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opportunity to work in such an amazing field and for his advices, support, encouragement,
and patience throughout all those years he had to wait for this thesis to materialize.

I give my thanks also to all other close colleagues from the University and from the
Institute of Information Theory and Automation of the Academy of Sciences of the Czech
Republic for discussions, creating good atmosphere, and some of them also for serving
as subjects in a study presented in one of the chapters. Very inspiring and helpful were
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Notations

Here are described some essential terms used in the thesis. The table bellow shows abbre-
viations and widely used symbols.

Attitude is the orientation of an object in a selected reference frame. Mathematically, it
is described by a parametrization of the rotation from the reference frame to a frame
with the axes parallel to defined axes the object. Usually, an Earth surface-fixed
reference frame is used. In some literature, the term attitude is used for what we call
inclination or tilt.

Inclination (tilt) is the orientation of an object relative to vertical. In the inclination,
there is less information than in the full attitude: the azimuth is missing. Mathemat-
ically, the inclination is described by the projection of a vertical vector to the frame
defined by the object axes.

Pose is a term to cover the attitude together with position.

Gravitational acceleration, called in the thesis, is the acceleration of a free falling object
on the Earth in vacuum. It is influenced dominantly by the gravity and also by the
(fictitious) centrifugal force from the Earth rotation. Such convention is common in
the field of tracking motion of humans or slow moving objects on the Earth, because
it is not necessary to differentiate between the effects of the two phenomena.

Tremor is a rhythmical, involuntary oscillatory movement of a body part.

Physiological tremor is present in every normal subject and every joint or muscle that
is free to oscillate. Normal physiological tremor can just be seen with the naked eye.

Pathological tremor is any tremor caused by a disorder. It may be manifested in different
conditions, some of them are described in the following lines.

Rest tremor is tremor that occurs in a body part that is not voluntarily activated and is
completely supported against gravity (ideally, resting on a couch).

Postural tremor is present while voluntarily maintaining a position against gravity.

Intention tremor is a tremor during target-directed movements.

Slanted text is a quotation from Deuschl et al. (1998).
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Symbol Meaning
EMG Electromyography – measurement of the muscle electrical activity
EKF Extended Kalman filter
FES Functional electrical stimulation

fs Sampling frequency [Hz]
φm Local magnetic inclination of the Earth magnetic field
g Size of the gravitational acceleration on Earth (∼ 9.81 m s−2)

IMU Inertial measurement unit
In Identity matrix of size n

IQR Inter-quartile range (3/4 quartile − 1/4 quartile)
PSD Power spectral density
q Quaternion
q Conjugate of quaternion q
Q Covariance matrix of process noise, or quaternion multiplication matrix
R Covariance matrix of output measurement noise, or rotation matrix

RMS Root mean square
RMSE RMS error
ROC Receiver operating characteristic

Ts Sampling period [s]
UKF Unscented Kalman filter
× Cross product

[a×] Matrix of cross product of vector a: a× b = [a×] b
• Quaternion multiplication
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Chapter 1

Introduction

1.1 Motivation and general introduction

Measurement with inertial sensors (accelerometers and/or gyroscopes) has been used in
many applications through last decades. Navigation systems, airbag activation, car alarms,
and camera stabilization are examples. One of the fields of application is medicine, where
inertial measurements can supplement or replace other means of measurement or assess-
ment for clinical diagnosis like video-based motion analysis, assessment of tremor and other
symptoms by visual observation, or measurement of postural stability by posturographs.
Since inertial sensors made with the micro-electro-mechanical systems (MEMS) technology
are small components with low power consumption, they can be fixed easily to a human
body part or to several places to acquire data related to the motion of the respective body
segments. They can be essential parts of body-worn assistive devices for rehabilitation,
movement data collection in daily life, or even restoration of a function lost due to an
accident or disease.

In neurology, the analysis of human movements is an important part of the as-
sessment. It helps to find the problems, quantify them, and to keep track of the disease
development or treatment effect in time.

One typical target of the movement quantification in neurology is the assessment
and monitoring in Parkinson’s disease. The cause of the disease is still unknown but there
is a reduction of dopamine in the substantial nigra of the brain causing large scale of dis-
abilities of motor control (control of human movements by central nervous system). Most
typical problems are rest tremor, bradykinesia (slowness of movements), hypokinesia (lack
of voluntary movements), or rigidity (increase of resistance to joint movements). All these
symptoms can be reduced by dopaminergic drugs (drugs increasing amount of dopamine
in the substantial nigra) as levodopa. Drug’s effect lasts in several hours after the intake,
patient is said to be in the on state during the time of the effect – patient’s motor control
ability is increased, potentially to the normal function. The other time periods with the
most severe above mentioned symptoms are referred as off state. As the disease develops and
levodopa-based therapy continues, its efficiency decreases. Time of on state shortens, on/off
fluctuations may occur, and abnormal involuntary movements (referred as levodopa-induced
dyskinesias) of various character can emerge during the on state. Suitable adjustment of
dosing minimizes occurrence of dyskinesias and duration of the off states. It demands good
knowledge of patient’s motor state and of the disabilities through time. Up to date, occa-
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sional clinical diagnosis and home-filled diaries are the means of assessment. Self-assessment
is subjective, does not describe the state in a detail, and it needs making notes in a consis-
tent and reliable way. As an alternative, all-day measurements of patients movement can be
performed and motor control state can be estimated from the signals. A flexible and feasible
way is to measure accelerations and angular rates by small unobtrusive sensors fixed on the
human body during whole day at home or even outdoor (Keijsers et al. 2003).

Essential tremor is another example. It is manifested typically only by the tremor
itself. Connections to other possible problems are targets of many current investigations.
Accurate quantification of the tremor and assessment of other movements may help in these
efforts.

There are many other disorders which are or potentially can be the fields of move-
ment analysis and therefore also of inertial measurements. These include disorders of bal-
ance, other types of tremor, disorders and injuries influencing the ability to walk, and others.

The objective of this thesis is to develop new and improve existing methods used
in human motion assessment by inertial sensors for neurology application area. The devel-
opments shall be in the processing of the measured data by estimation methods. From the
large field, tremor assessment and accelerometer calibration were chosen to be the subjects
of development.

1.2 Contribution of the thesis

This thesis contributes to the field of the inertial measurements for human motion assess-
ment especially in the accelerometer calibration and tremor assessment. Selected particular
contributions follow.

• Design of a new criterion for ellipsoid fitting to be used in a procedure for accelerometer
calibration from data collected in nearly static conditions.

• Comparison of several ellipsoid fitting methods mainly in situations when the col-
lected data have only a limited range – simulating the probable situation in in-use
accelerometer calibration: that the sensor is positioned only in a limited range of
possible inclinations.

• Finding that even during a severe hand tremor it is possible to estimate the attitude
by the inertial estimation with a certain accuracy.

• Proposal to estimate the center of rotation during hand tremor and finding that it
may increase the accuracy of inertial estimation compared to the situation when no
model of the motion used.

• Experimental determination of how big is the gravitational artifact in the oscillatory
tremor acceleration signal when measuring at hands.

• Accurate regression of a visual tremor scoring done by trained clinicians using features
extracted from the data captured with inertial measurement units attached to hands.

• According to my knowledge an original method to find the relative orientation of two
attitude measurement systems.
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1.3 Author’s publications related to the topic of the
thesis

At the beginning of my PhD studies, I focused on more topics of the field. One of them
was the on-line detection of gait events with potential application in functional electrical
stimulation (FES) for restoring some gait features in people with paresis of a part of the
leg. More specifically, I focused on estimating gait events with the use of assumptions about
the acceleration at heel (zero when standing, up at heel-off) but with the use of the sensors
placed at shanks. An early attempt in the topic was presented in

O. Šprdĺık and Z. Hurák: Inertial gait phase detection: polynomial nullspace approach.
In Proceedings of the 6th IFAC Symposium on Modelling and Control in Biomedical
Systems. Reims, France, ISBN-10: 0080445306, 2006.

Although the topic stayed in my larger scope of interest, I partially skipped it in favor of
other topics. However, gait phase detection was also part of my later work in a study of
Parkinson’s disease, but only using algorithms published by others. Also, I had this topic
in mind when developing the here presented algorithm for the estimation of the center of
rotation with the use of an inertial measurement unit.

In the meantime, the accelerometer calibration was in my focus as an essential step
to get accurate data from the sensors. A study of a subset of the accelerometer calibration
methods forms a part of this thesis. The methods taken into account have the potential to
calibrate the accelerometer directly from the in-use data collected with the sensors placed
on a human body and thus to be suitable for the use in ambulatory conditions. An earlier
version of the study was presented as a part of

O. Šprdĺık and Z. Hurák: Ambulatory Assessment in Parkinson’s Disease: Use of In-
ertial Sensors and Identification and Filtering Techniques. In 16th International Con-
ference on Process Control, 2007.

Approximately at that time, I was incorporated into a team working in a research
of essential tremor and possible connected balance problems. My main task was to measure
the tremor of the patients by inertial measurements units and to determine the tremor fre-
quency and amplitude from them. At this point, I used the inertial estimation to find the
gravitational and motion artifacts in the measured accelerometer data and to validate how
these components can be useful in the assessment of the tremor severity and frequency. The
results were presented at a conference technically co-sponsored by IEEE and then, substan-
tially extended and hopefully in an improved form, in a special number of the Biomedical
Signal Processing and Control journal. The paper is presented here in an edited form as
one chapter.

O. Šprdĺık, Z. Hurák, M. Hoskovcová, and E. Růžička: Tremor analysis by decomposi-
tion of acceleration into gravity and inertial acceleration using inertial measurement
unit. In Proceedings of the 9th International Conference on Information Technology
and Applications in Biomedicine, 2009.

O. Šprdĺık, Z. Hurák, M. Hoskovcová, O. Ulmanová, and E. Růžička: Tremor analysis
by decomposition of acceleration into gravity and inertial acceleration using inertial
measurement unit. Biomedical Signal Processing and Control 6(3), 2011.
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In the same study, video recordings were made in some of the subjects. The recordings
were analyzed using algorithms by Zdenka Uhŕıková to estimate the tremor frequency. We
validated the obtained frequencies using the accelerometer data:

Z. Uhŕıková, O. Šprdĺık, V. Hlaváč, and E. Růžička: Action tremor analysis from ordi-
nary video sequence. In Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, 2009.

Z. Uhŕıková, O. Šprdĺık, M. Hoskovcová, A. Komárek, O. Ulmanová, V. Hlaváč, C. D.
Nugent, and E. Růžička: Validation of a new tool for automatic assessment of tremor
frequency from video recordings. Journal of Neuroscience Methods 198(1), 2011

The main results of the study – the clinical outcomes – have been presented at medical
conferences but accompanied only by abstracts. A more detailed publication with a greater
impact has been recently submitted to an international journal:

M. Hoskovcová, O. Ulmanová, O. Šprdĺık, T. Sieger, J. Nováková, R. Jech, E. Růžička:
Disorders of balance and gait in essential tremor are associated with midline tremor
and age. 2012. Submitted.

In the last two years, the team worked also on a study of falls in patients with
Parkinson’s disease. My task was to estimate various motion-related parameters from the
timed up and go test performed by patients wearing inertial sensors. That included analysis
of the gait and other movements done during the test. The methods were largely adopted
from the literature with only some tunings and small changes, none of them seen by us up
to now so significant to deserve a separate publication of the modified method. The data
collection is done, the data are analyzed and statistically processed. Up to now, preliminary
results have been presented at medical conferences but accompanied only by abstracts.
Publications with full results and greater impact will be prepared.

1.4 Outline of the thesis

In the first part of the thesis, in chapters 2 and 3, short introductions are given to the
studied fields. Chapters 4 to 7 provide the core of the thesis. Usually, they provide also the
corresponding conclusions. Chapter 8 contains the general conclusion and suggestions for
future work. It is followed by the list of referenced publications and by two appendices.

Chapters 2 and 3 provide short introductions to the inertial measurements and to
the published approaches of their usage in neurology and rehabilitation. Reader with a
knowledge of any of these fields may skip reading the corresponding chapter. However, the
following chapters may refer to these introductory texts and also the reader may browse back
for some definitions and naming. These chapters are intended to give only some basics of the
fields. Later chapters 4 and 5 contain more detailed literature surveys of the corresponding
fields: accelerometer calibration and tremor quantification by inertial sensors, respectively.

Chapter 4 provides a study of accelerometer calibration from the data measured
in static or nearly-static (quasi-static) conditions. The core part of such a calibration is
an ellipsoid fitting to the measured data. A new method is proposed and compared with
several existing ones. The methods are used later in the other chapters for the calibration
of accelerometer biases and gains, although the main feature compared among the methods
– their performance in data distributed in a limited range – is not essential there.
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Chapter 5 contains a study of human tremor quantification using different compo-
nents of the accelerometer measurement and the gyroscope measurement as the signals to be
related to the tremor intensity and frequency. The text corresponds to one of our published
papers except for a few edits. Besides the accelerometer and gyroscope measurements, in-
ertial estimation is used to decompose the accelerometer measurement to the gravitational
and motion components. All such obtained signals are used to quantify the tremor and to
predict a visual scoring assessment done by clinicians.

Chapter 6 consists of two parts, each describing one important method used in the
following chapter. Although both the proposed procedures were motivated by the use in
the next chapter, their application field may be potentially much larger. The first of them
is dedicated to find the center of rotation in the case of an unknown rotation motion of an
inertial measurement unit. The second method is proposed to find the relative orientations
of two different technical systems for the attitude measurement.

Chapter 7 is dedicated to the accuracy of the inertial attitude estimation during
tremulous motion. That way, achievable accuracy of the attitude estimation scheme from
chapter 5 is estimated, although it is not its perfect validation. The phenomenon studied
is the rotation motion, mainly its influence to the accelerometer measurement and how are
different inertial attitude estimation methods able to deal with it. Numerical simulations of
exact rotational motion and tremor mimicking by healthy humans are used. The methods
of chapter 6 are used to enhance the attitude assessment in the tremor with a (partial)
rotation character and to enable a validation against another attitude measurement system.

There are two appendices attached. The first of them contains only a short descrip-
tion of a non-core computation for saving the space in the main text. The second one is
an additional list of publications regarding the assessment of tremor using motion measure-
ment and a categorization of the publications according to several criteria. The attachment
is intended to supplement the introductory texts on the tremor measurement given in the
main part. A secondary objective is to relate the methods published in papers with my
co-authorship to others, in the context of the few criteria.



Chapter 2

Introduction to Inertial
Measurements and Estimation

2.1 MEMS based accelerometers

2.1.1 Principles and the state of fabrication

Accelerometer is a sensor dedicated to measure its own linear acceleration. The core of the
sensor usually consist of a mass connected to the sensor’s platform by a spring-damper link.
When the sensor is accelerated the mass moves relatively to the sensor housing in the oppo-
site direction than is the direction of the movement, see figure 2.1. The displacement of the
mass proportional to the force of the spring element may be measured. Capacity measure-
ment of the displacement if often used. It is then transformed to the sensor output (analog
or digital), which is proportional to the acceleration. Nowadays, most of accelerometers are
produced by the MEMS (Microelectromechanical Systems) technology reaching sizes of few
millimeters and consumption of several hundreds of µA. There are accelerometers measuring
acceleration in one, two, or all three axes.

Figure 2.1: Accelerometer principle

6
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2.1.2 What do they measure?

As noted above, the core of the accelerometer is the measurement of the forces between
a mass and the housing to which the mass is connected. All phenomena causing these
forces are identical with the specific force. Specific force (called also proper acceleration)
is the difference between the instantaneous acceleration and free fall. In the case of a free
fall, accelerometer measures zero. For a sensor being still at Earth surface, specific force is
heading vertically up and has the size of the gravitational acceleration. The projection of
the specific force to the sensor axes is measured. The measurement is

am = R

 0
0
g

+ a

 (2.1)

where R is the orientation matrix of the sensor in an Earth-fixed reference frame (base)
having the third axis oriented vertically up, i.e. the rotation matrix of the rotation from the
base to the local reference frame of the moving sensor. g is the size of the local gravitational
acceleration (about 9.81 m s−2) and acceleration a is the instantaneous acceleration of the
sensor with respect to the base expressed in the base coordinates. Coriolis effect due to the
motion in the frame fixed to rotating Earth is neglected here.

The first part of (2.1) – R [0 0 g]T – is called gravitational component or artifact
in the text of the thesis. The second part – Ra in the sensor frame and a in the base-frame
– is called motion acceleration or motion component.

2.1.3 Errors

Accelerometer output suffers from various errors, for example

• bias and gain error and their time drift, which is caused in a big part by temperature
changes,

• nonlinearity,

• non-orthogonality and misalignment of sensor axes,

• zero-mean noise.

The nonlinearity is not marked and its compensation is not needed in most applications,
otherwise its precise identification for applications demanding very high precision is not
feasible without suitable equipment. Bias, gain error, non-orthogonality, and tempera-
ture drift can be calibrated more easily, but temperature sensor is needed for the partial
drift compensation. The calibration procedure usually consists of putting the sensor to a
number of orientations with respect to gravity. In such cases, only the gravitational com-
ponent is measured by the accelerometer. That fact is used in geometrical calculations to
estimate parameters of a model of the mentioned errors. See Ferraris et al. (1995) for a
classical publication giving a complex procedure to estimate the parameters including the
non-orthogonality. Some other approaches to calibration with possibility to applicate them
directly to the in-use data are mentioned and/or described in chapter 4.
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2.2 MEMS based gyros

2.2.1 Principles and the state of fabrication

Rate gyroscope (gyro) is dedicated to measure its own angular rate. Several principles have
been introduced. For example laser gyros are often used in aviation navigation because
of their accuracy. Vibrating mass gyros produced with the MEMS technology are small,
low-power, but less accurate. They are based on the Coriolis effect. Nowadays, their power
consumption is usually several mA per axis. That is somewhat more than for accelerometers,
but still low and also usable in many battery-powered applications. The consumption limits
them only in applications where long-term monitoring with the use of a very small battery
is desired. Most of MEMS gyros produced until now have only one measurement axis,
gyroscopes of several types have two of them. For years, making a 3D rate gyro from
MEMS sensors implied usage of three single-axis gyros or one single-axis and one dual-axis
gyro in a common bigger housing and – if not precalibrated by a producer – calibrating for
misalignment caused by imperfect placement of the sensors into the housing. But recently,
even 3D MEMS single-chip rate gyros of sizes of about 5×5 mm or lower have been made
available (InvenSense 2011, Kionix 2011, VTI Technologies 2011).

2.2.2 What do they measure?

Angular rate is the quantity measured by the rate gyroscopes. But the angular rate is at each
time instant measured in the instantaneous coordinates of the sensor. That means, the space
angles (or other expressions of attitude) of the sensor cannot be computed by the simple
numerical integration of the separate signals from the sensor axes. The instantaneous rate
of change of the attitude do not depend only on the instantaneous angular rate as measured,
but also on the instantaneous attitude itself:

Ṙ = −[ωS×]R or q̇ =
1

2
[ΩS×] q or ż = −ωS × z, (2.2)

where R and q are the expressions of rotation from a fixed (base) reference frame to the
local reference frame of the moving sensor by means of a rotation matrix and quaternion,
respectively. Vector z is a fixed vector in the base coordinates expressed in the sensor
reference frame. Quantity ωS is the rotational velocity of the sensor with respect to the
base, expressed in the sensor coordinates. Matrix [ωS×] is the matrix of cross product
([ωS×]x = ωS × x). Matrix [ΩS×] is an antisymmetric 4× 4 matrix constructed from ωS in
the following way (subscript S omitted).

[Ω×] =


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 (2.3)

The velocity ωS is the quantity measured by rate gyroscopes, but involved by various errors.

2.2.3 Errors

Rate gyroscopes suffer from errors of all types described for accelerometers. 5. Moreover,
the output can also be sensitive to linear acceleration a little, and the bias effects can be
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more pronounced. The calibration of the gyroscope is different compared to accelerometers.
Bias is determined very easily if it is possible to measure with the sensor being still. Then,
the angular rates are zero and the gyroscope shall measure zero. The only errors in this case
are the bias and zero-mean measurement noise. By averaging the measurement in a time
interval, we get the bias. On the other hand, the other errors are more dificult to measure,
because dynamic conditions are needed. That means, a special equipment inducing exact
rotation velocities or their accurate measurement is needed. For the estimation of the gains
only, it is possible to use a procedure including rotations of the gyroscope between well
known orientations instead of an accurate angular rate reference.

2.3 Magnetometers

2.3.1 Principles and the state of fabrication

Magnetometers are devices used for the measurement of the intensity and/or the direction of
the magnetic field. When only the Earth magnetic field is present, the device can be used as
a magnetic compass. MEMS magnetometers are small devices of size of few millimeters and
possess three sensitive axes. Therefore, full vector of the magnetic field is measured. The
direction of the local Earth magnetic field is described by the local magnetic inclination
φm and magnetic declination. Magnetic inclination is the angle between the horizontal
plane and the field vector. Magnetic declination is the angle between the north direction
and the horizontal projection of the magnetic field. For example in the middle Europe,
magnetic declination is near to zero, while magnetic inclination φm = 60 to 70 degrees – the
vector is heading at this angle down. Bot the values change in time as the Earth magnetic
field changes. See NOAA National Geophysical Data Center (2012) for a magnetic field
calculators showing the values at different places and times based on a model.

The magnetometer measurement of the Earth magnetic field is

m = R

 cosφm
0

− sinφm

 (2.4)

where R is the rotation matrix from a specific base coordinate system to the coordinate
system specified by the sensor axes. The base coordinate system has the first axis heading
to the magnetic north and the third axis heading vertically up.

2.3.2 Errors

Besides the noise, bias, gain error, non-linearity, and non-orthogonality, magnetometers
suffer from magnetic disturbances in their neighborhood. The most marked disturbances
belong into the two following groups,

• disturbances by magnetic materials fixed to the same moving body as the magnetome-
ter,

• disturbances by magnetic materials not moving exactly with the sensor and by the
magnetic field caused by non-constant electric currents.

The first group of the disturbances consists of hard-iron effects (permanent magnets) and
soft-iron effects (materials deforming the Earth magnetic field). They cause additional bias
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and additional gain error and rotation, respectively. Both the effects may be compensated,
see e. g. Gebre-Egziabher et al. (2006). The second group can be compensated if the
disturbances are known exactly, but that is normally not the case. Under some conditions,
the disturbances may be estimated and compensated dynamically (Roetenberg et al. 2005).

2.4 Attitude estimation using inertial measurements

2.4.1 Purely rotational motion

If an accelerometer is still or it is only rotating around its center, the motion acceleration a
in (2.1) is zero. Therefore, the accelerometer measures the projection of a vertical vector of
size g to the coordinates of the sensor. The measurement itself or its low-pass component
to reduce the noise may be used as a measure of the sensor inclination. When dividing the
measurement by its 2-norm, we get a unit vector which is identical with the last column of
the orientation matrix R in (2.1).

To get a full expression for the attitude, e. g. the orientation matrix or quaternion,
an additional measurement is needed. One possibility is to use a magnetometer and its
measurement model (2.4). There are different approaches how to fuse the two measure-
ments. An intuitive approach which is a good choice especially if the accelerometer is really
not accelerating in space, is to use the accelerometer to determine the inclination and the
magnetometer only to add the missing information: the azimuth. Another possibility is to
enable the magnetometer measurement to influence also other components of the attitude
estimate, for example by a least squares fitting of the rotated accelerometer and magne-
tometer measurements to the known directions in the Earth-fixed reference frame. The task
of this fitting is a simple example (only 2 measurements) of the general Wahba problem
(Wahba 1966) and may be solved in a time-efficient way (Markley 2002).

2.4.2 Rotation and translation

If the sensor is translating and the motion is not a uniform linear motion then the accelerom-
eter does not provide an accurate measurement of the inclination. That may be partially
solved by an incorporation of a rate gyroscope measurement.

In the simplest approach, accelerometers are used for the inclination estimate at
situations when no motion is detected. The situations may be recognized e. g. by zero
angular velocity and still accelerometer measurement having 2 norm equal g. Between these
static situations, the attitude or inclination is determined only by solving (2.2). Similar
approach was used by Neg̊ard et al. (2005) for the on-foot navigation.

If the existence of the no-motion states is not guaranteed or the time between them
is too long then the estimate from (2.2) fails to be good because it is not stable – the errors
integrate in time, especially the biases. Then, the accelerometer must be used even though
it does not provide a good instantaneous measurement of the inclination. For technical
systems with known models and additional measurements of the internal states or speed or
position, e. g. airplanes, the motion component of acceleration may be estimated well and
subtracted from the accelerometer measurement to get a good inclination estimate. Similar
approach is possible also for the human applications if more sensors are placed at several
connected body segments and joint models are used (Hyde et al. 2008).

For monitoring of human motion by using only one inertial measurement unit (IMU)
or more IMUs but placed at not directly connected segments, there is no exact model. Still,
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the motion acceleration may be roughly estimated by a general dynamical model assuming
it to have a character of a low frequency noise (Luinge and Veltink 2005). Zero-mean motion
acceleration is assumed in such a case. This assumption is valid in normal situation when
the subject is moving only by its own locomotion – if a body part accelerates, it must
also soon decelerate. However, in many applications in the human motion or small flying
devices, this model is not used and the whole accelerometer signal (Zhu and Zhou 2004)
or its direction (Mahony et al. 2008) is directly used to provide the reference inclination
measurement which influences the attitude estimate at low frequencies.

For fusing the gyroscope data with the accelerometer and magnetometer measure-
ments, a dynamical filter is used – often a simple complemetary filter, or an observer for
nonlinear systems, usually based on Kalman filtering principles. Additional quantities may
be estimated to improve the accuracy in presence of some specific errors. That is often the
case of the gyro bias (Luinge and Veltink 2005, Neg̊ard et al. 2005, Mahony et al. 2008).

2.5 Instrumentation

2.5.1 Available to us

In the first months of my PhD studies, I created a simple autonomous acceleration measure-
ment unit consisting of a two-axis accelerometer ADXL202 (Analog Devices) and a small
flash memory to store the measurements. The size of the device was about 50 × 35 × 15 mm
and the weight 16 grams (without battery). It was povered by a small external battery, and
controlled by a single button used to start and stop measurements. However, I used it
only for few first experiments. For most of the consecutive work and the results in the
thesis, commertially available inertial measurement units (IMUs) were used. In particular,
the series MTx produced by Xsens, The Netherlands. The IMU is a 3D accelerometer, 3D
gyroscope, 3D magnetometer, and a temperature sensor contained in a single package of
size 53 × 38 × 21 mm and weight of about 30 grams (Xsens Technologies 2010). The mea-
sured data are calibrated for in-factory determined biases, gains, nonorthogonalities, and
temperature drifts. Therefore, the data are well calibrated except the additional drifts not
covered by the temperature compensation.

The IMUs contain also proprietary Xsens attitude estimation algorithms fusing all
the measurements. The results may be sent on-line in the form of quaternion, rotation
matrix, or Euler angles from the IMU besides the measured data. Alternatively, the same
algorithms implemented in supplied software may be applied offline in PC to raw data
acquired from the IMUs.

The MTx devices are produced and sold in several variants with different sensor
ranges and communication interfaces. There are two possibilities how to connect the MTx
devices to PC which collects data,

• direct connection of single MTx to PC via RS232/USB converter and the USB ports
of the PC,

• connection of several MTx to Xbus Master device via the proprietary serial line Xbus
and connection of Xbus Master to PC via USB port or Bluetooth wireless connection.

For most of the time of my PhD studies, two devices supporting the first type of
communication were available. They were used in the study in chapter 5 and for short
validation measurements in section 6.1. When connected to PC independently, both the
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Company, Device Size (mm) Magn. Fusion
Analog Devices
www.analog.com
ADIS16367 23× 23× 23 - -
ADIS16334 33× 22× 11 - -
ADIS16400 23× 23× 23 X -
InterSense
www.intersense.com
NavChip 24× 13.5× 9.1 - -
InvenSense
invensense.com
MPU-6050 4× 4× 0.9 - X
MPU-9150 (to be available) 4× 4× 0.9 X X
ST Microelectronics
www.st.com
LMS330DLC 5× 4× 1.1 - -

Table 2.1: Combo-devices: Single-package electronic parts including a 3D gyroscope and
3D accelerometer. Magn.: also 3D magnetometer included. Fusion: included a platform
for fusion of the sensor data for gesture recognition and/or other applications.

sensors provide own timing. To ensure synchronous sampling and starts of measurements
in the study of the essential tremor, I constructed a device which generates a clock signal
of a specified frequency and this signal is sent to both MTx to force common timing. The
device provides also synchronous measurement of pressure by a force sensing resistor (FSR)
which can be used for example to determine the moments when a patient touches a target
by a finger in a test for the intention tremor.

