
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Enhancing Raspberry Pi Target
for Simulink to Meet Real-Time
Latencies

Bc. Martin Prudek
Study programme: Cybernetics and Robotics.
Specialisation: Systems and Control.

May, 2017
Supervisor: Ing. Pavel Píša, Ph.D.

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Control Engineering

DIPLOMA THESIS ASSIGNMENT

Student: Prudek Martin

Study programme: Cybernetics and Robotics
Specialisation: Systems and Control

Title of Diploma Thesis: Enhancing Raspberry Pi Target for Simulink to Meet Real-Time Latencies

Guidelines:

1. Familiarize yourself with Matlab/Similink Raspberry Pi target support and with RPP library
with CAN block support
2. Benchmark current Mathworks provided Raspberry Pi target
3. Prepare Linux kernel configuration suitable for RT applications and modify Raspberry Pi
Simulink template files to generate code more appropriate for RT execution.

Bibliography/Sources:

[1] Jenkin, C.- Sojka, M. : Code generation for automotive rapid prototyping platform using
Matlab/Simulink, dokumentace projektu RPP, ČVUT FEL, 2014
[2] Jeřábek, M.: FPGA Based CAN Bus Channels Mutual Latency Tester and Evaluation,
diplomová práce, ČVUT FEL, 2016

Diploma Thesis Supervisor: Ing. Pavel Píša, Ph.D.

Valid until the summer semester 2017/2018

L.S.

prof. Ing. Michael Šebek, DrSc.
Head of Department

prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 30, 2017

Acknowledgement / Declaration
I would like to express my sincere

gratitude to my supervisor Ing. Pavel
Píša, PhD., for his continuous support,
his patience and his immense knowl-
edge. Without his valuable advice and
experience, this work would not have
been possible.

I would like to thank my closest fami-
ly for their support during my studies
and special thanks go to Mr. Simon
Rhys Jenkins for grammar correction.

I hereby formally declare that I wrote
the presented thesis on my own and
cited all the used information sources
in compliance with the Methodical in-
structions about the ethical principles
for writing academic theses.

In Prague, May 26, 2016.

Prohlašuji, že jsem předloženou prá-
ci vypracoval samostatně a že jsem
uvedl veškeré použité informační zdroje
v souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze dne 26. května 2016

. .

v

Abstrakt / Abstract
Tato práce popisuje analýzu RT

vlastností jednodeskového počítače
Raspberry Pi v přístupu ke sběrnici
CAN. Řídicí aplikace je vytvořena v pro-
středí založeném na podpoře nástrojů
rychlého návrhu Matlab/Simulink.

Jsou prezentovány výsledky testů
provedených s různou softwarovou
konfigurací - různými jádry systému
Linux (RT vs. non-RT), různými ERT
soubory (Mathworks vs. ert-linux) a
různými metodami časování v nich pou-
žitých. Zpoždění generovaných zpráv při
testech na neupraveném systému nabí-
ralo zpoždění více než 1 milisekunda na
nezatíženém a více než 8 milesekund na
zatíženém systému. Zpoždění se výrazně
nezlepšila ani po aplikaci dostupných
RT vylepšení.

Závěrem nemůžeme doporučit využití
Raspberry Pi s PiCAN modulem pro
žádné použití v RT prostředí a to ani
po aplikaci RT vylepšení. Po aplikaci
RT vylepšení je pak možné tuto sestavu
provozovat bez další zátěže pro genero-
vání zpráv až do frekvence 100Hz a to
pouze v non-RT prostředí.

Jako náhradu doporučujeme jiný jed-
nodeskový počítač s GNU / Linux a in-
tegrovaným rozhraním CAN. Jako sou-
část této práce byla testována deska SoC
Zynq, u níž latence CAN při vysokém
zatížení nepřekročily 120 mikrosekund.

Klíčová slova: Raspberry Pi, CAN,
Linux, Real Time, Matlab

The thesis provides analysis of real-
time properties of Raspberry Pi single
board computer with CAN bus in con-
trol applications which are designed in
a rapid prototyping environment based
on Matlab/Simulink target support.

It presents tests that have been
performed in various software configu-
rations - various Linux kernels (RT vs
non-RT), various ERT files (Mathworks
vs. ert-linux) and various timing meth-
ods within them. During the tests, it
was found that without the use of RT
kernel and other patches, CAN latency
can often exceed one millisecond. On
a high-loaded system, the latencies are
easy to move beyond 8 milliseconds.
Maximum latencies are not signifi-
cantly reduced by applying available
enhancements.

As a result, we do not recommend the
use of Raspbery Pi the PiCAN module
with or without RT enhancements in RT
applications at all. It can be used with-
out any other load and after application
of patches at a frequency of less than
100 Hz in a non-RT applications.

As a replacement, we recommend an-
other single-computer with GNU/Linux
and integrated CAN interface. As part
of this work, a SoC Zynq board was
tested for which the CAN latencies of
the high-loaded system did not exceed
120 microseconds.

Keywords: Raspberry Pi, CAN,
Linux, Real Time, Matlab

vi

Contents /
1 Introduction .1
2 Hardware .3
2.1 Raspberry Pi .3
2.2 CAN Bus .4

2.2.1 CAN Operation5
2.2.2 Linux CAN Subsystem8

2.3 CAN Controller Extension
Board .8

2.4 CAN Bus Latency Tester9
2.5 Zynq Board . 10

3 Latency Minimization En-
hancements . 11

3.1 RT Linux . 11
3.1.1 Patching the Kernel 11
3.1.2 Building the Kernel 11

3.2 Matlab Patches 12
3.2.1 Source Code Generation . 13
3.2.2 Clock Nanosleep Patch

Code . 14
3.2.3 Memory Lock Patch

Code . 14
3.2.4 Application of the Patch . 15

4 Benchmarks . 16
4.1 Sample Time Loop Latencies. . 16
4.2 CAN Benchmarks 17

5 Tools . 19
5.1 Automated Simulations 19
5.2 Datafile Codenames. 21
5.3 Data Processing 21

5.3.1 Difference-Based Com-
parison 22

5.3.2 Linear Regression-
Based Comparison 22

5.3.3 Moving Average-Based
Comparison 23

5.3.4 Plots and Histograms 23
6 Benchmark Results. 25
6.1 Oscilloscope . 25
6.2 Sample Time Loop Latencies

Measurements 27
6.3 CAN Bus Communication

Measurements 36
7 Problems . 44
7.1 Compilation Problems 44

7.1.1 Different Step Sizes 44

7.1.2 Modifing Default Make
Command 45

7.1.3 Missing Libraries. 46
7.2 MDL Format Problems 46

8 Conclusion . 48
References . 49

A Abbrevitations . 51

vii

Tables / Figures
2.1. Table of Raspberry Pi models . . .4
5.1. Datafile codename symbols 1 . . 19
5.2. Datafile codename symbols 2 . . 20
5.3. Datafile codename symbols 3 . . 20
5.4. Datafile codename symbols 4 . . 21
6.1. Overview of Matlab model

Sample Time Loop latencies . . . 34
6.2. Overview of CAN latencies

on system under no load 42
6.3. Overview of CAN latencies

on a high-loaded system 42

2.1. Raspberry Pi v3 model B3
2.2. CAN network according to

11898-2 .5
2.3. CAN signalling according to

11898-2 .6
2.4. CAN network according to

11898-3 .6
2.5. CAN signalling according to

11898-3 .7
2.6. CAN bus frame.7
2.7. PiCAN board. .8
2.8. CAN-bench board9
3.1. Matlab TLC structure 13
4.1. Matlab TLC structure 16
4.2. Matlab model with CAN

blocks . 17
4.3. Block diagram of CAN

benchmark hardware set 17
4.4. Measurement hardware set 18
5.1. Moving average. 23
6.1. Simulink model with LED 25
6.2. Oscilloscope benchmark 1 26
6.3. Oscilloscope benchmark 2 26
6.4. Oscilloscope benchmark 3 26
6.5. Oscilloscope benchmark 4 27
6.6. Histogram non-RT unpatched . 28
6.7. Time domain latency plot

of loaded non-RT unpatched
system . 28

6.8. Time domain latencies plot
of loaded non-RT unpatched
system . 29

6.9. Histogram non-RT patched 30
6.10. Time domain latencies plot

of loaded non-RT patched 30
6.11. Histogram RT unpatched 31
6.12. Time domain latencies plot

of loaded non-RT unpatched
system . 31

6.13. Histogram RT patched 32
6.14. Histogram RT patched 33
6.15. Time domain latencies plot

of loaded RT Raspberry Pi
v3 with CTU ert 33

viii

6.16. Matlab model sample time
loop cumulative latency his-
togram . 35

6.17. CAN histogram non-RT un-
patched . 36

6.18. CAN histogram RT patched . . . 37
6.19. CAN histogram RT patched,

worker priority boost. 38
6.20. CAN histogram RT patched . . . 38
6.21. CAN histogram RT Zynq 39
6.22. Time domain latencies 39
6.23. CAN histogram RT Zynq 40
6.24. Time domain latencies 40
6.25. CAN histogram RT Zynq 41
6.26. CAN histogram RT Zynq 41
6.27. Cumulative latency his-

togram of CAN messages 43
7.1. Configuring fundamental

sample time . 45

ix

Chapter 1
Introduction

With the widening spread of robotics, artificial intelligence and automation across in-
dustries and everyday life, the need for a distributed control system increases every
day. The nodes of such a system require a real-time communication network. Such
a network can be implemented, for example, by means of a Controller Area Network
communication bus (CAN bus). Application control algorithms are then often imple-
mented in problem-oriented language environments and graphic design systems such
as Matlab / Simulink. The thesis deals with the possibility of using a cheap processor
system for a higher layer of such control and studies achievable real-time properties of
such set-up.

The work aims to find a low-cost solution for running CAN for diagnostic and control
applications with low frequency of control loop - not exceeding 100Hz. This allows us
to use hardware not initially designed for control applications.

A feasible solution is Raspberry Pi with Matlab Simulink hardware support. One of
the main advantages of this platform is enormous global interest and a big community of
enthusiasts which attracts the interest even of professional companies seeking business
and product propagation. As a result, Raspberry Pi prevails and provides better overall
cost and even better reliability than much more expensive hardware with a single vendor
and software maintainer.

In this system, quite demanding real-time applications have already been imple-
mented. Among other things, the control of DC motor with IRQ up to 14 kHz [1] and
PMS motor control [2]. Version 2 and version 3 models were tested and used for the
purposes of this work. More about Raspberry Pi in section 2.1.

The Controller Area Network is a bus standard designed to allow nodes to communi-
cate with each other in applications without single master node. It is a message-based
protocol, designed originally for multiplex electrical wiring within cars. Nowadays it
is one of the most frequently used protocols in automotive, industry and automation.
More about CAN in section 2.2.

CAN hardware differs a lot in robustness, scalability, flexibility and prize. Starting
from robust and costly production CAN modules to low-cost single chip expansion
boards including well-know hobby boards like BeagleBone or Raspberry Pi the CAN
hardware offers a solution to wide scale of problems. PiCAN2 expansion board 1)
based on Microchip MCP2515 have been chosen for purposes of this work. More on
CAN hardware used in this work in section 2.3.

