
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Visual Sudoku Solver

Tomáš Kadlec

Supervisor: Ing. Vojtěch Franc, Ph.D.
May 2022



ii



BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483448Personal ID number:Kadlec  TomášStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Visual Sudoku Solver 

Bachelor’s thesis title in Czech:

Vizuální Sudoku solver 

Guidelines:

The goal of the thesis is to design and implement a visual Sudoku solver. The input of the solver is an image capturing
assignment of the Sudoku puzzle. The solver converts the image into a symbolic representation and solves the puzzle.
Image-to-symbol conversion and solving the puzzle will be done by a single neural network trained from examples in
end-to-end fashion. The accuracy of the trained solver will be statistically evaluated and compared to existing solutions.
Introduction:
- Design and implement a neural network architecture suitable for the solver and an algorithm for training its parameters
from examples.
- Create a database of Sudoku puzzle examples that will be used for training the solver and testing its performance.
- Compare the results with the existing solutions.

Bibliography / sources:

[1] V. Franc, A.Yermakov. Learning Maximum Margin Markov Networks from examples with missing labels. ACML 2021.
[2] V. Franc, B. Savchynskyy. Discriminative Learning of Max-Sum Classifiers. Journal of Machine Learning Research,
2008.
[3] Wang et al. SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver. ICML 2019.
[4] Amos, Kolter. OptNet: Differentiable Optimization as a Layer in Neural Networks. ICML 2017.

Name and workplace of bachelor’s thesis supervisor:

Ing. Vojtěch Franc, Ph.D.    Machine Learning  FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 07.01.2022

Assignment valid until: 30.09.2023

_________________________________________________________________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Vojtěch Franc, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1



iv



Acknowledgements
I would like to thank to my supervisor
Ing. Vojtěch Franc, Ph.D. for his help and
guidance during my work on this thesis.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, date . . . . . . . . . . . . . . . . . . . . . . . .

Signature . . . . . . . . . . . . . . . . . . . . . . . . . . .

v



Abstract
We address the problem of learning a

visual Sudoku solver from examples. We
see the solver as an instance of Markov
Network (MN) based structured output
classifier. The recently proposed exten-
sion of the Maximum Margin Markov Net-
work (M3N) algorithm can learn the linear
Markov Network classifier with an arbi-
trary neighborhood structure using com-
pletely annotated and partially annotated
training examples. In this thesis, we pro-
pose to integrate the MN classifier with
neural networks. We show how to use the
M3N algorithm to learn the parameters
of the MN classifier simultaneously with
a neural network to extract the features
of the classifier. We show experimentally
that the visual Sudoku solver learned by
the proposed method outperforms all base-
lines, achieving a test accuracy of 97%.

Keywords: Markov networks, neural
networks, learning, Sudoku

Supervisor: Ing. Vojtěch Franc, Ph.D.

Abstrakt
Problém, kterým se zabýváme, je učení
vizuálního Sudoku solveru z příkladů. Na
solver se díváme jako na typ klasifikátoru
se strukturovaným výstupem, založeném
na Markovově Síti (MS). Nedávno navr-
žené rozšířeni algoritmu Maximum Mar-
gin Markov Network (M3N) je schopné
učit lineární MS klasifikátor s libovolnou
sousedskou strukturou s využitím kom-
pletně i částečně anotovaných dat. V této
práci navrhneme propojení MS klasifiká-
toru s neuronovými sítěmi. Ukážeme, ja-
kým způsobem využít M3N algoritmus k
souběžnému učení parametrů MS klasi-
fikátoru a neuronové sítě, sloužící k ex-
trakci příznaků klasifikátoru. Experimen-
tálně ukážeme, že vizuální Sudoku sol-
ver, naučený navrženou metodou překoná
všechny srovnávané metody a dosáhne
97% přesnosti.

Klíčová slova: Markovovy sítě,
neuronové sítě, učení, Sudoku

Překlad názvu: Vizuální Sudoku Solver

vi



Contents
1 Introduction 1
1.1 Contributions of the thesis . . . . . . 1
1.2 Structure of the thesis . . . . . . . . . . 2
2 State of the art 3
3 Method 5
3.1 MN classifier . . . . . . . . . . . . . . . . . . 5
3.2 Maximum Margin Markov Network
(M3N) learning algorithm . . . . . . . . . 6
3.2.1 Learning from partial

annotations . . . . . . . . . . . . . . . . . . . . 7
3.3 LP relaxation of the partial

margin-rescaling loss . . . . . . . . . . . . . 8
3.4 Learning MN classifier on top of

the Neural Network . . . . . . . . . . . . . . 8
3.4.1 Symbolic PyTorch

implementation . . . . . . . . . . . . . . . . 9
3.4.2 Optimizing weights . . . . . . . . . . 9
3.4.3 Neural network architecture

used as a backbone . . . . . . . . . . . . . 9
4 Results 11
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . 11

4.1.1 HMC . . . . . . . . . . . . . . . . . . . . . 11
4.1.2 Symbolic Sudoku . . . . . . . . . . 12
4.1.3 Visual Sudoku . . . . . . . . . . . . . 13

4.2 Compared algorithms . . . . . . . . . 15
4.3 Verification of the PyTorch

implementation on the HMC dataset 15
4.4 Verification of the PyTorch

implementation on the symbolic
Sudoku dataset . . . . . . . . . . . . . . . . . 17

4.5 Evaluation of the proposed method
on the Visual Sudoku dataset . . . . 19

5 Conclusions 23
Bibliography 25

vii



Figures
3.1 LeNet5 architecture [2] . . . . . . . . 10

4.1 An example Sudoku puzzle
assignment from the Visual Sudoku
Data Set. . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Train and test error of MIL-M3N
and NN-MIL-M3N models . . . . . . . 16

4.3 Weights comparison of MIL-M3N
and NN-MIL-M3N models . . . . . . . 17

4.4 Performance of MN classifiers
learned by the MIL-M3N-LP and
NN-MIL-M3N-LP algorithms on the
symbolic Sudoku dataset. . . . . . . . . 18

4.5 Weights comparison of MN
classifiers learned by MIL-M3N-LP
and NN-MIL-M3N-LP algorithms on
the symbolic Sudoku dataset. . . . . 18

4.6 The evolution of the training
0/1-loss when learning the Visual
Sudoku solver. . . . . . . . . . . . . . . . . . . 19

4.7 An example of a single row of the
Visual Sudoku assignment. . . . . . . . 20

4.8 Visualization of the learned score
functions of the visual Sudoku
solver. . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.9 Average 0/1-loss of the Visual
Sudoku solver in test examples with
respect to the number of training
examples used. . . . . . . . . . . . . . . . . . 21

