

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering
Department of Control Engineering

Bachelor Thesis

Bluetooth Stack for Embedded Systems

Supervisor: Ing. Michal Sojka
Author: David Plotek

Prague, 2009

Thesis assignment

Statement

The bachelor thesis was processed and written by myself. Only accessible and legal

materials, which are referenced in list of references, were used. All source codes were

implemented under General Public License.

 In Prague 15th of January, 2009 …………………………………….

 Author signature

Acknowledgement

I would like to thank to my parents, because they enabled me to study and supported me.

Next thanks belong to my supervisor who supported me with new ideas and suggestions.

He has been patient with me and explained many mechanisms and programming principles

to me.

Annotation

The purpose of this paper is to implement Bluetooth stack for embedded systems. The

Bluetooth represents a short-range wireless communication technology which is operating

in unlicensed ISM bandwidth. This technology enables wireless connection for

communication between the two devices – a computer as a control unit on the one side and

a small robot (embedded system) on the other side. This paper analyses particular stack

layers. Some of the layers were subsequently implemented in programming language C

within the operational system Linux. The implementation of the HCI layers is described in

detail and its functionality is demonstrated by the simple testing programm.

Anotace

Účelem této bakalářské práce bylo vytvořit softwarový Bluetooth stack pro embedded

systémy. Bluetooth představuje bezdrátovou komunikační technologii na krátké

vzdálenosti, která je provozovaná v bezlicenčním pásmu 2,4 Gz. Tato technologie

umožňuje bezdrátové spojení pro komunikaci mezi dvěma zařízeními – počítačem jako

řídicí jednotkou na jedné straně a malým robotem (embedded systémem) na straně druhé.

V práci byly analyzovány jednotlivé vrstvy stacku. Některé z vrstev byly následně

implementovány v programovacím jazyce C v rámci operačního systému Linux.

Implementace HCI vrstvy je detailně rozepsána a její funkčnost je znázorněna

jednoduchým testovacím programem.

Table of contents

1 Introduction ... 2

2 Bluetooth .. 4

2.1 Wirelesses technologies...4

2.2 Bluetooth technology ..6

2.3 Communication stacks ...13

2.4 Bluetooth architectural layers ...15

2.4.1 Bluetooth controller’s blocks..17

2.4.2 Host Controller Interface ..20

2.4.3 Logical Link Control and Adaptation Protocol ..22

3 Stack implementation.. 23

3.1 HCI Driver solution ..23

3.1.1 Other Bluetooth stacks overview..24

3.1.2 Main software parts ..25

3.1.3 Essential functional blocks ...31

3.2 Implemented stack using..32

4 Conclusion.. 33

References ... 34

Shortcuts overview ... 35

Appendices.. 37

1 Introduction

 There are many communication technologies in the world today. Indians used some

of the oldest ones, such as smoke signals. Nowadays we are using modern satellite

communication, very high speed wired communication and terrestrial wireless

transmissions. Each of these technologies can be described by a series of layers and its

interfaces. The fireplace and smoke, for instance, represent physical layers. Indians

represent the highest layers. The interface between Indians and smoke is made up from the

cover and removal of a cloth producing an on or off signal. Modern technologies are much

more complicated and many of them are realized by computers and sophisticated software

solutions. A set of layers and their interfaces is called communication stack or protocol

stack. It is a particular software implementation of computer networking protocol suite.

 One of these modern technologies is Bluetooth. This advanced technology enables

fast and reliable wireless communication between two or more devices. Features like low

energy consumption, high integration level and low-cost transceiver microchips result in

Bluetooth’s usability in variety of applications. It is most commonly used in laptops,

mobile phones, personal digital assistants, digital video cameras and even printers. From

our perspective, one substantial application is communication between a control unit and

a robot via Bluetooth technology. We can imagine a computer or a mobile phone as

a control unit, while the robot is like an embedded system. This is one of many projects

covered by the department of control engineering.

 The main goal of my bachelor thesis is to implement a reliable and simple Bluetooth

communication stack. This stack has to be sufficient for all operations needed by

the embedded system. A control application running on an embedded system is able to use

basic interface functions like connecting to a new device, sending/receiving data,

maintaining connections and disconnecting. The stack manages basic operations between

Bluetooth module hardware and application software. There exist commercial Bluetooth

stacks, as well as open-source ones. All of commercial solutions are expensive and non-

transparent. Free solutions implemented in Linux core are too extensive and they are not

suitable for small embedded systems. This simple stack for embedded systems follows

1 Introduction 3

the Bluetooth specification standards. Stack was implemented with modular structure while

considering low performance of the embedded system.

 My thesis consists of the following sections. Section one contains basic theoretical

information about wireless communication, Bluetooth technologies and communication

stacks. The second section contains information regarding stack implementation. These

parts involve implementation of particular protocol layers, with the final results presented

in the last chapter.

2 Bluetooth

2.1 Wirelesses technologies

Bluetooth is a wireless communication technology and is classified to WPAN

(Wireless Personal Area Network) group. In this section I mention general information

about other wireless technologies. More exact information is possible to find in [11] or [3].

 In 1878 David E. Hughes transmitted Morse code by an induction apparatus. It was

the beginning of wireless data transmission. At present wireless technologies are used

in many applications. Main applications are terrestrial radio and television broadcast, VHF

radio, remote control, Global Position System and wireless networking. Wireless

communication may operate via radio frequency, microwave and infra red or laser. Radio

frequency is lower than microwave frequency and is used by radio broadcast and VHF

radio. Infrared communication is suitable for very short distance and direct transmission

like a remote control, laptops, mobile phones and PDAs. Laser technology is used

in medium length data links. Laser links maximal transfer distance is 2km and maximal

transfer speed is 10Mbit/s. In modern time the microwave band has an essential

significance. Most of the high-speed data oriented wireless technologies work

in the microwave band.

 Wireless transmission has many advantages and disadvantages. The most essential

disadvantages are disturbance, echo and limited frequency band. On the other hand

thousands of kilometers of wires and cables are expensive and not very durable.

 Over the last fifty years there has been a tendency to connect everything with

everything. It started in the military sector when countries started connecting via

the Internet. Cities continued this trend, connecting together. At present there is an effort to

link all households in the world. The set up of several links is called a network. Networks

are divided into several groups according to their extent. The largest one is the internet. It is

the network of networks. The smaller ones are called the LANs (Local Area Network) and

the MANs (Metropolitan Area Network). LAN and MAN are standardized by the Institute

2.1 Wireless technologies 5

of Electrical and Electronics Engineers in 802.x standards. Two lowest ISO/OSI model

layers are specified by these standards.

