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Abstract
Tato práce poskytuje krátký úvod k řešení MPC řídícího problému a představuje efek-
tivní algoritmus pro problémy s dlouhým predikčním horizontem. Výpočetní složitost
řešení MPC problému roste podstatně s délkou predikčního horizontu. V případě kla-
sické kondenzované formulace je růst s délkou predikčního horizontu kvadratický. Tato
práce prezentuje nový algoritmus, využívající specifickou strukturu problému pro dosa-
žení pouze lineární závislosti na délce predikčního horizontu. Navíc je zde prezentována
i nová metoda blokování vstupů pro MPC problém, která výrazně redukuje výpočetní
složitost.

Algoritmus je založen na modifikované metodě Aktivních množin, používající Schu-
rovu metodu a metodu Nulového prostoru pro aplikaci omezení a pro řešení Newtonova
kroku. Dále je využita Projekce Newtonova kroku pro aplikaci omezení. Všechny kroky
algoritmu jsou detailně popsány a jejich výpočetní složitost je analyzována.

Výsledný algoritmus byl otestován na sadě systémů. Výsledky prokázaly lineární růst
výpočetní náročnosti a také ukázaly, že algoritmus je vhodný pro velké systémy (se
stovkami optimizačních proměnných).

Klíčová slova
Prediktivní řízení; Kvadratické programování; Metoda aktivních množin; Warm-start
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Abstract
This thesis aims to give a brief introduction into solving of the MPC problem and
develop an effective algorithm for problems with long prediction horizon. The com-
putation cost of solving the MPC problem grows significantly with the length of the
prediction horizon. In the case of classical dense formulation approach, the growth in
the length of prediction is quadratic. This thesis presents a novel algorithm exploiting
the special structure of the problem to obtain only linear dependency in the length
of the prediction horizon. Moreover, a move blocking strategy for MPC problems in
sparse form is presented to reduce the computation burden significantly.

The algorithm is based on a modified Active Set method, using Range Space method
and Null Space method to apply the constraints and to solve the dual Newton step.
Furthermore, a Newton Projection method is used for projection of the inequality con-
straints. All the steps of the algorithm are described in detail and their computation
cost is analyzed.

The resulting algorithm has been tested on various problems. The results prove the
linear growth of the computation load and also show that the algorithm is advantageous
for large systems (hundreds of optimization variables).

Keywords
Model Predictive Control; Quadratic Programming; Active Set method; Warm-start
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1 Introduction

Model Predictive Control (MPC) is an increasingly popular method of the discrete-time
control. It presents an effective approach to system based control, offering powerful
capabilities able to deal with wide range of problems and ensuring the best possible
control, satisfying the physical limits of the system. A more detailed description follows,
also more information about MPC can be found in [1],[2].

Model Predictive Control is traditionally popular in industrial processes. The first
MPC-controlled systems emerged in the seventies in the chemical industry, [3]. The
chemical industry was suitable for this type of control, because of slow dynamics and
long process times, that gave then computers enough time to solve the optimization
problem. As the technology progressed, the MPC strategy could be used for more
demanding tasks and faster processes. According to [3], there has been major progress
in the MPC field during the last two decades, with a number of improvements to the
MPC algorithms. MPC regulators can be found for example in automotive industry, in
automated control of the intelligent buildings or the power control [4].

The main task of the MPC is to find a control sequence, minimizing the optimality
criterion with respect to the controlled system dynamics and additional constraints on
optimized variables. Those additional constraints represent the physical limitations of
the system, for example the valve cannot be opened more than fully.

An important concept related to the MPC is receding horizon. Receding horizon
means that every sampling period the sequence of optimal control is re-optimized for
the shifted horizon. Each step only the first control from the optimal control sequence
is applied. The optimization is carried out again; it is parametrized by the currently
measured state. Thus the feedback is implemented. The concept of receding horizon is
illustrated in Figure 1.

The process of solving the optimization problem can be very computationally de-
manding since there might be many inputs and states of the system or long prediction
horizon is required. The method presented in this paper is focused on decreasing the
computational burden of problems with long prediction horizon.

In the last decade, many outstanding algorithms specialized on MPC have been
developed, for example: [6],[7],[8]. With respect to the type of the problem form, the
algorithms can be divided into two groups. Firstly, algorithms solving the problem in
condensed form and secondly, algorithms solving the problem in the sparse form

In the condensed form, there are fewer optimization variables, but the problem itself
is more complex (ill-conditioned). Alternatively, in the sparse form, there are more
optimization variables, but the form has specific sparsity pattern with usually fewer
nonzero elements and is less complex (well-conditioned). Note that for condensed prob-
lem generic solvers (e.g. quadprog [9] or MOSEK [10]) can be used. For the sparse form
of the MPC problem, special algorithms have to be utilized to exploit the structure of
the problem. That is why the condensed form was more popular in the past.

Algorithms dealing with the problem in the dense form are more common, and they
are usually considered as a standard approach, [3]. Some of the important ones are
briefly described in the following text.

Richter’s FGP [11] – a Fast Gradient Projection algorithm solving condensed prob-
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1 Introduction

Figure 1 Receding horizon principle, [5]

lem form. Intended originally for AC-DC converters, requiring short prediction horizons
(benchmarked with the length of horizon five), and small computation times (tens of
𝜇s) with an inexpensive hardware solution.

qpOASES [8] – a highly optimized implementation of Multiparametric Active Set
method [12]. The algorithm of qpOASES was initially developed at KU Leuven. Cur-
rently, it is supported mainly by Heidelberg University and ABB Corporate Research.
The software of qpOASES is versatile in a sense that it can be used both as a stan-
dalone application or with a conjunction with third-party software, such as MATLAB.
The MATLAB interface for qpOASES was used in this work as a reference solution for
the testing of the developed algorithm.

Quadprog [9] – a QP solver, which can be found in the Optimization toolbox of
MATLAB. It uses the Interior Point method algorithm for finding the solution. It is
a generic QP solver, meaning that it is not developed specifically for MPC problems.
On the other hand, it can solve a large portfolio of problems and often is used as a
reference when developing custom solvers.

FiOrdOs [13] – a Matlab toolbox for automated C-code generation of first-order
methods. It features both the Gradient method and the Fast Gradient method. Since
this is a first order solver, the iterations are cheap, but typically a large number of
iterations is required to find the solution.

NPP [7]– a novel algorithm based on the Active Set method and optimized for the
MPC problems with box constrained inputs. The algorithm combines the Active Set
strategy with the proportioning test to decide when to change the active set. The
minimization in each iteration is solved using the Newton step strategy. This algorithm
forms the basis for the sparse form algorithm presented in this thesis.

Recently, several solvers for the sparse form of the MPC problem, exploiting problem
structure have been developed.
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1.1 Organization of this Thesis

fastMPC [15] – a Barrier Interior Point algorithm using Newton step solved by
tailored Cholesky decomposition. It has been developed specifically for MPC and pre-
sented in a journal paper. This novel approach has the advantage of having complexity
only linear in the prediction horizon.

qpDUNES [14] – an implementation of dual Newton step solving the MPC problem
via Dual Decomposition. The Dual Decomposition allows to exploit the block-banded
structure of the problem matrices, similarly as Interior Point methods, yet allowing
the warm-starting capabilities of the Active Set method. A brief overview of the basic
concepts can be found in [6].

FORCES [16] – a code generated Interior Point method optimization algorithm. It
generates library-free ANSI-C code that is, according to the authors, several orders of
magnitude faster and smaller than most other solvers. It has been designed specifically
for real-time control. FORCES is suitable for several classes of optimization prob-
lems, apart from the quadratic programming (QP) problems, it is suitable for linear
programming (LP) and quadratically constrained QPs (QCQP) problems.

ADMMmpc [17] – an Alternating Direction Method of Multipliers (ADMM) [18]
algorithm using Interior Point method in the inner loop. This method became only
recently used for solving the QPs but is becoming widely popular, as it is suitable for
solving the sparse structured problems.

The contribution of this paper is two-fold. Firstly, it is the modification of the NPP
algorithm from [7] suitable for the problems in sparse form with long prediction horizons.
Several major modifications have been done, to change the problem formulation. Most
importantly, the procedure of solving the Newton step has been changed, following
the procedure from [15], where a similar approach has been presented for a Barrier
Interior Point method. This Newton step approach is used to obtain linear dependency
in prediction horizon instead of the cubic one. Also, the projection of the Newton step
had to be changed to fit the sparse form of the problem.

Secondly, it is the formulation of a move blocking strategy for the sparse form of the
MPC problem, which significantly reduces the dimension of the problem and can be
used in combination with other sparse form solvers as well.

1.1 Organization of this Thesis
In the Chapter 1, the MPC strategy is presented, giving an introduction to the topic
and explaining basic concepts. In the Chapter 2, the MPC control problem is presented.
Moreover, several forms of MPC problem are presented along with basic concepts. In
the Chapter 3, several methods for solving the resulting constrained QP are introduced.
In the Chapter 4, the modified algorithm is described along with the move blocking
strategy. In Chapter 5, implementation details are given and several tests are described.
Finally, in Chapter 6 a conclusion of this work is given along with the suggestions for
future improvements.

1.2 Notation
Throughout the paper, following notation is used

𝑣 − bold latin small letter denotes vector,
𝑀 − bold latin capital letter denotes matrix,

M − doubled latin capital letter denotes a matrix composed of other matrices,
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1 Introduction

𝜆 − bold small greek letter denotes vector changed in every iteration of the algorithm,

Γ − greek capital letter denotes matrix changed in every iteration of the algorithm,

𝐴𝑇 − superscript T denotes transpose of matrix (or vector),
𝑛𝑥 − letter 𝑛 with subscript denotes length of 𝑥,

𝐴 = 𝐴𝑇 − matrix equal to its transpose denotes symmetric matrix,

𝐴 > 0 − denotes positive definite matrix,

ℛ𝑚 − denotes vector space of size 𝑚,

ℛ𝑚×𝑛 − denotes matrix space of size 𝑚 times 𝑛,

Δ𝑥 − symbol Δ𝑥 denotes step in the given variable,

𝑥− − minus symbol in superscript denotes the value of the variable in current iteration,

𝒪 − denotes asymptotic complexity,

𝐴 ⊗ 𝐵 − denotes kronecker product of the matrices 𝐴 and 𝐵,

blkdiag(𝐴, 𝐵) − denotes new matrix formed by stacking the matrices 𝐴 and 𝐵 on the diagonal,
FLOP − Floating-point operation, used to measure the computational complexity.

4



2 Model Predictive Control

The general procedure of MPC design is explained by the chart in Figure 2.
First of all, the system state model is described, the weight coefficients are set, and

the constraints are determined. Then, the MPC cost function is formulated, usually in
the form of a quadratic function with weights on inputs and states. The cost function is
minimized, under the constraints. This thesis is focused on problems with the quadratic
criterion and simple linear constraints on inputs.

The MPC problem is transformed into a QP problem to find the optimal sequence
of control inputs in given time period 𝑘. Consecutively, this QP problem is solved. In
the course of this work, a problem with inequality constraints on inputs is assumed.
Therefore the QP problem has to be solved using an iterative method.