Control application used in this work is based on Matlab / Simulink rapid prototyping
platform. Great advantage of Raspberry Pi is the availability of Simulink hardware
support 2) as a freely downloadable add-on. With Simulink hardware support and the
Matlab embedded coder, it is possible to generate C-code and run a program directly
on Raspberry Pi. The RT enhancements of Matlab C-code generator are one of the

1) PiCAN2 http://skpang.co.uk/catalog/pican2-canbus-board-for-raspberry-pi-2-p-1475.html
2) Simulink HW support https://www.mathworks.com/hardware-support/raspberry-pi-simulink.
html

1

http://skpang.co.uk/catalog/pican2-canbus-board-for-raspberry-pi-2-p-1475.html
https://www.mathworks.com/hardware-support/raspberry-pi-simulink.html
https://www.mathworks.com/hardware-support/raspberry-pi-simulink.html

1. Introduction .
main objectives of the thesis, they are described in detail in chapter 3. More about
Simulink models tested on Raspberry Pi in chapter 4.

Specification of the task (e.g. low frequency of control loop) allows us to use universal
operating system, that is easy to use and provides a possibility of future expansion. A
great benefit is the availability of standard remote service and command shell access
e.g. SSH or HTTP. Another advantage of a core of a full-featured operating system
is readiness for full mutual separation of application address spaces, critical service
operations under another user’s rights, and planning priorities. GNU / Linux operating
system is undoubtedly the best choice.

Mainline Linux kernel can’t be used for control applications due to its insufficient
support for RT application demands. Its long response time to the external interrupts
is the most limiting aspect. The Linux RT capabilities can be improved by application
of PREEMP-RT patch. More on Linux and its RT enhancements in section 3.1.

Simulink CAN blocks utilizing Linux kernel SocketCAN API has been1) developed at
CTU in Prague, Department of Control Engineering. They have been used to implement
CAN interoperability within this work.

Benchmarking methods have been developed to verify the effectiveness of the used
enhancements. The two main aspects of the system were evaluated - Sample Time Loop
Latencies of the Matlab model and latencies of CAN messages sent via Matlab CAN
interface. The benchmarks are covered in chapter 4.

Tools for automation of the benchmark making and measurement data acquisition
and visualization have been developed. They are described in chapter 5.

Final results and measurements along with data histograms and figures are presented
in chapter 6.

1) CAN blocks http://lintarget.sourceforge.net/can_bus/index.html

2

http://lintarget.sourceforge.net/can_bus/index.html

Chapter 2
Hardware

This chapter describes hardware used in this work.
At first, Raspberry Pi board is discussed along with its evolution in time and con-

sequences of the initially used obsolete architecture. Next section analyses PiCAN2
board which implements CAN interface for RPi. The last section of the chapter is
dedicated to the CAN-bench board used for the destination communication node of
the benchmarked CAN communication. All the CAN measurements presented in this
thesis were recorded on this machine.

2.1 Raspberry Pi
Raspberry Pi is a popular, low-cost, credit card sized single-board computer, devel-
oped since 2006 by British Raspberry Pi Foundation 1). It supports embedded Linux
operating systems, such as Raspbian. Raspberry Pi is powered by ARM® Cortex® A
processors and provides peripheral connectivity for stereo audio, digital video (1080p),
USB and Ethernet. RPi is shipped in multiple models nowadays.

Backbone of the first version is SoC BCM2835 2), based on ARM1176JZF-S CPU
running on 700 MHz, graphical coprocessor VideoCore IV and 256 MB or 512 MB
RAM. None of the versions support straight connection to a HDD via SATA or other
on-board MTD. Operating system and program data need to be stored on an SD card,
whose slot is available.

Figure 2.1. Raspberry Pi version 3 model B

ARM11 CPU makes use of obsolete ARMv6 architecture with old vector floating
point unit VFPv2 [3] 3), which is not currently supported by mainline Debian distribu-
tion for current generation of ARM-based systems. Official port for the ARM systems
- Debian ARMhf enforces architecture ARMv7 at least, with VFPv3-D16 4). As a re-
1) Raspberry Pi Foundation https://www.raspberrypi.org/
2) anthill still inside
3) ARM11 Online Technical Reference Manual http://infocenter.arm.com/help/index.jsp?topic=/
com.arm.doc.ddi0301h/Cegdejjh.html
4) Debian ARMhf port https://wiki.debian.org/ArmHardFloatPort

3

https://www.raspberrypi.org/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0301h/Cegdejjh.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0301h/Cegdejjh.html
https://wiki.debian.org/ArmHardFloatPort

2. Hardware .
sult, it is necessary to recompile the packages shipped with Debian. Compiled Debian
packages are provided within Raspbian distribution for RPi.

The second version of Raspberry Pi comes with BCM2836 SoC. The SoC introduces
higher processor frequency (900Mhz) and four cores. Processor architecture evolved to
ARMv7-A with ARM Cortex-A7 processor with VFPv4 [4] support. 1). RAM has been
expanded to 1GB.

The latest RPi v3 is equipped with BCM2837 SoC with ARMv8-A architecture. The
SoC is based on 64bit ARM Cortex-A53 processor with four cores running on 1.6 GHz
frequency. RAM is stick to 1GB size.

The great disadvantage of the SoCs used is the lack of integrated ethernet interface.
Problem has been overcome by adding USB-Ethernet converter to the board. This
solution imposes high demands on USB subsystem which may result in higher system
load.

For the sake of backward compatibility all the programs that run on RPi are restricted
to use older VFP instruction set.

Model A A+ B B+ Bv2 Bv3
GPIO pins 26 40 26 40 40 40
RAM [MB] 256 256 256/512 512 1024 1024
USB ports 1 1 2 4 4 4
RJ45 No No Yes Yes Yes Yes
Card slot SDHC MicroSD SD MicroSD MicroSD MicroSD
Power [W] 1.5 1.0 3.5 3 4 4
CPU f[MHz] 700 700 700 700 900 1600
CPU cores 1 1 1 1 4 4
CPU arch ARMv6 ARMv6 ARMv6 ARMv6 ARMv7-A ARMv8-A

Table 2.1. Table of Raspberry Pi models

2.2 CAN Bus
A Controller Area Network (CAN bus) is initially a vehicle oriented communication bus
standard designed to allow microcontrollers and devices to communicate with each other
in applications with no need of single master device. It is a message-based protocol,
designed originally for multiplex electrical wiring within cars, but it is also used in many
other fields of distributed control nowadays.

It’s development was launched in 1983 at Robert Bosch GmbH with the first official
release in 1986. The first CAN chips were manufactured by Intel and Philips and BMW
8 Series were the first production vehicle with multiplex wiring system based on CAN
in 1988. [5] 2)

Several versions of the CAN specification were published during it’s development.
The latest is CAN 2.0 released in 1991. CAN 2.0 is divided into two parts: part A with
11-bit identifier (standard) and part B with extended 29-bit identifier. Can devices are
referred as CAN 2.0A and CAN 2.0B depending on standard they use. The standards
are now freely available from Bosch along with it’s specifications. [6]

The International Organization for Standardization (ISO) standard for CAN consists
of two parts. ISO 11898-1 describes the data link layer, and ISO 11898-2 describes the
1) ARM Cortex-A7 Online Technical Reference Manual http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.subset.cortexa.cortexa7/index.html
2) CAN History https://www.can-cia.org/can-knowledge/can/can-history/

4

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.cortexa.cortexa7/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.cortexa.cortexa7/index.html
https://www.can-cia.org/can-knowledge/can/can-history/

. 2.2 CAN Bus

CAN physical layer. ISO 11898-3 was released later and provides description of CAN
physical layer for low-speed, fault-tolerant CAN. Only the first standard is a part of
original Bosch CAN 2.0 specification. Minor changes to the standards are made up to
nowadays 1)

The main area of CAN application is automotive industry. Many sensors in cars
use CAN bus to transmit information about speed, steering angle, air condition, rain
sensors etc. These data is used by car subsystems like ABS, airbag controls, parking
assist systems etc.

In recent years, the LIN bus standard has been introduced to complement CAN for
non-critical subsystems such as air-conditioning and infotainment, where data trans-
mission speed and reliability are less critical.[7]

2.2.1 CAN Operation

The CAN bus - as mentioned before - is available at two physical layers: ISO 11898-2 -
”High speed CAN” and ISO 11898-3 - ”low speed” or ”fault tolerant CAN”. Both layers
share same the principle of dominant and recessive bits. The difference between them
could be observed when two or more CAN devices begin to transmit at once. Each
transmission starts with identifier - consisting of 11 or 29 bits - then when a dominant
bit and recessive bit are transmitted at the same time only the dominant bit propagates
to the bus. The device transmitting the recessive bit recognizes conflict and stops the
transmission. The recessive bit equals logical 1 meanwhile the dominant value equals
logical 0.

Figure 2.2. CAN network according to 11898-2

Both implementation of the layers use two wires, called CAN high and CAN low,
with differential voltage for bus connection. ISO 11898-2 uses a linear bus terminated
at each end with 120 Ω resistors called terminators pic 2.2. When a dominant value
is signalled the CAN high wire is driven towards 5V and CAN low towards 0V - the
dominant differential voltage is a nominal 2V picture 2.3

1) ISO 11898 https://www.iso.org/search/x/query/11898/refine/more:standard

5

https://www.iso.org/search/x/query/11898/refine/more:standard

2. Hardware .

Figure 2.3. CAN signalling according to 11898-2

ISO 11898-3 uses a linear bus, star bus or multiple star buses connected by a linear
bus and is terminated at each node by a fraction of the overall termination resistance.
The overall termination resistance should be slightly higher or equal to 100 Ω.

Figure 2.4. CAN network according to 11898-3

When a dominant value is signalled the CAN high wire is driven towards 5V and
CAN low towards 0V. The dominant differential voltage must be greater than 2.3V and
the recessive differential voltage must be lower than 0.6V The terminators passively
return the CAN low wire to RTH where RTH is a minimum of 4.7V and the CAN high
wire to RTL where RTL is a maximum of 0.3V. Both wires must be able to handle -27
to 40V without damage.

6

. 2.2 CAN Bus

Figure 2.5. CAN signalling according to 11898-3

Terminating Bias Circuit defined in ISO11783 may be used instead of terminating
resistor [8]. It provides power and ground in addition to the CAN signaling on a four-
wire cable. This provides automatic electrical bias and termination at each end of
each bus segment. An ISO11783 network is designed for hot plug-in and removal of
bus segments and ECUs. Each node is able to send and receive messages, but not
simultaneously.

Figure 2.6. CAN bus frame

A message or a frame consists primarily of the ID (identifier of a transferred sig-
nal/data), which represents the priority of the message, and up to eight data bytes. A
CRC, acknowledge slot [ACK] and other overhead are also part of the message. The
example CAN bus bus frame can be seen in picture 2.6

Bit rates up to 1 Mbit/s are possible at network lengths below 40 m. Decreasing the
bit rate allows longer network distances (e.g., 500 m at 125 kbit/s).

