 = True And Y3 = True Then 

                                    n = True 

                                    Else: 

                                    n = False 

                                    End If 

End If 

FUNCTIONALITY_CONDITION_CHECK = n 

End Function 

Public Function FUNCTIONALITY_CONSEQUENCE_CHECK(item) As Boolean 

'reads the values of functionality consequences marked by checked table inside the main 
table and reasons from them 

'input: item as string, checker table, main table 

'output: boolean value saying whether consequences of a functionality are fulfilled 

Dim n1 As Boolean 

Dim n2 As Boolean 

Dim n3 As Boolean 

Dim n4 As Boolean 

Dim Firing As Boolean 

Dim Y1 As Variant 

Dim Y2 As Variant 

Dim Y3 As Variant 

Dim Y4 As Variant 

Dim Query1 As String 

Dim Query2 As String 

Dim Query3 As String 

Dim Query4 As String 

Dim MINI As Double 

Dim MAXI As Double 

MINI = 0 

MAXI = 30 

n1 = False 
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n2 = False 

n3 = False 

n4 = False 

Firing = False 

If IsNull(item) Then 

                n1 = True 

                n2 = True 

                n3 = True 

                n4 = True 

            Else: 

    With rs_checked 

     .FindFirst ("[ITEM] ='" & item & "'") 

     Y1 = DLookup(!FUNC_CONSEQ_PARAM_ID1, "qry_main", "[item] ='" & !FUNC_CONSEQ_ITEM1 & 
"'") 

     If Not IsNull(!FUNC_CONSEQ_ITEM2) Then Y2 = DLookup(!FUNC_CONSEQ_PARAM_ID2, 
"qry_main", "[item] ='" & !FUNC_CONSEQ_ITEM2 & "'") 

     If Not IsNull(!FUNC_CONSEQ_ITEM3) Then Y3 = DLookup(!FUNC_CONSEQ_PARAM_ID3, 
"qry_main", "[item] ='" & !FUNC_CONSEQ_ITEM3 & "'") 

     If Not IsNull(!FUNC_CONSEQ_ITEM4) Then Y4 = DLookup(!FUNC_CONSEQ_PARAM_ID4, 
"qry_main", "[item] ='" & !FUNC_CONSEQ_ITEM4 & "'") 

     Query1 = !FUNC_CONSEQ_QUERY1 

     If Not IsNull(!FUNC_CONSEQ_QUERY2) Then Query2 = !FUNC_CONSEQ_QUERY2 

     If Not IsNull(!FUNC_CONSEQ_QUERY3) Then Query3 = !FUNC_CONSEQ_QUERY3 

     If Not IsNull(!FUNC_CONSEQ_QUERY4) Then Query4 = !FUNC_CONSEQ_QUERY4 

     Select Case Query1 

     Case "Default" 

     If Not IsNull(Y1) Then 

           n1 = Y1 

           If n1 = False Then whatswrong = !FUNC_CONSEQ_PARAM_ID1 

      Else: n1 = True 

            NoInfo = True 

           whatswrong = "Not enough data to perform a functionality check on this item." 

      End If 

     Case "Temp" 

     If Not (IsNull(Y1) Or IsNull(Y2) Or IsNull(Y3)) Then 

                n1 = (Abs(Y1 - Y2) < 10 And Abs(Y2 - Y3) < 10) 

                If n1 = False Then 

                        If !FUNC_CONSEQ_PARAM_ID1 = "PARAM_1" Then whatswrong = 
"Temperatures in the near area are uncorrelated." 

                        If !FUNC_CONSEQ_PARAM_ID1 = "PARAM_2" Then whatswrong = 
"Pressures in the near area are uncorrelated." 

                End If 

       Else: 

                n1 = True 
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                NoInfo = True 

                whatswrong = "This sensor or one in the near surrounding is not 
delivering any data." 

       End If 

 

     Case "Pres" 

     If Not IsNull(Y1) Then 

       n1 = (CDbl(Y1) > 0) 

       If n1 = False Then 

                        If Left(!item, 2) = "AC" Then whatswrong = "There seems to be no 
pressure in the lower part of the system." 

                        If Left(!item, 2) = "TH" Then whatswrong = "The thruster hasn't 
thrusted yet or there is no information of it." 