Later, five devices enabling the second type of communication (via Xbus) were avail-
able at Neurological Clinic of Charles University and General University hospital in Prague.
These devices are used primarily in a study of gait and other movements of Parkinson pa-
tients which is not the core of this thesis, but they were also used for the measurements in
chapter 7.

2.5.2 On the market

Only few alternatives to the above described system were available in the first years (about
2006). One big alternative was to produce own dedicated measurement system, but that
would lead to additional time burden. Besides taking care of the communication and power-
ing, the construction of full IMU implied until recently a careful mounting of a set of single
sensors and a bulky calibration.

During few last years, also devices combining 3-axis accelerometers and 3-axis rate
gyroscopes became widely available, see table 2.1. They are usually precalibrated from
factory for misalignments and sometimes also the temperature bias drifts are partially com-
pensated. The devices are in fact IMUs, but they need additional interfaces to communicate
with PC or to store the measured data. But still, they make the construction of a ready-
to-use IMU more easy. For Analog Devices ADIS line, only few examples are listed from a
wide range of products. The line is focused more on technical applications and provide low
gyroscope measurement ranges (less or equal 300 ◦/s) and therefore has limited usability
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in human motion applications, except ADIS16367 (1200 ◦/s). By comparing the available
datasheets at the time of writing, the larger devices (ADIS and NavChip) tend to have
better gyroscope accuracy.

Ready-to-use wearable IMUs are produced by several companies. The commercially
available devices are listed in table 2.2. The information was get from public materials on
the Internet, for MTx partially also from own experience. The columns of the table have
the following meaning:

Size: Maximum dimension of IMU excluding cables and connectors. Kinesia device consists
of two parts connected by a short and flexible cable: sensor unit and control unit.

Weight: Weight of IMU excluding cables.

Accel., Gyro, Magn.:
X – the measurement unit contains the sensor and can provide the data from its
measurement;
x? – the sensor is included in IMU and used to estimate the attitude, but it is not
stated if also the sensor measurements can be provided.

Fusion: IMU contains a build-in attitude estimator fusing the measured data.

Cable: IMU can send the data on-line by a wired connection.

Wireless:
X – each IMU can send the data on-line by a wireless connection;
x – IMUs send the data by a cable to a central unit, which can send them to a computer
by a wireless connection.

Storage: IMU contains a build-in memory to store the measured data for later transfer to
a computer.

Synchr.: How many IMUs can be connected and synchronized using a provided central
device. Two numbers signalize the possibility to use two central devices synchronously.

A number with ’?’ – how many IMUs can be connected for simultaneous data ac-
quisition using a provided device, but it is not stated explicitly if the data acqui-
sition is synchronized;

x – synchronization is possible only by a user-provided external synchronization signal;

start – only the start of the measurement can be synchronized via a cable connection,
then each IMU uses its own internal clock.

Frequency: Maximum acquisition frequency (internal sampling frequency may be higher).
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Chapter 3

Brief Survey of Methods of
Human Motion Assessment
based on Inertial Sensors

This is a very brief overview of the instrumented assessment of movement, symptoms of
neurological disorders or overall patient’s motor state using body-worn inertial sensors. The
survey is far from being complete – both the details about the single assessments and the
listed possible assessments are limited. Other areas of use of inertial sensors in human move-
ment assessment and monitoring include the quantification of dyskinesias (non-rhythmical
involuntary movements) in Parkinson’s disease or monitoring of proper conduction of reha-
bilitation exercises.

3.1 Activity monitoring

Activity monitoring is a method for discrimination of movement activity from rest, for
classification of activities, or for quantification of general movement intensity.

This field can be divided into two parts, although many works deal with both of
them:

• Quantification of the activity of the subject in long time intervals by means of percent-
age of time spent moving, or by mean movement intensity, or by some combination
of them, e. g. percentage of motion time together with the intensity averaged only
during the intervals when movements were detected.

• Discrimination of different body postures or different movement activities.

To the first point, several strategies were proposed to assess the total amount of
patient’s activity by measuring his motion: most simple actigraphs just counting threshold
crossings of accelerometric signal, or some way of representing mean measured acceleration
in a frequency band (Dunnewold et al. 1997, Mathie et al. 2003), or mean amplitude of
acceleration derivative (Keijsers et al. 2006) or angular rate (Salarian et al. 2007b) during
specified time periods or only in their parts when a movement was detected. The methods
may be used to monitor people with movement problems or neurological disorders, e. g.

15



16

Parkinson’s disease, people recovering from an injury or disease, or elderly. Such calculated
features can be used also to estimate the energy expenditure (Bouten et al. 1994). All these
methods represent rather general activity and “mean” intensity of one’s movements than
direct measure of any symptoms of a neurological disease. Although the outcomes often
correlate reasonably with clinical scores of bradykinesia and hypokinesia in Parkinson’s
disease (Salarian et al. 2007b), they are still very dependent of one’s daily routine, kind of
activities intentionally performed during assessed time segment, and there are large inter-
individual differences.

Detection of body postures, that means the discrimination between standing, sitting,
and lying, or more detailed positions, gives some information about the person’s activity
and may form a part of a method for the assessment of some specific activity or symptom
(Prill and Fahrenberg (2006), Zwartjes et al. (2010)). Several methods were proposed to
do the detection. The most typical is just thresholding of the estimated inclinations of one
or more body segments (Veltink et al. 1996, Dunnewold et al. 1998, Lyons et al. 2005).
Typically, a trunk sensor is used to discriminate between lying and other positions and a
thigh sensor is used to discriminate between standing and sitting. Najafi et al. (2003) and
Salarian et al. (2007a) did not use a sensor on thigh. Instead, they used a detection and
classification of the sit-to-stand and stand-to-sit transitions from simple signal features of
other sensors, mainly the sensor at trunk.

Similar approaches were applied to discriminate not only between the statical body
postures but also between several dynamical activities. They use predefined feature ranges
(Veltink et al. 1996, Bussmann et al. 2001), or distances from values precollected in a stan-
dardized protocol (Foerster and Fahrenberg 2000), or classifiers learned with precollected
larger training data (Bao and Intille 2004, Zwartjes et al. 2010). To include the classification
of dynamical activities, also few other signal features were used, for example rectified and
averaged high frequency components of signals for detection of motion of a body segment,
or functions indicating peaks in data or in frequency spectra typical for walking.

See Godfrey et al. (2008) and Yang and Hsu (2010) for more detailed reviews of
activity monitoring methods. The first one provides more details about the methods and
the second one is a little more recent. Both of them reffer also to a number of commercially
available activity monitoring systems.

3.2 Tremor detection and quantification

Tremor is a well observable and easily instrumentally detectable symptom of neurological
disorders due to its alternating character. This is true especially for the rest tremor or
postural tremor, where the body segment does no other marked motions except the tremor.
Moreover, if a specific tremor type is searched for, only limited frequency band can be
investigated (e. g. 3–8 Hz for the tremor in Parkinson’s disease).

Many researchers detected and quantified tremor using miscellaneous instrumen-
tation including motion-capture systems, tablets, electromyogram (EMG) recordings, and
inertial sensors. The inertial sensors are most suitable for an ambulatory assessment due
to their size, especially in case of a long-term monitoring. They are also a good choice for
short-time assessments at clinics, although EMG may provide better measurement of the
frequency of the pathological neuron firing. Especially if the body segment is loaded by
a mass, the frequency spectrum of the accelerometer or other motion sensor may manifest
two significant peaks, one of them connected to the pathological central oscillator and the
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second one at a lower frequency depending on the mechanical properties of the segment and
the mass (Hallet 1998).

Hand tremor is the usual subject of the studies. For sensor placement, wrists are
commonly used for ambulatory monitoring (van Someren et al. 1998, Salarian et al. 2007b)
due to the facility and acceptability. More distal segments are usually used for short-time
assessments (hand back, a finger). Leg tremor was also detected and quantified (Sander
et al. 1998, Zwartjes et al. 2010).

A 3D trajectory of tremor was not computed from the inertial measurements. Usu-
ally some not very complicated signal processing is applied directly to the measured quanti-
ties (acceleration or angular rate) or their integrals: Threshold crossing detection in filtered
data (van Someren et al. 1998, Caligiuri and Tripp 2004), identification of autoregressive
(AR) model of tremor time series (Timmer 1998, Salarian et al. 2007b), or direct spectral
or frequency analysis via FFT (Foerster and Smeja 1999, Hoff et al. 2001) have been used.
Comparing reported sensitivities and specificities of tremor detection during daily life ac-
tivities using sensors at wrists, method of Salarian et al. (2007b) using rate gyroscopes and
identification of AR model was somewhat more successful than van Someren et al. (1998)
and Hoff et al. (2001) (noted by Salarian et al. (2007b)), but each verification was done with
time series from different trials.

In the mentioned methods, tremor is usually quantified by the amplitude or power
of acceleration or angular velocity. Sometimes (e. g. Pullman et al. (1994), Elble (2003)),
the amplitude of velocity or displacement is estimated. Burkhard et al. (2002) reported
strong negative dependence of spatial amplitude and tremor frequency in healthy subjects
asked to simulate parkinsonian tremor. Using this observation and the fact that acceleration
and velocity are more related to power and energy we guess that acceleration or velocity
may be in fact more suitable for comparison of tremor intensity than spatial amplitude.
On the other hand, the spatial amplitude is more related to the existing visual assessment
techniques and likely it is more related to the severity of the real impairment: what is the
preciseness of the affected hand and how visible is the tremor.

See section 5.1 for an overview with more details especially regarding the type of
inertial sensor used and the presence of the gravitational artifact in the accelerometer mea-
surement. See appendix B for more technical details and more referenced works: It contains
a categorization of published papers on tremor quantification by movement measurement.
The categorization is based on sensors used, their placement, amplitude and frequency ex-
traction, and few other criteria.

3.3 Gait analysis

Many approaches have been published to analyze human walking, particularly its temporal,
and sometimes also spatial parameters. Switches or pressure sensors under feet are some-
times used, for laboratory analysis it is possible to use 3D camera systems, and there is
also possibility to use leg-worn or trunk-worn inertial sensors. Many of the methods were
developed primarily for on-line detection of gait events (heel-off, terminal foot contact, heel
strike, etc.) and to be used in a feedback for a functional electrical stimulation (FES) of
lower leg or whole leg of patients with drop-foot problem or other leg paresis (Lyons et al.
2002). Other approaches are intended primarily to monitor gait parameters during a long
period or during clinical assessment trials. Due to the character of the applications, an
off-line analysis is enough. Gait parameters (cadence, step length, etc.) or the distance
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walked are typically needed. Sometimes, also other details like joint angles of the position
of the center of mass are of the interest.

For the timing detection it is possible to use shoe insole sensors of the pressure.
Inertial sensors bring the possibility to estimate also spatial parameters and to place the
sensors also to other places than under the feet. That may be helpful for example in case of
the stimulation of peroneal nerve (Lyons et al. 2002): The stimulation electrodes are placed
at upper part of shank and inertial sensors can be placed just next to them.

The methods of the gait event detectors based on inertial sensors differ based on the
core ideas used. One possible approach is to assume that the foot or the position of the ankle
is still or does not move much during the stance phase with the heel on the ground. Such
approach may be used with the sensors at feet (Pappas et al. 2004) or by estimating the
ankle acceleration by sensors placed on shanks (Willemsen et al. 1990). Another possibility
is to work with the inclination angle of the lower leg or with the corresponding angular
rate: When walking forward, the inclination of the shank is changing from forward lean to
backward lean during most of the swing phase which lasts from the terminal foot contact
to the next heel strike. During the stance phase, the shank inclination is changing in the
opposite direction. A concrete used signal originating from a shank-mounted sensor may be
the inclination as measured by an inclinometer (Dai et al. 1996) or accelerometer, or the
angular rate measured by a rate gyroscope (Salarian et al. 2004).

Sensors placed at trunk are attractive because of easy fixation, especially at waist
level, and because they may be also used for the detection of body positions (see section
3.1) and balance assessment (see section 3.6). Vertical and anterior-posterior accelerations
of the trunk typically exhibit two periods during one gait cycle, because two steps (left and
right) are performed during the cycle. For the detection of steps, the fact that peaks in the
signals are present at the heel strikes may be used (Zijlstra and Hof 2003, Moe-Nilssen and
Helbostad 2004). For the discrimination between the left and right steps, the acceleration
in the medio-lateral axis (Zijlstra and Hof 2003) may be used. However, both the accuracy
of step detection and of step quantification tend to be lower than with using sensors at legs.

The above referred works use various detection algorithms based on human knowl-
edge about the signals at different gait events and phases. Alternatively, it is possible to
use a machine learning method directly to the measured or slightly preprocessed data, e. g.
Williamson and Andrews (2000) with shank-mounted accelerometers.

Inertial sensors are not used only for the detection of gait events and phases, but also
to estimate the length of steps or consequently the distance walked. They may be estimated
for example by double integration of foot acceleration (Neg̊ard et al. 2005) or by geometrical
calculations using known lengths of legs or leg segments and the angular amplitudes of the
leg motion (Salarian et al. 2004, Moore et al. 2007). Zijlstra and Hof (2003) uses a trunk
sensor to estimate the step length. Known leg length and an estimate of the vertical trunk
displacement from the accelerometer were used to estimate the step length.

Gait freezing and festinations are symptoms of the Parkinson’s disease. Both can
be observed not only in medication off state, but also during on state. The occurrence
of freezing in the off state is higher than in the on state, but it may be reduced by the
subthalamic nucleus stimulation (Davis et al. 2006). Several authors used instrumentation
to detect freezing. Han et al. (2003) and Moore et al. (2008) used accelerometers placed
above ankle. Hausdorff et al. (2003) used force sensors under the feet. All the groups used
the fact that most freezing episodes are not pure akinetic states, but tremulous leg motion
occurs due to patient’s effort to move. The motion has typically not as sharp frequency
spectrum as parkinsonian tremor (Hausdorff et al. 2003).
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See Lyons et al. (2002), Kavanagh and Menz (2008), and Rueterbories et al. (2010)
for reviews of the field. Lyons et al. (2002) focused specifically on the correction of the
drop-foot problem and the on-line gait phase detection usable for the purpose. The two
later reviews consider also the off-line processing and gait analysis. Kavanagh and Menz
(2008) focused mainly on accelerometers, other sensors are hardly mentioned. They address
especially the different goals and results of the studies which use accelerometers for gait
analysis. Rueterbories et al. (2010) focused mainly on the sensor placement, sensor type,
and the numbers of the sensors used and sensor axes processed in the published papers.

3.4 Rising from a chair

Timing aspects and difficulties of standing up have been reported as highly correlated to
Parkinson disease stage and treatment (Bloem et al. 1997). Some of investigators used
instrumentation to estimate the duration of the transition: Bloem et al. (1997) with a camera
system, Giansanti and Maccioni (2006) with an accelerometer and gyroscope, Janssen et al.
(2008) with a uniaxial accelerometer. Only thresholds of acceleration and/or angular rate
variation were used to detect the start and the end of the movement – steady posture before
and after the transition is needed. Giansanti and Maccioni (2006) needed the posture to
be steady only relatively to the motion during the transition. Janssen et al. (2008) used
only the measurement in the sagital direction, therefore the system was sensitive especially
to the forward bending of the trunk but not to the motion in other directions. By the
above methods, only the transitions conducted in well defined conditions may be detected
and quantified, determining these methods practically only to clinical assessment where
they may substitute time measurement by stop-watches and potentially also to add other
quantities to describe the transition.

A little different approach to detection and assessment of standing up was proposed
by Najafi et al. (2002) and altered by Salarian et al. (2007a). The algorithms were proposed
to be used not only for the assessment of separate standing up but foremost to detect
the transitions in general conditions during daily life. They used features of the measured
signals typically observed in sit-to-stand and stand-to-sit trials, mainly the inclination angle
in sagital plane estimated from the trunk angular rate. Finally, by Salarian et al. (2007a), the
detection was implemented mainly as a detection of signal maxima and minima of specified
polarities and amplitudes greater than thresholds. The approach was successful with some
tolerance when detecting the transitions during trial simulating life conditions.

3.5 Timed up and go test

The timed up and go test (TUG) is a simple test to assess the mobility of a subject by
measuring the time of the conduction of the following sequence:

• Get up from a comfortable sitting in a chair,

• walk 3 meters,

• turn back,

• walk back to the chair,

• turn again and sit down.
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Recording of the time to perform the test was proposed by Podsiadlo and Richardson (1991)
to simply and reliably asses the mobility of elderly people. Since then, it was used in a
vast number of studies involving elderly, patients with Parkinson’s disease, hemiplegics,
and other people having problems with mobility. The strong points of the method are
that the test is easy to perform and reconstruct, and that it consists of several different
activities in which the people with reduced mobility may have problems: getting up from
a chair, walking, turning around. The performance is aggregated into one measurement:
the overall time measured by a stopwatch. Recently, several papers proposed to use motion
sensors to automatize the time measurement and to add other quantities as measures of the
mobility, giving more information from one conduction of the test. Above all, durations of
the separated phases of the test are measured and the separated tasks evaluated, some of
them using the methods described in the previous sections.

Higashi et al. (2008) used rate gyroscopes at trunk and legs and an accelerometer
at trunk. They evaluated the time of TUG and times of its main phases and few simple
parameters like RMS of the measured acceleration. The algorithm was used in a pilot study
involving 20 hemiplegics. Ten of them were able to conduct the test by themselves, the
others needed an assistance. Times of the walking phases of TUG and features of lateral
and vertical acceleration differed significantly between the groups.

Marschollek et al. (2009) used an accelerometer placed at waist level. Without
describing the methods in detail, they state to estimate the energy expenditure and several
gait parameters from the measured acceleration. The study involved 110 geriatric patients
divided into two groups based on the evidence of in-hospital falls: 26 fallers and 84 non-
fallers. The mean step length differed significantly between the groups and there was also a
borderline difference in the pelvic sway during walking and the TUG duration.

Weiss et al. (2010) used also an accelerometer placed at waist. They estimated the
overall TUG time, durations of the sit-to-stand and stand-to-sit transitions and several other
parameters of the two transitions. Seventeen Parkinson’s disease patients and fifteen controls
were involved in the pilot study. The groups differed significantly in most of parameters.
Many sit-to-stand and stand-to-sit parameters shown the difference at a higher significancy
level than the TUG time.

Salarian et al. (2010) and Zampieri et al. (2010) used more sensors and more detailed
features derived from the signals. A modified TUG execution was used – the walking
distance was prolonged to 7 meters. Salarian et al. (2010) used seven inertial measurement
units placed at different body segments, four of them at legs. Zampieri et al. (2010) used
five units, two of them at legs. They assessed both the gait and the transitions, while the
other studies usually focused only on one them. Moreover, via sensors at wrists the arm
swing during gait was assessed. The pilot study involved 12 patients with only mild-to-mid-
stage Parkinson’s disease and 12 controls. The duration of the modified TUG did not differ
between the groups significantly, nor the duration of the standard TUG (Zampieri et al.
2010). However, several detailed parameters differed significantly: walking cadence, arm
swing, trunk rotation speed during walking, time and speed of the 180 degrees turning at
the distant end of the walkway, and the duration of the stand-to-sit transition.

3.6 Balance

Decreased stability in standing or walking is a symptom found in many disorders, namely
in Parkinson’s disease and after damages of the vestibular system. The balance, or postural
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stability, is usually assessed using standardized physical tests conducted and evaluated by a
physician or physiotherapist. The test may comprise of quiet standing in different conditions:
eyes opened/closed, hard/soft plate below feet, standing with different leg positions or at
only one leg, etc. The different conditions are used to separate the influence of the differents
parts of the systems used in the human balance control: visual feedback, vestibular system,
foot pressure sensing. Also dynamical conditions are sometimes used, e. g. pushing the
subject, moving with the board on which the subject stands, or tandem walking – putting
a heel just in front of the toe of the second foot and so on.

For a quantitative analysis, force plates are widely used to measure the center of
pressure (COP) during a static test or when moving the board under the feet. The measure-
ment provides 2D position of COP: medio-lateral and anterior-posterior. Several features of
COP time course are then used to quantify one’s performance, e. g. RMS of COP position
or the length of the trajectory during a certain time interval. The motion of COP is related
to the motion of the center of mass (COM), but it is different because of the dynamical
forces.

Accelerometry was proposed to measure the motion of a point near to the COM –
the lower back. One problem of using a single accelerometer at lower back is that because of
the unknown character of leg and pelvis movements the gravitational and motion artifacts
cannot be separated and therefore the motion cannot be reconstructed accurately. Moe-
Nilssen (1998), Moe-Nilssen and Helbostad (2002) used the presumption that the tilt is
constant or changes only very slowly during quiet standing and static walking and all the
changes of acceleration in the two directions are from linear forward-backward and left-right
motion only. On the contrary, Mayagoitia et al. (2002) assumed in quiet standing that the
motion is pendulum-like, slow, and not very high, and therefore, the motion of the sensor
may be described only by the changes of the tilt (inclination) and by the known distance
of the sensor from the ground. The inclination is calculated with the assumption that
the triaxial accelerometer measures just the gravity. To estimate COM from accelerometer
measurements, a more complex model taking advance of more sensor units placed on the
body may be also accompanied (Betker et al. 2006).

In the aforementioned publications, the methods of Moe-Nilssen and Mayagoitia
were used successfully to discriminate different conditions or different patient groups. More-
over, methods similar to the method of Moe-Nilssen (1998) were evaluated by cross-correlation
with standardized clinical functional balance tests (O’Sullivan et al. 2009) and force-plate
measurements Whitney et al. (2011).

3.7 General patient’s state in Parkinson’s disease eval-
uated in daily life conditions

Activity monitoring, tremor detection and other quantities (for example, gait parameters)
have been used to classify time periods to on and off states in Parkinson’s disease. (Hoff
et al. 2004, Keijsers et al. 2006, Salarian 2006). The most detailed assessment of partic-
ular symptoms and parameters before the classifier training was done by Salarian (2006).
The output of their method is not only the result of classification (on/off), but it is also
accompanied by the assessment of particular symptoms giving more information about the
patient’s state.



Chapter 4

Accelerometer Calibration from
In-Use Data

An older version of this chapter was presented at a conference as a part of Šprdĺık and Hurák (2007)

4.1 Introduction

This chapter is motivated by the use of inertial navigation methods for the analysis of
symptoms and deals with in-use calibration of accelerometers using a detection of quasi-
static states. Several methods for estimation of sensor parameters from data captured
during nearly static conditions are given and compared in simulations.

Outputs of micro-machined inertial sensors (accelerometers and rate gyros) are sub-
ject to different kind of errors. Some of them can be fully or partially compensated by
single calibration procedure (misalignment of axes, cross-axis sensitivity, gyroscope sensi-
tivity to acceleration). Others vary throughout time (especially biases). Although sensor
manufacturers achieve better and better characteristics, the drifts should be compensated
for, especially in applications where sensor displacement is estimated by double integration
of motion acceleration in a global reference frame.

Absolute majority of assessment methods for human movement quantification do not
use inertial navigation. Its drawback may be mainly its higher computational demand but
we suppose that quantities which may be estimated much better with calibrated sensors,
e. g. position or velocity, may be more easily interpreted than the measured quantities.
Moreover, the assessment methods based on position may be compared to the methods
based on movement monitoring using motion capture systems.

When sensors are fixed to human body, it is impossible to perform their calibration
by a standard calibration procedure requiring a special equipment or at least rotation of
sensor in several directions and letting it still without any motion in each position.

There are different methods to approach the in use estimation of inertial sensor
parameters which change slowly. One group of algorithms is based on Kalman filtering:
Sensor parameters or their estimate errors are dealt as filter states added to nonlinear
Kalman filter observing sensor orientation or simplified linear Kalman filter observing error
of orientation estimate see e. g. Luinge and Veltink (2005) (only gyroscope bias is estimated
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in this case) or Batista et al. (2011) (dynamic accelerometer bias estimation). Addition
of sensor parameters to the Kalman filter increases number of its states and therefore also
the computational burden especially if the number of estimated parameters is high. Sensor
parameters are usually actualized in each filter step, that is in fact unnecessary because they
change very slowly.

An alternative approach to accelerometer calibration was proposed by Lötters et al.
(1998). It is based on detection of quasi-static states, i. e. situations when sensor does not
move or its motion is very slow. The detection uses the assumption that it is unlikely in
human motion to achieve constant nonzero acceleration. Accelerometer bias and gain are
estimated from accelerations measured in quasi-static states using the fact that then the
amplitude of the measured acceleration is near to gravity.

Similar approach was used also for the magnetometer calibration (Gebre-Egziabher
et al. 2006). Also different ellipsoid fitting algorithms were proposed for the calibration
(Šprdĺık and Hurák 2007, Pylvänäinen 2008, Bonnet et al. 2009). Generally, an ellipsoid
fitting may be used for a 3D sensor of any time-invariant physical field (Pylvänäinen 2008,
Bonnet et al. 2009).

Next sections briefly refer to published approaches to ellipsoid fitting and 3D ac-
celerometer calibration using a detection of quasi-static states. Then, some properties of
the algorithms are discussed and modified approaches are proposed and compared in simu-
lations.

4.2 Problem formulation

Accelerometer calibration procedure is split to two problems,

1. detection of quasi-static states,

2. estimation of sensor parameters from data measured in quasi-static states.

We suppose that misalignment of sensor axes is pre-calibrated. Therefore, we restrict the
sought parameters to biases and sensitivities only. In an ideal case accelerations measured
in static conditions lie on an ellipsoid with the center defined by the accelerometer bias,
axes parallel to the accelerometer axes, and semi-axes lengths equal to sensitivities of the
accelerometer axes to gravitational acceleration. In reality, measured points do not lie
exactly on the ellipsoid because of the sensor noise and non-ideal quasi-static conditions.
Moreover in human applications, often only part of the ellipsoid is covered by quasi-static
data – for example trunk is typically approximately in vertical position during most of the
daytime and therefore sensor placed on trunk may capture only limited range of orientations.
See left part of figure 4.1 for principal 2D sketch of situation. Nonorthogonality of the sensor
axes leads to the need to identify also the orientation of the ellipsoid axes. As we used only
sensors precalibrated from the production, we assumed the sensor axes perfectly orthogonal.

If the accelerometer bias o and sensitivity s are known, calibrated acceleration a
may be computed from measured values v,

aj =
vj − oj
sj

,

where j ∈ {x, y, z}.
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4.3 Methods

The estimator is divided to two parts. The first one is a detector of quasi-static states and
the second one fits an ellipsoid defined by accelerometer parameters to the data measured
in quasi-static states.

Lötters et al. (1998) used detection function

d1 = LPF (REC (HPF (Size(v)))) ,

where Size(v) stands for
√
v2x + v2y + v2z . Symbols LPF, REC, and HPF mean Low-pass

Filter, Rectification, and High-pass Filter, respectively. Output of this function is compared
to threshold to detect type of state. Value of d1 is unlikely to be near zero during most of
human movements.

Next possibility is to shift computation of vector size up in the hierarchy, for example

d2 = LPF (Size (HPF(v))) ,

or even to add the gyroscope output to the detection scheme (Saxena et al. 2005). In systems
with high sampling frequency, standard deviation of signal may be estimated in periods of
suitable length and then compared to threshold.

Although detection of quasi-static states is important part of the estimator we do
not deal it deeply here and focus more on the ellipsoid fitting part of the procedure. The
detection signals d1 and d2 depend not only on the amplitude of the motion but also on its
direction relative to vertical line. Detection signal d1 may also underestimate the rotation
component of the sensor motion and thus theoretically classify some rotational movements
as quasi-static states if the center of rotation is near to the sensor. Therefore, in the example
below we rather choose the estimates of acceleration and angular rate standard deviations
computed in short data segments. Segments of length 0.3 second at sampling frequency
50 Hz were used in the example in section 4.6.

Used ellipsoid fitting methods are described bellow.

4.3.1 Method 1

The first of the used methods was introduced by Lötters et al. (1998) and used by Saxena
et al. (2005) for accelerometer calibration and similar equation was used also by Gebre-
Egziabher et al. (2006) for magnetometer calibration. In the literature, a least squares
optimization procedure was proposed which uses the following function,

h(vi, p) =

√(
vx,i − ox

sx

)2

+

(
vy,i − oy

sy

)2

+

(
vz,i − oz

sz

)2

,

where parameter vector p = [sx sy sz ox oy oz]
T and i is the number of the measurement.

If the measurement vi and the gain-offset model of accelerometer measurement are exact,
the function equals one

h(vi, p) = 1 [g]

The optimization procedure finds p using h as a model and 1 as measurement. Optimization
is iterative – each iteration is done by linearization of h(vi, p) at point specified by previous
estimate of p and then finding the optimal change ∆p with minimum variance estimator.
See Lötters et al. (1998) for more details.
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Figure 4.1: 2D sketch of ellipsoid defined by accelerometer parameters and inaccurate esti-
mate from measured quasi-static outputs v of accelerometer.