All the devices connected to a CAN network have to operate at the same bit rate. This
rate however might be modified by noise, phase shifts, oscillator tolerance and oscillator
drift on single devices. Precise synchronization is necessary during arbitration because
the nodes in arbitration have to see both their transmitted data and the other nodes’
transmitted data at the same time.

Initial synchronization is done on the first recessive to dominant transition after a
period of bus idle - the start bit. Any others recessive to dominant transition during
the frame trigger another resynchronization. The CAN controller expects the transition
to occur at a multiple of the nominal bit time. To ensure that satisfying number of
transitions are done to maintain synchronization, a bit of opposite value is inserted after
five consecutive bits of the same value. The inserted bits are removed by the receiving
controller.

The main advantage of the CAN bus is its deterministic behaviour. The mentioned
IDs (identifiers of a transferred data) represent a priority of each message. Thank to

7

2. Hardware .
the arbitration phase described in the above text the messages with the higher priority
suppress the low priority messages. This type of collision control is called Carrier-sense
multiple access with collision avoidance (CSMA).

2.2.2 Linux CAN Subsystem
On Linux machines, the CAN subsystem, called SocketCAN, is a part of the networking
subsystem. SocketCAN uses the Berkeley socket API, the Linux network stack and
implements the CAN device drivers as network interfaces. The subsystem is divided
into protocol layers and brings high level of abstraction. The CAN socket API has
been designed as similar as possible to the TCP/IP protocols to allow programmers,
familiar with network programming, to easily learn how to use CAN sockets. As a
result the same tools are used to control the CAN link layer as to control, for example,
the ethernet [9].

The advantage of this approach is that more than one application is allowed to use
the CAN interface at the same time. The CAN controllers are usually implemented as
as character devices.

As the networking subsystem is optimized for handling big messages to increase
throughput, it has rather large overhead. Thus, the performance of handling small
messages is poor and the CAN operation sub-optimal [10].

Implementation of higher protocol layers in not part of centralized CAN standard.
Layer 3 implementation is done for example by CANopen - Communication protocol
for embedded systems. Available drivers are CANpie – Open Source device driver for
CAN, can4linux – Open Source Linux device driver for CAN.

A standalone Linux kernel modules that implements a CAN exist. One example is
LinCAN module implementing driver capable of working with multiple cards. However,
the module development has been stopped [11] [12].

2.3 CAN Controller Extension Board
PiCAN board has been used to provide Raspberry Pi board CAN connectivity.

Figure 2.7. PiCAN board

The board (picture 2.7) is based on Microchip MCP2515 CAN controller. MCP2551
transceiver is used to convert controller logic output to the voltage levels defined by
physical layer standard. CAN Connections are made available though DB9 or 4 way

8

. 2.4 CAN Bus Latency Tester

screw terminal. This board is also available with a 5v 1A SMPS(power supply) that
can power the Pi as well via the screw terminal or DB9 connector. The chip itself is
connected to the group of multifunction GPIO pins available on 40 pins header on top
of the RPi. The pins belongs to the group which can be configured for SPI function.
Actual serial synchronous communication is configured to transfer data at frequency
10Hz.

A kernel configuration file /boot/config.txt has to be adjusted to request an appro-
priate device-tree overlay/extension. The overlay allows to recognize extension board.
It is necessary to insert the following lines:

dtparam=spi=on
dtoverlay=mcp2515-can0,oscillator=16000000,interrupt=25
dtoverlay=spi-bcm2835-overlay

The CAN interface has to be configured for the intended bitrate of the bus communi-
cation and then hardware is brought up.

ip link set can0 up type can bitrate 500000
cansend can0 7DF#0201050000000000

The following command can be used to print statistics about the interface [13]:

ip -details -statistics link show can0

2.4 CAN Bus Latency Tester
Independent benchmarks of the developed enhancements are one of the major parts of
the thesis. When benchmarking CAN communication, it is necessary to use very precise
tool that can’t be disturbed by any software failures or delays [14]. So called CAN-
bench board developed at CTU in Prague, FEE, Department of Control Engineering is
exactly what we need. This section takes a brief look on the board itself.

Figure 2.8. CAN-bench board

The CAN-bench board (image 2.8) is based on Xilinx Zynq SoC with integrated
FPGA. The board runs RT-Linux and is capable of logging CAN messages with a sub-
microseconds precise timestamps attached to the messages by a Xilinx CAN controller
hardware [15].

9

2. Hardware .
2.5 Zynq Board

A part of the CAN measurements described in the following chapters were made on
board based on the same SoC as the CAN-bench. This board will be referred to as
a Zynq board in the further text. The board is depicted on ??. All the datafiles
with measurements made on the Zynq board have Zynq in their codename. More on
codenames in section 5.2.

10

Chapter 3
Latency Minimization Enhancements

This work targets on building real time CAN communication between machines run-
ning GNU/Linux operating system. The following chapter discuss the need for RT
enhancements of various parts of the application and makes a few remarks on each of
them.

The OS and the Matlab C source code generator were two major areas of interest.

3.1 RT Linux
GNU/Linux is a multi-user, multi-tasking operating system based on the same named
kernel, developed by Linus Torvalds in 1991. With RT patch applied (which secures
maximal latencies for responses on external interrupts) it becomes reasonable choice
even for some type of control applications.

RT patch modifies the system in many different ways. It makes use of Linux support
for SMP and extends the ability of running multiple processes processing system calls
in parallel. Serialization of sections of code in which only one process at time may
occur is maintained by spin-locks. Other parts of code with enforced mutual exclusion
started to use RT-mutexes. Great effort were done in minimizing or removing such
part of code which doesn’t allow preemption - for example interrupt routines. (Much
of their code was moved to worker threads).Implementation of priority inheritance was
very important. [16] [17]

Due to the really large code base of the Linux source code it is not possible to
analytically compute all the latencies and state the maximal possible latencies. Such an
analytical proof would not be feasible because of usage of many diverse cache memories
and SMP systems. Nevertheless the satisfying warranty of RT capabilities is provided
by long-term benchmarks taken on high-loaded systems for months. The benchmarks
and ongoing development of Linux RT patch is focused by OSADL laboratory 1).

3.1.1 Patching the Kernel
The first step of patching of the Kernel is download of the patches from its website or
git repository. With patch unpacked and moved to the Linux kernel source directory
it’s essential to run:

patch -p1 < patchname.patch

3.1.2 Building the Kernel
Building the Kernel must be done with cross-compilation tool. The toolchain is specified
by path to it’s executable by setting environment variable.

ARCH = arm
CROSS_COMPILE = arm-linux-gnueabihf-

1) OSADL http://www.osadl.org/

11

http://www.osadl.org/

3. Latency Minimization Enhancements .
A convenient compilation method is compilation in separate directory from the directory
where the kernel sources are prepared. The out-of-the-source compilation is turned on
by setting another environment variable when running the make command.

make O=<path to the build directory>
Automation of the mentioned process is possible using GNUMakefile. GNUMakefile
has higher priority then automatically generated build directory Makefile when calling
the make command 1) Patched kernel (configured to use full preemption) [18] could be
built using make command afterwards. Proceed with these commands:

KERNEL=kernel7
make bcm2709_defconfig
make menuconfig #enable full preemption model
make zImage modules dtbs -j3

The ’-jn’ switch tells the compiler how many processors we want to use. The recom-
mended value is n = 1.5 x total number of processors.

After the build is finished we can move freshly compiled kernel along with modules
and device tree to the target. If there is Matlab-prepared SD card inserted in a computer
the following commands would do the job:

sudo make INSTALL_MOD_PATH=/media/${USER}/rootfs/ modules_install
cp arch/arm/boot/dts/*.dtb /media/${USER}/boot/
cp arch/arm/boot/dts/overlays/*.dtb* /media/${USER}/boot/overlays/
cp arch/arm/boot/dts/overlays/README /media/${USER}/boot/overlays/
cp arch/arm/boot/zImage /media/${USER}/boot/kernel7-4.9-rt.img
sync

And finally edit /boot/config.txt:

kernel=kernel7-4.9-rt.img

Alternatively it is possible to copy built kernel along with device tree and kernel modules
to a separate folder for further use. Proceed with these commands:

INSTALL_PATH="</folder/with/kernel>"
mkdir -p "${INSTALL_PATH}/boot/overlays/"
sudo make INSTALL_MOD_PATH="${INSTALL_PATH}" modules_install
cp arch/arm/boot/dts/*.dtb "${INSTALL_PATH}/boot/"
cp arch/arm/boot/dts/overlays/*.dtb* "${INSTALL_PATH}/boot/overlays/"
cp arch/arm/boot/dts/overlays/README "${INSTALL_PATH}/boot/overlays/"
cp arch/arm/boot/zImage "${INSTALL_PATH}/boot/kernel7-4.9-rt.img"
tar -czvf 4.9.20-rt16-v7+.tar.gz "${INSTALL_PATH}"

3.2 Matlab Patches
The Target Language Compiler (TLC) is a tool originally developed for the Matlab
Real-Time Workshop. It became the integral part Matlab Embedded Coder later. It
enables C-code generation directly from any Simulink model.

Through customization, it can produce platform-specific code that could be run even
on different operating systems [19]. Incorporation of own algorithmic changes is possible
for better performance, code size, or compatibility with existing methods [20]. The main
1) What Name to Give Your Makefile https://www.gnu.org/software/make/manual/html_node/
Makefile-Names.html

12

https://www.gnu.org/software/make/manual/html_node/Makefile-Names.html
https://www.gnu.org/software/make/manual/html_node/Makefile-Names.html

. 3.2 Matlab Patches

files of TLC, referred as ert or ERT, present the entry point of the code compilation and
define all the compilation information along with the target platform specifications.

This section describes the performance analysis and enhancements of the TLC, here-
inafter referred to as Matlab patches. Main goal is to modify (if needed) the main
Matlab ert file (MTW ert) structure to meet latency requirements.

The first step in the analysis was the examination of C-code generated by the MTW
ERT. Parts of code not suitable or disturbing precise timing of sampling intervals has
been identified. These parts have been modified to use system-calls and mechanism
known to support low latencies and correct scheduling prioritization. The modifications
has been saved to two patch files. The patches replaces sections of code in C and TLC
files inside Matlab home directory to reach mentioned behaviour.