Tables
4.1 Symbolic Sudoku input example 13
4.2 Symbolic Sudoku labels example 13
4.3 The performance of the Visual

Sudoku solver learned by the
proposed NN-MIL-M3N-LP
algorithm and comparison to various
baselines. . . . . . . . . . . . . . . . . . . . . . . 22

viii



Chapter 1
Introduction

Solving the Sudoku puzzle can be seen as an instance of a structured output
prediction problem, where the puzzle assignment is the classifier input and
the puzzle solution is represented by the output labels to be predicted. In
this thesis, we employ this idea and use the structured output classifier
based on Markov networks, which allows us to efficiently and transparently
model relations between the output labels. We consider a family of so called
Maximum Margin Markov Network (M3N) algorithms [3, 4, 16, 14, 15, 6, 8],
which have been designed to learn the Markov Network (MN) classifier from
fully annotated and partially annotated examples. The recent extensions
of the M3N algorithms [6, 8], using the framework of linear programming
relaxation, allow us to learn MN classifiers with a generic neighborhood
structure between the output labels, which is necessary to efficiently represent
the rules of the Sudoku puzzle. The existing M3N algorithms, however,
learn MN classifiers with a linear score only, that is, a score made up of
fixed features and learnable weights. The linear model constitutes the main
restriction of the existing methods because designing the features manually
can be hard, which is the case, for example, in computer vision applications
like the visual Sudoku considered in this thesis.

1.1 Contributions of the thesis

In this thesis, we extend the existing M3N algorithms by combining them with
convolutional neural networks. In particular, we append the MN classifier
as the last layer of a convolutional neural network. We employ the fact that
the loss function of the M3N algorithms is differentiable, which allows us to
train the parameters of the NN and the MN classifier simultaneously by the
standard back-propagation.

We implement the algorithm learning the MN classifier on top of the neural
network (NN) using PyTorch. We use the algorithm to learn the Visual
Sudoku solver from examples of Sudoku puzzles and their solutions. As
the backbone of the MN classifier, we use the LeNet5 [10] architecture. We
perform an empirical evaluation that shows that the Visual Sudoku solver
learned by our method outperforms all baselines and achieves 97 % accuracy in
its best configuration. In addition, we show that the Solver can be learned on

1



1. Introduction .....................................
partially annotated data, when some labels of training examples are missing,
and still maintain a competitive performance.

1.2 Structure of the thesis

. In Chapter 2, we give a brief review of existing algorithms to learn
Markov Network classifiers from examples.. In Chapter 3, we give a formal definition of the MN classifier and briefly
describe an algorithm recently proposed in [8] which can learn MN
classifier with a generic neighborhood structured using both completely
annotated and partially annotated examples. Finally, in Section 3.4,
we describe our contribution which shows how to apply the algorithm
of [8] to learn the MN classifier simultaneously with neural networks
extracting features for the classifier.. In Chapter 4, we empirically verify the functionality of our method and
compare the results of our approach with existing solutions.

2



Chapter 2
State of the art

The main tool, we will use throughout this thesis is the Markov network (MN)
classifier, which is a structured output classifier, that allows us to represent
dependencies between specified label pairs, so called neighboring labels. In
this chapter, we introduce an essential group of methods used to learn the
MN classifier from examples which are the maximum-margin methods.

The approach to learn the MN classifier with an acyclic neighboring struc-
ture using Perceptron algorithm was suggested in [13, 5]. This approach,
however, requires linearly separable data. Consequently, the method can be
applied only for noisy-less examples. To resolve the deficiency, binary Support
Vector Machines (SVM) algorithm was extended, to fit the structured output
context. Therefore, to learn the MN classifiers with an acyclic neighboring
structure, Hidden Markov Support Vector Machines [3, 4] and Max-Margin
Markov networks [15] were proposed. The approach described in those papers
is to transform the learning into solving a quadratic programming (QP) task
with immense amount of linear constraints. The number of the constrains
depends on the classifier, as it is proportional to the cardinality of its output.
The QP problem is efficiently tractable using the optimization methods which
rely on the fact that the MN classifier inference is tractable by dynamic
programming.

The approach to learn the Associative Markov Networks (AMN) classifier
structure was proposed by Taskar et al. [14]. In the AMN classifier, the
neighboring structure is unrestricted, however, the pairwise quality functions
are restricted in a similar fashion as in the Potts model. A new compact QP
task can be composed by integrating a Linear Programming (LP) relaxation
into the SVM QP task as described in [14]. The resulting task is tractable as
it contains only a polynomial number of constraints.

The approach to learn a completely unrestricted MN classifier, that is,
without any neighboring structure or pairwise quality scores structure restric-
tions is tackled in [7, 6]. In [7], an oracle is required to solve the inference
problem efficiently. Therefore, in the case of an unrestricted MN classifier,
the convergence is not ensured. In [6], the LP relaxation is used to transform
the learning of the MN classifier into a QP task which contains a polynomial
number of variables and constraints. This method will be further denoted as
the M3N-LP algorithm.

3



2. State of the art....................................
So far, all the introduced methods required a fully annotated set of the

training examples. Recently, in [8], the M3N-LP algorithm was extended to
be able to learn from partially annotated (with missing labels) data. The
adjustment preserves the learning as a tractable QP task with the same
complexity as the one used to learn M3N-LP algorithm. This method will
be further denoted as the MIL-M3N-LP algorithm (where MIL stands for
MIssing Labels). In the case of fully annotated data, the MIL-M3N-LP can
be used as well and becomes an M3N-LP equivalent.

All introduced algorithms are applicable to learn the linear version of the
MN classifier. For linear MN classifier, the features are fixed and only the
weights are the subject of learning. In this thesis, we extend the MIL-M3N-LP
algorithm to learn the features simultaneously with the weights. To achieve
this, features will be firstly extracted from the input using neural network
and then forwarded to its last layer, which is the linear MN classifier. In this
approach, we utilise that the loss function of the MIL-M3N-LP algorithm is
differentiable, which means it can be used to train the neural network that
extracts the features.

4



Chapter 3
Method

In this chapter, we formally describe the MN classifier which can be used as
a Sudoku solver and then algorithms to learn its parameters from examples.
Namely, we define the MN classifier in Section 3.1 and introduce the M3N
algorithms in Section 3.2. We also describe the missing labels (MIL) extension,
which allows us to learn the classifier from partially annotated data as well.
Afterwards, in Section 3.3, we describe the extended algorithm using an LP
relaxation, which allows us to learn the MN classifier for unrestricted graphs.
The notation and methods described in Sections 3.1, 3.2 and 3.3 are adopted
from [8]. Finally, in Section 3.4 which is dedicated to the contribution of this
thesis, we describe how to append the MN classifier to the last layer of a
neural network (NN), and how to learn the parameters of the neural network
simultaneously with the parameters of the MN classifier using the PyTorch
framework.