                     End If 

        Else: 

                n1 = True 

                NoInfo = True 

                whatswrong = "This sensor or one in the near surrounding is not 
delivering any data." 

       End If 

     Case "Latch" 

     If Not (IsNull(Y1) Or IsNull(Y2) Or IsNull(Y3)) Then 

       n1 = (Abs(Y1 - Y2) < 2 And Abs(Y1 - Y3) < 2) 

       If n1 = False Then whatswrong = "The latch valves need to be opened, as the 
pressure difference above and under them is higher than limits." 

       Else: 

                n1 = True 

                NoInfo = True 

                whatswrong = "One of the pressure sensors in the near surrounding is not 
delivering any data." 

       End If 

     Case "GasLaw" 

     If Not (IsNull(Y1) Or IsNull(Y2) Or IsNull(Y3)) Then 

       n1 = (MINI < Y3 * Y2 / (Y1 + 273) < MAXI) 

       If n1 = False Then whatswrong = "Pressure and temperature are not correlated with 
the expected volume." 

       Else: 

                n1 = True 

                NoInfo = True 

                whatswrong = "Not enough information to calculate volume, temperature or 
pressure sensor didn't deliver the data." 

       End If 

     Case "GasLaw2" 

     If Not (IsNull(Y1) Or IsNull(Y2)) Then 

       n1 = (Y2 And (CDbl(Y1) > 1) Or Not Y2) 
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       If n1 = False Then whatswrong = "The local heater is on, but the temperature is 
very low." 

       Else: 

                n1 = True 

                NoInfo = True 

                whatswrong = "There is no data on the status of the heater or the 
temperature." 

       End If 

    End Select 

    Select Case Query2 

     Case "Default" 

     If Not IsNull(Y2) Then 

           n2 = Y2 

           If n2 = False Then whatswrong = !FUNC_CONSEQ_PARAM_ID2 

      Else: n2 = True 

                NoInfo = True 

           whatswrong = "Not enough data to perform a functionality check on this item." 

      End If 

     Case "Temp" 

     If Not (IsNull(Y1) Or IsNull(Y2) Or IsNull(Y3)) Then 

                n2 = (Abs(Y1 - Y2) < 10 And Abs(Y2 - Y3) < 10) 

                If n2 = False Then 

                        If !FUNC_CONSEQ_PARAM_ID2 = "PARAM_1" Then whatswrong = 
"Temperatures in the near area are uncorrelated." 

                        If !FUNC_CONSEQ_PARAM_ID2 = "PARAM_2" Then whatswrong = 
"Pressures in the near area are uncorrelated." 

                End If 

       Else: 

                n2 = True 

                NoInfo = True 

                whatswrong = "This sensor or one in the near surrounding is not 
delivering any data." 

       End If 

     Case "Latch" 

      If Not (IsNull(Y1) Or IsNull(Y2) Or IsNull(Y3)) Then 

       n2 = (Abs(Y1 - Y2) < 2 And Abs(Y1 - Y3) < 2) 

       If n2 = False Then whatswrong = "The latch valves need to be opened." 

       Else: 

                n2 = True 

                NoInfo = True 

                whatswrong = "One of the pressure sensors in the near surrounding is not 
delivering any data." 

       End If 

     Case "GasLaw" 
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     If Not (IsNull(Y1) Or IsNull(Y2) Or IsNull(Y3)) Then 

       n2 = (MINI < Y3 * Y2 / (Y1 + 273) < MAXI) 

       If n2 = False Then whatswrong = "Pressure and temperature are not correlated with 
the expected volume." 

       Else: 

                n2 = True 

                NoInfo = True 

                whatswrong = "Not enough information to calculate volume, temperature or 
pressure sensor didn't deliver the data." 

        End If 

     Case "GasLaw2" 

     If Not (IsNull(Y1) Or IsNull(Y2)) Then 

       n2 = (Y2 And (CDbl(Y1) > 1) Or Not Y2 And (CDbl(Y1) < 50)) 

       If n2 = False Then 

                        If Y2 = True Then whatswrong = "The local heater is on, but the 
temperature is very low." 

                        If Y2 = False Then whatswrong = "The local heater is off, but 
the temperature is rather high." 