A drawback of this approach is the fact that the function scales the errors of the
measured acceleration (v) relative to the estimated sensitivity (s). Therefore the results with
greater sensitivities may be preferred in some situations. In situations when too small part
of the ellipsoid is covered by measured quasi-static points, the estimated ellipsoid has longer
semi-axis in the direction of missing data (see the right part of figure 4.1 for principal sketch)
or even the algorithm diverges producing greater and greater ellipsoid in each iteration.

4.3.2 Method 2 (Algebraic fit with constraint)

A large group of fitting methods for nonlinear models is formed by algebraic fitting methods.
They minimize quadratic error of an equation describing the model. Even the previous
method belongs to this group. For a general conic surface, an equation in the form

F (A, b, c, v) = v>Av + bTv + c = 0 (4.1)

may be used.
In some cases, a non-elliptic conic (paraboloid, hyperboloid) may be found when

minimizing the norm of F and the data come from only a small part of the ellipsoid and
are corrupted by noise and other errors. In the case of accelerometer calibration, only an
ellipsoid is desired as the result of the minimization. For 2D case – ellipse fitting – there
is a simple solution with the use of a quadratic constraint in the minimization (Fitzgibbon
et al. 1999). The minimization with the quadratic constraint is solved by the solution of a
generalized eigenvalue problem. Grammalidis and Strintzis (1998) proposed to use the same
method for 3D ellipsoids. They proposed to set a constraint for parameters corresponding
to two of the three axes. Although an ellipsoid is not guaranteed in the 3D case, it is found
in many cases when other type of conic would be estimated if no constraint has been used.

As the original method was developed for general ellipsoids but only estimates of
center position and lengths of semi-axes are needed in our case (the ellipsoid has its axes
parallel to system axes), we simplified the method. See the paper by Grammalidis and
Strintzis (1998) for description of the original method. Simplifications are straightforward:
Matrix A is diagonal in our case,

A = diag(a11, a22, a33).

To specify an ellipsoid, the three diagonal terms must have the same polarity. With a
quadratic constraint, e. g. a11 a22 = 1, we can force two selected terms to have the same
polarity.
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4.3.3 Method 3 (Consistent)

Least squares algebraic fitting of ellipsoids is inconsistent: If a set of measured points is
generated as a set of points on ellipsoid plus centered, independent, identically distributed
errors, then the estimated ellipsoid does not converge to the original ellipsoid as the size of
the sample grows to infinity. Even geometric fitting – minimization of geometric distances
from measured points to the ellipsoid (see bellow) – is inconsistent.

Consistent estimator based on the algebraic LS estimator has been proposed by
Markovsky et al. (2004, 2006) for normal distribution of errors. The Adjusted Least Squares
(ALS) estimator has been proposed for a general ellipsoid. We made its reduction to ellip-
soids with axes parallel to system axes. Short description of the algorithm follows.

Parameter vector

β = (a11 a22 a33 b1 b2 b3 c)

of eq. (4.1), whereA = diag(a11 a22 a33), is estimated in both method 2 and 3. Accelerometer
parameters s and v can be computed directly from the vector.

Algebraic LS fit without constraints may be computed forming vector

y = (v2x v
2
y v

2
z vx vy vz 1)T

for each point, matrix of all data is then formed

Y =

 y(1)T

...
y(N)T

 ,
finally βls = Vmin . . . singular vector corresponding to the smallest singular value of Y .
Alternatively

ψ
(i)
ls = y(i)y(i)T, Ψls =

N∑
i=1

ψ
(i)
ls = Y TY.

Parameter vector is then proportional to eigenvector corresponding to the smallest eigen-
value of Ψls.

Adjusted procedure uses correction ∆ψ
(i)
als to make the estimator consistent under

the assumptions noted above.

ψ
(i)
als = y(i)y(i)T + ∆ψ

(i)
als, Ψals =

N∑
i=1

ψ
(i)
als(vi)

Parameter vector is computed in the same way as for LS estimate based on finding eigen-
vector of Ψ. Singular value decomposition of data matrix Y cannot be used in this case
because matrix Y TY is corrected (not the data matrix itself).
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Correction matrix for the case of ellipsoids with axes parallel to system axes is

∆ψ
(i)
als =



3σ4 − 6v2xσ
2 σ4 − σ2(v2x + v2y)

∗ 3σ4 − 6v2yσ
2

∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

σ4 − σ2(v2x + v2z) −3σ2vx −σ2vy −σ2vz −σ2

σ4 − σ2(v2y + v2z) −σ2vx −3σ2vy −σ2vz −σ2

3σ4 − 6v2zσ
2 −σ2vx −σ2vy −3σ2vz −σ2

∗ −σ2 0 0 0
∗ 0 −σ2 0 0
∗ 0 0 −σ2 0
∗ 0 0 0 0


,

where above v indexes (i) are omitted, σ is the standard deviation of the error, and *
stands for symmetric element. See Markovsky et al. (2004) for details about construction
of correction matrix.

General drawback of using this approach is the potential non-normality of the error
in the case of quasi-static states and its unknown variance. Only some estimate of the
variance may be used in the real situation.

4.3.4 Method 4 (Distance along ray)

In this method distances from measured points to specific points on ellipsoid are minimized
in LS sense. The points gi lie at places where rays from the ellipsoid center o to the measured
points vi cross the ellipsoid. They may be found in a closed form:

g = o+
v − o√(

vx−ox
sx

)2
+
(
vy−oy
sy

)2
+
(
vz−oz
sz

)2 ,
where indexes i of the points were omitted at g and v.

Similar approach using the same points g on the ellipsoid was proposed by Calafiore
(2002) for general ellipsoid fitting, motivated mainly by applications in graphics and com-
puter vision. He proposed to use the metrics specified by semi-axes lengths for criterion.
That may lead to similar problems as described for the method 1. Therefore we rather used
directly the metrics of the measurements.

In our case, Gauss-Newton iterative method was used to find a solution minimizing
the distances of g and v. However, also a semi-definite programming problem formulation
for the similar fitting exists (Calafiore 2002).

4.3.5 Method 5 (Geometric fitting)

Method for fitting ellipses by minimizing the sum of squares of geometric distances from
measured points to the ellipse (Gander et al. 1994) was modified to allow fitting of 3D
ellipsoids:
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Points on ellipsoid nearest to measured points can be parametrized by two angles,
ϕ1 and ϕ2. Then, the difference of a measured point and the nearest one on the ellipsoid is

d =

 vx − ox − sx cosϕ1 cosϕ2

vy − oy − sy sinϕ1 cosϕ2

vz − oz − sz sinϕ2

 ,
where indexes i of the points were omitted at d, v, ϕ1, and ϕ2.

The problem is that the optimization criterion (sum of squares of distances) in this
representation depends not only on the bias and sensitivity but also on values of ϕ1, 2, that
have to be found by the optimization algorithm too. Therefore 6 + 2N variables are used
for N measured points. This fact makes the method computationally ineffective especially
for large samples of measured data. We used Gauss-Newton method to minimize the sum
of squares of the second norms (lengths) of di. It converges to a local minimum and may
diverge in some cases, especially if the initial estimate is far from reality.

An alternative approach to cope the parameter number explosion in this nonlinear
geometric fitting is to use iterative scheme with algebraic fits using weighting dependent on
the distance from the estimated center (Gander et al. 1994).

4.4 Simulations

Ellipsoid fitting algorithms were tested in simulations. ”Measured“ values of acceleration
were generated from a part of the original ellipsoid by adding Gaussian noise to the points on
ellipsoid which were generated as random points distributed uniformly in polar coordinates
with one pole in the center of the used part (cone) of the ellipsoid.

Cones were specified by angles θ from 10◦ to 180◦ (full ellipsoid). Small angles
simulate conditions when a body segment has little variation of inclination for a long time
and therefore only limited range of points is available. Two different positions of the center
of the used part of ellipsoid were considered:

• Orientation 1 at one of ellipsoid axes (this simulates for example the most obvious
placement of sensor on trunk – one axis approximately vertical in standing and sitting).
Axis Z of the accelerometer was used.

• Orientation 2 at the same angular distance from all axes (about 54.7◦) – this orien-
tation of sensor axes relative to dominating direction of gravity was found to achieve
better estimation results by Lötters et al. (1998).

See figure 4.2 for an example of simulation data generated in a cone with the axis in orien-
tation 2 and angle 30 degrees (diameter 60 degrees).

Three different standard deviations of additive error were used (0.01, 0.05, and 0.4
m s−2). Four different numbers of points were used (10, 40, 200, and 1000). For each com-
bination (orientation/standard deviation/sample size) ten instances have been generated.
Initial sensitivity estimate was 9.81 [m s−2] in all axes in all cases, initial bias was set to
zero. Real sensitivities varied up to 0.21 and biases up to 0.5 [m s−2] from the initial ones.

For iterative algorithms (methods 1, 4, and 5), the stopping condition was change
of biases and sensitivities lower than 10−5 of the previous estimate of sensitivities (i.e.
approximately 10−4 m s−2). Maximum number of iterations was set to 100.
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Figure 4.2: Example of simulation data spread in a cone with the axis in orientation 2. Units
m s−2. The ellipsoid is given by the accelerometer bias and gains used in the simulation.

Method 2 was used with two choices of quadratic constraint. One of them (2a)
involved two axes which are horizontal in orientation 1. The second constraint (2b) involved
one vertical and one horizontal axis in orientation 1.

4.5 Simulation results

Errors of estimated ellipsoids were transformed to relative errors of acceleration estimated
using the ellipsoid parameters in the same way as in Lötters et al. (1998),

errsi =
|ŝi − si|
si

· 100 %, erroi =
|ôi − oi|

si
· 100 %,

where s is actual sensitivity, ŝ is estimated sensitivity, o is actual bias, ô is estimated bias.
See figures 4.3–4.4 for mean errors over several instances of task. Each figure rep-

resents different combination of standard deviation and sample size, results for sample size
200 are not displayed to save space. In the left column of each figure results for orientation 1
(one of axes parallel to typical direction of gravity in local coordinates) are displayed and
for orientation 2 in the right column.

Rows correspond to different methods. Each small graph shows error versus size of
cone covered by measured points. If value is not displayed, it is greater than 100 %, iterative
algorithm diverged, or other cone (not ellipsoid) was returned.

Accuracy of estimate increases with increasing range of orientations and is better
if no sensor axis is approximately parallel to the direction of most of the measured points.
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Figure 4.3: Relative errors of accelerations caused by error of gains estimated by the de-
scribed methods versus space angle of quasi-static accelerations. Results for orientation 1
are at the left column, for orientation 2 right. Standard deviation 0.05 m s−2 of the error
of the acceleration points was used.
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Figure 4.4: Relative errors of accelerations caused by error of gains estimated by the de-
scribed methods versus space angle of quasi-static accelerations. Results for orientation 1
are at the left column, for orientation 2 right. Standard deviation 0.4 m s−2 of the error of
the acceleration points was used.
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SD Orientation 1 Orientation 2
[m s−2] N θ θ

0.01 10 – –
40 – –

200 25◦ M4 < M2b 10◦ M3,M4,M5 < M1,M2
30◦ M2a,M4,M5 < M2b,M3
35◦ M2a,M4,M5 < M3 < M2b
45◦ M2a,M3,M4,M5 < M1,M2b
60◦ M2,M3,M4,M5 < M1

1000 10-15◦ M4 < M2b 10-15◦ M3,M4 < M1 < M2
20-25◦ M4 < M2 20◦ M4<M1,M2; M3<M2
30◦ M4<M2a<M2b; M3<M2b
35◦ M2a,M3,M4 < M2b
45◦ M2a,M3,M4 < M2b < M1
60◦ M2,M3,M4 < M1

0.05 10 – –
40 60◦ M3 < M2b 20◦ M3,M4,M5 < M2

200 10-30◦ M4 < M2b 10◦ M4 < M3,M5
35◦ M4 < M2 15-30◦ M3,M4,M5 < M1,M2
45◦ M2a,M4,M5<M2b; M4,M5<M3
60◦ M2a,M3,M4,M5 < M2b
75◦ M2a,M3,M4,M5 < M1,M2b
80◦ M1,M2a,M3,M4,M5 < M2b
90◦ M2a,M3,M4,M5 < M2b

1000 10-35◦ M4 < M2 10◦ M4<M3
45◦ M4 < M2a,M3 < M2b 15◦ M3,M4 < M2
60◦ M3,M4 < M2a < M2b 20◦ M3,M4 < M1,M2
75◦ M3,M4 < M2a < M2b < M1 25-35◦ M1,M3,M4 < M2
90◦ M3,M4 < M2 < M1 45◦ M3,M4 < M2

0.4 10 – –
40 35◦,90◦ M4 < M2b 60◦ M4 < M2

200 30-45◦ M4 < M2b 25-30◦ M4 < M3,M5
60◦ M4 < M2b,M5 35◦ M4 < M3,M5 < M2
75◦ M4,M5<M2; M4<M3 45◦ M3,M4,M5 < M2
90◦ M3,M4,M5 < M2 60-75◦ M3,M4,M5 < M1,M2
105◦ M4,M5<M2a<M1,M2b; M3<M1,M2b 90◦ M3 < M2
120◦ M1,M2a,M3,M4,M5 < M2b

1000 20-45◦ M4 < M2b 15-25 M4 < M3
60◦ M4 < M2,M3 30-45◦ M3,M4 < M2
75◦ M4 < M3 < M2 60◦ M3,M4 < M1,M2
90◦ M3,M4 < M2a < M2b 75-90◦ M3,M4 < M1 < M2
105◦ M3,M4 < M2a < M1,M2b 105◦ M3,M4 < M1,M2
120◦ M3,M4 < M1,M2a < M2b
135◦ M3,M4<M2; M1<M2a
150◦ M3,M4 < M2a

Table 4.1: Comparison of mean errors of the used methods on simulation data. Notation:
M1,M2<M3,M4 means that mean errors of methods M1 and M2 in 10 samples were lower
than mean errors of M3 and M4, all comparisons with P<0.05. SD – standard deviation of
error of data points; N – number of data points; θ – angle defining the cone of data points.
For orientation 1, M2 means M2a,M2b.
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10 p. 40 p. 200 p. 1000 p.
time [ms]

M 1 4 8 23 160
M 2a 0.3 1 3 33
M 2b 0.4 1 3 40
M 3 4 7 17 65
M 4 9 24 87 355
M 5 9 29 1140 ?

Table 4.2: Mean computation time versus method and sample size. The computation time
of method 5 (geometric) for 1000 points was about 1 minute. Due to the time burden, the
method was not used for all the 1000-point datasets from the simulations.

10 p. 40 p. 200 p. 1000 p.
mean number of iterations

M 1 3.8 3.5 3.7 3.7
M 4 5.3 4.9 4.6 5.0
M 5 14.5 13.8 13.9 ?

Table 4.3: Mean number of iterations versus method and sample size. Due to the time
burden of method 5, it was not used for all the 1000-point datasets from the simulations.

The benefit of orientation 2 was already reported by Lötters et al. (1998) for method 1,
results verify it also for other methods of ellipsoid fitting.

Method 1 needed greater range of orientations to converge and to give an ellipsoid
as result than other methods. Other methods gave results also for lower ranges of orien-
tations, although for the lowest numbers of measured points, they did not give very clear
improvement of accuracy. With increasing sample size the accuracy increased especially for
methods 3, 4, and 5 – see figures 4.3 and 4.4 for methods 3 and 4 applied to samples of 1000
points and table 4.1 for comparison of mean errors with samples of 200 and 1000 points.
For orientation 2, only results of M2a are shown as M2. For M2b, the results were mostly
the same. Results are not shown for situations when some of two compared methods did
not find an ellipsoid solution for some of the 10 samples and for situations when both of
two compared methods had the mean errors greater than 10%. Method 2a (axes bind by
the constraint are horizontal in the central position of orientation 1) gave in orientation 1
usually better results than methods 1 and 2b. Method 2b in orientation 1 gave results also
for very low ranges, but it had the biggest errors, even in case when method 1 gave a result
too.

Computational demand of our implementations of the methods was measured as
mean time of run over all instances in set specified by method and number of points. An
ordinary laptop with 2.3 GHz 2-core processor and 64-bit Linux operating system and 64-
bit Matlab R© was used. Instances where the method diverged were excluded as well as all
instances with the cone angle lower than 45◦ to reduce the influence of divergences which
were quite common for the low angles. See table 4.2 for results.
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Figure 4.5: Collection of quasi-static states and estimated ellipsoid. Units m s−2.

4.6 Real data example

Calibration procedure has been applied to inertial data measured at a human subject. The
subject wore an inertial measurement unit MT9 by Xsens on sternum. First, he reached
several positions – standing, sitting, lying at different sides. See figure 4.5 for set of quasi-
static states collected from sternum-placed accelerometers and for ellipsoid defined by sensor
parameters estimated by method 4.

Nonlinear unscented Kalman filter has been built for estimation of sensor orientation
from calibrated accelerometer and gyroscope data (gyroscope bias is estimated as mean
output value in quasi-static periods during short measurement trial) using ReBEL toolkit
(OGI School of Science & Engineering 2008) for nonlinear filtering. See chapter 5 for more
details about almost same algorithm except that here, the magnetometer measurement was
not used. Orientation is used for transform the acceleration measurement to global frame.
Gravitational component is subtracted and Displacement is estimated by double integration.

Since no heading reference is used, the azimuth component of orientation is esti-
mated with strong drift which also corrupts estimate of displacement in horizontal plane.
On the other hand the vertical component of acceleration has a stable estimate. Relative
vertical displacement of sternum estimated as the double integrate of the vertical accelera-
tion component during a part of the same measurement session is shown at figure 4.6. Two
sit-to-stand and stand-to-sit transitions were performed during the trial.

4.7 Discussion and conclusions

Several ellipsoid fitting methods for accelerometer calibration from data measured in quasi-
static states have been described. They include a partially new method minimizing distances
along rays from the center of the estimated ellipsoid. The methods were compared in simu-
lations where the measurements in quasi-static states were substituted by random numbers.
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Figure 4.6: Estimated relative vertical displacement of sternum during transitions between
sitting and standing

In the conducted simulations, the accuracy of all of the methods was similar when
the points were accurate (simulating well static conditions) and covered a large part of the
ellipsoid defined by calibration parameters (simulating a wide range of positions of the body
segment with the accelerometer). Increased number of points lead to increased calibration
accuracy for all the methods.

Method 3 (consistent) gave one of the best results but it uses corrections of data
matrix based on assumptions on noise (zero mean, normal distribution, known variance).
In the reality, real quasi-static data are used, that may be far from fulfilling the criteria due
to the presence of slow movements. In such a setting, method 3 may by of low utility.

From the studied ellipsoid fitting methods, method 4 (distance along ray) gave
usually one of the best results. It has a slower computation but still probably feasible for
most applications.

From the simulation results it appears that if an algebraic method has to be used
and it is known that there will be a low range of measured points and one of the axes will be
usually approximately vertical, using a quadratic constraint binding the two approximately
horizontal axes may help (see method 2a in orientation 1).

As a possible future development of the methods, modification to adaptive procedure
which will forget old and incorporate new data may be done to enable estimation of time
varying parameters and use of inertial navigation methods anytime during long measurement
trials with patients. Quasi-static states may be of different level, therefore they may be
given different weights depending of estimated level of their staticity (Saxena et al. 2005).
Weighting can be applied into most of ellipsoid fitting methods.

Iterative methods shown to be slower than one-step methods. But in case of adaptive
estimation, if it will be implemented such that the used sample of quasi-static data changes
only a little at each adaptation step, then a limited number of iterations or even only one
iteration shall be enough at each adaptation step, so the disadvantage may be reduced.
Moreover, relative change 10−5 which we used as the stopping condition for the iterative
methods may be unnecessarily strict.



Chapter 5

Tremor Quantification with the
Help of Separating
Gravitational Artifact of
Measured Acceleration

This chapter was created by an edit of the accepted author manuscript of Šprdĺık et al. (2011) 1. An older

version of a significant part of the study was presented at a conference (Šprdĺık et al. 2009).

Decomposition of acceleration was investigated as an alternative to commonly used direct
spectral analysis of measured acceleration or angular velocity for tremor quantification.
An orientation estimation algorithm was devised to decompose the measured acceleration
into the gravitational artifact and the motion acceleration caused by sensor motion in an
Earth-fixed reference frame. Resulting signals, beside the measured acceleration and angu-
lar velocity, were used to assess tremor amplitude and frequency by spectral peak detection.
The algorithm was tested on experimental data from a clinical study including patients
with essential tremor. The testing comprised of the classification of measurements to come
from a patient or a healthy control and of the regression of the visual assessment of tremor
amplitude. Small improvements in performance measures were achieved by using the de-
composed acceleration. The regression accuracy was comparable to the accuracy achieved
in other works. The influence of sensor calibration and connections of results to an analytic
approach were analyzed briefly.

5.1 Introduction

Tremor is defined as a rhythmical, involuntary oscillatory movement of a body part (Deuschl
et al. 1998). Its quantification is necessary for clinical monitoring as well as for studies of
movement disorders featuring tremor (Louis and Pullman 2001). Clinical examination with
various rating scales has been the most frequently used approach, although inertial sen-

1This chapter contains additionally paragraph 5.3.1 with median found amplitudes and tremor frequen-
cies. Table 5.7 was reduced compared to the manuscript. The notation and naming were slightly changed.
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sors have also become widely used in research studies. Direct spectral analysis of signals
measured by accelerometers has mostly been employed. This, however, may lead to several
problems including the contamination of the measured linear acceleration by the variable
projection of gravity, which implies the deterioration of a simple estimate of displacement
(or its amplitude) using double integrated acceleration, as used for instance by Louis and
Pullman (2001), Elble (2003). A component of the gravitational artifact may have a fre-
quency that is double of the frequency of tremor due to the non-linear properties of the
periodic alternate movement with a rotational character (Elble 2005). However, similar
frequency doubling may be present even in the movement acceleration.

These problems can be reduced by a suitable arrangement of the test procedure and
a choice of the most suitable sensor axis for the analysis. In a typical case the measurement
is conducted with the patient’s hands kept horizontally and only the sensor axis that is
approximately vertical is processed (Foerster and Smeja 1999, Louis and Pullman 2001,
Morrison et al. 2005). In addition, the hand motion can be restricted as in (Elble 2003). This
case is analyzed with the use of a simplified model of a hand by (Elble 2005). Nevertheless,
analysis of just one sensor axis obscures the other movement components and the choice
of the vertical axis is not always appropriate, especially if some movement task is to be
accomplished, like in tests for intention tremor.

A different approach to cope with the gravitational artifact may be the use of the
magnitude of the 3D output of a triaxial accelerometer. The main idea is that the magni-
tude is steady and equals gravity if no linear acceleration is applied to the sensor, even if the
sensor changes its orientation in time (Veltink et al. 1995, van Someren et al. 1996). Besides
sacrificing the possibility to estimate the direction of the movement when using only the
magnitude of the signal, the measured magnitude minus gravity does not exactly correspond
to the amplitude of the acceleration caused by linear motion because it depends also on the
direction of the movement with respect to gravity. Moreover, a movement with rotational
character may produce some additional DC component in the magnitude while the alter-
nating component may be quite low. Therefore in this case, the amplitude of tremor motion
may be underestimated when using the AC component of the magnitude. Nevertheless,
the magnitude-based approach was used in several studies to roughly quantify a movement
(Frost 1978) or tremor (Kuncel et al. 2007).

Alternative sensors have also their own disadvantages: MEMS gyroscopes (Burkhard
et al. 2002, Rocon de Lima et al. 2006, Salarian et al. 2007b, Giuffrida et al. 2009) may
be a good choice especially for the cases where the movement is limited to a particular
joint near to the site of measurement, or if sensors are placed at several segments of the
arm (Rocon de Lima et al. 2006), but they also obscure some more complex movements.
Displacement sensors like mechanical devices (Matsumoto et al. 1999), camera kinematic
systems (Deuschl et al. 2000), and magnetic systems (Spyers-Ashby et al. 1999) are usually
bulky and expensive. Moreover, the limited resolution of common camera systems makes
the analysis of a very mild tremor infeasible.

Attitude estimation using measured data from both accelerometers and gyroscopes
is a way to decompose the measured acceleration into the gravitational and motional com-
ponents, hence it makes short-time estimates of displacement by double integration feasible.
The bulky size of an inertial measurement unit (IMU) used to be the limiting factor, but
with the advances in MEMS based devices, this is no longer a major issue. Nowadays, even
devices containing accelerometers and gyroscopes suitable for fixing to a human finger are
available – KinesiaTM by CleveMed (Giuffrida et al. 2009). However, in the present work,
slightly larger units were used.
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The task of tremor measurement by a set of inertial sensors that allow decoupling
from the gravitational artifact was already dealt with in several works: Ang et al. (2003)
proposed a pure-accelerometer system for tremor sensing and active compensation of sur-
geon’s tremor in a microsurgical instrument with accelerometer units fixed 10 cm apart from
each other. The size of one of the units was reduced by Latt et al. (2009), but the need of
the two distant sites on a rigid body remains. By Hyde et al. (2008) a system was designed
for estimation of an upper limb orientation from inertial sensors placed at several sites on
the arm. Sensitivity analysis with the use of simulations demonstrated its proficiency at
frequencies of tremor. The proficiency was also demonstrated by means of comparison with
the measurement by a mechanical device. The angle of an elbow joint manifesting tremor
was the observed quantity. However, in this approach a mathematical model of the arm
and a set of several sensor units are needed. By Giuffrida et al. (2009) gravity was not ex-
plicitly decoupled from accelerometer measurement, although sensors potentially allowed it.
Rather, clinical scores were regressed by linear models with several features of the measured
signals acting as inputs.

The goal of our study was to demonstrate the feasibility of quantifying tremor using
the decomposition of the signal registered with accelerometers into the gravitational and
movement components by inertial estimation of orientation (attitude). This is to make the
tremor quantification as independent as possible from the orientation and the direction of
movement of the observed body segment relative to gravity. Frequency spectrum-based
features of the measured signals and of the outputs of the decomposition were extracted
and their performance was compared in two tasks, to classify a single measurement from
one hand or both hands to come from a patient or a healthy control, provided only the
information that the measurement is from a test for postural hand tremor, without the
knowledge of the particular task, to predict a visual assessment of tremor amplitude by
clinicians, without the knowledge of the type of tremor (rest/postural) and particular task.
The performance of the regression was compared to results of other works.

A regression of a visual tremor assessment by quantities from an instrumented assess-
ment was already done in a number of studies. Part of them deal with long-term ambulatory
monitoring of tremor (eg. (van Someren et al. 1993, 1998, van Someren et al. 2006, Salarian
et al. 2007b)), other with short measurements in defined hand positions (eg. (Matsumoto
et al. 1999, Elble et al. 2006, Giuffrida et al. 2009, Mostile et al. 2010)).

5.2 Methods

5.2.1 Subjects

The algorithm was used to quantify tremor on a sample of 59 subjects: 30 patients with
essential tremor diagnosed according to the clinical criteria (Deuschl et al. 1998), age (mean
± standard deviation) 55.8 ± 18.1 years (range 19–81), disease duration 24.8 ± 16.5, Fahn-
Tolosa-Maŕın Tremor Rating Scale score (Fahn et al. 1993) 27.0 ± 13.4 (range 9–67), 8
females, and 29 healthy individuals without any tremor-inducing disorder, age 53.8 ± 17.4
years (range 19–81), 8 females.

5.2.2 Experimental setup and data acquisition

Hand tremor was measured in several conditions, all with the subjects sitting in an armchair
(see figure 5.1),
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Figure 5.1: Sketch of tasks conducted to test rest and postural tremor

• forearms leaned on the armrests and hands hanging freely down,

• forearms leaned on the armrests and hands extended forward horizontally,

• arms held forward horizontally towards a horizontal target placed in front of the
subject at the height of shoulders, hands pronated,

• ”wing” position.

The first task is intended for the assessment of the rest tremor. The other tasks
are intended for the assessment of the postural tremor. Tests lasted 20 seconds and were
conducted twice (except for two subjects). Totally, 464 recordings of tasks to test the rest
and postural tremor were acquired with sensors placed on both hands, that means 928
recordings from a hand in a test were obtained. Whole trials were 8 to 15 minutes long and
included also tests for the intention tremor.

Integrated inertial measurement units MTx R© by Xsens R© were placed on subjects’
hand dorsa over third and fourth metacarpal bones using neoprene bands with hook-and-
loop fasteners. The units measure acceleration, angular rate, and local magnetic field in
three axes. Internally computed estimates of the orientation may be acquired too. The
measured quantities were transmitted with the sampling frequency of 100 Hz by cables to a
personal computer and acquired using our own software. The software served also to identify
starts of the tests by pressing keys on the PC keyboard by one of investigators. The internal
orientation estimates provided by the unit were not acquired because in our original clinical
study we were only interested in the acceleration. Moreover, technical problems with the
software at the beginning of the study hindered the acquisition of orientation estimates.