3.2.1 Source Code Generation
The first step required to audit Simulink provided code has been to study mechanisms
which control how C code sources a are generated. Debug comments were added to
multiple C and TLC files in MATLAB home directory. Then the model was regener-
ated and changes made to the source were observed. Based on this observations files
connections were tracked down and I was possible to edit the files actually responsible
for source generation. The basic TLC file structure follows:

rtw/c/ert/ert.tlc

rtw/c/tlc/mw/codegenentry.tlc

rtw/c/tlc/mw/commonsetup.tlc

rtw/c/tlc/mw/funclib.tlc

rtw/c/tlc/mw/ertfileprocesstemplate.tlc

toolbox/target/codertarget/rtw/codertarget_file_process.tlc

toolbox/target/codertarget/rtw/codertarget_mainOS.tlc

produces code
modified by patch

toolbox/target/codertarget/rtw/codertarget_multiratesingletaskingOS.tlc

rtw/c/tlc/mw/formatwide.tlc

rtw/c/tlc/mw/formatparam.tlc

rtw/c/tlc/mw/formathdr.tlc

rtw/c/tlc/mw/commonentry.tlc

rtw/c/tlc/mw/formatbody.tlc

rtw/c/tlc/mw/ertmainlib.tlc.tlc

rtw/c/tlc/mw/ertextmode.tlc

rtw/c/tlc/mw/ertlib.tlc

called from other files

rtw/c/tlc/mw/commonbodlib.tlc

rtw/c/tlc/blocks/gensfun.tlc

rtw/c/tlc/mw/genmap.tlc

ert_main.c

ert_main.c

ert_main.c

ert_main.c

model_name.c

model_name.c

model_name.c

generated file

Figure 3.1. Matlab TLC structure

13

3. Latency Minimization Enhancements .
3.2.2 Clock Nanosleep Patch Code

The first main problem was identified in timing of model sampling loop. Snippet of the
original code follows:

while(1) {
waitForTimerEvent(fd);
sem_post(&baserateTaskSem);

}
While waitForT imesEvent() function tries to read from Linux timer referenced by a
file descriptor. This call could potentially increase loop latency in a non-deterministic
way. Replacement code follows:

while(1){
/* wait until next shot */
clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &t, NULL);

/* do the stuff - post the semaphore */
sem_post(&baserateTaskSem);

/* calculate next shot */
t.tv_nsec += interval.tv_nsec;
t.tv_sec += interval.tv_sec;
if (t.tv_nsec >= NSEC_PER_SEC) {

t.tv_nsec -= NSEC_PER_SEC;
t.tv_sec++;

}
}
read() call was replaced by clock_nanosleep(). Both version were tested and

measured - the results could be found latter in this document.

3.2.3 Memory Lock Patch Code
The second main problem was identified in process memory management.

The model originally didn’t force immediate load and lock of the code to main system
memory (RAM). This situation could cause that any page of the program code can be
swapped out to a secondary memory. Such an action would result in latency up to few
milliseconds.

mlockall system call was added to the Linux initialization file to fix the situation.
The mlockall system call ensures that no memory page is swapped out of the primary
memory.

The following section of code demonstrates which part of the source have been mod-
ified. The first portion of the code has been added to the top of the file.

+#if defined(_POSIX_MEMLOCK)
+ #include <sys/mman.h>
+#else
+ #warning mlockall is not available (!_POSIX_MEMLOCK)
+#endif

The second portion of modification has been added to the myRTOSInit function:

void myRTOSInit(double baseRatePeriod, int numSubrates){
...
unsigned long cpuMask = 0x1;
unsigned int len = sizeof(cpuMask);

14

. 3.2 Matlab Patches

+ #if defined(_POSIX_MEMLOCK)
+ mlockall(MCL_CURRENT | MCL_FUTURE);
+ #endif

UNUSED(baseRatePeriod);
UNUSED(numSubrates);
...

}

3.2.4 Application of the Patch
This section describes the procedure of application of the patch.

tracked_files text-file contains list of all files modified by the patches in the
’MATLAB/R2016b/’ directory. It’s good idea to init a git repository in the ’MAT-
LAB/R2016b/’ before all. Then gitignore everything. Be sure to track all the files,
which will be modified, before an application of each patch:

git add -f ‘cat tracked_files‘
After application of the patch run:

git commit -a
This procedure helps to keep track of what’s beeing modified and offers the ability to
revert all the changes.

The patch is intended to be run from ’MATLAB/R2016b/’ directory

patch -p1 < x-patch.patch #where ’x’ stands for patch number
All the patch files must be run one-by-one starting with the one with the lowest number.

15

Chapter 4
Benchmarks

The previous chapter described modifications and patches applied to various parts of
the system to improve its Real-Time qualities. This chapter introduces set-up and
methods used for evaluation of achieved results. Two main aspects of the system are
going to be evaluated - latencies of Matlab model sample loop and latencies on CAN
messages sent via Matlab CAN interface.

4.1 Sample Time Loop Latencies
This section describes the method used to benchmark latencies of Matlab model sample
loop.

New Simulink block with level 2 S-function was developed accomplish this task. It’s
only functionality is to precisely log exact time when sample loop activities are executed
by a code generated from the Simulink model. This checks latencies caused by operating
system, generated code, established set-up and system provided mechanisms.

Figure 4.1. Matlab model with S-function block

The S function routine starts a new thread with lower priority. The new thread
opens a file and periodically logs time stamps measured in the main routine. The main
routine creates new time-stamp at the start of each cycle. Snippet of code which is
executed at the beginning of each cycle follows:

clock_gettime(CLOCK_MONOTONIC, &now);
timespec_subtract(×[get_time_index++],&now,&prev);
get_time_index%=TIMES_COUNT;
prev=now;
sem_post(&sem);

A part of lower-priority thread, which logs the data to a file, looks like this:
while(1){

sem_wait(&sem);
fprintf(f, "%u %ld\n", (unsigned)times[saved_time_index].tv_sec,

(long)(times[saved_time_index].tv_nsec));
saved_time_index++;
saved_time_index%=TIMES_COUNT;

}

16

. 4.2 CAN Benchmarks

4.2 CAN Benchmarks
Matlab model similar to the one used in the previous section was developed to bench-
mark CAN communication. The model makes use of CAN toolbox developed at CTU in
Prague, FEE, Department of Control Engineering 1). The model diagram is on picture
4.2.

The toolbox provides basic blocks for sending and receiving CAN messages. It was
originally designed only for ERT Linux Simulink target, nevertheless it’s functionality
have been tested with MathWorks ERT within in the Honeywell company project and
during this thesis tasks. The toolbox uses mainlined socket based CAN bus Linux
kernel drivers support - SocketCAN described in section 2.2.2.

Figure 4.2. Matlab model with CAN blocks

The CAN blocks support direct encapsulation and conversion to the Simulink signals
for basic data types whereas the standard Simulink defined CAN MESSAGE TYPE
can be used when more complex structure of CAN message processing is needed. CAN
Setup block needs to be present in a model so that CAN channel and bauderate could be
set properly in embedded systems. On Linux however baudrate must be specified using
standard iproute2 userspace tools. The connection between components is visualised
on diagram 4.3.

Raspberry Pi

p
e
ri

p
h
e
ra

ls
 S

P
IPiCAN board

MCP
2515

Linux kernel

SocketCAN
 API

Simulink
 Model

SPI

 CAN-bench

in
te

g
ra

te
d
 C

A
N

Linux kernel

SocketCAN
 API CAN

CAN utils

Figure 4.3. Block diagram of CAN benchmark hardware set

1) Simulink Blocks for CAN bus Support under Linux http://lintarget.sourceforge.net/can_bus/
index.html

17

http://lintarget.sourceforge.net/can_bus/index.html
http://lintarget.sourceforge.net/can_bus/index.html

4. Benchmarks .

Figure 4.4. Measurement hardware set

The benchmarking is based on measuring reception times of CAN messages generated
by Raspberry Pi and CAN hardware covered in sections 2.3 and 2.4. The measurements
were taken on CAN-bench board developed at CTU in Prague, FEE, department of
Control Engineering. The board runs RT-linux and is capable of logging CAN messages
with precise timestamps attached to the messages by a Xilinx CAN controller harware.
The whole hardware set used for benchmarking could be seen on picture 4.4. The
results of the benchmarks are discussed in chapter 6.

18

Chapter 5
Tools

One of the most important problems to solve during the work was the automation of
benchmark making and the processing of gathered data. As there are many parameters
to be entered before any measurement begins - such as usage of Matlab patches, load,
ert file, sample time or total time of Matlab simulation - it was necessary to build a
tool that manages it systematically. This chapter provides an overview of such a tool
along with user instructions.

5.1 Automated Simulations
This section describes a tool for the automated running of benchmarks. The main part
of the tool is written in Matlab and consists of do_simulation.m function saved to a
same-named file and a few scripts coded in Bash. do_simulation function is called
with the parameters listed in table 5.1.

Code Example value Description
t lat / can Benchmark type
lo No / 8W1F Load to be run on target
p 40 / 98 Priority of the main thread
ert MTW / CTU Choice of ert file
si 1000 Simulation time
sa 0.01 Sample time - can message period
n Note Optional note
target root(at)ip.cz Target machine login

Table 5.1. Datafile codename symbols

The t argument defines the type of a benchmark - it could be either lat for bench-
marking Sample loop latencies described in section 4.1 or can for benchmarking CAN
communication - discussed in section 4.2. The lo argument starts an additional load.
If it is set to value 8W1F, then it starts eight do-while loops and one find loop that uses
RAM and loads CPU cores of the board. The invocation code of them follows:

while true; do true; done &
while true; do find /usr -type f -exec cat ’{}’ ’;’ > /dev/null; done &

The p argument sets main thread priority and si and sa set simulation and sample
times.

User public key must be added to the machine before any measurement. It serves
for ssh and scp connection to the board.

A few more options must be specified when using MathWorks ert (MTW). It is
possible to use Matlab patches - both for memory locking and nanosleep. Unfortunately

19

5. Tools .
Code Example value Description

m No / CF Usage of Matlab patch - memory lock
cn No / Yes Usage of Matlab patch - clock nanosleep
target pass password Password for entered login

Table 5.2. Datafile codename symbols

public key infrastructure is not sufficient at this point and user password must be
specified. These options are shown in table 5.2.

Furthermore when using CAN benchmark a machine which would receive and save
CAN messages must be specified. For debug purposes it is also possible to specify
secondary measurement machine - this machine would generate the same output file as
the primary one - with msec in its codename note. More on datafile codenames in the
next section 5.2. Options listed in table 5.3.

Code Example value Description
measure root(at)¡primary.board.cz¿ Primary measurement machine login
measure sec root(at)¡secondary.board.cz¿ Secondary measurement machine login

Table 5.3. Datafile codename symbols

The do_simulation function checks internet connectivity to the target and measure-
ment machines at first, then gathers information about the hardware and kernel. After
that, CAN interface is checked and configured. Appropriate models are loaded and
their parameters set in the next step. Some of the parameters could be set via Matlab
commands whereas some of them must be altered directly in model XML files. Model
SLX files are unpacked into XML files in the first stage of model configuration, then
the XML files are properly modified and packed again.

In the next step, bash scripts that start additional load on the target machine are
moved to their destination and started. Scripts for logging are transferred to the mea-
surement machine(s) and the logging starts. If the user wants to use any Matlab patch
its code is applied in this step.

In the second stage of model configuration the Matlab function set_param is used
and depending on the used ert set_param or slbuild is used for building the model.
The built model is either moved and started automatically after the build (MathWorks
ert) or moved via SCP and started using schedtool (CTU ert).

After the simulation is finished the load is terminated and log datafiles are transfered
back to the repository folder. The Matlab patches are reverted.