                        End If 

       Else: 

                n2 = True 

                NoInfo = True 

                whatswrong = "There is no data on the status of the heater or the 
temperature." 

       End If 

     Case "OnFire" 

      If Not IsNull(Y2) Then 

       n2 = (CDbl(Y2) > 100) 

       If n2 = False Then whatswrong = "The Main Engine seems not to be firing." 

       Else: 

                n2 = True 

                NoInfo = True 

                whatswrong = "Not enough information to evaluate whether ME is firing." 

       End If 

    End Select 

    Select Case Query3 

     Case "Default" 

     If Not IsNull(Y3) Then 

           n3 = Y3 

           If n3 = False Then whatswrong = !FUNC_CONSEQ_PARAM_ID3 

      Else: 

            n3 = True 

                NoInfo = True 
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            whatswrong = "Not enough data to perform a functionality check on this 
item." 

      End If 

     Case "Temp" 

     If Not (IsNull(Y1) Or IsNull(Y2) Or IsNull(Y3)) Then 

                n3 = (Abs(Y1 - Y2) < 10 And Abs(Y2 - Y3) < 10) 

                If n3 = False Then 

                        If !FUNC_CONSEQ_PARAM_ID3 = "PARAM_1" Then whatswrong = 
"Temperatures in the near area are uncorrelated." 

                        If !FUNC_CONSEQ_PARAM_ID3 = "PARAM_2" Then whatswrong = 
"Pressures in the near area are uncorrelated." 

                End If 

       Else: 

                n1 = True 

                NoInfo = True 

                whatswrong = "This sensor or one in the near surrounding is not 
delivering any data." 

       End If 

     Case "Latch" 

      If Not (IsNull(Y1) Or IsNull(Y2) Or IsNull(Y3)) Then 

       n3 = (Abs(Y1 - Y2) < 2 And Abs(Y1 - Y3) < 2) 

       If n3 = False Then whatswrong = "The latch valves need to be opened." 

       Else: 

                n3 = True 

                NoInfo = True 

                whatswrong = "One of the pressure sensors in the near surrounding is not 
delivering any data." 

       End If 

     Case "GasLaw" 

     If Not (IsNull(Y1) Or IsNull(Y2) Or IsNull(Y3)) Then 

       n3 = (MINI < Y3 * Y2 / (Y1 + 273) < MAXI) 

       If n3 = False Then whatswrong = "Pressure and temperature are not correlated with 
the expected volume." 

       Else: 

                n3 = True 

                NoInfo = True 

                whatswrong = "Not enough information to calculate volume, temperature or 
pressure sensor didn't deliver the data." 

       End If 

    End Select 

    Select Case Query4 

     Case "Default" 

     If Not IsNull(Y4) Then 

           n4 = Y4 

           If n4 = False Then whatswrong = !FUNC_CONSEQ_PARAM_ID4 
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      Else: 

            n4 = True 

            NoInfo = True 

           whatswrong = "Not enough data to perform a functionality check on this item." 

      End If 

     Case "OnFire" 

      If Not IsNull(Y4) Then 

       n4 = (CDbl(Y4) > 100) 

       n4 = (CDbl(Y4) > 100) 

       Firing = (CDbl(Y4) > 100) 

       If n4 = False Then whatswrong = "The thruster seems not to be firing." 

       Else: 

                n4 = True 

                NoInfo = True 

                whatswrong = "Not enough information to evaluate whether this thruster 
is firing." 

       End If 

    End Select 

    End With 

        End If 

FUNCTIONALITY_CONSEQUENCE_CHECK = (n1 And n2 And n3 And n4) Or Firing 

End Function 

Private Sub Reloader() 

Dim itemid As String 

 Set db = CurrentDb 

 Set rs_relevant = db.OpenRecordset("qry_relevant") 

 Set rs_main = db.OpenRecordset("qry_main") 

 Set rs_observed = db.OpenRecordset("qry_observed") 

 Set rs_records = db.OpenRecordset("records") 

'puts main table back in the default state (empty, altruistic values set to True) and 
resets the packet counters in relevant table 