The QP problem is solved in every iteration; it is parametrized by current states and
weights. A part of the solution of the QP problem is applied as control input back
to the system, the rest is discarded and the algorithm continues with the next time
sample.

5



2 Model Predictive Control

Figure 2 MPC control flowchart, 𝑡 is discrete time step

2.1 Problem Description
The cost function has quadratic form and consists of the weighted sum of optimization
variables. In most of the cases, those are states 𝑥𝑘 and inputs 𝑢𝑘, often weights on
outputs 𝑦𝑘 [19] or input change Δ𝑢𝑘 can also be present, but they are omitted here for
the sake of symplicity.

The following cost function is used in this thesis,

𝐽(𝑥𝑘, 𝑢𝑘) = 1
2𝑥𝑇

𝑛𝑝
𝑄𝑛𝑝𝑥𝑛𝑝 + 1

2

𝑛𝑝−1∑︁
𝑘=0

[︃
𝑢𝑘

𝑥𝑘

]︃𝑇 [︃
𝑅 𝑆𝑇

𝑆 𝑄

]︃ [︃
𝑢𝑘

𝑥𝑘

]︃
. (1)

Subscript 𝑘 denotes time instant of the prediction horizon, 𝑛𝑝 denotes the length of
the prediction horizon. Symbol 𝑥𝑘 ∈ ℛ𝑛𝑥 is a vector of states, 𝑢𝑘 ∈ ℛ𝑛𝑢 is a vector of
inputs. Matrices 𝑄, 𝑄𝑛𝑝 , 𝑅, 𝑆 are the weight matrices.

The matrices 𝑄, 𝑅, 𝑆 are design parameters, and they are explicitly formulated,
based on the performance demands, also the following condition must hold to ensure
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2.1 Problem Description

that the problem is convex and has one global minimum,

[︃
𝑅 𝑆𝑇

𝑆 𝑄

]︃
> 0.

The matrix 𝑄𝑛𝑝 is the weight on the final state, which can be obtained as the solution
to the discrete-time algebraic Riccati equation, i.e.

𝑄𝑛𝑝 = 𝑄 + 𝐴𝑇 𝑄𝑛𝑝𝐴 − (𝐴𝑇 𝑄𝑛𝑝𝐵 + 𝑆)(𝑅 + 𝐵𝑇 𝑄𝑛𝑝𝐵)−1(𝐵𝑇 𝑄𝑛𝑝𝐴 + 𝑆𝑇 ).

The term is equivalent to extending the prediction horizon to infinity, as shown in
[20].

Furthermore, the discrete linear time-invariant (LTI) system is assumed

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 𝑡 > 0.

The full space problem consists of the cost function and problem constraints and can
be formulated as

min
𝑥𝑘,𝑢𝑘

𝐽(𝑥𝑘, 𝑢𝑘)

s.t. 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘, 𝑥0 = 𝑥(𝑡) (2a)
𝑢𝑘 ≤ 𝑢𝑘 ≤ 𝑢𝑘, 𝑘 = 0, . . . , 𝑛𝑝 − 1. (2b)

The constraints on the solution are given by the dynamics of the controlled system,
the limitations of the actuators and sensors and also by the requirements on the design
and performance. The equation (2a) represents dynamics of the controlled system. The
equation (2b) expresses constraints on inputs. The constraints can also be divided into
two groups, equality constraints, and inequality constraints. Equality constraints are
present in every MPC control problem, they represent the dynamics of the controlled
system,

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘,

where 𝐴, 𝐵 are state-space matrices, 𝑥𝑘 and 𝑥𝑘+1 are states in the respective time
samples and 𝑢𝑘 is input at time instant 𝑘. Another reason for equality constraints
might be the requirement on certain states to have a constant value, for example, to be
zero at the end of the prediction horizon.

Inequality constraints can express physical limitations of actuators or saturations of
the states. They can also limit the output of the system or the input change. In this
thesis, only linear constraints on inputs are assumed.

𝐴𝑢 ≤ 𝑏 (3)

Throughout this work, special attention is given to the box constraints on inputs are
used. Box constraints are the simplest version of the linear constraints from (3). They
are represented as upper and lower limits on inputs taken element-wise

7



2 Model Predictive Control

𝑢𝑘 ≤ 𝑢𝑘 ≤ 𝑢𝑘.

Such constraints are common in the case of independent inputs, for example, two inde-
pendent ventils in a pipeline.

The cost function (1) can be rewritten into the vector form

𝐽(𝑥, 𝑢) = 1
2

[︃
𝑢
𝑥

]︃𝑇 [︃
R S𝑇

S Q

]︃ [︃
𝑢
𝑥

]︃
, (4)

where the vectors and matrices are formed by stacking the values for every 𝑘, forming
larger vectors and matrices as follows 𝑥 = [𝑥𝑇

1 , 𝑥𝑇
2 , . . . , 𝑥𝑇

𝑛𝑝
]𝑇 , 𝑢 = [𝑢𝑇

0 , 𝑢𝑇
1 , . . . , 𝑢𝑇

𝑛𝑝−1]𝑇 ,
Q = blkdiag(𝐼𝑛𝑝−1 ⊗ 𝑄, 𝑄𝑛𝑝),R = 𝐼𝑛𝑝 ⊗ 𝑅, S = (0, 𝐼𝑛𝑝−1 ⊗ 𝑆).

Such vector form is more convenient for later derivations.

2.2 MPC Forms
In this section, the problem (2) is transformed into the quadratic programming opti-
mization problem, to solve the MPC task. There are several ways of achieving that,
the most common being the dense and the sparse form.

2.2.1 Condensed Form
One can formulate the condensed optimization problem. Such form is common in
practice, it is used for example in [11], [8], [9].

First, the relation between 𝑢 and 𝑥 is transformed into a compact matrix form using
the system dynamics, i.e.

𝑥 = P𝑥0 + V𝑢, (5)

where matrices are

P =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐴
𝐴2

𝐴3

...
𝐴𝑛𝑝

⎤⎥⎥⎥⎥⎥⎥⎦ ,V =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐵 0 0 ... 0

𝐴𝐵 𝐵 0 ... 0
𝐴2𝐵 𝐴𝐵 𝐵 ... 0

...
...

... . . . ...
𝐴𝑛𝑝−1𝐵 𝐴𝑛𝑝−2𝐵 𝐴𝑛𝑝−3𝐵 ... 𝐵

⎤⎥⎥⎥⎥⎥⎥⎦ .

By substituting (5) into criteria (4), the resulting form of the problem is obtained as

min
𝑢

1
2𝑢𝑇 ̂︁𝐻𝑢 + 𝑢𝑇 ̂︀𝑓

s.t. 𝑢 ≤ 𝑢 ≤ 𝑢,

where ̂︁𝐻 = V𝑇QV + R + S𝑇V + V𝑇S and ̂︀𝑓 = V𝑇QP𝑥0 + S𝑇P𝑥0 .
The problem then is solved only in control variables 𝑢, thanks to that the dimension

of the problem is reduced significantly. The size of the Hessian ̂︁𝐻 is 𝑛𝑝𝑛𝑢 × 𝑛𝑝𝑛𝑢. On
the other hand, the problem has a complicated structure.
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2.2 MPC Forms

2.2.2 Sparse Form

Another form of the optimization problem is the sparse form. The resulting matrices
are larger than in the case of the dense form, but they have a specific structure with
large number of non-zero elements, which can be exploited.

The sparse formulation is becoming more popular in control community in the re-
cent years, as new algorithms exploiting the specific structure are being developed, for
example [14] or [15].

Instead of substituting for 𝑥, the problem is solved in both variables, i.e.

min
𝑥,𝑢

𝐽(𝑥, 𝑢) (6)

s.t. 0 = A𝑥 + B𝑢 + 𝑑

𝑢 ≤ 𝑢 ≤ 𝑢.

The structure of the matrices and the vector 𝑑 is following,

A =

⎡⎢⎢⎢⎢⎢⎢⎣
−𝐼
𝐴 −𝐼

𝐴 −𝐼
. . . . . .

𝐴 −𝐼

⎤⎥⎥⎥⎥⎥⎥⎦ ,B =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐵

𝐵
𝐵

. . .
𝐵

⎤⎥⎥⎥⎥⎥⎥⎦ , 𝑑 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐴𝑥0

0
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Note that the prediction matrices from the previous Section 2.2.1 are actually

P𝑥0 = −A−1𝑑, V = −A−1B.

2.2.3 Sparse Condensed Form

The forms mentioned above are the most common in practice, but different approaches
can be found in the literature. In this Section, an interesting hybrid approach of
condensed and sparse forms is described. The full description can be found in [21].

The basic idea of this approach is to introduce a state feedback control law

𝑢𝑘 = 𝐾𝑥𝑘 + 𝑤𝑘, for 𝑘 = 0, 1, 2, ..., 𝑛𝑝 − 1, (7)

where 𝐾 is a gain matrix of the state feedback and 𝑤𝑘 is the new vector of inputs.
Note that no actual pre-stabilizing feedback is implemented in the end. The law (7) is
just a trick to reformulate the problem.

The dynamics of the system (2a) are rewritten as

𝑥𝑘+1 = (𝐴 + 𝐵𝐾)𝑥𝑘 + 𝐵𝑤𝑘 = 𝐴𝐾𝑥𝑘 + 𝐵𝑤𝑘. (8)

Using (8), the dynamics over prediction horizon 𝑛𝑝 are setup in a similar way as in
condensed formulation

𝑥 = A𝐾𝑥0 + B𝐾𝑤,

where 𝑤 = [𝑤𝑇
0 , 𝑤𝑇

1 , 𝑤𝑇
2 , . . . , 𝑤𝑇

𝑛𝑝−2, 𝑤𝑇
𝑛𝑝−1]𝑇 is the sequence of new inputs,

9



2 Model Predictive Control

A𝐾 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴𝐾

𝐴2
𝐾
...

𝐴𝑟−1
𝐾

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,B𝐾 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐵 0 0 . . . 0 0 0
𝐴𝐵 𝐵 0 . . . 0 0 0

...
...

... . . . ...
...

...

𝐴𝑟−1
𝐾 𝐵 𝐴𝑟−2

𝐾 𝐵 𝐴𝑟−3
𝐾 𝐵

. . . ...
...

...

0 𝐴𝑟−1
𝐾 𝐵 𝐴𝑟−2

𝐾 𝐵
. . . ...

...
...

0 0 𝐴𝑟−1
𝐾 𝐵

. . . ...
...

...
... . . . . . . . . . ...

...
...

... . . . . . . . . . 𝐴𝐵 𝐵 0
0 . . . . . . . . . 𝐴2𝐵 𝐴𝐵 𝐵

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The symbol 𝑟 is the controllability index of the matrices 𝐴, 𝐵. The weight matrices of
the cost criterion from (1) are replaced by new matrices,

𝑄𝐾 = 𝑄 + 𝐾𝑇 𝑅𝐾 + 𝑆𝑇 𝐾 + 𝐾𝑇 𝑆

𝑆𝐾 = 𝑆 + 𝐾𝑇 𝑅

𝑅𝐾 = 𝑅.