The standard number 802.11 specifies the Wireless LANs which operate in 5 GHz

and 2.4 GHz public spectrum bands. In the 1997 the first 802.11 protocol was defined, but

the 802.11b was the first widely accepted one, followed by 802.11g and 802.11n. The

important standard in which Bluetooth is incorporated, presents the standard number

802.15. This one specifies Wireless Personal Area Networks just like the Bluetooth is.

Wireless networks defined by these standards operate in ISM (Industrial, Scientific,

Medical) band. The ISM is a free 2.4 GHz band, where broadcast energy output is lower

then 100mW. The ISM band is exactly 83.5MHz wide in Czech Republic. It starts

at 2.400GHz and ends at 2.483GHz. The wireless links use two transport spread spectrum

technologies. The name ‘spread spectrum’ comes from the fact that the carrier signals occur

over the full bandwidth of a device’s transmitting frequency. A carried power is spread into

a wide spectrum and the spread spectrum signals are highly resistant to narrowband

interference. The first of spread spectrum technologies is Direct Sequence Spread

Spectrum, or DSSS. The second one is Frequency Hoping Spread Spectrum, or FHSS.

 The DSSS signal spectrum is artificially extended by adding a pseudo-random

sequence known to both transmitter and receiver. General transmission speed is 2Mbit/s

and full width of one band is 22MHz. It is possible to operate three independent

transmissions simultaneously. FHSS is a method of transmitting radio signals by rapidly

switching a carrier among many frequency channels, using pseudo-random sequence too.

The FHSS method is more convenient for lower speed transmissions and its robustness is

higher then DSSS. Wireless technologies overview is shown in table 2.1 below.

Table 2-1 Overview of wireless technologies

IEEE standard
number

Technology
name

Speed / Operate
frequency

Basic features

802.11a WLAN 54Mbit/s / 5GHz DSSS, indoor/outdoor use, max
range 5km

802.11b WLAN - WiFi 11Mbit/s / 2.4GHz DSSS, indoor/outdoor use
802.11g WLAN - WiFi 54Mbit/s / 2.4GHz DSSS, enhanced speed
802.11n WLAN 600Mbit/s / 5 or 2.4GHz DSSS, may support existing b

and g standards
802.15.1 WPAN – Bluetooth

v.2.0
2.1Mbit/s / 2.4GHz FHSS, indoor use only ,max

range 100m
802.15.4 WPAN - ZigBee 250kbit/s / 2.4GHz DSSS, indoor use only, max

range ~50m

2.2 Bluetooth technology 6

2.2 Bluetooth technology

Every person knowing technical innovation has heard about the Bluetooth already.

The technical term like Bluetooth is well known in general public. Every adolescent uses

this expression ordinarily in a tram or metro when he boasts about his new mobile phone in

front of his schoolmates. The technology has been around for ten years at least. But many

people who use this expression know nothing about or have very little knowledge of the

technology and its applications. The purpose of this chapter is to explain, what Bluetooth

actually is and how it works. It is also possible to find out more detailed information

in references [1] and [3].

The simplest definition says that Bluetooth technology is a short-range wireless

radio technology that allows electronic devices to connect to other devices. How long the

distance can be, depends on the Bluetooth class and version. It was originally conceived

as a wireless alternative to classical data cable serial links. Because a lot of cables on

a table are too messy, the new technology thus provided the user with much more comfort.

The Bluetooth specifications are developed and licensed by the Bluetooth Special

Interest Group (SIG). This organization was founded by the computing and

telecommunications companies, such as Ericsson, IBM, Intel, Toshiba and Nokia.

Microsoft, Motorola and others joined later. The organization is primarily run by

a volunteer staff consisting of companies‘members. Every newly invented device using

Bluetooth has to satisfy technical specifications formulated by the SIG and after that can

be licensed.

The word ‘Bluetooth’ got its name after the 10th century Danish King Harald

Bluetooth who united the previously warring tribes from Denmark and Norway. There is

obvious similarity between history name and Bluetooth technology at present.

The Bluetooth technology was first developed in Scandinavia and unites diverse

economic sectors such as computing, cell phones or automotive industry. The Bluetooth

logo came from the Runic alphabetic and is composed from ‘H’ and ‘B’ characters.

As mentioned in the previous section, the Bluetooth devices use an unlicensed ISM

bandwidth. This 83,5MHz wide bandwidth is totally free, but on the other hand, it is more

disturbed by similar wireless technologies as WiFi. In addition, all microwave ovens are

2.2 Bluetooth technology 7

really big disturbers too. The Bluetooth technology is able to avoid interference by using

the FHSS transmitting method. Thanks to the FHSS, a Bluetooth device can change the

transfer channel very quickly and so is the chance to meet with another device on the same

channel minimized. Based on f = 2042 + k [MHz], k = 0….,78 formula, there is 79

frequency channels and each one is 1MHz wide. The maximum hop rate is either 1600

hops/s in case of two devices being are connected together or 3200 hops/s when one device

is in exploration state. The device hops to a new frequency after transmitting or receiving

a packet. It depends on the packet type and device state how long the time slot is (the

frequency remains unchanged for a specific time period). The lowest and most essential

part of the whole system is the physical channel. The Bluetooth physical channel is

characterized by the combination of the pseudo-random frequency hopping sequence and

other aspects. Up to eight devices can share the same physical channel. The TDD (Time-

Division Duplex) is used for physical channel multiplexing.

The Bluetooth technology enables to set up a point-to-point connection between two

devices or point-to-multipoint connection among more devices. The connection invocatory

device is ordinarily identified as a master device. The connection accepting device is

ordinarily identified as a slave device. The physical channel can be shared among several

devices, but maximum count of acting slave devices sharing the same channel is seven.

Formation of more than two devices sharing the same physical channel and keeping

frequency synchronization is called piconet. One slave device can be shared among more

piconets. This bigger formation is called scatternet. See the figure below.

Figure 2-1 Bluetooth connection structures

2.2 Bluetooth technology 8

The SIG defines three main device classes. Devices are classified according

the low-cost transceiver microchip transmission power. Communication distance is strictly

dependent on the device class. Power class 1 device is possible to manage its power

control. The power control is used for a transmission power limitation and can be used for

optimizing its power consumption. See the class overview table below.

Table 2-2 Device classes

Power
class

Maximum
output power

Nominal
output power

Minimum
output power

Communication distance

1 100 mW (20 bBm) N/A 1 mW (0 dBm) Long range devices, up to 100m
2 2.5 mW (4 dBm) 1 mW (0 dBm) 0.25 mW (-6 dBm) Middle range devices, 10m
3 1 mW (0 dBm) N/A N/A Short range devices, 10cm

 Each Bluetooth device has its own 48-bits long Bluetooth device address.

