
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Control Engineering

Doctoral Thesis

Scheduling under energy
consumption limits

István Módos

January 2021

Scheduling under energy
consumption limits

by

István Módos

Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Control Engineering

Doctoral Thesis

Supervisors: doc. Ing. Přemysl Š̊ucha, Ph.D.
Ph.D. programme: Electrical Engineering and Information Technology
Branch of study: Control Engineering and Robotics
Submission date: January 2021

István Módos: Scheduling under energy consumption limits, Ph.D.
Thesis, Czech Technical University in Prague, Faculty of Electrical
Engineering, Department of Control Engineering, January 2021,
Prague.

ii

Acknowledgments
First, I would like to thank my supervisor Přemysl Š̊ucha, who guided me through
my studies, starting with my master thesis. Mr. Š̊ucha was always motivating, keen
to provide any advice, and willing to patiently discuss every research problem. I
learned a lot from him, and for that, I am grateful. I would like to also express my
thanks to Zdeněk Hanzálek, the head of our research group. He strived to provide
the best working conditions possible, and I respect him greatly, both scientifically
and personally.

Without friends and colleagues, one would definitely not enjoy his work as with
them. I had the luck to collaborate, laugh, share the passion for the teaching and
optimization with the following amazing people: Antońın Novák, Ondřej Benedikt,
Jan Dvořák, Anna Minaeva, Libor Bukata, Marek Vlk, Michal Bouška, Aasem
Ahmad, and Roman Václav́ık. Moreover, fist bump to all the friends from our
climbing party. The time spent together on solving interesting boulder problems
meant really a lot to me.

I want to express my deep gratitude to my parents, Jarmila Módos and István
Módos. Without their hard work and love of their children, I would not be where I
am today.

Finally, I acknowledge all the grants and projects that funded my research.
Namely, the work was supported by (i) the ARTEMIS initiative funded by the
European Commission under the project DEMANES 295372 and (ii) the Tech-
nology Agency of the Czech Republic under the Centre for Applied Cybernetics
TE01020197.

CHPMV

István Módos
Prague, January 2021

iii

iv

Declaration
This doctoral thesis is submitted in partial fulfillment of the requirements for the
degree of doctor (Ph.D.). The work submitted in this thesis is the result of my
own investigation, except where otherwise stated. I declare that I worked out
this thesis independently and I quoted all used sources of information in accord
with Methodical instructions about ethical principles for writing academic thesis.
Moreover, I declare that it has not already been accepted for any degree and is also
not being concurrently submitted for any other degree.

István Módos
Prague, January 2021

v

vi

Abstract
With the increasing costs for energy consumption of large manufacturing companies,
the newest trend of energy-efficient and sustainable scheduling appeared within the
scientific literature. To design an automated scheduling system for such companies,
it not sufficient anymore to consider only traditional objectives such as makespan.
The production schedules must also take the energy-related aspects into account.
Otherwise, such schedules are not usable in practice, or they would require many
hand-made changes by human schedulers.

One of such aspects addressed by this work is the energy consumption limit,
representing an upper limit of the energy consumption within every metering
interval of a day. The energy consumption limits are specified in a contract between
a manufacturing company and an electric utility, and its violation is monetarily
penalized.

The motivational example for this research is a company producing tempered
glass, which violated the energy consumption limits a few times per month. Usually,
the violation was caused due to uncertainty in the preparation time of the jobs. In
such a situation, energy-demanding jobs were executed within the same metering
interval; thus, the energy consumption increased, and the energy limit was violated.

This thesis investigates the scheduling problem with the energy limits, which is
considered in both deterministic and stochastic environments. In the deterministic
environment, it is expected that the start times of the jobs are never delayed; this
problem has its application in fully automated production or in companies, which
strictly penalize its workers for such delays. We studied the computation complexity
of different problem variants: the main result is that the problem with fixed ordering
of the jobs, constant number of machines, and assumption that the jobs cannot
cross multiple metering intervals can be solved in polynomial time.

The study of the problem within a stochastic environment focuses on the
robustness of the production schedules, i.e., how to obtain schedules that do not
violate the energy consumption limits even in case of unexpected disturbances.
Due to the complex nature of such a problem, only a single machine problem is
investigated. However, we discovered that if the order of the jobs is fixed, such a
problem can be solved in a pseudo-polynomial time; the developed algorithm is
then utilized in exact and heuristic algorithms.

For both deterministic and stochastic environments, we proposed exact (op-
timization models, Branch-and-Bound, Logic-based Benders decomposition) and
heuristic (adaptive local search) algorithms so that large instances with hundreds of
jobs can be solved. The proposed methods were compared with with the adapted
ones from the literature, which we improved and outperformed in the number of
better solutions found.

Keywords: production scheduling, electric energy, energy consumption
limits, robust scheduling

vii

viii

Abstrakt
S roustoućımi náklady za spotřebu elektřiny pro velké výrobńı podniky se v
posledńıch letech objevil trend výzkumu v rámci energeticky efektivńıho a udržitelného
rozvrhováńı. Při návrhu automatizovaných rozvrhovaćıch systémů pro takové pod-
niky již nestač́ı brát v úvahu pouze tradičńı kritéria jakými jsou např. délka
rozvrhu. Výrobńı rozvrhy muśı zohledňovat i energetické aspekty, jinak jsou v praxi
nepoužitelné, popř. je nutné je ručně upravit lidskými plánovači.

Jedńım z takových aspekt̊u, kterým se tato práce zabývá, je tzv. čtvrthodinové
maximum. Je to horńı limit na spotřebu elektrické energie v každou čtvrthodinu
během dne. Tento limit si výrobńı podniky sjednávaj́ı s distributorem elektřiny a
jeho překročeńı je finančně penalizováno.

Motivačńı př́ıklad pro tento výzkum byl podnik vyráběj́ıćı tvrzené sklo, kde
k překročeńı čtvrthodinového maxima docházelo několikrát do měśıce. Často k
této situaci došlo kv̊uli nepředv́ıdatelnému prodloužeńı př́ıpravného času operaćı,
což vedlo k tomu, že se k sobě přibĺıžily energeticky náročné operace během stejné
čtvrthodiny, během které spotřeba energie překročila sjednaný limit.

V této práci se proto zabýváme t́ımto rozvrhovaćım problémem, který dále
uvažujeme jak v deterministickém, tak v stochastickém prostřed́ı. V determini-
stickém prostřed́ı očekáváme, že začátky vykonáváńı operaćı nepodléhaj́ı zpožděńı,
což má své uplatněńı buď v plně automatizované výrobě anebo v podnićıch, kde
pracovńıci jsou za prodlevy penalizováni. Studovali jsme výpočetńı složitost r̊uzných
variant tohoto problému; hlavńım výsledkem je, že varianta s fixńım pořad́ım op-
eraćı, neměnným počtem stroj̊u a předpokladem, že operace nemohou prot́ınat v́ıce
interval̊u, se dá řešit v polynomiálńım čase.

Studium rozvrhovaćıho problému v stochastickém prostřed́ı se zaměřuje studium
postup̊u, jak zaručit, že výsledný výrobńı rozvrh je robustńı, tedy že i v př́ıpadě,
že nastanou neočekávané události, tak čtvrthodinová maxima nebudou porušena.
Vzhledem k náročnosti podstaty problému bylo v této části uvažováno pouze
rozvrhováńı na jednom stroji. Nicméně, objevili jsme, že pokud se zafixuje pořad́ı
operaćı, tak se takový rozvrhovaćı problém dá vyřešit v pseudo-polynomálńım čase;
navržený algoritmus využ́ıváme v exaktńıch a heuristických algoritmech.

Pro rozvrhováńı v deterministickém a stochastickém prostřed́ı jsme navrhli
několik algoritmů, jak exaktńıch (optimalizačńı modely, metoda větv́ı a meźı,
Logická Bendrova dekompozice), tak heuristických (adaptivńı lokálńı prohledáváńı),
abychom mohli řešit i velké instance se stovkami operaćı. Srovnali jsme naše př́ıstupy
s adaptovanými př́ıstupy z literatury, které jsme dále vylepšili a překonali v počtu
nejlepš́ıch nalezených řešeńı.

Kĺıčová slova: rozvrhováńı ve výrobě, elektrická energie, čvrthodinová maxima,
robustnostńı rozvrhováńı

ix

x

Goals and Objectives
The thesis deals with production scheduling under energy consumption limits. The
main goals of the work are:

1. Study the related energy-aware scheduling literature.

2. Formalize the scheduling problem with the energy consumption limits in both
deterministic and stochastic production environments.

3. Investigate the proposed scheduling problem. Determine its computational
complexity and design algorithms (both exact and heuristic) for solving the
problem.

4. Propose a parametrized generator of the benchmark instances. Experimentally
evaluate the performance of the developed algorithms.

xi

xii

Contents

List of Acronyms 1

1 Introduction 3
1.1 A Review of Electricity Bill Components 3
1.2 Scheduling with Maximum Energy Consumption Limits 5
1.3 Related Work . 7

1.3.1 Energy-aware Scheduling . 7
1.3.2 Robust Scheduling . 9

1.4 Contributions . 10
1.5 Outline . 11

2 General Problem Statement 13
2.1 Example . 15
2.2 Notation of the Scheduling Problem Variants 17

3 Preliminaries 19
3.1 Modeling Formalisms . 19

3.1.1 Integer Linear Programming 19
3.1.2 Constraint Programming . 21

3.2 General Adaptive Local Search Heuristic 22
3.2.1 Adaptive Generation of the Solution Neighborhood 23

4 Scheduling with Energy Consumption Limits in Deterministic En-
vironments 25
4.1 Problem 1|p1,j = 1, Emax

i = Emax|∅ 25
4.2 Problem 1|p1,j = 1, |I| = 2, Emax

i = Emax|∅ 26
4.3 Problem PDm|πk, pk,j = 1, |I| = 2, Emax

i = Emax|∅ 27
4.4 Problem PDm|πk,no-crossing, Emax

i = Emax|Cmax 28
4.5 Problem PDm|Emax

i |Cmax . 31
4.5.1 Constraint Programming (CP) Model 31
4.5.2 Mixed Integer Linear Programming (MILP) Models 32
4.5.3 Adaptive Local Search Heuristic 40
4.5.4 Experiments . 43

5 Scheduling with Energy Consumption Limits under Disturbances 55
5.1 Problem PDm|Emax

i , δmax
k,j = δmax|Cmax 55

5.2 Problem 1|π1, E
max
i , δmax

k,j = δmax|f 56
5.2.1 Latest Start Time and Right-shift Schedules 56
5.2.2 Earliest Robust Baseline Schedule 59
5.2.3 Algorithm for Finding the Optimal Robust Schedule 63
5.2.4 Time Complexity of the Algorithm for Computing the Robust

Baseline Schedule . 69
5.3 Problem 1|Emax

i , δmax
k,j = δmax|Cmax 69

5.3.1 Logic-based Benders Decomposition 69

xiii

xiv CONTENTS

5.3.2 Branch-and-Bound Based Algorithm 73
5.3.3 Adaptive Local Search Heuristic 74
5.3.4 Experiments . 74

6 Conclusion 79
6.1 Fulfillment of the Goals . 79
6.2 Future Work . 80

A Nomenclature 91

B Curriculum Vitae 97

C List of Author’s Publications 99

List of Figures

1.1 The electricity bill components. 4
1.2 An illustration of the maximum energy consumption limit constrain-

ing the total energy consumption in the metering interval 10:45-11:00.
P (t) is a function representing the power consumption over time. . . 5

1.3 A schedule with an optimal makespan, which violates the maximum
energy consumption limit in metering interval I1. 6

1.4 A schedule with an optimal makespan, which satifies the maximum
energy consumption limit in every metering interval of the scheduling
horizon. 6

1.5 Delaying job J1,1 by 6 minutes leads to the violation of the maximum
energy consumption limit in metering interval I2, even if the baseline
schedule (shown in Fig. 1.4) satisfies the energy limits. 7

1.6 A baseline schedule that is robust against the delays of the jobs. . . 8

2.1 Baseline schedule s and the corresponding energy consumption in
each metering interval. 17

2.2 Realized schedule rs and the corresponding energy consumption in
each metering interval. 17

4.1 The slices of a two-machine feasible schedule for the example instance
from the problem statement (see Section 2.1). 29

4.2 The constructed graph for the example instance from the problem
statement (see Section 2.1); the weights of the edges are omitted.
The highlighted path corresponds to the schedule from Fig. 4.1. . . 30

4.3 Values of x+
k,j,i in the infeasible case when two jobs are crossing the

boundary of two same consecutive metering intervals. 37
4.4 NR-ALS, the total number of hits per neighborhood generator over

all the instances. 53
4.5 The average of the best-so-far curves over all the instances (normal-

ized to the time-limit and the best-found solution by NR-CP and
NR-ALS). 53

5.1 General schema of logic-based Benders decomposition. 70
5.2 Illustration of strengthening cut (5.62) for the master problem. . . . 71
5.3 Cutting interval T 2

j for a feasible permutation, case s′
1,π′1(¯̀)

< s?
1,π′1(¯̀)

. 73

xv

xvi LIST OF FIGURES

List of Tables

2.1 Parameters of the jobs in the example. 16
2.2 Baseline start times s of one possible feasible solution and the corre-

sponding realized start times rs for δ. 16
2.3 Energy consumption in metering intervals in s. 16
2.4 Energy consumption in metering intervals in rs. 16

4.1 The experiment results for the MILP-based methods on the small
instances. Group parameters: nk,m. 47

4.2 The experiment results for the small instances. Group parameters: D. 48
4.3 The experiment results for the small instances. Group parameters:

α1. 49
4.4 The experiment results for the small instances. Group parameters:

α2. 49
4.5 The experiment results for the small instances. Group parameters:

nk,m. 50
4.6 The experiment results for the small instances. Overall median of

the worst-to-best ratio. 50
4.7 The experiment results for the large instances. Group parameters: D. 51
4.8 The experiment results for the large instances. Group parameters: α1. 51
4.9 The experiment results for the large instances. Group parameters: α2. 52
4.10 The experiment results for the large instances. Group parameters:

nk,m. 52

5.1 The experiment results. Group parameters: D. 77
5.2 The experiment results. Group parameters: α1. 77
5.3 The experiment results. Group parameters: α2. 77
5.4 The experiment results. Group parameters: n. 78

xvii

xviii LIST OF TABLES

List of Algorithms

1 The general local search algorithm with an adaptive selection of the
neighborhood generator. 23

2 The construction of start times s from overlap variables d, which
represent a feasible solution to the implicit MILP model. 39

3 Iterative implicit MILP model. 41
4 The non-robust scheduling operator for problem PDm|πk, Emax

i |Cmax. 42
5 Computation of the earliest feasible non-robust start time. 42
6 Constructive heuristic for finding the initial incumbent solution for

problem PDm|Emax
i |Cmax. 44

7 Earliest robust baseline start time of J1,π1(¯̀) for fixed permutation π,
näıve version. 63

8 Earliest robust baseline start time of J1,π1(¯̀) for fixed permutation π,
optimized version. 68

9 Constructive heuristic for finding the initial incumbent solution for
problem 1|Emax

i , δmax
k,j = δmax|Cmax. 75

xix

xx LIST OF ALGORITHMS

List of Acronyms
BAB Branch-and-Bound . 20

COP Constraint Optimization Problem . 21

CP Constraint Programming . 11

CSP Constraint Satisfaction Problem . 21

ILP Integer Linear Programming . 11

LBBD Logic-based Benders decomposition . 15

LP Linear Programming. .19

MILP Mixed Integer Linear Programming . 20

RTP Real-Time Pricing . 4

SOS Special-Ordered Set . 20

TOU Time-of-Use . 4

1

2 LIST OF ALGORITHMS

1
Chapter

Introduction

For successful integration of an advanced planning and scheduling system into energy-
demanding manufacturing, it is no longer sufficient to consider only traditional
aspects such as schedule makespan and deadlines. To provide efficient, practical,
and realizable schedules, the machines’ energy consumption has to be taken into
account [41]. Although integration of the energy-awareness into the manufacturing
scheduling is getting more and more attention [8, 20], there is still a gap between
industrial needs and academic research [56].

This thesis focuses on one such energy-related aspect called peak energy demand.
Usually, the manufacturing companies have a contract with an electric utility speci-
fying a maximum energy limit that the companies may consume within periodically
repeating intervals. Violation of this maximum limit leads to significant penalty
fees; thus, the scheduling system must consider such constraints to provide feasible
schedules. Unfortunately, even if the scheduling system provides schedules that
satisfy the maximum energy consumption limits, the disturbances in the production
(such as machine breakdowns or unpredictable preparation time) may lead to their
violations. Therefore, the robustness of the schedules against such disturbances is
necessary for their practical applicability.

The examples, which motivated this research, are two manufacturing companies:
the first one produces tempered glass, and the second one is an automotive company
manufacturing gearboxes. The production process in both companies is similar;
that is, a material is heated to a high temperature in one of the many furnaces to
obtain the desired physical properties. The heating is highly energy demanding; the
furnaces consume dozens of kilowatts to keep their inner temperature at the operating
level. Therefore, if multiple furnaces start heating the material simultaneously,
the contracted limit is violated, and the companies pay the penalty fee. Moreover,
especially in the glass production, the preparation time’s uncertainty causes delays of
material heating. Such randomness occasionally leads to violation of the maximum
energy consumption limits, even if the energy limits were satisfied in the original
production plan.

This chapter first reviews the components of the electricity bill, which helps
to categorize the aims and contributions of the thesis within the energy-aware
scheduling domain. Then, the considered problem of satisfying the maximum energy
consumption limits in both deterministic and stochastic environments is explained
in more detail. The rest of the chapter is devoted to the related work, thesis
contributions, and its outline.

1.1 A Review of Electricity Bill Components

This section describes how industrial customers are billed for their electric energy
consumption. The aim is to provide a broader context of the current situation
to classify the research of this thesis better. The schema of the electricity bill
components is illustrated in Fig. 1.1. In summary, this thesis focuses on avoiding

3

4 A Review of Electricity Bill Components

the peak energy demand charge for violating the maximum energy consumption
limits within fixed metering intervals.

Electricity bill components

Energy charge

Fixed tariff

Time-of-use tariffs

Real-time pricing

Peak demand charge

Peak power demand

Peak energy demand

Fixed metering intervals

Sliding metering interval

Contracted load deviation

Figure 1.1: The electricity bill components.

The electricity bill has two primary components: energy charge and peak demand
charge. The energy charge is related to the total consumed energy, i.e., the customers
pay for every consumed kWh. The simplest energy contracts assume fixed tariffs,
i.e., the energy price is the same regardless of time. From the electric utility
point of view, it would be the most convenient if all the customers had a flat
energy consumption profile since it is easy to determine the amount of power to be
produced for constant consumption. However, this is not the case in reality, and the
energy consumption varies during the day. Therefore, to reward the customers for
flattening their energy consumption profiles, the electric utilities provide demand
response programs [41]. Common demand response programs are price-based ones
such as Time-of-Use (TOU) tariffs or Real-Time Pricing (RTP). In both programs,
the cost of consumed energy may vary every hour; therefore, the customers are
rewarded for shifting their electricity load to off-peak periods with lower energy
costs. Within TOU response programs, there are few different pre-specified tariffs
(such as on-peak, mid-peak, critical-peak, and off-peak tariffs), whereas in RTP the
hourly energy cost follows the energy market and is subject to its non-deterministic
nature.

The second component of the electricity bill, the peak demand charge, is related
to the peak electricity consumption. The peak demand is charged either from the
peak power demand or peak energy demand. For the peak energy demand, the
computation is usually based on the energy consumption over a fixed or sliding
metering intervals with 15 to 60 minutes duration [66], and the demand is charged
for every kWh. For example, in the Czech Republic, the industrial customers are
obliged to have a contracted maximum energy consumption limit with the electric
utility. If the customer’s demand is greater than the contracted limit in any metering
interval, the customer pays a penalty fee, which is given by law [67].

For large-scale industrial and energy-intensive customers such as steel plants [51,
25], the electricity bill contains another component called load deviation penalty,
reflecting the deviation from the contracted energy consumption in every hour of a
day. Both over-consumption and under-consumption of the energy are penalized,

Introduction 5

although small deviations from the contracted consumption are usually tolerated.

1.2 Scheduling with Maximum Energy Consump-
tion Limits

This section explains the problem of scheduling with the maximum energy con-
sumption limits in more detail. First, the scheduling problem in a deterministic
environment is introduced. After that, we discuss the necessity to consider the
robustness of the schedules w.r.t. the disturbances in the production.

When measuring the peak energy demand, the time interval of each day of
the scheduling horizon is divided into metering intervals of a fixed length. The
length of the metering intervals may vary from electric utility to electric utility.
Moreover, in some countries, the length can be given by law, e.g., the length of
the metering intervals is specified to be 15 minutes in the Czech Republic. The
contract between the electric utility and the manufacturing companies requires
that the total energy demand is below a contracted peak energy demand, which is
called a maximum energy consumption limit. A visualization is shown in Fig. 1.2
illustrating the power consumption over a part of the scheduling horizon. The
scheduling horizon is divided into 15-minutes metering intervals in which the total
energy consumption is measured as the integral of the power consumption specified
by function P (t). For example, Fig. 1.2 shows the total energy consumption in the
metering interval starting at 10:45 and ending at 11:00. The contract then enforces
that the total energy consumption in every metering interval is below a contracted
energy consumption limit Emax.

10:15 10:30 10:45 11:00 11:15 11:30

∫ 11:00

10:45

P (t) dt ≤ Emax

time

P (t)

Figure 1.2: An illustration of the maximum energy consumption limit constraining the total
energy consumption in the metering interval 10:45-11:00. P (t) is a function representing
the power consumption over time.

Not every schedule of the production jobs is feasible w.r.t. the contracted
maximum energy consumption limit; consider an example illustrated in Fig. 1.3.
The figure contains two parts: the upper one is a schedule of four production jobs
on a single machine and the bottom one represents the total energy consumption
in every metering interval Ii. The machine consumes power while processing a
job, which may vary from job to job. The energy consumption of a machine while
processing a job in a specific metering interval is represented by the height of
the corresponding box in the bottom part of the figure. The figure reveals that

6 Scheduling with Maximum Energy Consumption Limits

although this schedule is optimal w.r.t. the makespan, the total energy consumption
in the first metering interval I1 is larger than the maximum energy consumption
limit Emax, denoted by the red dashed line. Using more advanced algorithms, the
scheduling system can provide feasible schedules w.r.t. these limits. One of such
schedules is shown in Fig. 1.4, which has the same makespan as the previous one,
but due to more suitable re-ordering of the jobs, the maximum energy consumption
limit is satisfied in every metering interval.

M1

0 15 30 45

I1 I2 I3

Energy consumption in metering intervals

175

350

60

I4

E
max

J1,1 J1,2 J1,3 J1,4

J1,1

J1,2

J1,3

J1,4

Figure 1.3: A schedule with an optimal makespan, which violates the maximum energy
consumption limit in metering interval I1.

M1

0 15 30 45

I1 I2 I3

Energy consumption in metering intervals

175

350

60

I4

E
max

J1,4 J1,1 J1,2 J1,3

J1,4

J1,1

J1,2

J1,3

Figure 1.4: A schedule with an optimal makespan, which satifies the maximum energy
consumption limit in every metering interval of the scheduling horizon.

However, in reality, unexpected events (e.g., inexperienced seasonal workers or
delays in the preceding manufacturing stages) may delay the jobs’ start times. We
call the delayed start time a realized start time, whereas the initial non-delayed start
time is a baseline start time. The issue is that if the energy-demanding jobs are
scheduled close to each other in the baseline schedule, delaying a job may increase
the energy consumption in some metering interval above the energy limit. For

Introduction 7

example, in the schedule shown in Fig. 1.5 the start of job J1,1 is delayed by 6
minutes. In such a situation, the energy-demanding jobs J1,1, J1,3 are processed
within the same metering interval; thus, the maximum energy consumption limit is
violated in I2, and the manufacturing company must pay a penalty fee even though
the baseline schedule (see Fig. 1.4) is feasible.

J1,3

M1

0 15 30 45

I1 I2 I3

Energy consumption in metering intervals

175

350

60

I4

E
max

J1,4 J1,1 J1,2 J1,3

J1,4

J1,1

J1,2

6

Figure 1.5: Delaying job J1,1 by 6 minutes leads to the violation of the maximum energy
consumption limit in metering interval I2, even if the baseline schedule (shown in Fig. 1.4)
satisfies the energy limits.

One possible approach to tackle these uncertainties is to use a peak energy
demand controller, which monitors the total energy consumption. When the total
energy consumption approaches the energy limit, the machines are turned off until
the start of the next metering interval. However, such a solution may cause long
downtimes in manufacturing if the jobs’ order is not chosen reasonably beforehand.
A more viable approach is to employ pro-active scheduling, i.e., the baseline schedule
is designed to avoid the hazardous situations if the delays of the jobs are within a pre-
specified tolerance. For example, the baseline schedule shown in Fig. 1.6 incorporates
both better ordering of the jobs and forced idle times to ensure robustness against
disturbances.

1.3 Related Work

1.3.1 Energy-aware Scheduling

The integration of automated scheduling and energy-awareness in the manufacturing
is an ongoing and active field of research [20]. One of the critical properties in
which the existing works differ is how they incorporate the energy-awareness into a
production schedule. The first research direction considers the energy consumption
to be a part of the objective function [39, 62, 25, 19, 11, 12, 69, 70, 71, 22, 1, 2, 13,
59, 52]. For example, the authors of [1] optimize both the energy and peak demand
charges simultaneously in a parallel machine environment. Other works, such as [25],
consider a more complex objective that combines electricity bill components with

8 Related Work

M1

0 15 30 45

I1 I2 I3

Energy consumption in metering intervals

175

350

60

I4

E
max

J1,4 J1,1 J1,2 J1,3

J1,4

J1,1

J1,2

J1,3

J1,3

Figure 1.6: A baseline schedule that is robust against the delays of the jobs.

traditional scheduling objectives, e.g., the weighted start time of the tasks. The
advantage of this multi-objective approach is that if each objective part can be
expressed as a monetary cost, the found schedules’ quality is easily interpretable by
the end-user of such a scheduling system. However, since the underlying scheduling
problems without considering the energy-awareness are already hard to solve, it is
even more complicated to design efficient methods that exploit the combinatorial
structure of such multi-objective problems.

On the other hand, the second research direction focuses on optimizing the tradi-
tional scheduling objectives, such as makespan or total tardiness, while formulating
the energy-related constraints as hard, e.g., the contracted peak demand cannot be
violated. Such an approach is suitable for industrial customers with fixed electricity
tariffs. For example, [19] tackles the flow shop scheduling problem, where the goal is
to design schedules that minimize the makespan and do not violate the contracted
peak power demand. By considering a less complicated objective function, the
authors exploited the structure of the problem and discovered valid inequalities that
strengthened the mixed-integer linear programming models. The main disadvantage
of these approaches is that they cannot tackle the multi-objective problems directly.
However, by incorporating them in a meta-optimization algorithm that searches
the optimal energy-related parameters, such as peak power limit, these approaches
can indirectly handle even the multi-objective problems.

Few works are dealing with the scheduling and the demand charge. Since
different electric utilities may have their conditions regarding the demand charge
billing, the studied scheduling problems can differ significantly. However, two main
streams can be identified: peak power demand [10, 18, 50, 61, 40, 68, 15] and
peak energy demand [1]. In the case of peak power demand, the utilities charge
the customers by their peak power consumption in every time unit. On the other
hand, in the case of peak energy demand, the customers are billed according to
the measured energy consumption in either fixed or sliding metering intervals of a
given length (e.g., 15 minutes). Sometimes, the electric utilities limit the maximum
peak energy demand by a contract.

In [1], the authors optimize both the energy charge and peak energy demand

Introduction 9

measured in a sliding metering interval. The authors proposed a mixed-integer
linear programming model and studied how the model parameters influence the
resulting schedules. The proposed model’s disadvantage is that it allows only one
job to be processed by a machine in a metering interval. In the case of longer
metering intervals and shorter jobs, this model may lead to significant idling of the
machines.

Minimum and maximum energy consumption limits are considered in the electri-
cal load commitment problem [51, 26, 27, 25, 21, 53] (also referred to as load tracking
or load deviation), where the industrial customers must follow the pre-agreed energy
consumption in every hour. Although over-consumption and under-consumption
of the energy are penalized, a penalty-free region between the limits is assumed.
The works mentioned above consider these limits to be soft, and they minimize
the absolute difference between the actual and the contracted energy consumption
measured in every metering interval. In contrast to the works mentioned earlier,
this thesis assumes that these consumption limits are hard constraints.

