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Abstrakt

V této práci jsou představeny možnosti použit́ı metody visual servoing pro ř́ızeńı bezpi-

lotńıch prostředk̊u s kolmým vzletem a přistáńım (VTOL). Jsou zmı́něny možné scénáře

nasazeńı těchto prostředk̊u, a také nejnověǰśı použ́ıvané quadkoptéry (bezpilotńı čtyř ro-

torový vrtulńık). Po nezbytném teoretickém úvodu jsou představeny návrhy řešeńı pro

d̊uležité letové úkony, zejména vzlet a přistáńı, vyhýbáńı se překážkám a odhad polohy

bezpilotńıho prostředku.

Na závěr je představen autopilot pro kolmý vzlet a přistáńı, založený na metodě visual

servoing. Tento autopilot je detailně teoreticky popsán, koncept je experimenátlně ověřen

a poté implementován na skutečném quadrotoru vyv́ıjeném Dr. YangQuanem Chenem z

Utah State University, Center for Self-Organizing Intelligent Systems.
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Abstract

In this thesis the potential of visual servoing techniques for vertical take-off and landing

(VTOL) UAV platforms is explored. An overview of UAV applications and state-of-the-

art quadrotors is provided, backed up by the necessary theoretical background. Visual

servoing based solutions of the important flight tasks (such as vertical take-off and land-

ing, obstacle avoidance and attitude estimation) are presented.

A novel vision based autopilot for vertical take-off and landing is developed, exper-

imentally verified and implemented on a medium-size outdoor quadrotor platform pro-

vided by Dr. YangQuan Chen from Utah State University, Center for Self-Organizing

Intelligent Systems.
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Chapter 1

Introduction

The aim of this work is to explore the potential of visual servoing techniques for flight

control of unmanned aerial vehicles (UAVs), which have an ability of vertical take-off and

landing (VTOL). As we are talking mostly about VTOL platforms (quadrotors), the terms

UAV and VTOL are to be used interchangeably. It is important to note that quadrotors

and n-rotors are currently de facto only VTOL UAV in operation, although different

concepts have been already proposed.1 The potential applications for visual servoing are

identified, thoroughly studied and the most promising ones are experimentally evaluated.

This work is organized as follows: In the beginning, a brief introduction of state

of the art UAVs and their possible applications is provided, followed by a description

of quadrotor dynamics in an extend necessary for this thesis. In Chapter 2 theoretical

concepts of visual servoing are described, and in Chapter 3 these concepts are applied

on the most promising VTOL tasks. As will be further explained, the most promising

and most important application of visual servoing is take-off and landing, and whole

Chapter 4 is dedicated to a development of a vision based VTOL autopilot. Chapter 5

shows results of real flight tests and evaluation of the applied visual servoing techniques.

When developing a solution for the selected flight tasks, first is a theoretical descrip-

tion of the problem. Second is a development of a software prototype in Matlab (so called

”proof of concept” – POC) to prove the usability of suggested methods.2 Finally (when

applicable), the prototype is transferred into C++ program which can be run on-board

on a real UAV.

1http://www.gizmag.com/flying-wing-vtol-uav/13962/
2Matlab is especially useful for POC as it allows user to focus on algorithms rather than on imple-

mentation issues.
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1.1 UAV applications

Nowadays UAVs are already established in many areas of human life and we can expect

that their presence will only increase. Naturally, more developed are fixed wing UAVs,

firstly due to their relative simplicity comparing to VTOL platforms (also known as

”rotary wings”), secondly due to much wider knowledge base for fixed wing air planes

(wing profiles, air plane aerodynamic properties etc.), and lastly thanks to their inherently

higher reliability (in case of a motor failure, fixed wing can still glide and safely land,

whereas rotary wing cannot). However, VTOL platforms are catching up as is to be

shown in the rest of this chapter.

Not surprisingly, first area of UAV’s application is military. UAV drones Shadow3 and

Raven4 serve American Army and are in operation in Iraq and Afghanistan. Both drones

are exported to allied armies, for example Czech army uses them as a replacement for

older UAVs Sojka and Mamok. UAVs in military are mostly used for area reconnaissance

and surveillance.5 So far none of VTOL platform has been used in regular army operation,

although there is an ongoing extensive research in this area.6 7

Second large area of application is security and civilian surveillance. Law enforcement,

crime scene mapping and crowd surveillance are amongst the most promising topics.8 As

will be shown later, there are already VTOL platforms capable of fulfilling such tasks.

It is worth noting that complicated urban environment, where will police and other

authorities mostly use UAVs, naturally favours VTOL platforms that can hover on a

spot and provide continuous monitoring of the area.