5.2.3 Preprocessing and inertial estimation

Time-varying gyroscope biases may produce large errors in the estimation of orientation. To
reduce them, they were calibrated out in each measurement trial using the following scheme.
The intensity of movement was quantified by means of variation of the gyroscope signal ω
and the filtered accelerometer signal a (low-pass, 8 Hz) in 0.3 s segments. Segments with
RMS of standard deviations over the 3 axes (σa, σω) lying below the predefined threshold
(0.1 m s−2 and 0.05 rad s−1 for accelerometer and gyroscope, respectively) were marked as
quasistatic. Each segment was characterized by its mean measured angular rate, σa, and
σω. Consecutive segments with similar properties were joined. Gyroscope bias was then
estimated as the mean angular rate in the quasistatic segments. Similar approach was used
for the calibration of accelerometers in several calibration sessions. The sensor was rotated
into 6 different inclinations and the measurements were segmented as described above. The
biases and gains of the accelerometers were obtained using the quasistatic state approach
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(Lötters et al. 1998) with the use of a different optimization procedure (Grammalidis and
Strintzis 1998) and 1/σ2

a as weights in the optimization criterion.

The orientation estimate provided by IMU was not acquired in real-time during
measurement, instead, we applied own estimation of orientation with the use of calibrated
data off-line. The unscented Kalman filter (UKF) (Julier and Uhlmann 1997, Wan and
van der Merwe 2001) was used to fuse the information from IMU data (linear acceleration
in 3 axes, angular rate around 3 axes and 3 components of local Earth magnetic field). The
UKF was chosen as the tool because the unscented transform can propagate covariances
better through a nonlinear system than the more commonly used Extended Kalman filter
(EKF) using linearization of the system equations. Better accuracy of UKF compared
to EKF was demonstrated in a navigation application involving a nonlinear equation of
quaternion update by van der Merwe and Wan (2004). Quaternion update is a fundamental
part of our model too. The filter forms the UKF block in fig. 5.2.

First three blocks represent preprocessing and inertial estimation, the last block
represents amplitude and frequency extraction. Values a, ω, m are the acceleration, angular
rate and local magnetic field, respectively, measured in the coordinate system of the mea-
surement unit. Decomposition outputs are agL (gravitational artifact), aiL (acceleration due
to movement observed in the sensor frame), and aiG (the same quantity transformed into
the Earth-fixed frame).

The data fusion filter is based on quaternion representation of kinematics. Quater-
nions and their algebra provide an efficient tool for representing rotations in 3D lack-
ing the gimbal lock of 3-angle systems (e. g. Euler angles) and using only four numbers
(q = [q0 q1 q2 q3]T) instead of nine in 3×3 rotation matrices, see for example Stevens and
Lewis (2003). The rotation from an Earth-fixed reference frame to the reference frame
of the sensor was used to represent the orientation of the sensor. The rotation matrix R
corresponding to a known quaternion with unit size may be expressed for example by

R =

 q20 + q21 − q22 − q23 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q20 − q21 + q22 − q23 2(q2q3 + q0q1)
2(q1q3 + q0q2) 2(q2q3 − q0q1) q20 − q21 − q22 + q23

 (5.1)

The quaternion representation of the orientation forms the state vector of the data
fusion filter. The angular velocity acts as an input. The projection of gravity and the
projection of the local Earth magnetic field to the sensor coordinate frame are model outputs.
The continuous quaternion update equation and output equations are
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q̇(t) = 1
2 [Ω(t)×] q(t),

agL(t) = R(q(t)) [0 0 g]T,

m(t) = R(q(t))m0, m0 = [cosφm 0 − sinφm]T,

where q is the quaternion of the rotation from the global reference frame to the local
frame of sensor, R(q) is the corresponding rotation matrix, agL is the projection of gravity
to the local reference frame, g is the size of gravitational acceleration, m is the estimated
direction of the magnetic measurement, φm is the local magnetic inclination, and [Ω(t)×] is
the matrix derived from the instantaneous angular rate ω as defined in equation 2.3.

Approximate Euler discretization of the quaternion update was used as the state
update equation in the model,

q(tk+1) = f(q(tk), ω(tk)) = q(tk) +
1

2
[Ω(tk)×] q(tk) Ts, (5.2)

where Ts denotes the sampling period (0.01 s in our case). To ensure numerical
stability of the quaternion estimate, it was divided by its amplitude between samples. Hence,
the norm of the quaternion was forced to equal one. The (calibrated) measured angular
rate ω was used as the input. The output measurements were measured acceleration a as
a measure of the projection of gravity (that is a good measure under static conditions),
measured vector of magnetic field – the sensors used were calibrated to give vectors of
amplitude approximately 1 in non-corrupted Earth magnetic field.

In a standard setting, Kalman filter assumes exactly known inputs. That is not our
case because of the noisy measurement of the angular velocity. The noise was taken into
account using a covariance added to the process noise covariance in the model as shown for
linear systems by Markovsky and De Moor (2005). The instant linearization of discretized
quaternion update equation (5.2) at the estimated quaternion was used as the input matrix,
(time argument omitted)

B =
∂f(q, ω)

∂ω
=

1

2
Ts


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

 .
Then the process noise covariance used was

Q(tk) = B(tk)VωB
T(tk) + εpI4,

where Vω is the covariance of the gyroscope measurement noise, εp is a small constant (10−12

was used), and I4 is diagonal matrix. The small diagonal term was used as imaginary process
noise to cope with errors caused by the discretization and to ensure positive definiteness of
Q.

Simple rules modifying the observation covariance matrix were incorporated to re-
duce influence of magnetic disturbances and influence of movement to the accelerometer
as a sensor of gravity. The rules are based on differences between the magnitudes of the
measured acceleration and magnetic field vectors and the expected sizes.

Ra(tk) = Va + kaN
2
a (tk) I3; Rm(tk) = Vm + kmN

2
m(tk) I3,
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where Va and Vm are covariances of accelerometer and magnetometer noise, respectively.
Local relative discrepancies between found and expected amplitudes of measured signals as
measures of the model outputs are defined

Na(tk) = WA
(
|‖a(τ)‖2−g|

g

)
; tk − n ≤ τ ≤ tk + n,

Nm(tk) = WA (|‖m(τ)‖2 − 1|) ; tk − n ≤ τ ≤ tk + n,

where operation WA stands for a weighted average. The averaging is a filtering by a non-
causal FIR filter with length 2n + 1. The length used was 3 (n = 1) and weights [0.25 0.5
0.25]. Constants ka = 200 and km = 2 were found experimentally by iterating on their
values and comparing a known displacement with the displacement estimated by double nu-
merical integration of the movement acceleration estimated via the orientation estimation
procedure – sensor was moved several times by hand from one place and put back or to
another place at known distance.

The Unscented Kalman filter was implemented using ReBEL Toolkit (OGI School
of Science & Engineering 2008) in Matlab R© without particular focus on computational
efficiency. Having obtained the estimates of orientation, gravity was projected to the sensor
reference frame and subtracted from the measured acceleration. Finally, we analyzed five
3D signals,

a measured acceleration, calibrated,

agL estimated projection of gravity to the local frame, called also gravitational artifact or
component in the text, agL(tk) = R(tk) · [0 0 g]T, where R(tk) is the rotation matrix
determined by the estimated quaternion,

aiL estimated acceleration due to movement in an Earth-fixed reference frame, observed
in the local (sensor) frame, called also motion acceleration or component in the text,
aiL(tk) = a(tk)− agL(tk),

aiG motion acceleration observed in the global Earth-fixed reference frame,
aiG(tk) = RT(tk) aiL(tk),

ω measured angular velocity, with estimated bias removed.

See figure 5.3 for examples of the acceleration decomposition. The obtained motion accelera-
tion can be transformed to the global reference frame and potentially used for an estimation
of position by double integration (figure 5.4).

The signals were measured with the same patient: (a) and (c) are from the first test
on postural tremor, (b) is from the test on rest tremor. Approximate hand positions and
the used axes are displayed. Means were subtracted from a and agL signals to get plots
ranging around zero.

Sensors are subject to errors, especially biases that deteriorate the quality of orien-
tation estimate and consequently our tremor detection scheme. We did some calibration as
noted above. But even if the initial calibration had been perfect, errors could arise from
the drift of biases. Therefore, check was made for additional errors in measured quantities.
Namely, biases of 0.02 m s−2 and 0.01 rad s−1 were added to Y axes of accelerometers and
gyroscopes, respectively. The errors are approximately of the size of the biases found in sin-
gle axes of the sensors used: Biases of the two accelerometers found in one of the calibration
sessions were [-0.019 0.027 -0.017] and [0.021 -0.054 -0.043] m s−2. Gyroscope biases found
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(a) (b)

(c)

Figure 5.3: Examples of decomposition
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Figure 5.4: Example of tremor movement reconstructed by inertial estimation. The dis-
placement estimate (mm) in a one-second interval of a measurement of relatively strong
tremor is displayed (gray). The double integration of aiG was combined with high pass
filtering to eliminate drift caused by the integration of errors in aiG. The estimated orien-
tation of the sensor is visualized at two instants (stars), 0.1 s apart, using black line boxes
(16× 12× 8 mm).
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in the 59 measurement sessions were (mean ± standard deviation) [0.001 ± 0.004, 0.004 ±
0.002, 0.017 ± 0.002] rad s−1 for one gyro and [-0.030 ± 0.005, 0.015 ± 0.002, 0.022 ± 0.003]
rad s−1 for the second one.

The acceleration was decomposed twice in addition to the original decomposition
– using a corrupted by the constant bias and using ω corrupted by the constant bias.
The resulting acceleration components were fed to the spectral peak quantification scheme.
Obtained amplitudes were compared to the amplitudes of the components derived using the
original, calibrated, measurements.

5.2.4 Amplitude and frequency extraction

Fast Fourier transform was used to quantify tremor frequency and amplitude as it is widely
used technique in the field (Foerster and Smeja 1999, Matsumoto et al. 1999, Louis and
Pullman 2001, Burkhard et al. 2002, Elble 2003, Morrison et al. 2005, Giuffrida et al. 2009)
and provides a straightforward representation of frequency distribution of the signal am-
plitude. As alternatives, time-domain algorithms based on thresholds (van Someren et al.
1993), parametric identification methods (Salarian et al. 2007b, Spyers-Ashby et al. 1998),
and techniques based on empirical mode decomposition (EMD) (Rocon de Lima et al. 2006)
have been proposed in the literature.

First, means were removed from signals. Then, power spectral density (PSD) was
computed for every component of a 3D signal via a filtered periodogram. The periodogram
was smoothed by a weighted moving average with the window of width approximately 1 Hz
and triangular weights b defined by

b(k) =
hl − |k|∑m=hl−1

m=−hl+1 hl − |m|
; −hl < k < hl; hl = round(0.5 ∆f); ∆f =

fs
dl
,

where fs is the sampling frequency (Hz), ∆f frequency step in the periodogram (Hz), dl
data length (samples), hl length of a half of the averaging window (number of frequency
steps), and b is the vector of filter coefficients. This method gives a high frequency resolution
compared to averaged periodogram. The length was chosen based on the heuristic idea not
to over-smooth the periodogram and on our visual observations (see figure 5.5 for examples).
The length of 1 Hz coincides with the choice by Timmer et al. (1996), where it was used
to get an initial estimate of PSD to start a more complex adaptive scheme. Frequency
distribution of power of the 3D signal was computed as the sum of the three PSD.

Peaks were detected in the composite PSD by the following algorithm.

1. In the interval 1–15 Hz find all local minima and maxima between them,

2. reduce the number of maxima to get the set of highest maxima separated from each
other by minima deep at least 3 dB (with the value half the lower of the resting
neighbor maxima),

3. take the position of the highest resting maximum between 3.5 and 12 Hz as tremor
frequency fα , where α stands for the name of the signal used (a, aiL, aiG, agL, or ω).

Usually, this algorithm gives the same frequency as a simple position of the maximum
of PSD in the interval 3.5–12 Hz. The difference was especially in the cases where a non-
tremor movement produces a low frequency artifact with amplitude higher than the tremor
peak and with falling slope of PSD crossing the lower boundary of the frequency range of
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Figure 5.5: Examples of PSD estimate

tremor (figure 5.5, in the middle), and in the cases where no marked peak appeared (no
peak separated from the rest of PSD by sufficiently deep minima). The first situation may
arise especially in measurements where a combination of marked voluntary movement and
tremor occurs. As alternatives to find the tremor frequency in presence of other motion,
there may be used parametric methods of PSD estimation, EMD (Rocon de Lima et al.
2006, Slack and Ma 2007), or EKF with a harmonic model of the tremor and low frequency
random noise model of the other motion (Bó et al. 2009).

For each signal α (α standing for a, aiL, aiG, agL, or ω), its amplitude Aα, called
also tremor amplitude in the text, was determined. The amplitude (effective value) was
computed as the square root of the numerical integral of PSD in the ±1 Hz neighborhood
of the detected frequency fα. The width of 2 Hz was found enough to cover the width of
typical peaks, although in some cases parts of sidelobes were missing (figure 5.5). When no
peak was detected, the amplitude was set to zero.

Composite PSD estimates of 3D accelerometer signals from three measurements.
Thin line corresponds to the periodogram method; thick line corresponds to the method of
filtered periodogram. Dashed line corresponds to the PSD estimate of the motion component
of acceleration. Two vertical lines mark ±1 Hz neighborhood of the peak frequency.

5.2.5 Correlations of amplitudes and frequencies detected for dif-
ferent signals

The signals (a, aiL, aiG, agL, ω) were compared in terms of Pearson’s linear correlation
coefficients between the amplitudes (A) and between the frequencies (f) derived from the
peaks detected in their spectra. The cases where no peaks were detected in some of the
signals were removed from this analysis.

Amplitudes may range over several decades, and then linear correlation coefficients
between raw amplitudes may be dominantly determined by several highest amplitudes.
Logarithms of amplitudes reduce the influence of highest values to correlation coefficients.
They were also found to be linearly related to tremor severity as rated by clinicians (Elble
et al. 2006). Therefore, correlations of amplitude logarithms were computed too.

5.2.6 Alignment with hand axes

Part of the measurements was also treated in more detail via the calculation of amplitudes in
individual axes. Estimated axes of hands were used instead of axes of sensors. The relative
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orientation of hand and sensor axes was determined from the task with arms held forward
towards a horizontal target. Rotation matrices were computed using following rules. Axes Z
of hands are considered to be vertically heading up during the test. Axes X are considered
to be parallel to the average of projections of sensor’s axes X (aligned approximately to
proximodistal axes of hands) to horizontal plane. Axes Y then head horizontally to the
left from the view of the subject. Amplitudes obtained for the motion and gravitational
components in the estimated axes were compared.

5.2.7 Differences between groups

The group of patients with essential tremor and the group of healthy subjects were compared
in averages and variances of amplitude logarithms. The amplitude of the acceleration aZ
measured in the direction perpendicular to the hand was analyzed beside the amplitudes of
the 3D signals.

In cases where no peak was detected the amplitude was set to a small value to get
a finite logarithm. The value chosen was 0.0025 for AaZ , 0.01 for Aa, AaiL, and AaiG, 0.001
for AagL and 0.005 for Aω, that is near to the least nonzero amplitude (0.0025, 0.0114,
0.0107, 0.0012, 0.0052 for AaZ , Aa, AaiL, AagL, Aω, respectively). The limited logarithm
calculated in this way from amplitude Aα is denoted Lα.

Two-sample t-test was accomplished to trace differences between the groups. It was
applied to amplitude logarithms from

• the test for rest tremor,

• all the tests for postural tremor taken together.

Two parameters of receiver operating characteristic (ROC) curves were extracted
for the amplitudes from all the tests for postural tremor taken together,

• the area under the ROC curve (AUC),

• potential percentage of correct classification of the signal to come from the group of
patients or controls based on its amplitude.

First, all the parameters were obtained for the scenario that the amplitude derived from
the signal only in one hand in one test was used to classify the subject as a patient or as a
control. In the second scenario, the greater of the amplitudes from the left and right hand
in one test was used. Note that in the first scenario the number of samples was twice the
number of samples in the second scenario because the amplitudes from the left hand and
from the right hand were taken separately.

5.2.8 Regression of visual assessment

In part of the measurements (177 tests with 21 patients and two controls), a video of hands
and arms of subjects was recorded simultaneously with the acquisition of inertial data.
Tremor amplitude in both hands was assessed from the video recordings by two trained
clinicians according to the amplitude assessment in the Fahn-Tolosa-Maŕın Tremor Rating
Scale (0, 1, 2, 3, 4). When scores assessed by the two clinicians differed, the average was
used for statistical analysis. Totally, 354 scores of a hand tremor were obtained (177 tests,
2 hands).
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Rest tremor Postural tremor
Amp [m s−2, rad s−1] Freq [Hz] Amp [m s−2, rad s−1] Freq [Hz]

median IQR max median IQR median IQR max median IQR
Patients
a 0.05 0.07 7.08 5.95 3.10 0.16 0.23 13.46 6.30 2.11
aiL 0.05 0.07 6.64 5.93 3.00 0.15 0.22 13.12 6.28 2.05
agL 0.005 0.009 1.13 5.78 2.25 0.009 0.020 1.09 6.30 1.85
ω 0.018 0.036 3.66 6.53 2.75 0.040 0.059 3.48 6.60 2.15
Norms
a 0.03 0.02 0.15 7.65 2.60 0.07 0.04 0.36 6.95 2.80
aiL 0.03 0.02 0.14 7.60 2.53 0.07 0.04 0.35 6.95 2.78
agL 0.002 0.004 0.015 7.85 2.48 0 0 0.03 8.05 3.15
ω 0.011 0.010 0.084 8.10 2.30 0.015 0.009 0.14 8.15 3.25

Table 5.1: Median and inter-quartile ranges (IQR) for the amplitudes and tremor frequen-
cies in rest and postural tremor in essential tremor patients and healthy subjects. For
amplitudes, also maximum found values are shown.

The score was regressed using the linear least squares method. The regression func-
tions were polynomials with the logarithms (limited, see the previous section) of the obtained
amplitudes as variables. Polynomials in a single amplitude logarithm were used with the
degree up to 15. 2D polynomials were used with total degree up to 15. 3D polynomials
were used with total degree up to 13. For example, the total degree of 2D polynomial in
La, and Lω, b00 + b10La + b01Lω + b11LaLω + b02L

2
ω + b12LaL

2
ω, is considered to be 3 (1 in

La and 2 in Lω).
The leave-one-out method was used to verify the ability of the different polynomial

structures of the regression function to predict the visual assessment. One visual score and
the corresponding set of amplitudes were left out each time. The root mean squares error
(RMSE), mean absolute error (MAE), coefficient of determination (r2), and percentage of
predictions with error lower than 1 (%E<1) were computed as the measures of regression
accuracy.

5.3 Results

5.3.1 Amplitudes and frequencies

Medians and inter-quartile ranges (IQR) of the amplitudes and frequencies provide a de-
scription of the values found in the patients and healthy subjects in our sample. See table 5.1
for the results. Medians and IQR were used instead of means and standard deviations due
to skewed spread of the values, especially of the amplitudes. In the text below, logarithms of
the amplitudes are often used instead of the amplitudes themselves, reducing the skewness.

Amplitudes are calculated from powers, so they correspond to RMS instead of peak-
to-peak. Frequencies are taken only from the cases, when a peak in spectrum was detected.
Amplitudes are taken also from the cases when no peak was detected – then the amplitude
was assumed zero.

In clinical evaluations, most of the patients included in the study exhibitted only
mild to moderate tremor.2

2M. Hoskovcová, O. Ulmanová, O. Šprdĺık, T. Sieger, J. Nováková, R. Jech, E. Růžička: Disorders of
balance and gait in essential tremor are associated with midline tremor and age. 2012. Submitted.
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Correlation Mean difference (%)
Bias in a Bias in ω Bias in a Bias in ω

AaiL 0.99999999 0.999991 0.08 0.2
AaiG 0.99999999 0.999998 0.08 0.2
AagL 0.99998 0.9999 2.8 5.6

Table 5.2: Influence of calibration accuracy Left: Pearson’s correlation coefficients between
amplitudes of 3D signals calculated from the calibrated sensors data and amplitudes calcu-
lated from the data corrupted by additional errors in acceleration (a) and angular rate (ω).
The amplitudes were calculated from peaks in PSD of the signals. Right: Mean relative
differences between the original amplitudes and amplitudes from corrupted signals. Mean
relative difference was defined as the mean of absolute values of the differences between
the two values divided by the maxima of the two values, e. g. for the amplitude of motion
component AaiL obtained from one measurement with the use of the calibrated data and
the amplitude obtained with the acceleration corrupted by additional bias (AaiL, corrupted a)
the relative difference was |AaiL − AaiL, corrupted a|/max(AaiL, AaiL, corrupted a). Where both
amplitudes were zero, the relative difference was also considered zero.

5.3.2 Influence of sensor biases

The amplitudes of acceleration components obtained using the acceleration measurement
corrupted by the additional bias and using the angular rate measurement corrupted by the
additional bias were compared to the amplitudes of acceleration components obtained using
the calibrated data, see table 5.2. The differences between amplitudes were relatively low,
especially for the motion component. The most apparent mean differences were contributed
by several occurrences of the situation, when in calibrated or impaired data a peak was found
fulfilling the criteria stated in section 5.2.4 and in the other not. The relative difference was
100 % in such situation. Note that amplitudes AagL were much lower than amplitudes of
the motion component (see tables 5.1 and 5.5 and figure 5.6).

5.3.3 Relationships between amplitudes and frequencies detected
for different signals

The amplitudes and frequencies were compared in terms of correlation coefficients according
to section 5.2.5. The cases where no peaks were detected in some of the signals were removed
from this analysis. A peak was detected in PSD of a in 891 from 928 tests, in 895 cases for
aiL, 894 for aiG, in 455 for agL, and in 878 for ω. Totally, 449 tests remained with peaks
detected in all the signals.

Correlation coefficient for both raw amplitudes and their logarithms to base 10
are listed in table 5.3. The most correlated amplitudes were AaiL and AaiG. They also
correlate well with the amplitude of the measured acceleration (Aa). Amplitude of the
gravitational component (AagL) correlate better with the amplitude of angular rate (Aω)
than do these two amplitudes with amplitudes of other accelerations (Aa, AaiL, AaiG).
The same holds for the logarithms of amplitudes. Correlation coefficients between peak
frequencies of different signals are listed in table 5.4. The highest correlations are again for
a, aiL, and aiG mutually. Frequency of agL correlates the most with the frequency of ω. The
amplitudes of the gravitational component of acceleration were lower than the amplitudes
of motion acceleration (about one tenth, see tables 5.1 and 5.5 and figure 5.6).
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Corr. of amplitudes Corr. of logarithms
AaiL AagL Aω AaiL AagL Aω

Aa 0.999 0.92 0.93 0.9995 0.94 0.95
AaiL 0.90 0.91 0.94 0.95
AagL 0.996 0.97

Table 5.3: Correlation coefficients between amplitudes derived from spectral peaks of differ-
ent signals Left: Correlations of amplitudes. Right: Correlations of amplitude logarithms.
Correlations of AaiG and its logarithms (not included in the table) with AaiL and its loga-
rithms were greater than 0.9998. Differences between their correlations with other quantities
were lower than 0.0005.

Correlations of frequencies
faiL fagL fω

fa 0.96 0.71 0.68
faiL 0.67 0.65
fagL 0.79

Table 5.4: Correlation coefficients between tremor frequencies derived from different signals
Differences between correlations of faiG (not included in the table) and faiL with others
were lower than 0.0005.

Usually, the frequency of the detected peak was (at least approximately) the same
from all signals where a peak was detected in the same test. In some cases the frequency
differed notably (e. g. fa and fagL). In 238 tests from 928 the maximum difference between
detected peaks was greater than 1 Hz. Most of these cases occurred in tests with signals of
relatively low amplitudes. Part of the cases involved such peaks that the frequency of one
of them was approximately double of the frequency of another one. That may stem from
the nonlinear properties of periodic movement with rotational character mentioned in the
introduction.

5.3.4 Analysis in individual axes

More detailed analysis was done for the test on postural tremor with hands extended hori-
zontally and for the test on rest tremor with hands hanging freely down from arm support.
Amplitudes were computed not only from composite PSD of 3-component signals but also
for all signal components separately. Hand axes were used instead of sensor axes. Ratios
between amplitudes of gravitational artifact and motion acceleration were studied.

See table 5.5 for ratios of gravitational and motion acceleration amplitudes. In the
test on postural tremor the ratio is notably lowest in the Z axis. That agrees with the
results of the analysis realized by Elble (2005). In the test on the rest tremor the difference
between the mean ratios in individual axes is not so high – Z axis is more inclined from
the vertical due to the hanging position of the hand and its sensitivity to changes of the
gravitational component due to rotations is greater.
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X Y Z All
Postural

max 0.50 0.42 0.09 0.17
average 0.18 0.11 0.02 0.07
min 0.05 0.02 0.001 0.03

Rest
max 0.56 1.11 0.51 0.49
average 0.09 0.14 0.10 0.12
min 0.02 0.03 0.02 0.04

Table 5.5: Ratios of amplitudes of gravitational and motion components. That is, mean
and extremal ratios found between the amplitudes of gravitational artifact and motion
acceleration (AagL/AaiL) in tests for postural and rest tremor. The ratio is listed for different
sensor axes as well as for the overall amplitudes of three-component signals. Cases where
some of the two amplitudes was zero were not included in the averaging.

5.3.5 Differences between groups

Means and standard deviations of limited amplitude logarithms were computed. For the
visualization they were transformed back to absolute values and shown in figure 5.6 in
logarithmic coordinates.

In all signals both groups were far from having same mean amplitude logarithm
(P < 10−8). Not surprisingly, in tests for postural tremor the groups were distinguished
better (see figure 5.6). The tests are known to be more suitable to distinguish the groups as
postural tremor is more typical in essential tremor patients than rest tremor. The parameters
of ROC curves were also extracted for amplitudes of each signal in all the tests for postural
tremor taken together.

See table 5.6 for the results. In most of separability measures, amplitudes of motion
acceleration (AaiL and AaiG) and the amplitude of measured acceleration (Aa) distinguished
the groups best. The exception is the P -Value in the first scenario that is lower for the
amplitude of angular rate (Aω). ROC parameters of Aω are comparable to the parameters
of Aa, AaiL, and AaiG in the first scenario.

In some parameters (P -value in both scenarios and potential classification accuracy
in the first scenario), amplitudes of motion components performed a little better than the
amplitude of the measured acceleration. The amplitude derived from the acceleration mea-
sured in the approximately vertical axis (AaZ) performed worse in all the parameters than
Aa, AaiL, and AaiG and in most of the parameters worse than Aω.

5.3.6 Regression of the visual assessment

The visual assessment of tremor severity by clinicians was interpolated by polynomials of
different degrees and in different number of variables. Limited logarithms of amplitudes were
used as the variables. See section 5.2.8 for more details and figure 5.7 for an example. The
proficiency of different regression function structures was quantified by root mean square
error (RMSE) and by the percentage of predicted tremor scores that differed from the values
assessed by clinicians by less than 1 with the use of the leave-one-out methodology. See table
5.7 for an excerpt of results. For the sake of brevity, only several combinations of 2 and 3
amplitudes are shown, that reached the best RMSE. Only results for the two best polynomial
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First scenario: Aα Second scenario: max(Aα left, Aα right)
P -Value AUC Pot. accuracy (%) P -Value AUC Pot. accuracy (%)

AaZ 2.1 10−35 0.783 74.4 9.3 10−24 0.807 78.7
Aa 3.8 10−43 0.809 76.7 7.2 10−26 0.834 79.9
AaiL 2.2 10−43 0.808 76.9 1.5 10−26 0.833 79.9
AaiG 1.1 10−43 0.809 76.9 1.5 10−26 0.833 79.9
AagL 3.7 10−40 0.747 73.6 2.4 10−25 0.793 77.9
Aω 1.3 10−44 0.808 76.1 1.5 10−25 0.821 77.3

Table 5.6: Measures of the separability of the groups of patients and controls in terms of
tremor amplitude of postural tremor. Best values (with some tolerance) are highlighted in
bold. Top: Tremor amplitude taken from a hand in one test. Bottom: Greater of the
amplitudes from the left and right hand in one test. P -Value: P -Values of two-sample
t-tests applied to amplitudes of postural tremor of the group of patients and the group of
controls. Note that in the second scenario, the number of samples is half of the number in
the first scenario. AUC: The area under the ROC curve. Potential accuracy: Percentage
of correct group classifications with the amplitude thresholds set up optimally in terms of
this criterion.