The problem then can be expressed similarly as,

min
𝑣

1
2𝑤𝑇 ̃︁𝐻𝑤 + 𝑤𝑇 ̃︀𝑓 ,

where ̃︁𝐻 = B𝑇
𝐾QB𝐾 + (KB𝐾 + 𝐼)𝑇 (R(KB𝐾 + 𝐼) + S𝑇B𝐾) + (B𝑇

𝐾S(KB𝐾 + 𝐼), ̃︀𝑓 =
𝑥𝑇

0 A𝑇
𝐾(QB𝐾 + S(KB𝐾 + 𝐼) + K𝑇 (R(KB𝐾 + 𝐼) + SB𝐾)).

The main drawback of this formulation is that the input constraints are modified and
cannot be expressed as box constraints anymore.

2.3 Move Blocking

Move blocking is a strategy used in MPC to decrease the computational complexity by
decreasing the degree of freedom of the optimization problem. The idea is to reduce the
number of independent inputs by fixing the input to be constant over several time steps,
[22]. As a consequence, a new concept is introduced. The control horizon indicates the
number of independent input vectors with size 𝑛𝑐 lesser or equal to the length of the
prediction horizon. Note that in the case of no move blocking, the control horizon
is identical to the prediction horizon. Then the control can be separated into several
blocks of different lengths 𝑛𝐵.

Supposing the problem is in the dense formulation, the input blocking can be done
by introducing a transformation matrix G, which transforms the original vector 𝑢 of 𝑛𝑝

input vectors into a smaller vector 𝑣 of 𝑛𝑐 vectors. This matrix G consists of zeros and
ones with exactly one nonzero element in each row, also the causality for the inputs
must be preserved, meaning that the order of the inputs must be preserved. The box
constraints remain untouched. More can be found in [23], [22] or [24]. An example of
such transformation for four input blocks 𝑛𝐵 = [1, 2, 2, 1] follows,

10
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⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑢0
𝑢1
𝑢2
𝑢3
𝑢4
𝑢5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐼
𝐼
𝐼

𝐼
𝐼

𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
𝑣0
𝑣1
𝑣2
𝑣3

⎤⎥⎥⎥⎦ .

This example is demonstrated in Figure 3.
The black dots represent the non-blocked inputs, the white dots represent blocked

inputs and the red lines represent bounds on the inputs.

𝑘

𝑣

1 2 3 4 5 6

𝑣0
𝑣1

𝑣2
𝑣3

Figure 3 Move Blocking

This move blocking strategy is commonly used for MPC problems in dense formulation,
but to our knowledge, there is no extension of this method for problems in the sparse
form.
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3 Quadratic Programming

3.1 Problem Description
Quadratic programming (QP) is a form of a mathematical optimization problem. The
goal is to minimize quadratic cost function, subject to given linear constraints. A
description of this type of optimization can be found in [25]. Regardless of the form,
linear MPC with quadratic cost leads to a constrained QP optimization problem. The
framework of QP optimization is well understood, and there is a variety of algorithms
and solvers dealing with these kinds of problems, for example Quadprog [9] or FORCES
[16].

The problem of QP can be written in general way as

min
𝑧

1
2𝑧𝑇 𝐻𝑧 + 𝑓𝑇 𝑧 (9)

s.t. 𝐴𝑧 ≤ 𝑏,

where 𝐻 > 0, 𝐻 ∈ ℛ𝑛𝑧×𝑛𝑧 is the Hessian, vector 𝑓 ∈ ℛ𝑛𝑧 is the linear part of the
problem, 𝑧 ∈ ℛ𝑛𝑧 is the optimization variable. Matrix 𝐴 ∈ ℛ𝑚×𝑛𝑧 has full row rank,
𝑏 ∈ ℛ𝑚 is vector of constraints, 𝑚 is number of constraints.

Gradient of (9) 𝑔(𝑧), is also of importance. It is defined as the first derivative of the
criterion, i.e.

𝑔(𝑧) = 𝐻𝑧 + 𝑓 .

3.2 Algorithms
In this Section, several of the most common algorithms for solving the QP problem
(9) are briefly described. They are iterative algorithms, that transfer the problem with
inequality constraints into a series of linear equality constrained problems.

3.2.1 Interior Point Method

The Interior Point method (IP) was introduced by N. Karmarkar in 1984 [26]. His
contribution was an algorithm for solving a linear programming problem with linear
equality constraints. In the 90s, the Primal-Dual Interior Point method was introduced
[27]. This invention led to a considerable improvement of the performance. More about
history of IP methods in [28]. A detailed description of the method can be found for
example in [25].

The IP method uses the logarithmic barrier to transform the problem. Logarithmic
barrier for the QP problem from (9) has the following form,

𝜑(𝑧) = −
𝑚∑︁

𝑖=1
log(−𝐴𝑧 + 𝑏).

12
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Logarithmic barrier serves as an approximation of the inequality constraints and
allows to add them directly into the objective of (9). The problem solved in each
iteration is then,

min
𝑧

𝜅

(︂1
2𝑧𝑇 𝐻𝑧 + 𝑐𝑇 𝑧

)︂
+ 𝜑(𝑧). (10)

The parameter 𝜅 is a scalar setting the weight of the barrier against the original
criterion. It starts with a small value and is gradually increased in each iteration.
The algorithm starts with a sub-optimal solution, that is strongly influenced by the
logarithmic barrier. As the influence of the barrier is reduced, the solution in every
iteration is getting closer to the true solution of the original problem. This progress is
illustrated in the Figure 4. The red line is the progress of the IP method and the black
lines represent the constraints of the problem.

Figure 4 Progress of the IP method

An important condition on proper functionality is that the algorithm starts in a
feasible point. Thanks to the logarithmic barrier and because the constrained area is
convex; the solution remains feasible in every iteration. The algorithm ends, when the
desired accuracy of the solution is achieved.

Solvers using Interior Point method are for example fastMPC [15] or FORCES [16].
A basic algorithm of Barrier Interior Point method, taken from [25] follows.

Algorithm 1 Interior Point Method, [25]
1: 𝑧 := 𝑧0 strictly feasible, 𝜇 > 1, 𝜅 := 𝜅0 > 0, tolerance 𝜖 > 0
2: while 𝑚/𝜅 < 𝜖 do
3: 𝑧* := solution of (10);
4: 𝑧 := 𝑧*;
5: 𝜅 := 𝜅𝜇;
6: end while

13



3 Quadratic Programming

3.2.2 Active Set Method

The Active Set method (AS) presents another approach to solving the QP. It is also an
iterative optimization method that transforms the problem with inequality constraints
into a series of problems with equality constraints. In each iteration, the so-called
working set, a set of constraints active in the current iteration is changed. A constraint
is either added or removed from this set.

First of all, the step in the optimized variable is introduced as

𝑧 = 𝑧− + Δ𝑧,

where 𝑧− is the value from the last iteration and Δ𝑧 is the current step.
In each iteration, the optimization problem

min
Δ𝑧

1
2Δ𝑧𝑇 𝐻Δ𝑧 + Δ𝑧𝑇 𝑔(𝑧−) (11)

s.t. 𝐴𝑗Δ𝑧 = 0,

where 𝐴𝑗 is the matrix of active constraints in the 𝑗-th iteration, is solved.
In the case Δ𝑧 = 0, it is possible that the algorithm found the solution. If they are
not satisfied a constraint needs to be removed from the working set, and the algorithm
continues. Otherwise, the solution is found.
If Δ𝑧 ̸= 0, the step needs to be applied. To ensure that the algorithm does not
leave the feasible set, the maximal length of such step in 𝑖-th component, 𝛼𝑖 has to be
computed. It expresses the distance from the constraints along the computed direction.
This parameter is computed using following relation,

𝛼𝑖 ≤ 𝑏𝑖 − 𝐴𝑗
𝑖 𝑧−

𝐴𝑗
𝑖 Δ𝑧

.

In case of simple box constraints, which is the case of this work, this relation can be
simplified as,

𝛼𝑖 ≤ 𝑏𝑖 − 𝑧−
𝑖

Δ𝑧𝑖
, (12)

where 𝑏𝑖 is the 𝑖-th coordinate of the 𝑏 vector and 𝐴𝑗
𝑖 is the 𝑖-th row of matrix 𝐴𝑗 .

The parameter 𝛼 is chosen as the largest number, satisfying the inequality for each 𝑖.
If 𝛼 < 1, the step cannot be applied fully and a blocking constraint for which the 𝛼𝑖 is
the smallest has to be added to the working set. If 𝛼 ≥ 1, no constraint is added, and
the step is applied fully with 𝛼 = 1.

If 𝛼 = 1 and the active set is correct, the result is the optimum 𝑧*.
When the final optimal solution is found, also the active set consisting exactly of

the blocking constraints is found. An example of the progress of Active Set method is
depicted in Figure 5. The red line symbolises the progress of the method and the black
line represents the bounds on the problem.
An extensive description of this method can be found in the literature (e.g. [29]).
A general algorithm is summarized in Algorithm 2.
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Algorithm 2 Active Set Method, [29]
1: 𝑧0 strictly feasible;
2: 𝒜0 initial active set at 𝑧0;
3: for 𝑗 < 𝑗𝑚𝑎𝑥 do
4: Δ𝑧 := solution of (11);
5: if Δ𝑧 = 0 then
6: if KKT conditions are satisfied then
7: 𝑧* := 𝑧−;
8: break;
9: else

10: 𝑧𝑗+1 := 𝑧−;
11: Remove a constraint from 𝒜𝑗 ;
12: end if
13: else
14: Compute 𝛼𝑖 from (12);
15: 𝑧− := 𝑧− + 𝛼𝑖Δ𝑧;
16: if 𝛼𝑖 < 1 then
17: Add a constraint to 𝒜𝑗 ;
18: else
19: 𝒜𝑗+1 := 𝒜𝑗 ;
20: end if
21: end if
22: end for

Figure 5 Progress of the Active Set method

3.2.3 Alternating Direction Method of Multipliers
The Alternating Direction Method of Multipliers (ADMM) is based on the Dual Ascent
method but combines it with the method of the Augmented Lagrangian, which brings

15



3 Quadratic Programming

robustness to the algorithm. The main advantage of this algorithm is the possibility to
decompose the problem into smaller ones, which can be solved in parallel as in [18].

Dual Ascent method

Considering a problem in the even more general form

min
𝑧

𝑓(𝑧)

s.t. 𝐴𝑧 = 𝑏,

the constraints are integrated to the objective using Lagrange multipliers,

ℒ(𝑧, 𝜆) = 𝑓(𝑧) + 𝜆𝑇 (𝐴𝑧 − 𝑏).

The solution is then found in the dual variable using the Gradient method to maximize
the dual function ℎ(𝜆),

max
𝜆

ℎ(𝜆),

where

ℎ(𝜆) = inf
𝑧

ℒ(𝑧, 𝜆).

The algorithm solves the problem by alternating two steps. In the first step, 𝑧 is
minimized. In the second step, 𝜆 is updated.