There are some similarities between the energy consumption limit and limited-
capacity buffers [3], as both can constraint the throughput. However, the key
difference is that the energy consumption limit modeling requires computing the
energy consumption over all the machines within each time interval. On the other
hand, a buffer affects only the adjacent machines. Assume the following example,
where the buffers cannot model the energy consumption limit. Consider a serial
production line where all the machines have the same processing rate, and there
are no machine failures. In such a case, the buffers are not used at all, i.e., a job
completed on a machine is immediately processed on the succeeding one. Suppose
that the energy consumption of the machines is high during the processing state.
Thus, the sum of the energy consumption over all the machines within some time
period can be larger than the limit, even if the buffers are empty all the time Hence,
buffers alone do not provide information on whether the energy consumption limit
is violated or not.

The problem considering the energy consumption limit is a special case of
resource-constrained project scheduling with partially renewable resources [4] denoted
as RCPSP/π. The partially renewable resources allow the capacities of the resources
to be renewed in the specified intervals; thus, they are a generalization of renewable
and non-renewable resources. A new partially renewable resource is created for every
metering interval to transform the scheduling problem with the maximum energy
consumption limit to RCPSP/π. Each resource’s available capacity equals the
maximum energy limit, and the set of the associated periods for this new resource is
the set of all time instants within the corresponding metering interval. The heuristic
algorithm for RCPSP/π presented in [4] achieves good results. However, since it is
a time-based algorithm, its computational complexity depends on the scheduling
horizon’s length, and thus it is only suitable for instances with short scheduling
horizons.

1.3.2 Robust Scheduling

Robust scheduling is a well-studied problem in the domain of resource-constrained
project scheduling [29, 37]. The robustness is obtained either by a robust resource

10 Contributions

allocation or inserting time buffers between activities. In the resource-constrained
project scheduling domain, the closest problem to ours is presented in [57]. This
work aims to find a partial-ordering of the activities so that if the activities are
arbitrarily delayed (w.r.t. the ordering), the total demand of the resources in every
time instant is below the respective capacities. The difference from the problem
considered in this thesis is that considered problem limits the integral of the jobs’
demands.

A particular interest for us is the modeling using uncertainty scenarios [16,
14], which are used when the probability distribution of the uncertain events is
either not known or is uniform. An uncertainty scenario is one realization of the
uncertain events, e.g., a time occurrence of a machine breakdown. In general, the
scheduling with uncertainty scenarios aims to mitigate the worst-case execution
over all uncertainty scenarios.

To the best of our knowledge, only a few works deal with robust scheduling
and energy consumption limits. One such work is [49], where the goal is to reduce
the peak energy consumption of flow shop schedules under uncertain processing
times of the jobs. The method proposed by the authors inserts idle times into the
schedule to reduce the expected peak energy demand. The time points for idle
times are computed by evaluating all the possible schedules originating from the set
of possible scenarios and. Therefore, the running time of the algorithm can increase
significantly with the size of this set.

1.4 Contributions

This thesis studies the scheduling problem with the maximum energy consumption
limits in both deterministic and stochastic environments. The scheduling problems
are investigated from theoretical and practical standpoints. The theoretical study
is vital for designing the algorithms, i.e., it clarifies whether some sub-problems
can be solved efficiently. For example, if a global optimization method, such as a
genetic algorithm, is used to tackle a scheduling problem, an individual’s encoding
must be decided. One possible encoding is to represent the individual solution using
its start times directly; however, such encoding might not be efficient as it does not
guarantee active schedules. Instead, a more natural encoding is to consider a fixed
ordering of the jobs on which the mutation and crossover are applied. To obtain the
actual schedule from the fixed ordering, a scheduling operator is used; that is, the
scheduling operator solves the sub-problem of the original scheduling problem where
the ordering of the jobs is assumed to be fixed. If such a sub-problem is proven to
be efficiently solvable, then the genetic algorithm with an exact scheduling operator
may quickly find high-quality solutions. On the other hand, by proving that the
sub-problem is hard justifies using a heuristic scheduling operator.

The key contributions are

• deterministic environment:

1. A complexity study of different variants of the scheduling problem with
the energy consumption limits. The studied variants consider unit
processing times, fixed ordering of the jobs on the machines, constant

Introduction 11

number of the metering intervals, and a no-crossing assumption, i.e., the
jobs may not cross the interval boundaries.

2. A polynomial algorithm finding the shortest schedule satisfying the
maximum energy consumption limits for a fixed permutation of the jobs
on a fixed number of machines with the assumption that the jobs cannot
cross multiple metering intervals.

3. Efficient Constraint Programming (CP) model for the multi-machine
scheduling under maximum energy consumption limits. We also improve
the existing Integer Linear Programming (ILP) model from the literature
for the same problem by identifying a property that enables to reduce
the number of constraints in this model.

4. An adaptive local search algorithm with a heuristic scheduling operator
for the large instances.

• stochastic environment:

1. A pseudo-polynomial algorithm for a single machine scheduling problem
with a fixed permutation of the jobs, which finds an optimal schedule
w.r.t. any regular objective function and which does not violate the energy
consumption limits even if the jobs are delayed. A regular objective is
an objective that is non-decreasing in the completion times of the jobs.
Many common objectives, such as makespan, total tardiness, and total
completion times are regular; therefore, the algorithm has a wide range
of applications.

2. The algorithm mentioned above for the fixed permutation of the jobs is
exploited in exact methods (Branch-and-Bound and Logic-based Benders
Decomposition) for finding the optimal and robust permutation of the
jobs. Moreover, the same algorithm is also utilized as a scheduling
operator in an adaptive local search heuristic for tackling larger instances.

1.5 Outline

The following Chapter 2 formally states the scheduling problem considered in this
thesis. The problem statement is general enough to encapsulate different variants
that are studied in the later chapters. The next Chapter 3 lays the preliminaries for
the thesis. Specifically, the ILP and CP modeling formalism are introduced, which
are then used throughout the work. Moreover, Chapter 3 describes the general
adaptive local search framework that is used for designing heuristic algorithms.

The main parts of the thesis are Chapters 4 and 5. The former Chapter 4
investigates different variants of the scheduling problem with the energy consumption
limits in the deterministic environment, i.e., the jobs are not subject to disturbances
in the manufacturing. The results of this chapter were described in [44].

The design of the algorithms that provide robust schedules against start times
disturbances is studied in the latter Chapter 5. The content of this chapter was
published in [42] (albeit with different objective function under study).

The last Chapter 6 concludes the work, discusses the fullfilment of the goals and
possible future work.

12 Outline

2
Chapter

General Problem Statement

This section provides the formal statement of the scheduling problem with the
energy consumption limit. The problem statement is general as much as possible so
that its special variants can be investigated in the later chapters.

Let M = {M1,M2, . . . ,Mm} be a set of machines. Each machine Mk ∈ M is
dedicated to a set of jobs JMk = {Jk,1, Jk,2, . . . , Jk,nk}, on which the jobs must be
processed without preemption. The set of all jobs is defined as J =

⋃
Mk∈M J

M
k ,

and its cardinality will be denoted as n. It is assumed that m ≤ n.
Each job Jk,j ∈ J is defined by its

• processing time pk,j ∈ Z>0: time required to process the job by the dedicated
machine.

• power consumption Pk,j ∈ Z≥0: the power consumption of the dedicated
machine when processing the job, i.e., it is the constant rate at which the
energy is consumed by the machine at every time instant. The total consumed
energy by the dedicated machine when processing job Jk,j is pk,j · Pk,j .
In general, a machine’s power consumption profile can be either non-linear
or may be split into intervals with approximately constant consumption [60,
65]. In this thesis, it is assumed that the machines consume constant power
while processing a job; the constant power represents either the average power
(if the power consumption profile is non-linear) or the actual power in the
processing state (in case of the constant-consumption intervals).

The jobs have to be scheduled within scheduling horizon H ∈ Z>0, which is
divided into a set of metering intervals I = {I1, I2, . . . , IH

D
} with equal length

D ∈ Z>0 (it is assumed that H is a multiple of D). Each metering interval Ii ∈ I
starts at time τ start

i = (i − 1) · D and ends at time τ end
i = i · D. Moreover, a

maximum energy consumption limit Emax
i is defined to represent the upper bound

on the jobs’ total energy consumption in each metering interval Ii ∈ I.
Let sk,j ∈ Z≥0 denote a baseline start time of job Jk,j ∈ J and s = (sk,j)Jk,j∈J

to be baseline start times. Since unexpected events may happen during the execution
of a schedule, the actual start times of the jobs may be delayed from their baseline
start times; the actually carried out schedule is called a realized schedule. To
formally define the realized schedules, the notion of scenarios and the maximum
deviation has to be introduced. Let δmax ∈ Z≥0 be a maximum deviation of any
job. Then

∆ = {(δk,j)Jk,j∈J | δk,j ∈ [0 .. δmax]} (2.1)

is a set of all scenarios, where δk,j represents a deviation of job Jk,j ∈ J ; notation
[a .. b] ⊂ Z is a shorthand for a set of integers {a, a+ 1, . . . , b}. An element δ(q) ∈ ∆
is called deviation scenario that corresponds to some realized schedule (this claim
is proven later in the thesis). By convention, deviation situation δ(1) corresponds to
zero deviation, i.e., δ(1) = 0. The maximum deviation is a user parameter, which
can be set according to the required range of the covered realized schedules.

13

14 General Problem Statement

Let πk : [1 .. nk]→ [1 .. nk] be a bijective function representing a permutation of
the jobs on machine Mk ∈M, i.e., function πk maps position ` in the permutation
to job index j. We will say that (πk)Mk∈M are the corresponding permutations of
s if the ordering of the jobs in s on every machine Mk ∈M is the same as in πk.

Given baseline schedule s, its corresponding permutations (πk)Mk∈M, and
arbitrary scenario δ ∈ ∆, a realized schedule can be derived using recursive function
RS as

RS (s, δ)k,πk(`) =

{
sk,πk(1) + δk,πk(1) ` = 1

max{sk,πk(`),RS (s, δ)k,πk(`−1) + pk,πk(`−1)}+ δk,πk(`) otherwise.

(2.2)

Notice that for δ(1) ∈ ∆, the baseline start times are the same as the realized start
times, i.e., RS (s, δ(1))k,j = sk,j ,∀Jk,j ∈ J . Moreover, the definition of the realized
schedules implies δk,πk(`) ≤ RS (s, δ)k,πk(`) − sk,πk(`). To make the distinction clear,
the value of RS (s, δ)k,πk(`) − sk,πk(`) is called a delay. Informally, deviation δk,j of
job Jk,j is independent of the deviations of the other jobs, whereas the delay is not.

To ensure that no job completes outside of the horizon, even if all jobs are
delayed, a maximum start time for job Jk,j ∈ J is defined as

smax
k,j = H − (nk · δmax + pk,j) , (2.3)

where value nk · δmax represents the worst case delay of any job on machine Mk in
any realized schedule.

Baseline start times s are feasible if:

1. The baseline start time of every job Jk,j ∈ J is at most smax
k,j .

2. The jobs scheduled on the same machine are not overlapping in time.

3. The energy constraints are not violated in any realized schedule, i.e.,∑
Jk,j∈J

Overlap(RS (s, δ)k,j , pk,j , i) · Pk,j ≤ Emax
i , ∀δ ∈ ∆; ∀Ii ∈ I, (2.4)

where Overlap(RS (s, δ)k,j , pk,j , i) represents the overlap length of job
Jk,j ∈ J with metering interval Ii if the job starts at time RS (s, δ)k,j .

If δmax ≥ 1, then the feasible baseline start times are called robust.
The goal of this scheduling problem is to find feasible baseline start times

while optimizing some scheduling objective function γ. This work focuses on the
minimization of makespan of the baseline schedule

Cmax = max
Jk,j∈J

sk,j + pk,j . (2.5)

This scheduling problem is denoted in Graham’s scheduling notation [23] as
PDm|Emax

i , δmax
k,j = δmax|γ, where PDm stands for the parallel dedicated ma-

chines [33], Emax
i corresponds to the maximum energy consumption limits in the

metering intervals, and δmax
k,j = δmax represents the maximum deviation of the jobs.

General Problem Statement 15

The rationale for assuming integer start times In practical applications,
assuming integer start times is not restrictive since the granularity of the scheduling
start times can always be scaled to the desired precision (e.g., minutes, seconds).
Moreover, some of the state-of-the-art solvers that are used in this thesis (such as
IBM CP Optimizer), can handle only integer variables.

The rationale for studying parallel dedicated machines problems The first
reason is technological, i.e., the machines may not be identical (tempering furnaces,
melting furnaces, drilling machines, etc.). The jobs represent different operations
within the production process, which can be processed only by a specific machine
type. The second reason is exploiting of the algorithms within decomposition
methods, such as Logic-based Benders decomposition (LBBD), that can tackle the
parallel machines environment [48, 64]. Here, the scheduling problem is usually
decomposed into two phases that are performed iteratively: (i) a master problem,
which finds an assignment of the jobs to the machines, and (ii) a subproblem, which
sequences the jobs according to the fixed jobs’ assignment obtained by solving the
master problem. If the fixed jobs’ assignment is not feasible in the subproblem,
a cutting constraint is generated for the master problem to forbid the infeasible
assignment. In such a case, the subproblem corresponds to the dedicated parallel
machines problem. Therefore, efficient algorithms for the scheduling problem with
the dedicated parallel machines are stepping stones towards solving the identical
parallel machines problem using decomposition methods. Finally, in comparison
to the single machine problems, the study of the multi-machine environment is
more practically relevant since it provides a holistic perspective on the energy
consumption of a factory [28].

2.1 Example

The following example illustrates the studied scheduling problem. The example
considers two machines M = {M1,M2} with jobs set JM1 = {J1,1, J1,2, J1,3, J1,4},
and JM2 = {J2,1, J2,2}, respectively. Let H = 30, D = 5, I = {I1, I2, I3, I4, I5, I6},
and Emax

i = Emax = 60;∀Ii ∈ I. The parameters of the jobs are provided in
Table 2.1. A feasible baseline schedule s with one possible realized schedule rs
are given in Table 2.2; the visualization of these schedules is shown in Fig. 2.1
and Fig. 2.2, respectively. The figures show both the schedules and the energy
consumption in the metering intervals. The energy consumption is represented
as a barplot, where the height of each colored box is the energy consumption of
the corresponding job in a metering interval. The energy limits are represented by
horizontal dashed lines.

16 Example

Table 2.1: Parameters of the jobs in the example.

Job pk,j Pk,j smax
k,j

J1,1 4 12 18
J1,2 2 20 20
J1,3 2 12 20
J1,4 2 6 20
J2,1 3 14 23
J2,2 3 8 23

Table 2.2: Baseline start times s of one possible feasible solution and the corresponding
realized start times rs for δ.

Job sk,j δk,j rsk,j = RS (s, δ)

J1,1 0 2 2
J1,2 10 2 12
J1,3 15 0 17
J1,4 12 1 15
J2,1 5 1 6
J2,2 14 0 14

The energy consumption in the metering intervals of the baseline and the realized
schedule is computed in Table 2.3 and Table 2.4, respectively. The tables show that
both schedules do not violate the energy consumption limits.

Table 2.3: Energy consumption in metering intervals in s.

Metering interval
∑
Jk,j∈J Overlap(sk,j , pk,j , i) · Pk,j

I1 4 · 12 = 48
I2 3 · 14 = 42
I3 2 · 20 + 2 · 6 + 1 · 8 = 60
I4 2 · 12 + 2 · 8 = 40
I5 0
I6 0

Table 2.4: Energy consumption in metering intervals in rs.

Metering interval
∑
Jk,j∈J Overlap(rsk,j , pk,j , i) · Pk,j

I1 3 · 12 = 36
I2 1 · 12 + 3 · 14 = 54
I3 2 · 20 + 1 · 8 = 48
I4 2 · 6 + 2 · 12 + 2 · 8 = 52
I5 0
I6 0

General Problem Statement 17

M1

M2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

J1,1 J1,2 J1,3

J2,1

I1 I2 I3

Energy consumption in metering intervals

10

20

30

40

50

60

J2,2

16 17 18 19 20

I4

J1,4

E
max

J1,1 J2,1 J1,2

J1,3

J1,4

J2,2

J2,2

Figure 2.1: Baseline schedule s and the corresponding energy consumption in each metering
interval.

M1

M2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

J1,1 J1,2 J1,3

J2,1

I1 I2 I3

Energy consumption in metering intervals

10

20

30

40

50

60

J2,2

16 17 18 19 20

I4

J1,4

E
max

J1,1

J2,1

J1,2

J1,3

J1,4

J2,2J2,2

2

1

2 1

J1,1

Figure 2.2: Realized schedule rs and the corresponding energy consumption in each
metering interval.

2.2 Notation of the Scheduling Problem Variants

Since this thesis investigates different variants of the scheduling problem stated
above, the variants need to be categorized. The following notation is used to
describe each problem variant:

• Emax
i = Emax: Denotes a group of scheduling problems where the maximum

energy consumption limit in every metering interval equals Emax.

• pk,j = 1: The processing time of all the jobs is 1.

18 Notation of the Scheduling Problem Variants

• |I| = 2: The number of metering intervals is 2.

• πk: Order of the jobs on each machine Mk ∈ M is fixed, and it is given by
function πk, which maps position ` in the fixed order to the job index j. To
ease the notation, it is assumed that the jobs’ indices are sorted according to
πk, i.e., ∀Mk ∈M;∀`, `′ ∈ [1 .. nk] : ` < `′ =⇒ πk(`) < πk(`′).

• no-crossing: Any job in a feasible schedule s cannot cross the boundary of
two metering intervals, i.e.,

Overlap(sk,j , pk,j , i) = 0 ∨ Overlap(sk,j , pk,j , i) = pk,j , ∀Jk,j ∈ J ;∀Ii ∈ I.
(2.6)

Notice that the no-crossing requirement implies that the processing time of
each job is at most D.

• γ = f : Represents a regular objective, i.e., an objective function that is
non-decreasing in the completion times of the jobs [55].

• γ = ∅: Represents the decision variant of a scheduling problem.

3
Chapter

Preliminaries

Before exploring the structure of the scheduling problem with the energy consump-
tion limits, foundations need to be laid out. The first one is two modeling formalisms
used thorough the whole thesis for formulating different scheduling problems. The
second one is an adaptive local search framework which is used to design heuristic
algorithms.

3.1 Modeling Formalisms

When a researcher or a practitioner is faced with the necessity to solve some
optimization problem, there are two possible approaches to choose from. The first
one is to spend some time researching the problem, and based on the obtained
insight, to develop an algorithm that can solve it. The researcher may discover
clever tricks or a combinatorial structure that lead to a very efficient algorithm.
However, developing an algorithm is a long, tedious, and costly process with no
guarantees on the final result.

The second approach is to model the problem in a formalism that is based on
an existing theoretical framework. The modeling formalisms allow the researchers
to describe the problem in a declarative way, which is then solved using some
off-the-shelf solver. Therefore, the researcher can exploit the highly optimized
state-of-the-art commercial solvers that usually find good solutions in a reasonable
time. In many cases, such solutions are even better than what would be found
by a simple algorithm developed by the researcher. However, the disadvantage of
these solvers is that they mostly behave as black-boxes, i.e., different models of the
same problem may yield different performance. Still, creating multiple models and
comparing them usually takes less time than designing a problem-specific algorithm.

This thesis uses Integer Linear Programming and Constraint Programming
modeling formalisms, which are described shortly in the following text.

3.1.1 Integer Linear Programming

ILP is an optimization problem expressed as [34]

max
x∈Zn

cT · x (3.1)

A · x ≤ b , (3.2)

where A ∈ Zm×n, b ∈ Zm, c ∈ Zn. Inequalities (3.2) are called constraints and they
define a set of feasible solutions {x ∈ Zn | A ·x ≤ b}. The task of ILP is to (i) find
an optimal feasible solution x∗ that maximizes objective function cT ·x∗, (ii) decide
that there is no feasible solution, i.e., {x ∈ Zn | A · x ≤ b} = ∅, or (iii) determine
that the program is unbounded, i.e., sup {cT · x | x ∈ Zn,A · x ≤ b} =∞.

ILP is a generalization of Linear Programming (LP) problem that assumes
x ∈ Qn. This seemingly small change has a huge impact on the computational

19

20 Modeling Formalisms

complexities of these problems: whereas LP is known to be solvable in polynomial
time, ILP is NP-hard. When only a subset of x ∈ Qn are required to be integers,
the problem is called Mixed Integer Linear Programming (MILP). Unfortunately,
MILP is still an NP-hard problem.

A common way to solve general MILP problems is a Branch-and-Bound (BAB)
algorithm, which is essentially a guided enumeration method that uses a relaxation
of the original problem (usually LP relaxation). Commercial state-of-the-art MILP
solvers, such as Gurobi [24] and IBM CPLEX [31], implement BAB algorithm while
adding additional improvements (e.g., model presolving, primal heuristics, cutting
planes, parallelism, etc.) to increase the algorithm’s efficiency.

To ease the formulation of MILP problems, the solvers provide various user-
friendly modeling functions. Moreover, in some cases using such functions also
allows us to avoid issues with numerical instability. In this thesis, the following
modeling constructs are used.

1. Special-Ordered Set (SOS) constraint of type 2: Given an ordered list of
variables (xi1 , xi2 , . . . , xiq), SOS constraint of type 2 ensures that at most two
consecutive variables in the list can have non-zero values. This constraint will
be written as

SOS2(xi1 , xi2 , . . . , xiq) . (3.3)

2. Indicator constraint: Quite often, we want some constraint aTk · x ≤ bk to
hold if binary variable xi takes specific value v. A common way how to model
such a requirement is using big M method

aTk · x ≤ bk +M(v − xi) , (3.4)

where M is a sufficiently large number. The disadvantages of the big M
method are its poor linear relaxation and possible numerical instability caused
by large M . Alternatively, modern solvers provide indicator constraints

xi = v =⇒ aTk · x ≤ bk (3.5)

that are more numerically stable.

3. max constraint: This constraint sets variable xr to be the maximum value of
variables {xi1 , xi2 , . . . , xiq}, i.e.,

xr = max{xi1 , xi2 , . . . , xiq} . (3.6)

To simplify the notation of the models in this thesis, we generalize the notation
of the max constraint to arbitrary linear expressions instead of just variables.

An important note is that all of the modeling constructs mentioned above can
be expressed equivalently as linear constraints (3.2).

3.1.1.1 Modeling of Scheduling Problems in MILP

Scheduling problems are commonly modeled using one of the following three ap-
proaches [35]

Preliminaries 21

1. disjunctive (or relative order) modeling: the start times of the jobs are modeled
as integer variables. The non-overlap between each pair of jobs Jk,j , Jk,j′ is
enforced by a constraint requiring that one job completes before the other
starts. The non-overlap constraint can be formulated using either indicator
constraints or big M method, e.g.,

sk,j + pk,j ≤ sk,j′ +M · x (3.7)

sk,j′ + pk,j′ ≤ sk,j +M · (1− x) , (3.8)

where x is a binary variable and M is a sufficiently large number.

2. time-indexed modeling: the scheduling horizon is divided into atomic time
units of an equal length. For each job Jk,j and each time unit t, a new binary
variable is created denoting whether job Jk,j starts at time t. Obviously,
the performance of the time-indexed models depends on the length of the
scheduling horizon, which may exclude them from being used in practice.

3. rank-based modeling: here, the job ordering πk is modeled explicitly. A new
binary variable is created for each Jk,j and position ` representing whether
the job is in `-th position in the ordering. Moreover, the start times variables
are related to the positions instead of jobs, allowing us to easily model the
non-overlap constraint by requiring that job on position (`− 1)-th position
completes before job on `-th position starts.

3.1.2 Constraint Programming

CP [58] deals with solving combinatorial problems that are described declaratively
using constraints. A constraint is a relation on a set of variables, and the goal is
to assign values to the variables so that all the constraints are satisfied; this is the
so-called Constraint Satisfaction Problem (CSP).

Formally, a CSP is given as a triplet (X ,D, C), where X = {x1, x2, . . . , xn} is
a set of variables, D = {D1, D2, . . . , Dn} is a set of variable domains, and C is
the set of constraints. Each constraint Cj ∈ C is represented by a pair (Rj , Sj),
where Rj is a relation on the corresponding domains of the variables in scope Sj .
A solution to the given (X ,D, C) is a complete assignment represented by a tuple
A = (a1, a2, . . . , an), where ai ∈ Di is an assignment of variable xi to some value of
its corresponding domain Di. Complete assignment A is feasible if for every Cj ∈ C
the projection of A onto scope Sj is in Rj . Similarly as in MILP, the task of CSP
is to find a feasible complete assignment or to decide that no such assignment exists.
CSP can be extended to the combinatorial optimization problems, which leads to
Constraint Optimization Problem (COP); both of them are branches of the CP
field.

To find a feasible optimal assignment, the general-purpose CSP solvers employ
various tricks such as inference techniques that reduce the variable domains according
to the incumbent partial assignment, which would lead to an infeasible solution.
Another trick is the use of global constraints for which the solvers implement
specialized algorithms. For example, a constraint requiring that a set of variables
are assigned with pair-wise different values can be satisfied by finding a maximal
matching in a graph.

22 General Adaptive Local Search Heuristic

The advantage of CP over MILP is in easier modeling. For modeling and solving
CP models in this thesis, state-of-the-art IBM CP Optimizer [36] is used that
provides specific constructs for scheduling problems. The following text shortly
introduces some of these scheduling constructs.

The jobs in IBM CP Optimizer are usually modeled using interval variables.
The interval variables represent time intervals during which something is being
done. Each interval variable has a start time, an end time, and a length, all being
variables by themselves. If a total ordering of a set of interval variables is required
for modeling purposes (such as obtaining a preceding interval variable to another
one), a sequence variable can be used.

The most common requirement in scheduling problems is that the jobs must
not overlap each other for which IBM CP Optimizer provides global constraint
NoOverlap. Formally, given some set of interval variables {xi1 , xi2 , . . . , xiq}, the
non-overlap constraint is denoted as

NoOverlap(xi1 , xi2 , . . . , xiq) . (3.9)

Alternatively, the non-overlap constraint also accepts a sequence variable. In this
case, the non-overlap is forced on the set of interval variables associated with the
sequence variable.

The last construct from IBM CP Optimizer is function Overlap, which computes
the overlap length between given interval variable xi and fixed time interval having
start s and end e, i.e.,

Overlap(xi, s, e) . (3.10)

3.2 General Adaptive Local Search Heuristic

In general, a local search is a heuristic approach for solving optimization problems.
In each iteration, a local search generates a set of neighbor solutions by perturbing
the current incumbent solution. If the best neighbor (w.r.t. the optimized objective
function) is not worse than the incumbent solution, it becomes the incumbent
solution for the next iteration. The whole procedure is repeated until the specified
time-limit is not reached.

In the general local search framework used for solving scheduling problems in
this thesis, each solution is represented by an all-jobs ordering denoted as λ, which
is a permutation of all the jobs from J . The start times for the given all-jobs
ordering λ are obtained from a scheduling operator algorithm, which is specific to
each optimization problem. Multiple neighborhood generators are implemented,
and in each iteration, the local search adaptively selects the one which has the
highest potential to generate good solutions.

The above-mentioned local search procedure is shown in Algorithm 1. The local
search starts from a solution provided by an initial heuristic. The all-jobs ordering
of the incumbent solution is denoted as λbest, and its corresponding start times as
sbest. Finally, a generated neighbor is denoted as λnh.

The rest of this chapter explaons how the neighborhood is generated.

Preliminaries 23

1 Function AdaptiveLocalSearch:

2 λbest ← FindInitialOrder();

3 sbest ← SchedulingOperator(λbest);
4 while time-limit not reached do
5 nhgen← SelectNeighborhoodGenerator() ;

6 foreach (λnh, snh) ∈ GenerateNeighborhood(nhgen, λbest, sbest) do
7 /* Diversification of the search: allow solutions with the

same makespan to replace the incumbent. */

8 if Makespan(snh) ≤ Makespan(sbest) then

9 λbest ← λnh;

10 sbest ← snh;

11 return sbest;

Algorithm 1: The general local search algorithm with an adaptive selection
of the neighborhood generator.

3.2.1 Adaptive Generation of the Solution Neighborhood

To diversify the search, the following six neighborhood generators were implemented:

• NHGEN-SWAP: swapping the positions of two random jobs;

• NHGEN-INS: inserting a random job into another random position;

• NHGEN-MKSP-SWAP: taking a random job completing at the makespan
and swapping its position with a random job;

• NHGEN-MKSP-INS: taking a random job completing at the makespan and
inserting it into another random position;

• NHGEN-BLOCK-SWAP: selecting a random block of consecutive jobs in λ
and swapping it with another randomly selected block of the same length;

• NHGEN-BLOCK-INS: selecting a random block of consecutive jobs in λ and
inserting it into another random position.