(a) (b)

Figure 5.6: Means and standard deviations of the amplitudes obtained from peaks in spectra
of the measured acceleration in axis perpendicular to the hand aZ , measured 3D acceleration
a, movement acceleration in local coordinates aiL, projection of gravity agL, and measured
angular velocity ω. (a) Amplitudes from the test for rest tremor. (b) Amplitudes from all
the tests for postural tremor. Means and standard deviations were computed in logarith-
mic coordinates. Left (black) bars correspond to the group of patients; right (gray) bars
correspond to the group of healthy subjects.
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Figure 5.7: Mean visual scores and corresponding limited logarithms of the amplitudes
derived for the measured acceleration (La). Scores were regressed by a polynomial in La,
degree = 3, dashed line.

degrees are presented for each amplitude combination shown, plus the results of the first
degree polynomials with one variable (linear regression).

From the first degree polynomials, the regression function using the angular rate am-
plitude had the lowest RMSE. However, when using the optimal degree, regression functions
using amplitudes derived from measured and motion acceleration performed better.

Using more than one amplitude in the regression function usually improved the
proficiency. All the presented regression functions using two and three amplitudes performed
better in RMSE than any regression function using only one amplitude. All the regression
functions using two variables presented in the table 5.7 also performed better or equally in
the %E<1 parameter.

The optimal regression function structure, according to RMSE in the leave-one-out
setting, was a polynomial of total degree 5 in logarithms of the three amplitudes derived
from the angular rate, the motion acceleration in the global reference frame and the motion
acceleration in the sensor frame. The error was 0.377 on the tremor rating scale. For most
amplitude combinations presented, the proportion of predictions with error lower than 1
was about 98 %. The exceptions are 1D regression functions using AagL and Aω.

Coefficients of determination (r2) and mean absolute errors (MAE) were also com-
puted in the leave-one-out setting for the regression function structures presented in table
5.7. From the linear functions, the one using Aω was the best according to both criteria:
r2=0.72, MAE=0.375. From the other regression functions, the one using AaiL, AaiG, and
Aω, degree [1 2 2], was the best according to r2 (0.83) and the one using AaiL and Aω, degree
[5 2], was the best according to MAE (0.273). The coefficients of determination were greater
than 0.8 and MAE lower than 0.3 for all the 2D and 3D regression function structures listed
in the table and for all the 1D polynomials of optimal degrees listed that use Aa or AaiL.
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Best degree Degree=1

Amplitudes used Degree RMSE %E<1 RMSE %E<1

Aa 7 0.402 98.0 0.502 96.9
AaiL (AaiG) 7 0.403 98.0 0.498 96.9
AagL 7 0.516 94.1 0.655 89.5
Aω 5 0.453 95.5 0.481 95.5
AaiL, Aω (AaiG, Aω) 10 1 0.380 98.0
Aa, Aω 5 2 0.384 98.0
AaiL, AagL (AaiG, AagL) 3 2 0.389 98.3
AaiL, AaiG, Aω 1 2 2 0.377 98.0
AaiL, AagL, Aω (AaiG, AagL, Aω) 3 1 1 0.384 97.7
AaiL, AaiG, AagL 1 1 3 0.387 98.3
Aa, AagL, Aω 3 1 1 0.387 97.5

Table 5.7: Results of the regression of the visual assessment. The proficiency of regression
functions was presented for the polynomial degrees that were the best according to the
root mean square error (RMSE) with the leave-one-out method used. Limited logarithms
of the listed amplitudes were the variables of the polynomials. For the polynomials of 2
and 3 variables, the numbers in the Degree columns correspond to degrees in the amplitude
logarithms in the order as listed. Columns %E<1 contain the percentage of predicted
tremor scores that differed from the values assessed by clinicians by less than 1. For the
combinations of amplitudes listed in round brackets, %E<1 was the same as listed in the
table, RMSE differed by less than 0.002. The proficiency of linear regression functions
(polynomial degree = 1) with one variable is presented too.

5.4 Discussion

5.4.1 Relations of amplitudes

Findings about the ratio between the amplitudes of the estimates of the gravitational ar-
tifact and the motion acceleration agree with the analytic findings about the component
of gravitational artifact by Elble (2005): The AC component of the gravitational artifact
is relatively lowest in the (approximately) vertical axis and it is much greater in the other
axes. The ratio implies that in other axes an error of up to tens of percent may occur if the
measured acceleration is directly used to estimate the amplitude of spatial displacement by
double integration.

Following the simplified model in (Elble 2005), the ratio in the proximodistal hand
axis in the first test for postural tremor should be notably higher than that in table 5.5
and observed in the example in figure 5.3(c). The difference can be explained by differences
between the measurement setup and the simplified model:

• The sensors were placed notably above the hand axis.

• Sensor/hand alignment and the orientation itself might be estimated inaccurately.

• Although the flexion-dorsiflexion movement of hands implying the high ratio in the
model was typical in the used test for postural tremor, other movements also occurred.

Amplitudes and frequencies derived from the estimated 3D gravitational artifact
correlate more with amplitudes and frequencies of the angular rate than do amplitudes and
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frequencies of the estimated motion acceleration. That agrees with the fact that any changes
in the gravitational component are only caused by rotations.

5.4.2 Relations to disease and visually assessed severity

Several measures were used to quantify the performance of amplitudes of different signals
to distinguish the group of patients from healthy subjects: parameters of the ROC curve
and the two-sample t-test applied to amplitude logarithms. The amplitudes of the 3D
measured and motion acceleration (Aa, AaiL, AaiG) and the amplitude of angular rate (Aω)
distinguished the groups best according to different criteria. All these amplitudes performed
better in most of the measures than the single accelerometer axis perpendicular to the hand
that is used widely in the literature. In some separability measures, the amplitudes of
the motion component performed better than the amplitude of the measured acceleration.
However, the differences were low.

Polynomial regression functions with suitable inputs and polynomial degrees were
able to predict the visual assessment of tremor intensity with the root mean square error
under 0.4. In about 98 % of the measurements they predicted the score with the error lower
than 1. The performance was very good with respect to the fact that the resolution of the
visual assessment was 1 (0.5 when averaging two raters with different rates). The regression
functions using several amplitudes including the amplitude of motion component performed
a little better than if using the measured acceleration instead of the motion component.

5.4.3 Comparison of visual assessment regression to other works

A number of other works deal with the regression or correlation of a visual rating with
quantities from an instrumented assessment. Part of them deal with a long-term ambulatory
monitoring of tremor (Salarian et al. 2007b, van Someren et al. 1998, van Someren et al.
2006), other part use short measurements in defined hand positions (Matsumoto et al. 1999,
Elble et al. 2006, Giuffrida et al. 2009, Mostile et al. 2010). The first approach differs
from this study as the data were captured and averaged in long time intervals on one
hand, but the setup was more relaxed on the other hand – even measurements from free
movement of persons were included. In the second approach, the setup was tighter than
our: The regression was done for a particular task and well defined hand position each time.
Moreover, various clinical scales were used in the studies as the quantities to regress (or to
use as regressors of measured amplitudes). Due to these facts, it cannot be judged which
regression was of the best quality directly by comparing the coefficients of determination,
residual errors, etc.

A specialized time-domain algorithm using data from accelerometers placed on fore-
arms was presented by van Someren et al. (1993) to assess in daily life the tremor amplitude
and the proportion of time with tremor present. Other movements were also quantified
beside tremor. The algorithm was further refined, ported to different hardware, and vali-
dated by van Someren et al. (1998) and van Someren et al. (2006). Relatively long-term
measurement and simultaneous minute-by-minute UPDRS rating of tremor amplitude were
done. Tremor detection accuracy was good. High correlations were found between the ob-
tained quantities and UPDRS when averaging over long time periods. The correlation of
the estimated mean tremor duration with the mean clinical score was as high as r = 0.96
(r2 about 0.92) in (van Someren et al. 1998). However, without averaging, the correlations
of minute-by-minute quantities were published only within subjects, causing them relatively
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low due to a limited variation of tremor amplitude and occurrence in a single subject: Mean
correlation coefficient was 0.71 (corresponding to r2 about 0.5) in (van Someren et al. 1998).

By Salarian et al. (2007b) another method was proposed to quantify tremor in daily
life using gyroscopes placed on forearms instead of accelerometers. The algorithm was tested
on a sample of 10 patients with Parkinson’s disease (PD) and 10 control subjects. Very high
sensitivity and specificity was found when detecting tremor in periods of 3 seconds in a long
protocol when compared to the visual assessment from a video recording. Correlations up
to r = 0.87 (r2 about 0.76) were found between an UPDRS tremor subscore (items 20+21,
rest and action tremor) and mean logarithm of amplitudes computed from measurement in a
45 minutes long fixed protocol. The protocol was performed immediately after the UPDRS
rating. Similar correlation was found in a free-move setting when averaging amplitude
logarithms in periods of 30 or 45 minutes preceding the UPDRS evaluations.

A wide range of clinical scales and instrumented assessments at several institutions
was studied by Elble et al. (2006). Two regressions respecting approximately logarithmic
relations of amplitudes and clinical scores were done, one of them being linear regression
with the use of the amplitude logarithm as the independent variable. The instrumented
assessment was based on short-time measurements, but the visual assessment was not done
simultaneously. In some sub-studies, the assessment was done immediately before or after
the measurement. In others, the time lag was up to several weeks. In one sub-study, scores
assessing social handicap and amount of water spilled when pouring from one tube to an-
other were used instead of a direct visual assessment of the tremor amplitude. Coefficients
of determination were computed from the published correlation coefficients: The coefficients
range from r2 = 0.17 (for a 0-3 scale, spilled water) and 0.30 (for a 0-4 scale, visual am-
plitude) to 0.74 in sub-studies using accelerometers, from r2 = 0.65 to 0.78 in sub-studies
using digitizing tablets, and r2 = 0.89 in a sub-study using the linkage device (Matsumoto
et al. 1999). The latter result is very good. However, each regression function was trained to
a particular arm position and the correlations were computed for all the data available, no
leave-one-out or similar methodology was used by Matsumoto et al. (1999) and Elble et al.
(2006). Instead, standard errors of the estimated slopes of regression lines were estimated,
being about 10 % of the values, see (Elble et al. 2006), table 2. On the other hand, all their
results may suffer from the fact that the acquisition of the amplitude and the visual rating
by a clinician were not synchronized.

By Giuffrida et al. (2009), a visual score of the postural and rest tremor in PD
patients was regressed using short-time accelerometer and gyroscope measurements. Mea-
surements were done simultaneously with video recordings used for the visual assessment.
The regression results for the rest/postural tremor were r2 = 0.89/0.90 when using all the
data, and r2 = 0.85/0.88, RMSE = 0.32/0.35 when using the leave-one-out approach. The
performance measures are better than ours. However, the resolution of the visual scale they
used was more fine than the scale we used (see Giuffrida et al. (2009), figure 6), reducing
the error caused by the discrete nature of clinical scales. Moreover, the regression function
was trained to assess a concrete type of tremor in a concrete hand posture while we included
several hand postures. In (Giuffrida et al. 2009), all amplitudes from separate sensor axes
were used while we used only the overall amplitudes derived from the composite spectra of
3D signals. On the other hand, only linear functions of the amplitude logarithms were used
as regression functions by Giuffrida et al. (2009), while we used more general polynomials
besides the linear regression by one amplitude logarithm.

Mostile et al. (2010) extended the work by Giuffrida et al. (2009) by correlations
with another visual scale used to quantify the postural and kinetic tremor in patients with
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the essential tremor. A relatively small sample of tremor assessments was used in the study.
The correlation between the score provided by the used system and the visual score in the
postural tremor was r = 0.738 (r2 about 0.54) and error MAE = 0.42. The found accuracy
of the regression is lower than our results. The accuracy may suffer from the fact that they
used much smaller sample of data from a similar number of subjects as we involved.

5.5 Conclusions

Estimates of the motion acceleration caused purely by a translational movement in an Earth-
fixed reference frame and of the gravitational artifact were used for tremor quantification in
addition to the actually measured acceleration and angular rate. The decomposition of the
acceleration into the two components was performed with the use of an attitude estimation
using the data provided by the inertial measurement unit.

The orientation estimation accuracy was not directly validated using any alternative
methodology, but low sensitivity of the proposed detection scheme to corruption of the
measured data with constant bias was demonstrated. It appears that high accelerations of
a severe tremor may influence the orientation estimate. An analysis of this influence and its
reduction are the subjects of the investigations in chapter 7.

The performance in separating the group of patients from healthy persons and in
the regression of the visual tremor rating was good and comparable to the results presented
in other publications. 3D accelerometry was more efficient in separating the groups than
uniaxial accelerometry. The use of the decomposed acceleration further improved the per-
formance in both tasks. However, the differences were low and further investigation may be
needed to make a definite conclusion about the better suitability of the acceleration com-
ponents for tremor detection and quantification when compared to raw measured signals.

Other motion variables like position or velocity are often used to quantify tremor as
they are more related to visual observations by a human than acceleration. In the future
work, they may be estimated from the acceleration and investigated beside the variables
from the presented work in order to find reasonable representation of tremor intensity and
frequency without dependence on particular hand position. More information about the
movement may be also utilized for the regression or classification if amplitudes in separate
axes are extracted instead of the single amplitude for the 3D signal. Then, separating the
gravitational artifact may be more helpful, as the amplitude of its spectral peak manifests
more in some particular axes than in the summed spectrum of 3D acceleration.



Chapter 6

Auxiliary Estimation Methods

This chapter contains a description of two important methods used in the next chapter
about attitude estimation during tremulous rotational motion.

The first of the methods, described in section 6.1, deals with the estimation of the
center of rotation from the data measured by an inertial measurement unit (IMU) containing
3D accelerometer and 3D rate gyroscope. A dynamical state observer is proposed to perform
the estimation and is tested in a very simple example. The center of rotation estimated
during human hand tremor is then used in chapter 7 to increase the accuracy of attitude
estimation.

The second method, described in section 6.2, is dedicated to finding the mutual
orientation of two technical measurement systems of attitude or pose. That means to find

• relative orientation of their reference coordinate frames and

• relative orientation of frames of the objects (parts of the measurement systems) whose
attitudes are measured.

Relative orientation of IMU and Polhemus Isotrak magnetic system estimated by the method
is used in chapter 7 to validate the accuracy of IMU-based attitude estimators.

6.1 Estimation of center of IMU rotation

6.1.1 Introduction

The purpose of this section is to describe the procedure which was used to estimate where
lay the center of the rotation motion of palm during tremor. The obtained center estimate
was used to get estimates of centripetal and tangential acceleration. The acceleration was
then subtracted from the measured acceleration to increase the precision of the attitude
estimation in chapter 7. However, the attitude estimation may be even fused with this
method into one estimator – even in the presented form, the inclination is estimated as a
side product of the center estimation.

The goal is to find the negative of the relative position of the center of rotation
of IMU in the coordinates of IMU, i. e. to find the vector from the center of rotation to
the sensor expressed in coordinates of the sensor. The rotation movement need not to be
a uniform rotation motion, but may be for example an oscillating motion (back-and-forth)
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of rotational character. The center of rotation is supposed to be fixed or to change slowly
compared to the frequency of alternations or rotations. Accelerometer and rate gyroscope
measurements are needed, although inclusion of other sensor readings (e. g. magnetometer)
would be also possible.

An observer-based method with smoothing was used to estimate the vector. The
Extended Kalman Filter (EKF) framework was used with some assumptions about the
noises not fulfilled completely (whiteness, Gaussian distribution, knowledge of variances
and covariances).

6.1.2 Model equations

The inclination of the sensor is stored as the projection to the sensor axes of vertical unit
vector s heading up. Its time evolution in continuous time and a time discretized version of
the equation are

ṡ(t) = −ω(t)× s(t) , sk+1 = e−[ωk×] Ts sk,

where ω is the angular rate of the sensor, in an idealized case measured by rate gyroscopes,
Ts is the sampling period, and matrix [ωk×] is

[ωk×] =

 0 −ωk,3 ωk,2
ωk,3 0 −ωk,1
−ωk,2 ωk,1 0

 .
The vector r from center of rotation to the sensor is modeled as Brownian motion.

ṙ(t) = 0 + vr(t) , rk+1 = rk + vr,k,

where vr is the random time derivative/difference of the vector.
To enhance the observer in the presence of nonzero gyro bias, the bias was also

included in the observer and estimated. If the inclination of the sensor does not change
enough, the bias about the vertical cannot be estimated well by the observer. In such a
case, only part β of the bias b was estimated: β = E b, b̂ = ET β. Matrix E is an identity
matrix if whole bias is estimated, otherwise it is a p× 3 matrix, p < 3, its rows are unit and
orthogonal.

β̇(t) = 0 + vβ(t) , βk+1 = βk + vβ,k

The output of the estimation filter is the expected measured acceleration under the
condition that all the movement is described by the rotation,

ak = g sk + εk × rk + ωk × (ωk × rk),

where ε is angular acceleration, i. e. time derivative of angular rate. Various methods
exist for estimating the derivative of a signal. We used five-point stencil method to estimate
angular acceleration from the measured angular rate off-line and used the estimate as another
input to the system. The fact that the angular rate and angular acceleration as well as their
errors are dependent is neglected in the design of the observer.

The state x, input u, and output y of the system at sample k are

xk = [sTk rTk βT
k ]T

uk =
[
(ωb,k + wω,k)T (εk + wε,k)T

]T
yk = ak + wa,k

wu,k =
[
wT
ω,k wT

ε,k

]T
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where ωb,k is the angular rate plus gyroscope bias (ωk = ωb,k − bk), wu is the measurement
noise of input, and wa,k, wω,k, and wε,k are measurement noises of acceleration and angular
rate and estimation error of angular acceleration, respectively.

6.1.3 Linearization

In an extended Kalman filter, for the output update part of a step of the filter, the system
matrices of a linear system are replaced by appropriate Jacobians of the nonlinear state and
output equations. In fact, for that operation, the system is substituted by an affine system

xk+1 ' xOP,k +Ak (xk − xOP,k) +Bk (uk − uOP,k)

yk ' yOP,k + Ck (xk − xOP,k) +Dk (uk − uOP,k)
, (6.1)

where
yOP,k = h(xOP,k, uOP,k),

h is the (nonlinear) output equation, xOP,k and uOP,k are the state and input defining the
operating point. In a regular extended Kalman filter, xOP,k is the nonlinear prediction from
the previous step.

In our case, the matrices of the linearized state update equation are

Ak =

 e−[ωk×] Ts . −∂sk+1

∂ωk
ET

. I3 .

. . Ip

 Bk =

 ∂sk+1

∂ωk
.

. .

. .


where dots represent zero matrices of appropriate sizes, In denotes identity matrix of size n,
and the partial derivative of sk+1 may be get for example by expansion using the Haddamad
lemma:

∂sk+1

∂ωk,i
'
(
dXk,i +

1

2
L(Xk, dXk,i) +

1

6
L (Xk,L(Xk, dXk,i)) + . . .

)
eXksk

where

Xk = −[ωk×] Ts; dXk,1 =
d

dωk,1
Xk = −

[
[Ts 0 0]T×

]
; . . .

L(a, b) = ab− ba

We used the three members of the expansion.
The matrices of linearized output equation are

Ck =
[

g I3, ([εk×] + [ωk×][ωk×]) , − ∂ak
∂ωk

ET
]

Dk =
[

∂ak
∂ωk

, −[rk×]
]

where (time indices k omitted)

∂a

∂ω
=
d(ω × (ω × r))

dω
=

 ω2r2 + ω3r3 2ω2r1 + ω1r2 −2ω3r1 + ω1r3
−2ω1r2 + ω2r1 ω1r1 + ω3r3 −2ω3r2 + ω2r3
−2ω1r3 + ω3r1 −2ω2r3 + ω3r2 ω1r1 + ω2r2


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6.1.4 Estimation algorithm

As the data are processed off-line, a smoothing filter may be used to estimate the state of
the system described above.

Several approaches were proposed to smooth the state observation of nonlinear sys-
tems. An iterated Kalman smoother was proposed by Bell (1994). The smoother uses affine
Kalman smoother at each iteration. The approach was further extended by Johnston and
Krishnamurthy (2001) and Bell et al. (2009) to handle different smoothing tasks and ad-
ditional inequality constraint. There are also methods based on particle filters and on the
unscented Kalman filter (Šimandl and Duńık 2009).

The iterated Kalman smoother (IKS) was used. According to Bell (1994), a smoother
for a nonlinear system may be constructed as follows:

1. Linearize the system at all the samples at an (operating) trajectory {xOP, uOP}.

2. For the obtained affine system (6.1) make a state estimate by affine Kalman smoother
at all the samples.

3. Go to 1 and use the estimate from step 2 as the operating trajectory, or stop.

The trajectory estimated by a regular extended Kalman filter (EKF) was used as the op-
erating trajectory for the first iteration. The iterations converged fast to an estimate. We
did three iterations. The EKF was run twice before the IKS: First, full bias was estimated
(β = b). Then, the covariance of estimate of b at the last sample was subject to eigenvalue
decomposition to detect the direction, in which the variance of the estimate was the highest.
The standard deviation in that direction was in our cases of alternating motions described
in section 6.1.6 and chapter 7 typically between 0.001–0.2 rad s−1, that was approximately
in the size of the bias, or greater. Therefore, the estimation of bias in this direction did not
make sense. Standard deviations in other directions were typically 10–100 times lower. In
the second run of EKF and by IKS, the bias was estimated only in the two other directions.
The estimate by the second run of EKF was used as the operating trajectory for the first
iteration of IKS as described above.

In a standard setting, Kalman filter assumes exactly known inputs. That is not
our case because of the noisy measurement of the angular velocity and estimate of the
angular acceleration. The noise was taken into account using the covariance of the input
measurement noise Ru added to the process noise and output measurement noise covariances
in the model as shown for linear systems by Markovsky and De Moor (2005):

Qk = BkRuB
T
k +Qorig,k (6.2)

Rk = DkRuD
T
k +Rorig,k (6.3)

Sk = BkRuD
T
k + Sorig,k (6.4)

where Qk, Sk, and Rk are the assumed variances of process noise, output measurement
noise, and their covariance, respectively, Bk and Dk are the input matrices the system
(partial derivatives of the discrete-time state equation and the output equation), Ru is the
covariance of measurement noise of the input, and matrices with orig subscript are the
original covariances of process noise.
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6.1.5 Settings

This section gives a description of the settings of covariances and other parameters used
in the filter when estimating center of rotation of IMU held by hands simulating tremor in
chapter 7.

Needed and generally time-dependent covariance matrices are

Ru = blkdiag(Rω, Rε)
Rorig = Ra
Qorig = blkdiag(Qs, Qr, Qβ)
Sorig = 0;

where sample indices are omitted, blkdiag means block diagonal concatenation of matrices,
and 0 is a zero matrix of appropriate size.

For the sake of simplicity of the filter and computational burden, the noises of
angular rate ω and angular acceleration ε are assumed to be white and independent, although
in fact, neither is true.

Rω is the covariance of measurement error wω of the gyroscope in the frequency range
used.

Rε = 1/3 (2πff )2Rω, where ff is the filtration frequency (20 Hz), is the estimate of
the covariance of the limited violet noise of filtered angular acceleration. The errors
caused by the discrete numeric differentiation were neglected in the provided example
and tremor measurements.

Ra is the covariance of measurement error wa of acceleration a. The error contains not
only the measurement noise, but also the accelerations that are not described by a
rotation movement about a slowly changing center of rotation and that are generally
not white. The variance was estimated from the second run of the EKF as the vari-
ance of output prediction error in ±1 s neighborhood of each sample. Although the
estimate is biased (Odelson et al. 2006) – overestimates the covariance, it is always
positive definite and represents a careful, data-based approach to finding the unknown
covariance. In the initial EKFs, variance of the accelerometer signal was used as highly
overestimated variance of the measurement error.

Qs is the covariance of a small virtual noise of the inclination added to the covariance of
the error from the gyroscopes. This added covariance was used to ensure positive defi-
niteness of Q and to left a space to cope with errors from the discretization. Constant
10−6 Ts I3 was used.

Qr is the covariance of the noise of the Brownian motion model of the center of rotation.
With the sampling frequency of 120 Hz, covariances about 10−7 were found to give
usually smooth estimates of the center of rotation while enabling some degree of its
adaptation to changes in tremor. Higher the covariance, faster was the adaptation
to changes, but also higher were unwanted periodic changes of the estimate during
the tremor oscillations. Therefore, an adaptive scheme was used: The covariance was
estimated by covariance matching (Myers and Tapley 1976) from the second run of
EKF, again with the use of moving average in ±1 s neighborhood of each sample. Only
the diagonal of the result was taken and the terms were limited to lie between 10−4 Ts

and 10−6 Ts. Fixed covariance 10−4 Ts I3 was used in the initial EKFs.
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Figure 6.1: Estimated vector from the center of rotation to the sensor (r) during simulated
tremor. Measured angular rate ω is shown above. The IMU was held by fingers, the X axis
headed approximately in the medial direction (to the wrist), the tremor was dominantly
about the wrist joint.

Qβ is the covariance of the noise of the Brownian motion model of the gyroscope bias.
The bias is supposed not to change a lot during the short measurements. A constant
10−12 Im was used, where m is the size of the part of the bias estimated.

See figure 6.1 for an example of the estimate with the described settings.

6.1.6 Testing on a toy example

6.1.6.1 Methods

An inertial measurement unit Xsens MTx was fixed to a link connected to a base by a 3 DoF
(degrees of freedom) revolute joint. The simple device was build-up from Lego bricks. The
measurement unit could be fixed to the link at two positions. See figure 6.2 for the sketch of
the situation. The positions of the sensor (accelerometer) in coordinate systems with centers
at the joint center and axes parallel to sensor axes were (218.5 10.75 17.5) mm at position
1 and (−123.5 1.25 17.5) mm at position 2 as located by a ruler and/or the knowledge
of the location of the accelerometer in the inertial unit and sizes of Lego bricks with the
assumption of perfect perpendicular alignment of the sensors to the link. The accuracy
is ±1 mm not counting with misalignment errors. The misalignment errors could induce
additional position error especially in Y and Z axes.

The data were measured during two measurement sessions. Accelerometer bias and
gain and gyroscope bias were calibrated from at the beginning of each session. The sampling
frequency was 100 Hz.
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Figure 6.2: Schematic sketch of the link with the 3DoF joint. Two used positions of IMU
on the link are shown.

Position 1 Position 2
X Y Z X Y Z

218.5 10.75 17.5 -123.5 1.25 17.5
1 217.6 9.9 16.4 -122.5 0.7 16.4
2 217.4 9.7 16.4 -123.3 1.0 16.3
3 218.2 10.6 16.7 -121.6† 0.8† 15.9†

4 216.6 9.8 16.4
5 217.0 9.8 16.2
6 216.9*† 9.2*† 16.2*†

Table 6.1: Results of the testing on the LEGO toy example. The numbers in the first row
are the locations of accelerometer from the center of rotation measured with the help of a
ruler. * Different session – misalignment error could differ † Limited range of motion:
approximately ±3◦ about Y and Z axes, less than ±40◦ about X axis.

Data were measured repeatedly during time intervals of 12–30 s when the link was
moved around by a hand whereas the base was fixed to a table.

For the estimation algorithm following settings were used:

• Covariance of the model of center changes Qr = 10−12I3: This small value was used
instead of the adaptive estimation described above because contrary to tremor mea-
surements, no changes of the center of rotation were expected.

• Filtration frequency ff = 20 Hz

6.1.6.2 Results

See table 6.1 for the list of all the results. Mean coordinates estimated in position 1 of IMU at
the link were (mean±standard deviation) rx = 217.3±0.6, ry = 9.8±0.5, rz = 16.4±0.2 [mm].
In position 2 they were rx = −122.5±0.9, ry = 0.8±0.2, rz = 16.2±0.3 [mm]. Root mean
square distance of the center estimated from IMU and center measured with the help of a
ruler was 1.96 mm.
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6.1.7 Conclusions

An off-line procedure for the location of the center of rotation of an IMU was proposed with
the help of iterated Kalman smoother. The procedure gave good estimates in the simple
example, errors being typically about 1 mm in each axis.

The estimate obtained from an IMU fixed to a body part or a device may be used
for subtraction of centripetal and tangential accelerations from the accelerometer measure-
ments, that means, for the estimation of the acceleration at the center of rotation. That
may be used e. g. for increasing the accuracy of attitude estimation of rotating objects or for
estimating the motion of the center of rotation. The essential condition is that the center of
rotation – expressed in the local coordinates of the sensor – do not change fast and that in
the data used for the center estimation, the motion is about all 3 rotation axes. The results
of the example suggest that the excitation need not to be high, see the marked results in
table 6.1.

Possible applications are (not only):

• Calibration of the position of an IMU relative to a human joint. For example the
ankle joint location in coordinates of an IMU placed at shank may be used for the
estimation of the ankle acceleration. The obtained ankle acceleration then may be
used e. g. for heel-off detection in walking or for step length estimation.