'input: button pressed 

'output: changes in the main table and relevant table 

With rs_main 

 .MoveFirst 

 Do 

   For i = 1 To 4 

   .Edit 

   .Fields(i) = False 

   .Update 

  Next 

  .Edit 

  .Fields(5) = 100000000 
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  .Fields(6) = 100000000 

  .Update 

  For i = 7 To 16 

   .Edit 

   .Fields(i) = Null 

   .Update 

  Next 

  itemid = Left(!item, 2) 

  Select Case itemid 

   Case "TE" 

    .Edit 

    .Fields(2) = True 

    .Fields(3) = True 

    .Update 

   Case "TH" 

    .Edit 

    .Fields(1) = True 

    .Fields(2) = True 

    .Update 

   Case "ME" 

    .Edit 

    .Fields(2) = True 

    .Update 

   Case "LC" 

    .Edit 

    .Fields(1) = True 

    .Update 

   Case "RT" 

    .Edit 

    .Fields(1) = True 

    .Update 

   Case "FC" 

    .Edit 

    .Fields(2) = True 

    .Update 

   Case "AC" 

    .Edit 

    .Fields(2) = True 

    .Update 

   Case "NT" 

    .Edit 

    .Fields(1) = True 

    .Fields(2) = True 
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    .Fields(3) = True 

    .Update 

   Case "MM" 

    .Edit 

    .Fields(1) = True 

    .Fields(2) = True 

    .Fields(3) = True 

    .Update 

   Case "HE" 

    .Edit 

    .Fields(1) = True 

    .Fields(2) = True 

    .Fields(3) = True 

    .Update 

   Case "PV" 

    .Edit 

    .Fields(1) = True 

    .Update 

'default state 

  End Select 

  .MoveNext 

 Loop Until (.EOF) 

End With 

With rs_relevant 

 .MoveFirst 

 Do 

  .Edit 

  !LAST_PACKETNR = 0 

  .Update 

  .MoveNext 

 Loop Until (.EOF) 

End With 

With rs_records 

 If .RecordCount > 0 Then 

 .MoveFirst 

  Do 

  .Delete 

  .MoveNext 

  Loop Until (.EOF) 

 End If 

 End With 

 With rs_observed 

 If .RecordCount > 0 Then 
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 .MoveFirst 

  Do 

  .Delete 

  .MoveNext 

  Loop Until (.EOF) 

  End If 

 End With 

End Sub 

Private Sub Ruler(item As String) 

Dim failure As Integer 

Dim recovery As String 

 'ruler: uses the if - then to estimate situation 

 '       uses Recovery lookup table to output 

 '       calls shower 

 '0)  Check conditions necessary for failure occurrence. 

'a.  YES -> it is an error 

'b.  NO -> it is not an error (it is a phantom error) 

'1)  Check settings necessary for functionality state. 

'a.  YES -> it is not a process error, it is a functionality error 

'b.  NO -> it is a process error 

'2)  Check HW preceding and subsequent failures in hierarchy for identification. 

'a.  Preceding fulfilled  -> move up in hierarchy, likely NOT an error here 

'b.  Subsequent fulfilled -> HW error 

'c.  Subsequent not fulfilled -> simply weird functionality, repeating the command 
recommended 

'input: the output of the Checker 

'output: number of a failure type as integer 

Call Loader(item) 

 If (FAILURE_CONSEQUENCE_CHECK(item) = True) Or (FUNCTIONALITY_CONSEQUENCE_CHECK(item) = 
False) And (FUNCTIONALITY_CONDITION_CHECK(item) = True) Then 

    If FAILURE_CONDITION_CHECK(item) = True Then 

                    'it is an error 

                    failure = 1 

                    If FUNCTIONALITY_CONDITION_CHECK(item) = True Then 

                               'functionality error 

                               failure = 2 

                               If (FAILURE_CONSEQUENCE_CHECK(SUBSEQUENT1) = True) And 
(FAILURE_CONDITION_CHECK(SUBSEQUENT1) = True) Or (FAILURE_CONSEQUENCE_CHECK(SUBSEQUENT2) 
= True) And (FAILURE_CONDITION_CHECK(SUBSEQUENT2) = True) Or 
(FAILURE_CONSEQUENCE_CHECK(SUBSEQUENT3) = True) And 
(FAILURE_CONDITION_CHECK(SUBSEQUENT3) = True) Or (FAILURE_CONSEQUENCE_CHECK(SUBSEQUENT4) 
= True) And (FAILURE_CONDITION_CHECK(SUBSEQUENT4) = True) Then 