𝑧𝑗+1 = argmin𝑧ℒ(𝑧, 𝜆𝑗) (14)
𝜆𝑗+1 = 𝜆𝑗 + 𝛼(𝐴𝑧𝑗+1 − 𝑏)

Method of Multipliers

The Dual Ascent method converges only under strong assumptions. To make the Dual
Ascent method more robust, Augmented Lagrangian,

ℒ𝜌(𝑧, 𝜆) = 𝑓(𝑧) + 𝜆𝑇 (𝐴𝑧 − 𝑏) + 𝜌

2 ||𝐴𝑧 − 𝑏||22 (15)

is introduced.
The Augmented Lagrangian (15) is then solved similarly as in (14), but instead of
general 𝛼, penalty parameter 𝜌 is used.

𝑧𝑗+1 = argmin𝑧𝐿𝜌(𝑧, 𝜆𝑗)
𝜆𝑗+1 = 𝜆𝑗 + 𝜌(𝐴𝑧𝑗+1 − 𝑏)
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3.2 Algorithms

Alternating Direction Method of Multipliers

Suppose the following problem in variables 𝑧, 𝑣 with separable objective functions 𝑓(𝑧)
and 𝑙(𝑣).

min
𝑧,𝑣

𝑓(𝑧) + 𝑙(𝑣)

s.t. 𝐴𝑧 + 𝐵𝑣 = 𝑐

Augmented Lagrangian is in this case,

𝐿𝜌(𝑧, 𝜆, 𝑣) = 𝑓(𝑧) + 𝑙(𝑣) + 𝜆𝑇 (𝐴𝑧 + 𝐵𝑣 − 𝑐) + 𝜌

2 ||𝐴𝑧 + 𝐵𝑣 − 𝑐||22.

Thanks to the separable objectives, the computations can be done in parallel. Also
this formulation can be used to solve QP. The complete algorithm of ADMM follows.

Algorithm 3 ADMM Method
1: 𝑧 := 𝑧0, 𝜆 := 𝜆0, 𝑣 := 𝑣0 feasible
2: for 𝑗 < 𝑗𝑚𝑎𝑥 do
3: 𝑧𝑗+1 = argmin𝑧𝐿𝜌(𝑧, 𝜆𝑗 , 𝑣𝑗);
4: 𝑣𝑗+1 = argmin𝑣𝐿𝜌(𝑧𝑗+1, 𝜆𝑗 , 𝑣);
5: 𝜆𝑗+1 = 𝜆𝑗 + 𝜌(𝐴𝑧𝑗+1 + 𝐵𝑣𝑗+1 − 𝑐);
6: end for

3.2.4 Gradient Projection Method
The Gradient Projection method can be senn as the Active Set method, but it addresses
the problem of slow active set change rate. The basic Active Set method allows to add
or drop at most one constraint from the working set in each iteration. In case, that the
final active set is dramatically different from the starting set (especially in the case of
large problems), the number of iterations can be high.

The Gradient Projection algorithm allows large changes in the active set in each
iteration, using the projection step,

𝒫(𝑧 − 𝛼𝑔(𝑧)), 𝛼 > 0, (18)
where parameter 𝛼 sets the size of the step.

The step (18) projects the new solution onto the feasible set, resulting in feasible
solution and also in the new working set because the active constraints are identified
in the process. The parameter 𝛼 must be chosen such that the algorithm converges. In
case of QP problem

𝛼 <
1
𝐿

,

where 𝐿 is the largest eigenvalue of 𝐻. In case of simple bound constraints, the pro-
jection is found fairly easily as,

𝒫(𝑧) = median(𝑧, 𝑧, 𝑧),
where median is taken element-wise. Symbols 𝑧, 𝑧 are lower and upper bounds on 𝑧.
Basic Gradient Projection method algorithm follows.

17
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Algorithm 4 Gradient Projection Method
1: 𝑧 := 𝑧0 feasible, 0 < 𝛼 < 𝛼𝑚𝑎𝑥

2: for 𝑗 < 𝑗𝑚𝑎𝑥 do
3: 𝑧+ = 𝑧𝑗 − 𝛼𝑔(𝑧𝑗);
4: 𝑧𝑗+1 = median(𝑧, 𝑧+, 𝑧);
5: end for

3.3 Warm-start

Warm-start is a technique aimed to reduce the computational load of a QP solver. It
tries to find a good initial estimate of the solution, to reduce the number of iterations.
Warm-start uses the optimal sequence from previous step or additional information
from current step to obtain such estimate. Warm-start is often used in case of AS
methods and Gradient methods.

The main problems of the warm-start are the uncertainty in the system model and
unknown disturbances entering the system. Those issues have to be taken into account,
and several strategies for dealing with them have been developed [30].

Consider the QP problem from (9). The solution of this problem in time instant 𝑡
is denoted as 𝑧*(𝑡) = [𝑧*𝑇

1 (𝑡), 𝑧*𝑇
2 (𝑡), ..., 𝑧*𝑇

𝑁 (𝑡)]𝑇 . Similarly, optimal solution from the
previous step is 𝑧*(𝑡 − 1).

Two approaches are presented here; they can also be combined.

3.3.1 Warm-start using Previous Solution

The easiest method of warm-start (used e.g. in [17]) is shifting the sequence 𝑧*(𝑡−1) by
one element and duplicating the last term, to obtain a new sequence of the same length.
Then the initial element is 𝑧0(𝑡) = [𝑧*𝑇

2 (𝑡 − 1), 𝑧*𝑇
3 (𝑡 − 1)..., 𝑧*𝑇

𝑁 (𝑡 − 1), 𝑧*𝑇
𝑁 (𝑡 − 1)]𝑇 .

Such method is computationally inexpensive, but it also does not exploit any further
information except for the optimal sequence from the previous step. Therefore, it is
susceptible to the disturbances and errors in the model. On the other hand, in case
there are no disturbances present and the model is precise, the solution is near optimal.
The difference from optimal solution in such case occurs only in the last term, [30].

3.3.2 Warm-start using New Measurement

In the case of the MPC, another option can be realized. The idea is to use the infor-
mation about the current state to improve the initial guess via the LQ regulator. Such
method does not apply to general QP because the LQ regulator is specific to linear
systems and quadratic criterion.

The LQ regulator computes optimal solution for the unconstrained problem, which
serves as an estimate of the constrained problem. Of course, the feasibility of this
estimate has to be ensured by projecting the solution onto the constraints (as proposed
in [30]).

Firstly, it is needed to extract the input part 𝑢*(𝑡) and the state part 𝑥*(𝑡) from the
optimized vector 𝑧*(𝑡) (in case of condensed form 𝑧*(𝑡) = 𝑢*(𝑡)).

Recall the form of the discrete-time system.

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 𝑡 > 0.
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For the criterion (1), the solution of the constrained LQR is following,

𝐾 = (𝑅 + 𝐵𝑇 𝑄𝑛𝑝𝐵)−1(𝑆𝑇 + 𝐵𝑇 𝑄𝑛𝑝)𝐴
𝑢*(𝑡) = −𝒫(𝐾𝑥(𝑡)),

where 𝐾 is the Kalman gain of the regulator and 𝒫 symbolises projection of the inputs
onto the constraints. In case of simple box constraints on inputs, the projection can be
done easily,

𝑢* = median(𝑢, −𝐾𝑥(𝑡), 𝑢),

where the median is taken element-wise.
The LQR, in this case, is used iteratively, to find the control on full control horizon.
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4 Tailored Algorithm for MPC with Long
Prediction Horizon

4.1 Newton Projection with Proportioning
The Newton Projection with Proportioning (NPP) algorithm, presented in [7] represents
a new iterative method, based on the Active Set algorithm. The results, from [7],
are promising, although there is a major drawback of this method - it can solve only
optimization problems with no equality constraints. From the view of the MPC, this
means only problems in the dense form.

The main contribution of this work is the modification of the NPP algorithm for MPC
with the long prediction horizon. The idea is to exploit the structure of the sparse prob-
lem, similarly as in [25]. Such approach leads to a smaller computational complexity fo
the algorithm, it becomes linear with respect to the length of the prediction horizon,
while in the original dense form the complexity is cubic. Several basic ingredients of
the original NPP algorithm had to be modified to achieve that.

Algorithm 5 Newton Projection with Proportioning, [7]
1: 𝑧 := 𝑧0 feasible, 𝑔(𝑧0) = 𝐻𝑧0 + 𝑓 , Γ > 0;
2: while ||𝜇(𝑧−)|| ≤ 𝜖 do
3: if ||𝛽(𝑧−)|| ≥ Γ||𝜑(𝑧−)|| then
4: // Proportional 𝑧−

5: Obtain working set;
6: else
7: // Non-Proportional 𝑧−

8: Obtain working set only for free gradient;
9: end if

10: Δ𝑧 := Solution of Newton step;
11: 𝛼𝑓 := max{𝛼 : 𝑧− + 𝛼Δ𝑧, s.t.(𝑧 < 𝑧 < 𝑧)}
12: if 𝛼𝑓 < 1 then
13: //Expansion step
14: [𝑧−, 𝑔(𝑧−)] := Solution of PLS;
15: else
16: 𝑧− := 𝑧− + Δ𝑧;
17: 𝑔(𝑧−) := 𝑔(𝑧−) + 𝐻Δ𝑧;
18: end if
19: end while
20: 𝑧* := 𝑧−;

Proportioning

Proportioning step is used in the framework of the NPP algorithm to decide whether
to remove or add the constraints from the working set.
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4.1 Newton Projection with Proportioning

First, consider the gradient 𝑔(𝑧) = 𝐻𝑧− + 𝑓 . Next, consider working set 𝒜, set of
currently active constraints.
Then chopped gradient 𝛽(𝑧) and free gradient 𝜑(𝑧) concepts are defined as,

𝜑𝑖(𝑧) = 0, for 𝑖 ∈ 𝒜, else 𝜑𝑖(𝑧) = 𝑔𝑖(𝑧)
𝛽𝑖(𝑧) = 𝑔𝑖(𝑧)#, for 𝑖 ∈ 𝒜, else 𝛽𝑖(𝑧) = 0,

where

𝑔𝑖(𝑧)# =
{︃

max{𝑔𝑖(𝑧), 0}, if 𝑧𝑖 = 𝑧𝑖

min{𝑔𝑖(𝑧), 0}, if 𝑧𝑖 = 𝑧𝑖

.

Together, they form the projected gradient 𝜇(𝑧) = 𝜑(𝑧)+𝛽(𝑧). The solution 𝑧 satisfies
the KKT conditions if and only if 𝜇(𝑧*) = 0.

By comparing the norm of 𝛽 and 𝜑, one can decide whether the step is Proportional
or Non-Proportional.
In case of the Proportional step,

𝒜 = {𝑖 : {𝑧𝑖 = 𝑧𝑖} or {𝑧𝑖 = 𝑧𝑖}}.

In case of the Non-Proportional step,

𝒜 = {𝑖 : ({𝑧𝑖 = 𝑧𝑖} or {𝑧𝑖 = 𝑧𝑖}) and 𝛽𝑖(𝑧) = 0}.