The performance of each generator may vary for different instance classes and
regions of the solution space. To avoid using unpromising generators during the
search, the generator with the highest chance of finding a good solution is selected
in each iteration.

For each generator, two values are recorded: (i) hits, i.e., how many times the
generator produced a solution with better makespan than the current best solution
and (ii) fails, i.e., how many times the generator failed to produce a better solution.
The generator that has the smallest value of fails−hits is selected in each iteration.

24 General Adaptive Local Search Heuristic

4

Chapter

Scheduling with Energy
Consumption Limits in
Deterministic Environments

Enforcing robustness on the production schedules w.r.t. the energy consumption
limits may lead to undesirable deterioration of the objective value. Moreover, in
environments where the responsible workers are highly penalized for causing the
delays, the schedules are implicitly robust. For such cases, it makes sense to study
the scheduling problem introduced in Chapter 2 for δmax = 0, i.e., when the jobs’
start times do not deviate. Therefore, Chapter 4 explores different variants of
the scheduling problem with the energy consumption limits without taking the
robustness into account.

For the purpose of this chapter, the notation laid out in Chapter 2 is simplified.
Since δmax = 0, there is only one realized schedule, and that is the baseline schedule.
Therefore, notation s will be used instead of the function RS . Moreover, we will
simply say “start times” instead of “baseline start times”.

4.1 Problem 1|p1,j = 1, Emax
i = Emax|∅

The fundamental reason why the problem PDm|Emax
i |∅ is hard to solve is the

underlying problem 1|p1,j = 1, Emax
i = Emax|∅, which is NP-complete. This also

implies that restricting the multi-machine problem to a single machine one does
not yield a polynomial algorithm (unless NP equals P).

Lemma 1. Problem 1|Emax
i = Emax|∅ is in NP.

Proof. This can be proven by showing that the start times’ feasibility is verifiable
in polynomial time w.r.t. the length of the input instance. This is easy to see since
checking that the jobs are not overlapping can be done in O(n2) time, and checking
the energy consumption constraints can be performed in O(n · |I|) time.

Theorem 1. Problem 1|p1,j = 1, Emax
i = Emax|∅ is NP-complete.

Proof. Due to Lemma 1, the problem 1|p1,j = 1, Emax
i = Emax|∅ is in NP. It

remains to show that 3-PARTITION, which is NP-complete problem in the strong
sense, reduces to 1|p1,j = 1, Emax

i = Emax|∅.

Problem: 3-PARTITION
Input: Bound B ∈ Z>0 and finite set A of 3·q positive integers such

that B
4 < aj <

B
2 for every aj ∈ A and

∑
aj∈A aj = q ·B.

Question: Can A be partitioned into disjoint sets A1, . . . , Aq, each
having 3 integers and

∑
aj∈Ai aj = B for all i?

25

26 Problem 1|p1,j = 1, |I| = 2, Emax
i = Emax|∅

Given an instance for 3-PARTITION, construct an instance
for 1|p1,j = 1, Emax

i = Emax|∅ as follows. Set M = {M1},
J = JM1 = {J1,1, J1,2, . . . , J1,|A|}, I = {I1, I2, . . . , Iq}, D = 3, H = 3 · q,
Emax = B, and define each job J1,j ∈ J as p1,j = 1, P1,j = aj .

The proof by reduction requires that given a feasible solution of 3-PARTITION,
it must be possible to construct a feasible solution of 1|p1,j = 1, Emax

i = Emax|∅
problem in polynomial time (and vice versa)

1. 3-PARTITION =⇒ 1|p1,j = 1, Emax
i = Emax|∅: From the feasible solution

of 3-PARTITION, construct a schedule in which the jobs corresponding to
the integers of set Ai are scheduled within interval Ii (the ordering of the
jobs in the interval is arbitrary). The jobs do not overlap in any interval
since there are exactly three integers in each set Ai, and the length of each
metering interval equals 3. Finally, for every metering interval Ii holds that
Emax = B =

∑
aj∈Ai aj =

∑
aj∈Ai P1,j , i.e., the energy consumption limit is

not violated in any metering interval. Therefore, the schedule is feasible.

2. 1|p1,j = 1, Emax
i = Emax|∅ =⇒ 3-PARTITION: Construct a partition where

the integers corresponding to the jobs scheduled in interval Ii belong to set
Ai. Due to D = 3 and H = 3 · q = n, any feasible schedule has exactly three
jobs scheduled in every metering interval; thus, every set Ai has exactly three
integers. Since the total energy consumption of all the jobs equals q · Emax,
the total energy consumption in every metering interval of a feasible schedule
must be exactly Emax. Therefore, the sum of integers in any set Ai equals
Emax = B.

4.2 Problem 1|p1,j = 1, |I| = 2, Emax
i = Emax|∅

This section’s result is that the problem 1|p1,j = 1, Emax
i = Emax|∅ remains

NP-complete even for |I| = 2. Unfortunately, this shows that if the prob-
lem 1|p1,j = 1, |I| = 2, Emax

i = Emax|∅ is tackled using a rolling-horizon based
method [55], where the horizon window is limited to only two metering inter-
vals, it is unlikely that there exists a polynomial algorithm solving one iteration
exactly (unless NP = P).

Theorem 2. Problem 1|p1,j = 1, |I| = 2, Emax
i = Emax|∅ is NP-complete.

Proof. Due to Lemma 1, the problem 1|p1,j = 1, |I| = 2, Emax
i = Emax|∅ is in NP.

It remains to show that PARTITION, which is NP-complete problem, reduces
to 1|p1,j = 1, |I| = 2, Emax

i = Emax|∅.

Problem: PARTITION
Input: Finite set A of positive integers aj .
Question: Is there subset A′ ⊆ A such that∑

aj∈A′ aj =
∑
aj∈A\A′ aj =

∑
aj∈A

aj

2 ?

Scheduling in Deterministic Environments 27

Given an instance for PARTITION, construct an instance for
1|p1,j = 1, |I| = 2, Emax

i = Emax|∅ as follows. Set M = {M1},
J = JM1 = {J1,1, J1,2, . . . , J1,|A|}, I = {I1, I2}, D = |A|, H = 2 · |A|,

Emax =

∑
aj∈A

aj

2 , and define each job J1,j ∈ J as p1,j = 1, P1,j = aj .
The proof by reduction requires that given a feasible solution of

PARTITION, it must be possible to construct a feasible solution of
1|p1,j = 1, |I| = 2, Emax

i = Emax|∅ problem in polynomial time (and vice versa).

1. PARTITION =⇒ 1|p1,j = 1, |I| = 2, Emax
i = Emax|∅: From the feasible

solution of PARTITION, construct a schedule in which the jobs corresponding
to the integers from set A′ are scheduled within interval I1. The rest of the
jobs are scheduled within interval I2 (ordering of the jobs in both intervals
is not important). The jobs do not overlap in the metering intervals since
D = |A| = n. Moreover, the energy consumption limit is not violated in such

a schedule since Emax =

∑
aj∈A

aj

2 . Therefore, the constructed schedule is
feasible.

2. 1|p1,j = 1, |I| = 2, Emax
i = Emax|∅ =⇒ PARTITION: Construct a partition

where all the integers corresponding to the jobs scheduled in interval I1
belong to set A′. Given a feasible schedule, the total energy consumption

in each metering interval I1, I2 must be

∑
aj∈A

aj

2 . This is easy to see due
to 2 · Emax =

∑
J1,j∈J P1,j : if the total energy consumption in one metering

interval would be less than Emax, then the total energy consumption in another
metering interval would have to be greater than Emax. Therefore, the sum of
the integers A′ equals Emax, and the constructed partition is feasible.

4.3 Problem PDm|πk, pk,j = 1, |I| = 2, Emax
i = Emax|∅

As already mentioned, tackling a scheduling problem using global optimization
methods, such as genetic algorithms, may involve solving a constrained sub-problem
of the original problem. For example, if a fixed ordering of the jobs represents
an individual in the population, the actual start times are obtained by solving a
sub-problem in which the order of the jobs is fixed. If the sub-problem can be
solved exactly in polynomial time, the genetic algorithm may converge to a very
good solution in a short time.

Unfortunately, this section shows that approaching the problem
PDm|Emax

i = Emax|Cmax in such a manner requires a heuristic algorithm
for the sub-problem constraining the ordering of the jobs since it is unlikely that it
can be solved optimally in a reasonable time.

Theorem 3. Problem PDm|πk, pk,j = 1, |I| = 2, Emax
i = Emax|∅ is NP-complete.

Proof. The complexity proof is analogous to problem
1|pk,j = 1, |I| = 2, Emax

i = Emax|∅, which used PARTITION problem for the
reduction. The only difference is that each machine is dedicated to only one job

28 Problem PDm|πk,no-crossing, Emax
i = Emax|Cmax

in problem PDm|πk, pk,j = 1, |I| = 2, Emax
i = Emax|∅, i.e., the fixed order on each

machine consists of a single job and n = m. Therefore, each job Jk,1 on its machine
Mk corresponds to integer ak.

4.4 Problem PDm|πk, no-crossing, Emax
i = Emax|Cmax

This section studies the scheduling problem with the no-crossing constraint requiring
that each job must have non-zero overlap with exactly one metering interval. The
no-crossing requirement is widely considered in the domain of scheduling with
periodic maintenance activities [32, 54], where the machines must be periodically
repaired or inspected. During this time, the machines cannot process any production
jobs. Such requirement has applications in the assembly of wiring harness for the
aerospace industry, where each task is complex and must be performed within
one working shift by the same team. By extending the periodic intervals with a
maximum capacity constraint, where the capacity represents available material (i.e.,
the energy consumption limit), additional applications such as metal casting can be
modeled.

For the problem PDm|πk,no-crossing, Emax
i = Emax|Cmax, a shortest paths

based algorithm is provided with complexity O(n2·m), that is, the algorithm
becomes polynomial if the number of machines is fixed. Therefore, problem
PDm|πk,no-crossing, Emax

i = Emax|Cmax is in XP complexity class [17] for pa-
rameter m.

Let us start by defining a set of slices, each representing a set of jobs that
can be scheduled within the same metering interval without violating the energy
consumption limit.

Definition 1 (Slices). Let l, r be two integer vectors such that
r ∈ [0 .. n1]× · · · × [0 .. nm], and 1 ≤ l ≤ r + 1. Define l, r to be compati-
ble iff ∑

j∈[lk .. rk]

pk,j ≤ D , ∀Mk ∈M (4.1)

∑
Mk∈M

∑
j∈[lk .. rk]

pk,j · Pk,j ≤ Emax . (4.2)

A pair of compatible vectors (l, r) is called a slice, and the set of all slices is denoted
as Ψ.

Notice that the definition of a slice allows some machine Mk to have an empty
set of jobs, which is the case for lk = rk + 1.

Any feasible schedule can be understood as a sequence of slices, where each slice
represents the jobs scheduled in a particular metering interval. An example of a
schedule with the slices is shown in Fig. 4.1. The example reveals an important
pattern (l, r), (r + 1, r′) between the slices of two consecutive metering intervals.
Informally, if some metering interval Ii is labeled by slice (l, r), all the jobs with
indices smaller or equal to r were scheduled till τ end

i ; on the other hand, all the
jobs with indices greater or equal to l were not scheduled before τ start

i .

Scheduling in Deterministic Environments 29

M1

M2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

J1,1 J1,2 J1,3

J2,1

I1 I2 I3

Energy consumption in metering intervals

10

20

30

40

50

60

J2,2

16 17 18 19 20

I4

J1,4

E
max

J1,1 J2,1 J1,2

J1,3

J1,4

J2,2

l r

1 0

1 0

l r

1 1

1 0

l r

2 1

1 1

l r

2 2

2 1

l r

3 4

2 2

l r

5 4

3 2

Figure 4.1: The slices of a two-machine feasible schedule for the example instance from
the problem statement (see Section 2.1).

Notice that all the slices but the last one contribute equally to the makespan
by D. Therefore, the makespan of a feasible schedule is defined by the number of
slices minus one plus the maximum sum of the processing times over all machines
in the last slice. This observation is based on an easy fact that the makespan of a
feasible schedule is not increased if the jobs in the last slice are shifted to the left
as much as possible. That is, the jobs in the last slice can be processed without any
idle time between two consecutive jobs.

Lastly, some of the slices can be ignored in further computation since they
cannot occur in optimal solutions. These ignored slices represent metering intervals
in which no jobs are scheduled. By removing such slices from a feasible schedule,
the makespan does not increase. The set of slices, in which at least one job is
scheduled in a metering interval, is {(l, r) ∈ Ψ | ∃k : lk ≤ rk}.

+By linking the ideas mentioned above, the problem
PDm|πk,no-crossing, Emax

i = Emax|Cmax can be solved by finding the shortest
path in a graph, where the vertices represent the slices and the edges are defined by
the pattern (l, r), (r + 1, r′) connecting two consecutive slices. Formally, let us
construct the following directed graph G = (V,E,w), where V is the set of vertices,
E is the set of edges, and w is the weight function of the edges

V = {vl,r | (l, r) ∈ Ψ;∃k : lk ≤ rk} ∪ {vs, vt} (4.3)

E = {(vl,r, vr+1,r′) ∈ V × V } . (4.4)

Vertices {vs, vt} have special meaning. Vertex vs is the source vertex vs = v1,0,
representing the beginning of the schedule, i.e., no jobs are scheduled yet. Vertex
vt is the target vertex vt = vl,r, where l = (n1 + 1, n2 + 1, . . . , nm + 1) and
r = (n1, n2, . . . , nm). The target vertex represents the end of the schedule, i.e., all
the jobs were scheduled.

30 Problem PDm|πk,no-crossing, Emax
i = Emax|Cmax

l r

1 0

1 0

l r

1 1

1 0

l r

2 2

1 0

l r

3 3

1 0

l r

3 4

1 0

l r

4 4

1 0

l r

1 0

1 1

l r

2 1

1 1

l r

3 2

1 1

l r

4 3

1 1
l r

4 4

1 1 l r

5 4

1 1 l r

1 1

2 1
l r

2 2

2 1

l r

3 3

2 1

l r

3 4

2 1

l r

4 4
2 1

l r

1 0
2 2

l r

2 1
2 2

l r

3 2
2 2l r

3 3
2 2l r

3 4

2 2
l r

4 3

2 2

l r

4 4

2 2

l r

5 4

2 2

l r

1 1

3 2

l r

2 2

3 2

l r

3 3

3 2

l r

3 4

3 2

l r

4 4

3 2

l r

5 4

3 2

Figure 4.2: The constructed graph for the example instance from the problem statement
(see Section 2.1); the weights of the edges are omitted. The highlighted path corresponds
to the schedule from Fig. 4.1.

To model the makespan of a feasible schedule, the weight of edge (vl,r, vl′,r′) is
defined as

w(vl,r, vl′,r′) =

0 vl,r = vs

max
Mk∈M

∑
j∈[lk .. rk]

pk,j vl′,r′ = vt

D otherwise

(4.5)

The shortest path from vertex vs to vertex vt represents a feasible schedule with
the minimum makespan (or, if the path does not exist, the corresponding instance
is infeasible). An example of the constructed graph for the example instance from
the problem statement (see Section 2.1) is shown in Fig. 4.2.

It remains to show that the algorithm is polynomial for a fixed number of
machines.

Scheduling in Deterministic Environments 31

Theorem 4. Problem PDm|πk,no-crossing, Emax
i = Emax|Cmax is in XP complex-

ity class for parameter m.

Proof. Consider the above-described graph G = (V,E,w). Since the shortest path
algorithm in the graph is polynomial in the number of vertices, it suffices to show
that the number of vertices (or equivalently, slices) is polynomial for a fixed number
of machines.

Consider machine Mk and rk ∈ [0 .. nk]. There are at most rk corresponding
values of lk. Therefore, the total number of possible slices on machine Mk is

∑
rk∈[0 .. nk]

rk =
nk · (nk + 1)

2
. (4.6)

Thus, the upper bound on the number of slices is

∏
Mk∈M

nk · (nk + 1)

2
, (4.7)

which is polynomial for a fixed number of machines.

4.5 Problem PDm|Emax
i |Cmax

The last problem PDm|Emax
i |Cmax investigated in this chapter is the most general

one within the deterministic setting. However, it is also the most practical one
since it is the closest to the motivational production processes (steel hardening
and tempered glass production). This scheduling problem is NP-hard since it is
a generalization of 1|p1,j = 1, Emax

i = Emax|Cmax that was studied in the earlier
sections.

To solve the problem optimally, we propose one CP model and various MILP
models. Moreover, to solve large real-world instances, we also design a simple
yet effective local search heuristic algorithm. All the methods are experimentally
evaluated in Section 4.5.4.

4.5.1 CP Model

The proposed CP model has one interval variable xk,j for each job Jk,j ∈ J that
denotes the time interval in which the job is scheduled. The main idea behind the
model is to use CP function Overlap, which computes the length of the overlap
between the job’s interval variable and a metering interval that is given by its start
and end. The overlaps in a metering interval are multiplied by the corresponding
job’s power consumption, added together and constrained to be within the energy
consumption limits.

Note that the cumulative functions cannot be used to model the energy con-
sumption since the height of an elementary cumulative function is a constant. In
contrast, our scheduling problem would require the height to be a function of the
overlap length with a metering interval.

32 Problem PDm|Emax
i |Cmax

The complete model follows

min max
Jk,j∈J

EndOf(xk,j) (4.8)

EndOf(xk,j) ≤ H, ∀Jk,j ∈ J (4.9)

LengthOf(xk,j) = pk,j , ∀Jk,j ∈ J (4.10)

NoOverlap({xk,j | Jk,j ∈ JMk }), ∀Mk ∈M (4.11)∑
Jk,j∈J

Overlap(xk,j , τ
start
i , τ end

i) · Pk,j ≤ Emax
i , ∀Ii ∈ I (4.12)

Objective (4.8) minimizes the maximum completion time of all the jobs. Con-
straint (4.9) guarantees that the completion time of every job is bounded by the
scheduling horizon H. The following constraint (4.10) sets the length of an in-
terval variable xk,j corresponding to some job Jk,j to be pk,j . Global constraint
NoOverlap in (4.11) ensures that the jobs on each dedicated machine are not
overlapping. Finally, the energy limits in every metering interval are enforced by
constraint (4.12).

4.5.2 MILP Models

The modeling of the jobs’ overlap with the metering intervals is crucial for problem
PDm|Emax

i |Cmax. This section formulates the problem as a disjunctive and time-
indexed model. Moreover, the section investigates an alternative approach called
an implicit model developed in the field of the energy-aware scheduling with RTP.

4.5.2.1 Disjunctive MILP Model

The disjunctive MILP model uses the formulation for computing the jobs’ overlaps
with the metering intervals presented in [26, 27]. We adapted the model proposed
in [26, 27] to consider the dedicated machines environment, energy consumption
limits, and makespan as an objective.

The disjunctive MILP model uses the following variables: (i) Cmax ∈ Z≥0 is
the makespan of the schedule, (ii) sk,j ∈ Z≥0 represents the start time of job
Jk,j , (iii) xk,j,j′ ∈ {0, 1} denotes whether job Jk,j is scheduled before job Jk,j′ ,
(iv) dk,j,i ∈ Z≥0 expresses the length of the overlap between job Jk,j and meter-
ing interval Ii, (v) zstart

k,j,i ∈ {0, 1} denotes whether sk,j ∈ [0, τ end
i − 1], and (vi)

zend
k,j,i ∈ {0, 1} denotes whether sk,j + pk,j ∈ [0, τ start

i]. The complete model follows

min Cmax (4.13)

sk,j + pk,j ≤ Cmax, ∀Jk,j ∈ J (4.14)

xk,j,j′ = 1 =⇒ sk,j + pk,j ≤ sk,j′ , ∀Mk ∈M;∀Jk,j , Jk,j′ ∈ JMk : j < j′ (4.15)

xk,j,j′ = 0 =⇒ sk,j′ + pk,j′ ≤ sk,j , ∀Mk ∈M;∀Jk,j , Jk,j′ ∈ JMk : j < j′ (4.16)

sk,j ≥ τ end
i · (1− zstart

k,j,i), ∀Jk,j ∈ J ;∀Ii ∈ I \ {I|I|} (4.17)

zstart
k,j,i = 1 =⇒ sk,j ≤ τ end

i − 1, ∀Jk,j ∈ J ;∀Ii ∈ I \ {I|I|} (4.18)

zstart
k,j,i+1 ≥ zstart

k,j,i , ∀Jk,j ∈ J ;∀Ii ∈ I \ {I|I|} (4.19)

Scheduling in Deterministic Environments 33

zstart
k,j,|I| = 1, ∀Jk,j ∈ J (4.20)

sk,j + pk,j ≥ τ start
i · (1− zend

k,j,i) + 1, ∀Jk,j ∈ J ;∀Ii ∈ I (4.21)

zend
k,j,i = 1 =⇒ sk,j + pk,j ≤ τ start

i , ∀Jk,j ∈ J ;∀Ii ∈ I (4.22)

zend
k,j,i+1 ≥ zend

k,j,i, ∀Jk,j ∈ J ;∀Ii ∈ I \ {I|I|} (4.23)

dk,j,i ≤ D · (zstart
k,j,i − zend

k,j,i), ∀Jk,j ∈ J ;∀Ii ∈ I (4.24)∑
Ii∈I

dk,j,i = pk,j , ∀Jk,j ∈ J (4.25)

dk,j,i ≥ D · (zstart
k,j,i−1 − zend

k,j,i+1), ∀Jk,j ∈ J ;∀Ii ∈ I \ {I1, I|I|} (4.26)

dk,j,i ≥ τ end
i · (1− zstart

k,j,i−1)− sk,j −D · zend
k,j,i+1 ,

∀Jk,j ∈ J ;∀Ii ∈ I \ {I1, I|I|}
(4.27)

zend
k,j,i+1 = 1 =⇒ dk,j,i ≥ sk,j + pk,j − τ end

i +D · zstart
k,j,i−1

∀Jk,j ∈ J ;∀Ii ∈ I \ {I1, I|I|}
(4.28)

dk,j,1 ≥ D · zstart
k,j,1 − sk,j −D · zend

k,j,2, ∀Jk,j ∈ J (4.29)

dk,j,|I| ≥ sk,j + pk,j −H +D · zstart
k,j,|I|−1, ∀Jk,j ∈ J (4.30)∑

Jk,j∈J
dk,j,i · Pk,j ≤ Emax

i , ∀Ii ∈ I (4.31)

Objective (4.13) minimizes the makespan, which is the maximum of the jobs’
completion times, see constraint (4.14). Ensuring that the jobs are not overlapping
is modeled by constraints (4.15) and (4.16). Constraints (4.17)-(4.30) models the
overlaps of the jobs with the metering intervals; see [26] for details. The last
constraint (4.31) enforces the energy limit.

4.5.2.2 Time-indexed MILP Model

The time-indexed model uses two variables: (i) Cmax ∈ Z≥0 representing the
makespan of the solution and (ii) xk,j,t ∈ {0, 1} denoting whether job Jk,j starts at
time t. The model uses the following allocation expression to model the non-overlap
constraint and the energy consumption in the metering intervals

t∑
t′=max{0,t−pk,j+1}

xk,j,t′ . (4.32)

The allocation expression denotes whether job Jk,j overlaps time unit t in the
solution. The time-indexed model for problem PDm|Emax

i |Cmax can be formulated
as follows

min Cmax (4.33)∑
t∈[0 .. H−1]

t · xk,j,t + pk,j ≤ Cmax, ∀Jk,j ∈ J (4.34)

∑
t∈[0 .. H−1]

xk,j,t = 1, ∀Jk,j ∈ J (4.35)

34 Problem PDm|Emax
i |Cmax

∑
t∈[0 .. H−1]

t · xk,j,t + pk,j ≤ H, ∀Jk,j ∈ J (4.36)

∑
Jk,j∈JMk

t∑
t′=max{0,t−pk,j+1}

xk,j,t′ ≤ 1, ∀Mk ∈M;∀t ∈ [0 .. H − 1] (4.37)

∑
t∈[τstart

i .. τend
i −1]

∑
Jk,j∈J

t∑
t′=max{0,t−pk,j+1}

Pk,j · xk,j,t′ ≤ Emax
i , ∀Ii ∈ I (4.38)

Objective (4.33) minimizes the makespan, which is the maximum completion
time of all the jobs (4.34). Constraint (4.35) ensures that each job is started, and
constraint (4.36) guarantees that the completion time of every job is bounded by
the scheduling horizon H. The non-overlap constraint is satisfied by requiring
that each time unit is overlapped by at most job on each machine; see (4.37).
Finally, the energy consumption limits in every metering interval are modeled using
constraint (4.12).

4.5.2.3 Implicit MILP Model

In this section, a MILP formulation called implicit model is presented. The implicit
model’s main property is that it does not model the start times of the jobs explicitly.
Such an approach is suitable for the scheduling problems where the actual sequencing
of the jobs within each metering interval is not important. The implicit model was
presented in [70] for a scheduling problem with energy cost minimization and RTP.
We adapted the implicit model from [70] to problem PDm|Emax

i |Cmax to consider
the makespan minimization. Moreover, we improved the model by observing that
boundary constraints are only necessary for a subset of jobs, thus reducing the
implicit model’s size.

For modeling purposes, the maximum number of consecutive metering intervals
in which job Jk,j can have a non-zero overlap for any feasible start times s has to
be determined; this number will be denoted as Ωk,j .

Lemma 2. The maximum number of consecutive metering intervals that can have
non-zero overlap with job Jk,j for any feasible start times s is

Ωk,j =
⌈pk,j
D

⌉
+ 1 . (4.39)

Proof. Let Ii1 be the metering interval, where the job starts and
let Ii2 be the metering interval, where the job completes; thus,
Overlap(sk,j , pk,j , i1) ∈ Z>0,Overlap(sk,j , pk,j , i2) ∈ Z>0. Consider the following
two cases

1. Ii1 = Ii2 : This implies that the job has non-zero overlap with only one
metering interval in s. Since Ωk,j ≥ 1, the lemma holds.

2. Ii1 < Ii2 : Since the job is processed without preemption, the job completely
fills up each metering interval between Ii1 , Ii2 , i.e., the overlap length of the
job with each metering interval between Ii1 , Ii2 is D. The number of such

Scheduling in Deterministic Environments 35

metering intervals is q = i2 − i1 − 1. The processing time can then be written
as

pk,j = q ·D + Overlap(sk,j , pk,j , i1) + Overlap(sk,j , pk,j , i2) . (4.40)

To finish the proof it has to be shown that

Ωk,j ≥ q + 2 , (4.41)

i.e., the number of metering intervals with a non-zero overlap in s is at most
Ωk,j .

Notice that from the definition of the ceiling function, it holds that

Ωk,j =
⌈pk,j
D

⌉
+ 1 =

pk,j
D

+ ε︸ ︷︷ ︸
∈Z>0

+1 , (4.42)

where ε ∈ [0, 1). Therefore,

Ωk,j =
pk,j
D

+ ε+ 1

= q +
Overlap(sk,j , pk,j , i1)

D
+

Overlap(sk,j , pk,j , i2)

D
+ ε︸ ︷︷ ︸

∈Z>0

+1

≥ q + 2 .

The last inequality follows from q ∈ Z≥0,, Ωk,j ∈ Z>0,
Overlap(sk,j , pk,j , i1) ∈ Z>0, Overlap(sk,j , pk,j , i2) ∈ Z>0.

Similarly to the CP model, the jobs’ overlap with the metering intervals needs
to be formulated. However, MILP does not provide any constructs such as Overlap;
thus, it has to be modeled using linear expressions. We observed that for “shorter”
jobs, the necessary constraints could be modeled in more straightforward way than
for “longer” jobs; thus, the set of the jobs is split into non-spannable and spannable
jobs, i.e., the set of spannable jobs is

J span = {Jk,j ∈ J | pk,j > D} , (4.43)

while the set of non-spannable jobs is J \ J span.