                                             'HW failure 

                                             failure = 4 

                                             With rs_main 
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                                             .FindFirst ("[item] = '" & item & "'") 

                                             .Edit 

                                             !FAILED = True 

                                             .Update 

                                             End With 

                                             Else: 

                                             'not a failure 

                                             failure = 0 

                                             End If 

                              If (FAILURE_CONSEQUENCE_CHECK(PRECEDING1) = True) And 
(FAILURE_CONDITION_CHECK(PRECEDING1) = True) Or (FAILURE_CONSEQUENCE_CHECK(PRECEDING2) = 
True) And (FAILURE_CONDITION_CHECK(PRECEDING2) = True) Or 
(FAILURE_CONSEQUENCE_CHECK(PRECEDING3) = True) And (FAILURE_CONDITION_CHECK(PRECEDING3) 
= True) Or (FAILURE_CONSEQUENCE_CHECK(PRECEDING4) = True) And 
(FAILURE_CONDITION_CHECK(PRECEDING4) = True) Then failure = 0 

                              If (FUNCTIONALITY_CONDITION_CHECK(item) = True) And 
(FUNCTIONALITY_CONSEQUENCE_CHECK(item) = True) Then failure = 0 

                              Else: 

                              'process error 

                              failure = 3 

                              End If 

Else: 

'not an error, but will be mentioned as "seemingly faulty" 

failure = 0 

End If 

 End If 

If failure = 0 Then 

    recovery = "Examine the suspected part." 

                Else: 

    recovery = DLookup("[recovery]", "qry_recovery", "[NO] =" & Sucher(item, failure)) 

    End If 

param = param_id 

Call Shower(failure, item, whatswrong, recovery) 

End Sub 

Public Function Sucher(item, failure) 

'returns the number of record where item = item and failure = failure in the recovery 
table, same as Seeker 

'input: global variables item as String and failure number as integer 

'output: record number as integer 

With rs_recovered 

Dim n As Long 

n = 0 

.MoveFirst 

.FindFirst ("[ITEM] ='" & item & "'") 

Do 
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  If (!failure = failure) Then 

                                    n = !NO 

                                    Exit Do 

                               Else: 

                                    .FindNext ("[ITEM] ='" & item & "'") 

                                    End If 

Loop Until (.EOF) 

End With 

Sucher = n 

End Function 

Public Sub Loader(item) 

 'reading the relevant parameter names (String) from the relevant table generated lookup 
table 

 'looking up the values of the parameters in VEX_TM 

 'input: table readings 

 'output: values X1 to X6 as Variant, parameters of a given item 

  PRECEDING1 = "" 

 SUBSEQUENT1 = "" 

  PRECEDING2 = "" 

 SUBSEQUENT2 = "" 

  PRECEDING3 = "" 

 SUBSEQUENT3 = "" 

  PRECEDING4 = "" 

 SUBSEQUENT4 = "" 

With rs_checked 

.FindFirst ("[ITEM] ='" & item & "'") 

If Not IsNull(!PRECEDING1) Then PRECEDING1 = rs_checked!PRECEDING1 

If Not IsNull(!SUBSEQUENT1) Then SUBSEQUENT1 = rs_checked!SUBSEQUENT1 

If Not IsNull(!PRECEDING2) Then PRECEDING2 = rs_checked!PRECEDING2 

If Not IsNull(!SUBSEQUENT2) Then SUBSEQUENT2 = rs_checked!SUBSEQUENT2 

If Not IsNull(!PRECEDING3) Then PRECEDING3 = rs_checked!PRECEDING3 

If Not IsNull(!SUBSEQUENT3) Then SUBSEQUENT3 = rs_checked!SUBSEQUENT3 

If Not IsNull(!PRECEDING4) Then PRECEDING4 = rs_checked!PRECEDING4 

If Not IsNull(!SUBSEQUENT4) Then SUBSEQUENT4 = rs_checked!SUBSEQUENT4 

End With 

End Sub 

Private Sub Shower(failure As Integer, item As String, whatswrong As String, recovery As 
String) 