The Proportional step is taken, if

||𝛽(𝑧)|| ≥ Γ||𝜑(𝑧)||,

otherwise, the step is Non-Proportional.
The parameter Γ sets the weight between the free and the chopped gradient. The

bigger is Γ, the more weight is put on the free gradient 𝜑, therefore preferring the
Non-Proportional step and vice versa. The default value of Γ is 1.

Face problem

Face problem, as defined in [7] is a name for the reduced problem, which is to be solved
in every iteration of the Active Set method.

The restricted problem can be written as,

min
𝑧

1
2𝑧𝑇 𝐻𝑧 + 𝑓𝑇 𝑧, (20)

s.t. 𝐼𝐴𝑧 = 𝑒,

where 𝐼𝐴 is matrix selecting variables, whose bounds are active. Vector 𝑒 = [𝑧𝑇
𝐴, 𝑧𝑇

𝐴]𝑇
containts the active bounds 𝑧𝑇

𝐴 are upper active bounds, 𝑧𝑇
𝐴 are lower active bounds.

By introducing the Lagrange multipliers, denoted by 𝜆, on (20) and then using the
KKT conditions of optimality, one arrives to following matrix equation,

[︃
𝐻 −𝐼𝑇

𝐴

𝐼𝐴 0

]︃ [︃
𝑧*

𝜆*

]︃
=

[︃
−𝑓
𝑒

]︃
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4 Tailored Algorithm for MPC with Long Prediction Horizon

Next, a step in variable 𝑧 is introduced,

𝑧* = 𝑧− + Δ𝑧, (21)

where 𝑧− denotes the value of the 𝑧* and Δ𝑧, denotes the step in the 𝑧*.
Using the step from (21), the KKT equation is rewritten as,

[︃
𝐻 𝐼𝑇

𝐴

𝐼𝐴 0

]︃ [︃
−Δ𝑧
𝜆*

]︃
=

[︃
𝑔
0

]︃
, (22)

where 𝑔 = 𝐻𝑧− + 𝑓 .
To solve the equation (22), the Null-Space method is used, following the argument

that in the case of many active constraints, it is more advantageous than the Range-
Space method. This motivation comes from automotive, where many constraints are
usual.

In the Null-Space method, the step Δ𝑧 is divided into two parts,

Δ𝑧 = 𝑍Δ𝑧𝑧 + 𝑌 Δ𝑧𝑦. (23)

First part 𝑍Δ𝑧𝑧 corresponds to the step in the null space of the matrix 𝐼𝐴, therefore

𝐼𝐴𝑍 = 0, (24)

where 𝑍 ∈ ℛ𝑛𝑧×𝑚. The second part corresponds to the range space of the 𝐼𝐴, as the
columns of 𝑌 form the basis of range space of 𝐼𝑇

𝐴 , also

rank[𝑌 |𝑍] = 𝑛𝑧. (25)

From the previous properties, 𝑌 Δ𝑧𝑌 = 0 can be assumed, symplifying the equation
(23).

Substituting the (23) into (22) and using the properties (24) and (25), the following
solution is obtained,

GΔ𝑧𝑧 = −𝑟,

where G = 𝑍𝑇 𝐻𝑍 represents reduced Hessian and 𝑟 = 𝑍𝑇 𝑔 represents reduced gradi-
ent.

Thanks to the fact, that the inequality constraints in this thesis are only box con-
straints, the reduced Hessian and gradient can be obtained easily, by omitting the rows
and columns corresponding to the active constraints.

The full step Δ𝑧 is obtained by adding zeros to the variables, whose constraints are
active since no move can be performed in such coordinates,

Δ𝑧 = 𝑍Δ𝑧𝑧.
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4.1 Newton Projection with Proportioning

Projected Line Search

The Projected Line Search (PLS) is used to rapidly extend the working set, it is de-
scribed in [29]. The goal is to find a piecewise linear path, obtained by projecting the
descent direction onto the box constraints and to find the first local minimizer of the
cost criterion,

1
2(𝑧 + 𝛼Δ𝑧)𝑇 𝐻(𝑧 + 𝛼Δ𝑧) + 𝑓𝑇 (𝑧 + 𝛼Δ𝑧). (26)

Such point is found by examining all the line segments, defined by the constraints.
All breakpoints 𝛼 must be found to determine those segments. Those breakpoints can
be found using

𝛼𝑖 =

⎧⎪⎪⎨⎪⎪⎩
(𝑧𝑖 − 𝑧𝑖)/Δ𝑧𝑖 if Δ𝑧𝑖 < 0 and 𝑧𝑖 < +∞,

(𝑧𝑖 − 𝑧𝑖)/Δ𝑧𝑖 if Δ𝑧𝑖 > 0 and 𝑧𝑖 > −∞,

∞ otherwise
.

and the components of the projected variable are

𝑧𝑖(𝛼) =
{︃

𝑧𝑖 + 𝛼Δ𝑧𝑖 if 𝛼 < 𝛼𝑖,

𝑧𝑖 + 𝛼𝑖Δ𝑧𝑖 otherwise.

Firstly, the duplicate values are removed from the set of 𝛼1, 𝛼2, ..., 𝛼𝑛 and the set is
sorted, obtaining set 𝛽1, 𝛽2, ..., 𝛽𝑙, where 𝛽1 < 𝛽2 < ... < 𝛽𝑙.
Then, the intervals [0, 𝛽1], [𝛽1, 𝛽2], ... are examined. Once a local minimizer on an
interval is found, the algorithm ends.
In case of interval [𝛽𝑗−1, 𝛽𝑗 ], the line segment is found as,

𝑧(𝛼) = 𝑧(𝛽𝑗−1) + Δ𝛼𝑝𝑗−1,

where

Δ𝛼 = 𝛼 − 𝛽𝑗−1 ∈ [0, 𝛽𝑗 − 𝛽𝑗−1],

and

𝑝𝑗−1
𝑖 =

{︃
Δ𝑧𝑖 if 𝛽𝑗−1 ≤ 𝛼,

0 otherwise.

The quadratic cost criterion (26) on the line segment [𝑧(𝛽𝑗−1), 𝑧(𝛽𝑗)] is following,

𝑞(𝑧(𝛼)) = 1
2(𝑧(𝛽𝑗−1) + Δ𝛼𝑝𝑗−1)𝑇 𝐻(𝑧(𝛽𝑗−1) + Δ𝛼𝑝𝑗−1) + 𝑓𝑇 (𝑧(𝛽𝑗−1) + Δ𝛼𝑝𝑗−1).

Differentiating 𝑞(𝑧(𝛼)) with respect to Δ𝛼 yields

𝑞(𝑧(𝛼))′ = 𝑧(𝛽𝑗−1)𝑇
𝐻𝑝𝑗−1 + 𝑓𝑇 𝑝𝑗−1 + Δ𝛼𝑝𝑗−1𝑇

𝐻𝑝𝑗−1. (27)
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4 Tailored Algorithm for MPC with Long Prediction Horizon

Setting the (27) equal to zero the following result is obtained,

Δ𝛼 = −𝑧(𝛽𝑗−1)𝑇
𝐻𝑝𝑗−1 + 𝑓𝑇 𝑝𝑗−1

𝑝𝑗−1𝑇 𝐻𝑝𝑗−1
,

Three cases can occur.
1. If 𝑧(𝛽𝑗−1)𝑇 𝐻𝑝𝑗−1 + 𝑓𝑇 𝑝𝑗−1 ≤ 0, the local minimizer is found as 𝛼* = 𝛽𝑗−1.
2. Else, if Δ𝛼* ∈ [0, 𝛽𝑗 − 𝛽𝑗−1], there is a minimizer at 𝛼* = 𝛽𝑗−1 + Δ𝛼*.
3. Else, move onto next interval and continue the search. The search direction 𝑝 has

to be updated, but it differs only in one component, so the computational load is not
high.

Figure 6 Example of Projected Line Search

An example of the PLS progress is shown in the Figure 6. The algorithm starts in
point 𝑧 and with each iteration, it encounters a constraint and moves in a modified
direction.

4.2 Tailored NPP Algorithm

Within this thesis, the NPP algorithm was modified to compute the MPC problem
in the sparse form and to be able to exploit the structure of the problem. Namely,
the Proportioning step, Face problem solution, and Newton Projection step had to be
changed. Description of the main differences and comparison of the computational
complexity of the algorithms follows.

4.2.1 Sparse Proportioning

The idea is the same as in the original form, only the equivalence of the sparse gradient
and the dense gradient has to be established. The equivalence can be shown by exam-
ining the gradients in both forms. Recall the gradient in the dense form, used in the
original NPP algorithm

̂︀𝑔 = ̂︁𝐻𝑢 + ̂︀𝑓 ,

where
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4.2 Tailored NPP Algorithm

̂︁𝐻 = B𝑇A−𝑇QA−1B + R − SA−1B − B𝑇A−𝑇S𝑇

̂︀𝑓 = B𝑇A−𝑇QA−1B − S𝑇A−1𝑑,

The gradient in the sparse form has following form,

⎡⎢⎣𝑔𝑢

𝑔𝑥

𝑔𝜆

⎤⎥⎦ =

⎡⎢⎣R𝑢 + S𝑇 𝑥 + B𝑇 𝜆
S𝑢 + Q𝑥 + A𝑇 𝜆
B𝑢 + A𝑥 + 𝑑

⎤⎥⎦ , (28)

where 𝑑 = [(𝐴𝑥0)𝑇 , 0, . . . , 0]𝑇 . The condition for optimality is 𝑔𝑥 = 0 and 𝑔𝜆 = 0,
because the variables 𝑥 and 𝜆 are unconstrained. Firstly, 𝑥 is expressed from the
equation for 𝑔𝜆 from (28),

𝑥 = −A−1(B𝑢 + 𝑑)).

Subsequently, it is substituted into equation for 𝑔𝑥 and variable 𝜆 is expressed,

𝜆 = −A−𝑇 (S𝑢 − QA−1(B𝑢 + 𝑑)). (29)

By substituting the equation (29) into equation for 𝑔𝑢, the final result is obtained,

𝑔𝑢 = R𝑢 − S𝑇A−1(B𝑢 + 𝑑) − B𝑇A−𝑇 (S𝑢 − QA−1(B𝑢 + 𝑑)),

after modifications,

𝑔𝑢 = (B𝑇A−𝑇QA−1B + R − S𝑇A−1B − B𝑇A−𝑇S)𝑢 + (B𝑇A−𝑇QA−1 − S𝑇A−1)𝑑. (30)

The relation (30) corresponds to the gradient in the dense form. The proportioning
is then carried out in the same manner as in the case of the original NPP algorithm,
using 𝑔𝑢, i.e. part of the augmented gradient only.

4.2.2 Sparse Face Problem Solution
The working set of the constraints is projected in the computations by introducing a
blocking matrix F, which is determined by the active constraints in the 𝑗-th iteration.
There are as many rows as is the number of active constraints. The matrix F selects
those coordinates of Δ𝑢, a vector of input step, whose constraints are active.