The benchmarks could be started from the command line without starting Matlab
IDE or Simulink explicitly. The easiest way is to run run_benchmark.sh from /tools/
directory with one of the Matlab scripts prepared in /tools/benchmark_sets/ as its
argument. The script tries to start Matlab without any graphical output from com-
mand line. The --nodisplay mode is not available when using MTW ert - the user is
asked to run Matlab in normal mode and the process continues by calling the Matlab
do_simulation function.

20

. 5.2 Datafile Codenames

5.2 Datafile Codenames
As the number of all measurements and thus all the datafiles exceeds 150 with more than
22 hours of total testing time naming is critical for data organization and establishment
of a strict experiment naming convention has been necessary.

Each datafile name e.g. codename consists of sequences describing the benchmark
simulation time, hardware of the target machine and so on. The part of the codename
that could be determined before the start of a benchmark is described below in section
5.1 and consists of codes listed in tables 5.1 and 5.2 excluding the last ones target pass
and target that are not present in the name.

The rest of the codename is generated automatically depending on the settings.
The sequences that are generated automatically are based on information gathered
about hardware, operating system version and operating system RT modifications. The
benchmark number is added as a symbol that uniquely distinguishes the measurement
between each other. The automatically generated parts are shown in table 5.4.

Code Example value Description
hw Zynq / RPi-v3 Target machine hardware
k non-RT / RT Kernel RT modification
vk 4.4 / 4.9 Kernel release version
bn 15 / 157 Benchmark number

Table 5.4. Datafile codename symbols.

Codenames come with strict format

t<>_hw<>_lo<>_k<>_vk<>_p<>_ert<>_m<>_cn<>_bn<>_si<>_sa<>_.rdat
Example codename could be

tlat_hwRPi-v3_lo8W1F_kRT_vk4.9_p98_ertMTW_mCF_cnNo_bn5_si10_sa0.01_.rdat
This codename presents a datafile of sample loop latency measurement measured on
Raspberry Pi v3 loaded with 8 do-while loops and one find loop. The system was
identified as Linux v4.9 with PREEMP-RT patch applied.The main model thread was
started with priority 98 and MathWorks ert was used in the build process. The memory
lock patch was applied meanwhile clock nanosleep patch was not. It was the 5th
benchmark and lasted for 10 seconds with a sample time of 10 milliseconds.

5.3 Data Processing
With such a big acquired data set, it is hard to present the results correctly as they
may vary from measurement to measurement. It is important to emphasize the main
aspects of each set of measurements to make the situation clear. Various ways of
data visualization and statistical processing were used to accomplish this. This section
provides a guide through them.

The first stage of data processing is the preparation of absolute sample times.
Both the sample loop latencies and CAN latencies datafiles are taken in count
and __abstimes directory is filled with files containing absolute times. Abso-
lute timing means that the sample times are relative to a very first sample and
not to the sample preceding. The computation is started by calling the script
prepare_abstimes.sh in /tools/ directory with the directory with the datafiles

21

5. Tools .
as its only argument. Running without an argument is the same as running
./prepare_abstimes.sh ../data/base_set.

In the second stage of data processing, comparison of offsets between estimated and
actual sample times are computed. The comparison is done in three different ways.

5.3.1 Difference-Based Comparison
The first comparison is based on the estimation of time of sample by addition of sam-
pling period to time of of the previous sample. The great advantage of this approach is
its simplicity - there is a low probability of making any computation mistake. Another
benefit is that any latency peak is clearly visible and can’t be misinterpreted. The
disadvantage of this approach is that all the peaks are mirrored - if only one of the
samples goes out of order then the next sample visually has very similar latency with
opposite direction. The computation of such offsets follows:

o[i] = ts[i + 1] − ts[i] − sa

Where o[i] stands for i-th ’offset’, ts[i] stands for absolute time of i-th sam-
ple and sa for sample time. This part of data processing is invoked by calling
./prepare_doffsets.sh from /tools/ directory. This script creates __offsets_diff
directory and fills it with files with computed offsets. The computation itself is done
by comp_doffsets tool written in C.

5.3.2 Linear Regression-Based Comparison
This comparison is especially useful when evaluating CAN communication. There is no
secondary channel between the target and the measurement machine so it is not possible
to determine a precise time when any CAN message should arrive. As a result linear
regression of the measured sample times is computed and all the offsets are computed
against the resulting linear curve. We state the situation as follows:

ts[i] = k ∗ pst[i] + q

Where ts[i] stands for absolute time of i-th sample, pts[i] for it’s ideal predicted value
pts[i] = i ∗ sa and k and q unknown constants. Let’s use neat matrix notation:

ts[1]
ts[2]

.

.

.
ts[n]

 = k

pts[1]
pts[2]

.

.

.
pts[n]

+ q

That could be rewritten into:
~ts = k ~pts + q

And finally:
~ts = [~pts ~1]

[
k
q

]
[

k
q

]
= [~pts ~1]−1 ~ts = A−1 ~ts

The linear regression computation is based on the least-square method and carried out
by mldivide operator in prepare_offsets Matlab script. The computation follows:

22

. 5.3 Data Processing

res=A\ts;
k=res(1);
q=res(2)’
The script could be run without starting Matlab IDE by calling

matlab -nodisplay -r "prepare_offsets(’$1’); exit;";

5.3.3 Moving Average-Based Comparison
Measurements that showed strange behaviour were taken during benchmarking the
Zynq based board. The strange behaviour was observed only on Linear Regression-
Based Comparison plots. It was discovered that system clock drifted and degraded all
the measurements taken with active NTP client. The client was off in all subsequent
measurements.

Moving average-based comparison has been adopted to get real latencies cleaned from
the drift. Linear Regression-Based Comparison is computed at first. Then, offsets are
computed against its moving average.

Figure 5.1. Moving average.

It can be seen that latencies computed from linear regression exceed 600 microseconds
whereas real CAN latencies do not exceed 150 microseconds on picture 5.1

5.3.4 Plots and Histograms
One of the most used graphical interpretation of RT capabilities of any system is latency
histograms. Two types of histograms are used in this work. Both of them are made
using Gnuplot, free software distributed under its own free license 1).
1) Gnuplot http://www.gnuplot.info/

23

http://www.gnuplot.info/

5. Tools .
The first type is a basic histogram, computing counts of latency sizes for a discrete

number of latency offsets. The second one is not a histogram at all, but a bar plot
which computes averages of given percent of worst case latencies.

All the data for histogram generation are created by calling ./prepare_hcounts.sh
and ./prepare_hpercents.sh from /tools/ directory with data directory as its only
argument.

All the absolute times, offsets, histogram data, plots and histogram for all the data
saved in /data/*/ are generated by:

$ cd /tools/
$./prepare_all
Another widely used type of histogram is so called cumulative latency histogram

with logarithmic scale. All the measurements could be summarized in one plot so
that comparison between set-ups is possible. The first step of creating the histogram is
breakdown of latencies into groups according to their size. The second step is cumulative
summing up of the counts of latencies in each group. The result is a curve that says
how many samples have lesser latency than the actual value on the x axis.

The script used for generating the cumulative latency histogram is a part of this
work, it is named cumul_hist.m .The histograms are used in the bottoms of sections
6.2 and 6.3.

24

Chapter 6
Benchmark Results

This chapter presents all the data, plots and histograms gathered using tools and meth-
ods described in chapters 4 and 5.

The benchmarking methods are applied to diverse hardware boards including Rasp-
berry Pi and Zynq with various parameters. This chapter provides additional comments
and results of the thesis.

6.1 Oscilloscope

One of the benchmarking methods not discussed in chapter 4 is testing RT-capabilities
of a PREEMPT-RT patched kernel by oscilloscope.

The initial intention was to prove that the patched kernel would secure purely de-
terministic behaviour of a running task. The easiest way to accomplish this task is to
generate and measure precisely timed rectangular signal.

With the usage of the RT-patch we observed an improvement in the timing accuracy.
Nevertheless significant violations of timing were registered. These violations were
probably caused by Matlab-generated code, which doesn’t lock itself in the memory. In
consequence the program page could be swapped and a page fault occurs.

The measurements were obtained using following simulink model:

Figure 6.1. Simulink model with a LED and write to PIN

Each measurement last for 5 minutes. During the tests the processor was loaded
differently.

25

6. Benchmark Results .

Figure 6.2. non-RT kernel (left) with no load and RT-kernel (right) with no load

Figure 6.3. non-RT kernel (left) loaded with four do-while loops RT-kernel (right) with
the same load

The first two comparisons indicate that while there are no latency violations on
unloaded system, major latency peaks occur on loaded system. Thus the RT capabilities
are to be evaluated mainly on loaded systems.

Figure 6.4. non-RT kernel (left) loaded with cyclictest loops RT-kernel (right) with the
same load

26

. 6.2 Sample Time Loop Latencies Measurements

Figure 6.5. non-RT kernel (left) loaded with four do-while loops and cyclictest RT-kernel
(right) with the same load

Measurement by oscilloscope was performed only without Matlab patches. Their
purpose is above all to prove a timing violation caused by default code generator. In
future work it would be useful to repeat the measurement even after full application of
all available RT enhancements.

6.2 Sample Time Loop Latencies Measurements

The first of benchmarking methods for latency testing described in section 4.1 is the
benchmarking of sample loop time latencies. It involves precise logging of the exact
time when sample loop activities are executed by the Matlab model to a file. This
section provides overview of the benchmark results.

During the tests, the system was loaded differently whereas the most common load
involved eight do-while loops and one find loop. Most of the measurements took at
least 1000 seconds with a sample time of 10 milliseconds.

The measurements are described in the same order as they were taken. We will begin
with the description of benchmarking results of system with no enhancements applied.
Gradually, enhancements will be added to achieve optimal results.

The first set of measurements was taken on Raspberry Pi with non-RT Linux with
no Matlab patch applied.

27

6. Benchmark Results .

Figure 6.6. Histogram of Sample Time Loop Latencies on Raspberry Pi v3 with non-RT
kernel no nanosleep patch and under high load.

Figure 6.7. Time domain latencies plot of Sample Time Loop Latencies on Raspberry Pi
v3 with non-RT kernel no nanosleep patch and under high load.

From 6.6 it can be seen that for a loaded system the latencies easily exceed the value
of 500 microseconds many times. This is an expected outcome as the mainline Linux

28

. 6.2 Sample Time Loop Latencies Measurements

kernel only meets soft real-time requirements. It provides only basic POSIX operations
for userspace time handling but has no guarantees for hard timing deadlines.

Another representation of the same measurement on fig.6.7 demonstrates that laten-
cies greater than 400 microseconds are not a rare phenomenon clustered into a narrow
time period but repeats almost regularly and violate the RT behaviour.

The figure 6.7 show, among other things, how to load triggered about 180 seconds
influences the whole system. Not only the average latencies were increased but the
maximal latencies started to exceed hundreds of microseconds.

Increasing sample time from 10 milliseconds (fig 6.7) to 100 milliseconds (fig. 6.8)
lowers the amount of samples by 10 to 10000. This is followed by a lowered percentage
of latency peaks so that there can’t be seen any peak higher than 200 microseconds
on the figure 6.8. The great benefit of this measurement is the highlighted visibility of
latencies noise around 75 and between 100 and 150 microseconds. This noise is going
to be eliminated in further measurements by using CTU ert.