3.1 MN classifier

We treat the Sudoku puzzle as an instance of a structured output classification
task. The input of the classifier is the puzzle assignment, and its output is a
grid of labels representing the solution of the puzzle. The rules of Sudoku
make the predicted labels interdependent. To model the dependencies between
the labels, we use the framework of Markov Networks. The label dependency
structure is defined a priori while the scores measuring match between the
dependent labels are learned from examples by algorithms described in the
follow-up sections.

A general MN classifier is defined as follows. Given an undirected graph
(V, E) with a finite set of objects V and a set of edges connecting these objects
E ⊆

(V
2
)
. These objects are assigned labels y = (yv ∈ Y|v ∈ V), where Y is

a finite set, that depend on observation x ∈ X . Let fv(x, yv) be a scoring
function that determines the match between an observation x and a label
yv. Let fvv′(yv, yv′) be a scoring function that determines the match between
the labels (yv, yv′) on the edge (v, v′) ∈ E . The MN classifier is a function
h : X → YV that for a given observation x ∈ X outputs labeling, i.e. a

5



3. Method .......................................
sequence of labels, that yields maximum score of function

h(x) ∈ arg max
y∈YV

∑
v∈V

fv(x, yv) +
∑

{v,v′}∈E
fvv′(yv, yv′). (3.1)

The evaluation of the MN classifier leads to a max-sum problem which is
essentially an NP-hard task, however there are some instances that can be
solved more easily. One of those instances is an MN represented by a tree
graph, for which the classifier can be evaluated using dynamic programming.
However, in case of the Sudoku puzzle, the neighborhood structure (V, E) is a
general graph which makes the prediction an NP hard problem. Nevertheless,
we can resort to methods based on the Linear Programming relaxation of the
max-sum problem described in [18]. The LP based max-sum solvers often
find the optimal solution but there is no guarantee it will be the case. We
will show experimentally, however, that in case of the Sudoku puzzle, the LP
max-sum solves work reasonably well. The LP relaxation approach to solve
the max-sum problem used is described in [18, 12].

3.2 Maximum Margin Markov Network (M3N)
learning algorithm

Assuming the MN functions fv(x, yv) and fvv′(yv, yv′) are linear in parameters,
the MN classifier is an instance of a linear classifier defined as follows

h(x,w) ∈ Argmax
y∈YV

⟨w,ψ(x,y)⟩ (3.2)

where w ∈ Rd are weights to be learned and joint feature map ψ : X × YV →
Rd is described as

ψ(x,y) =
∑
v∈V

ψv(x, yv) +
∑

(v,v′)∈E
ψvv′(yv, yv′) (3.3)

with individual feature maps ψv : X × YV → Rd and ψvv′ : Y × Y → Rd.
Given fully annotated training examples {(xi,yi) ∈ X ×YV | i = 1, . . . , m},

M3N algorithm converts learning of the parameters w into a convex uncon-
strained problem which reads

w∗ = Argmax
w∈Rn

[ λ

2 ∥w∥ + 1
m

m∑
i=1

∆(xi,yi,w)] (3.4)

where the margin-rescaling loss ∆: YV × YV × Rd → R+ is defined as

∆(x,y,w) = max
y′∈YV

[ ℓ(y,y′) + ⟨w,ψ(x,y′)⟩] − ⟨w,ψ(x,y)⟩ (3.5)

and for ℓ : YV × YV → R we use Hamming loss

ℓ(y,y′) =
∑
v∈V

[[yv ̸= y′
v]]. (3.6)

6



............... 3.2. Maximum Margin Markov Network (M3N) learning algorithm

In the case of an acyclic graph, the loss function 3.5 can be evaluated using
dynamic programming, namely, the Viterbi algorithm was used. For graphs
with cycles, we use linear programming (LP) relaxation described in Section
3.3 to transform the problem, so the loss is tractable.

3.2.1 Learning from partial annotations

Before proceeding to the LP relaxation, we first replace the margin-rescaling
loss with its partial version. The reason behind the adjustment is that it
allows us to train the MN classifier from partially annotated examples, i.e.
when values of some labels are missing. This setup is particularly useful in the
case of learning a Sudoku solver, as we can use only partial solutions of the
assignments. Note that the original M3N algorithm relies on fully annotated
examples where each value of the label in the training set has to be known.
As gathering fully annotated data can be very resource demanding, it will
be a significant advantage if our classifier can learn from partially annotated
data while maintaining similar performance.

We define the set of partially annotated examples as
D = {(xi,ai) ∈ X × AV | i = 1, . . . , m} where A = {Y ∪ {?}} is a new set

of annotations and symbol ? represents a missing label.
To this end, we replace ∆(x,y,w) with ∆p(x,a,w) defined as

∆p(x,a,w) = max
y′∈YV

[ ℓp(a,y′) + ⟨w,ψ(x,y′)⟩ − ⟨w,ψp(x,a)⟩] (3.7)

where ℓp : YV × YV → R is the Hamming loss, with only annotated labels
counted, that is,

ℓp(a,y) =
∑
v∈V

[[av ̸=?]][[av ̸= yv]] (3.8)

and the rescaled feature maps ψp : X × YV → Rd are calculated as

ψp(x,a) =
∑
v∈V

[[av ̸=?]]
p(av ̸=?|x)ψv(x, yv) +

∑
v,v′∈E

[[av ̸=? ∧ av′ ̸=?]]
p(av ̸=?, av′ ̸=?|x)ψvv′(yv, yv′) .

(3.9)
Terms p(av ̸=?|x) and p(av ̸=?, av′ ̸=?|x) describe the probability that a
label is not missing for a given object and the probability that both labels
are not missing for objects connected by a given edge, respectively. As the
labels in our case are missing uniformly, we estimate these probabilities
as p(av ̸=?|x) = 1 − π and p(av ̸=?, av′ ̸=?|x) = (1 − π)2 where π is a
probability that a single label is missing calculated as a share of missing
labels in proportion to the amount of all labels. The gradient of 3.7 with
respect to w can be calculated directly. The formula for the gradient can be
found in [8], We will also refer to ∆p(x,a,w) as the partial margin-rescaling
loss and to this learning algorithm as MIL-M3N.