Ordinarily it is marked as ‘BD_ADDR’. The address is divided into three fields. The Low

Address Part is 24 bits long and is assigned by the SIG. Upper Address Part and Non-

significant Address Part are 24 bits long and form a company identification number (from

which device is produced). In fact, the Bluetooth device address is a little bit similar to

Ethernet MAC address but it is not the same.

Figure 2-2 Format of BD_ADDR

LSB MSB

LAP UAP NAP
0000 0000 0000 0010 0111 0010 1100 1001 1111 0110 1010 1100

Another essential feature of every Bluetooth device is its native clock which shall be

derived from a free running system clock. The clock is generally implemented with a 28-bit

counter. The least significant bit changes every 312.5µs giving a clock rate of 3.2 kHz.

There are four important periods in the Bluetooth system, which are used for triggering

of various system events. Each device has its native clock marked as ‘CLNK’. The master

clock ‘CLK’ is used for synchronization and shall be derived from master of the piconet.

2.2 Bluetooth technology 9

Figure 2-3 Bluetooth clock counter, Derivation of CLK in master and slave

 The physical channel is the lowest architectural layer in Bluetooth system. Every

piconet uses its own physical channel and is capable to provide connection for up to seven

devices excluding the master. Each physical channel is characterized by its own frequency

hopping sequence which is determined by the native clock and a BD_ADDR part of the

piconet master, by the specific transmission slot timing and by the access code and header

which are used in every carried packet. When two devices want to transfer a packet with

one another, it is necessary to be tuned on the same channel, to use the same frequency

hoping sequence and the radio frequencies. It is also necessary for them to be within

a nominal range. The four physical channels are defined:

• Basic piconet physical channel – used during the connection state, defined by master

• Adapted piconet physical channel – used for devices with adaptive freq. hopping

• Page scan physical channel – used for devices during connecting each other

• Inquiry scan physical channel – used for devices during searching each other

The basic piconet physical channel is divided into time slots. Every timeslot is

625µs long and has its own number ranging from 0 to 227- 1. In the Bluetooth systems,

there are several packet types. Packets carrying longer data can occupy up to five single

timeslots. In fact, one packet can occupy only the odd number of timeslots, because

the TDD multiplexing forms a full duplex transmission via special mechanism where

master sends packets in every even timeslot only and the slave is answering in every odd

timeslot. In case of a five-slot packet, is the hop stopped for the period of five timeslots.

Next frequency change (hop) is possible after time interval of 1.9ms. The figure 2-4 depicts

the timeslots.

2.2 Bluetooth technology 10

Figure 2-4 Multi-slot packets (one slot, three slots and fife slots)

In the Bluetooth system, it is possible to establish three basic logical transports for

communication in both directions and two for broadcast purposes. The term physical link

which is used in many references is not very suitable, but essentially it describes logical

transport as well. The purpose of the Link Controller and the Link Manager is to establish

and manage these physical links (For manager’s description see page 17).

These five transport types are defined as follows:

• Synchronous Connection-Oriented logical transport – SCO

• Extended Synchronous Connection-Oriented logical transport – eSCO

• Asynchronous Connection-oriented Logical transport – ACL

• Active Slave Broadcast logical transport – ASB

• Parked Slave Broadcast logical transport – PSB

The SCO logical transport is a point-to-point, synchronous and symmetric link

between the slave and the master. “Synchronous” means that the time for sending and

receiving a packet is strictly constant and the meaning of “symmetric” is that both-

directional transport speed is identical. Standard symmetric transport speed is 64 kbps

in each direction. The master may support up to three SCO links to the same slave. SCO

links are used for time-dependent services like a voice and video, because the slot

reservation mechanism offers registered real-time properties. It is considered as a circuit-

switched connection between devices. Extended SCO supports asymmetric links and

retransmission windows in addition.

The ACL logical transport do not reserve slots, but the master may establish ACL

link with any slave on a per-slot basis. This link type supports symmetric connection

2.2 Bluetooth technology 11

with nominal both directional speed 433.9 kbps and an asymmetric connection

with maximal speed 723 kbps in one direction and 57 kbps in opposite direction. For better

data integrity, ACL link is able to ensure retransmission of corrupted data, but this lowers

the transport speed. It provides a packet-switched connection between the master and all

active slaves communicating in piconet. For better understanding, see the figure 2-5.

The last two types are used for master unidirectional communication with active and

parked slaves. The ASB is used to transport L2CAP user traffic to all currently connected

devices. The PSB is used for communication with parked slaves when master needs

to resynchronize parked devices or when it needs to announce them to turn into active state.

Figure 2-5 Bluetooth generic data transport architecture

Each operative Bluetooth device can work in one of several states. Two main and

the most usual are the Connection and Standby. The connection state has four state modes

in which device keeps connection. There are additional seven substates in which the device

obviously does not spend a long time period.

The Standby state is default for each device. Only the device native clock operates

in this state. In Connection state, the device should be in one of the four connection modes.

Active mode – device actively participates in the piconet channel,
the slave listens to every packet addressed to him
Sniff mode – slave device listens to the piconet channel
with reduced rate and saves power consumption
Park mode - device is still synchronized with piconet via master’s
broadcast, has a parked member address and saves power consumpt.

Connection
state

Hold mode – device is still synchronized with piconet via its own
native clock, master can put slave unit into hold mode, power save

L2CAP Channels

Logical Links

Logical Transports

Physical Links

Physical Transports

L2CAP
Layer

Logical
Layer

Physical
Layer

(ACL-U, ACL-C, SCO-S, LC)

(ACL, SCO, eSCO, ASB, PSB)

(Active Physical Link,
Parked Physical Link)

(Application-oriented
L2CAP Channels)

(Basic Piconet Physical Channel,
Page Scan Physical Channel)

2.2 Bluetooth technology 12

In a Bluetooth system master and slave roles are not defined prior to a connection,

the term ‘master’ is usually used for a device which as the first gets into page substate and

the term ’slave’ is usually used for a device which as the first gets into page scan substate.

Figure 2-6 Scheme of main states and their substates during connection procedure

When a master device wants to make a connection to another slave device, there are

two possibilities. The master device disposes of the slave’s address called ‘BD_ADDR’,

for example from the past connection. It could directly get into page substate and try to set

up the connection. The master device does not dispose of the slave’s address and has to

search available slave devices in its range through inquiry substate. The slave device

enables to be revealed or connected by listening to all frequencies and answering the master

by suitable packet, such as FHS, ID or DAC. The whole connection procedure is well

illustrated in the Figure 2-6. For more detailed information, see the Bluetooth specification

[1] Controller volume, Part B, chapter 8 or well described states in [9] page 15 - 20.

Standby
Master

Inquiry

Page

Standby

BD_ADDR?

YES

NO

Inquiry scan

Page scan

Inquiry response

Slave response
FHS packet ---->

� ID packet

Master response

ID?

YES

Slave’s DAC ---->

� DAC packet confirmation

Connection

DAC?