The implicit MILP model uses the following variables: (i) dk,j,i ∈ Z≥0 de-
noting the length of the overlap between job Jk,j and metering interval Ii,
(ii) xsk,j,i ∈ {0, 1} indicating whether spannable job Jk,j starts in metering interval

Ii, (iii) x+
k,j,i ∈ {0, 1} expressing whether job Jk,j has non-zero overlap in metering

interval Ii, (iv) y+
k,i ∈ {0, 1} denoting whether some job has non-zero overlap with

metering interval Ii on machine Mk, and (v) Cmax ∈ Z≥0 representing the objective

36 Problem PDm|Emax
i |Cmax

value. The implicit model is then formulated as

min Cmax (4.44)∑
Jk,j∈JMk

dk,j,i ≤ D · y+
k,i, ∀Mk ∈M;∀Ii ∈ I (4.45)

y+
k,i = 1 =⇒ τ start

i +
∑

Jk,j∈JMk

dk,j,i ≤ Cmax, ∀Mk ∈M;∀Ii ∈ I (4.46)

∑
Ii∈I

dk,j,i = pk,j , ∀Jk,j ∈ J (4.47)

∑
Jk,j∈JMk

dk,j,i ≤ D, ∀Ii ∈ I;∀Mk ∈M (4.48)

∑
Jk,j∈J

dk,j,i · Pk,j ≤ Emax
i , ∀Ii ∈ I (4.49)

x+
k,j1,i

+ x+
k,j1,i+1 + x+

k,j2,i
+ x+

k,j2,i+1 ≤ 3,

∀Mk ∈M;∀Ii ∈ I \ {I|I|};
∀Jk,j1 , Jk,j2 ∈ JMk : Jk,j1 6= Jk,j2 , pk,j1 ≥ 2, pk,j2 ≥ 2;

pk,j1 + pk,j2 ≤ 2 ·D

(4.50)

dk,j,i ≤ min(D, pk,j) · x+
k,j,i, ∀Jk,j ∈ J ;∀Ii ∈ I (4.51)

SOS2(dk,j,1, . . . , dk,j,|I|), ∀Jk,j ∈ J \ J span (4.52)∑
Ii∈I

xsk,j,i = 1, ∀Jk,j ∈ J span (4.53)

dk,j,i ≤ D ·
i∑

i′=max(1,i−Ωk,j+1)

xsk,j,i′ , ∀Jk,j ∈ J span;∀Ii ∈ I (4.54)

D · (x+
k,j,i−1 + x+

k,j,i+1 − 1) ≤ dk,j,i, ∀Jk,j ∈ J span;∀Ii ∈ I \ {I1, I|I|} (4.55)

In the following text, the model is explained in more detail.

Objective (4.44) of the implicit model is the minimization of the makespan that
is modeled using constraints (4.45)-(4.46). Constraint (4.45) ensures that if any job
on machine Mk has non-zero overlap with Ii, the value of variable y+

k,i is 1. This
variable is then used as an indicator in the following indicator constraint (4.46),
which bounds the makespan from below by the total overlap in the last metering
interval. Constraint (4.46) exploits a simple observation that the jobs in the metering
interval, where the schedule completes, can be processed without idle time.

The following constraint (4.47) guarantees that each job’s total overlap with the
metering intervals is exactly its processing time. Bounding the total overlap on every
machine and every metering interval to be at most D is enforced in constraint (4.48).
Finally, constraint (4.49) models the energy limits.

Up to this point, the introduced constraints do not guarantee non-preemption of
the jobs, i.e., the model allows a job to be interrupted by another job. To fix this,
three groups of constraints are added to the model: boundary constraints (4.50)-
(4.51), continuity constraints (4.52)-(4.54), and fill constraints (4.55).

Scheduling in Deterministic Environments 37

The boundary constraints (4.50) enforce that at most one job can cross a
boundary of two consecutive metering intervals on a machine. The constraint is
better illustrated in Fig. 4.3 showing the infeasible case when two jobs Jk,j1 , Jk,j2
cross the boundary of metering intervals Ii, Ii+1 on the same machine. We can
see that this is the only case when all variables x+

k,j1,i
, x+
k,j1,i+1, x

+
k,j2,i

, x+
k,j2,i+1

equal 1. Therefore, the infeasible case can be cut by enforcing that at least one of
those variables equals 0. The semantics of variables x+

k,j,i themselves is modeled

in constraint (4.51), which pushes x+
k,j,i to be 1 if job Jk,j has non-zero overlap in

metering interval Ii.

Mk

x
+

k,j1,i
= 1

Jk,j1

Ii Ii+1

Jk,j2

x
+

k,j1,i+1
= 1

x
+

k,j2,i
= 1 x

+

k,j2,i+1
= 1

Figure 4.3: Values of x+
k,j,i in the infeasible case when two jobs are crossing the boundary

of two same consecutive metering intervals.

We observed that the boundary constraints are not necessary for pairs of jobs,
whose sum of processing times are greater than 2 ·D. Using this observation, the
number of constraints in the model can be reduced.

Lemma 3. Let Mk ∈ M and let Jk,j1 , Jk,j2 ∈ JMk be two jobs such that
j1 6= j2, pk,j1 ≥ 2, pk,j2 ≥ 2 and pk,j1 + pk,j2 ≥ 2 ·D + 1. Let d = (dk,j,i)Jk,j∈J ,Ii∈I
be the values of some feasible solution to the implicit model. Then Eq. (4.50) holds
for Jk,j1 , Jk,j2 in any metering interval Ii ∈ I \ {I|I|}.

Proof. By contradiction. Assume that Ii ∈ I \ {I|I|} is a metering interval such
that Eq. (4.50) is violated, i.e., dk,j1,i ≥ 1, dk,j1,i+1 ≥ 1, dk,j2,i ≥ 1, dk,j2,i+1 ≥ 1.
Since Eq. (4.48) holds, it also holds that

dk,j1,i + dk,j2,i ≤ D
dk,j1,i+1 + dk,j2,i+1 ≤ D ,

(4.56)

thus

dk,j1,i + dk,j1,i+1 + dk,j2,i + dk,j2,i+1 ≤ 2 ·D . (4.57)

For Jk,j ∈ {Jk,j1 , Jk,j2}, one of the following two cases is possible

1. dk,j,i + dk,j,i+1 = pk,j

2. dk,j,i + dk,j,i+1 < pk,j . This means that the job has non-zero overlap with
either Ii−1 or Ii+2. Due to Eq. (4.55), either dk,j,i or dk,j,i+1 is pushed to be
at least D, i.e., either dk,j,i ≥ D, dk,j,i+1 ≥ 1 or dk,j,i ≥ 1, dk,j,i+1 ≥ D.

The proof is now split according to combinations of those cases

38 Problem PDm|Emax
i |Cmax

• Case 1 holds for Jk,j1 and Case 1 holds for Jk,j2 : By substitution, we obtain

pk,j1 + pk,j2 ≤ 2 ·D , (4.58)

which is a contradiction with the initial assumption pk,j1 + pk,j2 ≥ 2 ·D + 1.

• Case 2 holds for Jk,j1 and Case 2 holds for Jk,j2 : By substitution, we obtain

D + 1 +D + 1 ≤ 2 ·D , (4.59)

which is an contradiction.

• Case 1 holds for Jk,j1 and Case 2 holds for Jk,j2 : W.l.o.g., assume that
dk,j1,i ≥ D. Since dk,j2,i ≥ 1, it holds that dk,j1,i + dk,j2,i ≥ D+ 1, which is a
contradiction with dk,j1,i + dk,j2,i ≤ D.

• Case 2 holds for Jk,j1 and Case 1 holds for Jk,j2 : Proof is analogous to the
previous one.

The second type of constraints necessary for the non-preemption of the jobs is
the continuity constraints. These constraints impose the property from Lemma 2,
i.e., a job can have a non-zero overlap with at most Ωk,j consecutive metering
intervals. We can easily model such a requirement for non-spannable jobs (i.e.,
Ωk,j ≤ 2) using SOS2 constraints; see Eq. (4.52). However, for jobs J span, the
constraints are more involved.

The idea behind the continuity constraints for jobs J span is very similar to
how the non-preemption is modeled in the time-indexed model using allocation
expression Eq. (4.32). First, constraint (4.53) ensures that each job starts in some
metering interval. Then, the following constraint (4.54) guarantees that if job Jk,j
has a non-zero overlap in some metering interval Ii, the job had to start in one of
{Ii−Ωk,j+1, Ii−Ωk,j+2, . . . , Ii} metering intervals.

Finally, the last constraints that must be included in the model to guarantee
the jobs’ non-preemption are the fill constraints (4.55). Informally, fill constraint
ensures that if job Jk,j has a non-zero overlap with two metering intervals Ii−1, Ii+1,
it must also have a non-zero overlap with interval Ii. Moreover, the job “fills”
metering interval Ii, i.e., its overlap length is D.

As was noted above, the model does not include variables that represent the
start times explicitly. The rest of this section explains how to construct start times s
from the values of feasible overlap variables d. The full pseudocode of the algorithm
is listed in Algorithm 2.

The algorithm first assigns the start times to the jobs crossing a boundary of at
least two metering intervals. For these jobs, the start time is unambiguous since it
equals τ end

i1
− dk,j,i1 , where Ii1 is the first metering interval in which job Jk,j has

non-zero overlap.
Afterward, the start times of the remaining jobs, i.e., having a non-zero overlap

in only one metering interval, are assigned. Since the order of such jobs in a
particular metering interval is not important, their start times are assigned in an
arbitrary order. The jobs are assigned at the earliest start time in the corresponding
metering interval on a machine. After each assignment, the earliest start time is
increased by the processing time of the assigned job.

Scheduling in Deterministic Environments 39

1 Function ConstructStartTimesFromImplicitMilpModel(d):
2 /* The start times. */

3 s← 0 ;
4 /* Earliest start time on each machine and metering interval. */

5 est← 0 ;
6 foreach Mk ∈M do
7 foreach Ii ∈ I do
8 estk,i ← τ start

i ;

9 /* The jobs crossing a boundary of metering intervals. */

10 foreach

{
Jk,j ∈ J

∣∣∣∣ ∣∣{Ii ∈ I | dk,j,i > 0}
∣∣ ≥ 2

}
do

11 i1 ← min

{
i ∈ [1 .. |I|]

∣∣∣∣ dk,j,i > 0

}
;

12 i2 ← max

{
i ∈ [1 .. |I|]

∣∣∣∣ dk,j,i > 0

}
;

13 sk,j ← τ end
i1 − dk,j,i1 ;

14 estk,i2 ← estk,i2 + dk,j,i2 ;

15 /* The jobs scheduled within a single metering interval. */

16 foreach

{
Jk,j ∈ J

∣∣∣∣ ∣∣{Ii ∈ I | dk,j,i > 0}
∣∣ = 1

}
do

17 Ii1 ← Ii ∈ I : dk,j,i > 0 ;
18 sk,j ← estk,i1 ;
19 estk,i1 ← estk,i1 + pk,j ;

20 return s;

Algorithm 2: The construction of start times s from overlap variables d,
which represent a feasible solution to the implicit MILP model.

40 Problem PDm|Emax
i |Cmax

4.5.2.4 Iterative Implicit MILP Model

The disadvantage of the implicit MILP model is the formulation of the objective,
which uses the indicator constraints. An alternative, more efficient approach is
described in this section.

The idea is to “wrap” the implicit model into an algorithm that iteratively
decreases the number of metering intervals in the scheduling horizon. Each iteration
re-solves the implicit model in metering intervals I1, I2, . . . , Iimax , where Iimax denotes
the scheduling horizon’s last metering interval. Moreover, the original implicit
model’s objective is replaced with a simpler one, i.e., constraints (4.45)-(4.46) are
replaced with

τ start
imax +

∑
Jk,j∈JMk

dk,j,i ≤ Cmax , ∀Mk ∈M . (4.60)

The new objective minimizes the maximum total overlap in Iimax per machine. A
simple observation is that no idle time between two consecutive jobs on the same
machine is necessary within Iimax , since the subsequent job is fully contained in
Iimax , and shifting it to the completion time of the preceding job has no effect on the
consumed energy in Iimax . Therefore, minimization of the maximum total overlap
in Iimax also minimizes the makespan in Iimax . The full pseudocode of the iterative
algorithm is listed in Algorithm 3.

The algorithm starts by checking the feasibility of the given problem instance by
trying to find any feasible solution within the whole scheduling horizon H. If the
instance is infeasible, function SolveImplicitMilp returns an empty set instead
of a vector of start times. If the solution is feasible, the algorithm starts iterating
until the optimal solution is found.

To determine the optimality of a feasible solution, the algorithm tests its objective
value Cmax. If the makespan is greater than τ start

imax , the found solution is optimal
to the original problem. On the other hand, if the objective is τ start

imax , a shorter
solution ending in the previous metering interval might exist to the original problem.
Therefore, imax is decreased by one, and the implicit model is resolved with the
smaller horizon.

Notice that in every iteration, the previously found start times are passed to
SolveImplicitMilp, which are used as a warm start (by transformation to the
overlap variables) to reduce the implicit model’s running time.

4.5.3 Adaptive Local Search Heuristic

Since the exact methods can solve only small instances in a reasonable time,
heuristic algorithms are necessary to solve (at least sub-optimally) industrial-size
instances with thousands of jobs. This section describes a heuristic algorithm for
problem PDm|Emax

i |Cmax that is based on the adaptive local search framework
from Section 3.2. The specific parts of the general adaptive local search algorithm
for this problem are the scheduling operator and the method for finding the initial
incumbent solution. Both are described in the following text.

Scheduling in Deterministic Environments 41

1 Function IterativeImplicitMilpModel():
2 imax ← |I| ;
3 /* Solve the implicit model for metering intervals I1, I2, . . . , Iimax.

*/

4 (s, Cmax)← SolveImplicitMilp(imax, ∅) ;
5 if s = ∅ then
6 /* The original problem is infeasible. */

7 return ∅;
8 while Cmax = τ start

imax do
9 imax ← imax − 1 ;

10 /* Solve the implicit model for metering intervals

I1, I2, . . . , Iimax. */

11 s, Cmax ← SolveImplicitMilp(imax, s) ;

12 /* Found optimal solution to the original problem. */

13 return s;

Algorithm 3: Iterative implicit MILP model.

4.5.3.1 The Scheduling Operator

The scheduling operator algorithm is responsible for finding the feasible start times
from the given all-jobs order. Formally, the scheduling operator solves the problem
PDm|πk, Emax

i |Cmax. However, as shown in Section 4.3, this scheduling problem is
NP-hard. Moreover, a high computational complexity for the variant with the fixed
number of machines and no-cross constraint (see Section 4.4) gives a pessimistic
insight that even the problem PDm|πk, Emax

i |Cmax with a fixed number of machines
could not be solved to optimality with an efficient algorithm. Since the operator is
called for every generated neighbor, its implementation must be efficient so that
the local search can provide solutions in a short time. Thus, we opt to use a
heuristic scheduling operator that might find sub-optimal solutions but has a small
computational complexity. The pseudocode of the used scheduling operator is listed
in Algorithm 4.

The scheduling operator schedules each job in the order given by all-jobs ordering
λ : [1 .. n] → J at their earliest feasible start time w.r.t. the currently scheduled
jobs. The pseudocode of the earliest start time computation is given in Algorithm 5.
The algorithm keeps the current candidate start time sk,j of job Jk,j to be scheduled
(initialized by available time ck of the corresponding machine Mk). The algorithm
iterates over the metering intervals, and in every metering interval, the feasibility
of the current candidate start time is tested by comparing the maximum possible
overlap of the job within the tested metering interval with the overlap computed
from the current candidate start time. If the overlap is greater than the maximum
possible overlap, the current candidate start time is not feasible, and the next
candidate start time is tried (the next one is computed from the maximum possible
overlap in the tested metering interval). The earliest feasible candidate start time
is then returned by the algorithm.

Note that the scheduling operator respects the ordering of the jobs scheduled on
the same machine; however, the ordering over different machines is not guaranteed.

42 Problem PDm|Emax
i |Cmax

1 Function NonRobustSchedulingOperator(λ):
2 /* The current schedule. */

3 s← 0;
4 /* The consumed energy in the metering intervals in the current

schedule. */

5 e← 0|I|;
6 /* The earliest time where each machine is available for

processing the next job. */

7 c← 0m;
8 foreach ` ∈ [1 .. n] do
9 Jk,j ← λ(`);

10 sk,j ← ComputeEarliestNonRobustStartTime(Jk,j , e, c);
11 e, c← ScheduleJob(Jk,j , sk,j , e, c);

12 return s;

13 Function ScheduleJob(Jk,j , sk,j , e, c):
14 ck ← max{sk,j + pk,j , ck};
15 foreach Ii ∈ I do
16 ei ← ei + Overlap(sk,j , pk,j , i) · Pk,j ;
17 return e, c;

Algorithm 4: The non-robust scheduling operator for problem
PDm|πk, Emax

i |Cmax.

1 Function ComputeEarliestNonRobustStartTime(Jk,j , e, c):
2 /* The candidate for the earliest feasible start time. */

3 sk,j ← ck;
4 /* The index of a metering interval to check for feasibility. */

5 i← b sk,j
D
c;

6 while TRUE do
7 if sk,j + pk,j > H then
8 return ∅;
9 if i > |I| ∨ Overlap(sk,j , pk,j , i) = 0 then

10 /* All metering intervals having non-zero overlap with Ii
were tested successfully. */

11 return sk,j ;

12 maxPossibleOverlap← bmax{0,Emax
i −ei}

Pk,j
c;

13 if
maxPossibleOverlap < pk,j ∧ maxPossibleOverlap < Overlap(sk,j , pk,j , i)
then

14 sk,j ← τ end
i −maxPossibleOverlap;

15 i← i+ 1;

Algorithm 5: Computation of the earliest feasible non-robust start time.

Scheduling in Deterministic Environments 43

4.5.3.2 Finding the Initial Incumbent Solution: a Constructive Heuris-
tic

The local search algorithm has to start from some initial all-jobs ordering λ. For this
purpose, a constructive heuristic is designed. Besides the constructive heuristic, 100
random all-jobs orderings are sampled. The best found all-jobs ordering (w.r.t. the
makespan obtained by the scheduling operator) is selected as the initial incumbent
solution.

The constructive heuristic creates the all-jobs ordering iteratively one-by-one
using priority rules; the complete pseudocode is shown in Algorithm 6. To select
the next job in the ordering, the constructive heuristic first computes the earliest
start time for all the unscheduled jobs using Algorithm 5. Then, the jobs are sorted
using the following priority rules, and the job with the highest priority is scheduled
next:

• total remaining unscheduled processing time on the machines (higher value
has higher priority);

• the metering interval in which the jobs starts (earliest metering interval has
higher priority);

• the processing overlap of a job with the metering interval in which the job
starts (higher overlap has higher priority);

• the energy consumption within the metering interval in which the jobs starts
(higher energy consumption has higher priority).

The preliminary experiments have shown that the order of the priority rules,
according to which the jobs are sorted, is essential; different orderings work well
for different classes of instances. Therefore, the priority rules’ order is configurable,
and the constructive heuristic tries all the possible orderings of the priority rules
(4 · 3 · 2 · 1 = 24 in total). That is, the constructive heuristic is given an ordered
sequence of the priority rules. When the tested values by a priority rule are the
same, the next priority rule in the sequence is used until either the corresponding
tested values are different or there are no more priority rules to try (in that case,
the job with a smaller index has larger priority).

4.5.4 Experiments

The experiments in this section focus on PDm|Emax
i |Cmax scheduling problem. The

experiments evaluate the performance of the presented methods on small and large
instances (in terms of the number of jobs).

4.5.4.1 Benchmark Instances

The instances for the experiments were generated as follows. The maximum energy
limit Emax was fixed to 10001, and the number of jobs nk dedicated to each machine
Mk is the same. To generate the processing times, parameter α1 ∈ R>0 is used,

1The limit is the same since one energy limit is contracted for a longer period of time (months)
in practice.

44 Problem PDm|Emax
i |Cmax

1 Function NonRobustConstructiveHeuristic(priorityRules):
2 /* The unscheduled jobs. */

3 J ′ ← J ;
4 /* The constructed all-jobs ordering. */

5 λ← ∅;
6 /* The current position into the all-jobs ordering. */

7 `← 1;
8 /* The consumed energy in the metering intervals. */

9 e← 0|I|;
10 /* The earliest time where each machine is available for

processing the next job. */

11 c← 0m;
12 /* The start times. */

13 s← 0;
14 while J ′ 6= ∅ do
15 /* Select the next unscheduled job using the priority rules.

*/

16 Jk,j ← GetNextJob(J ′, e, c, priorityRules);
17 J ′ ← J ′ \ {Jk,j};
18 sk,j ← ComputeEarliestNonRobustStartTime(Jk,j , e, c);
19 e, c← ScheduleJob(Jk,j , sk,j , e, c);
20 λ(`)← Jk,j ;
21 `← `+ 1;

22 return λ;

Algorithm 6: Constructive heuristic for finding the initial incumbent solu-
tion for problem PDm|Emax

i |Cmax.

Scheduling in Deterministic Environments 45

which links the maximum allowed processing time with the length of the metering
intervals. The processing times are then sampled from discrete uniform distribution
U{1, dD · α1e}.

The power consumption of the jobs is generated using parameter α2 that controls
the energy limit’s tightness. Given fixed α2 ∈ R≥0, the power consumption of each
job is then sampled from continuous uniform distribution

U
(
α2 ·

Emax

m ·D
, 2 · E

max

m ·D

)
. (4.61)

To ensure that no job can violate the energy limit by itself, the power consumption is
clamped, i.e., if min(D, pk,j) ·Pk,j > Emax for some job Jk,j , its power consumption
is modified to Emax

min(D,pk,j)
.

The length of the horizon influences the performance of the CP and MILP
models, since the number of the constraints and variables increases. On the other
hand, the local search heuristic is insensitive to the horizon length. To have a fair
comparison of the CP and MILP models with the local search heuristic algorithm,
the scheduling horizon of every instance is shortened in the following way: a feasible
schedule is found from a random all-jobs ordering using Algorithm 4, and the
horizon is set to the end of the metering interval in which the last job completes.

For each nk ∈ {15, 50, 150, 350},m ∈ {2, 5, 10}, D ∈ {15, 60}2, α1 ∈ {1, 3},
and α2 ∈ {0.8, 1.2, 1.6}, seven random instances were generated using the scheme
above. Therefore, the generated dataset has 1008 instances in total. Notice that
the generated dataset contains only feasible instances due to the clamping of the
jobs’ power consumption and the heuristically-obtained horizons.

The dataset is divided into two parts: small (nk ∈ {15, 50}) and large instances
(nk ∈ {150, 350}). The separation is necessary since different MILP models dot not
fit into the available memory when solving either medium or large instances.

4.5.4.2 Experiment Setting and Remarks

The following abbreviations of the evaluated method are used: (i) NR-CONS: con-
structive heuristic (see Algorithm 6), (ii) NR-ALS: adaptive local search algorithm
(see Algorithm 4.5.3) initialized with the solution found by NR-CONS, (iii) NR-CP:
reference CP model (see Section 4.5.1), (iv) NR-MILP-DIS: the disjunctive MILP
model (see Section 4.5.2.1), (v) NR-MILP-TIME: the time-indexed MILP model
(see Section 4.5.2.2), (vi) NR-MILP-ITER: the iterative implicit MILP model (see
Section 4.5.2.4), and (vii) NR-MILP-ZENG: the implicit MILP model from the
literature [70] adapted to the scheduling problem with the energy consumption
limits and a makespan as objective (see Section 4.5.2.3 for the description how the
adaptation is performed).

The time-limit given to each method on each instance is 10 minutes (the time-
limit for NR-ALS is decreased by the running time of NR-CONS). Five neighbors
were generated in each iteration of the local search. The maximum possible length
of a random block selected in NHGEN-BLOCK-SWAP, NHGEN-BLOCK-INS
neighborhood generators is 0.01 · n.

The experiment result tables report the following values:

2Acoording to [66], the length of the metering intervals is usually between 15 to 60 minutes.

46 Problem PDm|Emax
i |Cmax

• # opt. proofs: the number of instances for which a method found the optimal
feasible solution and was able to prove its optimality within the given time-
limit.

• # best: the number of best solutions found by a method for a group of
instances with the same parameters, e.g., number of the jobs. If more methods
found a solution having the best objective, then the table values are increased
for all these methods.

• # no sol.: the number of instances for which a method could not find any
feasible solution within the given time-limit.

• worse-to-best ratio: shows how far are the solutions from the best-found
solutions. Formally, let BEST be a best-found solution objective to a given
instance and let UB be an objective of another solution of the same instance
such that UB > BEST. Then, a worse-to-best ratio is computed as UB

BEST .
The tables report the median and the maximum of the worse-to-best ratios
for each instance group.

If a method found the best solution for all the instances, the value of corre-
sponding table cell will be BEST.

The best values for a group of instances with the same parameters are shown in
bold.

The experiments were executed on 2x Intel(R) Xeon(R) Silver 4110 CPU @
2.10GHz with 180GB of RAM and Debian 10 operating system. The MILP and
CP models were implemented in Gurobi 8.1 and IBM CP Optimizer 12.9 solvers,
respectively. All the algorithms and solvers were running as a single thread and
were programmed in C#.

4.5.4.3 Experiment Results: Comparison of MILP-based Methods on
Small Instances, nk ∈ {15, 50}

Table 4.1 contains the results for the MILP-based methods on the small instances.
For nk = 15, method NR-MILP-ITER performs the best w.r.t. all the performance
indicators. The second best method is NR-MILP-ZENG (for nk = 15,m = 5 it even
solved more instances to optimality than NR-MILP-ITER), although this model
has a high chance of not finding any feasible solution within the time-limit.

However, the results for nk = 50 are substantially different. NR-MILP-TIME
and NR-MILP-ITER are the only MILP-based methods that can find feasible
solutions, with NR-MILP-TIME being the better of the two. The reason is that NR-
MILP-ITER has poor lower bound, which is non-zero only if the optimal makespan
is within Iimax .

In conclusion, NR-MILP-ITER performs the best for nk = 15, whereas
NR-MILP-TIME is better for nk = 50. The performance of both models could be
potentially increased by providing a warm start. In the rest of the experiments,
only NR-MILP-ITER and NR-MILP-TIME will be compared with the rest of the
non-MILP methods.

Scheduling in Deterministic Environments 47

Table 4.1: The experiment results for the MILP-based methods on the small instances.
Group parameters: nk,m.

nk m method # opt. proofs # best # no sol.

15

2
NR-MILP-DIS 11 19 18

NR-MILP-ITER 34 81 0
NR-MILP-ZENG 30 37 38
NR-MILP-TIME 4 7 2

5
NR-MILP-DIS 2 13 26

NR-MILP-ITER 39 70 0
NR-MILP-ZENG 42 44 31
NR-MILP-TIME 17 30 1

10
NR-MILP-DIS 1 11 41

NR-MILP-ITER 55 77 0
NR-MILP-ZENG 39 43 40
NR-MILP-TIME 18 26 3

50

2
NR-MILP-DIS 0 0 84

NR-MILP-ITER 0 20 47
NR-MILP-ZENG 0 0 82
NR-MILP-TIME 0 41 30

5
NR-MILP-DIS 0 0 84

NR-MILP-ITER 0 13 70
NR-MILP-ZENG 0 0 84
NR-MILP-TIME 0 29 44

10
NR-MILP-DIS 0 0 84

NR-MILP-ITER 0 13 71
NR-MILP-ZENG 0 0 84
NR-MILP-TIME 0 35 38

4.5.4.4 Experiment Results: Small Instances, nk ∈ {15, 50}

The results for the small instances are presented in Table 4.2, Table 4.3, Table 4.4,
Table 4.5, and Table 4.6. From the results the following can be concluded:

• In total, NR-MILP-ITER method solved more instances to the optimal-
ity than NR-CP; 25.4% of the small instances were solved optimally by
NR-MILP-ITER, 7.74% by NR-MILP-TIME, whereas NR-CP solved 6.35%
of the small instances. However, note that for nk = 50, only NR-CP was able
to solve some instances optimally.

• The NR-ALS’s performance degrades with the increasing number of machines,
i.e., NR-CP finds better solutions more often than NR-ALS if the number of
machines is 10.

• Overall, the median of the worse-to-best ratio of NR-ALS is better than of
other methods. This means that solutions found by NR-ALS, which are not

48 Problem PDm|Emax
i |Cmax

the best one, tend to be better than the non-best solutions found by other
methods.

• The maximum processing time of the jobs has a large impact on the perfor-
mance of NR-MILP-ITER and NR-MILP-TIME, which find the most optimal
solutions when the processing times are short.

• The vast majority of the optimally solved instances by NR-CP are for α2 = 0.8,
that is, when the energy limit is not tight w.r.t. the power consumption of the
jobs. Other exact methods are not significantly influenced by this parameter.

• Both NR-CP and NR-MILP-ITER find more optimal solutions when the
metering interval is longer.

• In total, NR-CONS finds the best solution in 13.29% cases, NR-ALS in 78.57%,
NR-CP in 65.28%, NR-MILP-ZENG in 27.18%, and NR-MILP-TIME in 8.33%
cases. For nk = 15, NR-CP performs the best, whereas for instances with
nk = 50 the NR-ALS begins to outperform the other methods.