Matrix F determines whether a component of Δ𝑢 is fixed or free.

FΔ𝑢 = 0

Next, Lagrangian ℒ with Lagrange multipliers 𝜆 and 𝛾 is introduced, to incorporate
the constraints,

ℒ = 1
2

[︃
𝑢
𝑥

]︃𝑇 [︃
R S𝑇

S Q

]︃ [︃
𝑢
𝑥

]︃
+ 𝜆𝑇 (A𝑥 + B𝑢 + 𝑑) + 𝛾𝑇 (FΔ𝑢). (31)

25



4 Tailored Algorithm for MPC with Long Prediction Horizon

The full set of optimization variables then consists of: inputs 𝑢, states 𝑥, Lagrange
multipliers of the system dynamics 𝜆 and Lagrange multipliers of the inequality con-
straints 𝛾.

To compute the Newton step within the NPP algorithm from the formulation pre-
sented in (31) a step in variables 𝑢, 𝑥, 𝜆, 𝛾 is introduced as

𝑢 = 𝑢− + Δ𝑢 (32)
𝑥 = 𝑥− + Δ𝑥

𝜆 = 𝜆− + Δ𝜆

𝛾 = 𝛾− + Δ𝛾,

where variables 𝑢−, 𝑥−, 𝜆− and 𝛾− are values from the previous iteration, Δ𝑢, Δ𝑥,
Δ𝜆 and Δ𝛾 are steps in the variables.

After applying the relation (32) on the extended criterion (31) and by taking the
partial derivatives, the resulting relation is obtained as,

̂︀H𝑝 = −𝑔, (33)

where

̂︀H =

⎡⎢⎢⎢⎣
R S𝑇 B𝑇 F𝑇

S Q A𝑇

B A
F

⎤⎥⎥⎥⎦ , 𝑝 =

⎡⎢⎢⎢⎣
Δ𝑢
Δ𝑥
Δ𝜆
Δ𝛾

⎤⎥⎥⎥⎦ , 𝑔 =

⎡⎢⎢⎢⎣
R S𝑇 B𝑇 F𝑇

S Q A𝑇

B A
F

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

𝑢−

𝑥−

𝜆−

𝛾−

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
0
0
𝑑
0

⎤⎥⎥⎥⎦ .

This equation has to be solved for 𝑝, to find the desired Newton step.

Reduction by Null-Space Method

The Null-space method is used to eliminate the variable 𝛾, reducing the size of the
problem. The matrix Z is introduced as a null space matrix of the trivial F matrix. The
problem is altered according to the active constraints, using this matrix. Subsequently,
the first equation of (33) is multiplied by Z𝑇 . Following equation holds for the matrix
Z and step Δ𝑢.

Δ𝑢 = ZΔ𝑢𝑓 .

The resulting system of equations is following⎡⎢⎣Ψ Λ𝑇 Γ𝑇

Λ Q A𝑇

Γ A

⎤⎥⎦
⎡⎢⎣Δ𝑢𝑓

Δ𝑥
Δ𝜆

⎤⎥⎦ =

⎡⎢⎣ 𝜅
𝑚
𝑛

⎤⎥⎦ , (34)

where the modified matrices are

Ψ = Z𝑇RZ, Λ = SZ, Γ = BZ.

Matrix Ψ is block diagonal and square, matrix Γ is block diagonal and rectangular,
matrix Λ is also block diagonal and rectangular,
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4.2 Tailored NPP Algorithm

𝜅 = Z𝑇 (−R𝑢− − S𝑇 𝑥− − B𝑇 𝜆−),
𝑚 = −Q𝑥− − S𝑢− − A𝑇 𝜆−,

𝑛 = −A𝑥− − B𝑢− − 𝑑.

Reduction by Range-Space Method

The problem (34) will be solved in two steps:
1) Variables Δ𝑢𝑓 and Δ𝑥 are eliminated and the resulting system is solved for Δ𝜆.
2) When Δ𝜆 is known, variables Δ𝑢𝑓 and Δ𝑥 are computed.
From the first two equations of (34), Δ𝑢𝑓 and Δ𝑥 can be derived as solution of

[︃
Ψ Λ𝑇

Λ Q

]︃ [︃
Δ𝑢𝑓

Δ𝑥

]︃
=

[︃
𝜅
𝑚

]︃
−

[︃
Γ𝑇

A𝑇

]︃
Δ𝜆 (35)

and inserted in the last equation of (34)

[︁
Γ A

]︁ [︃
Δ𝑢𝑓

Δ𝑥

]︃
= 𝑛. (36)

The equation (35) can be computed effectively, because the structure of the problem
is specific, similarly as in [15].

The matrix to be inversed has following structure,

[︃
Ψ Λ𝑇

Λ Q

]︃
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑅 0 0 . . . 0 0 . . . 0
0 𝑅 0 . . . 𝑆𝑇 0 . . . 0
0 0 𝑅 . . . 0 𝑆𝑇 . . . 0
...

...
... . . . ...

... . . . ...
0 𝑆 0 . . . 𝑄 0 . . . 0
0 0 𝑆 . . . 0 𝑄 . . . 0
...

...
... . . . ...

... . . . ...
0 0 0 . . . 0 0 . . . 𝑄𝑛𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(37)

in case that no constraints are active.
Resulting problem for [Δ𝑢𝑇

𝑓 , Δ𝑥𝑇 ]𝑇 from (35) inserted into (36) is

ΦΔ𝜆 = 𝛽, (38)

where

Φ =
[︁
Γ 𝐴

]︁ [︃
Ψ Λ𝑇

Λ Q

]︃−1 [︃
Γ𝑇

𝐴𝑇

]︃
(39)

𝛽 =
[︁
Γ 𝐴

]︁ [︃
Ψ Λ𝑇

Λ Q

]︃−1 [︃
𝜅
𝑚

]︃
− 𝑛.

Note that block matrix inversion is
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4 Tailored Algorithm for MPC with Long Prediction Horizon

[︃
Ψ Λ𝑇

Λ Q

]︃−1

=
[︃

Ω−1 −Ω−1Λ𝑇Q−1

−Q−1ΛΩ−1 Q−1 + Q−1ΛΩ−1Λ𝑇Q−1

]︃
,

where Ω = Ψ − Λ𝑇Q−1Λ. Since Ψ and Ψ − Λ𝑇Q−1Λ are nonsingular, the inversion
is defined.

The structure of the Φ matrix is of importance here. It has block tridiagonal form,
with blocks of size 𝑛𝑥 × 𝑛𝑥. The overall size of the Φ is 𝑛𝑝𝑛𝑥 × 𝑛𝑝𝑛𝑥.

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ𝑎 Φ𝑇
𝑏 0 . . . 0 0

Φ𝑏 Φ𝑐 Φ𝑇
𝑏 . . . 0 0

0 Φ𝑏 Φ𝑐 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . Φ𝑐 Φ𝑇

𝑏

0 0 0 . . . Φ𝑏 Φ𝑑

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(40)

Φ𝑎 =𝐵𝑅−1𝐵𝑇 + 𝑄−1 + 𝑄−1𝑆(𝑅−1 − 𝑆𝑄−1𝑆𝑇 )−1𝑆𝑇 𝑄−1,

Φ𝑏 =𝐵(𝑅−1 − 𝑆𝑄−1𝑆𝑇 )−1𝑆𝑇 𝑄−1 − 𝐴𝑄−1 − 𝐴𝑄−1𝑆(𝑅−1 − 𝑆𝑄−1𝑆𝑇 )−1𝑆𝑇 𝑄−1,

Φ𝑐 =𝐵(𝑅−1 − 𝑆𝑄−1𝑆𝑇 )−1𝐵𝑇 − 𝐴𝑄−1𝑆(𝑅−1 − 𝑆𝑄−1𝑆𝑇 )−1𝐵𝑇 + 𝐴𝑄−1𝐴𝑇 + 𝑄−1−
𝐵(𝑅−1 − 𝑆𝑄−1𝑆𝑇 )−1𝑆𝑇 𝑄−1𝐴𝑇 + 𝐴𝑄−1𝑆(𝑅−1 − 𝑆𝑄−1𝑆𝑇 )−1𝑆𝑇 𝑄−1𝐴𝑇 +
𝑄−1𝑆(𝑅−1 − 𝑆𝑄−1𝑆𝑇 )−1𝑆𝑇 𝑄−1,

Φ𝑑 =𝐵(𝑅−1 − 𝑆𝑄−1𝑆𝑇 )−1𝐵𝑇 − 𝐴𝑄−1𝑆(𝑅−1 − 𝑆𝑄−1𝑆𝑇 )−1𝐵𝑇 + 𝐴𝑄−1𝐴𝑇 + 𝑄−1
𝑁 −

𝐵(𝑅−1 − 𝑆𝑄−1𝑆𝑇 )−1𝑆𝑇 𝑄−1𝐴𝑇 + 𝐴𝑄−1𝑆(𝑅−1 − 𝑆𝑄−1𝑆𝑇 )−1𝑆𝑇 𝑄−1𝐴𝑇

The complexity of the Newton step is different from the complexity of the Newton step
in the original NPP.
The solution consists of three phases.
1. The matrix Φ and vector 𝛽 are formed, as in (39). The complexity of this phase is
dominated by the Cholesky decomposition of the matrix from (35). According to the
guides for computing the FLOP complexity from [25], the complexity of decomposition
is in this case 𝒪(1

3𝑛𝑝(𝑛𝑢 +𝑛𝑥)3), because the matrix is symmetric and has block-banded
structure. The full step has complexity of order 𝒪(1

3𝑛𝑝(𝑛𝑢 + 𝑛𝑥)3 + 𝑛𝑝𝑛2
𝑥(𝑛𝑢 + 𝑛𝑥)).

2. The equation (38) is solved, again using decomposition, substitution and back-
substitution. The complexity is of order 𝒪(𝑛𝑝𝑛3

𝑥 + 4𝑛𝑝𝑛2
𝑥). The complexity of this step

is therefore significantly smaller (for larger systems) than the complexity of the first
step.
3. The variables Δ𝑢𝑓 , Δ𝑥 are found using equation (35). The complexity of this step
is 𝒪(𝑛𝑝𝑛𝑢𝑛𝑥 + 𝑛𝑝𝑛2

𝑥), as the Cholesky factor has been already found.

4.2.3 Sparse Projected Line Search

The Projected Line Search [29] step serves for expanding the active set. This step had
to be modified as well, to use the sparse form of the MPC problem.
The cost function 𝐽 to be minimized in the line search has in this case form

𝐽 = 1
2

(︀
𝑣− + 𝛼Δ𝑣

)︀𝑇 W
(︀
𝑣− + 𝛼Δ𝑣

)︀
,
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4.2 Tailored NPP Algorithm

where W =
[︃
R S𝑇

S Q

]︃
is weight matrix of the problem in sparse form, 𝛼 is the step size

to be found, 𝑣− = [𝑢−𝑇
, 𝑥−𝑇 ]𝑇 is vector of inputs and states and Δ𝑣 is the direction

to be projected.
The main difference between the forms is that in the case of the original form the

effect of the state equation (4) is already present in the Hessian and gradient of the
problem. In the sparse form, this equality constraint has to be taken into account
explicitly.