Figure 6.8. Time domain latencies plot of Sample Time Loop Latencies on Raspberry Pi
v3 with non-RT kernel no nanosleep patch and under high load.

Since this is just a confirmation that a non-RT kernel is not capable of securing RT-
behaviour, the work continues with patching the kernel with PREEMP-RT patch as
discussed in section 3.1. Before that, we are going to use the Matlab patches without
PREEMP-RT patch to demonstrate that PREEMP-RT patch is really necessary.

The result of measurement of a non-RT system with both Matlab patches applied
are displayed on 6.9 and fig 6.10.

29

6. Benchmark Results .

Figure 6.9. Histogram of Sample Time Loop Latencies on Raspberry Pi v3 with non-RT
kernel and the Matlab patch applied, under high load.

Figure 6.10. Time domain latencies plot of Sample Time Loop Latencies on Raspberry Pi
v3 with non-RT kernel and the Matlab patch applied, under high load.

The majority of latencies seem to be lowered and improved, nevertheless one timing
glitch overcomes the limit of one millisecond and hits the value of 1400 microseconds.

30

. 6.2 Sample Time Loop Latencies Measurements

The maximal latencies are still too high, however this measurement indicates that the
patched Matlab C-code generator generates source code that is less demanding on the
system sources.

The next step is to prove that even a RT-capable Linux kernel alone can’t secure
proper timing. We are going to use original MTW ert without any patches again. The
results are depicted on hist.6.11 and fig. 6.12. These measurements prove that although
the most of the latencies are lowered, reaching 1000 milliseconds is not rare at all.

 Model sample loop latencies BN 26
 Simulation time=1000 Sample time=0.1 Priority=98
HW=RPi-v3 Kernel=4.6,RT Memmory lock= Current and Future
 Load=8xdoWhile 1xFind

Latency [micros sec]

Figure 6.11. Histogram of Sample Time Loop Latencies on Raspberry Pi v3 with RT
kernel and without Matlab nanosleep patch applied, under high load.

Figure 6.12. Time domain latencies plot of Sample Time Loop Latencies on Raspberry Pi
v3 with RT kernel and without Matlab nanosleep patch applied, under high load.

The use of an RT-capable kernel brings much higher latencies. This fact could be
explained by the incorrect implementation of the model code in C. Meanwhile the non-

31

6. Benchmark Results .
RT kernel focuses on the highest throughput, the RT kernel tries to secure maximal
latency cap. In the case of incorrect implementation the use of an RT kernel results in
nothing but slowing down the whole system.

The next improvement would be therefore correction of the model source - patching
Matlab C-code generator. The results are on pic.6.13.

Figure 6.13. Histogram RT of Sample Time Loop Latencies on Raspberry Pi v3 with RT
kernel and the Matlab patches applied, under high load.

This result satisfies our demands. To make this work more complex we’ve made the
same tests using ert developed at CTU in Prague, FEE, Department of Control En-
ginering 1). Tests made with this „CTU“ ert are marked with ert-linux in its codename
note.

The worst of the all measurements made with CTU ert can be seen on histogram
6.14. Maximal latencies for CTU ert do not cross 160 microseconds - with PREEMPT-
RT patched Kernel. This makes CTU ert the ideal candidate for further use in RT
applications.

The use of CTU ert comes with yet another improvement. The noise of latencies
around 75 and between 100 and 150 microseconds mentioned above in this section has
been eliminated. The descriptive record could be seen on figure 6.15.

One interesting phenomenon that haven’t been explained yet is the periodical se-
quence of narrow clusters of higher latencies visible on figure 6.15. They are present in
all measurements taken on Raspberry Pi with CTU ert.

1) Lintarget http://lintarget.sourceforge.net/

32

http://lintarget.sourceforge.net/

. 6.2 Sample Time Loop Latencies Measurements

Figure 6.14. Histogram of Sample Time Loop Latencies on Raspberry Pi v3 with RT
kernel and CTU ert, under high load.

Figure 6.15. Time domain latencies plot of Sample Time Loop Latencies on Raspberry Pi
v3 with RT kernel and with CTU ert, under high load.

All the results from this section are summarized in table 6.1 with many tests run
multiple times.

33

6. Benchmark Results .
HW load kernel Patch avg.[us] max lat.[us] note

RPi-v3 8W1F 4.4,non-RT No 22 776 bn23
RPi-v3 8W1F 4.4,non-RT No 31 207 bn24
RPi-v3 8W1F 4.4,non-RT Yes 30 1424 bn25
RPi-v3 8W1F 4.6,RT No 30 1639 bn26
RPi-v3 8W1F 4.6,RT Yes 22 168 bn27
RPi-v3 8W1F 4.9,RT 6 77 ert-linux,bn124
RPi-v3 8W1F 4.9,RT 6 84 ert-linux,bn127
RPi-v3 8W1F 4.9,RT 6 85 ert-linux,bn82
RPi-v3 8W1F 4.9,RT 8 105 ert-linux,bn84
RPi-v3 8W1F 4.9,RT 8 112 ert-linux,bn86
RPi-v3 8W1F 4.9,RT 7 156 ert-linux,bn88
RPi-v3 8W1F 4.9,RT 6 71 ert-linux,bn90
RPi-v3 8W1F 4.9,RT 6 77 ert-linux,bn93
RPi-v3 8W1F 4.9,RT No 23 228 bn126
RPi-v3 8W1F 4.9,RT No 22 209 bn34
RPi-v3 8W1F 4.9,RT No 27 237 bn91
RPi-v3 8W1F 4.9,RT Yes 18 211 bn125
RPi-v3 8W1F 4.9,RT Yes 21 235 bn35
RPi-v3 8W1F 4.9,RT Yes 22 212 bn37
RPi-v3 8W1F 4.9,RT Yes 28 296 bn87
RPi-v3 8W1F 4.9,RT Yes 28 271 bn89
RPi-v3 8W1F 4.9,RT Yes 17 191 bn92
RPi-v3 8W1F 4.9,RT Yes 21 211 bn94
RPi-v3 No 4.9,RT No 5 221 bn41
RPi-v3 No 4.6,RT Yes 21 140 bn28
Zynq 8W1F 4.9,RT 9 100 ert-linux,NTP,bn29
Zynq 8W1F 4.9,RT 10 100 ert-linux,NTP,bn30

Table 6.1. Overview of Matlab model Sample Time Loop latencies

Table 6.1 brings additional information about latencies measured with CTU ert on
Zynq board. This board is based on an ARM processor thus could be seen as a reference
to results measured on Raspberry Pi.

All the measurements that lasted longer than 1000 seconds have been summarized in
one cumulative latency histogram so that comparison between set-ups is possible. The
result is depicted on figure 6.16.

34

. 6.2 Sample Time Loop Latencies Measurements

10 0 10 1 10 2 10 3 10 4

Latency[s]

10 -1

10 0

10 1

10 2

10 3

10 4

10 5
La

te
nc

y
pr

of
ile

 [o
cc

ur
en

ce
s]

RPi, RT Kernel, CTU ert
RPi, RT Kernel, MTW ert patched
RPi, RT Kernel, MTW ert no patch
RPi, non-RT Kernel, MTW ert patched
RPi, non-RT Kernel, MTW ert no patch
Zynq NTP (CTU ert)

Figure 6.16. Matlab model sample time loop cumulative latency histogram.

It can be seen that measurements that were taken with non-RT kernel or without
use of Matlab patches shows much bigger latencies than measurements with all the
enhancements applied. This is a confirmation of the observation made above in this
section.

35

6. Benchmark Results .
6.3 CAN Bus Communication Measurements

The final stage of benchmarking and the second benchmarking method described in
section 4.2 involves benchmarking CAN bus communication. This section provides an
overview of the benchmark results and adds additional commentaries.

Main purpose of the measurements is to verify that the RT enhancements are as
efficient in improving CAN bus communication as they were in improving the Matlab
model sample time loop latencies. If the enhancements are not as successful as expected,
this section will cover the most probable reasons for its failure.

The following measurements were accomplished for Raspberry Pi version 2 and ver-
sion 3. Additional measurements were made on the Zynq board.

The measurements were performed on the CAN-bench with the help of can-utils.
The command used to obtain measurements follows:

candump -t a -H can0
The very first measurement was made with a non-RT kernel and without the Matlab

patches. The result can be seen on histogram 6.17.

Figure 6.17. Histogram of CAN message Latencies on Raspberry Pi v2 with non-RT kernel
and without Matlab nanosleep patch, under high load.

One latency exceeding 7 millisecond can be seen in histogram 6.17. This observation
confirms the assumption of poor results and the need for patches.

Using the same approach as in section 6.2, both Matlab patches were applied and RT-
kernel was used. The results of the first measurements of fully patched and enhanced
system are on histogram 6.18.

It was revealed that the latencies were even worse with the application of the patches
and with use of RT kernel. In an attempt to improve this, we tried to boost SPI and

36

. 6.3 CAN Bus Communication Measurements

Figure 6.18. Histogram of CAN message Latencies on Raspberry Pi v2 with non-RT kernel
and the Matlab patches applied , under high load.

MCP1155 interrupt worker thread priorities. The corresponding thread IDs could be
found the following way:

$ cat /proc/interrupts
84: 0 0 0 0 ARMCTRL-level 86 Edge 3f204000.spi
191: 0 0 0 0 ARMCTRL-level 86 Edge mcp251x

The id’s of the interrupts must be saved. Then, the running processes are scanned and
the ones responsible for interrupt handling are found using the saved id’s. The example
output follows:

$ ps xaw
639 ? S 0:00 [irq/191-mcp251x]
213 ? S 0:00 [irq/84-3f204000]

The priority boot can be done by schedtool , which modifies the scheduling policy and
priority. The policy was set to SCHED_FIFO and the priorities have been increased to
95. The following commands do the job:

$ schedtool -F -p95 639
$ schedtool -F -p95 213
The improvement of results with boosted priority are depicted on hist 6.19.
The priority boost improved the vast majority of latencies but the worst case la-

tency persists. After all the patches and enhancements the CAN RT behaviour stays
unpredictable with high latencies. Another typical example can be seen on histogram
6.20.

37

6. Benchmark Results .

Figure 6.19. Histogram of CAN message Latencies on Raspberry Pi v2 with RT kernel
and the Matlab patches applied, under high load and a worker thread priority boost.

Figure 6.20. Histogram of CAN message Latencies on Raspberry Pi v2 with RT kernel
and the Matlab patches applied, under high load.

38

. 6.3 CAN Bus Communication Measurements

The same test were run on Raspberry Pi with CTU ert, nevertheless the performance
stayed poor.

Figure 6.21. Histogram of CAN message Latencies on the Zynq board with non-RT kernel
and the Matlab patches applied, under high load.

Figure 6.22. Time domain latencies of CAN message Latencies on the Zynq board with
RT kernel, under high load. The NTP client is turned on.