Table 4.2: The experiment results for the small instances. Group parameters: D.

D method # opt. proofs # best # no sol.

15

NR-CONS 0 41 0
NR-ALS 0 202 0
NR-CP 1 152 0

NR-MILP-ITER 51 58 101
NR-MILP-TIME 24 27 45

60

NR-CONS 0 26 0
NR-ALS 0 194 0
NR-CP 31 177 0

NR-MILP-ITER 77 79 87
NR-MILP-TIME 15 15 73

Scheduling in Deterministic Environments 49

Table 4.3: The experiment results for the small instances. Group parameters: α1.

α1 method # opt. proofs # best # no sol.

1

NR-CONS 0 35 0
NR-ALS 0 207 0
NR-CP 16 206 0

NR-MILP-ITER 112 120 97
NR-MILP-TIME 39 42 32

3

NR-CONS 0 32 0
NR-ALS 0 189 0
NR-CP 16 123 0

NR-MILP-ITER 16 17 91
NR-MILP-TIME 0 0 86

Table 4.4: The experiment results for the small instances. Group parameters: α2.

α2 method # opt. proofs # best # no sol.

0.8

NR-CONS 0 32 0
NR-ALS 0 128 0
NR-CP 31 125 0

NR-MILP-ITER 49 52 50
NR-MILP-TIME 17 18 38

1.2

NR-CONS 0 20 0
NR-ALS 0 125 0
NR-CP 1 108 0

NR-MILP-ITER 43 45 60
NR-MILP-TIME 10 11 31

1.6

NR-CONS 0 15 0
NR-ALS 0 143 0
NR-CP 0 96 0

NR-MILP-ITER 36 40 78
NR-MILP-TIME 12 13 49

50 Problem PDm|Emax
i |Cmax

Table 4.5: The experiment results for the small instances. Group parameters: nk,m.

worse-to-best ratio
nk m method # opt. proofs # best # no sol. median max

15

2
NR-CONS 0 1 0 1.01310 1.06062
NR-ALS 0 74 0 1.00389 1.00959
NR-CP 1 49 0 1.00301 1.03226

NR-MILP-ITER 34 38 0 1.02784 1.07566
NR-MILP-TIME 4 5 2 1.04155 1.12693

5
NR-CONS 0 7 0 1.00733 1.04522
NR-ALS 0 62 0 1.00156 1.00714
NR-CP 5 75 0 1.00510 1.03431

NR-MILP-ITER 39 41 0 1.00694 1.02368
NR-MILP-TIME 17 19 1 1.01871 1.20688

10
NR-CONS 0 13 0 1.00865 1.04536
NR-ALS 0 39 0 1.00196 1.00735
NR-CP 14 78 0 1.00487 1.00595

NR-MILP-ITER 55 57 0 1.00919 1.02430
NR-MILP-TIME 18 18 3 1.01698 1.21916

50

2
NR-CONS 0 6 0 1.00705 1.03727
NR-ALS 0 82 0 1.00181 1.00183
NR-CP 0 20 0 1.01428 1.03235

NR-MILP-ITER 0 0 47 1.14371 1.19807
NR-MILP-TIME 0 0 30 1.03967 1.25255

5
NR-CONS 0 14 0 1.00161 1.01351
NR-ALS 0 76 0 1.00050 1.00188
NR-CP 0 41 0 1.00144 1.01146

NR-MILP-ITER 0 1 70 1.04466 1.11765
NR-MILP-TIME 0 0 44 1.04182 1.14242

10
NR-CONS 0 26 0 1.00164 1.03052
NR-ALS 0 63 0 1.00049 1.00195
NR-CP 12 66 0 1.00062 1.01146

NR-MILP-ITER 0 0 71 1.03448 1.09646
NR-MILP-TIME 0 0 38 1.05122 1.13553

Table 4.6: The experiment results for the small instances. Overall median of the worst-to-
best ratio.

Method Median worst-to-best ratio

NR-CONS 1.00581
NR-ALS 1.00163
NR-CP 1.00290
NR-MILP-ITER 1.02313
NR-MILP-TIME 1.03984

Scheduling in Deterministic Environments 51

4.5.4.5 Experiment Results: Large Instances, nk ∈ {150, 350}

The results for the large instances are presented in Table 4.7, Table 4.8, Table 4.9,
and Table 4.10. The results show that NR-ALS clearly outperforms NR-CP and
NR-CONS w.r.t. the number of best solutions found. For the largest instances
(nk = 350,m = 5), NR-CP cannot find feasible solutions for 3 instances. In total,
NR-CONS finds the best solution in 17.86% cases, NR-ALS in 97.62%, and NR-CP
in 5.36% cases.

Table 4.7: The experiment results for the large instances. Group parameters: D.

D method # opt. proofs # best # no sol.

15
NR-CONS 0 81 0
NR-ALS 0 250 0
NR-CP 0 8 3

60
NR-CONS 0 9 0
NR-ALS 0 242 0
NR-CP 0 19 0

Table 4.8: The experiment results for the large instances. Group parameters: α1.

α1 method # opt. proofs # best # no sol.

1
NR-CONS 0 48 0
NR-ALS 0 248 0
NR-CP 0 19 0

3
NR-CONS 0 42 0
NR-ALS 0 244 0
NR-CP 0 8 3

52 Problem PDm|Emax
i |Cmax

Table 4.9: The experiment results for the large instances. Group parameters: α2.

α2 method # opt. proofs # best # no sol.

0.8
NR-CONS 0 23 0
NR-ALS 0 156 0
NR-CP 0 22 0

1.2
NR-CONS 0 38 0
NR-ALS 0 168 0
NR-CP 0 5 0

1.6
NR-CONS 0 29 0
NR-ALS 0 168 0
NR-CP 0 0 3

Table 4.10: The experiment results for the large instances. Group parameters: nk,m.

worse-to-best ratio
nk m method # opt. proofs # best # no sol. median max

150

2
NR-CONS 0 3 0 1.00314 1.01951
NR-ALS 0 84 0 BEST BEST
NR-CP 0 1 0 1.01246 1.03688

5
NR-CONS 0 18 0 1.00041 1.00380
NR-ALS 0 80 0 1.00039 1.00062
NR-CP 0 14 0 1.00162 1.00617

10
NR-CONS 0 27 0 1.00057 1.02634
NR-ALS 0 82 0 1.00114 1.00168
NR-CP 0 6 0 1.00139 1.01140

350

2
NR-CONS 0 8 0 1.00077 1.01471
NR-ALS 0 84 0 BEST BEST
NR-CP 0 0 0 1.01292 1.05578

5
NR-CONS 0 18 0 1.00023 1.00177
NR-ALS 0 84 0 BEST BEST
NR-CP 0 0 0 1.00305 1.01231

10
NR-CONS 0 16 0 1.00028 1.02221
NR-ALS 0 78 0 1.00339 1.00735
NR-CP 0 6 3 1.00359 1.01598

4.5.4.6 Experiment Results: Additional Analysis

Fig. 4.4 shows the total number of hits per neighborhood generator used by NR-ALS.
The neighborhood generators that try to move the jobs defining the makespan
provide the most number of hits. However, this does not mean that ALS should
not use the other neighborhood generators since they may provide additional
diversification of the search (recall that any solution with better or the same
makespan as the incumbent is accepted as the new incumbent, see Algorithm 1).

The last Fig. 4.5 compares NR-CP and NR-ALS w.r.t. the best-found objective

Scheduling in Deterministic Environments 53

NHGEN-MKSP-SWAP NHGEN-MKSP-INS NHGEN-INS NHGEN-SWAP NHGEN-BLOCK-INS NHGEN-BLOCK-SWAP
0

1000

2000

3000

4000

5000
To
ta
l h

its

Figure 4.4: NR-ALS, the total number of hits per neighborhood generator over all the
instances.

in time represented by best-so-far curves. A best-so-far curve plots the makespan
of the best solution found over time. Fig. 4.5 averages all such curves to show an
aggregated execution of each method over all instances. Since the instances’ optimal
objective may differ, the curves’ objective values are normalized by the best-found
solution. The average best-so-far curves reveal that NR-CP starts with low-quality
solutions that are progressively improved. On the other hand, NR-CONS already
finds high-quality solutions, which are slightly improved by NR-ALS. Moreover,
NR-ALS tends to find the best solution earlier than NR-CP.

0.0 0.2 0.4 0.6 0.8 1.0
time / time-limit

1.000

1.005

1.010

1.015

1.020

1.025

1.030

1.035

av
g(

ob
je

ct
iv

e
/ b

es
t o

bj
ec

tiv
e)

NR-CP
NR-ALS

Figure 4.5: The average of the best-so-far curves over all the instances (normalized to the
time-limit and the best-found solution by NR-CP and NR-ALS).

54 Problem PDm|Emax
i |Cmax

5

Chapter

Scheduling with Energy
Consumption Limits under
Disturbances

As discussed in the introduction, considering disturbances in many environments is
necessary for designing practical schedules. Therefore, this chapter is devoted to
methods that can guarantee the satisfaction of the energy consumption limits even
if some jobs are delayed.

The most important result of this chapter is the pseudo-polynomial algorithm
for problem 1|π1, E

max
i , δmax

k,j = δmax|f ; see Section 5.2. Thanks to this efficient
algorithm, we can design various methods for solving the single machine scheduling
problem without the fixed permutation; see Section 5.3.

5.1 Problem PDm|Emax
i , δmax

k,j = δmax|Cmax

Due to the power of CP formalism, we can easily model the general scheduling
problem from Chapter 2 in CP. The idea behind the model is straightforward, i.e.,
for every deviation situation, its corresponding realized schedule is constructed.
Then, for each realized schedule, we add constraints that enforce the energy limits
in that realized schedule. The disadvantage of such a model is that it contains an
exponential number of variables and constraints; thus, it is suitable only for very
small instances.

For every job Jk,j ∈ J and deviation situation δ(q) ∈ ∆, the model uses one

interval variable x
(q)
k,j representing the time interval in which the job is scheduled in

the corresponding realized schedule (recall that q = 1 corresponds to the baseline
schedule). Since the definition of the realized schedules is based on the permutation
of the jobs π corresponding to the baseline schedule, we may use sequence variables
to construct the realized schedules. Unfortunately, IBM CP Optimizer formalism
does not allow to specify one sequence variable that could be used over all realized
schedules, i.e., a sequence variable is tied to specific interval variables. Instead, a new

sequence variable y
(q)
k is created for each deviation situation δ(q) ∈ ∆ and machine

Mk ∈M, and the sequences are enforced to be the same using the SameSequence
constraint.

The complete model follows

min max
Jk,j∈J

EndOf(x
(1)
k,j) (5.1)

StartOf(x
(1)
k,j) ≤ s

max
k,j , ∀Jk,j ∈ J (5.2)

LengthOf(x
(q)
k,j) = pk,j , ∀Jk,j ∈ J ;∀δ(q) ∈ ∆ (5.3)

Sequence(y
(q)
k , {x(q)

k,j | Jk,j ∈ J
M
k }), ∀δ(q) ∈ ∆; ∀Mk ∈M (5.4)

55

56 Problem 1|π1, E
max
i , δmax

k,j = δmax|f

SameSequence(y
(1)
k , y

(q)
k), ∀δ(q) ∈ ∆ : q ≥ 2;∀Mk ∈M (5.5)

NoOverlap(y
(q)
k), ∀δ(q) ∈ ∆; ∀Mk ∈M (5.6)

StartOf(x
(q)
k,j) = max{StartOf(x

(1)
k,j),EndOfPrev(y

(q)
k , x

(q)
k,j , 0)}+ δ

(q)
k,j ,

∀δ(q) ∈ ∆;∀Jk,j ∈ J
(5.7)∑

Jk,j∈J
Overlap(x

(q)
k,j , τ

start
i , τ end

i) · Pk,j ≤ Emax
i , ∀δ(q) ∈ ∆; ∀Ii ∈ I (5.8)

The objective (5.1) minimizes the maximum completion time of all the jobs in the
baseline schedule. Constraint (5.2) guarantees that every job is scheduled within
the time window bounded above by the job’s maximum baseline start time. The

following constraint (5.3) sets the length of interval variable x
(q)
k,j corresponding

to job Jk,j and deviation situation δ(q) ∈ ∆ to be its processing time pk,j . The

sequencing of interval variables x
(q)
k,j in a realized schedule corresponding to deviation

situation δ(q) ∈ ∆ is modeled in constraint (5.4). Next, those sequence variables
are forced to represent the same sequence using constraint (5.5). To ensure that
the jobs are not overlapping in any realized schedule, their interval variables are
linked with global constraint NoOverlap, see (5.6). The starting time of each job
in every deviation situation δ(q) ∈ ∆ is formulated in constraint (5.7) (the third
argument in EndOfPrev is the default value for the first position in a sequence).
Finally, the energy limits in every metering interval and every realized schedule are
enforced by constraint (5.8).

In some cases, customizing the search priority of the variables may increase the
efficiency of the models (both CP and MILP). IBM CP Optimizer allows specifying
such search priority using search phases. In this case, we first search on the baseline

sequence y
(1)
k and then on the baseline start times x

(1)
k,j . With the fixed baseline

sequence and start times, all the other variables’ values can be inferred without a
search.

5.2 Problem 1|π1, E
max
i , δmax

k,j = δmax|f
This section presents the main result of this chapter: the pseudo-polynomial
algorithm for problem 1|π1, E

max
i , δmax

k,j = δmax|f (recall that f represents any
regular objective). We start first by introducing some preliminaries, i.e., the latest
start time schedules, right-shift schedules, and earliest robust baseline schedules.
Based on these foundations, we provide the algorithm, prove its correctness and
asymptotic time complexity.

5.2.1 Latest Start Time and Right-shift Schedules

Before we explain the algorithm, the notions of latest start times and right-shift
schedules have to be defined. Both definitions assume given baseline schedule s and
its corresponding permutation π.

Latest start time schedule ls is defined using vector function LS as

LS (s)1,π1(`) = RS (s, (δmax, δmax, . . . , δmax))1,π1(`) , ∀J1,j ∈ J . (5.9)

Scheduling in Stochastic Environments 57

Informally, the latest start time of a job represents the maximum possible starting
time over all realized schedules of a given baseline schedule s.

Lemma 4. Let s1, s2 be two baseline schedules with the same permutation π such
that for some position ¯̀∈ [1 .. n], the following holds

s1
1,π1(`) ≤ s

2
1,π1(`) , ∀` ∈ [1 .. ¯̀] . (5.10)

Then
ls1

1,π1(`) ≤ ls2
1,π1(`) , ∀` ∈ [1 .. ¯̀] , (5.11)

where ls1 = LS (s1) and ls2 = LS (s2).

Proof. Proof by induction on `

1. basis, ` = 1: ls1
1,π1(1) = s1

1,π1(1) + δmax ≤ s2
1,π1(1) + δmax = ls2

1,π1(1).

2. induction step, 1 < ` ≤ ¯̀:

ls1
1,π1(`) = max{s1

1,π1(`), ls
1
1,π1(`−1) + p1,π1(`−1)}+ δmax

≤ max{s2
1,π1(`), ls

2
1,π1(`−1) + p1,π1(`−1)}+ δmax

= ls2
1,π1(`) .

(5.12)

Let J1,π1(¯̀) ∈ J be some job and t ∈ [s1,π1(¯̀) ..LS (s)1,π1(¯̀)] its arbitrary realized
start time. Then right-shift schedule rss is defined using recursive vector function
RSS as

RSS (s, ¯̀, t)1,π1(`) =

{
t ` = ¯̀

min{LS (s)1,π1(`),RSS (s, ¯̀, t)1,π1(`+1) − p1,π1(`)} ` ∈ [1 .. ¯̀− 1] .

(5.13)
Informally, a right-shift schedule is obtained from s by fixing the start time of
job J1,π1(¯̀) to t and shifting all the jobs on positions ` < ¯̀ to the right as much
as possible while respecting the latest start times and the non-overlap constraint.
Notice that a right-shift schedule defines starting times only for the jobs on positions
[1 .. ¯̀].

An important property of the right-shift schedules is that they are also realized
schedules, i.e., for each right-shift schedule rss, there exists deviation scenario
δ ∈ ∆, whose corresponding realized schedule rs is the same as rss.

Lemma 5. Let s be a baseline schedule and π be its corresponding permutation.
Let RSS (s, ¯̀, t) be the right-shift schedule for some job J1,π1(¯̀) ∈ J and time
t ∈ [s1,π1(¯̀) ..LS (s)1,π1(¯̀)]. Then there exists scenario δ ∈ ∆ such that

RS (s, δ)1,π1(`) = RSS (s, ¯̀, t)1,π1(`) , ∀` ∈ [1 .. ¯̀] . (5.14)

Proof. Let rss = RSS (s, ¯̀, t), rs = RS (s, δ), and ls = LS (s). First, we prove that

rss1,π1(`) ∈ [s1,π1(`) .. ls1,π1(`)] , ∀` ∈ [1 .. ¯̀] . (5.15)

58 Problem 1|π1, E
max
i , δmax

k,j = δmax|f

The property holds trivially from the definition for ` = ¯̀. To prove the property
for ` < ¯̀, assume by contradiction that ` < ¯̀ is the largest position such that
rss1,π1(`) 6∈ [s1,π1(`) .. ls1,π1(`)]. Since rss1,π1(`) ≤ ls1,π1(`) holds from the definition
of the right-shift start time, it must rss1,π1(`) < s1,π1(`) ≤ ls1,π1(`). Therefore,

rss1,π1(`+1) − p1,π1(`) ≥ s1,π1(`+1) − p1,π1(`)

≥ s1,π1(`)

> rss1,π1(`)

= min{ls1,π1(`), rss1,π1(`+1) − p1,π1(`)}
= rss1,π1(`+1) − p1,π1(`) ,

(5.16)

which is a contradiction.

Now we prove that if δ is defined as

δ1,π1(`) =

{
rss1,π1(1) − s1,π1(1) ` = 1

rss1,π1(`) −max{s1,π1(`), rss1,π1(`−1) + p1,π1(`−1)} ` ∈ [2 .. ¯̀] ,
(5.17)

then for each position ` ∈ [1 .. ¯̀] holds that δ1,π1(`) ∈ [0 .. δmax], and
rs1,π1(`) = rss1,π1(`). Proof by induction on `

1. basis, ` = 1:

• δ1,π1(1) ∈ [0 .. δmax]:

δ1,π1(1) = rss1,π1(1) − s1,π1(1) ≥ 0 (5.18)

δ1,π1(1) = rss1,π1(1) − s1,π1(1)

≤ ls1,π1(1) − s1,π1(1)

= s1,π1(1) + δmax − s1,π1(1)

= δmax

(5.19)

• rs1,π1(1) = rss1,π1(1):

rs1,π1(1) = s1,π1(1) + δ1,π1(1) = s1,π1(1) + rss1,π1(1) − s1,π1(1) = rss1,π1(1)

(5.20)

2. induction step, 1 < ` ≤ ¯̀:

• δ1,π1(`) ≥ 0: consider cases

(a) s1,π1(`) ≥ rss1,π1(`−1) + p1,π1(`−1):

δ1,π1(`) = rss1,π1(`) −max{s1,π1(`), rss1,π1(`−1) + p1,π1(`−1)}
= rss1,π1(`) − s1,π1(`)

≥ 0

(5.21)

Scheduling in Stochastic Environments 59

(b) s1,π1(`) < rss1,π1(`−1) + p1,π1(`−1):

δ1,π1(`) = rss1,π1(`) −max{s1,π1(`), rss1,π1(`−1) + p1,π1(`−1)}
= rss1,π1(`) − p1,π1(`−1) − rss1,π1(`−1)

≥ min{ls1,π1(`−1), rss1,π1(`) − p1,π1(`−1)} − rss1,π1(`−1)

= rss1,π1(`−1) − rss1,π1(`−1)

= 0

(5.22)

• δ1,π1(`) ≤ δmax: consider cases

(a) rss1,π1(`−1) = ls1,π1(`−1): since

ls1,π1(`) = max{s1,π1(`), ls1,π1(`−1) + p1,π1(`−1)}+ δmax

= max{s1,π1(`), rss1,π1(`−1) + p1,π1(`−1)}+ δmax (5.23)

therefore

δ1,π1(`) = rss1,π1(`) −max{s1,π1(`), rss1,π1(`−1) + p1,π1(`−1)}
= rss1,π1(`) − ls1,π1(`) + δmax

≤ δmax

(5.24)

(b) rss1,π1(`−1) = rss1,π1(`) − p1,π1(`−1):

δ1,π1(`) = rss1,π1(`) −max{s1,π1(`), rss1,π1(`−1) + p1,π1(`−1)}
= rss1,π1(`) −max{s1,π1(`), rss1,π1(`)}
≤ 0

≤ δmax

(5.25)

• rs1,π1(`) = rss1,π1(`):

rs1,π1(`) = max{s1,π1(`), rs1,π1(`−1) + p1,π1(`−1)}+ δ1,π1(`)

= max{s1,π1(`), rss1,π1(`−1) + p1,π1(`−1)}+ δ1,π1(`)

= max{s1,π1(`), rss1,π1(`−1) + p1,π1(`−1)}
+ rss1,π1(`) −max{s1,π1(`), rss1,π1(`−1) + p1,π1(`−1)}

= rss1,π1(`)

(5.26)

5.2.2 Earliest Robust Baseline Schedule

The algorithm for finding the optimal robust schedule is based on the iterative
computation of the earliest robust baseline start time for each job in the order given
by π. A robust baseline start time of J1,π1(¯̀) is a baseline start time such that there
is no realized schedule of jobs J1,π1(1), J1,π1(2), . . . , J1,π1(¯̀) in which some energy

60 Problem 1|π1, E
max
i , δmax

k,j = δmax|f

consumption limit is violated. More formally, s1,π1(¯̀) is robust relative to baseline
start times s1,π1(1), s1,π1(2), . . . , s1,π1(¯̀−1) if

¯̀∑
`=1

Overlap(RS (s, δ)1,π1(`), p1,π1(`), i)·P1,π1(`) ≤ Emax
i , ∀δ ∈ ∆;∀Ii ∈ I . (5.27)

The earliest robust baseline start time is simply a robust baseline start time that is
the smallest possible (relative to the preceding jobs’ baseline start times).

In the rest of this section, we prove a theorem (see Theorem 5) that is central to
the algorithm constructing the robust baseline start times; it proves that baseline
schedule s is robust and optimal w.r.t. the regular objective function if every job
starts at its earliest robust time in s. However, before formally proving it, we need
to lay some theoretical groundwork.

Lemma 6. Let s1, s2 be two schedules (not necessarily baseline, realised, etc.) with
the same permutation π such that for some position ¯̀∈ [1 .. n]

s1
1,π1(¯̀) = s2

1,π1(¯̀)

s1
1,π1(`) ≤ s

2
1,π1(`) , ∀` ∈ [1 .. ¯̀− 1] .

(5.28)

Let Ii ∈ I be an arbitrary metering interval such that Overlap(s1
1,π1(¯̀)

, p1,π1(¯̀), i) > 0.

Then

¯̀∑
`=1

Overlap(s1
1,π1(`), p1,π1(`), i) · P1,π1(`) ≤

¯̀∑
`=1

Overlap(s2
1,π1(`), p1,π1(`), i) · P1,π1(`) .

(5.29)

Proof. The Lemma obviously holds for metering intervals Ii such that
s1

1,π1(¯̀)
≤ τ start

i because only job J1,π1(¯̀) may have non-zero overlap with Ii in

both schedules, i.e.,

¯̀∑
`=1

Overlap(s1
1,π1(`), p1,π1(`), i) · P1,π1(`) = Overlap(s1

1,π1(¯̀), p1,π1(¯̀), i) · P1,π1(¯̀)

= Overlap(s2
1,π1(¯̀), p1,π1(¯̀), i) · P1,π1(¯̀)

=

¯̀∑
`=1

Overlap(s2
1,π1(`), p1,π1(`), i) · P1,π1(`) .

(5.30)

Now, assume the case τ start
i < s1

1,π1(¯̀)
. We prove the Lemma by showing

Overlap(s1
1,π1(`), p1,π1(`), i) ≤ Overlap(s1

1,π1(`), p1,π1(`), i) , ∀` ∈ [1 .. ¯̀] . (5.31)

Due to assumption s1
1,π1(¯̀)

= s2
1,π1(¯̀)

, the inequality holds for ` = ¯̀; thus, let us

consider case ` < ¯̀. Since Overlap(s1
1,π1(¯̀)

, p1,π1(¯̀), i) > 0, it must s1
1,π1(¯̀)

< τ end
i ,

which in combination with the Lemma assumptions gives

s1
1,π1(`) + p1,π1(`) ≤ s2

1,π1(`) + p1,π1(`) ≤ s1
1,π1(¯̀) < τ end

i . (5.32)

Scheduling in Stochastic Environments 61

We use this knowledge to simplify the overlap length of the jobs in Ii

Overlap(s1
1,π1(`), p1,π1(`), i) = max{0,min{s1

1,π1(¯̀), s
1
1,π1(`) + p1,π1(`)}

−max{s1
1,π1(`), τ

start
i }}

= max{0, s1
1,π1(`) + p1,π1(`) −max{s1

1,π1(`), τ
start
i }}

Overlap(s2
1,π1(`), p1,π1(`), i) = max{0,min{s1

1,π1(¯̀), s
2
1,π1(`) + p1,π1(`)}

−max{s2
1,π1(`), τ

start
i }}

= max{0, s2
1,π1(`) + p1,π1(`) −max{s2

1,π1(`), τ
start
i }} .

(5.33)

Now, consider function g(x) = x+ p1,π1(`) −max{x, τ start
i }. It is easy to see that

g(x) is non-decreasing in x, and since from the Lemma assumption we know that
s1

1,π1(`) ≤ s
2
1,π1(`), the following holds

Overlap(s1
1,π1(`), p1,π1(`), i) = max{0, g(s1

1,π1(`))}

≤ max{0, g(s2
1,π1(`))}

= Overlap(s2
1,π1(`), p1,π1(`), i) .

(5.34)

Lemma 7. Let s1, s2 be two baseline schedules with the same permutation π such
that for some position ¯̀∈ [1 .. n]

s1
1,π1(¯̀) = s2

1,π1(¯̀)

s1
1,π1(`) ≤ s

2
1,π1(`) , ∀` ∈ [1 .. ¯̀− 1] .

(5.35)

Moreover, let ls1 = LS (s1) and ls2 = LS (s2). Then for every t ∈ [s1
1,π1(¯̀)

.. ls1
1,π1(¯̀)]

and every δ ∈ ∆ such that t = RS (s1, δ)1,π1(¯̀) it holds that

RS (s1, δ)1,π1(¯̀) = RSS (s2, ¯̀, t)1,π1(¯̀)

RS (s1, δ)1,π1(`) ≤ RSS (s2, ¯̀, t)1,π1(`) , ∀` ∈ [1 .. ¯̀− 1] .
(5.36)

Proof. Let rs1 = RS (s1, δ) and rss2 = RSS (s2, ¯̀, t). We prove this lemma by
induction on `

1. basis, ` = ¯̀: holds from the assumptions.

2. induction step, 1 ≤ ` < ¯̀: consider the following two cases

(a) ls2
1,π1(`) > rss2

1,π1(`+1) − p1,π1(`): then

rs1
1,π1(`) ≤ rs1

1,π1(`+1) − p1,π1(`) ≤ rss2
1,π1(`+1) − p1,π1(`) = rss2

1,π1(`) .
(5.37)

(b) ls2
1,π1(`) ≤ rss2

1,π1(`+1) − p1,π1(`): then from Lemma 4

rs1
1,π1(`) ≤ ls1

1,π1(`) ≤ ls2
1,π1(`) = rss2

1,π1(`) . (5.38)

62 Problem 1|π1, E
max
i , δmax

k,j = δmax|f

Theorem 5. Let s be a baseline schedule with the corresponding permutation π. If
every job starts at its earliest robust time in s, then s is robust and optimal w.r.t.
any regular objective f for permutation π.

Proof.

1. Robustness: The robustness of s follows from the definition of the robust
baseline start time; see Eq. (5.27).

2. Optimality : Let s? be the optimal and robust baseline schedule w.r.t. f
for permutation π. We show that ∀J1,j ∈ J : s1,j ≤ s?1,j , which implies
f(s) ≤ f(s?).

Assume by contradiction that ¯̀∈ [1 .. n] is the first position in π such that

s1,π1(¯̀) > s?1,π1(¯̀)

s1,π1(`) ≤ s?1,π1(`) , ∀` ∈ [1 .. ¯̀− 1] .
(5.39)

Construct schedule s′ such that

s′1,π1(¯̀) = s?1,π1(¯̀)

s′1,π1(`) = s1,π1(`) , ∀` ∈ [1 .. ¯̀− 1] ,
(5.40)

i.e., s′ is the same as s, except for job J1,π1(¯̀) that starts at time s?
1,π1(¯̀)

.