YES

IAC packet ---->

� FHS packet

Active Hold Sniff Park

My DAC?

YES

FHS?

YES

Slave

2.3 Communication stacks 13

2.3 Communication stacks

The purpose of this chapter is to explain what the communication stack actually is

and how it works. It is not so easy to understand stack architecture. Technicians usually

know about the ISO/OSI reference model for layered communications and computer

network protocol design. But the Bluetooth communication stack is not too similar to this

stack model reference. Exactly there are some related characteristics, but only for a few

architectural blocks.

In many references and literature sources is written that the protocol stack or

communication stack is a set of network protocol layers that work together. It also can be

defined as a particular software implementation of a computer networking protocol suite.

Let us analyze these technical terms. If one device wants to communicate with other device,

it can be a complex problem to arrange all operations and make it operating well. It is most

common thing to separate a complex problem into several partial problems in order to solve

them more easily and separately. This complex problem, also called a protocol suite, is

in communication terminology divided into several protocol layers. Each of these layers

solves a set of problems involving the data transmission and provides services to the upper

layer protocols which are based on using services from some lower layers. Upper layers are

closer to the user application software and deal with more abstract data. Every upper layer

uses the lower layer services and does not care about the data form. For example, two email

clients do not care about the way how the data is transferred through the internet. Each

of layers and suitable protocols is in charge of partial work. Each layer does the same work,

but it can be done in many ways via different protocols.

The International Organization for Standardization developed the Open System

Interconnection Reference Model which is an abstract description for layered

communications. It is the most common abstract protocol stack called the “ISO/OSI

model”. It was developed to unify all communication architectures and to give a template

how to implement communication stacks. The ISO/OSI model ordinarily consists of seven

layers which are described in the table below.

2.3 Communication stacks 14

Table 2-3 ISO/OSI abstract stack layers

Application

closest to the end user, interacts with software applications,
determinates the identity and availability of communication partners

Presentation

formats and encrypts data to be sent across a network, establishes data
context between application layer entities

Session

establishes, manages and terminates the connections between the local
and remote applications

Transport

provides transparent transfer of data between end users, provides
reliable data transfer services to the upper layer

Network

provides the functional and procedural means of transferring variable
length data sequences from a source to a destination via networks

Data-Link

transfers data between network entities and detects and possibly
corrects errors that may occur in the Physical layer

Physical.

defines the electrical and physical specifications for devices, defines
the relationship between the device and the physical medium

Shortly speaking, this seven-layer model is the only the recommended concept

for communication stack design. In fact, the protocol stack made up from strictly separate

seven layers, has never existed. One of the most commonly used stacks in the world is

the Internet Protocol Suite which is known as the TCP/IP. The name TCP/IP comes from

the two important protocols which it contains: the Transmission Control Protocol and

the Internet Protocol. These two were the first networking protocols defined in this suite.

According to the way how TCP/IP model is implemented, the Internet Protocol Suite is

generally divided into four layers. Each layer contains a number of various protocols

providing different services. The TCP/IP suite uses encapsulation to provide abstraction

of protocols and services. Every modular or layered suite uses this encapsulation method.

Encapsulation is the characteristic feature of most networking models such as the ISO/OSI

or TCP/IP model. It can be explained so that one layer protocol functions do not care about

logical sense of layer above it and the protocols from layer below do not care about its

functions and data. Universally the more abstract layer is often called the upper layer

protocol while the more specific layer is called the lower layer protocol. See figure 2-7

where the encapsulation process is well explained.

2.3 Communication stacks 15

Figure 2-7 Encapsulation sequence of user data in the TCP/IP protocol stack

Apparently the TCP/IP does not respond to ISO/OSI model. These four layers are

mapped to the seven-layer model by this way. The lowest Link layer usually matches to

the OSI’s Data link layer. The Internet layer is usually directly mapped to the OSI’s

Network layer. The Transport layer matches to OSI’s same name layer. And finally

the OSI’s three top layers are merged and match to the TCP/IP Application layer. There is

a lot of information about these stacks and their various protocols. Better explanation is

out of range of this thesis. Very extensive information was written by famous author Jiří

Peterka. His articles are referred in [10].

2.4 Bluetooth architectural layers

The right meaning of the term ‘stack’ is difficult to explain. It represents the software

implementation of the specific protocol suit. The Bluetooth specification [1] gives only

conceptional definition. All particular programming solutions are up to the user and his

specific requirements. This chapter describes all Bluetooth layers as their conceptional

definitions. The lowest core layers, sometimes grouped into a subsystem known as the

Bluetooth controller are implemented by Bluetooth device manufacturers. The intermediate

layer called the Host Controller Transport layer is situated between Bluetooth Controller

subsystem and the Bluetooth Host subsystem. The Bluetooth Host subsystem consists of

many layers: from the lowest called HCI Driver to the highest applications layers.

DATA

UDP/TCP
DATA

UDP/TCP
header

IP data IP
header

Frame data Frame
header

Frame
footer

Application

Transport

Internet

Link

Physical

DNS, FTP, HTTP, IMAP, SMTP, SSH

TCP, UDP

IPv4, IPv6, ICMP, IGMP

ARP, RARP
Ethernet, DSL

Protocols review

2.4 Bluetooth architectural layers 16

The figure below demonstrates the Bluetooth architecture scheme and its functional blocks

relations.

Figure 2-8 Scheme of Bluetooth architecture

Bluetooth controller

Physical Bus (USB, UART) Firmware

 Physical Bus HW

Physical Bus (USB, UART) Driver

HCI Driver

HCI Firmware

L2CAP
Layer

Channel
Manager

L2CAP
Resource
Manager

RFCOMM SDP

User Application Bluetooth host

Radio
Layer

Baseband
Layer

Link
Manager
Layer Link Manager

Device
Manager

Baseband Resource Manager

Link Controller

Radio Frequency

L2CAP

LMP

LC

Radio

 data control
Synchronous unframed traffic Asynchronous framed traffic

data control

2.4 Bluetooth architectural layers 17

 As a reader can see on previous figure, it is not very easy to understand the whole

Bluetooth system. The system consists of many different protocols and functional

mechanisms which are distributed in several layers. The Bluetooth Controller’s parts are

shortly described in next subchapter. More important Host Controller Interface

characteristics and Logical Link and Adaptation Protocol features are described in more

detail in the next sections.

2.4.1 Bluetooth controller’s blocks

 Device manager

This functional block is situated inside the Baseband Layer and the Link Manager Layer.

The main purpose of this block is to control the general behavior of the Bluetooth device.

For all operations, which are not directly related to data transportation, is responsible just

the Device manager. For example connecting to other devices or inquiring for the presence

of the other nearby devices. It also controls HCI commands and their effect on the system.