Set rs_records = db.OpenRecordset("records") 

 'ruler calls a query that reads out the failure type recovery information for the given 
item/case from the recovery table and passes it to the shower 

 'shower: displays output of the ruler as a warning box and a list box (and puts it into 
the records table) along with the query result for the relevant recovery text 
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 'input: failure number as integer, item name and recovery text 

 'output: records table and screen 

 Call Looser(failure) 

 With rs_main 

 .FindFirst ("[ITEM] ='" & item & "'") 

 If failure > 1 Then 

  If (!countsteps = 100000000) Then 

   MsgBox Looser(failure) & " failure detected on part " & item & ". " & whatswrong & " 
Recommended recovery procedure: " & recovery, vbOKOnly 

   Else: 

   countsteps = !countsteps 

   MsgBox Looser(failure) & " failure detected on part " & item & ". " & whatswrong & " 
Fatal failure in " & countsteps & " steps. Recommended recovery procedure: " & recovery, 
vbOKOnly 

  End If 

 End If 

End With 

With rs_records 

 .AddNew 

 !TIME = TIME 

 !item = item 

 !WRONG = whatswrong 

 !failure = Looser(failure) 

 !recovery = recovery 

 .Update 

 End With 

End Sub 

Private Function Looser(failure) As String 

'translates failure number into words 

'input: failure number as integer 

'output: string 

Dim n As String 

Select Case failure 

Case 0 

    n = "Potential" 

Case 1 

    n = "Certain" 

Case 2 

    n = "Functionality" 

Case 3 

    n = "Process" 

Case 4 

    n = "Hardware" 
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End Select 

Looser = n 

End Function 

Public Function Seeker(item, param_id) As Long 

'returns the number of record where item = item and param_id = param_id 

'input: global strings item and param_id, observed table contents 

'output: number of record as integer 

 Dim n As Long 

 Dim counterseek As Long 

 Set rs_observed = db.OpenRecordset("observed") 

n = 0 

With rs_observed 

If counterseek = 0 Then 

                   n = 0 

                   Else: 

            .MoveFirst 

            .FindFirst ("[ITEM] ='" & item & "'") 

            Do 

             If (!param_id = param_id) Then 

                                    n = !NO 

                                    Exit Do 

                               Else: 

                                    .FindNext ("[ITEM] ='" & item & "'") 

                                    End If 

            Loop Until (.EOF) 

        End If 

End With 

counterseek = counterseek + 1 

Seeker = n 

End Function 

Public Function Twins(item, param_id) As Integer 

'checks if the item does have more than one countdowns related 

'input: global strings item and param_id, observed table contents 

'output: number of other records for item as integer 

Dim n As Integer 

n = 0 

With rs_observed 

.MoveFirst 

.FindFirst ("[ITEM] ='" & item & "'") 

Do 

  If (!param_id <> param_id) Then n = n + 1 

  .FindNext ("[ITEM] ='" & item & "'") 
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Loop Until (.EOF) 

End With 

Twins = n 

End Function 

Public Sub NewQueue(item, param_id) 

'creates a new empty record in the DB 

'input: item, param_id 

'output: a record in observed table 

With rs_observed 

.AddNew 

!item = item 

!param_id = param_id 

!topix = 3 

For i = 3 To 12 

.Fields(i) = Null 

Next 

For i = 15 To 24 

.Fields(i) = Null 

Next 

!bumix = 3 

!avgtopix = 15 

!avgbumix = 15 

.Update 

End With 

End Sub 

Public Sub Push(VALEX, item, param_id) 

'puts the value and the new average on its place in a record 

'input: value as double, global strings item and param_id 

'output: update of a record in observed table 

With rs_observed 

 

If (Seeker(item, param_id) = 0) Then 

                Call NewQueue(item, param_id) 

                .MoveLast 

                n = !NO 

                Else: 

                .FindFirst ("[NO] =" & Seeker(item, param_id)) 

                End If 

topix = !topix 

bumix = !bumix 

If IsFull(item, param_id) Then Call Pop(item, param_id) 

.Edit 
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.Fields(topix) = VALEX 

.Update 

If topix + 1 > 12 Then 

                      .Edit 

                      !topix = 3 

                      .Update 

                  Else: 