Since s′
1,π1(¯̀)

= s?
1,π1(¯̀)

is not the earliest robust time in s, there exists some

realized schedule rs ′ of s′ such that

Emax
i <

¯̀∑
`=1

Overlap(rs ′1,π1(`), p1,π1(`), i) · P1,π1(`) (5.41)

in some metering interval Ii ∈ I. Since jobs J1,π1(1), J1,π1(2), . . . , J1,π1(¯̀−1)

start at their earliest robust time in both schedules s and s′, metering in-
terval Ii must have a non-zero overlap with J1,π1(¯̀) in rs ′. Construct right-

shift schedule rss? = RSS (s?, ¯̀, rs ′
1,π1(¯̀)

); the construction is possible since

from Lemma 4 it holds that rs ′
1,π1(¯̀)

∈ [s?
1,π1(¯̀)

..LS (s?)1,π1(¯̀)]. By applying

Lemma 7 (s1 = s′, s2 = s?), and Lemma 6 (s1 = rs ′, s2 = rss?), we conclude
that

Emax
i <

¯̀∑
`=1

Overlap(rs ′1,π1(`), p1,π1(`), i) · P1,π1(`)

≤
¯̀∑

`=1

Overlap(rss?1,π1(`), p1,π1(`), i) · P1,π1(`) ,

(5.42)

which is a contradiction with the assumption that schedule s? is robust.

Scheduling in Stochastic Environments 63

5.2.3 Algorithm for Finding the Optimal Robust Schedule

From the definition, the computation of the earliest robust start time
of any job J1,π1(¯̀) ∈ J depends only on the baseline start times of
J1,π1(1), J1,π1(2), . . . , J1,π1(¯̀−1). Therefore, the earliest robust start times can be
computed one-by-one according to the ascending order of the positions in the given
permutation π. Such an algorithm terminates either with computing the earliest
robust baseline schedule or concluding that permutation π is infeasible, i.e., for the
given permutation π, it is not possible to find a robust baseline start time of some
job.

The algorithm for computing the earliest robust baseline start time of J1,π1(¯̀) is
presented in the remainder of this section. First, we show a näıve version of the
algorithm, which illustrates the basic structure, albeit with exponential complexity.
Then, we gradually improve this complexity by introducing the concepts behind
the more efficient algorithm.

5.2.3.1 Näıve Algorithm for Computing the Earliest Robust Baseline
Start Time of J1,π1(¯̀)

Let s be a baseline schedule where jobs J1,π1(1), J1,π1(2), . . . , J1,π1(¯̀−1) start at their
earliest robust baseline start time, and we want to find the earliest robust baseline
start time for J1,π1(¯̀) (all other jobs are not yet assigned to any start time). A näıve
algorithm (see its pseudo-code in Algorithm 7) directly applies the definition of the
earliest robust baseline start time: iterate over every possible baseline start time
s1,π1(¯̀) ∈ [s1,π1(¯̀−1) + p1,π1(¯̀−1) .. s

max
1,π1(¯̀)

] in increasing order, and select the earliest

baseline start time such that Eq. (5.27) is not violated. Unfortunately, such an
algorithm is inefficient since the number of realized schedules of s is exponential in n.

1 Function ComputeEarliestRobustStartTime(π, J1,π1(¯̀), s):
2 if ¯̀= 1 then
3 s1,π1(¯̀) ← 0;

4 else
5 s1,π1(¯̀) ← max s1,π1(¯̀−1) + p1,π1(¯̀−1);

6 while s1,π1(¯̀) ≤ smax
1,π1(¯̀) do

7 energyLimitViolated← FALSE;
8 foreach (δ, Ii) ∈ ∆× I do
9 rs ← RS(s, δ);

10 if
∑¯̀

`=1 Overlap(rs1,π1(`), p1,π1(`), i) · P1,π1(`) > Emax
i then

11 energyLimitViolated← TRUE;
12 break;

13 if energyLimitViolated = FALSE then
14 return s1,π1(¯̀),FEASIBLE;

15 else
16 s1,π1(¯̀) ← s1,π1(¯̀) + 1;

17 return ∅, INFEASIBLE PERMUTATION;

Algorithm 7: Earliest robust baseline start time of J1,π1(¯̀) for fixed permu-
tation π, näıve version.

64 Problem 1|π1, E
max
i , δmax

k,j = δmax|f

5.2.3.2 Increasing the Efficiency of the Näıve Algorithm - Energy Con-
sumption Dominance of the Right-shift Schedules

The first key observation for obtaining an efficient algorithm is the “energy consump-
tion dominance” of the right-shift schedules. Let rs be some realized schedule of jobs
J1,π1(1), J1,π1(2), . . . , J1,π1(¯̀). Then, it can be proven that the energy consumption

in the metering intervals intersected by J1,π1(¯̀) in rss = RSS (s, ¯̀, rs1,π1(¯̀)) is not
less than in rs.

Lemma 8. Let s be a baseline schedule with the corresponding permutation π. Let
` ∈ [1 .. n], and rs be some realised schedule of jobs J1,π1(1), J1,π1(2), . . . , J1,π1(¯̀),

and rss = RSS (s, ¯̀, rs1,π1(¯̀)). Then,

∀Ii ∈ I : Overlap(rs1,π1(¯̀), p1,π1(¯̀), i) > 0 =⇒
¯̀∑

`=1

Overlap(rs1,π1(`), p1,π1(`), i) · P1,π1(`) ≤
¯̀∑

`=1

Overlap(rss1,π1(`), p1,π1(`), i) · P1,π1(`) .

(5.43)

Proof. From Lemma 7 it holds that

rs1,π1(¯̀) = rss2
1,π1(¯̀)

rs1
1,π1(`) ≤ rss2

1,π1(`) , ∀` ∈ [1 .. ¯̀− 1] .
(5.44)

By applying Lemma 6 on s1 = rs and s2 = rss, the Lemma is proven.

Therefore, it suffices to consider only the right-shift schedules since
if some energy limit is violated in rs, it will also be violated in rss.
Lines 8-12 in Algorithm 7 can be replaced with the following pseudo-code

1 if ¯̀= 1 then
2 foreach (δ1,π1(¯̀), Ii) ∈ [0 .. δmax]× I do
3 if Overlap(s1,π1(¯̀) + δ1,π1(¯̀), p1,π1(¯̀), i) · P1,π1(¯̀) > Emax

i then
4 energyLimitViolated← TRUE;
5 break;

6 else
7 foreach (t, δ1,π1(¯̀), Ii) ∈ [s1,π1(¯̀−1) ..LS(s)1,π1(¯̀−1)]× [0 .. δmax]× I do
8 rs ← RSS(s, ¯̀− 1, t);
9 rs1,π1(¯̀) ← max{s1,π1(¯̀), rs1,π1(¯̀−1) + p1,π1(¯̀−1)}+ δ1,π1(¯̀) ;

10 if
∑¯̀

`=1 Overlap(rs1,π1(`), p1,π1(`), i) · P1,π1(`) > Emax
i then

11 energyLimitViolated← TRUE;
12 break;

Although this modified algorithm does not have exponential complexity anymore,
it is still inefficient since it asymptotically depends on the length of the horizon.

Scheduling in Stochastic Environments 65

5.2.3.3 Increasing the Efficiency of the Näıve Algorithm - Maximum
Possible Overlap of the Jobs with the Metering Intervals

As was noted at the end of the previous section, the complexity of the näıve
algorithm depends on the length of the horizon since whenever a realized schedule
violating any energy consumption limit is found, the baseline start time of J1,π1(¯̀) is
increased by 1; see Line 16 in Algorithm 7. The question is whether we can identify
a range of non-robust baseline start times of J1,π1(¯̀) so that it is possible to “jump”
by more than 1 time unit on Line 16 in Algorithm 7. This is possible by considering
a maximum possible overlap of job J1,π1(¯̀) with the metering intervals.

Lemma 9. Let s be a baseline schedule with the corresponding permutation π.
Assume that the baseline start times of jobs J1,π1(1), J1,π1(2), . . . , J1,π1(¯̀−1) are robust

for some ¯̀∈ [1 .. n]. Moreover, assume that there exists some realized schedule rs
of s such that for some metering interval Ii ∈ I the following holds

Emax
i <

¯̀∑
`=1

Overlap(rs1,π1(`), p1,π1(`), i) · P1,π1(`)

Overlap(rs1,π1(¯̀−1), p1,π1(¯̀−1), i) > 0 .

(5.45)

Then all baseline start times [s1,π1(¯̀−1) + p1,π1(¯̀−1) .. rs1,π1(¯̀)] of J1,π1(¯̀) are not
robust.

Proof. Assume by contradiction that there is a robust baseline schedule s′ such that

s′1,π1(¯̀) ∈ [s1,π1(¯̀−1) + p1,π1(¯̀−1) .. rs1,π1(¯̀)]

s′1,π1(`) = s1,π1(`) , ∀` ∈ [1 .. ¯̀− 1] .
(5.46)

Construct realized schedule rs ′ of s′ such that

rs ′1,π1(¯̀) = max{s′1,π1(¯̀), rs ′1,π1(¯̀−1) + p1,π1(¯̀−1)}

rs ′1,π1(`) = rs1,π1(`) , ∀` ∈ [1 .. ¯̀− 1] .
(5.47)

It is easy to see that rs ′ is a realized schedule in which the deviation of J1,π1(¯̀) is 0.
Since

rs1,π1(¯̀) ≥ s′1,π1(¯̀)

rs1,π1(¯̀) ≥ rs1,π1(¯̀−1) + p1,π1(¯̀−1) = rs ′1,π1(¯̀−1) + p1,π1(¯̀−1) ,
(5.48)

it must rs1,π1(¯̀) ≥ rs ′
1,π1(¯̀)

. Moreover, due to

Overlap(rs1,π1(¯̀−1), p1,π1(¯̀−1), i) = Overlap(rs ′
1,π1(¯̀−1)

, p1,π1(¯̀−1), i) > 0, it holds

that rs ′
1,π1(¯̀)

≥ τ start
i . Therefore,

Overlap(rs1,π1(¯̀), p1,π1(¯̀), i) ≤ Overlap(rs ′1,π1(¯̀), p1,π1(¯̀), i) . (5.49)

66 Problem 1|π1, E
max
i , δmax

k,j = δmax|f

However, this means that

Emax
i <

¯̀∑
`=1

Overlap(rs1,π1(`), p1,π1(`), i) · P1,π1(`)

≤
¯̀∑

`=1

Overlap(rs ′1,π1(`), p1,π1(`), i) · P1,π1(`) ,

(5.50)

i.e., rs ′ is a realized schedule in which a energy limit is violated; thus, s′ cannot be
robust.

Assume that rs is some realized schedule of jobs J1,π1(1), J1,π1(2), . . . , J1,π1(¯̀)

such that the energy consumption limit is violated in some metering interval Ii ∈ I.
One of the following two cases occurs:

Case 1 Overlap(rs1,π1(¯̀−1), p1,π1(¯̀−1), i) > 0: Since the baseline
start times of J1,π1(1), J1,π1(2), . . . , J1,π1(¯̀−1) are robust, it must
Overlap(rs1,π1(¯̀), p1,π1(¯̀), i) > 0. We may ask what is the maximum
possible overlap of J1,π1(¯̀) in Ii w.r.t. to realized start times rs of
J1,π1(1), J1,π1(2), . . . , J1,π1(¯̀−1) without violating the energy limit

maxPossibleOverlapi =

⌊
Emax
i −

∑¯̀−1
`=1 Overlap(rs1,π1(`), p1,π1(`), i) · P1,π1(`)

P1,π1(¯̀)

⌋
.

(5.51)

Lemma 9 implies that all baseline start times
[s1,π1(¯̀−1) + p1,π1(¯̀) .. τ

end
i −maxPossibleOverlapi − 1] of J1,π1(¯̀) are not

robust, i.e., τ end
i −maxPossibleOverlapi ≤ s1,π1(¯̀) must hold; otherwise, Emax

i

is violated.

Case 2 Overlap(rs1,π1(¯̀−1), p1,π1(¯̀−1), i) = 0: In this case, J1,π1(¯̀) is the only
job having a non-zero overlap with Ii in rs. Therefore, it holds that
Overlap(rs1,π1(¯̀), p1,π1(¯̀), i) · P1,π1(¯̀) > Emax

i . We can compute the maxi-
mum possible overlap of J1,π1(¯̀) with Ii

maxPossibleOverlapi =

⌊
Emax
i

P1,π1(¯̀)

⌋
, (5.52)

which represents the maximum overlap between Ii and J1,π1(¯̀) without vio-
lating the energy consumption limit. Assuming that all baseline start times
[s1,π1(¯̀−1) + p1,π1(¯̀−1) .. s1,π1(¯̀) − 1] of J1,π1(¯̀) are not robust, it is easy to

see that τ end
i − maxPossibleOverlapi ≤ s1,π1(¯̀) must hold to assure that

the overlap of J1,π1(¯̀) with Ii in any realized schedule is not larger than
maxPossibleOverlapi.

Due to these two cases, the computation of the earliest robust baseline start
time can be split into two consecutive steps (corresponding to the cases described
above)

Scheduling in Stochastic Environments 67

Step 1 The earliest robust baseline start time relative to
J1,π1(1), J1,π1(2), . . . , J1,π1(¯̀−1): for each right-shift schedule RSS (s, ¯̀− 1, t),
where t ∈ [s1,π1(¯̀−1) ..LS (s)1,π1(¯̀−1)], find the earliest baseline start time of
J1,π1(¯̀) using the maximum possible overlap which does not violate Emax

i ,
where Ii ∈ I is the last metering interval having a non-zero overlap with
J1,π1(¯̀−1). Notice that due to Lemma 9 it is efficient to check t in decreasing
order since if some energy consumption limit is violated for some rs1,π1(¯̀),
then all baseline start times s1,π1(¯̀) ≤ rs1,π1(¯̀) cannot be robust, and the
algorithm can continue directly with the second step.

Step 2 The earliest robust baseline start time relative to only J1,π1(¯̀): After the
first step, it is easy to see that for every baseline start time [s1,π1(¯̀) .. s

max
1,π1(¯̀)

]

of J1,π1(¯̀), there is no realized schedule of jobs J1,π1(1), J1,π1(2), . . . , J1,π1(¯̀) in
which both J1,π1(¯̀−1), J1,π1(¯̀) have a non-zero overlap with some metering
interval Ii ∈ I, and Emax

i would be violated. However, the energy limits can
still be violated in the metering intervals in which only J1,π1(¯̀) has a non-zero
overlap.

For each t ∈ [s1,π1(¯̀) ..LS (s)1,π1(¯̀)], there exists a realized schedule rs of jobs
J1,π1(1), J1,π1(2), . . . , J1,π1(¯̀) such that rs1,π1(¯̀) = t. Therefore, the maximum

overlap of J1,π1(¯̀) with every metering interval Ii ∈ I, such that i ≥ b s1,π1(¯̀)

D c,
is

maxOverlapi = min{p1,π1(¯̀),min{τ end
i ,LS (s)1,π1(¯̀) + p1,π1(¯̀)}

−max{τ start
i , s1,π1(¯̀)}} .

(5.53)

Then, s1,π1(¯̀) is not robust if there exists metering interval Ii such that the
maximum overlap is larger than the maximum possible overlap in Ii, i.e.,

maxPossibleOverlapi =

⌊
Emax
i

P1,π1(¯̀)

⌋
< maxOverlapi . (5.54)

If this is the case, then τ end
i −maxOverlapi is the earliest baseline start time

that can be robust.

The complete algorithm for computing the robust baseline start time that
combines all the discussed ideas is shown in Algorithm 8.

68 Problem 1|π1, E
max
i , δmax

k,j = δmax|f

1 Function ComputeEarliestRobustStartTime(π, J1,π1(¯̀), s):
2 /* Computes latest start time for jobs J1,π1(1), J1,π1(2), . . . , J1,π1(¯̀−1)

*/

3 ls ← LS(s);
4 s1,π1(¯̀) ← rs1,π1(¯̀);

5 /* Step 1: Earliest robust baseline start time relative to

J1,π1(1), J1,π1(2), . . . , J1,π1(¯̀−1). */

6 if ¯̀> 1 then
7 s1,π1(¯̀) ← max{s1,π1(¯̀), s1,π1(¯̀−1) + p1,π1(¯̀−1)} ;

8 t← ls1,π1(¯̀−1);

9 while t ≥ min{ls1,π1(¯̀−1), s1,π1(¯̀−1)} do
10 rss ← RSS(s, ¯̀− 1, t);

11 i← b
rss1,π1(¯̀−1)+p1,π1(¯̀−1)−1

D
c;

12 maxPossibleOverlapi =⌊
Emax
i −

∑¯̀−1
`=1

Overlap(rss1,π1(`),p1,π1(`),i)·P1,π1(`)

P1,π1(¯̀)

⌋
;

13 if p1,π1(¯̀−1) ≤ maxPossibleOverlapi then
14 /* Small optimization: Entire job fits into Ii without

violating Emax
i ; therefore, continue with metering

interval Ii−1. */

15 t← τ start
i − p1,π1(¯̀−1) − 1;

16 else if maxPossibleOverlapi ≥ τ end
i − (rss1,π1(¯̀−1) + p1,π1(¯̀−1)) then

17 /* Emax
i is not violated. */

18 t← t− 1;

19 else
20 /* Emax

i is violated. */

21 s1,π1(¯̀) ← τ end
i −maxPossibleOverlapi;

22 break;

23 /* Step 2: Earliest robust baseline start time relative to only

J1,π1(¯̀). */

24 ls1,π1(¯̀) ← LS(s)1,π1(¯̀);

25 i← b
s1,π1(¯̀)

D
c;

26 while i ≤ |I| do
27 maxPossibleOverlapi ← b

Emax
i

P1,π1(¯̀)
c;

28 maxOverlapi =

min{p1,π1(¯̀),min{τ end
i , ls1,π1(¯̀) + p1,π1(¯̀)} −max{τ start

i , s1,π1(¯̀)}};
29 if maxOverlapi = 0 then
30 break;
31 else if maxPossibleOverlapi < maxOverlapi then

32 ls1,π1(¯̀) ← τ end
i −maxPossibleOverlapi;

33 ls1,π1(¯̀) ← LS(s)1,π1(¯̀);

34 i← i+ 1;

35 if s1,π1(¯̀) > smax
1,π1(¯̀) then

36 return s1,π1(¯̀),FEASIBLE;

37 else
38 return ∅, INFEASIBLE PERMUTATION;

Algorithm 8: Earliest robust baseline start time of J1,π1(¯̀) for fixed permu-
tation π, optimized version.

Scheduling in Stochastic Environments 69

5.2.4 Time Complexity of the Algorithm for Computing the
Robust Baseline Schedule

The complexity of Step 1 of Algorithm 8 is O(n2 · δmax) since the number of unique
right-shift schedules of J1,π1(¯̀−1) is at most n · δmax, and the computation of a
right-shift schedule can be done in O(n). The complexity of Step 2 is O(|I|).
Since Algorithm 8 is repeated for each position in the fixed permutation, the
complexity of computing the optimal robust schedule for the given fixed permutation
is O(n3 · δmax + n · |I|); the pseudo-polynomiality of the algorithm arises due to
term δmax. Notice that if the jobs cannot violate the energy consumptions limits
by themselves, i.e.,

min{p1,j , D} · P1,j ≤ Emax
i , ∀J1,j ∈ J ;∀Ii ∈ I , (5.55)

then Step 2 is not necessary, and the complexity decreases to O(n3 · δmax).

5.3 Problem 1|Emax
i , δmax

k,j = δmax|Cmax

To solve the single machine problem 1|Emax
i , δmax

k,j = δmax|Cmax, we propose various
methods (both exact and heuristic) that utilize the pseudo-polynomial algorithm
for the fixed permutation (see Section 5.2).

5.3.1 Logic-based Benders Decomposition

LBBD [30] is a generalization of the classical Benders decomposition that is used for
solving large-scale optimization problems. In the classical Benders decomposition,
the subproblem must be a continuous linear or non-linear problem, whereas in
LBBD, the subproblem may have an arbitrary form.

The idea of LBBD is to decompose the original problem into two parts:
(i) a master problem, which is a relaxation of the original problem, and (ii) a
subproblem. After the master problem is solved to optimality, its solution is verified
by the subproblem, whether it is feasible in the original problem or not. If yes,
then the decomposition algorithm finishes since an optimal feasible solution for the
original problem has been found. If not, a no-good cut is generated, which is a
constraint such that the found solution violates it. The new no-good cut is added
to the master problem, and the whole procedure is repeated; see Fig. 5.1.

In our case, the master problem is essentially a MILP model of 1|Emax
i |Cmax. The

master problem’s solution, i.e., baseline start times s, is checked in the subproblem,
whether it is robust or not. If schedule s is not robust, a no-good cut is generated
for the master problem.

The modern LBBD implementations [38] add the no-good cuts gradually while
solving the master problem. This approach is more integrated into MILP solvers and
therefore more efficient since the master problem does not need to be resolved from
scratch every time a new no-good cut is generated. State-of-the-art solvers, such as
Gurobi or CPLEX, support adding the no-good cuts on-the-fly using mechanism
called lazy constraints generation.

70 Problem 1|Emax
i , δmax

k,j = δmax|Cmax

Figure 5.1: General schema of logic-based Benders decomposition.

5.3.1.1 Master Problem

The master problem is modeled as a time-indexed MILP, which is suitable for
generating the no-good cuts. There are three types of variables in the program:
(i) a binary baseline start time defined as xj,t = 1 iff J1,j starts at t in the baseline
schedule, (ii) the energy consumed in time t denoted as Etime

t , and (iii) Cmax

denoting the makespan. The master problem formulation follows.

min Cmax (5.56)∑
t∈[0 .. H−1]

t · xj,t + p1,j ≤ Cmax, ∀J1,j ∈ J (5.57)

smax
1,j∑
t=0

xj,t = 1, ∀J1,j ∈ J (5.58)

∑
J1,j∈J

min{smax
1,j ,t}∑

t′=max{0,t−p1,j+1}

xj,t′ ≤ 1, ∀t ∈ [0 .. H − 1] (5.59)

∑
J1,j∈J

min{smax
1,j ,t}∑

t′=max{0,t−p1,j+1}

xj,t′ · P1,j ≤ Etime
t , ∀t ∈ [0 .. H − 1] (5.60)

τend
i∑

t=τstart
i

Etime
t ≤ Emax

i , ∀Ii ∈ I (5.61)

The objective (5.56) of the master problem minimizes the makespan, which is
the maximum completion time over all jobs (5.57). Constraint (5.58) ensures
that each job starts in some time that is at most its maximum start time smax

1,j .
Constraint (5.59) enforces that each time can be occupied by at most one job.
Computation of consumed energy in time t is in Constraint (5.60). The last

Scheduling in Stochastic Environments 71

constraint (5.61) ensures that the energy consumption limit in each metering
interval is not violated for the baseline schedule.

The master model mentioned above does not take the deviations of the start
times into account. We can strengthen the model by including the following
constraint

τend
i −1−δ∑

t=max{0,τstart
i −δ}

Etime
t ≤ Emax

i , ∀Ii ∈ I;∀δ ∈ [1 .. δmax] (5.62)

that guarantees the energy consumption limits for a subset of realized schedules, in
which only a single job deviated. The idea is illustrated in Fig. 5.2 and explained
below. Assume that J1,j is the job that occupies time τ start

i −δ in baseline schedule s,
where δ ∈ [1 .. δmax]. Let rs be a realized schedule corresponding to deviation situa-
tion δ defined as δk,j = δ and δk,j′ = 0 for J1,j′ 6= J1,j . Due to the deviation of J1,j ,
all unit parts of the jobs that are allocated within time interval [τ start

i − δ .. τ end
i − δ]

in the baseline schedule will be right-shifted into interval [τ start
i .. τ end

i] in realized
schedule rs. The constraint is also valid when there are idle times between the
jobs, although the constraint is weaker in such case because only a subset of jobs’
unit parts in [τ start

i .. τ end
i] is taken into account when computing the total energy

consumption in Ii.

J1,j

Ii

τ starti − δ τendi − δ

δ1,j = 2

s

rs

τ starti τendi

τendi − δ

Figure 5.2: Illustration of strengthening cut (5.62) for the master problem.

5.3.1.2 Subproblem - Robustness Cuts

When integer baseline schedule s′ is found for the master problem, it is checked for
robustness, i.e., whether the energy consumption limits are satisfied in every realized
schedule. The robustness check is performed by extracting the jobs permutation π′1
from s′ and finding the optimal robust start times s? for π′1 using the procedure
explained in Section 5.2. The next action depends on the makespan of both solutions.
If the makespan is equal, no cut is generated. If makespan s′ is larger than of s?,
the following simple no-good cut is generated

Cmax ≤ max
J1,j∈J

s?1,j + p1,j . (5.63)

On the other hand, if makespan s′ is smaller than of s?, then schedule s′ is not
robust, and no-good cuts based on cutting intervals are generated. In general,
no-good cuts with cutting intervals have a form of∑

J1,j∈J

∑
t∈Tj

xj,t ≤ n− 1 , (5.64)

72 Problem 1|Emax
i , δmax

k,j = δmax|Cmax

where Tj is a cutting interval of job J1,j for schedule s′. Informally, a no-good cut
based on cutting intervals enforces that at least one job starts outside its cutting
interval.

Simple cutting intervals that forbid one particular schedule s′ can be defined as
∀J1,j ∈ J : T 1

j = {s′1,j}. However, such no-good cuts are weak since only one non-
robust schedule is forbidden. In the following text, we introduce cutting intervals
T 2
j that exploit the knowledge of the optimal robust schedule s? for permutation π′1.

Informally, the cutting intervals are defined in such a way that the start times of the
jobs in the baseline schedules having the same order as π′1 are “pushed” towards s?.

The cutting intervals T 2
j depend on whether π′1 is infeasible (i.e., no robust

baseline schedule exists with permutation π′1) or whether optimal robust schedule
exists.

1. Infeasible permutation: this means that any baseline schedule having the
same permutation of the jobs as π′1 cannot be robust. Therefore, a no-good
cut must be generated that “forbids” π′1. Such no-good cut can be formulated
by introducing disjunctive modeling into the master problem using big M
method, which has poor relaxation. Alternatively, we can forbid only a subset
of all the schedules having the same permutation of the jobs as π′1 with a
simpler constraint described below.

Consider two jobs J1,π′1(`), J1,π′1(`+1) that are executed consecutively in s′.
Consider another baseline schedule s′′ in which the start time of J1,π′1(`+1)

is at least s′1,π′1(`+1). To guarantee that J1,π′1(`) starts before J1,π′1(`+1) in s′′,

the completion time of J1,π′1(`) must be at most s′1,π′1(`+1). Based on this idea,

we can find the cutting interval for every job

T 2
π′1(`) =

{
[s′1,π′1(`) .. min{smax

1,π′1(`), s
′
1,π′1(`+1) − p1,π′1(`)}] ` ∈ [1 .. n− 1]

[s′1,π′1(`) .. s
max
1,π′1(`)] ` = n

(5.65)
It is guaranteed that if all the jobs start anywhere in these cutting intervals,
the order of jobs is the same as infeasible permutation π′1.

2. Feasible permutation: since s′ 6= s? (otherwise s′ would be robust), there
exists a position ¯̀ in permutation π′1 such that

s′1,π′1(`) = s?1,π′1(`) , ∀` ∈ [1 .. ¯̀− 1]

s′1,π′1(¯̀) 6= s?1,π′1(¯̀) ,
(5.66)

i.e., job J1,π′1(¯̀) is the earliest job with a different start time than the optimal
robust one. One of the following two cases occurs.

(a) s′
1,π′1(¯̀)

< s?
1,π′1(¯̀)

: consider Fig. 5.3 illustrating this case. The idea of

this no-good cut is that if in any baseline schedule s the jobs on positions
[1 .. ¯̀] are the same as in π′1, then the start time of J1,π′1(¯̀) must be
pushed towards s?

1,π′1(¯̀)
since any earlier baseline start time is not robust

for J1,π′1(¯̀). However, special care needs to be taken for the case when

job J1,π′1(¯̀+1) starts before s?
1,π′1(¯̀)

in s′; to make sure that no feasible

Scheduling in Stochastic Environments 73

J1,π′

1
(ℓ̄)

s
⋆

1,π′

1
(ℓ̄)

s
′

s
⋆

s
′

1,π′

1
(ℓ̄)

J1,π′

1
(ℓ̄)

Figure 5.3: Cutting interval T 2
j for a feasible permutation, case s′1,π′1(¯̀) < s?1,π′1(¯̀) .

baseline schedule in which job J1,π′1(¯̀+1) starts before s?
1,π′1(¯̀)

is not cut

out, the cutting interval of J1,π′1(¯̀) is bounded above by s′
1,π′1(¯̀+1)

.