 Link manager

The link manager is responsible for creation, modification and release of logical links.

It communicates with the link manager in the remote device via Link Manager Protocol.

This manager maintains logical link quality and stability by controlling of link, enabling

of encryption on the logical transport or adapting of transmit power on the physical link.

 Baseband resource manager

The baseband resource manager is responsible for the radio medium sharing. With the help

of its scheduler it manages physical channel access contracts. It evaluates all surrounding

functional blocks conditions and decides which request gets an access and which not.

Link controller

The Bluetooth packets are encoded and decoded by this controller. It takes care about data

payload, physical channel parameters and logical transport parameters. It also creates

the link control signaling, which is used to communicate flow control, acknowledgement

and retransmission request signals.

 The Bluetooth system uses the general packet format for data transmission. Every

outbound and inbound packet transferred via physical channel is formatted into general

2.4 Bluetooth architectural layers 18

packet format. The general packet bit ordering follows the little-endian format. Each packet

consists of three entities which are the Access code, Header and Payload. All entities are

composed from other sub entities. An Access code identifies all packets exchanged

on the physical channel. All packets transferred via the same physical channel are preceded

by the same access code. Packet header contains entities used by a link controller. Payload

entity carries the upper layer control or user data. For better understanding see the figure

below.

 Figure 2-9 General packet and its entities format

 The first entity access code is Preamble and it serves for DC compensation.

The Synchronization word is derived from LAP (BT_ADDR main part) and is used for two

devices synchronization. Its construction guarantees large Hamming distance between two

synchronization words based on different LAPs. The Trailer is an optional entity and

depends on access code type. There are two access code types. One is used during page

scann and inquiry states (without Trailer) and the second is used during connection state

(with Trailer).

 General packet’s header is only 18 bits wide, but from security reasons each its bit

is used three times and it occupies 54 bits in total. LT_ADDR field presents the packet’s

logical transport address. Each piconet slave is distinguished by this address. Four bites

MSB LSB

Access
 code

Header Payload

0 - 2745bits 54 68/72

Preamble Sync word Trailer

4 64 4

Type

4

LT_
ADDR

 FLOW ARQN SEQN HEC

1 1 1 8 3

LLID FLOW Length

2 1 5/9

 CRC

Payload data

Payload header

General packet header

Access code

2.4 Bluetooth architectural layers 19

long Type field is used for packet type signification. There are sixteen different packet

types in Bluetooth architecture. Each packet type has its own purpose and usage. Common

packets like ID, FHS, or DM1 occupy one time slot and are used for communication

establishment. Other packet types are used for data transmission especially and usually

occupy three or five time slots. Main packet types’ overview is shown in the table 2-4.

FLOW, ARQN and SEQN are transfer control state bits. HEC is the abbreviation for

Header Error Check and is used for header integrity. Payload entities framed by dashed line

are specific for each of logical transport types. The most important entity field used by

ACL is LLID. LLID field helps to distinguish between start and continuation fragments

used by upper L2CAP protocol.

Table 2-4 The most used packet types overview

Name Code Slots

Usable
Payload

Features

NULL 0000 1 0 Used to return link information when success or
the RX buffer status, does not require confirmation

POOL 0001 1 0 Require confirmation from recipient, is used by the
master in a piconet to poll the slaves

ID na 1 0 Identification packet, consists of the device access
code or inquiry access code, very robust

FHS 0010 1 0 Special control packet containing the BD_ADDR
and sender’s native clock

DM1 0011 1 1-18 B Support control messages, 16-bit CRC,2/3FEC
coding

DH1 0100 1 1-28 B Similar to DM1, no FEC coding, 16-bit CRC
DM5 1110 5 2-226 B Payload header 2B, 16-bit CRC, 2/3FEC coding
DH5 1111 5 2-341B Similar to DM5, no FEC coding, 16-bit CRC
HV1 0101 1 10 B No payload header, data bytes are protected with a

1/3FEC cod.
HV3 0111 1 30 B No payload header, no FEC coding
DV 1000 1 80+150b Combines data + voice, voice has no FEC, data has

2/3FEC cod.

Link control packets

ACL packets

Synchronous packets

2.4 Bluetooth architectural layers 20

2.4.2 Host Controller Interface

This interface is the lowest user accessible interface in Bluetooth layer architecture.

It provides a uniform interface method of accessing the Bluetooth controller capabilities via

defined commands. Through these commands user can create new logical connections,

manage flow control or observe the Bluetooth controller. Bluetooth host and Bluetooth

controller are connected via transport layer, as demonstrated in the figure 2-10. This

transport layer is totally transparent for both surrounding layers. The Bluetooth host

receives Bluetooth controller events as a feedback on its commands.

Figure 2-10 Commands and Events exchange

There are many events and commands used by HCI. Overview of all used events

and commands in this thesis is enclosed in Appendices. All commands and events are listed

in [1] Controller volume, Part E.

Figure 2-11 HCI command packet

 The figure 2-11 shows HCI command packet format. This packet length can be up

to 255 bytes excluding command packet header. Each command has its own OpCode

parameter for self-identification. The OpCode parameter is divided into two fields called

the OpCode Group Field and OpCode Command Field. Additional fields represent

HCI Driver
HCI

Firmware

User defined
Implementation

Link Manager

Link Controller

 Firmware

Events

Commands

2.4 Bluetooth architectural layers 21

command’s parameters. In the Bluetooth system, there are six command groups and each

contains several specific commands. The figure below shows how to create OpCode.

Figure 2-12 OpCode generation

The following figure shows the HCI ACL data packet format. These data packets

are used to exchange data between the Bluetooth host and Bluetooth controller.

 Figure 2-13 HCI ACL data packet

Each established connection between two remote devices has its own handler for

self-identification. Because each device should have more then one established connection,

it recognizes connections by handler. Connection handle field is used just for this purpose.

 The HCI Event packet is used by the Controller to notify the Host when events

occur. The Host must be able to receive this event which can be up to 255 bytes long. All

Events start with Event code which serves for event identification. The parameter Total

Length field presents parameters length in octets. Following fields are used for return

command parameters.

Read BD_ADDR command OGF=0x04H, OCF=0x0009H

0000 0100 0000 1001

0000 1001 0000 010000

0x09H 0x10H

2.4 Bluetooth architectural layers 22

Figure 2-14 HCI Event packet

2.4.3 Logical Link Control and Adaptation Protocol

This protocol is situated above the baseband layer and provides connection-oriented

and connectionless-oriented data services to upper layers protocols. The baseband physical

ACL links are utilized by this protocol. The L2CAP is capable to accept data from different

upper protocols like a SDP or RFCOMM via multiplexing capability. Other important

features are segmentation and reassembly. It is possible to accept up to 64 kilobytes long

data from upper protocols and split it into smaller segments which are long as a baseband

packet size. This protocol provides quality of services by flow control, error control and

retransmissions. Figure below shows the L2CAP functional blocks and their relationships.