7



3. Method .......................................
3.3 LP relaxation of the partial margin-rescaling
loss

As mentioned in [8], LP relaxation is necessary to learn the classifier for a
general graph, since it will provide a tractable loss even for graphs containing
cycles, such as the one describing label correlations following from the Sudoku
rules. To achieve that, we first rewrite the partial margin-rescaling loss as

∆p(x,a,w) = max
y∈YV

f(x,y,a,w) − ⟨w,ψp(x,a)⟩. (3.10)

Afterwards, we replace the first term with its upper bound defined as

max
y∈YV

f(x,y,a,w) ≤ min
φ∈R2|E||Y|

u(x,a,φ,w) (3.11)

where

u(x,a,φ,w) =
∑
v∈V

max
y∈Y

uv(x, av, y,φ,w) +
∑

v,v′∈E
max

(y,y′)∈Y2
uvv′(y, y′,φ,w).

(3.12)
The functions uv(x, av, y,φ,w) and uvv′(y, y′,φ,w) are described as

uv(x, av, y,φ,w) = [[av ̸=?]][[av ̸= yv]] + ⟨w,ψv(x, y)⟩] (3.13)
−

∑
v′∈N(v)

φvv′(y)

uvv′(y, y′,φ,w) = ⟨w,ψvv′(y, y′)⟩ + φvv′(y) + φv′v(y′) (3.14)

where φ ∈ Rm×2|E||Y| is a set of auxiliary parameters that are unique for
each training example. These parameters are learned in conjunction with
the weights w and are used only for training, to reparametrize the loss. The
gradients of the LP-relaxed partial margin-rescaling loss with respect to w
and φ can be directly calculated as described in [8]. In the following sections
of the thesis, we refer to this learning algorithm as MIL-M3N-LP.

3.4 Learning MN classifier on top of the Neural
Network

In Section 3.3 we described the MIL-M3N-LP learning algorithm based
on the minimization of a convex and tractable loss, which can be used
for an unrestricted MN problem. As the loss function in this algorithm
is differentiable, we can take advantage of it and append it to a neural
network (NN). This will result in a neural network that learns the features
simultaneously with the weights of the MN classifier.

8



................... 3.4. Learning MN classifier on top of the Neural Network

3.4.1 Symbolic PyTorch implementation

Until this point, the gradients of the loss function could be calculated directly,
and therefore there was no need to use any specific framework. However,
after prepending the NN, the formulas for calculating gradients become
absurdly complicated, as the resulting prediction function is composed of many
components. Instead of computing the gradient manually, we use PyTorch
framework for automated differentiation, which allows us to implement the
NN alongside with the loss function with automatically tracked gradient of
their weights and parameters provided by the PyTorch Autograd functionality.

Firstly, to verify the expected behavior, we implement learning of the
linear MN classifier which involves only the loss function and NN with just a
single (linear) layer. That is, the layer takes the symbolic input and outputs
the unary functions represented by the matrix Q ∈ R|Y|×|V|, where each
column corresponds to the unary scores fv(x, y), and the binary functions
represented by the matrix G ∈ R|Y|×|Y|, which corresponds to the pairwise
scores fvv′(y, y′). In the context of our loss function, Q represents the unary
scores ⟨w,ψv(x, y)⟩ in Equation 3.13 and G represents the pairwise scores
⟨w,ψvv′(y, y′)⟩ in Equation 3.14. The Q and G matrices are then forwarded
to the last layer, which computes the loss in the same way as the MIL-M3N-LP
algorithm.

3.4.2 Optimizing weights

To update the weights and parameters, we use Adam optimizer [9]. As there
are several sets of parameters, all of them have to be registered when we
initialize the optimizer. The tracking of the gradients of the parameters φ
must be manually turned on and off. This is done by setting the property
requires_grad of the currently selected training example parameter vector
φi to True when performing the forward pass, calculating the gradient in
the backward pass, and then setting it back to False when the update is
performed. This approach prevents us from receiving zero gradients for
parameters {φj ∈ φ | j = 1 . . . m, j ≠ i}, which are not currently used,
and helps to reduce computational complexity. Furthermore, we had to set
all gradients to None after performing an optimization step. The reason
behind this is again to avoid zero gradients for φ parameters, since they are
only calculated once every epoch. Without averting zero gradients, the φ
parameters will continue to update during each step as a result of momentum
in the Adam optimizer.

3.4.3 Neural network architecture used as a backbone

After tuning and verifying the desired behavior of our implementation, we
proceed to prepend a convolutional neural network with multiple layers
instead of using a single layer as described in the previous Section. As the
NN backbone, we use the LeNet5 architecture described in [10]. The LeNet5
architecture is shown in Figure 3.1.

9



3. Method .......................................

Figure 3.1: LeNet5 architecture [2]

We use the ReLU function as an activation function for the first 4 layers
and the softmax function for the last one that enters the MN classifier.
Additionally, the number of outputs of the last layer is adjusted to 9, as we
want the network to output scores for labels 1 to 9.

Experiments with the resulting network architecture showed that the unary
scores of the MN classifiers are prone to overfitting. Therefore, some form
of weight regularization had to be used. Firstly, we tried to regularize
the unary functions directly using the L2 penalty of the Q matrix, that is,
adding the quadratic λ∥Q∥2 to the loss function. For this regularization to
be effective, the softmax function had to be removed from the last layer,
because the softmax already rescales the Q matrix before the penalty is
calculated, rendering the regularization ineffective. However, the performance
without softmax turned out to be underwhelming, so we resorted to a different
approach. We kept the softmax function and instead we regularized all the
weights and parameters in the NN using weight_decay option of the Adam
optimizer which automatically applies L2 penalty to all the optimized tensors.
This solution turned out to be sufficient to prevent the model from being
overfitted. We will further refer to this learning algorithm as NN-MIL-M3N-
LP.

10



Chapter 4
Results

In this chapter, we describe the experimental evaluation of algorithms for
learning MN classifier which were described in Chapter 3.

4.1 Datasets

We used 3 prediction tasks to evaluate the implemented algorithms:..1. Prediction of a sequence of symbols generated by a Hidden Markov Chain
(HMC). In this case, we know the data generating process, and hence we
can compare the performance of the learned MN classifier to the optimal
Bayes predictor...2. Prediction of the solution of the Sudoku puzzle with symbolically assigned
input. That is, the input cells are one-hot-encoded digits...3. Prediction of the solution of the Sudoku puzzle with visual input. That
is, the input cells are images of handwritten digits taken from the MNIST
dataset [11].

4.1.1 HMC

To create the HMC dataset, we used a setup similar to that in [8]. We define
the observed sequence as x = (x0, . . . , x99) ∈ {0, . . . 29}100 and the sequence
of labels to be predicted as y = (y0, . . . , y99) ∈ {0, . . . 29}100.