The last thing to notice is that the permutation of the jobs on positions
` > ¯̀ is not important, since the earliest robust baseline start time of
s?

1,π′1(¯̀)
is dependent only on the jobs on positions ` ≤ ¯̀; see Eq. (5.27).

Therefore, the no-good cut only needs to guarantee that they are not
executed before π′1(¯̀).

Based on this, the cutting intervals for this case can be formulated as

T 2
π′1(`) =

[s′1,π′1(`) .. min{smax
1,π′1(`), s

′
1,π′1(`+1) − p1,π′1(`)}] ` ∈ [1 .. ¯̀− 1]

[s′1,π′1(¯̀) .. s
?
1,π′1(¯̀) − 1] ` = ¯̀ ∧ ¯̀= n

[s′1,π′1(¯̀) .. min{s?1,π′1(¯̀) − 1, s′1,π′1(¯̀+1) − p1,π′1(¯̀)}] ` = ¯̀ ∧ ¯̀< n

[min{s?1,π′1(¯̀), s
′
1,π′1(¯̀+1)} .. s

max
1,π′1(`) ` ∈ [¯̀+ 1 .. n]

(5.67)

(b) s′
1,π′1(¯̀)

> s?
1,π′1(¯̀)

: this case is analogous to the previous one with the

difference that job J1,π′1(¯̀) is being pushed to the left to s?
1,π′1(¯̀)

T 2
π′1(`) =

[s′1,π′1(`) .. min{smax

1,π′1(`), s
′
1,π′1(`+1) − p1,π′1(`)}] ` ∈ [1 .. ¯̀− 1]

[s?1,π′1(¯̀) + 1 .. s′1,π′1(¯̀)] ` = ¯̀

[s′1,π′1(¯̀) .. s
max
1,π′1(`)] ` ∈ [¯̀+ 1 .. n]

(5.68)

Notice that even though the cutting intervals T 2
j may cut out robust baseline

schedules in which the jobs are not starting at their earliest robust start times, they
do not cut out the optimal schedule s?. Therefore, LBBD of the scheduling problem
remains optimal.

5.3.2 Branch-and-Bound Based Algorithm

A Branch-and-Bound method is a common way how to devise an exact algorithm for
combinatorial problems, which is based on a systematic search space enumeration.
The method has two key ingredients: (i) branching, i.e., how the search space
is partitioned and explored, and (ii) bounding, i.e., a mechanism for discarding
unpromising parts of the solution space.

74 Problem 1|Emax
i , δmax

k,j = δmax|Cmax

As with the LBBD approach, the proposed Branch-and-Bound based algorithm
exploits the fact that the earliest robust start time of a job can be found in pseudo-
polynomial time using Algorithm 8. The proposed algorithm constructs the jobs
permutation one-by-one in a depth-first search manner. In each node of the search
tree, the position of one job is fixed. The algorithm branches on every unscheduled
job so far, and whenever a job is appended at the end of the current schedule, its
start time is fixed to its earliest robust start time.

The lower bound for bounding is simple: we add the sum of the processing times
of the unscheduled jobs to the Branch-and-Bound node’s current makespan. Each
node having a lower bound larger or equal to the makespan of the best feasible
solution found so far is not explored further.

5.3.3 Adaptive Local Search Heuristic

Similarly, as in the non-robust scheduling, we propose a heuristic algorithm for the
problem 1|Emax

i , δmax
k,j = δmax|Cmax so that large instances can be handled. The

heuristic is based on the adaptive local search framework from Section 3.2.

5.3.3.1 The Scheduling Operator

Given an all-jobs ordering, the scheduling operator computes the start times using
Algorithm 8 on a one-by-one basis. This way, we obtain the optimal robust baseline
start times for the given all-jobs ordering.

5.3.3.2 Finding the Initial Incumbent Solution: a Constructive Heuris-
tic

The adaptive local search is initialized with an incumbent solution found by the
following constructive heuristic algorithm. In each iteration, the algorithm selects
the currently unscheduled job that minimizes the makespan, if scheduled at its
earliest robust start time. The full pseudocode is given in Algorithm 9.

5.3.4 Experiments

The proposed methods for the 1|Emax, δmax
k,j = δmax|Cmax scheduling problem are

evaluated in this section. Since the are no existing algorithms for this scheduling
problem in the related literature, the proposed methods are only compared to each
other.

5.3.4.1 Benchmark Instances

The dataset for the experiments is generated similarly as in Section 4.5.4.1. The
only two differences are in the setting of the maximum deviation and the size of the
instances. To evaluate how instances’ complexity changes with increasing maximum
deviation, each generated instance is copied while differing only in the maximum
deviation parameter δmax ∈ {0, 2, 4}.

For each n ∈ {5, 10, 15, 50, 150}, m ∈ {1}, D ∈ {15, 60}, α1 ∈ {1, 2, 4},
α2 ∈ {0.8, 1.2, 1.6}, and δmax ∈ {0, 2, 4} we randomly generated 10 instances using

Scheduling in Stochastic Environments 75

1 Function RobustConstructiveHeuristic():
2 /* The unscheduled jobs. */

3 J ′ ← J ;
4 /* The constructed all-jobs ordering. */

5 π1 ← ∅;
6 /* The current position into the all-jobs ordering. */

7 `← 1;
8 /* The baseline start times. */

9 s← 0;
10 while J ′ 6= ∅ do
11 /* Select the next unscheduled job that minimizes the current

makespan. */

12 (j?, Cmax)← (∅,∞);
13 for J1,j ∈ J ′ do
14 π1(`)← j;
15 s1,j ← ComputeEarliestRobustStartTime(π1, J1,j , s);
16 if s1,j ≤ smax

1,j ∧ s1,j + p1,j < Cmax then
17 (j?, Cmax)← (j, s1,j + p1,j);

18 if j? = ∅ then
19 /* Cannot construct the initial order. */

20 return ∅;
21 J ′ ← J ′ \ {J1,j?};
22 π1(`)← j?;
23 s1,j? ← ComputeEarliestRobustStartTime(π1, J1,j? , s);
24 `← `+ 1;

25 return π1;

Algorithm 9: Constructive heuristic for finding the initial incumbent solu-
tion for problem 1|Emax

i , δmax
k,j = δmax|Cmax.

76 Problem 1|Emax
i , δmax

k,j = δmax|Cmax

the scheme above. Therefore, the generated dataset has 5 · 1 · 2 · 3 · 3 · 3 · 10 = 2700
instances in total. Notice that the generated dataset contains only feasible instances
due to the clamping of the jobs’ power consumption and the heuristically-obtained
horizons.

5.3.4.2 Experiment Setting and Remarks

The following abbreviations of the evaluated method are used: (i) R-CONS: con-
structive heuristic (see Algorithm 9), (ii) NR-ALS: adaptive local search algorithm
(see Algorithm 5.3.3) initialized with the solution found by R-CONS, (iii) R-BAB:
Branch-and-Bound algorithm (see Section 5.3.2) initialized with the solution found
by R-CONS, and (iv) R-LBBD: Logic-based Benders Decomposition (see Sec-
tion 5.3.1) initialized with the solution found by R-CONS.

The rest of the experiment setting is the same as in Section 4.5.4.2.

5.3.4.3 Experiment Results

The results for the experiment are shown in tables 5.1, 5.2, 5.3, and 5.4. From the
results, we may conclude the following:

• The small instances (n ∈ {5, 10}) can all be solved by R-BAB to optimality.
This is not surprising since R-BAB is basically an exhaustive search through
all the permutations of the jobs with additional pruning. The number of
permutations for n = 10 is not large, and can be easily enumerated even by
inexpensive computers. This is supported by the results for n ≥ 15, where
R-BAB solves significantly fewer instances to optimality.

For R-LBBD, the breaking point for solving the instances to optimality is
around n = 10. The reason is that R-LBBD works primarily with the start
times of the jobs, not their permutation.

• R-ALS performs well both on small and large instances. Except for instances
n = 5, its median of the worse-to-best ratio is at most 0.7%, which is smaller
than what R-BAB achieves 1.6% on the larger instances.

• R-ALS and R-BAB are not affected by α1, α2, D. However, α1 and D have a
slight influence on the R-LBBD. With increasing values of these parameters,
R-LBBD has a lesser chance of solving an instance to optimality.

Scheduling in Stochastic Environments 77

Table 5.1: The experiment results. Group parameters: D.

D method # opt. proofs # best

15

R-CONS 0 121
R-ALS 0 1335
R-BAB 554 608

R-LBBD 300 450

60

R-CONS 0 83
R-ALS 0 1317
R-BAB 551 585

R-LBBD 234 324

Table 5.2: The experiment results. Group parameters: α1.

α1 method # opt. proofs # best

1

R-CONS 0 7
R-ALS 0 885
R-BAB 360 384

R-LBBD 201 286

2

R-CONS 0 39
R-ALS 0 876
R-BAB 362 384

R-LBBD 184 215

4

R-CONS 0 158
R-ALS 0 891
R-BAB 383 425

R-LBBD 149 273

Table 5.3: The experiment results. Group parameters: α2.

α2 method # opt. proofs # best

0.8

R-CONS 0 68
R-ALS 0 873
R-BAB 378 396

R-LBBD 177 238

1.2

R-CONS 0 73
R-ALS 0 891
R-BAB 366 397

R-LBBD 178 266

1.6

R-CONS 0 63
R-ALS 0 888
R-BAB 361 400

R-LBBD 179 270

78 Problem 1|Emax
i , δmax

k,j = δmax|Cmax

Table 5.4: The experiment results. Group parameters: n.

worse-to-best ratio
n method # opt. proofs # best # no sol. median max

5

R-CONS 0 127 0 1.04865 1.48571
R-ALS 0 535 0 1.03922 1.10294
R-BAB 540 540 0 BEST BEST

R-LBBD 499 539 0 1.00413 1.00413

10

R-CONS 0 55 0 1.03468 1.36620
R-ALS 0 501 0 1.00667 1.04478
R-BAB 540 540 0 BEST BEST

R-LBBD 35 180 0 1.01881 1.23148

15

R-CONS 0 22 0 1.02607 1.31884
R-ALS 0 536 0 1.00226 1.05096
R-BAB 24 112 0 1.00808 1.10145

R-LBBD 0 55 0 1.01818 1.31884

50

R-CONS 0 0 0 1.01898 1.29959
R-ALS 0 540 0 BEST BEST
R-BAB 1 1 0 1.01589 1.24380

R-LBBD 0 0 0 1.01776 1.29959

150

R-CONS 0 0 0 1.01213 1.15898
R-ALS 0 540 0 BEST BEST
R-BAB 0 0 0 1.01161 1.15898

R-LBBD 0 0 0 1.01213 1.15898

6
Chapter

Conclusion

This thesis investigated the production scheduling problem with energy consumption
limits. The aim is to decrease the demand charge part of the electricity bill,
which corresponds to penalty fees for violating the contracted limits. We studied
this problem and developed multiple algorithms for deterministic and stochastic
environments.

6.1 Fulfillment of the Goals

1. Study the related energy-aware scheduling literature. Formalize the scheduling
problem with the energy consumption limits in both deterministic and stochastic
production environments.

The peak demand charge takes a considerable portion of the electricity bill.
Despite that, most of the existing scheduling literature considers energy charge
related objectives, e.g., energy cost minimization with real-time prices. Only
a few works deal with the peak power demand charge, where the goal is to
minimize the maximum peak power demand.

In the Czech Republic, where we are based, the production companies must
satisfy the contracted energy consumption limits. These limits are often
violated if only traditional scheduling objectives are considered; thus, penalty
fees must be paid. This was the case for the company producing tempered
glass that motivated our research. Moreover, the company’s production was
subject to non-determinism in the production, so even if human schedulers
designed feasible production schedules w.r.t. energy limits, random delays in
start times of the jobs lead to violation of these limits anyway.

The scheduling problem with the energy consumption limits can be seen as
a generalization of a problem with the peak power limits. However, even
fewer works deal with the energy limits topic. One of these works proposed
a mixed-integer linear programming model, which has a limitation that a
machine can process only one job within a metering interval. The closest
scheduling problem is RCPSP/π; however, it does not deal with the robustness
against uncertainty in the production, and the achieved algorithmic results
are dependent on the length of the scheduling horizon.

2. Formalize the scheduling problem with the energy consumption limits in both
deterministic and stochastic production environments.

The scheduling problem was formalized in Chapter 2. The formalization
captures multi-machine environments, possibly different energy limits in every
metering interval, and delays of the jobs’ start times.

3. Investigate the proposed scheduling problem. Determine its computational
complexity and design algorithms (both exact and heuristic) for solving the
problem.

79

80 Future Work

The scheduling problem with the energy consumption limits was studied within
a deterministic and stochastic environment. In the deterministic environment,
hard problem variants were identified. An important theoretical result is that
the problem with fixed ordering of the jobs, constant number of machines,
the no-crossing assumption, and makespan as the objective can be solved in
polynomial time (although this problem is in XP if the number of machines is
variable). Due to the pessimistic complexity results, we designed an adaptive
local search algorithm with a heuristic scheduling operator, alongside with
CP and MILP-based models. We improved an existing MILP model from
the literature to the related scheduling problem by finding a property that
decreases the number of constraints in the model.

A significant result obtained within the stochastic environment is a pseudo-
polynomial algorithm for the fixed order of the jobs on a single machine
while minimizing a regular objective. This algorithm is then utilized in two
algorithms (BAB and LBBD) and one heuristic algorithm.

4. Propose a parametrized generator of the benchmark instances. Experimentally
evaluate the performance of the developed algorithms.

We designed a generator of the benchmark instances parametrized by the
energy-limit tightness, length of the jobs’ processing times, metering intervals’
length, maximum deviation, number of machines, and number of jobs.

In the deterministic multi-machine environment, the proposed CP, MILP-
based models, and the local search algorithm were compared against MILP
models described in the existing literature that were adapted from the related
scheduling problems. The experiment results show that our methods outper-
formed the existing ones from the literature. Among the proposed methods,
CP performs the best up to 15 jobs per machine (up to 10 machines), whereas
for 50 jobs the proposed heuristic local search algorithm outperforms CP
model (except for the instances with 10 machines). For large scale instances
(up to 350 jobs on each machine), the local search algorithm outperforms all
the other methods.

The algorithms designed for the robust scheduling problem were evaluated
within a single-machine environment. For small instances (up to 10 jobs), BAB
performed the best, although the proposed adaptive local search algorithm
remained competitive. For the large instances (up to 150 jobs), the heuristic
algorithm clearly outperforms the exact methods.

6.2 Future Work

The scheduling problem with energy consumption limits is far from being thoroughly
researched. The following list presents possible directions, that would extend this
work.

1. Investigation of the time complexity of the deterministic problem with a fixed
order of the jobs and a fixed number of machines. A positive answer to this
question could open a way for a more efficient scheduling operator.

Conclusion 81

2. Generalization of the achieved results for the robust scheduling problem
to the environment with multiple machines. At the moment, the robust
multi-machine scheduling problem can be tackled by splitting the available
energy in every interval among the machines according to some heuristic
rule. This would decompose the original multi-machine problem into many
independent single-machine ones. The question remains on how to split the
energy effectively.

3. The latest two trends in the energy-aware scheduling are real-time energy
prices and power-saving states of the machines [7, 5]. By combing these
aspects with the energy consumption limits, the resulting scheduling problem
would consider all parts of the electricity bill, which could be very attractive
for the energy-intensive manufacturing companies.

82 Future Work

Bibliography
[1] Jose Batista Abikarram, Katie McConky, and Ruben Proano. “Energy cost

minimization for unrelated parallel machine scheduling under real time and
demand charge pricing”. In: Journal of Cleaner Production 208 (2019), pp. 232–
242. issn: 0959-6526. doi: https://doi.org/10.1016/j.jclepro.2018.10.
048.

[2] MohammadMohsen Aghelinejad, Yassine Ouazene, and Alice Yalaoui. “Com-
plexity analysis of energy-efficient single machine scheduling problems”. In:
Operations Research Perspectives 6 (2019), p. 100105. issn: 2214-7160. doi:
https://doi.org/10.1016/j.orp.2019.100105.

[3] Y. Alaouchiche, Y. Ouazene, and F. Yalaoui. “Economic and Energetic Perfor-
mance Evaluation of Unreliable Production Lines: An Integrated Analytical
Approach”. In: IEEE Access 8 (2020), pp. 185330–185345. doi: 10.1109/
ACCESS.2020.3029761.

[4] R. Alvarez-Valdes et al. “GRASP and path relinking for project scheduling
under partially renewable resources”. In: European Journal of Operational
Research 189.3 (2008), pp. 1153–1170. issn: 0377-2217. doi: https://doi.
org/10.1016/j.ejor.2006.06.073.

[5] Ondřej Benedikt, István Módos, and Zdeněk Hanzálek. “Power of Pre-
Processing: Production Scheduling with Variable Energy Pricing and Power-
Saving States”. In: Constraints (2020). issn: 1572-9354. doi: https://doi.
org/10.1007/s10601-020-09317-y.

[6] Ondřej Benedikt, István Módos, and Zdeněk Hanzálek. “Power of Pre-
Processing: Production Scheduling with Variable Energy Pricing and Power-
Saving States”. In: Proceedings of the 17th International Conference on the
Integration of Constraint Programming, Artificial Intelligence, and Operations
Research (CPAIOR). 2020.

[7] Ondřej Benedikt et al. “Energy-Aware Production Scheduling with Power-
Saving Modes”. In: Integration of Constraint Programming, Artificial In-
telligence, and Operations Research. Ed. by Willem-Jan van Hoeve. Cham:
Springer International Publishing, 2018, pp. 72–81. isbn: 978-3-319-93031-2.

[8] Konstantin Biel and Christoph H. Glock. “Systematic literature review of deci-
sion support models for energy-efficient production planning”. In: Computers
& Industrial Engineering 101 (2016), pp. 243–259. issn: 0360-8352.

[9] Michal Bouška et al. “Data-driven Algorithm for Scheduling with Total
Tardiness”. In: Proceedings of the 9th International Conference on Operations
Research and Enterprise Systems (ICORES). INSTICC. SciTePress, 2020,
pp. 59–68. isbn: 978-989-758-396-4. doi: 10.5220/0008915300590068.

[10] A.A.G. Bruzzone et al. “Energy-aware scheduling for improving manufacturing
process sustainability: A mathematical model for flexible flow shops”. In: CIRP
Annals - Manufacturing Technology 61.1 (2012), pp. 459–462. issn: 0007-8506.
doi: http://dx.doi.org/10.1016/j.cirp.2012.03.084.

83

https://doi.org/https://doi.org/10.1016/j.jclepro.2018.10.048
https://doi.org/https://doi.org/10.1016/j.jclepro.2018.10.048
https://doi.org/https://doi.org/10.1016/j.orp.2019.100105
https://doi.org/10.1109/ACCESS.2020.3029761
https://doi.org/10.1109/ACCESS.2020.3029761
https://doi.org/https://doi.org/10.1016/j.ejor.2006.06.073
https://doi.org/https://doi.org/10.1016/j.ejor.2006.06.073
https://doi.org/https://doi.org/10.1007/s10601-020-09317-y
https://doi.org/https://doi.org/10.1007/s10601-020-09317-y
https://doi.org/10.5220/0008915300590068
https://doi.org/http://dx.doi.org/10.1016/j.cirp.2012.03.084

84 BIBLIOGRAPHY

[11] Ada Che, Yizeng Zeng, and Ke Lyu. “An efficient greedy insertion heuristic
for energy-conscious single machine scheduling problem under time-of-use
electricity tariffs”. In: Journal of Cleaner Production 129 (2016), pp. 565–577.
issn: 0959-6526. doi: https://doi.org/10.1016/j.jclepro.2016.03.150.

[12] Ada Che, Shibohua Zhang, and Xueqi Wu. “Energy-conscious unrelated
parallel machine scheduling under time-of-use electricity tariffs”. In: Journal
of Cleaner Production 156 (2017), pp. 688–697. issn: 0959-6526. doi: https:
//doi.org/10.1016/j.jclepro.2017.04.018.

[13] Lu Chen, Jinfeng Wang, and Xianyang Xu. “An energy-efficient single machine
scheduling problem with machine reliability constraints”. In: Computers &
Industrial Engineering 137 (2019), p. 106072. issn: 0360-8352. doi: https:
//doi.org/10.1016/j.cie.2019.106072.

[14] Azeddine Cheref, Christian Artigues, and Jean-Charles Billaut. “A new robust
approach for a production scheduling and delivery routing problem”. In:
IFAC-PapersOnLine 49.12 (2016). 8th IFAC Conference on Manufacturing
Modelling, Management and Control MIM 2016, Troyes, France, 28—30 June
2016, pp. 886–891. issn: 2405-8963.

[15] Ywh-Leh Chou, Ju-Min Yang, and Cheng-Hung Wu. “An energy-aware
scheduling algorithm under maximum power consumption constraints”. In:
Journal of Manufacturing Systems 57 (2020), pp. 182–197. issn: 0278-6125.
doi: https://doi.org/10.1016/j.jmsy.2020.09.004.

[16] Elvin Coban et al. “Robust Scheduling with logic-based Benders decom-
position”. In: Operations Research Proceedings (OR 2014). Ed. by Marco
Lübbecke et al. Springer International Publishing, 2016, pp. 99–105. isbn:
978-3-319-28697-6.

[17] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameter-
ized Complexity. Springer Publishing Company, Incorporated, 2013. isbn:
1447155580, 9781447155584.

[18] Kan Fang et al. “Flow shop scheduling with peak power consumption con-
straints”. In: Annals of Operations Research 206.1 (2013), pp. 115–145. issn:
0254-5330.

[19] Kan Fang et al. “Scheduling on a single machine under time-of-use electricity
tariffs”. In: Annals of Operations Research 238.1 (Mar. 2016), pp. 199–227.

[20] Christian Gahm et al. “Energy-efficient scheduling in manufacturing compa-
nies: A review and research framework”. In: European Journal of Operational
Research 248.3 (2016), pp. 744–757. issn: 0377-2217.

[21] Dragoljub Gajic et al. “Implementation of an integrated production and elec-
tricity optimization system in melt shop”. In: Journal of Cleaner Production
155 (2017). Sustainable Development of Energy, Water and Environmental
Systems, pp. 39–46. issn: 0959-6526. doi: https://doi.org/10.1016/j.
jclepro.2016.09.170.

https://doi.org/https://doi.org/10.1016/j.jclepro.2016.03.150
https://doi.org/https://doi.org/10.1016/j.jclepro.2017.04.018
https://doi.org/https://doi.org/10.1016/j.jclepro.2017.04.018
https://doi.org/https://doi.org/10.1016/j.cie.2019.106072
https://doi.org/https://doi.org/10.1016/j.cie.2019.106072
https://doi.org/https://doi.org/10.1016/j.jmsy.2020.09.004
https://doi.org/https://doi.org/10.1016/j.jclepro.2016.09.170
https://doi.org/https://doi.org/10.1016/j.jclepro.2016.09.170

BIBLIOGRAPHY 85

[22] Xu Gong et al. “Energy- and labor-aware flexible job shop scheduling under
dynamic electricity pricing: A many-objective optimization investigation”. In:
Journal of Cleaner Production 209 (2019), pp. 1078–1094. issn: 0959-6526.
doi: https://doi.org/10.1016/j.jclepro.2018.10.289.

[23] R.L. Graham et al. “Optimization and Approximation in Deterministic Se-
quencing and Scheduling: a Survey”. In: Discrete Optimization II. Ed. by
P.L. Hammer, E.L. Johnson, and B.H. Korte. Vol. 5. Annals of Discrete
Mathematics. Elsevier, 1979, pp. 287–326. doi: https://doi.org/10.1016/
S0167-5060(08)70356-X. url: http://www.sciencedirect.com/science/
article/pii/S016750600870356X.

[24] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2019. url:
http://www.gurobi.com.

[25] Hubert Hadera et al. “Optimization of steel production scheduling with com-
plex time-sensitive electricity cost”. In: Computers & Chemical Engineering
76 (2015), pp. 117–136. issn: 0098-1354. doi: http://dx.doi.org/10.1016/
j.compchemeng.2015.02.004.

[26] A. Häıt and C. Artigues. “A hybrid CP/MILP method for scheduling with
energy costs”. In: European Journal of Industrial Engineering 5.4 (2011),
pp. 471–489.

[27] Alain Häıt and Christian Artigues. “On electrical load tracking scheduling for
a steel plant”. In: Computers & Chemical Engineering 35.12 (2011), pp. 3044–
3047. issn: 0098-1354.

[28] C. Herrmann et al. “Energy oriented simulation of manufacturing systems
– Concept and application”. In: CIRP Annals 60.1 (2011), pp. 45–48. issn:
0007-8506. doi: https://doi.org/10.1016/j.cirp.2011.03.127.

[29] Willy Herroelen. “Generating Robust Project Baseline Schedules”. In: Tutori-
als in Operations Research: OR Tools and Applications : Glimpses of Future
Technologies. TutORials in Operations Research. Institute for Operations
Research and the Management Sciences (INFORMS), 2007. Chap. 8, pp. 124–
144. isbn: 9781877640223.

[30] J. N. Hooker. “Planning and Scheduling by logic-based Benders decomposi-
tion”. In: Operations Research 55.3 (2007), pp. 588–602. issn: 0030-364X.

[31] IBM. IBM CPLEX Optimization Studio Documentation. 2019. url: https:
//www.ibm.com/support/knowledgecenter/SSSA5P.

[32] Min Ji, Yong He, and T.C.E. Cheng. “Single-machine scheduling with periodic
maintenance to minimize makespan”. In: Computers & Operations Research
34.6 (2007). Part Special Issue: Odysseus 2003 Second International Workshop
on Freight Transportation Logistics, pp. 1764–1770. issn: 0305-0548. doi:
https://doi.org/10.1016/j.cor.2005.05.034.

[33] H. Kellerer and V.A. Strusevich. “Scheduling parallel dedicated machines
under a single non-shared resource”. In: European Journal of Operational
Research 147.2 (2003). Fuzzy Sets in Scheduling and Planning, pp. 345–364.
issn: 0377-2217. doi: https://doi.org/10.1016/S0377-2217(02)00246-1.

https://doi.org/https://doi.org/10.1016/j.jclepro.2018.10.289
https://doi.org/https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/https://doi.org/10.1016/S0167-5060(08)70356-X
http://www.sciencedirect.com/science/article/pii/S016750600870356X
http://www.sciencedirect.com/science/article/pii/S016750600870356X
http://www.gurobi.com
https://doi.org/http://dx.doi.org/10.1016/j.compchemeng.2015.02.004
https://doi.org/http://dx.doi.org/10.1016/j.compchemeng.2015.02.004
https://doi.org/https://doi.org/10.1016/j.cirp.2011.03.127
https://www.ibm.com/support/knowledgecenter/SSSA5P
https://www.ibm.com/support/knowledgecenter/SSSA5P
https://doi.org/https://doi.org/10.1016/j.cor.2005.05.034
https://doi.org/https://doi.org/10.1016/S0377-2217(02)00246-1

86 BIBLIOGRAPHY

[34] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and
Algorithms. 5th. Springer Publishing Company, Incorporated, 2012. isbn:
3642244874, 9783642244872.

[35] Wen-Yang Ku and J. Christopher Beck. “Mixed Integer Programming mod-
els for job shop scheduling: A computational analysis”. In: Computers &
Operations Research 73 (2016), pp. 165–173. issn: 0305-0548. doi: https:
//doi.org/10.1016/j.cor.2016.04.006.

[36] Philippe Laborie et al. “IBM ILOG CP optimizer for scheduling”. In: Con-
straints 23.2 (Apr. 2018), pp. 210–250. issn: 1572-9354. doi: 10.1007/s10601-
018-9281-x. url: https://doi.org/10.1007/s10601-018-9281-x.

[37] Olivier Lambrechts, Erik Demeulemeester, and Willy Herroelen. “Proactive
and reactive strategies for resource-constrained project scheduling with uncer-
tain resource availabilities”. In: Journal of Scheduling 11.2 (2007), pp. 121–136.
issn: 1099-1425.

[38] Sifeng Lin, Gino J. Lim, and Jonathan F. Bard. “Benders decomposition
and an IP-based heuristic for selecting IMRT treatment beam angles”. In:
European Journal of Operational Research 251.3 (2016), pp. 715–726. issn:
0377-2217.