 Figure 2-15 L2CAP architectural blocks

L2CAP
layer

Upper
layer

Channel

Manager

Segmentation/Reassembly

Retransmission & Flow Control

Encapsulation & Scheduling

Fragmentation/Recombination

(PDUs)

(fragments)

(SDUs)

DATA

(commands)

DATA flow

Controls

Lower layer (HCI/BB)

3 Stack implementation

This section is focused on outcomes of my work and tries to provide sufficient

description and explanation of my programming solutions. The first chapter gives a brief

overview of existing stack solutions. The second chapter contains description of main

software parts of which the stack consists. Several functional block diagrams show

the main communication procedures. There are also included essential source code parts.

The purpose of the next chapter is to show how to avail the practical results of my work

to the user. The simple testing program is described here and the way how to compile it and

execute it is here described too. Work summary and future planes are contained at the end

of my thesis.

3.1 HCI Driver solution

My thesis assignment consists of several individual objectives which are included

in the front part. The first objective was to acquaint with the Bluetooth technology and

to present how individual system parts operate. It seems simple but it was not so simple

to understand the whole Bluetooth system specification. Despite the fact I know a lot of

information about Baseband, HCI and L2CAP layers, which are reported in previous

chapters, I have to admit that I do not know all the features of the system.

The second objective of the thesis was to summarize all existing Bluetooth software

stacks. Very short overview and discussion is mentioned in first chapter. There are many

stacks, but only one or two are suitable for embedded systems. The third objective was

partly fulfilled and is reported in following chapters. The HCI driver and its functions

which are demonstrated by testing command line program are described there too.

The testing program is able to be executed on personal computer with Linux operating

system. The program is also able to communicate with attached USB Bluetooth device via

Linux sockets. Through this device, it is possible to find another Bluetooth device and

establish the connection with it. Functionality of the connection is demonstrated by simple

text messages which can be sent from one device to another.

3.1 HCI Driver solution 24

This HCI driver is ready for L2CAP protocol which has not been implemented yet.

Despite the fact, I have spent a lot of time over developing this stack parts, I have to admit

that all objectives have not been achieved yet. One of the solutions was wrongly designed

because I did not understand the Bluetooth architecture well and my programming

experience was not on sufficient level.

3.1.1 Other Bluetooth stacks overview

The users may wonder why it is necessary to implement a new Bluetooth stack

software, when some operating stacks already exist. Majority of these stacks are daily used

in our mobile phones or computers. They can be also used in health care institutes for

patients’ data collection. Some of them are actually suitable for embedded systems, so why

do not use them for small mobile robots presenting our embedded systems?

There are several reasons why not. The non open-source commercial stacks are too

expensive and non-transparent and there is no possibility to adjust some features for our

purposes. Stacks implemented in assembler just for one microprocessor type, miss

feature-richness and flexibility. Additionally, open-source stacks as a BlueZ are

too complex and not suitable for embedded systems. The table 3-1 shows various stacks

and their advantages and disadvantages.

Table 3-1 Bluetooth stacks overview

Name Platform/
Operating System Basic features

Microsoft
WinXP stack

PC/Windows
Only for USB dongles, since Windows XPsp2,

totally non-transparent and non-flexible
Widcomm PC/Windows First commercial Bluetooth stack for Windows

BlueSoleil
PC, Embedded/

Linux , Windows
Non open-source commercial product , widely
used , it supports many profiles, useful GUI

Toshiba stack PC/Windows
It was specially implemented for some Fujitsu

Siemens, ASUS, Dell and Sony laptops, it
support many profiles, non open-source

BlueZ PC/Linux, Android
Most powerful and usable open-source stack,

included in Linux kernel since 2.4.6 version, too
complex and not suitable for embedded systems

Mezoev1.2
PC, Embedded /
Windows, Linux

Is hardware-independent, modular solution,
optimized API design, non open-source

iWRAP3
PC, Embedded

 / Linux
Commercial stack developed by BlueGiga

company, support many profiles

3.1 HCI Driver solution 25

 BlueZ is the Linux open-source Bluetooth software stack and it was an inspiration

for my thesis. It consists of many programs, functions and utilities which are written in C

programming language. The BlueZ most essential source and header files are situated in the

bluez-libs-x.xx Linux package. This package contains these files: the hci.c where the basic

host controller interface functions are defined, hci.h where all command and events

structures and all constants are defined, bluetooth.c and Bluetooth.h where the support

functions and procedures are defined.

3.1.2 Main software parts

 All my program source codes are written in C programming language and are

included in appendix CD. This program version described in this section of my thesis is not

the first and not the last I hope. My solution has two versions at least. First solution was

incorrect and non-modular. My bachelor thesis supervisor helped me to propose better

modular draft. All versions of my HCI Driver implementation are kept on GIT public

repository on http://

The HCI Driver program consists of these files:

hciembeded.h: This header file contains all useful data type structures and constants.

These structures form all commands and events data format. In fact, most part of this file

content was copied from original file hci.h. It was not necessary to form new structures,

because the content sense is given by Bluetooth specification.

bt_hw.c: The purpose of the functions in this file is to provide a direct access

to physical bus. The physical bus is the Linux socket in this case. This file is supposed to be

replaced by UART access functions in future. Functions Open, Close, Read and Write are

implemented in this file.

bt_hw.h: This header file belongs to the source file with the same name and its

function prototypes and constants are defined in.

tiny_bt_hci_cmd.c: Supporting, sending and commands forming functions are defined in

this file. For example, supporting functions print or compares Bluetooth device addresses.

Each command forming function forms the HCI command bit by bit. When the format of

command is done, the command array pointer is passed to the sending function as a

parameter.

3.1 HCI Driver solution 26

tiny_bt_hci_cmd.h: This header file belongs to the source file with the same name and its

function prototypes and constants are defined in. In addition hci_filter functions and

important structures are defined here too.

tiny_bt_hci_core.c: Functional core of the HCI Driver is implemented in this source file.

There are implemented hci_callbacks, requests forming and HCI Driver manager functions.

Each of these types will be explained in following chapter.

tiny_bt_hci_core.h: This header file belongs to the source file with the same name and its

function prototypes and constants are defined in. Several essential structures are defined

in this file. Important structures which are used for return data and parameters storing are

defined in this file too.

testapp.c: This source file contains a main function. Functions from this file

forms a simple state machine which testing basic HCI driver commands. It is able to get the

Bluetooth device name, find other devices in its nominal range, establish connection with

slave device and send data.