The HMC used to generate the sequences is defined as

p(x,y) = p(y0)
99∏

i=1
p(yi|yi−1)p(xi|yi) . (4.1)

We used emission probability p(xi|yi) = 7/10 if xi = yi and p(xi|yi) =
3/290 otherwise and transition probability p(yi|yi−1) = 7/10 if yi = yi−1
and p(yi|yi−1) = 3/290 otherwise. The prior probability is p(y0) = 1/30.
The graph (V, E) representing the HMC sequence is a chain V = {v|v =
0, 1, . . . , 99}, E = {(v, v′)|v ∈ V, v′ ∈ V, v = v′ − 1}. We used the Viterbi
algorithm to evaluate the MN classifier for the HMC graph.

11



4. Results .......................................
Using this setup, we generated 10, 000 test sequences, 5, 000 validation

sequences, and 1, 000 training sequences.
We compared the performance of the learned MN classifier to the baseline

predictors. First, we used the Maximum A Posteriori (MAP) predictor, which
is inferred from the generating distribution (4.1), and predicts the most likely
sequence of labels. The MAP predictor is known to be the optimal solution
when the goal is to minimize the expectation of 0/1-loss

ℓ0/1(y,y′) =
∨

v∈V
[[yv ̸= y′

v]]. (4.2)

Second, we used the predictor based on the Forward-Backward (FB) algorithm,
which predicts the sequence of the most likely labels. The FB predictor is the
optimal solution when the goal is to minimize the expectation of Hamming
loss,

ℓh(y,y′) = 1
|V|

∑
v∈V

[[yv ̸= y′
v]] . (4.3)

which is at the same time the target objective in this experiment. Hence, to
evaluate the accuracy of the predictors compared, we used the average of the
Hamming loss computed on the test samples.

We evaluated MAP and FB predictors on the 10, 000 test HMC sequences
and they achieve approximately 75 % and 80 % accuracy, respectively, in
terms of the average Hamming loss (4.3).

4.1.2 Symbolic Sudoku

A Sudoku puzzle is defined by a 9 × 9 grid, where each cell is either empty
or contains a number ranging from 1 to 9. The goal of solving a Sudoku
puzzle is to fill the empty cells with numbers ranging from 1 to 9 while
fulfilling the rule that each row, column and each of the 9 non-overlapping
3 × 3 sub-squares contain each number from 1 to 9 exactly once. To treat
solving the Sudoku puzzle as a prediction problem, we denote the observations
as x = (x0, . . . , x80) ∈ {0, . . . , 9}81 and the labeling as y = (y0, . . . , y80) ∈
{1, . . . , 9}81. The graph (V, E) of the Sudoku puzzle consists of the objects
V = {v|v = 0, 1, . . . , 80} representing each of the 9 × 9 cells and edges
E = {(v, v′)|v ∈ V, v′ ∈ V, v < v′, (v/9 = v′/9) ∨ (v mod 9 = v′ mod 9) ∨
(v/3 = v′/3∧v mod 3/3 = v′ mod 3/3)} representing the label relationships
inferred from the rules of the puzzle. To evaluate the MN classifier for the
Sudoku graph, we used the augmenting DAG algorithm described in [18].

Symbolic Sudoku dataset containing 1,000,000 puzzles with solution was
downloaded from [1]. Each example is represented by string of digits ranging
from 0 to 9, where 0 represents an empty slot in the Sudoku assignment.

An example Sudoku input and labels are shown in Tables 4.1 and 4.2

12



...................................... 4.1. Datasets

0 0 4 3 0 0 2 0 9
0 0 5 0 0 9 0 0 1
0 7 0 0 6 0 0 4 3
0 0 6 0 0 2 0 8 7
1 9 0 0 0 7 4 0 0
0 5 0 0 8 3 0 0 0
6 0 0 0 0 0 1 0 5
0 0 3 5 0 8 6 9 0
0 4 2 9 1 0 3 0 0

Table 4.1: Symbolic Sudoku input example

8 6 4 3 7 1 2 5 9
3 2 5 8 4 9 7 6 1
9 7 1 2 6 5 8 4 3
4 3 6 1 9 2 5 8 7
1 9 8 6 5 7 4 3 2
2 5 7 4 8 3 9 1 6
6 8 9 7 3 4 1 2 5
7 1 3 5 2 8 6 9 4
5 4 2 9 1 6 3 7 8

Table 4.2: Symbolic Sudoku labels example

4.1.3 Visual Sudoku

Visual Sudoku Data Set was created from the symbolic Sudoku dataset by
replacing the input symbols with the 28×28 images of handwritten digits,
which were obtained from the MNIST dataset [11]. The Visual Sudoku Data
Set contains 6 000 samples divided into 5 sets, each set containing 1 000
training examples, 100 validation examples, and 100 testing examples. We
ensured that there is no overlap between images used in validation and testing
sets; however, some digits in the training part are used multiple times due to
insufficient number of images in the MNIST dataset. An example from the
Visual Sudoku Data Set is shown in Figure 4.1.

13



4. Results .......................................

Figure 4.1: An example Sudoku puzzle assignment from the Visual Sudoku
Data Set.

14



................................. 4.2. Compared algorithms

4.2 Compared algorithms

We compare the following algorithms:

MIL-M3N algorithm. It learns the linear MN classifier (3.2) with an acyclic
neighborhood structure. It is described in Section 3.2.

MIL-M3N-LP algorithm. It learns the linear MN classifier (3.2) with a
generic neighborhood structure. It is described in Section 3.3.

NN-MIL-M3N/NN-MIL-M3N-LP algorithms proposed in this thesis. It
learns the MN classifier (3.1) with a generic neighborhood structure
and the features of the unary scores extracted by a neural network. In
particular, we use the LeNet5 [10] architecture to extract the features.
This extension of the MIL-M3N and MIL-M3N-LP algorithms is described
in Section 3.4. Note, that we use the NN prefix to refer to the PyTroch
implementation. In the case of the symbolic input, however, there is not
an actual NN employed. Instead, only one linear layer to convert the
input is used, as described in Section 3.4.1.

4.3 Verification of the PyTorch implementation on
the HMC dataset

We used the MIL-M3N learning algorithm, implemented in plain Python,
as a baseline to verify that its PyTorch implementation (further referred
to as NN-MIL-M3N) is correct, before proceeding to problems that require
relaxation of the LP and the features extracted by the NN network. The
MIL-M3N, as well as the NN-MIL-M3N algorithms, were evaluated on the
HMC dataset described in Section 4.1.1. In the experiment, we used the
following setup:. Number of training examples: 10, 50, 100, 200, 500, 1 000.Missing probability: 0 %, 10 %, 20 %, 50 %. Regularization constant λ: 0.1, 1, 10, 100

To evaluate the test error, we used the average Hamming loss as the metric.
To evaluate the training partial error, we used partial average Hamming loss
defined as

ℓp
h(y,y′) = 1

|V|
∑
v∈V

[[yv ̸= y′
v]][[yv ̸=?]] . (4.4)

For each model, the best λ was determined by evaluation of the 5, 000
validation examples. Figure 4.2 shows the performance of trained models for
their best lambda. The test error was evaluated on the 10, 000 test examples.
The training partial error was evaluated on all examples the model was trained
on.