• Reduction of the movement artifact of the acceleration measured at a point on a hand
which is subject to tremor around the wrist or other joint. The acceleration mea-
surement modified in this way shall hypothetically increase the accuracy of attitude
estimation, because part of the movement artifact of the acceleration is removed and
therefore a bigger part of the rest belongs to the gravitational artifact which is desir-
able as the input of attitude estimation algorithms. Later in chapter 7, it is shown why
especially the centripetal acceleration may corrupt the attitude estimate. In the used
data set, the accuracy of the hand attitude estimation increased after the subtraction
of the estimated centripetal and tangential accelerations from the measurement.

6.2 Estimation of relative orientation of two technical
systems for attitude measurement

6.2.1 Introduction

The problem of alignment of two attitude measurement systems may arise in different tasks,
one of them being their cross-validation. Such a task is performed later in chapter 7 where
the estimate from inertial measurement unit is validated using Polhemus Isotrak magnetic
measurement system.

The orientation matrix RA of sensor A in reference frame of measurement system A
expressed using the orientation measured by system B is

RA = RsensRBR
T
syst,

or in quaternions
qA = qsyst • qB • qsens

or
qA = QT

systQB qsens

(6.5)
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where orientation matrices RA and RB represent the measurements. They are the rotation
matrices transforming vectors by (left-) multiplication from the corresponding reference
frames to the frames of the moving parts of the sensors (e. g. IMU in an Earth surface-
fixed reference frame, or receiver coils in reference frame of magnetic field transmitter of
magnetic system). Matrix of the relative orientation of the two reference frames Rsyst is the
rotation matrix transforming vectors from reference frame B to reference frame A. Matrix
Rsens of the relative orientation of the two moving parts fixed to the same rigid body is
the rotation matrix transforming vectors from local frame of the moving part B to moving
part A. Unit quaternions (q) correspond to the rotation matrices with the same subscripts.
Symbol q denotes the conjugate quaternion of q. Quaternion multiplication (•) can be
expressed using quaternion multiplication matrices (Q) that are constructed as follows. For
the quaternion q = [a b c d]T the multiplication matrix is

Q =


a −b −c −d
b a −d c
c d a −b
d −c b a


The problem of measurement systems alignment is to estimate relative orientation

matrices Rsens and Rsyst (or corresponding quaternions) from a set of measurements of
orientation A and B.

From one measurement (6.5) we get more unknowns than is the number of equations.
Moreover, the nonlinear participation of the parameters in the equations embarrasses the
direct use of least squares method to an overdetermined system of equations from a number
of measurements.

One possible solution of the problem is the usage of angular velocities which, as
measured by ideal rate gyroscopes, fulfill

ωA = Rsens ωB (6.6)

Matrix Rsens could be estimated from a set of data using overdetermined set of equations
(6.6) and provided that angular velocity is excited enough. Then, Rsyst could be get using
(6.5) from data from a set of static positions that provide for good measurements of RA

and RB. Such an approach has a significant drawback: In (6.6) the measured angular
rate ω suffers from (typically high) differentiation errors in case of its determination from
measured orientations. If measured by rate gyroscopes, ω suffers from bias that may induce
a significant violation in (6.6) especially if the angular rate is low.

Hence, a different original algorithm using only data from static positions and the
relations (6.5) was applied. The algorithm uses pairs of measured static orientations to get
a set of rotations from one orientation to another. In the equations for these rotations the
matrices Rsens and Rsyst are decoupled, contrary to (6.5). The matrices are then estimated
by a least squares algorithm applied to the axis-of-rotation part of the rotation quaternions.

6.2.2 Derivation

In the following text, most of equations are written redundantly both in rotation matrices
and quaternions. The calculation of rotational matrix from quaternion is possible e. g. by
usage of (5.1), see for example Stevens and Lewis (2003).

Assume that we have two different orientations 1 and 2 and their measurements
R
{1}
A , R

{1}
B and R

{2}
A , R

{2}
B which satisfy (6.5) with constant and unknown Rsens and Rsyst.
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The difference of the two orientations is

qd,A = q
{1}
A • q{2}A Rd,A = R

{2}
A R

{1}T
A ,

qd,B = q
{1}
B • q{2}B Rd,B = R

{2}
B R

{1}T
B ,

(6.7)

Such obtained quaternions and rotation matrices specify the rotation from orientation 1 to
orientation 2 of the corresponding sensor in its appropriate reference frame.

In a similar way, let us define rotations using the quaternions as in (6.7) but with
swapped conjugation:

qd2,A = q
{1}
A • q{2}A Rd2,A = R

{2}T
A R

{1}
A

qd2,B = q
{1}
B • q{2}B Rd2,B = R

{2}T
B R

{1}
B

(6.8)

Now, substituing (6.5) to (6.7) and (6.8) we get

qd,A = qsens • qd,B • qsens Rd,A = RsensRd,BR
T
sens

qd2,A = qsyst • qd2,B • qsyst Rd2,A = RsystRd2,BR
T
syst

(6.9)

Hence, for two measurements of orientation we get two equations, one for qsens and and one
for qsyst. The equality signs in the quaternion equations above mean equality of orientations
or rotations, that means that negatives of the unit quaternions may be also used.

Rewriting (6.9) using quaternion elements and expression for rotation matrix by
quaternion elements we get

qd,A =


qd,A(0)

qd,A(1)
qd,A(2)
qd,A(3)

 =


qd,B(0)

Rsens

 qd,B(1)
qd,B(2)
qd,B(3)




and

qd2,A =


qd2,A(0)

qd2,A(1)
qd2,A(2)
qd2,A(3)

 =


qd2,B(0)

Rsyst

 qd2,B(1)
qd2,B(2)
qd2,B(3)




Note that the first element of a rotation quaternion corresponds to the amplitude of the
rotation while the other elements define the axis of rotation.

Having a larger set of different data qd,A, qd,B, qd2,A, and qd2,B the alignment ma-
trices can be estimated by least squares algorithm applied to the axis-of-rotation part of the
unit quaternions. It is the task of finding rotation transformation for matching two point
patterns (Umeyama 1991), or Wahba problem (Wahba 1966). The problem may be solved
with the use of singular value decomposition (Markley 1988).

6.2.3 Alignment procedure used for hand tremor measurement

The actual alignment procedure used in chapter 7 follows. In the above described general
alignment procedure, as qA is used qIMU – the attitude measured by the inertial measurement
unit, and as qB is used qIso – the attitude measured by the Polhemus Isotrak device.
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1. Place the board with Isotrak receiver and MTx to different static positions and orien-
tations in approximately the same volume as the sensors will be later used for mea-
surement. Have the data synchronized and accelerometers calibrated. Approximately
known Rsens was used for transformation of angular rate ωIso for data synchronization
(see section 7.4.1.1).

2. Split the data into equidistant intervals. Interval length of 0.5 s was used.

3. Remove the intervals which are not static. Standard deviation of all three accelerom-
eter signals being lower than 0.1 m s−2 was used as the criterion of staticity.

4. For each static interval k get q
{k}
Iso as the quaternion of mean orientation retrieved

from Isotrak in the interval. For orientation averaging the Euclidean sense (Moakher
2002) was used, i. e. the rotation matrix of the average rotation was get as the unique
polar factor in the polar decomposition of the arithmetic mean of acquired rotation
matrices.

5. For each static interval k get R
{k}
IMU and q

{k}
IMU from MTx data. The orientation of MTx

was get by the following algorithm:

(a) a is the mean acceleration measured in the interval, m is the mean magnetic field
projection measured in the interval.

(b) Get the third column Z of R
{k}
IMU as a/‖a‖2.

(c) Get the second column Y of R
{k}
IMU as Z ×m divided by its 2nd norm, × denotes

cross product.

(d) Get the first column of R
{k}
IMU as Y × Z.

6. Take all two-element combinations of static intervals. For each combination {i, j},
i < j, compute q

{i,j}
d,IMU = q

{i}
IMU • q

{j}
IMU. In the same manner compute q

{i,j}
d,Iso , q

{i,j}
d2,IMU,

and q
{i,j}
d2,Iso using (6.7) and (6.8).

7. Remove combinations with small differences between the two positions. They usually
represent combinations of two 0.5 s static intervals measured in same position. A limit

on the first element of the difference quaternion was used as the criterion: |q{i,j}d,IMU(0)| >
0.99. That corresponds to angular difference lower than approximately 16 deg.

8. Remove combinations with differences about 180 deg. The reason is that quaternions
[α a b c]T and [−β a b c]T, α and β being very small positive numbers, represent almost
same rotations but their axis parts after dividing by signs of angle parts (±[a b c]T)
are inverse. That would cause problems with the alignment algorithm used. A limit
on the first element of the difference quaternion was used as the criterion for removal:

|q{i,j}d,IMU(0)| < 0.05. That corresponds to angular difference greater than approximately
174 deg.

9. From this point on, two Wahba’s problems are solved for axis-of-rotation parts of
quaternions by the algorithm of Markley (1988).

Construct n × 3 matrix A1 from n remaining quaternions qd,IMU. The last three
elements of each quaternion form one row of A1. In a similar manner construct P1
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from quaternions qd,Iso except that multiply each row by −1 if corresponding qd,IMU(0)
and qd,Iso(0) have different polarity.

Construct A2 and P2 from quaternions qd2,IMU and qd2,Iso in the same manner as A1

and P1 from qd,IMU and qd,Iso.

10. Perform singular value decompositions:

U1D1 V
T
1 = AT

1 P1

U2D2 V
T
2 = AT

2 P2

Define

Si =

 1 0 0
0 1 0
0 0 det(Ui V

T
i )

 , i ∈ 1, 2, det(Ui V
T
i ) = ±1

11. The estimate of alignment matrices is

Rsens = U1 S1 V
T
1

Rsyst = U2 S2 V
T
2

12. To transform orientation measurements from one measurement system to another,
use (6.5) with the calculated Rsens and Rsyst or with their inverses depending on the
direction of transformation.



Chapter 7

Attitude Estimation during
Tremulous Motion

This chapter deals with accuracy of inertial attitude estimation during tremulous movement
inducing high accelerations. The acceleration deteriorates the measurement of projection
of gravity into the sensor coordinate frame. The level of deterioration of attitude filter
output depends on movement intensity, movement type, and estimation algorithm used. The
influence of the structure of the attitude observation filter to the accuracy of the estimate
is studied and several recommendations are proposed to improve the accuracy, some of
them using assumptions about the movement being typical static tremor. The properties
of algorithms are studied analytically in part and with the help of simulations: numerical
simulation of static tremor around a single rotational joint and mimicking severe hand
tremor by healthy humans. Besides the general outputs, this study provides some picture
of what could be the accuracy of the attitude estimation during tremor in chapter 5.

7.1 Introduction

Inertial estimation of inclination, attitude (orientation), or position in space are sometimes
used and still have a potential in the field of human motion analysis. A motion analysis is
used especially in the motion disorders and many of them (e.g. Parkinson’s disease) come
with a tremor of extremities or other body parts. To our knowledge, nobody has studied
the influence of the tremor to the accuracy of the inertial estimation. Related to the theme
are the publications about the gravitational component in acceleration measurement of the
tremor (van Someren et al. 1996, Elble 2005). The approach of Elble (2005) was used
partially also in our study: to model a hand tremor as an oscillation about a fixed revolute
joint. This is accompanied by a validation on measurements of a hand tremor simulated by
healthy persons.

An inertial estimator of the above mentioned quantities suited to tremor may be
helpful in the situations when

• just a good estimate of a quantity is desired, e.g. to study a voluntary motion, but a
tremor is present and makes a distortion, or

• the tremor itself is the subject of the analysis and a more detailed description of it than

70
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only by an amplitude and frequency of a measured signal is wanted, e.g. trajectory
of the orientation or pose. An example of an attempt of a more detailed analysis is
provided in chapter 5.

The basic idea of this study is that in all typical inertial estimation algorithms –
independently if a Kalman filter approach is used, or a fixed-gains observer – a rate gyroscope
is used to estimate the orientation at high frequencies and an accelerometer, sometimes
accompanied by other sensors, is used to estimate the inclination or orientation at low
frequencies. In the filters, the cut-off frequency where the influence of the gyroscope and
accelerometer smoothly swaps is usually about or less than 1 Hz: See e.g. Xsens Technologies
(2005) where it was recommended to use 1 Hz in the older version of MTx firmware or
Mahony et al. (2008) where the cut-off frequency calculated from the used gains was about
0.32 Hz for an application in small flying vehicles instrumented with MEMS inertial sensors.
That means, cut-off frequencies below the frequencies of human tremor are used: e. g.,
4–12 Hz for essential tremor, 3–7 Hz (rarely more) for Parkinson’s disease tremor, 3–5 Hz
for cerebellar tremor, about 16 Hz for orthostatic tremor (Deuschl et al. 1996, 1998, Hallet
1998). Therefore during tremor, the intra-cycle change of the inclination or attitude estimate
is given dominantly by the measured angular rate, while the absolute inclination is given
by fusion of all the sensors. If the body part does not move much and the tremor is
the only marked motion, the “mean” inclination is given dominantly by the accelerometer
measurement which is used to provide an instantaneous measurement of inclination: its
gravitational component.

The acceleration measurement comprises from the gravitational component and the
movement component. Only the gravitational component is wanted as the measurement
in inclination/attitude estimation algorithms where no detailed motion model is available.
All other components form measurement distortions, especially the acceleration of the mo-
tion in an Earth-fixed reference frame. If the tremor induces high accelerations, also this
distortion is high. Pathological tremor can induce high accelerations, see section 5.3.1 for
the amplitudes in a study of essential tremor with the subjects having mild to moderate
essential tremor. The essential thing for the inertial estimation algorithms during tremor
is how to fuse the distorted accelerometer measurement of gravity to get the inclination
estimate at low frequencies as accurate as possible.

It is obvious that the following phenomena have little influence to the accuracy if
the low frequency component of the acceleration measurement is used as low frequency
component of inclination:

• zero-mean noise

• high frequency periodical and symmetrical translational motion

because at low frequencies, the accelerometer measurements caused by them are near to
zero.

A different situation is for a rotational motion. If a periodic rotational motion
is present, the mean accelerometer measurement provides a biased estimate of inclination
especially due to the centripetal acceleration. The situation is described in more detail in
the next section and is of the essential interest of this study.

Discrete movements, usually of a voluntary origin, may be measured. The atti-
tude estimation performance during them is more hard to describe and it also depends on
the ratio of the movement speed and the accelerometer/gyroscope cut-off frequency. Dis-
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crete movements are not in the focus of this study and rather a separated static tremor or
superposed with only a slow motion is of the interest.

In the next section (7.2), the situation when a body part moves periodically about
a fixed joint and the movement has a sinusoidal time course of the angle is studied. Dif-
ferent ways how to estimate the central inclination from accelerometer measurements are
proposed and compared mainly with the use of numerical calculations. Section 7.3 describes
various simple algorithms for attitude estimation including a method for estimation of the
deteriorating centripetal acceleration. Two alternative approaches how to cope with dete-
riorating movement accelerations are also mentioned there: A greater set of measurement
units and more complex model of arm using some anatomical properties and sensor place-
ment known in advance (Hyde et al. 2008) and on the contrary, using motion modeled just
as first-order dynamical system without any other parameters (Luinge and Veltink 2005).
The described algorithms are then used in section 7.4 together with the auxiliary algorithms
described above in chapter 6 to validate the different ways of the usage of accelerometer
measurements in the attitude estimation in tremor simulations by healthy humans.

7.2 Mean inclination estimate during oscillation about
a revolute joint

7.2.1 Introduction

This section provides an analysis of mean inclination estimate by an accelerometer during
alternating rotational movements. The motion is rotational about a fixed center or axis of
rotation and the angle of the joint is oscillating. Harmonic time course of angular rate is
considered.

For the sake of simplicity, the IMU is considered to have one axis (longitudinal, X)
aligned to the line between the center of rotation and position of the sensor, another sensor
axis is horizontal in the central orientation, heads to the left (Y). The choice of axes does
not affect generality. Two basic movements are studied:

• Oscillation about the horizontal axis. That is an idealized model of flexion/extension
hand tremor. It is also called up-down tremor below.

• Oscillation about the axis parallel to the Z axis of the sensor. It is also called left-rigt
tremor below.

See figure 7.1 for a sketch of the three types of movement. The dash-dot line symbolizes the
central direction of the longitudinal axis of the sensor. Symbol ϕ0 denotes angular amplitude
of the movement. Symbol θ0 denotes pitch (0 to π, 0 = down) of the central direction. The
central direction is get by an averaging on sphere. Thanks to the symmetricity, the central
direction may be also get by simple arithmetic averaging in time of vectors from the center
of rotation to the position of the sensor. For the first type of motion, the inclination of the
central direction may be get also by averaging in time of the projection of gravity to the
axes of the sensor unit.

7.2.2 Mean inclination estimate from accelerometers

Terrestrial strap-down inertial navigation uses accelerometer measurements to represent in-
clination, i.e. the direction of the projection (ag) of gravitational component of acceleration
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Figure 7.1: Sketch of the alternating rotation movements types considered. Sensor is shown
in its central position as a box.

to the sensor axes. When considering situation that no other sensor like a magnetome-
ter is used, the accelerometer is the only sensor that provides an information about IMU
orientation at low frequencies. There are two ways how to approach the acceleration as a
measurement of inclination. In both cases we assume that the orientation or inclination is
estimated by a dynamical observer driven by angular rate measurement.

1. Take the estimated ag as the output of the observer and use the actual accelerometer
measurement as its measurement.

2. Take the direction of estimated ag as the output of the observer and use the direction
of actual accelerometer measurement as its measurement.

The second case is close also to the situation when the instantaneous acceleration mea-
surement is used together with another sensor of a physical field (e.g. magnetometer) to
estimate the instantaneous attitude and the attitude is then used as the output measure-
ment of an observer which fuses it with the gyroscope measurement. The main difference of
the two cases above is that the measurement of acceleration is used in the first case, while
its direction in the second case. This seemingly small difference may have great influence
when working with the measurement of an output of a dynamic attitude observer. Then at
low frequencies, the inclination as estimated by the attitude filter tends to

• the direction of a low frequency component of acceleration in the first case,

• a low frequency component of the direction of acceleration in the second case.

These two values may markedly differ as will be shown later.
When estimating full orientation of the sensor, the orthogonality of the estimate

must be ensured after the measurement update. That depends strongly on the orientation
representation used and may be ensured by different ways: orthogonalization of generally
nonorthogonal estimate after the measurement update, or including the criterion of orthogo-
nality into the data model and measurement update. The second approach may be provided
by using only the direction of actual accelerometer measurement (or an instantaneous at-
titude estimate from accelerometer and magnetometer) as the output measurement and
operations restricted to SO(3) in the measurement update (Mahony et al. 2008).

Let us show an example of the mean inclination estimation by an accelerometer.
See figure 7.2 for acceleration measurement and inclination estimates in the situation from
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Figure 7.2: Measured acceleration (m s−2) and estimates of inclination and mean inclination.
Black lines originating in 0 show mean inclination estimates by (from up to the left): mean of
gravitational component of measured acceleration; mean measured acceleration; direction of
acceleration averaged in the euclidean space; direction of acceleration averaged in the space
of the angle (dashed). The estimation error is 0, 9, 24, and 66 deg, respectively.
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figure 7.1a (up-down tremor). Mean inclination θ0 is 90 deg, radius r = 10 cm, frequency of
tremor 5 Hz, angular amplitude of tremor ϕ0 = 10 deg.

The gravitational component of acceleration is not generally known. Therefore,
only the other estimates of mean inclination are available. From them, in this particular
example, the inclination of the mean measured acceleration is by far the best (9 deg).
Its error comes from the centripetal acceleration that is the main source of the curvature
of the time course of the measured acceleration. For the other estimates – averages of the
acceleration measurement directions in the Euclidean and angle spaces – the errors are much
higher. The increased errors come especially from the amplified direction change when the
amplitude of acceleration reduces bellow |g|.

If one wants the mean acceleration to estimate the mean inclination but uses only the
inclination or orientation in each sample estimated from accelerometer (and magnetometer)
in the observer, there is a straightforward approach: Do not let the acceleration filtering
only on the observer but prefilter the measured acceleration by a low pass filter with the
cut-off frequency below the frequency of tremor before using it in observer.

7.2.3 Simulations of model tremor

See figures 7.3 and 7.4 for the estimation errors of the central inclination in regular, sym-
metrical, and sinusoidal movements as sketched on figure 7.1a and 7.1b, respectively. Three
different central inclinations were used (columns of graphs) and three different distances
from the center of rotation (rows of graphs). In each subfigure, the estimation errors are
shown for three frequencies as functions of the angular amplitude ϕ0 of the tremor.

The errors were get as the differences between the central directions and the mean
inclinations estimated from the accelerometer measurements: Direction of the mean mea-
sured acceleration; direction of acceleration averaged in the Euclidean space; for the situation
from figure 7.1a also average pitch angle that was estimated from acceleration in each single
moment. The estimates were get numerically by averaging on a single period of movement.
The period was discretized to 1000 samples. The acceleration at sample k was computed by

ak = Rk [0 0 |g|]T + εk × rk + ωk × (ωk × [r 0 0]T), (7.1)

where Rk is the orientation matrix specified by the actual angle of the tremor and by
the central inclination. The angle, angular rate ω, and angular acceleration ε are har-

monic. The computation of the mean acceleration was simplified using
∫ 2π

0
sc(t) dt = 0 and∫ 2π

0
sin(α sc(t)) dt = 0, where sc stands for sin or cos and α is a real constant.

The tremor simulations may represent some model types of tremor:

• The up-down tremor with central pitch θ0 = 90 deg and r = 10 cm represents a flexion-
extension tremor of horizontally outstretched hand.

• The up-down tremor with θ0 = 45 deg and r = 10 cm represents a flexion-extension
tremor of a hand hanged down from an armrest of a chair.

• The left-right tremor with θ0 = 135 deg and r = 3 cm represents a pronation-supination
tremor of a hand hanged down from an armrest of a chair measured by a sensor fixed
to the dorsum of the hand.

• The left-right tremor with θ0 = 90 deg and r = 40 cm represents a flexion-extension
tremor of a forearm in wing position with arms outstretched and forearms flexed such
that the fingers of the two hands come close in front of the chest.
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Figure 7.3: Errors of different estimates of inclination of the central sensor orientation
(degrees). Rotation about horizontal axis (up-down tremor). Mean stands for averaging in
an infinite interval or in a period of oscillation. Angle stands for pitch of the longitudinal axis
of the sensor computed from an accelerometer measurement. Trios of curves correspond to
three oscillations with frequencies of 4, 6, and 10 Hz from bottom up, respectively. Beware
the different range of the horizontal axis of the graphs in the last row.

See figures 7.3 and 7.4 for the results. For the left-right oscillations (fig. 7.4), the
error grows with growing angular amplitude of tremor (ϕ0), growing distance r, and growing
frequency of tremor. Usually, it also grows with growing central inclination θ0. The errors by
averaging the directions of accelerometer measurements are always greater than by averaging
the raw measurements. The difference is not very big and grows with growing θ0, r, and
frequency. For small amplitudes ϕ0 the difference also grows with growing ϕ0.

For the up-down oscillations (fig. 7.3), the situation is more complicated. The er-
ror by averaging the raw measurements also grows similarly as described for the left-right
tremor. But the errors by averaging the directions of accelerometer measurements often
have non-monotone curves. For small θ0 and for high amplitudes at high frequencies, the
error is much higher than the error by averaging raw acceleration. On the other hand,
for combinations of high θ0 and low ϕ0, especially also with low frequencies, the error by
averaging directions of measured acceleration may be lower than by averaging the raw ac-
celeration. See figure 7.3, r = 3 cm, θ0 = 90 deg or 135 deg, f = 4 Hz for extreme cases,
when averaging directions gives very low error. Averaging directions in the space of the
angle gives always the error greater or equal to the error by averaging the direction vectors
in the Euclidean space.
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Figure 7.4: Errors of estimates of inclination of the central sensor orientation (degrees).
Rotation about an axis parallel to Z (left-right tremor). Trios of curves correspond to three
oscillations with frequencies of 4, 6, and 10 Hz from bottom up, respectively. See figure 7.3
for the legend. Beware the different range of the horizontal axis of the graphs in the last
row.



78

7.3 Attitude estimation algorithms

This section provides the description of the simple estimation algorithms which were used to
estimate the attitude if IMU from the data from tremor simulation by humans. They were
not specially tuned to be numerically effective nor to provide optimal results. Rather, similar
fixed settings were used for all the algorithms to demonstrate and compare the influence of
the ways how the acceleration measurements were incorporated.

7.3.1 Common features of the used algorithms

The attitude is represented by a unit orientation quaternion q = [q0 q1 q2 q3]T that form the
state of the estimation filter. The orientation quaternion is the quaternion of the rotation
from the global reference frame (axis Z vertical, heading up) to the IMU reference frame.
Its time evolution is described by differential equation

q̇(t) =
1

2


−q1(t) −q2(t) −q3(t)
q0(t) −q3(t) q2(t)
q3(t) q0(t) −q1(t)
−q2(t) q1(t) q0(t)

 ω(t) =
1

2
DQω(t) q(t) , (7.2)

where ω(t) is the actual angular rate of IMU in its local coordinate frame and

DQω(t) =


0 −ω1(t) −ω2(t) −ω3(t)

ω1(t) 0 ω3(t) −ω2(t)
ω2(t) −ω3(t) 0 ω1(t)
ω3(t) ω2(t) −ω1(t) 0


For the need of extended Kalman filter (EKF) used to estimate the quaternion, the

equation was discretized by the Euler method. The use of the continuous-time equation for
prediction would be also possible but its utility is limited by the discrete measurement of
ω. The quaternion was divided by its norm in each step to force it to be a unit quaternion.

Angular rate is treated as an input to the system acting in the state equation –
discretization of (7.2). In a standard setting, Kalman filter assumes exactly known inputs.
That is not our case because of the noisy measurement of the angular velocity and estimate
of the angular acceleration. The noise was taken into account using the covariance of the
input measurement noise Ru added to the process noise and output measurement noise
covariances in the model as shown for linear systems by Markovsky and De Moor (2005),
see (6.2)–(6.4). Settings of the covariance matrices are listed in the section 7.4.1.3.

Two structures of model output were used: In the first algorithm, the estimate of
gravitational component of acceleration was the output and an acceleration was used as
its measurement. In the second algorithm, the estimate of orientation quaternion was the
output and an estimate of orientation from acceleration and local Earth magnetic field was
its measurement. A triaxial magnetometer, or electronic compass, was used in addition to
accelerometer in the second algorithm.
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7.3.2 Algorithm A: Output = gravitational component of acceler-
ation

The output of the attitude estimation filter is the gravitational component ag of acceleration
as measured by an accelerometer (equals minus gravity in the coordinates of IMU).

ag = R

 0
0
g

 = g

 2 (q1q3 − q0q2)
2 (q2q3 + q0q1)
q20 − q21 − q22 + q23


where time argument t of ag, R, and q was omitted and rotation matrix R(t) corresponds
to the unit quaternion q(t).

As the input measurement, the measured angular rate was used. In the case of
measured data, an estimate of the bias was subtracted before.

As the output measurement, an estimate of ag from measured acceleration a was
used, see part 7.3.5.

7.3.3 Algorithm M1: Outputs = gravitational component of accel-
eration and projection of Earth magnetic field

In this algorithm, the state equation was the same as in the first algorithm as well as the
treatment of the input.

Part of the input was the same: ag, but in addition to it, also the projection of the
Earth magnetic field to the sensor coordinates was used. The assumed unit of the magnetic
field measurement was the intensity of the field at the Earth surface, making the actual
projection a unit vector.

m = R

 cosφm
0

− sinφm


where time argument t of m and R was omitted.

As the output measurement, an estimate of ag and the measurement of m by IMU
was used.

7.3.4 Algorithm M2: Output = orientation quaternion

In this algorithm, the state equation was the same as in the other algorithms as well as the
treatment of the input.

The difference was in the output of the model: Orientation quaternion of IMU was
used instead of gravitational component of measured acceleration. The output equation is
linear in the case – output equals the state of the filter. As an output measurement, an
orientation quaternion was estimated from

• direction of measured acceleration a, see part 7.3.5 for details about acceleration mea-
surements used.

• direction measured projection of the Earth magnetic field into the coordinates of IMU.
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The orientation matrix was estimated as the rotation matrix transforming the best in the
LS sense the directions of quantities in the global reference frame with X axis heading to
the magnetic north to the directions of the measurements of IMU. The directions in the
global reference frame are [0 0 1]T for direction of acceleration and [cosφm 0 − sinφm]T

for magnetic field, φm is the local magnetic inclination. The rotation matrix was estimated
as a solution of the least squares Wahba’s problem (Wahba 1966). See section 6.2 for more
details about the solution of Wahba’s problem that appeared in another task.

7.3.5 Quantities used as the measurement of gravitational compo-
nent of acceleration

In the previous paragraphs, attitude estimation algorithms were described. They use an
an estimate of the gravitational component ag of the acceleration as measured by an ac-
celerometer. Here we describe more about the measurements.