39

6. Benchmark Results .
Similar testing was done on a Zynq board. The results are in hist.6.23 These results

are especially interesting in the time-domain on figure 6.24

Figure 6.23. Histogram of CAN message Latencies on the Zynq board with non-RT kernel
and the Matlab patches applied, under high load.

Figure 6.24. Time domain latencies of CAN message Latencies on the Zynq board with
RT kernel, under high load. The NTP client is turned on.

The very steep evolution of latencies on figure 6.24 indicates problems with time
synchronization. After a little examination it was discovered that a NTP client is

40

. 6.3 CAN Bus Communication Measurements

running on Zynq machine. The client was turned off and a new set of measurements
was made. Typical example on histogram 6.25.

Figure 6.25. Histogram of CAN message Latencies on the Zync board with RT kernel,
under high load. The NTP client is turned off.

Figure 6.26. Time domain latencies on the Zync board with RT kernel, under high load.
The NTP client is turned off.

All the measurements done with running NTP client are marked with NTP at it’s
codename note. Moving Average-Based Comparison described in section 5.3.3 was
created to handle these disturbances and show real latencies.

41

6. Benchmark Results .
A quick overview of the results of the measurements are in the tables 6.2 and 6.3

HW kern nslp avg max note
RPi-v2 4.4,non-RT No 9 1075 bn9
RPi-v2 4.6,RT Yes 12 896 w95,bn10
RPi-v2 4.9,RT 12 9608 ert-linux,bn137
RPi-v2 4.9,RT 7 3753 0 ert-linux,bn143
RPi-v2 4.9,RT 10 6117 ert-linux,w90,bn145
RPi-v2 4.9,RT Yes 16 9695 bn139
RPi-v3 4.9,RT 8 9322 ert-linux,bn106
Zynq 4.9,RT 7 131 ert-linux,NTP,bn22
Zynq 4.9,RT 7 88 ert-linux,NTP,bn165
Zynq 4.9,RT 7 116 ert-linux,bn168
Zynq 4.9,RT 7 75 ert-linux,bn170
Zynq 4.9,RT 7 194 ert-linux,bn172
Zynq 4.9,RT 7 85 ert-linux,bn174

Table 6.2. Overview of CAN latencies on system under no load

HW kern nslp avg max note
RPi-v2 4.4,non-RT No 57 7921 bn1
RPi-v2 4.6,RT 42 1725 ert-linux,w95,bn2
RPi-v2 4.6,RT No 56 17085 bn4
RPi-v2 4.6,RT Yes 61 3908 w95,bn5
RPi-v2 4.6,RT Yes 63 21323 w95,bn6
RPi-v2 4.6,RT Yes 56 4725 bn7
RPi-v2 4.9,RT Yes 52 8426 bn141
RPi-v3 4.4,non-RT No 35 5271 bn11
RPi-v3 4.9,RT 29 8011 ert-linux,bn108
Zynq 4.9,RT 10 3283 ert-linux,NTP,bn16
Zynq 4.9,RT 9 102 ert-linux,NTP,bn17
Zynq 4.9,RT 9 3285 ert-linux,NTP,bn18
Zynq 4.9,RT 10 3283 ert-linux,NTP,bn19
Zynq 4.9,RT 10 120 ert-linux,NTP,bn20
Zynq 4.9,RT 9 96 ert-linux,NTP,bn21
Zynq 4.9,RT 11 301 ert-linux,NTP,bn166
Zynq 4.9,RT 7 111 ert-linux,bn169
Zynq 4.9,RT 8 95 ert-linux,bn171
Zynq 4.9,RT 8 90 ert-linux,bn173
Zynq 4.9,RT 9 108 ert-linux,bn175
Zynq 4.9,RT 8 119 ert-linux,bn176
Zynq 4.9,RT 9 109 ert-linux,bn177

Table 6.3. Overview of CAN latencies on a high-loaded system.

The cumulative latency histogram for CAN messages in on figure 6.27. Individual
set-ups are distinguished by color. Measurements taken on not loaded systems are
marked by dashed lines meanwhile the measurements taken on high-loaded systems are
marked with solid lines.

42

. 6.3 CAN Bus Communication Measurements

Figure 6.27. Cumulative latency histogram of CAN messages.

It can be seen that measurements with the same set-up and taken on the same
hardware tend to associate in shapes reminiscent of a disintegrating rope. The black-
coloured Zynq measurements are the most left, which means they have the lowest both
average and maximal latencies. It is also obvious that all the pink and light and dark
green measurements made on Raspberry do not differentiate each other a lot. This
means that no enhancements nor the use of CTU ert could secure meeting requirements
of RT application.

The explanation of the poor results of CAN communication on Raspberry Pi could be
combination of several factors. The weakest part of the whole system is the MCP2515
CAN controller used by the PiCAN board. It uses the SPI interface for communication
with Raspberry Pi. Unfortunately the SPI is used for reading and writing to controllers
registers instead of handling a CAN message as a whole. As a result, the SPI latencies
generated on each SPI interrupt are counted together.

Due to SPI implementation in the Linux kernel (even the PREEMP-RT patched), a
single SPI latency could reach around one millisecond.

Another drawback might be the use of the SocketCAN API, which is far from ideal.
On the other hand, all benchmarks made on the Zynq board, which also uses Socket-
CAN, show good results. [21] [9].

43

Chapter 7
Problems

During the development process, many technical problems occurred. They were not in
the focus of interest but took a time to resolve. This chapter provides a descriptions
and solutions those which could affect later users or are particularly interesting ones.

7.1 Compilation Problems

This section describes problems that could be solved by modifying the model itself by
altering s-function source files or by modifying some Matlab TLC files. Compilation
problem occur at the compilation time.

7.1.1 Different Step Sizes

The first problem occurred when the X in

ssSetSampleTime(S, 0, X);

was set to 0.1 although it is the time_t data type and it is not explicitly said to be
integer 1) . The error message was the following:

Invalid setting for fixed-step size (1.0) in model $write_fnc$. All
sample times in your model must be an integer multiple of the fixed-step
size.

Component:Simulink | Category:Modelerror
The sample time period (0.1) of $write_fnc/S-Function1$ is not an
integer multiple of the fixed step size (1.0) specified for model.
Defined in: ssSetSampleTime

Setting X=INHERITED_SAMPLE_TIME works properly. Setting X an integer value works
properly as well and sets the fixed sample time to the required value.

1) Matlab Documentation ssSetSampleTime https: / / www . mathworks . com / help / simulink / sfg /
sssetsampletime.html

44

https://www.mathworks.com/help/simulink/sfg/sssetsampletime.html
https://www.mathworks.com/help/simulink/sfg/sssetsampletime.html

. 7.1 Compilation Problems

Figure 7.1. Configuring fundamental sample time

7.1.2 Modifing Default Make Command
When using MathWorks default ert with support fo Raspberry Pi it is impossible to
change the make command (MakeCommand property). Its box in the model config-
uration pane is disabled. Modifying it’s value in model XML results in the following
compilation error:

Error encountered while executing PostCodeGenCommand for model
’latency_demo’: The following model parameters are not compatible
with the selected hardware board:
MakeCommand is set to make_rtw -DPATCH_NANOSLEEP, but it is
expected to be set to make_rtw

To resolve this conflict, set incompatible model parameters to their
default values. Otherwise, set ’System target file’ to a different
value.

Caused by:
The following model parameters are not compatible with the selected
hardware board:

MakeCommand is set to make_rtw -DPATCH_NANOSLEEP, but it is expected
to be set to make_rtw

To resolve this conflict, set incompatible model parameters to their
default values. Otherwise, set ’System target file’ to a different
value.

45

7. Problems .
7.1.3 Missing Libraries

Another error occurred when using Matlab CAN blocks with MTW ert on Raspberry
Pi. The error message follows:

Error executing command "touch -c /home/pi/matPiBuild/
can_test_ert_rtw/*.*;make -f can_test.mk all
-C /home/pi/matPiBuild/can_test_ert_rtw". Details:

STDERR: In file included from can_test.c:19:0:
can_test.h:41:82: fatal error: /usr/local/MATLAB/R2016b/
toolbox/shared/can/src/scanutil/can_message.h:
No such file or directory
#include "/usr/local/MATLAB/R2016b/toolbox/shared/can/
src/scanutil/can_message.h"

compilation terminated.
make: *** [can_test.c.o] Error 1

This error has been solved by adding complete library structure with the file to the
appropriet directory on Raspberry Pi.

raspberrypi-matlab:˜ $ sudo mkdir -p /usr/local/MATLAB/R2016b/\
toolbox/shared/can/src/scanutil
home:˜$ scp /usr/local/MATLAB/R2016b/\
toolbox/shared/can/src/scanutil/can_message.h pi@172.22.4.2:
raspberrypi-matlab:˜ $ sudo mv can_message.h /usr/local/MATLAB/R2016b/\
toolbox/shared/can/src/scanutil/

7.2 MDL Format Problems
The MDL model format was used to store Matlab model at the beginning of the work.
The format is obsolete according to MathWorks, nevertheless it was used for it’s simplic-
ity and easy versioning. The problem occurred when converting the old MDL models
to XSL. The following error message was displayed when trying to run the converted
model on Raspberry Pi in external mode:

Error occurred while executing External Mode MEX-file ’ext_comm’:
Failed to connect to the target. Possible reasons for the failure:
a) The target is not switched on.
b) The target is not connected to your host machine.
c) The application for the model is not running on the target. You might
have clicked the Stop button. If the Run button is not dimmed, click it.
Otherwise, click the Build button, which downloads and runs your
application on the target.
Caused by:
Verbosity argument must be a real, scalar, integer value in the range:
[0-1].

This error is probably caused by the lack of support for translation from MDL to XSL.
The following code snippet demonstrates the difference between a properly generated
XLS file and a file re-generated from an MDL model file. The logical type is translated
to type double which results in the execution error listed below.

46

. 7.2 MDL Format Problems

<Array PropName="CoderTargetData" Type="Struct" Dimension="1*1">
<MATStruct>
<Field Name="UseCoderTarget" Class="double">1.0</Field>

<Field Name="TargetHardware" Class="char">Raspberry Pi</Field>
<Array PropName="ConnectionInfo" Type="Struct" Dimension="1*1">

<MATStruct>
<Array PropName="TCPIP" Type="Struct" Dimension="1*1">

<MATStruct>
<Field Name="IPAddress" Class="char">

codertarget.raspi.getDeviceAddress</Field>
<Field Name="Port" Class="char">17725</Field>
<Field Name="Verbose" Class="double">0.0</Field>
<Field Name="RunInBackground" Class="double">0.0</Field>

</MATStruct>
</Array>

</MATStruct>
</Array>

<Array PropName="CoderTargetData" Type="Struct" Dimension="1*1">
<MATStruct>
<Field Name="UseCoderTarget" Class="logical">1</Field>

<Field Name="TargetHardware" Class="char">Raspberry Pi</Field>
<Array PropName="ConnectionInfo" Type="Struct" Dimension="1*1">

<MATStruct>
<Array PropName="TCPIP" Type="Struct" Dimension="1*1">

<MATStruct>
<Field Name="IPAddress" Class="char">

codertarget.raspi.getDeviceAddress</Field>
<Field Name="Port" Class="char">17725</Field>
<Field Name="Verbose" Class="logical">0</Field>
<Field Name="RunInBackground" Class="logical">0</Field>

</MATStruct>
</Array>

</MATStruct>
</Array>

47

Chapter 8
Conclusion

It has been verified that application of real-time enhancements (PREEMP-RT patch)
on the Linux kernel improves it’s real-time behaviour. The main impact has been
observed in the shortening of latencies of Matlab model Sample Time Loop.