[39] Hao Luo et al. “Hybrid flow shop scheduling considering machine electricity
consumption cost”. In: International Journal of Production Economics 146.2
(2013), pp. 423–439. issn: 0925-5273. doi: https://doi.org/10.1016/j.
ijpe.2013.01.028.

[40] Oussama Masmoudi, Xavier Delorme, and Paolo Gianessi. “Job-shop schedul-
ing problem with energy consideration”. In: International Journal of Produc-
tion Economics 216 (2019), pp. 12–22. issn: 0925-5273. doi: https://doi.
org/10.1016/j.ijpe.2019.03.021.

[41] Lennart Merkert et al. “Scheduling and energy – Industrial challenges and
opportunities”. In: Computers & Chemical Engineering 72.0 (2015), pp. 183–
198. issn: 0098-1354. doi: http://dx.doi.org/10.1016/j.compchemeng.
2014.05.024.

[42] István Módos, Přemysl Š̊ucha, and Zdeněk Hanzálek. “Algorithms for robust
production scheduling with energy consumption limits”. In: Computers &
Industrial Engineering 112 (2017), pp. 391–408. issn: 0360-8352. doi: https:
//doi.org/10.1016/j.cie.2017.08.011.

[43] István Módos, Přemysl Š̊ucha, and Zdeněk Hanzálek. “Energy-aware Robust
Scheduling: Algorithm for Efficient Solution Space Search”. In: Booklet of
Abstracts - The 29th Conference of the European Chapter on Combinatorial
Optimization. May 2016.

[44] István Módos, Přemysl Š̊ucha, and Zdeněk Hanzálek. “On parallel dedicated
machines scheduling under energy consumption limit”. In: Computers &
Industrial Engineering (2021).

https://doi.org/https://doi.org/10.1016/j.cor.2016.04.006
https://doi.org/https://doi.org/10.1016/j.cor.2016.04.006
https://doi.org/10.1007/s10601-018-9281-x
https://doi.org/10.1007/s10601-018-9281-x
https://doi.org/10.1007/s10601-018-9281-x
https://doi.org/https://doi.org/10.1016/j.ijpe.2013.01.028
https://doi.org/https://doi.org/10.1016/j.ijpe.2013.01.028
https://doi.org/https://doi.org/10.1016/j.ijpe.2019.03.021
https://doi.org/https://doi.org/10.1016/j.ijpe.2019.03.021
https://doi.org/http://dx.doi.org/10.1016/j.compchemeng.2014.05.024
https://doi.org/http://dx.doi.org/10.1016/j.compchemeng.2014.05.024
https://doi.org/https://doi.org/10.1016/j.cie.2017.08.011
https://doi.org/https://doi.org/10.1016/j.cie.2017.08.011

BIBLIOGRAPHY 87

[45] István Módos, Přemysl Š̊ucha, and Zdeněk Hanzálek. “Robust scheduling for
manufacturing with energy consumption limits”. In: IEEE 21st International
Conference on Emerging Technologies and Factory Automation (ETFA). Sept.
2016. isbn: 978-1-5090-1314-2. doi: http://dx.doi.org/10.1109/ETFA.
2016.7733513.

[46] István Módos et al. “Adaptive online scheduling of tasks with anytime property
on heterogeneous resources”. In: Computers & Operations Research 76 (2016),
pp. 95–117. issn: 0305-0548. doi: https://doi.org/10.1016/j.cor.2016.
06.008.

[47] István Módos et al. “Scheduling on Dedicated Machines with Energy Consump-
tion Limit”. In: Proceedings of the 8th International Conference on Operations
Research and Enterprise Systems (ICORES). INSTICC. SciTePress, 2019,
pp. 53–62. isbn: 978-989-758-352-0. doi: 10.5220/0007307200530062.

[48] Bahman Naderi and Vahid Roshanaei. “Branch-Relax-and-Check: A tractable
decomposition method for order acceptance and identical parallel machine
scheduling”. In: European Journal of Operational Research 286.3 (2020),
pp. 811–827. issn: 0377-2217. doi: https://doi.org/10.1016/j.ejor.
2019.10.014.

[49] Keisuke Nagasawa, Yuto Ikeda, and Takashi Irohara. “Robust flow shop
scheduling with random processing times for reduction of peak power con-
sumption”. In: Simulation Modelling Practice and Theory 59 (2015), pp. 102–
113. issn: 1569-190X.

[50] M. Nattaf et al. “A batch sizing and scheduling problem on parallel machines
with different speeds, maintenance operations, setup times and energy costs”.
In: 2015 International Conference on Industrial Engineering and Systems
Management (IESM). Oct. 2015, pp. 883–891. doi: 10.1109/IESM.2015.
7380260.

[51] Kristian Nolde and Manfred Morari. “Electrical load tracking scheduling of a
steel plant”. In: Computers & Chemical Engineering 34.11 (2010), pp. 1899–
1903. issn: 0098-1354. doi: http://dx.doi.org/10.1016/j.compchemeng.
2010.01.011.

[52] Maroua Nouiri, Abdelghani Bekrar, and Damien Trentesaux. “An energy-
efficient scheduling and rescheduling method for production and logistics
systems”. In: International Journal of Production Research 58.11 (2020),
pp. 3263–3283. doi: 10.1080/00207543.2019.1660826.

[53] Ruilin Pan et al. “Electrical load tracking scheduling of steel plants under time-
of-use tariffs”. In: Computers & Industrial Engineering 137 (2019), p. 106049.
issn: 0360-8352. doi: https://doi.org/10.1016/j.cie.2019.106049.

[54] Paz Perez-Gonzalez and Jose M. Framinan. “Single machine scheduling with
periodic machine availability”. In: Computers & Industrial Engineering 123
(2018), pp. 180–188. issn: 0360-8352. doi: https://doi.org/10.1016/j.
cie.2018.06.025.

[55] Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems. 5th. Springer
Publishing Company, 2016. isbn: 978-3-319-26580-3.

https://doi.org/http://dx.doi.org/10.1109/ETFA.2016.7733513
https://doi.org/http://dx.doi.org/10.1109/ETFA.2016.7733513
https://doi.org/https://doi.org/10.1016/j.cor.2016.06.008
https://doi.org/https://doi.org/10.1016/j.cor.2016.06.008
https://doi.org/10.5220/0007307200530062
https://doi.org/https://doi.org/10.1016/j.ejor.2019.10.014
https://doi.org/https://doi.org/10.1016/j.ejor.2019.10.014
https://doi.org/10.1109/IESM.2015.7380260
https://doi.org/10.1109/IESM.2015.7380260
https://doi.org/http://dx.doi.org/10.1016/j.compchemeng.2010.01.011
https://doi.org/http://dx.doi.org/10.1016/j.compchemeng.2010.01.011
https://doi.org/10.1080/00207543.2019.1660826
https://doi.org/https://doi.org/10.1016/j.cie.2019.106049
https://doi.org/https://doi.org/10.1016/j.cie.2018.06.025
https://doi.org/https://doi.org/10.1016/j.cie.2018.06.025

88 BIBLIOGRAPHY

[56] Stathis Plitsos et al. “Energy-aware decision support for production schedul-
ing”. In: Decision Support Systems 93 (2017), pp. 88–97. issn: 0167-9236.

[57] Nicola Policella et al. “From Precedence Constraint Posting to Partial Order
Schedules: A CSP Approach to Robust Scheduling”. In: AI Commun. 20.3
(Aug. 2007), pp. 163–180. issn: 0921-7126.

[58] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint
Programming (Foundations of Artificial Intelligence). New York, NY, USA:
Elsevier Science Inc., 2006. isbn: 0444527265.

[59] Saeed Rubaiee and Mehmet Bayram Yildirim. “An energy-aware multiob-
jective ant colony algorithm to minimize total completion time and energy
cost on a single-machine preemptive scheduling”. In: Computers & Indus-
trial Engineering 127 (2019), pp. 240–252. issn: 0360-8352. doi: https:

//doi.org/10.1016/j.cie.2018.12.020.

[60] Timo Schudeleit et al. “The Total Energy Efficiency Index for machine tools”.
In: Energy 102 (2016), pp. 682–693. issn: 0360-5442. doi: https://doi.org/
10.1016/j.energy.2016.02.126.

[61] Abhay Sharma, Fu Zhao, and John W. Sutherland. “Econological scheduling
of a manufacturing enterprise operating under a time-of-use electricity tariff”.
In: Journal of Cleaner Production 108 (2015), pp. 256–270. issn: 0959-6526.
doi: https://doi.org/10.1016/j.jclepro.2015.06.002.

[62] Fadi Shrouf et al. “Optimizing the production scheduling of a single machine to
minimize total energy consumption costs”. In: Journal of Cleaner Production
67 (2014), pp. 197–207. issn: 0959-6526. doi: https://doi.org/10.1016/j.
jclepro.2013.12.024.

[63] Přemysl Š̊ucha et al. “Online Scheduling System for Server Based Personnel
Rostering Applications”. In: The 10th International Conference of the Practice
and Theory of Automated Timetabling. Aug. 2014, pp. 561–564. isbn: 978-0-
9929984-0-0.

[64] Giorgi Tadumadze, Simon Emde, and Heiko Diefenbach. “Exact and heuris-
tic algorithms for scheduling jobs with time windows on unrelated parallel
machines”. In: OR Spectrum 42 (2020), pp. 461–497. issn: 1436-6304. doi:
https://doi.org/10.1007/s00291-020-00586-w.

[65] Junbo Tuo, Fei Liu, and Peiji Liu. “Key performance indicators for assessing
inherent energy performance of machine tools in industries”. In: International
Journal of Production Research 57.6 (2019), pp. 1811–1824. doi: 10.1080/
00207543.2018.1508904.

[66] U.S. Department of Energy. Turn Motors Off When Not in Use. https://www.
energy.gov/sites/prod/files/2014/04/f15/motor_tip_sheet10.pdf.
Accessed: 2019-06-02.

[67] Energetický regulačńı úřad. Energetický regulačńı věstńık 10/2018. https:
//portal.gov.cz/obcan/vestniky/eeuaau7/626101795.pdf (in Czech).
Accessed August 25, 2019.

https://doi.org/https://doi.org/10.1016/j.cie.2018.12.020
https://doi.org/https://doi.org/10.1016/j.cie.2018.12.020
https://doi.org/https://doi.org/10.1016/j.energy.2016.02.126
https://doi.org/https://doi.org/10.1016/j.energy.2016.02.126
https://doi.org/https://doi.org/10.1016/j.jclepro.2015.06.002
https://doi.org/https://doi.org/10.1016/j.jclepro.2013.12.024
https://doi.org/https://doi.org/10.1016/j.jclepro.2013.12.024
https://doi.org/https://doi.org/10.1007/s00291-020-00586-w
https://doi.org/10.1080/00207543.2018.1508904
https://doi.org/10.1080/00207543.2018.1508904
https://www.energy.gov/sites/prod/files/2014/04/f15/motor_tip_sheet10.pdf
https://www.energy.gov/sites/prod/files/2014/04/f15/motor_tip_sheet10.pdf
https://portal.gov.cz/obcan/vestniky/eeuaau7/626101795.pdf
https://portal.gov.cz/obcan/vestniky/eeuaau7/626101795.pdf

BIBLIOGRAPHY 89

[68] Jing-jing Wang and Ling Wang. “Decoding methods for the flow shop schedul-
ing with peak power consumption constraints”. In: International Journal of
Production Research 57.10 (2019), pp. 3200–3218. doi: 10.1080/00207543.
2019.1571252.

[69] Ye Yang et al. “Robust optimization for integrated scrap steel charge con-
sidering uncertain metal elements concentrations and production scheduling
under time-of-use electricity tariff”. In: Journal of Cleaner Production 176
(2018), pp. 800–812. issn: 0959-6526. doi: https://doi.org/10.1016/j.
jclepro.2017.12.094.

[70] YiZeng Zeng, Ada Che, and Xueqi Wu. “Bi-objective scheduling on uniform
parallel machines considering electricity cost”. In: Engineering Optimization
50.1 (2018), pp. 19–36. doi: 10.1080/0305215X.2017.1296437.

[71] Shengnan Zhao, Ignacio E. Grossmann, and Lixin Tang. “Integrated scheduling
of rolling sector in steel production with consideration of energy consumption
under time-of-use electricity prices”. In: Computers & Chemical Engineering
111 (2018), pp. 55–65. issn: 0098-1354. doi: https://doi.org/10.1016/j.
compchemeng.2017.12.018.

https://doi.org/10.1080/00207543.2019.1571252
https://doi.org/10.1080/00207543.2019.1571252
https://doi.org/https://doi.org/10.1016/j.jclepro.2017.12.094
https://doi.org/https://doi.org/10.1016/j.jclepro.2017.12.094
https://doi.org/10.1080/0305215X.2017.1296437
https://doi.org/https://doi.org/10.1016/j.compchemeng.2017.12.018
https://doi.org/https://doi.org/10.1016/j.compchemeng.2017.12.018

90 BIBLIOGRAPHY

A
Chapter

Nomenclature

Problem Statement

Mk Machine with index k.

M Set of machines.

Jk,j Job with index j on machine Mk.

JMk Set of jobs on machine with index k.

J Set of all jobs over all machines.

nk Number of jobs on machine Mk.

n Number of all jobs over all machines.

pk,j The processing time of job Jk,j .

Pk,j The power consumption of job Jk,j .

H The scheduling horizon.

Ii Metering interval with index i.

I Set of all metering intervals.

D Length of the metering intervals.

τ start
i The start of metering interval Ii.

τ end
i The end of metering interval Ii.

Emax
i The maximum energy limit in metering interval Ii.

Emax The maximum energy limit (same for every metering inter-
val).

sk,j The baseline start time of job Jk,j .

s The baseline start times.

δmax The maximum deviation.

δ(q) The deviation scenario with index q.

δ
(q)
k,j The deviation of job Jk,j in deviation scenario δ(q).

δ(1) Zero deviation scenario.

∆ The set of all deviation scenarios.

πk Fixed order on machine Mk.

πk(`) The index of a job on machine Mk on `-th position in the
fixed order.

91

92 Nomenclature

RS (s, δ)k,j The realized start time of the job with index j on machine
Mk for baseline start times s and deviation scenario δ.

rs The realized start times.

rsk,j The realized start time of job Jk,j .

smax
k,j The maximum baseline start time of job Jk,j .

Overlap(sk,j , pk,j , i) The length of the overlap of starting at time sk,j and having
processing time pk,j with metering interval Ii.

f Any regular objective.

Cmax The makespan of a schedule.

PDm Parallel dedicated machines.

General Adaptive Local Search

λ All-jobs ordering.

λbest All-jobs ordering of the incumbent solution.

sbest The jobs’ start times of the incumbent solution.

λnh All-jobs ordering of a neighbor.

snh The jobs’ start times of a neighbor.

nhgen The selected neighborhood generator.

3-PARTITION problem

A The set of integers to partition.

aj An element of A indexed by j.

Ai A subset of integers indexed by i.

q The number of subsets.

B The sum of the integers in any subset Ai.

PARTITION problem

A The set of integers to partition.

ak An element of A indexed by k.

A′ A subset of integers.

Nomenclature 93

Problem PDm|πk, no-crossing, Emax
i = Emax|Cmax

(l, r) A slice.

Ψ Set of all slices.

V Set of vertices.

E Set of edges.

w(vl,r, vl′,r′) The weight for edge (vl,r, vl′,r′).

G A graph.

vs Source vertex.

vt Target vertex.

Problem PDm|Emax
i |Cmax: CP model

xk,j An interval variable denoting where job Jk,j is scheduled.

Problem PDm|Emax
i |Cmax: disjunctive MILP model

Cmax Variable for the makespan.

sk,j The start time of job Jk,j .

xk,j,j′ Variable denoting whether job Jk,j is scheduled before job
Jk,j′ .

dk,j,i The length of the overlap between job Jk,j and metering
interval Ii.

zstart
k,j,i Variable that models sk,j ∈ [0, τ end

i − 1].

zend
k,j,i Variable that models sk,j + pk,j ∈ [0, τ start

i].

Problem PDm|Emax
i |Cmax: time-indexed MILP

model

Cmax Variable for the makespan.

t A time.

xk,j,t Variable denoting whether job Jk,j starts at time t.

94 Nomenclature

Problem PDm|Emax
i |Cmax: implicit MILP model

Cmax Variable for the makespan.

Ωk,j The maximum number of consecutive metering intervals that
can have non-zero overlap with job Jk,j .

J span Set of spannable jobs.

dk,j,i The length of the overlap between job Jk,j and metering
interval Ii.

xsk,j,i Variable for whether spannable job Jk,j starts in metering
interval Ii.

x+
k,j,i Variable for whether job Jk,j has non-zero overlap in meter-

ing interval Ii.

y+
k,i Variable for whether some job has non-zero overlap with

metering interval Ii on machine Mk.

d All the overlap variables.

estk,i The earliest start time on machine Mk and in metering
interval Ii.

Problem PDm|Emax
i |Cmax: iterative implicit MILP

model

imax The index of the last metering interval within the considered
scheduling horizon.

Problem PDm|Emax
i |Cmax: adaptive local search

ei The consumed energy in metering interval |Ii.

ck The earliest available time for machine Mk.

` Position in all-jobs ordering.

maxPossibleOverlap The maximum possible overlap of a job with a metering
interval.

priorityRules The ordered list of priority rules.

J ′ The unscheduled jobs.

Problem PDm|Emax
i , δmax

k,j = δmax|Cmax: CP model

x
(q)
k,j The time interval within the realized schedule corresponding

to deviation situation δ(q) in which job Jk,j is scheduled.

Nomenclature 95

y
(q)
k The sequence on machine Mk in realized schedule corre-

sponding to deviation situation δ(q).

Problem 1|π1, E
max
i , δmax

k,j = δmax|f
LS (s)1,j The latest start time of job J1,j for baseline start times s.

ls The latest start times.

t A time.

RSS (s, ¯̀, t)1,π1(`) The right-shift start time of job J1,π1(`) for jobs’ order π1

corresponding to baseline start times s, time t, and fixed job
J1,π1(¯̀).

rss The right-shift start times.

s? The optimal and robust baseline start times.

rss? The right-shift start times obtained from s?.

Problem 1|π1, E
max
i , δmax

k,j = δmax|f : scheduling opera-

tor

energyLimitViolated Value indicating whether the energy limit was violated in
the tested metering interval.

maxPossibleOverlapi The maximum possible overlap in metering interval Ii.

maxOverlapi The maximum overlap of a specific job in metering interval
Ii.

Problem 1|Emax
i , δmax

k,j = δmax|Cmax: LBBD

t A time.

xj,t Variable denoting whether job J1,j starts at time t.

Cmax Variable for the makespan.

Etime
t Energy consumed in time t.

T 1
j Cutting interval of type 1 for job J1,j .

T 2
j Cutting interval of type 2 for job J1,j .

Problem 1|Emax
i , δmax

k,j = δmax|Cmax: adaptive local

search

J ′ The set of unscheduled jobs.

96 Nomenclature

π1 The constructed all-jobs ordering.

` The current position into π1.

j? The unscheduled job that minimizes the makespan.

Experiments

α1 The multiplier of metering intervals’ length used for sampling
the processing times.

α2 The energy limit tightness.

BEST The best-found solution objective for the given instance.

UB A solution objective.

B
Chapter

Curriculum Vitae

István Módos was born in Győr, Hungary, in 1990. He received his bachelor’s degree
in 2012 in the Open Informatics study program at Czech Technical University in
Prague. He continued with the same study program for his master’s studies, which
he completed with honors in 2014. A half-year later, he started his journey towards
a Ph.D. at the Department of Control Engineering on the topic of production
scheduling with energy consumption limits.

István has published two papers in impacted journals during his research years,
where he is listed as the first author. His third paper is currently under review
in Computers & Industrial Engineering. Moreover, he collaborated with Ondřej
Benedikt on a related topic of production scheduling with power-saving states and
real-time energy prices, where Ondřej and István proposed an exact algorithm
that significantly outperforms the state-of-the-art method. Their contributions
were published in a journal paper, which won the best student paper award at the
CPAIOR2020 conference.

István participated in two research projects: (i) Design, Monitoring, and Op-
eration of Adaptive Networked Embedded Systems and (ii) Centrum aplikované
kybernetiky. Moreover, he collaborated on several projects for industrial partners,
for example, on an energy consumption minimization for Škoda Auto in Vrchlab́ı.
Besides research work, he worked in a software company that develops advanced
planning and scheduling system, where he utilized the obtained academic knowledge.

With respect to the teaching activities, he led the labs for Combinatorial
Optimization and Parallel Algorithms courses. Moreover, he successfully supervised
two master students, David Král and Kiryl Kalodkin.

István Módos
Prague, January 2021

97

98 Curriculum Vitae

C
Chapter

List of Author’s Publications

Publications in Journals with Impact Factor

István Módos, Přemysl Š̊ucha, Roman Václav́ık, Jan Smejkal, and Zdeněk Hanzálek.
“Adaptive online scheduling of tasks with anytime property on heterogeneous
resources”. In: Computers & Operations Research 76 (2016), pp. 95–117. issn:
0305-0548. doi: https://doi.org/10.1016/j.cor.2016.06.008
Coauthorship 20%, indexed in Web of Science and Scopus, 1 citation
(Web of Science)

István Módos, Přemysl Š̊ucha, and Zdeněk Hanzálek. “Algorithms for ro-
bust production scheduling with energy consumption limits”. In: Computers
& Industrial Engineering 112 (2017), pp. 391–408. issn: 0360-8352. doi:
https://doi.org/10.1016/j.cie.2017.08.011

Coauthorship 33.3%, indexed in Web of Science and Scopus, 8 citations
(Web of Science)

István Módos, Přemysl Š̊ucha, and Zdeněk Hanzálek. “On parallel dedicated
machines scheduling under energy consumption limit”. In: Computers & Industrial
Engineering (2021)
Coauthorship 33.3%, under review (the decision will be known soon)

Ondřej Benedikt, István Módos, and Zdeněk Hanzálek. “Power of Pre-Processing:
Production Scheduling with Variable Energy Pricing and Power-Saving States”. In:
Constraints (2020). issn: 1572-9354. doi: https://doi.org/10.1007/s10601-

020-09317-y

Coauthorship 33.3%

Ondřej Benedikt, István Módos, and Zdeněk Hanzálek. “A Fast Branch-and-Bound
Algorithm for Scheduling with Variable Energy Pricing and Power-Saving States”
(2020)
Coauthorship 33.3%, soon to be submitted to European Journal of
Operational Research

99

https://doi.org/https://doi.org/10.1016/j.cor.2016.06.008
https://doi.org/https://doi.org/10.1016/j.cie.2017.08.011
https://doi.org/https://doi.org/10.1007/s10601-020-09317-y
https://doi.org/https://doi.org/10.1007/s10601-020-09317-y

100 List of Author’s Publications

International Conferences and Workshops

István Módos, Přemysl Š̊ucha, and Zdeněk Hanzálek. “Robust scheduling for
manufacturing with energy consumption limits”. In: IEEE 21st International
Conference on Emerging Technologies and Factory Automation (ETFA). Sept. 2016.
isbn: 978-1-5090-1314-2. doi: http://dx.doi.org/10.1109/ETFA.2016.7733513
Coauthorship 33.3%, indexed in Web of Science and Scopus

István Módos, Kiryl Kalodkin, Přemysl Š̊ucha, and Zdeněk Hanzálek. “Scheduling
on Dedicated Machines with Energy Consumption Limit”. In: Proceedings of
the 8th International Conference on Operations Research and Enterprise Systems
(ICORES). INSTICC. SciTePress, 2019, pp. 53–62. isbn: 978-989-758-352-0. doi:
10.5220/0007307200530062

Coauthorship 25%, indexed in Scopus

István Módos, Přemysl Š̊ucha, and Zdeněk Hanzálek. “Energy-aware Robust
Scheduling: Algorithm for Efficient Solution Space Search”. In: Booklet of Abstracts
- The 29th Conference of the European Chapter on Combinatorial Optimization.
May 2016
Coauthorship 33.3%

Ondřej Benedikt, István Módos, and Zdeněk Hanzálek. “Power of Pre-Processing:
Production Scheduling with Variable Energy Pricing and Power-Saving States”. In:
Proceedings of the 17th International Conference on the Integration of Constraint
Programming, Artificial Intelligence, and Operations Research (CPAIOR). 2020
Coauthorship 33.3%, best student paper award, invitation to fast-track
issue of Constraints journal

Ondřej Benedikt, Přemysl Š̊ucha, István Móds, Marek Vlk, and Zdeněk Hanzálek.
“Energy-Aware Production Scheduling with Power-Saving Modes”. In: Integration
of Constraint Programming, Artificial Intelligence, and Operations Research. Ed. by
Willem-Jan van Hoeve. Cham: Springer International Publishing, 2018, pp. 72–81.
isbn: 978-3-319-93031-2
Coauthorship 20%, indexed in Web of Science and Scopus

Michal Bouška, Antońın Novák, Přemysl Š̊ucha, István Módos, and Zdeněk
Hanzálek. “Data-driven Algorithm for Scheduling with Total Tardiness”. In:
Proceedings of the 9th International Conference on Operations Research and
Enterprise Systems (ICORES). INSTICC. SciTePress, 2020, pp. 59–68. isbn:
978-989-758-396-4. doi: 10.5220/0008915300590068
Coauthorship 20%, indexed in Web of Science and Scopus

https://doi.org/http://dx.doi.org/10.1109/ETFA.2016.7733513
https://doi.org/10.5220/0007307200530062
https://doi.org/10.5220/0008915300590068

List of Author’s Publications 101

Přemysl Š̊ucha, István Módos, Roman Václav́ık, Jan Smejkal, and Zdeněk Hanzálek.
“Online Scheduling System for Server Based Personnel Rostering Applications”.
In: The 10th International Conference of the Practice and Theory of Automated
Timetabling. Aug. 2014, pp. 561–564. isbn: 978-0-9929984-0-0
Coauthorship 20%

István Módos
Prague, January 2021

102 List of Author’s Publications

This thesis is focused on the scheduling problem with energy con-
sumption limits. The problem was studied in both deterministic and
stochastic environments.

The main contributions in the deterministic environment are:

• A complexity study of different variants of this scheduling problem.

• A polynomial algorithm finding the shortest schedule satisfying the
maximum energy consumption limits for a fixed permutation of the
jobs on a fixed number of machines with the assumption that the
jobs cannot cross multiple metering intervals.

• An efficient CP model for the multi-machine scheduling under max-
imum energy consumption limits.

• Improvement of the existing ILP model from the literature.

• An adaptive local search algorithm with a heuristic scheduling op-
erator for the large instances.

The main contributions in the stochastic environment are:

• A pseudo-polynomial algorithm for a single machine scheduling
problem with a fixed permutation of the jobs, which finds an opti-
mal schedule w.r.t. any regular objective function and which does
not violate the energy consumption limits even if the jobs are de-
layed.

• The algorithm mentioned above for the fixed permutation of the
jobs is exploited in exact methods (Branch-and-Bound and Logic-
based Benders Decomposition) for finding the optimal and robust
permutation of the jobs.

• An adaptive local search algorithm with a heuristic scheduling op-
erator for the large instances.

	List of Acronyms
	Introduction
	A Review of Electricity Bill Components
	Scheduling with Maximum Energy Consumption Limits
	Related Work
	Energy-aware Scheduling
	Robust Scheduling

	Contributions
	Outline

	General Problem Statement
	Example
	Notation of the Scheduling Problem Variants

	Preliminaries
	Modeling Formalisms
	Integer Linear Programming
	Constraint Programming

	General Adaptive Local Search Heuristic
	Adaptive Generation of the Solution Neighborhood

	Scheduling with Energy Consumption Limits in Deterministic Environments
	Problem 1|p1, = 1, [i]=|
	Problem 1|p1,=1, |I|=2,[i]=|
	Problem PDm|[k], pk,=1, |I|=2, [i]=|
	Problem PDm|[k], no-crossing,[i] = |Cmax
	Problem PDm|[i]|Cmax
	CP Model
	MILP Models
	Adaptive Local Search Heuristic
	Experiments

	Scheduling with Energy Consumption Limits under Disturbances
	Problem PDm| [i], maxk, = max| Cmax
	Problem 1|[1], [i], maxk, = max|f
	Latest Start Time and Right-shift Schedules
	Earliest Robust Baseline Schedule
	Algorithm for Finding the Optimal Robust Schedule
	Time Complexity of the Algorithm for Computing the Robust Baseline Schedule

	Problem 1|[i], maxk, = max|Cmax
	Logic-based Benders Decomposition
	Branch-and-Bound Based Algorithm
	Adaptive Local Search Heuristic
	Experiments

	Conclusion
	Fulfillment of the Goals
	Future Work

	Nomenclature
	Curriculum Vitae
	List of Author's Publications