15



4. Results .......................................

101 102 103

training examples

0

10

20

30

40

tra
in

in
g 

pa
rti

al
 e

rro
r [

%
] MIL-M3N

0 % missing
10 % missing
20 % missing
50 % missing
MAP
FB

101 102 103

training examples

0

10

20

30

40

tra
in

in
g 

pa
rti

al
 e

rro
r [

%
] NN-MIL-M3N

0 % missing
10 % missing
20 % missing
50 % missing
MAP
FB

101 102 103

training examples

20

22

24

26

28

30

te
st

 e
rro

r [
%

]

0 % missing
10 % missing
20 % missing
50 % missing
MAP
FB

101 102 103

training examples

20

22

24

26

28

30

te
st

 e
rro

r [
%

]

0 % missing
10 % missing
20 % missing
50 % missing
MAP
FB

Figure 4.2: Train and test error of MIL-M3N and NN-MIL-M3N models

As we can see in Figure 4.2 the results of the MN classifier learnt by
MIL-M3N and NN-MIL-M3N methods converge to similar values and we see
that both approach the accuracy of the optimal FB predictor.

In addition, to verify the resulting models, we visualize and compare
the learned weights. Figure 4.3 visualizes the weights of the MN classifier
learned on the 1, 000 training examples, with 0 % missing probability and
λ = 0.1 using the MIL-M3N and NN-MIL-M3N methods. As can be seen, the
visualization provides additional confirmation that the learned weights are the
same. Additionally, it is clear that the weights represent the HMC transition
and emission probabilities defined in 4.1.1 accordingly, as the highest weights
are assigned to the same observation-label and label-label pairs.

16



......... 4.4. Verification of the PyTorch implementation on the symbolic Sudoku dataset

0 10 20

0
5

10
15
20
25

un
ar

y
MIL-M3N

0 10 20

0
5

10
15
20
25

un
ar

y

NN-MIL-M3N

0 10 20

0
5

10
15
20
25

bi
na

ry

0 10 20

0
5

10
15
20
25

bi
na

ry

Figure 4.3: Weights comparison of MIL-M3N and NN-MIL-M3N models

4.4 Verification of the PyTorch implementation on
the symbolic Sudoku dataset

We used the MIL-M3N-LP algorithm, implemented in a plain Python, as
another baseline to verify the functionality of the PyTorch implemented
version (further referred to as NN-MIL-M3N-LP algorithm). To evaluate the
algorithms we used the symbolic Sudoku dataset.

We tested the classifiers on the symbolic Sudoku dataset using the ex-
act same setup as in Section 4.3, however, regularization was not required;
therefore, we used λ = 0.

The results obtained are shown in Figure 4.4. As we can see, the 2 models
produce similar results with only significant deviation for 10 training examples
and 50 % missing probability. Other than that, the results show that both
methods are capable to learn the MN classifier as nearly perfect symbolic
Sudoku solver.

Additionally, we visualize the learned score functions, to receive another
performance assurance. The visualized weights are shown in Figure 4.5. As
we can see, the learned weights of the two classifiers correspond with each
other. Furthermore, the representation of the Sudoku rules is expressed in
the learned weights clearly, as they assign high score to the observation with
the equivalent label and low score to same label-label pair of any edge.

17



4. Results .......................................

101 102 103

training examples

0

25

50

75

te
st

 0
/1

 e
rro

r [
%

] MIL-M3N-LP
0 % missing
10 % missing
20 % missing
50 % missing

101 102 103

training examples

0

5

10

15

te
st

 0
/1

 e
rro

r [
%

] NN-MIL-M3N-LP
0 % missing
10 % missing
20 % missing
50 % missing

Figure 4.4: Performance of MN classifiers learned by the MIL-M3N-LP and
NN-MIL-M3N-LP algorithms on the symbolic Sudoku dataset.