                      .Edit 

                      !topix = topix + 1 

                      .Update 

                      End If 

If Seeker(item, param_id) <> 0 Then .FindFirst ("[NO] =" & Seeker(item, param_id)) 

    avgtopix = !avgtopix 

     .Fields(avgtopix) = Average(item, param_id) 

      If avgtopix + 1 > 24 Then 

                            .Edit 

                            !avgtopix = 15 

                            .Update 

                      Else: 

                            .Edit 

                            !avgtopix = avgtopix + 1 

                            .Update 

                      End If 

End With 

End Sub 

Public Function IsEmpty(item, param_id) As Boolean 

'returns True if no number is entered to the record 

'input: global strings item and param_id, observed table contents 

'output: boolean info on the contents of the table 

Dim n As Boolean 

With rs_observed 

If Seeker(item, param_id) = 0 Then 

                                n = True 

                              Else: 

                                .FindFirst ("[NO] =" & Seeker(item, param_id)) 

                                n = (!bumix = !topix) And (!Fields(topix + 1) = Null) 

End If 

End With 

IsEmpty = n 

End Function 

Public Function IsFull(item, param_id) As Boolean 

'returns True if all 10 values of given record are filled with numbers 
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'input: global strings item and param_id, observed table contents 

'output: boolean info on the contents of the table 

Dim n As Boolean 

With rs_observed 

If Seeker(item, param_id) = 0 Then 

                                n = False 

                              Else: 

                                .FindFirst ("[NO] =" & Seeker(item, param_id)) 

                                topix = !topix 

                               If .Fields(topix + 1) <> Null Or topix = 12 Then n = True 

End If 

IsFull = n 

End With 

End Function 

Public Sub Pop(item, param_id) 

'removes the beginning of the queue 

'input: global strings item and param_id, observed table contents 

'output: deleting part of contents of the observed table 

If Seeker(item, param_id) <> 0 Then 

With rs_observed 

.Edit 

.FindFirst ("[NO] =" & Seeker(item, param_id)) 

 bumix = !bumix 

 .Fields(bumix) = Null 

 If bumix + 1 > 12 Then 

                            !bumix = 3 

                      Else: !bumix = bumix + 1 

                      End If 

 .Fields(avgbumix) = Null 

 If avgbumix + 1 > 24 Then 

                            !avxbumix = 15 

                      Else: !avgbumix = bumix + 1 

                      End If 

.Update 

End With 

End If 

End Sub 

Public Sub EmptyQ(item, param_id) 

'empties all the value numbers in the record 

'input: global strings item and param_id, observed table contents 

'output: deleting part of contents of the observed table 

Do 
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Call Pop(item, param_id) 

Loop Until IsEmpty(item, param_id) 

End Sub 

Public Function Sum(item, param_id) As Double 

'returns the sum of existing values for given record for average calculation 

'input: global strings item and param_id, observed table contents 

'output: sum of the record values as double 

Dim n As Double 

If Seeker(item, param_id) <> 0 Then 

With rs_observed 

.FindFirst ("[NO] =" & Seeker(item, param_id)) 

n = 0 

topix = !topix 

If IsFull(item, param_id) Then 

            For i = 3 To 12 

            n = n + !Fields(i) 

            Next 

          Else: 

            For i = 1 To topix 

            n = n + !Fields(i) 

            Next 

    End If 

End With 

                Else: 

                n = Null 

End If 

Sum = n 

End Function 

Public Function Average(item, param_id) As Double 

'returns the average of the record values 

'input: global strings item and param_id, observed table contents 

'output: average of the record values as double 

Dim n As Double 

If Seeker(item, param_id) <> 0 Then 

With rs_observed 

.Edit 

.FindFirst ("[NO] =" & Seeker(item, param_id)) 

If IsFull(item, param_id) Then 

                    n = Sum(item, param_id) / 10 

                          Else: 

                    n = Sum(item, param_id) / !topix 

    End If 
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End With 

                    Else: 

                    n = VALEX(item, param_id) 

                    End If 

Average = n 

End Function 

Private Sub ButtonReset_Click() 

Call Reloader 

End Sub 

Private Sub ButtonStart_Click() 

  Form_Timer 

End Sub 