The latencies exceed 700 microseconds on high-loaded system without any Matlab or
Linux patch applied. The latencies goes even worse with the application of PREEMP-
RT patch and reaches 1639 microseconds in the worst case. Similar latencies exceeding
1420 microseconds were observed with a non-RT Linux kernel but Matlab patches
applied.

Improved latencies occurred after application both Matlab and PREEMPT-RT
patches. The latencies did not exceed 300 microseconds in benchmark that taken more
than 2 hours with 100 samples per second.

The two ert files were used during the benchmarks. The first of them, MathWorks
(MTW) ert has been modified by the Matlab patch. The second one, developed at
CTU was used without any further modification. It was revealed that even after the
application of Matlab patch the RT capabilities of CTU ert are better than that of
MTW ert. Average latencies of MTW ert (with all the patches applied) are around 20-
28 microseconds meanwhile average latencies of CTU ert were around 7 microseconds
and the maximum latencies didn’t exceed 160 microseconds.

The second main part of the thesis deals with benchmarking CAN bus based on
PiCAN extension board and Simulink CAN blocka and SocketCAN Linux API.

The latencies of CAN messages transmitted on Raspberry Pi exceed 7 milliseconds on
a high-loaded system without any Matlab or Linux patch applied. The same patches
as in the previous part were applied but with no significant impact on the latency
times. The latencies often exceed 8 milliseconds on a system with both Matlab and
PREEMP-RT patch applied. The similar latencies were measure on system under no
load, nevertheless there were no latencies exceeding 10 milliseconds at all.

No improvement was observed even with use of CTU ert. The latencies exceed 8
milliseconds.

As a result, we do not recommend the use of Raspbery Pi with the PiCAN module
without RT enhancements in RT applications at all. It can be used without any other
load and after application of patches at a frequency of less than 100 Hz in non-RT
applications.

As a replacement, we recommend another single-board computer with GNU/Linux
and integrated CAN interface. As part of this work, a SoC Zynq board was tested for
which the CAN latencies of the high-loaded system did not exceed 120 microseconds.
The board was tested with CTU ert and PREEMP-RT patched Linux kernel.

48

References

[1] Radek Mečiar. Řízení motorů s deskou Raspberry Pi a Linuxem. 2014.
http://support.dce.felk.cvut.cz/mediawiki/images/1/10/Bp_2014_meciar_radek
.pdf.

[2] Prudek Martin. Řízení bezkartáčových motorů s deskou Raspberry Pi a Linuxem.
2015.
https://support.dce.felk.cvut.cz/mediawiki/images/d/da/Bp_2015_prudek_
martin.pdf.

[3] ARM Holdings plc. ARM1176JZF-S Technical Reference Manual. 2009.
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301h/DDI0301H_arm1176
jzfs_r0p7_trm.pdf.

[4] ARM Holdings plc. Cortex-A7 Floating-Point Unit. 2012.
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0463d/DDI0463D_cortex_
a7_fpu_r0p3_trm.pdf.

[5] J.M. Flores-Arias M. Ortiz-Lopez F.J. Quiles-Latorre V. Pallares A.Chen. Com-
plete Hardware a Software Bench for the CAN Bus. 2016.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7430584&isnumber=
7430494.

[6] Robert Bosch GmbH. CAN Specification. 1991.
http://www.bosch-semiconductors.de/media/ubk_semiconductors/pdf_1/canliter
atur/can2spec.pdf.

[7] Qiangsheng Ye. Research and application of CAN and LIN bus in automobile Net-
work System. 2010.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5579409&isnumber=
5579162.

[8] Peter Fellmeth. ISO11783 a Standardized Tractor – Implement Interface. 2003.
https://www.can-cia.org/fileadmin/resources/documents/proceedings/2003_fel
lmeth.pdf.

[9] D. Saranyaraj, R. Nandhakishore, and P. Venkatesh. Benchmarking and analysis of
can transmision on real-time environment. In: 2015 2nd International Conference
on Electronics and Communication Systems (ICECS). 2015. 399-404.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7124934&isnumber=
7124722.

[10] Readme file for the Controller Area Network Protocol Family (aka SocketCAN).
2017.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/
Documentation/networking/can.txt.

[11] Ing. Pavel Píša Ph.D. Linux/RT-Linux CAN Driver . 2005.
http://cmp.felk.cvut.cz/˜pisa/can/doc/lincandoc-0.3.pdf.

49

http://support.dce.felk.cvut.cz/mediawiki/images/1/10/Bp_2014_meciar_radek.pdf
http://support.dce.felk.cvut.cz/mediawiki/images/1/10/Bp_2014_meciar_radek.pdf
https://support.dce.felk.cvut.cz/mediawiki/images/d/da/Bp_2015_prudek_martin.pdf
https://support.dce.felk.cvut.cz/mediawiki/images/d/da/Bp_2015_prudek_martin.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301h/DDI0301H_arm1176jzfs_r0p7_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301h/DDI0301H_arm1176jzfs_r0p7_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0463d/DDI0463D_cortex_a7_fpu_r0p3_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0463d/DDI0463D_cortex_a7_fpu_r0p3_trm.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7430584&isnumber=7430494
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7430584&isnumber=7430494
http://www.bosch-semiconductors.de/media/ubk_semiconductors/pdf_1/canliteratur/can2spec.pdf
http://www.bosch-semiconductors.de/media/ubk_semiconductors/pdf_1/canliteratur/can2spec.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5579409&isnumber=5579162
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5579409&isnumber=5579162
https://www.can-cia.org/fileadmin/resources/documents/proceedings/2003_fellmeth.pdf
https://www.can-cia.org/fileadmin/resources/documents/proceedings/2003_fellmeth.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7124934&isnumber=7124722
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7124934&isnumber=7124722
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/can.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/can.txt
http://cmp.felk.cvut.cz/~pisa/can/doc/lincandoc-0.3.pdf

References .
[12] M. Sojka P. Píša M. Petera O. Špinka Z. Hanzálek. A comparison of Linux CAN

drivers and their applications. 2010.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5551367&isnumber=
5551360.

[13] SK Pang Electronics Ltd. PiCAN 2 USER GUIDE V1.2 . 2016.
http://skpang.co.uk/catalog/images/raspberrypi/pi_2/PICAN2UG12.pdf.

[14] M. Sojka, P. Píša, O. Špinka, and Z. Hanzálek. Measurement automation and result
processing in timing analysis of a Linux-based CAN-to-CAN gateway. In: Proceed-
ings of the 6th IEEE International Conference on Intelligent Data Acquisition and
Advanced Computing Systems. 2011. 963-968.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6072917&isnumber=
6072809.

[15] Martin Jeřábek. FPGA Based CAN Bus Channels Mutual Latency Tester and
Evaluation. 2016.
https://rtime.felk.cvut.cz/can/F3-BP-2016-Jerabek-Martin-Jerabek-thesis-
2016.pdf.

[16] Ing. Pavel Píša Ph.D. GNU/Linux, rychlost odezvy a výuka řízení . 2015.
[17] Paul E. McKenney. A realtime preemption overview. 2005.

http://lwn.net/Articles/146861/.
[18] Luotao Fu Robert Schwebel. RT PREEMPT HOWTO. 2017.

https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO.
[19] Carlos Jenkins Michal Sojka. Code generation for automotive rapid prototyping

platform using Matlab/Simulink. 2014.
https://rtime.felk.cvut.cz/rpp-tms570/rpp_simulink.pdf.

[20] The Math Woks Inc. Target Language Compiler . 2000.
http://radio.feld.cvut.cz/matlab/pdf_doc/rtw/targetlanguagecompiler.pdf.

[21] M. Sojka, P. Píša, and Z. Hanzálek. Performance evaluation of Linux CAN-related
system calls. In: 2014 10th IEEE Workshop on Factory Communication Systems
(WFCS 2014). 2014. 1-8.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6837608&isnumber=
6837570.

50

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5551367&isnumber=5551360
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5551367&isnumber=5551360
http://skpang.co.uk/catalog/images/raspberrypi/pi_2/PICAN2UG12.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6072917&isnumber=6072809
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6072917&isnumber=6072809
https://rtime.felk.cvut.cz/can/F3-BP-2016-Jerabek-Martin-Jerabek-thesis-2016.pdf
https://rtime.felk.cvut.cz/can/F3-BP-2016-Jerabek-Martin-Jerabek-thesis-2016.pdf
http://lwn.net/Articles/146861/
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
https://rtime.felk.cvut.cz/rpp-tms570/rpp_simulink.pdf
http://radio.feld.cvut.cz/matlab/pdf_doc/rtw/targetlanguagecompiler.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6837608&isnumber=6837570
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6837608&isnumber=6837570

Appendix A
Abbrevitations

AC . Alternating current
API . Application Programming Interface
CAN . Controller Area Network
CPU . Central processing unit
CSMA . Carrier-Sense Multiple Access
CTU ert . ert-linux file, developped at CTU in Prague
DC . Direct current
FPGA . Field Programable Gate Array
FPU . Floating-Point Unit
HTTP . Hypertext Transfer Protocol
HW . Hardware
IRC . Incremental Rotary Encoder
MCU . Microcontroller
MTD . Memory Technology Device
MTW ert . Default ert file provided by MathWorks
OS . Opperating System
PMSM . Permanent Magnet Synchronous Motor
RAM . Random Access Memory
RT . Real Time
SATA . Serial ATA
SMP . Symmetric Multiprocessing
SoC . System on a chip
SSH . Secure Shell
TLC . Target Language Compiler
USB . Universal Serial Bus
VFP . Vector Floating-Point

51

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	Tables/Figures
	Introduction
	Hardware
	Raspberry Pi
	CAN Bus
	CAN Operation
	Linux CAN Subsystem

	CAN Controller Extension Board
	CAN Bus Latency Tester
	Zynq Board

	Latency Minimization Enhancements
	RT Linux
	Patching the Kernel
	Building the Kernel

	Matlab Patches
	Source Code Generation
	Clock Nanosleep Patch Code
	Memory Lock Patch Code
	Application of the Patch

	Benchmarks
	Sample Time Loop Latencies
	CAN Benchmarks

	Tools
	Automated Simulations
	Datafile Codenames
	Data Processing
	Difference-Based Comparison
	Linear Regression-Based Comparison
	Moving Average-Based Comparison
	Plots and Histograms

	Benchmark Results
	Oscilloscope
	Sample Time Loop Latencies Measurements
	CAN Bus Communication Measurements

	Problems
	Compilation Problems
	Different Step Sizes
	Modifing Default Make Command
	Missing Libraries

	MDL Format Problems

	Conclusion
	References
	Abbrevitations