 The most essential data structures, functions, procedures and constants are displayed

in next several paragraphs.

hciembeded.h:

/* HCI Packet types */
#define HCI_COMMAND_PKT 0x01
#define HCI_ACLDATA_PKT 0x02
#define HCI_SCODATA_PKT 0x03
#define HCI_EVENT_PKT 0x04

 Each HCI packet format is marked by this identifier in front of its firs octet.

typedef struct{
 __u8 byte[6];
} __attribute__((packed)) bt_address;

The Bluetooth device address structure is formed by six bytes long field.

 #define OCF_CREATE_CONN 0x0005
typedef struct {
 bt_address bdaddr;
 uint16_t pkt_type;
 uint8_t pscan_rep_mode;
 uint8_t pscan_mode;
 uint16_t clock_offset;
 uint8_t role_switch;
} __attribute__ ((packed)) create_conn_cp;
#define CREATE_CONN_CP_SIZE 13

3.1 HCI Driver solution 27

An example of command parameters structure is displayed above. The first constant means

the OpCode Command Field number. Total size in bytes is shown by second constant.

There is a similar structure for each HCI event and command in hciembeded.h file.

bt_hw.c:

int hw_bt_read(__u8 *p_recbuf)
{
 int len;
 while ((len = read(hw_dd, p_recbuf,
 sizeof(p_recbuf) * HCI_MAX_EVENT_SIZE)) < 0) {
 if (errno == EINTR)
 continue;
 if (errno == EAGAIN)
 return 0;
 perror("Device descriptor reading problem. \n");
 return -1;
 }
 return len;
}

Read function is periodically called. The purpose of this function is to check the physical

bus and fill up the buffer which is passed as a buffer pointer.

tiny_bt_hci_cmd.h:

#define INQUIRY_CMD_OP 0x0104
#define INQUIRY_CANCEL_CMD_OP 0x0204
#define CREATE_CONNECTION_CMD_OP 0x0504
#define READ_BD_ADDR_CMD_OP 0x0910

An OpCode is expressed by these constants.

 typedef struct{
 __u16 OCF_OGF;
 void *p_cmdp;
 __u16 cmdp_len;

} hci_cmd_request;

‘Hci_cmd_request’ structure is used as an input parameter for sending function. It contains

OpCode, command parameters structure pointer and its size measured in bytes.

tiny_bt_hci_cmd.c:

int send_hci_read_bd_addr_cmd(void)
{
 hci_cmd_request creq, *p_creq = &creq;
 memset(p_creq, 0, sizeof(creq));
 p_creq->OCF_OGF = READ_BD_ADDR_CMD_OP;
 p_creq->cmdp_len = 0;
 if (send_cmd(p_creq) < 0) {
 perror("hci_read_bd_addr wasn't sent\n");
 return -1;
 }

3.1 HCI Driver solution 28

 return 0;
}

One of the request forming functions is displayed above. This function does not has a

return parameter. It calls the ‘send_cmd’ function displayed below.

 int send_cmd(hci_cmd_request *p_creq)
{
 __u8 array[p_creq->cmdp_len + 4];
 __u16 sw_opcode;
 int ii;
 sw_opcode = swap_2_bytes(p_creq->OCF_OGF);
 array[0]= HCI_COMMAND_PKT;
 memcpy(&array[1], &sw_opcode,2);
 array[3] = p_creq->cmdp_len;
 if (p_creq->cmdp_len > 0) {
 memcpy(&array[4], p_creq->p_cmdp, p_creq->cmdp_len);
 }
 for (ii = 0; ii < sizeof(array); ii++) {
 printf(" %x",array[ii]);
 }
 printf("\n");
 if (hw_bt_write(array, sizeof(array)) < 0) {
 perror("hw_bt_write problem\n");
 return -1;
 }

return 0;
}

‘Send_cmd’ function forms command data into one-dimensional field and sends it to

trough the Write function. The format of sending data is displayed on figure 3-1 below.

Figure 3-1 Read Bluetooth device address command format

tiny_bt_hci_core.h:

typedef struct{
 __u8 actual_status;
 __u16 id;
 __u8 evt_type;
 __u16 req_opcode;
 void (*p_callback)(void *p_arg, void *p_recbuf);
 void *p_data;
} __attribute__((packed)) expect_evt;

1 10 16 24
0001 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Packet type OCF OGF Parameter total length

3.1 HCI Driver solution 29

This structure is used for events management. The HCI driver registers the propriety event

to the event’s array when some command is sent. The program expects the answer from the

controller. Every command is acknowledged by propriety events. The most usual events are

Command Complete Event and Command Status Event. The most commands are

confirmed by this event. This event data is consists of Event code, Status, Number of HCI

Command Packets and Command Opcode field. Some error states can be reported through

the Status field. The number of command packets which are allowed to be sent to the

Controller from the Host. According the OpCode parameter the program should recognize

the command which was confirmed by this inbound command status event.

typedef struct{
 __u16 con_id;
 __u8 con_state;
 struct hci_dev_info master;
 struct hci_dev_info slave;
 uint16_t handle;
 int socket_fd;
} connection_hci;

Connection_hci structure serves for storing the information about connection state. There

are kept the master device address and the slave device address.

typedef struct{
 bt_address *p_address;
 void (*callback_app_read_bd_addr)(bt_address *p_address);
} read_bd_addr_data;

This structure is used for the storage of the application or L2CAP callback function pointer

and needed data parameters which has to be delivered to the higher protocol.

tiny_bt_hci_core.c:

int tiny_bt_read_bd_addr(bt_address *p_dest, void(*callback_app_read_bd_addr)(bt_address
*p_address))
{
 expect_evt evt, *p_evt = &evt;
 req_state status = ESTABLISHED;
 read_bd_addr_data *p_data;

 memset(p_evt, 0, sizeof(evt));
 p_evt->actual_status = status;
 p_evt->id = evt_id++;
 p_evt->evt_type = EVT_CMD_COMPLETE;
 p_evt->req_opcode = READ_BD_ADDR_CMD_OP;
 p_evt->p_callback = &callback_hci_read_bd_addr;

 p_data = malloc(sizeof(read_bd_addr_data));

3.1 HCI Driver solution 30

 p_data->p_address = p_dest;
 p_data->callback_app_read_bd_addr = callback_app_read_bd_addr;
 p_evt->p_data = (void *) p_data;
 add_evt_toarray(p_evt);

 if (send_hci_read_bd_addr_cmd() < 0) {
 perror("send_hci_cmd error\n");
 return -1;
 }
 return 0;
}

All ‘tiny_bt_xx_xx_xx’ functions are called by higher protocol and serve for ‘expect_evt’

structures registration, needed data memory allocation and command request sending.

static void callback_hci_read_bd_addr(void *p_arg, void *p_recbuf)
{
 read_bd_addr_data *p_data = p_arg;
 read_bd_addr_rp *p_rp;

 p_rp = (void *) (p_recbuf + 3);
 memcpy(p_data->p_address, &p_rp->bdaddr, 6);
 p_data->callback_app_read_bd_addr(p_data->p_address);
 free(p_data);
}

‘Callback_hci_xx_xx’ functions are called from ‘evt_array’ when the suitable event is

accepted from the socket and is recognized in the array.