The most straightforward is the use of the accelerometer measurement a as the
measurement of ag. In such a case, we get an exact measurement of ag if the sensor is
steady in an Earth-fixed coordinate frame. Any accelerations of the sensor cause errors of
the measurement of ag.

If the sensor is accelerated, usually the norm of the measured acceleration differs
from the size of gravitational acceleration, g. In many cases, the difference between a and
ag may be reduced by normalizing the measurement, that means setting its norm to the
expected value by multiplying it by a scalar value,

an = a · g/‖a‖2

See figure 7.2, the normalized acceleration measurement is usually more close to the gravi-
tational component ag than a, except the part where a is close to zero or has approximately
opposite direction than ag. The positive effect is marked especially if ‖a‖ > g. Moreover,
the direction of the accelerometer measurement is sometimes used in the attitude estimation
algorithms. By using an we work in fact only with the direction and simulate in such a way
the usage of the direction of the acceleration measurement as the input of the algorithm.

In the algorithm M2 – described in section 7.3.4 – there is no difference between the
use of a and an, because only the direction (unit vector) is used.

Typical tremors are at least in part rotation motions and all our simplified simula-
tions of tremor are rotations. The accelerations coming from the rotations, especially the
centripetal acceleration, cause errors in the estimation of inclination by an accelerometer.
An idea is to estimate these accelerations caused by the rotation and subtract them from
the measured acceleration before application of the attitude estimation filter:

ared = a− ârot, ared,n = ared g/‖ared‖2

The estimate of the acceleration produced by rotation motion is

ârot,k = ε̂k × r̂k + ωk × (ωk × r̂k),

where r̂k is the vector from the estimated center of rotation to the sensor position, expressed
in sensor coordinates, and ε̂k is an estimate of angular acceleration, i.e. time derivative of
angular rate. Angular rate was measured by the gyroscopes. Angular acceleration was
estimated from the rate by five-point stencil method. See section 6.1 for a procedure for the
estimation of r.
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To reduce the exacerbated noise of angular acceleration estimate due to the numer-
ical derivation used, the angular rate was filtered by a noncausal low-pass filter first (20 Hz,
Butterworth filter of 4th order, run forwards and then backwards). The filtered angular rate
was used to estimate r and then to estimate arot. Moreover, for the latter task, the gyro-
scope bias estimated as a side-product of estimation of r was subtracted from the filtered
angular rate. See figure 6.1 for an example of the estimate of the center of rotation from
data measured on a human simulating hand tremor.

As was demonstrated in section 7.2, when averaging over the time in a rotational
motion, the normalized acceleration measurement often provides more biased estimate of
the direction of gravity than provides the raw measured acceleration. We assume that it may
also corrupt the performance of the attitude estimation algorithms. Therefore we propose,
that for an algorithm where the direction of the acceleration measurement or the normalized
acceleration is used, it may help to filter the acceleration measurement by a low-pass filter
before passing it to the attitude estimation algorithm. In such a way, the average direction
will be more close to the direction of the average acceleration measurement which usually
provides a better estimate. That shall help when using an or ared,n and in the algorithm
M2 where only the direction of the measurement is always used. The filtration time of the
filter shall be longer than the period of the alternating movement.

Finally, we get the following quantities to be used as the estimates of the gravita-
tional component of acceleration:

a acceleration measured by the accelerometer,

an normalized acceleration (a divided by its size and multiplied by the size of gravita-
tional acceleration), equivalent to the use of instantaneous direction of the measured
acceleration,

ared reduced acceleration – measurement a with an estimate of rotation accelerations sub-
tracted,

ared,n normalized ared, equivalent to the use of instantaneous direction of the reduced accel-
eration

aF,n calculated same as an, but a first filtered by a low-pass filter

ared,F,n calculated same as ared,n, but ared first filtered by a low-pass filter

In algorithm M2, only the direction of acceleration is always used, therefore there is
no difference between using the original and normalized values. In fact, using the direction
is equal to always normalizing the measurement.

7.3.6 Alternative algorithms to deal with centripetal acceleration

In our algorithms described above there is no movement acceleration desired or only a
movement acceleration which produces zero mean in the sensor coordinate frame (aiL).
Otherwise, e.g. in case of centripetal acceleration, a biased estimate of mean inclination
may occur, see sections 7.2.2 and 7.2.3. This bias is dealt by us estimating the center of
rotation with the presumption that it does not change much.

Our approach is close to the methods of Hyde et al. (2008) who used known distances
of arm joints and known positions of the sensors placed on several arm segments to enhance
the attitude estimation. However, in the paper, they presumed known distances and sensor
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placement and did not deal with their assessment (called also calibration). On the contrary,
we use just one sensor unit and estimate the needed parameters directly from the data
measured at tremor, but we assume dominant rotation only about one joint, although they
provide also possibility to count with rotation about several joints (e.g. wrist + elbow +
shoulder) by using more sensor units.

An alternative to these approaches is a different construction of the attitude esti-
mator: Luinge and Veltink (2005) proposed to include into the attitude estimator a model
of the acceleration in an Earth-fixed reference frame. The acceleration is modeled by a
first-order linear dynamical model. The prediction of the acceleration is then

aiG(k + 1) = cA · aiG(k); cA < 1

The obtained estimate of the motion acceleration in global reference frame is incorporated
into the observer to calculate the instantaneous acceleration in the sensor reference frame
aiL using the actual estimate of the attitude. In this way, rather the acceleration in the
Earth-fixed reference frame aiG is assumed to has zero mean than the motion acceleration
expressed in the sensor reference frame aiL. Therefore, the accelerations like the centripetal
one which are connected to virtual accelerations do not produce such estimation bias. The
performance would depend on the used constant cA of the model and on the speed of the
acceleration change in the Earth-fixed reference frame.

This algorithm was not deeply tested and compared to the other algorithms because
its performance would likely not depend only on the covariances of the assumed measurement
errors but also on the parameters of the dynamical model of the movement and on the
relation of its time constant and the frequency of the tremor. But an algorithm with
similar properties, as stated by the user manual (Xsens Technologies 2010), and likely with
a similar basis was implemented in the Xsens inertial estimation algorithms. One of them
– “Human, large acceleration” – was shortly tested besides our algorithms described above.
This algorithm is not tuned specifically to the rotational motion as some of our algorithms,
on the other hand it has a potential to better performance in other types of motion, e.g.
irregular motion or fast changing center of rotation. Please, note that the settings of the
algorithm (observer gains/covariances, initial state covariance) are not know to us and they
may differ a lot from the settings of our algorithms.

7.4 Tremor mimicking by humans

In this section, the methods and the results of a set of measurements of human hand tremor
voluntarily simulated by healthy humans are described. The measurements were done with
the help of IMU and magnetic pose measurement system Polhemus Isotrak. The Isotrak
system was used as the reference system to validate the performance of the different al-
gorithms and ways how the acceleration measurement of IMU was incorporated into the
attitude and inclination estimate as described in the previous section. Both the auxiliary
methods described in chapter 6 are used here.

7.4.1 Methods

7.4.1.1 Subjects and measurement setup

Five healthy persons (all male) participated in the study in six measurement sessions (one
subject participated at two different days). In each measurement session, 9 to 28 mea-
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Figure 7.5: Sketch of the measurement setup.

surements were done. The subjects were simulating hand tremor while holding the below
described measurement device in one hand. It was verified by the investigator, that part of
the measurements was done with the other hand than the preferred one. Totally, 100 trials
with hand tremor simulations were acquired with lengths from 12.2 to 92.8 sec, median 26.8
sec. In 50% to 100% of each trial, the tremor was present. In part of the measurements (26
trials), the subjects started to simulate tremor already before the recording of IMU data
started. In the other 74 trials, there was only a physiological tremor and small movements
present at the start of the measurement.

Hand tremor was measured by two mechanically coupled devices: inertial measure-
ment unit Xsens MTx and magnetic system Polhemus Isotrak. MTx operated with sampling
frequency of 120 Hz and transmitted data by a cable to Xbus unit connected to computer. A
synchronization signal that switched its level at each sampling time was generated by Xbus
unit and transmitted to the synchronization input of Isotrak. Therefore, Isotrak operated
synchronously with MTx with half the frequency – 60 Hz, that is its maximum possible sam-
pling frequency. As the used software did not allow for simultaneous start of generation of
the synchronization signal and recording of the data, the following strategy was implemented
to get synchronized data: Recording of inertial data was started before the start of data
acquisition from Isotrak and stopped after the end of data acquisition from Isotrak. Then,
the time lag between the two data sets was get by finding maximum correlation between the
angular rate measured by gyroscopes and angular rate estimated from Isotrak. The angular
rate was estimated by numerical derivation of Isotrak angular data and transformation to
MTx reference frame using known relative orientation of the two sensors. See appendix A
for more details.

The devices were fixed to a board with the distance of their mutual proximal sides
being 30 mm. The apparatus was held by a hand of the subject in such a manner that the
Isotrak receiver was about 10 to 20 centimeters away from the transmitter and the receiver
was placed more close to the transmitter than IMU to reduce distortion of the Isotrak
measurement by the magnetic field produced by MTx electronics.

7.4.1.2 Reference frames alignment

To relate the Isotrak and IMU measurements we have to know the relative orientation
of reference frames of both the systems. Not only the relative orientation of the Isotrak
receiver and MTx sensors is needed but also the relative orientation of the global reference
frames of the two systems. The inertial reference frame of MTx is defined as north-west-
up. The inertial reference frame of Isotrak is defined by the actual fixed orientation and
position of the Isotrak transmitter. The relative orientations specified by rotational matrices
were estimated using a set of measurements in static conditions and different poses of the
apparatus in the volume where later the tremor measurements were done. See section 6.2
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for derivation of the alignment algorithm and more details about the alignment procedure.
The accuracy of the reference frame alignment was not comprehensively tested, but

an estimate of the error from the data used for the alignment itself was made: The calculated
alignment matrices were used to transform the mean attitudes estimated by Isotrak to the
attitudes in the coordinate system of MTx. That was done for every quasi-static slice of the
data used for the alignment procedure. The alignment error was calculated as the angle of
the rotation between the two attitudes expressed in the two (as assumed) same coordinate
systems. Additionally, there was determined the error of the alignment of verticals as the
angle between vertical vectors as specified by the two estimated attitudes. For the errors,
root mean square (RMS) was calculated from all the quasi-static slices in the data.

7.4.1.3 Attitude estimation

For the estimation of attitude and inclination of the IMU, the algorithms described in section
7.3 were used with the inputs described also there. For all the three above mentioned
algorithms, similar settings were used. In all cases a single-run discrete extended Kalman
filter was used which was constructed by a time discretization of (7.2). Though, when ared
was used, the algorithm was a single-run causal filter to be comparable to others, but it
used the center of rotation estimated by a non-causal filter.

For the sake of simplicity, constant covariance matrices were used for the Kalman
filter:

• The covariance of the assumed noise of the gyroscope measurement 0.0005 I3 [(rad s−1)2]
which was then used to determine the covariance of the virtual process noise in the
same way as in sections 5.2.3 and 6.1.

• The covariance of the assumed noise of the measurement of the gravitational artifact
4 I3 [(m s−2)2].

• The covariance of the assumed noise of the magnetic field measurement 0.04 I3.

• The covariance of the assumed noise of the measurement of the quaternion (in fact
estimated from the acceleration and magnetic field) 0.04 I4.

Fixed covariances represent fixed weights of the outputs in the state observer.
Though, the gains are never fixed because of the system and filter nonlinearity and the
response of the initial state. The assumed covariance of the error of acceleration measure-
ment as a measurement of the gravitational component is a compromise between the trust
to the measurement in the case of statical conditions and the dis-trust to it in the case of
a very severe tremor. In case of a usage of raw acceleration measurement in severe tremor,
the chosen covariance may cause too high trust to the data very corrupted by the movement
accelerations. Estimator construction omitted the non-whiteness and non-normality of the
errors, especially of the acceleration measurement and of the quaternion estimate.

The initial state of the observer was same for all the three algorithms and it was
determined as follows: Mean accelerometer and magnetometer measurements were com-
puted for the first 0.25 sec of the data. The directions of the two mean measurements were
determined and then they were subject to LS estimation of quaternion as described for al-
gorithm M2 in section 7.3.4. The covariance of the initial quaternion was determined as an
identity matrix times a constant. The constant was the maximum of the covariances of the
magnetometer measurement [-] and of the accelerometer measurement [g2] in the 0.25 sec
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interval. The constant was limited to lie between 0.01 and 1. The lower limit was applied
because if the covariance of the initial state was low, then the influence of the accelerometer
and magnetometer measurement during the trial would be low and differences between the
algorithms would be also low.

As was proposed in section 7.3.5, the algorithms were tested also with the accelera-
tion measurements filtered by a low pass filter. The discrete Butterworth filter of 2nd order
and cut-off frequency of 1 Hz was used. The filter was run in both directions of the time
axis to provide an estimate with zero lag.

7.4.1.4 Accuracy determination

The accuracy of the proposed algorithms on the data from tremor voluntary simulation
by humans was assessed by the angle discrepancy (deg) of the inclination estimated from
the IMU data by the algorithm from the inclination estimated by the magnetic system
Polhemus Isotrak. By the inclination we mean the direction of the gravitational component
of acceleration in the coordinates of IMU. Root mean square of the angle discrepancy was
used to represent each measurement trial.

Both the static and dynamic errors of both the systems are included in RMS. To
separate the dynamical errors that occur during the oscillations, the inclinations were also
filtered by a low-pass filter to provide time-averaged inclination estimates. The obtained
filtered inclinations from the two systems were also compared by means of RMS. The filter
was a discrete Butterworth filter of 2nd order and cut-off frequency of 1 Hz. The filter was
run in both directions of the time axis to provide an estimate with zero lag. To remove the
influence of the initial conditions of the filter, the first second of the data was not used for
the comparison.

The RMS errors given by the different algorithms and acceleration measurements
were compared by the means of Wilcoxon paired signed rank test.

7.4.2 Results

7.4.2.1 Alignment of the measurement systems

The measurements were conducted during three days. At the beginning of each day, the
alignment procedure was done. Mean RMS attitude error from the three alignment proce-
dures was 1.0 deg. Mean RMS error of the vertical (error of the determination of inclination)
was 0.36 deg.

One possible source of the found alignment error was the mutual magnetic distortion
of the two measurement systems: Distortion of Isotrak by the electronics of MTx and
distortion of the magnetometer (electronic compass) in MTx by the alternating magnetic
field of Isotrak.

In the case of a measurement different from the alignment measurement and more-
over a dynamic one, following additional errors may occur:

• Additional alignment error due to the difference of the poses occurred in the measure-
ment from the poses covered in the alignment procedure.

• Noise of the Isotrak measurement about 0.05 deg and 0.02 deg for the attitude and
inclination, respectively.

• Dynamic error of the Isotrak measurement.
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7.4.2.2 Amplitudes and frequencies of the tremor

Tremor amplitudes and frequencies were assessed from the measured angular rate ω as
described in chapter 5 to provide some picture of what were the amplitudes and how do
they compare to the tremor amplitudes of essential tremor assessed in chapter 5. The
angular rate was chosen instead of acceleration or other quantities because it is the same for
all the palm and therefore does not depend much on the way how was the subject holding
the apparatus. Acceleration amplitude depends highly on the place of the accelerometer
and therefore it would be hard to compare it between the trials and especially with the
essential tremor study. For the peak detection in the tremor quantification algorithm, the
lower frequency limit was lowered because some of the tremors simulated by the healthy
subjects exhibited frequencies lower than the original limit 3.5 Hz.

Median computed amplitude of the simulated tremor in the 100 trials was 4.58 rad s−1,
inter-quartile range (IQR) 3.05 rad s−1, range 0.58–10.48 rad s−1. Comparing with section
5.3.1, the amplitudes were higher than most of the amplitudes found for the essential tremor
patients involved in our study. Median frequency was 5.53 Hz, IQR 1.72 Hz, and range 2.92–
8.53 Hz.

Because the amplitudes were very high and exceeded the range of tremor amplitudes
seen in patients, part of the following cross-validation with the magnetic system was done
also for a subset of the trials with the lowest amplitudes. Namely, 20 trials with the lowest
found amplitudes of ω were selected. Median amplitude in this subset was 1.45 rad s−1,
IQR 0.85 rad s−1, and range 0.58–2.29 rad s−1. The upper end of the range corresponds
approximately to the point where the regression of the visual tremor assessment by ω in
section 5.3.6 estimated 3.5 points at the 0–4 point modified Fahn-Tolosa-Maŕın rating scale.
Median frequency in the subset was 5.93 Hz, IQR 0.68 Hz, and range 5.24–7.30 Hz.

7.4.2.3 Validation of the inertial attitude estimate

The attitude estimation algorithms and their different measurements of acceleration were
compared by their performance in estimating the inclination relative to vertical as described
in section 7.4.1.4. Let us recall that the alignment error between the two measurement
systems – IMU and Polhemus Isotrak used as the reference measurement – as found directly
in the data used for the alignment was at least 0.36 degree. The results are listed in table
7.1 for the dynamical measurements. To reduce the influence of the dynamical errors of
the two systems, also low-pass filtered inclinations were compared, see table 7.2. Minimum,
maximum, median, and mean RMS differences between the inclinations estimated by the
two systems are listed in the two tables. Inter-quartile ranges (IQR) are also shown. At
the right sides of both the tables, there are listed the results for the subset of 20 trials with
lowest tremor amplitudes. The different lines are described in the table captions, see below
for more details.

Lines XMTx represent the estimates by the Xsens proprietary algorithm “Human,
high acceleration” applied to the recorded data. Its estimate is usually accurate comparably
to the best of our algorithms except several cases, when a severe tremor was present already
at the beginning of the measurement. In such a case, the algorithm has problems in de-
termining the initial orientation. To be honest, such a state at the beginning of an inertial
estimation is hard to be coped with and usually, near to static conditions at the beginning
are part of the assumptions for general inertial estimation algorithms. See table 7.3 for the
comparison of the XMTx with a selection of our algorithms at the data from 74 trials when
the subjects started simulating tremor after the beginning of recording IMU data. User
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Performance of inclination estimate
against inclination from Isotrak

RMSE (◦)
all measurements lower tremors only

min median mean max (IQR) min median mean max (IQR)
11.8 51.2 53.1 102.1 (30.5) a. an 11.8 24.1 28.6 56.3 (21.3)
2.2 16.5 21.5 61.9 (23.1) ared 2.2 5.9 7.6 14.6 (3.5)
0.6 3.6 4.6 29.0 (3.2) XMTx 0.6 1.5 1.6 3.2 (1.0)
0.7 3.3 3.7 12.9 (2.5) Sared 0.7 1.5 1.4 2.8 (0.8)
1.0 3.9 4.4 13.2 (3.0) Aa 1.0 1.6 1.8 2.9 (1.0)
0.9 13.8 14.6 40.4 (12.2) Aan 0.9 4.3 7.8 22.6 (8.6)
0.7 3.4 3.8 13.1 (2.4) Aared 0.7 1.5 1.4 2.7 (0.7)
0.7 4.3 5.0 16.9 (4.1) Aared,n 0.7 1.5 1.6 3.2 (0.9)
1.0 3.7 4.2 12.9 (2.8) M1a 1.0 1.8 1.8 2.7 (1.0)
1.0 9.3 10.0 24.8 (7.0) M1an 1.0 3.6 6.2 21.6 (4.6)
0.7 3.4 3.8 12.9 (2.2) M1ared 0.7 1.5 1.5 2.8 (0.7)
0.7 4.2 4.5 14.9 (3.3) M1ared,n 0.7 1.5 1.6 2.8 (0.7)
2.0 19.6 19.9 57.8 (12.9) M2a 2.0 6.9 9.7 26.8 (10.6)
0.7 5.0 6.0 20.2 (5.9) M2ared 0.7 1.6 1.8 3.8 (1.0)
0.7 8.5 11.0 42.4 (8.3) AaF,n 0.7 2.0 2.0 3.8 (1.4)
0.6 3.6 4.0 12.1 (3.0) Aared,F,n 0.6 1.4 1.4 2.8 (0.8)
0.7 7.7 9.2 30.7 (6.9) M1aF,n 0.7 1.8 1.9 3.5 (1.0)
0.7 3.6 4.0 12.2 (2.8) M1ared,F,n 0.7 1.5 1.5 2.9 (0.8)
0.7 7.9 9.3 29.5 (7.2) M2aF,n 0.7 1.9 2.0 3.8 (1.0)
0.8 3.9 4.2 12.2 (3.1) M2ared,F,n 0.8 1.5 1.5 2.9 (0.8)

Table 7.1: RMS angular difference between the inclinations estimated from IMU and from
the Isotrak system. Notation: a,an/ared– direction of acceleration used directly as the esti-
mated inclination: measured acceleration / measured acceleration with subtracted estimate
of rotation accelerations; XMTx– Xsens algorithm ’Human, high acceleration’ applied to the
recorded data; Sared– smoothed estimate of inclination by the algorithm of the estimation
of the center of rotation (section 6.1); A – Algorithm A, M1 – algorithm M1 (acceleration +
magnetic field); M2 – algorithm M2 (quaternion estimated from instantaneous acceleration
+ magnetic field); n – acceleration normalized; red – centripetal and tangential acceleration
estimates removed from acceleration measurement; F – measured or reduced acceleration
first filtered by the low-pass filter before passing to the algorithm.
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Performance of low-pass filtered inclination estimate
against low-pass filtered inclination from Isotrak

RMSE (◦)
all measurements lower tremors only

min median mean max (IQR) min median mean max (IQR)
0.3 7.9 10.5 43.0 (9.1) a 0.3 1.5 1.5 3.3 (1.4)
0.3 17.1 20.4 83.6 (14.9) an 0.3 4.7 7.9 22.1 (9.0)
0.2 1.4 1.8 7.2 (1.7) ared 0.2 0.5 0.5 0.9 (0.3)
0.2 1.1 2.4 28.6 (1.8) XMTx 0.2 0.5 0.8 3.2 (0.3)
0.2 0.8 1.1 5.9 (0.9) Sared 0.2 0.4 0.4 0.9 (0.3)
0.2 1.0 1.4 5.8 (1.3) Aa 0.2 0.5 0.4 0.8 (0.2)
0.2 12.9 13.9 39.6 (12.8) Aan 0.2 3.9 7.4 22.5 (8.8)
0.2 0.9 1.1 6.2 (0.8) Aared 0.2 0.4 0.4 0.8 (0.3)
0.2 2.0 3.1 16.5 (3.6) Aared,n 0.2 0.6 0.7 1.8 (0.6)
0.3 1.2 1.4 5.6 (1.0) M1a 0.3 0.6 0.6 1.1 (0.3)
0.6 8.2 9.0 24.7 (7.7) M1an 0.6 3.2 5.9 21.5 (5.2)
0.2 1.0 1.3 6.0 (0.9) M1ared 0.2 0.6 0.6 1.1 (0.3)
0.2 1.6 2.4 12.3 (2.6) M1ared,n 0.2 0.7 0.8 1.6 (0.4)
1.9 18.3 19.5 57.1 (12.9) M2a 1.9 6.7 9.5 26.8 (10.7)
0.4 2.9 4.6 19.9 (5.6) M2ared 0.4 0.9 1.1 2.6 (0.9)
0.3 7.4 10.1 41.9 (9.1) AaF,n 0.3 1.4 1.4 3.3 (1.4)
0.2 1.5 1.8 7.0 (1.8) Aared,F,n 0.2 0.4 0.4 0.8 (0.3)
0.4 5.8 8.2 29.3 (7.8) M1aF,n 0.4 1.3 1.4 2.9 (0.9)
0.2 1.5 1.8 6.1 (1.5) M1ared,F,n 0.2 0.6 0.7 1.4 (0.3)
0.4 6.4 8.2 28.5 (8.0) M2aF,n 0.4 1.4 1.5 3.3 (1.0)
0.3 1.8 2.1 6.9 (2.0) M2ared,F,n 0.3 0.8 0.7 1.2 (0.3)

Table 7.2: RMS angular difference between low-pass filtered inclinations estimated from
IMU and from the Isotrak system. Notation: a,an/ared– direction of filtered acceleration
used directly as the estimated inclination: measured acceleration / normalized acceleration
/ measured acceleration reduced by subtraction of the estimate of rotation accelerations;
XMTx– Xsens algorithm ’Human, high acceleration’ applied to the recorded data; Sared–
smoothed estimate of inclination by the algorithm of the estimation of the center of rotation
(section 6.1); A – Algorithm A, M1 – algorithm M1 (acceleration + magnetic field); M2 –
algorithm M2 (quaternion estimated from instantaneous acceleration + magnetic field); n
– acceleration normalized; red – centripetal and tangential acceleration estimates removed
from acceleration measurement; F – measured or reduced acceleration first filtered by the
low-pass filter before passing to the algorithm.
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Comparison of selected algorithms with XMTx

at the data with no tremor at the beginning of the record
RMSE(◦)

min median mean max (IQR) compare with XMTx(%)
raw results
0.6 3.1 3.5 13.4 (2.7) XMTx

0.7 3.1 3.4 12.9 (2.5) Sared -
1.0 3.7 4.1 13.2 (2.8) Aa > 70
0.7 3.2 3.5 13.1 (2.6) Aared -
1.0 3.6 3.9 12.9 (2.5) M1a > 70
0.7 3.2 3.5 12.9 (2.5) M1ared -
0.6 3.5 3.6 12.1 (2.7) Aared,F,n -
0.7 3.4 3.6 12.2 (2.7) M1ared,F,n -
0.8 3.4 3.8 12.2 (2.7) M2ared,F,n > 66

low-pass filtered results
0.2 0.9 1.2 6.3 (0.9) XMTx

0.2 0.8 1.0 5.9 (0.8) Sared -
0.2 0.9 1.4 5.8 (1.3) Aa -
0.2 0.8 1.1 6.2 (0.7) Aared -
0.3 1.0 1.3 5.3 (1.0) M1a -
0.2 1.0 1.2 6.0 (0.9) M1ared -
0.2 1.3 1.6 6.9 (1.7) Aared,F,n > 72
0.2 1.3 1.6 4.8 (1.4) M1ared,F,n > 76
0.3 1.6 1.9 6.5 (1.8) M2ared,F,n > 81

Table 7.3: RMS angular difference between inclinations estimated from IMU and from the
Isotrak system. Top: Direct calculation. Bottom: Low-pass filtered inclinations. Notation:
See table 7.1 or 7.2. Symbol ’-’ in the last column means that there was no significant
difference between the algorithm results and XMTx according to Wilcoxon paired rank test
(P 0.001). The numbers in the last column are the percentages (from the 74 trials) of cases
when RMSE was greater (>) than for XMTx.

manual (Xsens Technologies 2010) states that Xsens algorithms count with accelerometer
instantaneous inclination (probably with its estimate) in the algorithm desing in a way that
it is more close to average the movement acceleration in an Earth-fixed reference frame
than in the sensor reference frame. Therefore, the deteriorating influence of the centripetal
acceleration may be reduced. See section 7.3.6 above for a brief description of an algorithm
with similar properties.

Lines Sared represent the attitude estimates which were obtained as side products of
the algorithm for the estimation of the center of rotation (section 6.1). Compared to other
estimates, these attitude estimates are smoothed – they utilize also future measurements.
The initial quaternion estimate described above was not used in this algorithm and moreover,
the initial quaternion estimate shall have little influence thanks to the smoothing.

By observing the tables 7.1 and 7.2, the direct usage of the instantaneous acceleration
without fusing with the gyroscope measurement leads to the highest dynamical errors. When
using the direction of the acceleration (. . . an, M2a), the error is high even if the results are
filtered: the mean inclination estimate is highly biased. The best algorithms (Sared, Aa,
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Aared, M1a, M1ared, Aared,F,n, M1ared,F,n, M2ared,F,n) gave RMS inclination errors under
13.2 degrees (median under 4 deg) in all the measurements and under 3 deg (median under
1.8 deg) in 20 measurements with the lowest tremor amplitudes (but still high, see section
7.4.2.2 for more details about the amplitudes). The same results low-pass filtered due to
the reduction of dynamical errors gave at the lower frequencies RMS errors under 7 degrees
(median under 1.8 deg) in all the measurements and under 1.4 deg (median under 0.8 deg)
in 20 measurements with the lowest tremor amplitudes.

Table 7.4 contains an excerpt from the results of the Wilcoxon paired rank tests
applied to the RMS errors from the 100 trials. Due to the high number of the different
estimates, all the results would occupy several pages. The excerpt contains several important
comparisons:

a,b) Estimates using only the direction of acceleration usually produced greater errors than
estimates using whole acceleration (an vs. a; ared,n vs. ared).

a,b) Estimates using the estimate of the center of rotation usually produced more accurate
estimates than the ones without it (ared vs. a; ared,n vs. an).

c) Adding the magnetometer measurement to the raw acceleration measurement using
the algorithm M1 tended to improve the accuracy.

d) When using only direction of acceleration / normalized acceleration, adding the mag-
netometer measurement using the algorithm M1 almost always improved the accuracy.

d) When using without additional preprocessing, the algorithm M2 usually gave worse
results than algorithms A and M1.

e) When only the direction of acceleration / normalized acceleration was used, prefiltering
the acceleration by the low-pass filter often improved the accuracy.