Algorithm 6 Sparse Projected Line Search
1: 𝑢 := 𝑢0.
2: for j:=1 to 𝑁𝑛𝑢 do
3: Find 𝑝𝑗

𝑢, direction in 𝑢 of current iteration as in the dense line search;
4: Calculate A𝑝𝑗

𝑥 = −B𝑝𝑗
𝑢;

5: Calculate Δ𝛼* from (41);
6: 𝑣(𝑗 + 1) = 𝑣(𝑗) + Δ𝛼𝑝𝑗

7: if Δ𝛼 is global minimizer then
8: break;
9: end if

10: end for
11: Recalculate 𝜆 as 𝜆 = −A𝑇 (S𝑢 + Q𝑥);

As only the constraints on the inputs are assumed, the PLS as described in the Section
4.1 is applied only on inputs. Following the algorithm from original NPP, one arrives
to formula for Δ𝛼* in sparse form,

Δ𝛼* = −𝑣(𝑗)𝑇W𝑝𝑗

𝑝𝑗𝑇W𝑝𝑗
, (41)

where 𝑝𝑗 is direction of the minimization in variables 𝑢, 𝑥 in the 𝑗-th iteration.
However, because of the dependency of the states 𝑥 on inputs 𝑢 through the equality

constraints, the step in states has to be recalculated from the inputs in every iteration
of the PLS, using equation

A𝑝𝑗
𝑥 = −B𝑝𝑗

𝑢. (42)

The equation (42) is satisfied for 𝑝0
𝑥 and 𝑝0

𝑢, as the solution of the Newton step satisfies
this equation, but it has to be satisfied for every iteration.
Furthermore, the step in Lagrangian multipliers 𝜆 has to be recalculated from equation

A𝑇 𝜆 = −(S𝑢 + Q𝑥).

Note, that in contrast with the equation (42), this can be done only once, after the
projection in variables 𝑢 and 𝑥 has been done.

That way, the equality constraints are satisfied within each iteration of PLS, and
the Newton direction is correctly projected. An example of the Newton step projection
with states correction is shown in Figure 7, a simple case with 𝑛𝑢 = 1 and 𝑛𝑥 = 1 is
shown.

The original direction, 𝑝0 points to the optimum. However, there is bound 𝑢𝑏, pre-
venting the algorithm from reaching the unconstrained optimum. Upon reaching the
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4 Tailored Algorithm for MPC with Long Prediction Horizon

Figure 7 Example of Sparse Projected Line Search

point [𝑢𝑇
𝑏 , 𝑥𝑇

1 ]𝑇 , the first coordinate of 𝑝0 is set to zero obtaining the direction 𝑝𝑏. The
step in states cannot be made independently of the inputs, because of the equality
constraints imposed on the direction. The step in states 𝑝𝑥 has to be recalculated to
satisfy them. In this case, obtaining 𝑝1 = [0, 0]𝑇 .

The complexity of this step is dominated by the computations of the steps in variables
𝑢 and 𝑥, (42). In those steps, the decomposition is not needed as the A matrix already
has lower triangular structure. Furthermore, it has block-banded sparse structure. The
complexity for one recalculation of the step 𝑝𝑥 is therefore 𝒪(4𝑛𝑝𝑛2

𝑥 + 2𝑛𝑝𝑛𝑢𝑛𝑥) and
complexity of recalculation of 𝜆 is 𝒪(6𝑛𝑝𝑛2

𝑥 + 3𝑛𝑝(𝑛𝑢 + 𝑛𝑥) + 2𝑛𝑝𝑛𝑢𝑛𝑥 + 𝑛𝑝𝑛𝑥 + 3𝑛2
𝑥).

4.2.4 Comparison of Complexity

The comparison of the forms of NPP algorithm is presented in the Table 1. The
complexity is compared in terms of required FLOPs. In this thesis, the FLOP is any
individual floating-point operation, e.g. multiplication or addition. For the sake of
simplicity, the effect of the clamping of the active constraints in the third row of this
table has been ignored for the sparse form, considering only the worst case when no
constraints are active.

The symbol 𝑛𝑝 represents the length of prediction horizon. The symbol 𝑚𝑗 represents
the number of active constraints in the 𝑗-th iteration.

The only change in row 1 comes from the size of the optimization vector and struc-
ture of the matrix H. The most computationally demanding step in the original NPP
algorithm is the step 3. The complexity of this step and consequently of the whole
algorithm is dominated by the term (𝑛𝑝𝑛𝑢 − 𝑚𝑗)3 in the case of the dense form, and
by the term, 1

3𝑛𝑝(𝑛𝑢 + 𝑛𝑥)3 in the case of the sparse form. Therefore, the resulting
complexity in the sparse form is linear in the length of the prediction horizon 𝑛𝑝, which
is an improvement since 𝑛𝑝 is usually significantly bigger than 𝑛𝑢 or 𝑛𝑧. Such change is
possible because the matrices in the Newton step computation have a block-tridiagonal
(40) and block-banded structure (37) now.

The complexity of step 4 is given by the number of active constraints as well as the
size of the vector.
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No. Name Operation Original NPP Sparse NPP
1 Gradient H𝑧𝑗 + 𝑓 2(𝑛𝑝𝑛𝑢)2 2𝑛𝑝(𝑛𝑧)2

2 Proportionality ||𝛽(𝑧𝑗)|| ≥ Γ||𝜑(𝑧𝑗)|| 2𝑛𝑝𝑛𝑢 2𝑛𝑝𝑛𝑢

3 Face problem GΔ𝑧𝑧 = −𝑟 (𝑛𝑝𝑛𝑢 −𝑚𝑗)3 +2(𝑛𝑝𝑛𝑢 −
𝑚𝑗)2

1
3𝑛𝑝(𝑛𝑢 + 𝑛𝑥)3 +
𝑛𝑝𝑛2

𝑥(𝑛𝑢 +𝑛𝑥)+𝑛𝑝𝑛𝑢𝑛𝑥

4 Precompute H𝑝𝑗 H𝑝𝑗 2𝑚𝑗(𝑛𝑝𝑛𝑢 − 𝑚𝑗) 2𝑚𝑗(𝑛𝑝𝑛𝑧)
5 Breakpoints 𝛼𝑓 = max{𝛼 : 𝑧𝑗 +

𝛼𝑝𝑗 ∈ Ω}
2𝑛𝑝𝑛𝑢 2𝑛𝑝𝑛𝑢

6 PLS routine [𝑧𝑗+1, 𝑔(𝑧𝑗+1)] =
PLS
(𝑧𝑗 , 𝑝𝑗 ,H𝑝𝑗 , 𝑔(𝑧𝑗))

2(𝑛𝑝𝑛𝑢 − 𝑚𝑗) +∑︀𝑠
𝑖=1(2𝑛𝑝𝑛𝑢𝑚𝑗 +

10𝑛𝑝𝑛𝑢)

2(𝑛𝑝𝑛𝑢 − 𝑚𝑗) + 6𝑛𝑝𝑛2
𝑥 +

2𝑛𝑝𝑛𝑢𝑛𝑥 + 3𝑛𝑝(𝑛𝑢 +
𝑛𝑥) + 3𝑛2

𝑥 + 𝑛𝑝𝑛𝑥 +
10𝑛𝑝𝑛𝑢 +

∑︀𝑠
𝑖=1(4𝑛𝑝𝑛2

𝑥 +
2𝑛𝑝𝑛𝑢𝑛𝑥)

7 Update 𝑧 𝑧𝑗+1 = 𝑧𝑗 + 𝑝𝑗 𝑛𝑝𝑛𝑢 𝑛𝑝𝑛𝑧

8 Update 𝑔 𝑔(𝑧𝑗+1) = 𝑔(𝑧𝑗) +
(H𝑝𝑗)

𝑛𝑝𝑛𝑢 𝑛𝑝𝑛𝑧

Table 1 Comparison of FLOP

In step 5, the max step size is found, the complexity of FLOP is linear with respect
to the vector 𝑧𝑗 length.

Step 6 presents the Projected Line Search, while having linear complexity in both the
number of variables 𝑛𝑢 and prediction horizon 𝑛𝑝, in the case of the Sparse Projected
Line Search, the situation is more complicated, because of the computation of step in 𝑥
and recomputation of 𝜆. The complexity is linear in 𝑛𝑝 and quadratic in 𝑛𝑥 and 𝑛𝑢. It
depends on the number of inner iterations of the sparse PLS. However, the complexity
is significantly lower than that of step 2.

Step 7 and 8 are simple updates of the vector 𝑧 and gradient 𝑔(𝑧). Therefore the
complexity is linear.

Therefore, the complexity of the proposed Sparse NPP algorithm is linear in length
of prediction horizon. Furthermore, the original algorithm is well optimized, using
e.g. decomposition updates when possible. These advanced features have not been
investigated in the proposed algorithm yet.

4.3 Tailored Move Blocking
The move blocking, 2.3 enables to set several consecutive inputs constant. Thus the
dimension of the problem is reduced. In the case of the proposed method, some states
are also excluded from the optimization along with the inputs. Using the blocking for
several sequences of different length is possible.

The tailored blocking procedure is then done due to the following transform

𝑥 = M𝑥𝐵 + NG𝑢𝐵 (43)
𝑢 = G𝑢𝐵,

where G is the same blocking matrix as in Section 2.3.
The idea behind the relations from (43) is the following. For the vector of states

in the 𝑘-th step 𝑥𝑘, it holds that either 𝑥𝑘 = 𝑥𝑘 in case that this state is ruled
out from optimization, or 𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1, in case that this step remains in the
optimization. If also state vector 𝑥𝑘−1 is ruled out of the optimization, one can continue
recursively, until the right side of the equation contains only inputs and states to be
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4 Tailored Algorithm for MPC with Long Prediction Horizon

optimized. The coefficients of the state vectors are then collected in the M matrix, and
the coefficients of the inputs are collected into the N matrix.

Example An example case for which input blocks are determined by 𝑛𝐵 = [1, 2, 3],
prediction horizon 𝑛𝑝 = 6 and control horizon 𝑛𝑐 = 3 follows. For this case the vectors
and matrices in (43) are

𝑥𝐵 =
[︁
𝑥𝑇

1𝐵
, 𝑥𝑇

3𝐵
, 𝑥𝑇

6𝐵

]︁𝑇
, 𝑢𝐵 =

[︁
𝑢𝑇

0𝐵
, 𝑢𝑇

1𝐵
, 𝑢𝑇

2𝐵

]︁𝑇
,

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐼
𝐴

𝐼
𝐴
𝐴2

𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, N =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
𝐵

0
𝐵

𝐴𝐵 𝐵
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐼
𝐼
𝐼

𝐼
𝐼
𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (44)

This example is sketched in Figure 8.

Remark 1 The size of the first block 𝑛𝐵1 has to be one. Otherwise, M contains zeros
in the first row, which causes singularity of A𝐵.