0 2 4 6 8

0

2

4

6

8

un
ar

y

0.063 1.919 -0.983 -0.959 -0.983 -0.968 -0.967 -0.999 -0.936 -1.013

0.062 -1.056 1.919 -1.06 -1.033 -1.02 -1.018 -1.026 -1.072 -1.085

0.068 -0.896 -0.938 1.942 -1.084 -1.067 -1.055 -1.037 -1.047 -1.038

0.073 -0.97 -1.034 -0.976 1.942 -1.04 -1.011 -0.973 -0.944 -0.929

0.095 -1.031 -1.109 -1.121 -1.05 1.941 -1.043 -1.06 -1.01 -1.023

0.066 -1.073 -1.075 -1.02 -1.006 -1.037 1.934 -1.004 -0.985 -1.032

0.058 -1.111 -1.14 -1.105 -1.128 -1.145 -1.126 1.921 -1.091 -1.127

-0.007 -1.226 -1.218 -1.232 -1.287 -1.261 -1.232 -1.222 1.914 -1.238

0.054 -1.21 -1.237 -1.255 -1.218 -1.281 -1.221 -1.232 -1.276 1.934

MIL-M3N

0 2 4 6 8

0

2

4

6

8

un
ar

y

0.039 2.078 -1.074 -1.118 -1.174 -1.21 -1.152 -1.053 -1.14 -1.153

0.04 -1.13 2.168 -1.137 -1.078 -1.119 -1.063 -1.195 -1.143 -1.108

0.039 -1.238 -1.187 2.052 -1.31 -1.193 -1.173 -1.22 -1.215 -1.282

0.037 -1.253 -1.163 -1.241 2.059 -1.15 -1.346 -1.194 -1.244 -1.307

0.036 -1.268 -1.226 -1.365 -1.353 2.047 -1.281 -1.297 -1.247 -1.168

0.038 -1.286 -1.332 -1.204 -1.222 -1.334 2.016 -1.349 -1.347 -1.311

0.043 -1.143 -1.185 -1.249 -1.116 -1.043 -1.134 2.048 -1.198 -1.27

0.036 -1.232 -1.338 -1.214 -1.329 -1.252 -1.297 -1.266 2.097 -1.277

0.037 -1.347 -1.317 -1.374 -1.254 -1.143 -1.286 -1.303 -1.361 2.069

NN-MIL-M3N

0.0 2.5 5.0 7.5

0

2

4

6

8

bi
na

ry

-0.099 0.655 0.655 0.655 0.654 0.655 0.655 0.658 0.655

0.655 0.0 0.655 0.655 0.654 0.656 0.656 0.659 0.655

0.655 0.655 0.0 0.654 0.653 0.655 0.655 0.658 0.655

0.654 0.655 0.654 0.0 0.654 0.654 0.655 0.658 0.655

0.653 0.653 0.653 0.653 0.0 0.653 0.654 0.657 0.654

0.655 0.655 0.655 0.655 0.654 0.0 0.655 0.659 0.655

0.655 0.655 0.654 0.655 0.654 0.655 0.0 0.659 0.656

0.659 0.659 0.658 0.658 0.657 0.659 0.659 0.0 0.659

0.655 0.656 0.655 0.655 0.654 0.655 0.656 0.659 0.0

0.0 2.5 5.0 7.5

0

2

4

6

8

bi
na

ry

-0.059 0.378 0.378 0.378 0.378 0.377 0.378 0.378 0.377

0.377 0.0 0.378 0.378 0.378 0.378 0.378 0.378 0.378

0.378 0.378 0.0 0.379 0.378 0.378 0.377 0.378 0.378

0.378 0.378 0.378 0.0 0.378 0.378 0.377 0.378 0.378

0.378 0.377 0.378 0.377 0.0 0.378 0.378 0.378 0.379

0.378 0.378 0.378 0.377 0.377 0.0 0.377 0.378 0.377

0.377 0.377 0.378 0.378 0.377 0.377 0.0 0.378 0.377

0.377 0.377 0.377 0.378 0.377 0.377 0.377 0.0 0.378

0.378 0.378 0.378 0.378 0.377 0.377 0.377 0.377 0.0

Figure 4.5: Weights comparison of MN classifiers learned by MIL-M3N-LP and
NN-MIL-M3N-LP algorithms on the symbolic Sudoku dataset.

18



..............4.5. Evaluation of the proposed method on the Visual Sudoku dataset

4.5 Evaluation of the proposed method on the
Visual Sudoku dataset

To learn the visual Sudoku solver, we used the NN-MIL-M3N-LP algorithm
learning parameters of the MN classifier on top of the LeNet5 architecture;
for more details, see Section 3.4. As the optimizer minimizes a proxy loss
function, the first way to verify the functionality of the learning algorithm is
to evaluate the actual target loss, in our case the 0/1 loss, on the training
set and to observe how it evolves as a function of the number of epochs
completed. The training performance of the NN-MIL-M3N-LP model can be
seen in Figure 4.6.

0 1000 2000 3000 4000 5000
epochs

0

20

40

60

80

100

tra
in

in
g 

0/
1 

er
ro

r [
%

]

NN-MIL-M3N-LP
10 examples
50 examples
100 examples
200 examples
500 examples
1000 examples

Figure 4.6: The evolution of the training 0/1-loss when learning the Visual
Sudoku solver.

We can see that the training 0/1-loss is monotonically decreasing with the
number of epochs finished, which provides the assurance that our algorithm
works well on the training data at least.

Another way to verify the results is to perform a visual inspection of the
learned score functions. As we have already visualized the score functions of
the symbolic Sudoku solver, see Figure 4.5, we have an idea of what these
functions should look like. Therefore, we visualize the functions only for
the first row of the visual Sudoku assignment shown; see Figure 4.7. The
visualization of the learned score functions is shown in Figure 4.8. The score
functions appear to be similar to those in Figure 4.5 and seem to correctly
encode the rules of the Sudoku puzzle.

19



4. Results .......................................
First row of Sudoku input

Figure 4.7: An example of a single row of the Visual Sudoku assignment.

0 2 4 6 8
labels

0

2

4

6

8

ob
je

ct
s

0.02 0.11 0.11 0.11 0.11 0.11 0.02 0.06 0.11

0.03 0.11 0.11 0.11 0.11 0.11 0.03 0.05 0.11

0.03 0.11 0.11 0.11 0.11 0.11 0.03 0.06 0.11

0.03 0.11 0.11 0.11 0.11 0.11 0.03 0.06 0.11

0.03 0.11 0.11 0.11 0.11 0.11 0.02 0.17 0.11

0.03 0.11 0.11 0.11 0.11 0.11 0.02 0.44 0.11

0.03 0.11 0.11 0.11 0.11 0.11 0.02 0.04 0.11

0.78 0.11 0.11 0.11 0.11 0.11 0.03 0.06 0.11

0.02 0.11 0.11 0.11 0.11 0.11 0.8 0.07 0.11

Unary functions

0 2 4 6 8
labels

0

2

4

6

8

la
be

ls

-0.34 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.07

0.08 -0.33 0.07 0.07 0.07 0.07 0.08 0.07 0.07

0.07 0.07 -0.36 0.07 0.08 0.07 0.07 0.07 0.07

0.08 0.07 0.08 -0.33 0.08 0.07 0.08 0.08 0.08

0.08 0.07 0.08 0.07 -0.48 0.07 0.08 0.07 0.07

0.07 0.07 0.08 0.07 0.08 -0.33 0.08 0.07 0.08

0.08 0.07 0.07 0.07 0.08 0.07 -0.33 0.08 0.07

0.08 0.08 0.08 0.08 0.08 0.07 0.08 -0.37 0.08

0.07 0.07 0.08 0.07 0.08 0.07 0.08 0.08 -0.41

Binary functions

Figure 4.8: Visualization of the learned score functions of the visual Sudoku
solver.

To further evaluate our visual Sudoku classifier, we use a simple baseline.
We assume a deterministic Sudoku solver, which always solves Sudoku with
correct input and we calculate probability, that LeNet5 model correctly
classifies all digits in an example. As stated in [10], LeNet5 achieves around
99.05 % accuracy on the MNIST dataset. Therefore, we can compute the
probability of correctly classified Sudoku example simply as

pc = 99.05N (4.5)

where N is the number of nonempty cells in the Sudoku example. After
evaluating this accuracy on the 100 test examples, we achieve the average
probability of correct classification pa = 72.35%.

We trained the solver with the same setup as in 4.3, however we used
weight_decay parameters λ = 0.1, 0.3, 0.5, 0.9. The best λ was selected by
evaluation on the 100 validation examples. For the best λ we evaluate the

20



..............4.5. Evaluation of the proposed method on the Visual Sudoku dataset

101 102 103

training examples

0

20

40

60

80

100

te
st

 0
/1

 e
rro

r [
%

]
NN-MIL-M3N-LP

0 % missing
10 % missing
20 % missing
50 % missing
LeNet + solver

Figure 4.9: Average 0/1-loss of the Visual Sudoku solver in test examples with
respect to the number of training examples used.