 The tiny_bt_hci_core.c source file consists of other essential functions. These

functions are too extensive and they will be explained shortly below. The first of them is

the ‘tiny_bt_process’ function. This function is frequently called by the higher protocol in

infinity while loop. Every time where the function is called, it calls the Read function and

checks the socket. If the socket inbound buffer is empty, it returns back to the loop and tries

to check it later. The function reads the data in the opposite situation and processed them

through several conditions where the event type is compared with registered events. If the

incoming event matches with some registered event, it calls the suitable ‘Callback_hci_’

function and this function calls upper protocol callback function. The registered event state

is marked as DONE and its place in array can be replaced by another registered event.

 Additional functions serve for event registering and event matching. These

functions are called ‘add_evt_toarray’ and ‘look_up_inarray’. Functions are composed

from common array operations.

3.1 HCI Driver solution 31

3.1.3 Essential functional blocks

This subchapter tries to illustrate functions as a blocks and its data exchange.

Application Bt_hw Controller

Time

Evt_array

 Stack

Tiny_bt_xxx

register
event

Mallock

 event

 data

Send_hci_xxx

Send_cmd

Hw_bt_write

 write

 DATA

 DATA

 read
 Tiny_bt_process

 Look_up_inarray

 Callback_hci_xx

 Callback_app_xx

DATA?

YES

EXISTS?

YES

Status=
DONE

ERASE

DATA

action

Tiny_bt_
hci_core

Tiny_bt_
hci_cmd

Linux
sockets

 32

3.2 Implemented stack using

 33

4 Conclusion

The purpose of this paper was to implement a simple and reliable Bluetooth stack

for communication between a control unit and embedded system. The control unit can be

represented by a personal computer or a mobile phone, the embedded system is represented

by small robot. The main objective of the thesis was to implement a communication

between two USB Bluetooth modules through the Linux HCI sockets. Another objective

was to import this solution into a small robot and to try its functionality.

 In this thesis I have implemented the lower layer of the communication stack which

ensures communication between a computer and the Bluetooth device. However, not all

implementation phases were successful. The first unsuccessful implementation of HCI

layer was done by non-modular way. Parts of the HCI driver were not divided into sections

what resulted non-functionality of the code. After revision of the architecture, a new,

modular solution was proposed which consisted of particular functions and call-back

functions.

 In the new solution, a part of the old solution was used and thanks to this, one part

of the project already functions. This means that with the help of these functions, the device

with one Bluetooth module is able to establish communication with another device and it is

able to provide data transfer. The functionality of this solution can be proved by the

program.

 A shortcoming of the project was that the problem was too complex and required

many technical skills. This cause that the program could be led into its final stage. In spite

of this, I am convinced I have achieved the objectives set in the thesis assignment. By the

means of this work, I had the opportunity to participate one of the projects covered by the

Department of Control Engineering. After accomplishment in my diploma thesis, the work

may become a part of the modern project directed to the communication with mobile

robots.

 34

References

[1] TEAM OF CONTRIBUTORS. Specification of Bluetooth System. Revision

v1.2. http://www.bluetooth.com/Bluetooth/Technology/Building/Specifications/

[2] TEAM OF CONTRIBUTORS. LINUX, Documentation Project. 1.revision.

Prague: Computer Press, 1998. ISBN 80-7226-114-2

[3] TEAM OF CONTRIBUTORS. The comprehensive guide to everything

Bluetooth related. BlueTomorrow.com, 2008.

http://www.bluetomorrow.com

[4] HEROUT, Pavel. C language textbook. 4.revision. Ceske Budejovice: Kopp,

2007. ISBN 80-7232-220-6

[5] DOSTÁLEK L., KABELOVÁ A. Velký průvodce protokoly TCP/IP a systémem

DNS. 2.revision. Prague: Computer Press, 2000. ISBN 80-7226-323-4

[6] DOSTÁL, Radim. Sockets and C++. Builder.cz, 2002.

http://www.builder.cz/serial147.html

[7] DOSTÁL, Radim. Sockets and C/C++. Root.cz, 2003.

http://www.root.cz/clanky/sokety-a-c-mnozina-soketu/

[8] MUŽI ČEK, Petr. Model Remote Control. Diploma thesis. Prague, 2005

[9] PERMAN, Pavel. Model Remote Control. Diploma thesis. Prague, 2005

[10] PETERKA, Ji ří. Archiv článků a přednášek Jiřího Peterky. eArchiv.cz, 2008

http://www.earchiv.cz

[11] TEAM OF CONTRIBUTORS. Many individual articles aimed on

communication technologies topics on Wikipedia.

http://en.wikipedia.org/wiki

 35

Shortcuts overview

GNU General Public License

VHF Very High Frequency

ISM Industrial Science Medicine

PDA Personal Digital Assistant

WPAN Wireless Personal Area Network

LAN Local Area Network

MAN Metropolitan Area Network

WiFi Wireless Fidelity

ISO/OSI International Organization for Standardization /

Open Systems Interconnection

SIG Special Interest Group

IBM International Business Machines

DSSS Direct-Sequence Spread Spectrum

FHSS Frequency Hopping Spread Spectrum

TDD Time Division Duplex

MAC Media Access Control

SCO Synchronous Connection-Oriented logical transport

ACL Asynchronous Connect-oriented Logical transport

ASB Active Slave Broadcast logical transport

PSB Parked Slave Broadcast logical transport

L2CAP Logical Link Control and Adaptation Protocol

HCI Host Controller Interface

LC Link Controller

LM Link Manager

TCP/IP Transmission Control Protocol / Internet Protocol

ICMP Internet Control Message Protocol

ARP Address Resolution Protocol

 36

RARP Reverse Address Resolution Protocol

FTP File Transfer Protocol

HTTP Hyper Text Transfer Protocol

IMAP Internet Message Access Protocol

SMTP Simple Mail Transfer Protocol

UDP User Datagram Protocol

SDP Service Discovery Protocol

LMP Link Manager Protocol

RFCOMM Radio Frequency Communication

USB Universal Serial Bus

UART Universal Asynchronous Receiver / Transmitter

LSB Less Significant Bit

MSB Most Significant Bit

LAP Lower Address Part

UAP Upper Address Part

NAP Non-significant Address Part

HEC Header Error Check

LLID Logical Link Identifier

OCF Opcode Command Field

OGF Opcode Group Field

 37

Appendices

Connection procedure between slave device and master device (in Czech)