Remark 2 As shown in the example, the number of state samples has to be at least
equal to the number of input samples. The position of this minimum samples is given by
the size of input blocks. Other state samples can not be dropped without loss of sparsity
pattern.

𝑥

𝑘

𝑢

1 2 3 4 5 6

𝑢0𝐵

𝑢1𝐵

𝑢2𝐵

𝑥0 𝑥1𝐵

𝑥3𝐵
𝑥6𝐵

Figure 8 Sketch of move blocking in the example.

By applying (43) to (6) the following reduced optimization problem is obtained.

min
𝑥𝐵 ,𝑢𝐵

𝐽𝐵(𝑥𝐵, 𝑢𝐵) (45)

s.t. 0 = Ã𝑥𝐵 + B̃𝑢𝐵 + 𝑑

𝑢𝐵 ≤ 𝑢𝐵 ≤ 𝑢𝐵,

where Ã = AM, B̃ = (AN + B)G and with cost function defined by

𝐽𝐵(𝑥𝐵, 𝑢𝐵) = 1
2

[︃
𝑢𝐵

𝑥𝐵

]︃𝑇 [︃
R̃ S̃𝑇

S̃ Q̃

]︃ [︃
𝑢𝐵

𝑥𝐵

]︃
.
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Where new weight matrices have the following form

Q̃ = M𝑇QM (46)
S̃ = M𝑇 (QN + S)G
R̃ = G𝑇 (R + N𝑇QN + N𝑇S + S𝑇N)G.

Since all matrices in (45) will reduce their size, the computational demand for Newton
step is decreased as well.

An important observation is that the new weight matrices from (46) have a similar
structure as the original weight matrices. That means that they are also block diagonal.

In the case of the example matrices from (44), the modified weight matrices will have
the following form.

Q̃ =

⎡⎢⎣𝑄 + 𝐴𝑇 𝑄𝐴 0 0
0 𝑄 + 𝐴𝑇 𝑄𝐴 + 𝐴2𝑇

𝑄𝐴2 0
0 0 𝑄𝑁

⎤⎥⎦
S̃ =

⎡⎢⎣0 𝑆 + 𝐴𝑄𝐵 + 𝐴𝑆 0
0 0 𝑆 + 𝐴𝑄𝐵 + 𝐴𝑆 + 𝐴2𝑄(𝐴𝐵 + 𝐵) + 𝐴2𝑆
0 0 0

⎤⎥⎦
R̃ =

⎡⎢⎣𝑅 0 0
0 2𝑅 + 𝐵𝑇 𝑄𝐵 + 𝑆𝑇 𝐵 + 𝐵𝑇 𝑆 0
0 0 𝑊

⎤⎥⎦ ,

where 𝑊 = 3𝑅+2𝐵𝑇 𝑄𝐵 +2𝑆𝑇 𝐵 +2𝐵𝑇 𝑆 +𝐵𝑇 𝐴𝑇 𝑄𝐴𝐵 +𝐵𝑇 𝐴𝑇 𝑄𝐵 +𝐵𝑇 𝑄𝐴𝐵 +
𝐵𝑇 𝐴𝑇 𝑆 + 𝑆𝑇 𝐴𝐵.

The blocks of the matrices have the same size as before, just the number of blocks is
smaller than before.

Remark 3 An important observation is that the matrix S now contains nonzero cross-
terms regardless if the original weight matrices contain such terms or not.
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5 Numerical Experiments

The proposed tailored NPP algorithm has been implemented in the MATLAB pro-
gramming environment.

In this Chapter, the results obtained with this implementation are compared to the
original dense NPP algorithm results. Firstly, the functionality of the algorithm is
demonstrated on an oscillating masses control problem, then several tests on randomly
generated systems are presented.

5.1 Oscillating Masses

Figure 9 Oscillating masses layout

The oscillating masses problem consists of 𝑛 masses connected with springs; a possible
layout is shown in Figure 9.

The states of this system are positions of the masses with respect to the equilibrium
and velocities of those masses. The inputs are forces applied on some of the masses. The
dynamics of the system are determined by the spring stiffness and damping coefficients
as well as by the weight of the masses.

An example of open-control of such system with the following parameters has been
simulated, prediction horizon 𝑁 = 50, number of masses 𝑛 = 6, 𝑛𝑥 = 12 and 𝑛𝑢 = 3.
All the inputs are limited by box constraints -0.5 and 0.5.

The correctness of the solution has been checked with the original NPP algorithm,
to ensure proper functionality. The results are shown in the Figures 10 and 11.

34



5.2 Random Systems

Figure 10 Computed control for oscillating masses

Figure 11 Position of oscillating masses

5.2 Random Systems

The algorithm was tested on several randomly generated systems of different parame-
ters. The FLOPs were counted inside the algorithm and compared to the number of
FLOPs of the original one. The time taken for the computations has not been compared
because the sparse NPP algorithm uses several functions processed by MEX. Therefore,
the comparison with original algorithm would not be objective.

The tests have been run for prediction horizons with length 𝑁 ranging from 5 to 40.
The FLOPs of the sparse NPP have been estimated in the Chapter 4, however, to get

a more accurate estimate, the symbolic framework for algorithmic differentiation and
numeric optimization CasADi [31] has been used. This package allows implementing
the functions more effectively than the native MATLAB functions. A symbolic function
can be easily prepared and compiled for a particular matrix sparsity pattern such that
only nonzero elements are taken into account.
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5 Numerical Experiments

Moreover, the package allows computing the actual FLOP count for a given function.
This functionality has been used in this thesis. Therefore, the comparison is based on
these actual FLOP counts, rather than on the prior estimates. However, the FLOPs
have been counted for the worst case possibility, when no constraints are active.

Since the FLOP count of the dense NPP is affected by the number of active constraints
and the FLOP count of the sparse NPP is not, the average number of active constraints
and the number of iterations is plotted along with the FLOP results to provide a better
insight.

The first test has been done for a system with parameters 𝑛𝑥 = 4, 𝑛𝑢 = 2. The
results are plotted in the Figures 12, 13 and 14.

Figure 12 FLOP comparison for 𝑛𝑥 = 4, 𝑛𝑢 = 2

Figure 13 Number of iterations for 𝑛𝑥 = 4, 𝑛𝑢 = 2

The results show that for a short prediction horizon, the dense form of the NPP
algorithm performs better in terms of the FLOP count. But for the prediction horizon
length 𝑁 > 28, the sparse form becomes more effective. In the second test, a system
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Figure 14 Number of active constraints for 𝑛𝑥 = 4, 𝑛𝑢 = 2

with parameters 𝑛𝑥 = 8 and 𝑛𝑢 = 6 was used. The results are plotted in the Figures
15, 16 and 17.

Figure 15 FLOP comparison for 𝑛𝑥 = 8, 𝑛𝑢 = 6

In this case, the sparse form becomes more efficient for smaller prediction horizons
with length 𝑁 > 18. In the third test, a system with parameters 𝑛𝑥 = 12 and 𝑛𝑢 = 6
was used. The results of this test are shown in the Figures 18, 19 and 20.

In this case, one can notice a similarity with the first test. The FLOP count trend
and especially the point where the sparse form becomes more efficient than the dense
form depends on the ratio of the number of states and the number of inputs. In the
first test as well as in this one, the ratio of 𝑛𝑥 : 𝑛𝑢 was 2 : 1.

In the fourth test, a system with parameters 𝑛𝑥 = 16 and 𝑛𝑢 = 6 was used. The
results of this test are shown in the Figures 21, 22 and 23.

In this test, the ratio 𝑛𝑥 : 𝑛𝑢 was 8 : 3. The results show that for this ratio the sparse
form becomes better than the dense form for prediction horizons of length 𝑁 > 40.
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Figure 16 Number of iterations for 𝑛𝑥 = 8, 𝑛𝑢 = 6

Figure 17 Number of active constraints for 𝑛𝑥 = 8, 𝑛𝑢 = 6

From these tests, it can be concluded that the effectivity of the proposed algorithm in
comparison with the original one depends heavily on the ratio 𝑛𝑥 : 𝑛𝑢.
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5.2 Random Systems

Figure 18 FLOP comparison for 𝑛𝑥 = 12, 𝑛𝑢 = 6

Figure 19 Number of iterations for 𝑛𝑥 = 12, 𝑛𝑢 = 6

39



5 Numerical Experiments

Figure 20 Number of active constraints for 𝑛𝑥 = 12, 𝑛𝑢 = 6

Figure 21 FLOP comparison for 𝑛𝑥 = 16, 𝑛𝑢 = 6
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Figure 22 Number of iterations for 𝑛𝑥 = 16, 𝑛𝑢 = 6

Figure 23 Number of active constraints for 𝑛𝑥 = 16, 𝑛𝑢 = 6
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6 Conclusion
In this thesis, a new approach to solving the MPC optimization problem has been intro-
duced. The resulting algorithm is ultimately the sparse version of the NPP algorithm
from the thesis [7].

In the first Chapter, the background of the MPC has been introduced, along with
several state-of-the-art solvers for both dense and sparse forms of the problem.

In the Chapter 2, the MPC concept has been examined, along with several possible
formulations of the problem for transforming it to QP optimization problem.

Chapter 3 presented the QP problem along with several algorithms for solving the
problem, the most important for this thesis being the AS method and the Gradient
Projection method.

In the Chapter 4, the NPP algorithm and its sparse modification have been intro-
duced. Several steps of the algorithm had to be altered, most importantly the Face
problem solution. The new procedure has been inspired by an article written by S.
Boyd and Y. Wang, [15], applied in the context of the AS method. The sparse version
of the algorithm is suitable for long prediction horizons. Moreover, a Move Block-
ing strategy for sparse problems has been introduced, allowing a faster solution of the
problem without destroying the problem structure.

Finally, in the Chapter 5, several experiments have been conducted. The correctness
of the proposed algorithm has been demonstrated on the oscillating masses example, and
then the proposed NPP algorithm has been compared to the original algorithm in terms
of FLOPs. The result of this comparison was in accord with the initial expectations.
The dense form of the algorithm performed better for and shorter prediction horizons,
in contrast with the sparse form, which performed better for bigger problems and longer
prediction horizons. This result is given by the fact, that the complexity of the sparse
algorithm grows only linearly with the length of the prediction horizon, whereas the
complexity of the original dense form grows cubically with the length of prediction
horizon, which is evident from the complexity comparison in the Chapter 4.

In conclusion, the results shown in this thesis are promising, and the performance of
the algorithm is comparable to the performance of the current state-of-the-art solvers.

6.1 Future Work
The algorithm presented in this thesis has been implemented in the MATLAB pro-
gramming environment. However, several further improvements could be made.

For the further purpose, it is necessary the algorithm will be rewritten in C entirely
programming language. The time comparison with other state-of-the-art solvers is
required.

The algorithm is going to be revised, and it will also be a subject of an upcoming
article, which should summarize the main points and present the results as well as
further improvements.

One of the possible future enhancements is the implementation of the factor updates
of the Hessian in the Face problem solution step, similarly as in the original NPP
algorithm, if possible.
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