Visual Sudoku Solver on the 100 test examples. The performance of the Visual
Sudoku Solver learned by the proposed NN-MIL-M3N-LP algorithm can be
seen in Figure 4.9. It is shown, that our Visual Sudoku Solver outperforms
the baseline with just 100 training examples and achieves the peak accuracy
of 97 %. Additionally, it seems the accuracy for 1000 training examples might
still improve with further training. We only trained the configuration with
1000 training examples for 600 epochs. The configuration with 500 training
examples achieved its peak performance around 1000 epochs.

As another baseline, we use SATNet [17]. The SATNet architecture is
composed of a convolutional neural network and the maximum satisfiability
(MAXSAT) solver as the last layer. SATNet was trained on 9000 training
examples without missing labels and evaluated on 1000 examples for which it
achieved 63.2 % accuracy on visual Sudoku.

The last baseline that we use is the MN classifier learned by the LP-MIL-
M3N algorithm described in [8]. In this paper, they used the Radial Basis
Function (RBF) kernels to extract the unary feature maps. They used the
same setup as us (see Section 4.3), without weight regularization (λ = 0). For
the missing label probabilities of 0 %, 10 %, 20 % and 50 % they achieved 90
%, 80.4 %, 89.8% and 76.4 % accuracy, respectively.

The comparison of our NN-MIL-M3N-LP algorithm with previously men-
tioned baselines is summarized in Table 4.3. As can be seen, the NN-MIL-
M3N-LP algorithm outperforms all baselines by a large margin and approaches

21



4. Results .......................................
Method Annotated labels Accuracy

NN-MIL-M3N-LP (PROPOSED)

100 % 97.0 %
90 % 94.0 %
80 % 94.0 %
50 % 94.0 %

LP-MIL-M3N + RBF kernels [8]

100 % 90.0 %
90 % 80.4 %
80 % 89.8 %
50 % 76.4 %

LeNet5 [10] + perfect solver 100 % 72.35 %
SATNet [17] 100 % 63.2 %

Table 4.3: The performance of the Visual Sudoku solver learned by the proposed
NN-MIL-M3N-LP algorithm and comparison to various baselines.

almost perfect accuracy.

22



Chapter 5
Conclusions

In this thesis, we have addressed the problem of learning a visual Sudoku solver
from examples. We have treated the solver as an instance of a Markov Network
(MN) based structured output classifier. We have proposed to integrate the
MN classifier with neural networks. We have shown how to use the MIL-
M3N-LP algorithm, recently proposed in [8], to learn the parameters of the
MN classifier simultaneously with a neural network to extract the features
of the classifier. The main challenge was to deal with the complicated loss
of the MIL-M3N-LP algorithm, which maintains specific auxiliary variables
for each training example. We used the PyTorch library, which turned out
to be sufficiently flexible to integrate the custom loss function relatively
smoothly. We verified the functionality of our implementation using a series
of controlled experiments. We have also experimentally shown that the visual
Sudoku solver learned by the proposed method outperforms all baselines,
achieving a test precision of 97%. All implemented algorithms and used code
can be found in this repository: https://gitlab.fel.cvut.cz/kadlet14/
visual-sudoku-solver.

23

https://gitlab.fel.cvut.cz/kadlet14/visual-sudoku-solver
https://gitlab.fel.cvut.cz/kadlet14/visual-sudoku-solver


24



Bibliography

[1] 1 million sudoku games. https://www.kaggle.com.

[2] Convolutional neural networks (lenet). https://d2l.ai/chapter_
convolutional-neural-networks/lenet.html#lenet. [Online; ac-
cessed 19-May-2022].

[3] Y. Altun and T. Hofmann. Large margin methods for label sequence
learning. In European Conference on Speech Communication and Tech-
nology, 2003.

[4] Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden markov support
vector machines. In International Conference on Machine Learning,
2003.

[5] M. Collins. Discriminative training methods for hidden markov models:
Theory and experiments with perceptron algorithms. In Conference on
Empirical Methods in Natural Language Processing, 2002.

[6] V. Franc and P. Laskov. Learning maximal margin markov networks
via tractable convex optimization. Control Systems and Computers,
(2):25–34, 2011.

[7] V. Franc and B. Savchynskyy. Discriminative learning of max-sum
classifiers. Journal of Machine Learning Research, 9(1):67–104, 2008.

[8] Vojtech Franc and Andrii Yermakov. Learning maximum margin markov
networks from examples with missing labels. In Vineeth N. Balasubrama-
nian and Ivor Tsang, editors, Proceedings of The 13th Asian Conference
on Machine Learning, volume 157 of Proceedings of Machine Learning
Research, pages 1691–1706. PMLR, November 2021.

[9] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Proc. of International Conference on Learning Repre-
sentations (ICLR), 2015.

[10] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

25

https://www.kaggle.com
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html#lenet
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html#lenet


5. Conclusions .....................................
[11] Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010.

[12] M.I. Schlesinger. Syntactic analysis of two-dimensional visual signals in
noisy conditions. Kibernetika, (4):113–130, 1976. In Russian.

[13] Michail I. Schlesinger and Václav Hlaváč. Ten Lectures on Statistical and
Structural Pattern Recognition. Kluwer Academic Publishers, Dordrecht,
The Netherlands, 2002.

[14] B. Taskar, V. Chatalbashev, and D. Koller. Learning associative markov
networks. In International Conference on Machine Learning (ICML),
2004.

[15] B. Taskar, C. Guestrin, and D. Koller. Maximum-margin markov net-
works. In Proc. of Neural Information Processing Systems (NIPS), 2004.

[16] Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin markov
networks. In NIPS, 2003.

[17] P.W. Wang, P.L. Donti, B. Wilder, and J.Z. Kolter. SATnet: Bridging
deep learning and logical reasoning using a differential satisfiability solver.
In ICML, 2019.

[18] T. Werner. A linear programming approach to max-sum problem: A
review. IEEE Trans. on Pattern Analysis and Machine Intelligence,
29(7):1165–1179, 2007.

26


	Introduction
	Contributions of the thesis
	Structure of the thesis

	State of the art
	Method
	MN classifier
	Maximum Margin Markov Network (M3N) learning algorithm
	Learning from partial annotations

	LP relaxation of the partial margin-rescaling loss
	Learning MN classifier on top of the Neural Network
	Symbolic PyTorch implementation
	Optimizing weights
	Neural network architecture used as a backbone


	Results
	Datasets
	HMC
	Symbolic Sudoku
	Visual Sudoku

	Compared algorithms
	Verification of the PyTorch implementation on the HMC dataset
	Verification of the PyTorch implementation on the symbolic Sudoku dataset
	Evaluation of the proposed method on the Visual Sudoku dataset

	Conclusions
	Bibliography