7.5 Discussion and conclusions

At the beginning of this part, let us to state the most important conclusion: When using
a suitable estimation algorithm, the inclination estimate is relatively accurate although
the accelerations caused by tremor motion may even exceed the size of the gravitational
component of acceleration. After removing the dynamical errors which could be also at the
side of the reference system, the RMS error was under 7 degrees (median under 1.8 deg)
in all the measurements including simulations of very massive hand tremor and under 1.4
deg (median under 0.8 deg) in 20 measurements with the lowest tremor amplitudes in the
validation study. Please note, that almost all the amplitudes got in the essential tremor
study in chapter 5 were lower than the range of the 20 lowest tremor amplitudes in the
validation study.

The algorithm used in chapter 5 was not tested in this study but it is close to
algorithm M1 (M1a) that provided relatively good estimates. The main differences of the
algorithm from chapter 5 are the covariance settings which were data-driven there, and
usage of the unscented Kalman filter (UKF) instead of EKF.

Let us list several recommendations for attitude estimation during severe tremor.
The first two recommendations are rather general natural approaches which may be inferred
intuitively:



7. Attitude Estimation during Tremulous Motion 91

1. If possible (for short-duration assessment trials), use stationary starting position of
the measurement unit before the starts of the assessment trials, i.e. ensure that there
is no tremor or only mild tremor present at the beginning of data acquisition. Have
the rate gyroscopes well calibrated from biases. Do not rely much on the accelerometer
measurements to estimate attitude during assessment trials, rather rely on the initial
estimate and the gyroscope.

2. If possible, eliminate magnetic disturbance and use magnetometers to measure the
Earth magnetic field and incorporate it to the attitude estimation scheme.

The next recommendations are the result of this study and/or derived from descriptions of
referenced works:

3. If the movement has a rotational character with a stable or slowly changing center or
axis of rotation (e.g. a static tremor without any other marked movement superposed),
estimate the position of the axis or center of rotation and use that information to sub-
tract the centripetal and tangential acceleration from the acceleration measurements.
Alternatively, use the approach of Luinge and Veltink (2005) which may probably help
also in situations, when a different movement is present.

4. Do not use algorithms which use only the direction of the accelerometer measurement,
not the whole acceleration measurement.

5. If due to some reason an algorithm has to be used which does not comply to the
previous point, prefilter the acceleration by a low-pass filter with the cut-off frequency
below the frequency of tremor.

Possible direction of future studies may be more deep validation of the algorithms
which model the acceleration caused by motion as a general dynamical model of low fre-
quency noise in an Earth-fixed reference frame (Luinge and Veltink 2005). The validation
shall contain a study of the sensitivity of accuracy to the parameters of the model and
to the tremor frequency. Validation and comparison in situations where more significant
movements are present together with tremor would be also of interest.

The inertial estimation generally may open a new approach to study human tremor
– by properties of its attitude trajectories or even also displacement trajectories with the
use of inertial sensors. That way, a more detailed insight may be given than by the raw
measured signals or their simple time integrals or derivatives. Obtained trajectories would
be also better interpretable because they are more close to visual observations than the raw
signals.
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Comparison of inclination estimation accuracies

Estimated inclination Low-pass filtered estimate

a) Effect of the measurement of gravitational component in algorithm A

Aa < 95 > 83 - Aa < 97 > 73 < 79
Aan > 98 > 98 Aan > 97 > 97

Aared < 88 Aared < 88
Aared,n Aared,n

b) Effect of the measurement of gravitational component in algorithm M1

M1a < 95 > 81 - M1a < 98 - < 73
M1an > 95 > 92 M1an > 98 > 94

M1ared < 75 M1ared < 76
M1ared,n M1ared,n

c) Comparison of algorithms A and M1 with raw acceleration used

Aa > 69 M1a Aa - M1a

d) Comparison of A, M1, and M2 with direction / normalization of accel.

Aan > 97 < 78 Aan > 97 < 78
M1an < 98 M1an < 97

M2a M2a

e) Effect of the filtering of the acceleration measurement

AaF,n < 74 Aan AaF,n < 70 Aan
Aared,F,n < 85 Aared,n Aared,F,n < 68 Aared,n
M1aF,n - M1an M1aF,n - M1an
M1ared,F,n < 76 M1ared,n M1ared,F,n - M1ared,n
M2aF,n < 95 M2a M2aF,n < 95 M2a
M2ared,F,n < 87 M2ared M2ared,F,n < 83 M2ared

Table 7.4: Comparison of RMS errors of different inclination estimates. Polhemus Isotrak
was used as reference. Notation: Aa < 95 Aan means that median difference of the RMS
errors of the two estimates was nonzero according to Wilcoxon paired signed rank test
(P<0.001) and that Aa had a lower RMSE than Aan in 95 cases of 100. Symbol ’-’ means
that no significant difference was found.



Chapter 8

Conclusions and Suggestions for
Future Work

8.1 Summary

In this thesis, I proposed several methods and documented studies in the field of accelerom-
eter calibration for the use in humans and in the field of tremor quantification by means of
inertial sensors.

The study of accelerometer calibration from in-use gathered quasi-static data brings
a proposal to use other ellipsoid fitting methods and comparison of the methods in synthetic
data. In tremor, attitude estimation was used to study different acceleration measurement
components. The measurements were also successfully used to regress the tremor severity
evaluation done by trained clinicians. Attitude estimation accuracy during tremor was the
subject of a study bringing several conclusions about the estimator construction. As a tool
used in the study, a method of finding mutual orientation of two attitude measurement
systems was proposed.

Let me recapitulate the selected concrete thesis contributions, here accompanied by
their placement in the thesis and publications.

• Design of a new criterion for ellipsoid fitting to be used in a procedure for accelerometer
calibration from data collected in nearly static conditions:
The criterion was proposed in chapter 4. It is the sum of squares of distances of the
measured points to the intersections of the ellipsoid and lines going through the center
of the ellipsoid and the measured point. Its minimization is called Method 4 in the
chapter.
[Šprdĺık and Hurák (2007)]

• Comparison of several ellipsoid fitting methods mainly in situations when the collected
data have only a limited range – simulating the probable situation in in-use accelerom-
eter calibration: that the sensor is positioned only in a limited range of possible incli-
nations:
That was done in chapter 4 on synthetic data. The above mentioned method gave
very good results compared to other methods.
[In preliminary extent and form Šprdĺık and Hurák (2007)]
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• Finding that even during a severe hand tremor it is possible to estimate the attitude
by the inertial estimation with a certain accuracy:
The accuracy was evaluated in chapter 7 in tremor mimicking by healthy humans and
accompanied by several recommendations about the estimator construction.

• Proposal to estimate the center of rotation during hand tremor and finding that it may
increase the accuracy of inertial estimation compared to the situation when there is no
model of the motion:
This was done also in chapter 7 and evaluated in the same data. The estimation
method itself was described and shortly validated in chapter 6.1.

• Experimental determination of how big is the gravitational artifact in the oscillatory
tremor acceleration signal when measuring at hands:
That was done also in chapter 5 in the same data by comparing the amplitudes get
from frequency spectra of different acceleration components in different directions.
Attitude estimation was used to get the components.
[Šprdĺık et al. (2009, 2011)]

• Accurate regression of a visual tremor scoring done by trained clinicians using features
extracted from the data captured with inertial measurement units placed on hands:
That was done also in chapter 5 and evaluated in data from the same study. The
accuracy was at least comparable to the results of other published studies where a
visual scoring was regressed by data from motion-related sensors.
[Šprdĺık et al. (2011)]

• According to my knowledge an original method to find the relative orientation of two
attitude measurement systems:
The method was proposed in chapter 6.2. It was used in chapter 7 giving reliable
estimates of the relative orientations.

8.2 Future research

Future research directions involving the use of the inertial sensors in the assessment of
diseases can be many, including the assessment of other motion-related symptoms, improve-
ments of existing methods, or utilization for other diseases. From the more specific fields
developed in this thesis, the following topics may be the targets of the future research:

In the field of accelerometer calibration from in-use data, a possible future devel-
opment may include development and tuning of adaptive procedures using the quasi-static
states. The methods shall forget old and incorporate new data and enable estimation of
time varying parameters during long measurement trials with patients. Some validation of
the calibration accuracy in such trials would be needed.

In the field of tremor assessment using inertial sensors, the attitude estimate and
decomposition of the acceleration to the motion and gravitational components may be used
to reconstruct the motion trajectory. To have exact data about the motion of the hand
or a finger (wherever the sensor is placed), a calibration of the sensor position on the
segment will be needed. The acquired trajectories of the displacement or the orientation
of the segment may be used to characterize the tremor in bigger detail than only by the
amplitude and frequency. An example can be to describe if the tremor is more like flexion-
extension or pronation-supination, or if it is characterized by circular motion or back-and-
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forth motion. Such observations are used by clinicians to recognize the probable type and
the source disease of the tremor. Inclusion of such an information may enhance automatic
classification of tremors. An automatic classification was already studied by several teams,
e.g. Spyers-Ashby et al. (1999), Ai et al. (2008).

The inertial estimation in tremor may be used also as a part of the measurement
component of a feedback loop for active tremor attenuation. Tremor measurement by inertial
sensors generally has a big potential in the feedback loops for tremor control. That includes
the mentioned active attenuation, e. g. by means of FES (Bó et al. 2011, Zhang et al.
2011), and hypothetically also an automatic dosing of medication or tuning of deep brain
stimulation.
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Appendix A

Estimation of Angular Rate
from Orientation Data

This appendix describes how an estimate of angular rate as measured by a rate gyroscope
can be get from orientation data provided by Polhemus Isotrak device. The quaternion
representation of orientation of Isotrak receiver in Isotrak reference frame is used. If Euler
angles are acquired from Isotrak, they are first transformed to quaternions.

The quaternion update equation is

q̇(t) =
1

2


−q1(t) −q2(t) −q3(t)
q0(t) −q3(t) q2(t)
q3(t) q0(t) −q1(t)
−q2(t) q1(t) q0(t)

 ωIso(t) , (A.1)

where q is the quaternion of Isotrak receiver orientation and ωIso its angular rate in the local
coordinate frame. At each sample the angular rate was estimated by solving (A.1) for ωIso.
A numerical estimate (by the 5-point stencil method) of quaternion’s time derivative was
used as q̇. The possibility to represent one orientation by two different unit quaternions was
taken into account in the computation.

Then, to get an estimate of angular rate in IMU coordinates, the obtained values
were transformed by (6.6).
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Appendix B

Categorization of Publications
with Tremor Quantification
using Motion Measurement

This text expands the introductions to the tremor quantification based on inertial sensors
given in the main text of the thesis. The expansion is especially in the number of papers
referenced and partially also in technical details. Besides inertial sensors, the text refers also
to works using other types of sensors of the quantities related to motion (e. g. displacement).
The hand or arm tremor is of the interest. The provided references are many but still far
from being complete, because the field of the intrumented tremor assessment is large, studied
already for tens of years and the methods are still in usage and in progress. The layout of
the appendix is such that several technical points of the methods are selected and then one-
by-one they are briefly described and references to the published works are divided based
on how they approached the specific point. The used points are

• sensor placement,

• frequency extraction,

• amplitude extraction,

• number of processed sensor axes,

• (for the non-inertial sensors for motion measurement): types of the sensors,

and several approaches to quantify the intention tremor are also listed.

One field was omitted because it is already a little far from the use of the inertial
sensors: The tremor assessment in writing and drawing using digitizing tablets. Only one
paper of our colleagues [Ulm07] was mentioned where appropriate, but the others from this
quite large field were left out.

Some of the referenced papers are focused directly on the tremor quantification
methods, while most of them are focused on the tremor itself, related disorders, or their
treatment, and the tremor quantification methods are just part of the methods used in them.

107



108

Several works are referenced with asterisk (*) symbol. In such a case, some other
publications usually by the same authors could be also referenced. See section B.8 for the
inter-connected publications.

The appendix references to more works than the main text. Because most of the
references were not needed for the thesis itself, a separate list of references is used for this
appendix. It is located in section B.9.

B.1 Sensor placement

Most usual positions of motion sensors for hand or arm tremor assessment are

• hand dorsum [Mor75, Pul94*, Tim96, Foe99, Deu00*, Bur02, Sap03, Zeu03, Rae04,
Stu05, Bir07, Kun07, Sla07, Ker08, Gal10, Spr11*],

• a finger, usually the index finger, [Ran73 (with fingers kept together), Elb94 (a finger
strengthened by a splint), Hal95, Hal99, Cal04, Hon08, Ker08, Mor08, Giu09*].

Other used places are

• fingers in a fixed position relative to the palm [Elb96*],

• palm [Tim00],

• wrist as in [Som98, Som06, Sal07] and some other works dealing with ambulatory
monitoring of tremor in daily life,

• a handled object [Ang03, Pel04 (beam end-point position of a laser pointer was mea-
sured), Her06*],

• more places at one extremity [Roc06, Gal10].

B.2 Preprocessing remarks

The measured data are often subjects of various ways of preprocessing. One typical example
is high-pass filtering for removing the DC component caused mainly by the gravitational
component. Such step is usually used in case of time-domain processing for detection and
quantification of tremor. The cut-off frequency shall be below the range of the expected
tremor frequencies. An alternative may be the empirical mode decomposition used by
[Sla07]. Sometimes, also low-pass filtering is used for reduction of the measurement noise.

The measured or filtered data may be used directly to detect tremor and quantify its
amplitude and frequency by the amplitude or power and frequency of the signal. Sometimes,
for all the tasks or for some of them, a time derivative or integral of the signal is used.
For example, double time integral of measured acceleration is a quantity with units of
displacement. But it is not the actual displacement – it would need a more complicated
calculations to be estimated. Similar holds for time integral of the angular rate measured
by a gyroscope and angles of orientation.

For accelerometer, such an estimate of displacement cannot correctly remove the
gravitational component of the measurement if the motion is (at least in part) rotational.
Because all the joints in human body are more or less rotational, almost never is the motion
purely translational. That holds also for tremor. This deficiency was omitted by many
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authors [e. g. Pul94, Zeu03, Stu05, Sla07]. Though, they get sort of measure of the motion
range which may under certain conditions correspond well to the actual spatial amplitude.
This estimate may be quite accurate if the tremor does not cause large changes of the
gravitational component in the processed sensor axes. Such a situation occurs if only one
sensor axis is processed and it is approximately vertical. Of course, in this way only the
amplitude in that direction is calculated. A typical example is the posture with arms
extended forward [Ker08] or the forearms laid on an armrest and hands extended forward
[Ran73, Zeu03] with palms facing down and sensors placed on fingers or hand dorsa and
only the axes perpendicular to the palms are processed. Eventually, the motion may me
moreover restricted to flexion and extension of the wrists. Usually, there are not given
reasons for these choices in the papers where they are used. An analysis of the gravitational
component and reasons for such choices are given in [Elb05].

On the other hand, with the use of sensors of displacement or velocity, it may be
sometimes useful to calculate numerically time derivatives of the measured signals. See the
next section.

B.3 Frequency

For frequency estimation, a frequency data processing is usually used, typically Power Spec-
tral Density (PSD) estimate using Fast Fourier Transform (FFT). The major question is
what signal to use as the input of the spectral analysis. In known studies using accelerom-
eters or other sensors of movement, following signals are used:

• measured angular rate (ω) [Bur02, Sal07, Giu09*, Gal10, Spr11],

• angle [Spy99],

• measured acceleration (a) [Ran73, Mor75, Gre90, Gan92, Elb94*, Pul94*, Hal95,
Deu96, Tim98, Foe99, Hal99, Deu00*, Mor01*, Oka01, Sap03, Zeu03, Stu05, Bir07,
Kun07, Hon08, Ker08, Giu09*, Spr11*],

or first time derivative of velocity, or second derivative of measured displacement
[Mat99, Her06*],

• velocity, time-integrated acceleration, or first derivative of measured displacement
[Leg10],

• position [Pel04], time-integrated velocity, or double integrated acceleration.

• alternatively to motion sensors, image intensity in a video recording [Uhr10*].

A special case is [OSu01], where the spectrum of positions was estimated, but because spectra
tend to have a “pink” noise component with a sloping baseline, a derivative of the PSD was
used to identify sharp peaks instead of searching for the highest peak.

The position or the time-integrated signals are less suitable for the frequency ex-
traction because in them, the low frequency component is amplified and may embarrass
the location of the spectrum peak corresponding to the tremor, especially if the position of
none of the near joints is fixed and therefore there are more non-cyclical slow movements
present. Probably because of that, the velocity or acceleration computed by numerical time
derivative is often used when the motion is measured by a sensor of position [Mat99, Her06*,
Leg10].

Frequency is determined as
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• the position of the highest spectral peak (in most of the studies), or

• the centre of gravity of the spectrum or of its part surrounding the highest point
[Elb94*] – the centre of gravity was found to be less inter-trially variable than just the
highest point, or

• the position of the highest of the Gauss curves fitted to the spectrum [Bar09], or

• (as an alternative to PSD) using the approximation of the spectrum by an autoregres-
sive (AR), moving average (MA) or ARMA model of a low order identified from the
data and by subsequent analysis of the found model [using inertial sensors: Ran73,
Tim98,98b,00, Oka01, Zha05, Sal07; using other sensors: Cap97, Spy99], or

• by identification of linear stochastic state-space model considering the measurement
noise in contrary to ordinary AR model [Gan92, Tim98b].

A comparison of several methods for PSD estimation for tremor quantification and
an adaptive parametrization of a PSD estimation method was given by [Tim96]. A kind of
comparison of of FFT-based PSD estimation and by the approximation by an AR model
was given by [Spy98].

The PSD estimation is commonly used also for preprocessed data of Electromyogram
(EMG) [e. g. Elb00, Lau01]. Tremor frequency estimated from EMG is less sensitive to
mechanical properties of the body part and to additional masses added to the mass of the
body part than the frequency estimated from PSD of a signal coming from motion, see e. g.
[Elb00].

As an alternative to the tremor frequency estimation from spectrum or its model, a
time-domain processing is also possible. Several algorithms based on zero crossing detection
were published [Som98, Cal04, Som06]. They are useful especially in case of long-term
actigraphy thanks to a lower computational demand compared to PSD.

B.4 Amplitude

To get a measure of the tremor amplitude, the following approaches are usually used:

• Take the power or its square root in a neighborhood of the found frequency. The neigh-
borhood may be fixed, as in [Spr11, partially also Bar09], or of fixed size but shifted
such that the spectral power in it is maximum [Her06* with twice time-differentiated
displacement], or in such extend that the spectral density in it is greater than half the
spectral density at the highest point [Tim96].

• Often, the spectral power in all the assumed range of possible tremor frequencies is
used [Deu96, Deu00, Rae04, Kun07, Uhr11].

• Sometimes, the power in a frequency range is not used but only the value of the highest
point in the spectrum [Ker08, Giu09*, and some older works], but that may lead to a
big underestimation of the tremor amplitude, especially if the spectral peak is broad
[Tim96].

• Another approach to extract the amplitude from spectrum is the area under the highest
of the Gauss curves fitted to the spectrum [Bar09].
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• An alternative to PSD-based methods is to use time-domain processing for amplitude
extraction instead of the frequency domain. Usually, the signal is filtered by a band-
pass filter and then its root mean square (RMS) is used or its local minima and maxima
are detected and their differences are used.

– [Pul94*, Sal07] used a time-domain processing for amplitude extraction although
the frequency was determined in the frequency domain.

– In some works, e. g. [Mor75, Fro78, Sla07] there was not a spectrum used at all,
the amplitude was determined as RMS of the signals or similarly.

– In [Mor01*, Giu09*], such amplitude was determined besides the amplitude from
the spectral peak.

For the amplitude extraction, the same signal or spectrum may be used as for the
frequency extraction, but it may be helpful to use a different one. Typical motivation is that
for the frequency extraction the acceleration and velocity signals are usually more useful, see
the previous section, but the spatial amplitude is sometimes required. [Pul94*] used time
processing of twice integrated accelerometer signal to get a rough estimate of the spatial
amplitude. Estimate of the spectrum of a time-integrated signal may be get easily without
the numerical integration of the signal: by dividing the points in spectrum by (2πfk)2 where
fk are the frequencies of points k in spectrum [Tim96], used e.g. in [Uhr11]. Another simple
but sometimes less accurate way how to estimate the amplitude of a time-integrated (quasi-
)periodic signal is to calculate first the amplitude of the original signal and then divide it
by 2πfd where fd is the dominant frequency (or by the second power of the number if the
power of the signal is used instead of amplitude). Similar calculation is used in [Elb03,
Zeu03, Stu05]. This calculation is exact for purely sinusoidal signals, otherwise it is only an
estimate.

B.5 Number of processed sensor axes

The works diverse a lot in the matter of how many sensor axes were used and if more than
one was used, how the measurements from the axes were aggregated. In the literature,
following variants were found:

• Usage of just one single-axis sensor or one axis of a multi-axis sensor,

– predetermined axis, usually vertical (approximately) – [Ran73, Mor75, Hal95,
Tim96*,98b, Foe99, Hal99, Deu00*, Elb00*, Mor01*, Oka01, Bur02, Zeu03,
Stu05, Ker08, Mor08],

– data-based selection of one axis of a multi-axis sensor – that one which gave
the highest signal power or the highest measure of tremor amplitude [Pul94*,
Her06*].

• Calculation of a one-dimensional signal from the more signals of a multi-axis sensor
and then working only with this derived 1D signal:

– Calculation of the size of the 3D vector of acceleration [Bir07, Kun07]. From it
is then subtracted the size of the gravitational acceleration or the low-frequency
component. Alternatively, calculation of the size of the 3D vector of the signal
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given by a high-frequency filtration of the measured signals [Fro78]. These meth-
ods cause a high sensitivity of the amplitude estimation to the direction of the
movement relative to the direction of the Gravity.

– Blind source separation – estimation of the time course of an unknown source
[Vin09].

• First processing the separate signals (sensor axes) and then aggregating the outputs
of the processing or preprocessing:

– Summing the spectra of the single signals and then detection and quantification
of peaks in the composite spectrum [Spr11*, for spiral drawing similar approach
used in Ulm07].

– Amplitude and frequency extraction from the single axes separately and then us-
ing one of them or sometimes their (weighted) mean as the frequency of tremor
and/or using an aggregation of the amplitudes extracted from the single axes as
the tremor amplitude [Elb94,96, Mat99, Sal07]. If the common frequency is de-
termined as a mean of the particular frequencies (in part [Elb96]), problems may
potentially occur if in the different axes, the highest peaks are located at very dif-
ferent frequencies – then the mean of the frequencies is used which lies somewhere
between the peaks, although using one of them would be more meaningful.

• Processing all axes separately and not aggregating them directly, but using them as
multiple inputs of a following analysis, e. g. regression of a visual assessment [Giu09*].

Many studies deal also with quantitative analysis of the coherence of different signals
using cross-spectral analysis, entropy, etc. That may be a study of different axes of one
sensor, sensors from different body parts (e. g. left and right hand), or sensors of different
quantities (e. g. accelerometer and EMG or posturograph) [Tim98,00, Hal99, Mor01,05,08,
Hon08, Ker08]

B.6 Instrumented assessment of intention tremor

Intention tremor was measured by [Mor75, Lou98,01, Deu00*, Wend00, Bre02, Bir07,
Giu09*] using several repetitions of a task of pointing to a target or catching an item.
Usually, the nose-finger-nose motion or nose-fixed target-nose motion were used, sometimes
catching of small items or simulation of drinking from a cup. Another possible tasks for the
subject are static aiming at a static target [Mor01, Pel04, Leg10] and tracking of a moving
target [Leg10].

If we understand well the not very detailed descriptions of data processing, [Lou98,01,
Wend00, Giu09, Bre02, Bir07] processed at once all the measured data captured during
whole session including several repetitions of the task.

[Mor75] used a button to capture the time when the subject reached the target.
Only last 4 seconds before each reaching of the target were processed. The subjects were
asked and trained to do the task in such a manner, that the duration of the movement from
the base position to the target was about 4 seconds.

[Deu00*] assessed ”reach-to-grasp” simply by using RMS of deviation of position
from the mean curve. No PSD or anything similar was used. From these works, only in
[Wenz00] the frequency was estimated. It was done by a time-domain processing. The
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motion was measured by a 3D position measurement system, not by inertial sensors. Ac-
celerometers were used only for assessment of postural tremor. The final phase of movement
towards the target, where the intention tremor was assumed and assessed, was defined us-
ing relative position of the index finger and thumb which were used for grasping the target
object (cylinder of diameter 1 cm).

In [Leg10], kinetic tremor was assessed via tracking of virtual target by a finger.
Its position and the position of the target were shown at a screen. Healthy people were
assessed with and without hypoxia. Median of PSD above 2 or 3 Hz and the powers in
different frequency bands were studied. The median frequency, power in band 6-12 Hz and
the ratio of the power in band 6-12 Hz to the power in band 3-20 Hz was higher at hypoxia.

In [Mor01, Pel04], tremor was assessed in healthy persons aiming to a target by a
laser beam.

B.7 Other sensors for tremor measurement based on
motion

• Laser sensor of velocity (1D) [Nor99, Tit01]

• Laser sensor of displacement

– 1D [Nor99, Leg10],

– 2D [Her06*].

• Laser beam end-point tracking (2D) [Pel04]

• Mechanical sensors of position using goniometers (3D) [Mat99]

• Data glove (angles of hand joints) [Vin09]

• Magnetic sensors of displacement and rotation (3D) [Spy99, Raj00, OSu01, Her07]

• Camera systems (3D) [Cap97 (only simulation of tremor by a mechanical device),
Deu00*, Pel04]

• Image intensity in ordinary video recording (only for frequency extraction) [Uhr10*]

• Digitizing tablets for assessment of tremor in drawing and writing – this field was
not in the main focus of this text, see e. g. [Elb90] for a pioneering work and [Elb96,
Ulm07] for other examples.

B.8 Connections of publications

This paragraph gives a simple list of works and publications which are directly connected or
use same methods to measure and quantify the tremor. Usually they have same coauthors.
Where the publications listed below with asterisk (*) symbol are cited above also with the
same symbol, the connected works may be also mentioned in the same context.

The same basic processing of accelerometer data as in [Pul94] was used for example
also in [Tro94, Lou98, Lou00, Wend00, Lou01, Bre02, Coh03]:

[Pul94*] = [Pul94, Tro94, Lou98, Lou00, Wend00, Lou01, Bre02, Coh03]
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Partially in same way as in [Elb94], accelerometers were used in [Elb96] and same
as there in [Elb00], except the number of used sensor axes. The processing in [Elb03] was
almost the same as in [Elb00]:

[Elb00*] = [Elb00,03]
[Elb96*] = [Elb96,00,03]
[Elb94*] = [Elb94,96,00,03]

Similar processing as in [Elb94] was used also in [Tim96].
The analyses described in [Tim96] and [Tim98] were used as base for software

[Lau99], which was used for accelerometers and/or EMG in [Deu00, Wenz00, Lau01, Rae04].
[Tim98b] utilized [Gan92].
[Tim00] utilized [Tim96, Tim98, Tim98b].
In a big part the same processing as in [Mor01] was used also in [Mor05]:

[Mor01*] = [Mor01,05]

[Wenz00, Her07] used the same measurement and quantification of intention tremor
and similar of postural tremor as in [Deu00]:

[Deu00*] = [Deu00, Wenz00, Her07]

The same measurement and quantification of tremor with the use of a laser as in
[Her06] was used also in [Par06]:

[Her06*] = [Her06, Par06]

Methods of the processing of ordinary video recordings from [Uhr10] and methods
for accelerometer measurements and their processing similar to [Spr11] were used in [Uhr11]:

[Uhr10*] = [Uhr10, Uhr11]

[Spr11*] = [Spr11, Uhr11]
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Ulm07 O. Ulmanová, C. N. Homann et al. Tremor magnitude: A single index to assess writing and
drawing in essential tremor. Parkinsonism Relat D, 2007.

Hon08 S.L. Hong, E.G. James, and K.M. Newell. Coupling and irregularity in the aging motor
system: tremor and movement. Neurosci Lett, 2008.

Ker08 G. Kerr, S. Morrison, and P. Silburn. Coupling between limb tremor and postural sway in
Parkinson’s disease. Movement Disord, 2008.

Mor08 S. Morrison, G. Kerr et al. Differential time- and frequency-dependent structure of postural
sway and finger tremor in Parkinson’s disease. Neurosci Lett, 2008.
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Uhr10 Z. Uhŕıková, E. Růžička et al. TremAn: A tool for measuring tremor frequency from video
sequences. Movement Disord, 2010.
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