Big attention is paid to disaster awareness, response and monitoring. Using UAVs

by fire fighters and rescue services undoubtedly brings benefit to civilians, unlike to the

previous applications. Recently, Draganflyer X6 equipped with thermal and RGB cameras

helped fire fighters in Grand Junction, Colorado to localize focus of fire and provided an

overview of the whole area.9 Another example is an ongoing project of Centre for Self

Organizing and Intelligent Systems(CSOIS10) at Utah State University. The aim of this

project is to monitor a large area hit by a disaster (for example an earthquake) using

3Codename RQ-7 Shadow, manufacturer AAI Corporation
4Codename RQ-11 Raven, manufacturer AeroVironment, Inc.
5Raven in operation: http://www.youtube.com/watch?v=4p0VhNC0CLY
6http://vodpod.com/watch/2660163-robo-bugs-used-in-us-army-as-micro-air-vehicles
7http://robobees.seas.harvard.edu/
8See http://www.uavm.com/uavapplications/firepolice.html for more details
9For more details and video footage see: http://youtu.be/JpS21 5rvz8

10http://www.csois.usu.edu/
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fixed wing UAV platform. The flight tests are to be performed in New Zealand in July

2012.

Last large and promising area of applications for UAVs is Personal Remote Sensing.

As computers transformed from large and heavy boxes into truly personal devices, similar

development is expected to happen with remote sensing, once reliability and ”trustwor-

thiness” of UAVs increase and the costs decrease. Remote sensing of agricultural land,

wetlands, riparian systems and other areas provide an excellent opportunity for both

VTOL and fixed wing platforms, as can be seen in one of the previous CSOIS projects

AggieAir11. VTOL platforms can be used for wide variety of civilian tasks, among the

unusual ones we should mention ”Taco delivery.”12

The deployment of UAVs is currently (Spring 2012) limited by law restrictions, as

Federal Aviation Administration (FAA) in the USA and its counterparts in different

countries haven’t developed a legal framework for UAV flights yet, which obviously are

not Radio-Controlled (RC) flights and thus RC flight framework cannot apply. Considered

regulations cover for example ”pilot” licences for UAV operators, designated flight zones,

plane identification13 and so on. Once the legal framework and rules are settled down,

fears from UAV misuse can be calmed, as for example no UAV will be allowed to fly on

a certain area without a proper permission.

1.2 Quadrotors

Using only one propeller for propulsion of a rotary wing platform brings a problem how

to counteract torque and how to control the attitude of the platform. This is the issue

for all helicopters, and although the problem as well as a solution is well know, it is

usually very complicated to develop cyclic and collective mechanisms small enough to

fit on an UAV. Using two rotors eliminates unwanted torque, but the mechanical prob-

lems are still present. Three and four rotor platform are in favour, because they both

eliminate unwanted torque (when the opposite propellers rotate in opposite directions)

and are mechanically simple. They are using blades with fixed angle and changing their

attitude using a different mechanism as shown in Section 1.3. Analogical to quadrotors

11http://aggieair.usu.edu/index.html
12http://www.aero-news.net/index.cfm?do=main.textpost&id=7af13aa2-f9e6-48cd-8f76-

d20925cd1271
13i.e. tail number as used on civilian air planes, see http://en.wikipedia.org/wiki/Aircraft registration
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Figure 1.1: Left: Octorotor from Draganfly (http://www.draganfly.com)

Right: Hexarotor (http://diydrones.com)

are octorotors and hexarotors, with counter rotating propellers as is shown in Figure 1.1

Because propellers in general are more efficient at lower angular velocities, having

more propellers allows octorotors and hexarotors run more efficiently while having the

same nominal thrust as their quad and tri-rotor counterparts. Besides efficiency, having

more propellers mean higher maximal thrust and thus a capacity to carry a heavier

payload. In further text, when referring to quadrotors, also octorotors are meant, unless

stated otherwise.

A typical quadrotor is equipped with an inertial navigation unit (3 accelerometers, 3

gyroscopes, 3 magnetometers) for attitude determination, a barometer (outdoor) or an

ultrasonic proximity sensor (indoor) for altitude measurements and optionally they come

with a camera or GPS receiver.

1.2.1 Indoor quadrotors

Quadrotors for indoor use cannot use GPS for absolute positioning and magnetometers

provide noisy measurements due to disturbed local magnetic field. However they take

benefit from absence of wind gusts, from relatively stable light conditions (useful for

vision systems), and their mission duration is usually shorter than their outdoor counter-

parts. There are already many companies producing VTOL platforms, with comparable

performance. For example Ascending Technologies GmBh,14 whose platforms were used

14http://www.asctec.de/
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Figure 1.2: NANOQUAD. Prototype of NanoQUad (a very small quad-

copter) developed at AA4CC by Jaromı́r Dvořák. Copy-

right(c) 2012 by AA4CC.

in 7th European Union Framework programme project sFly15. A small quadrotor shown

in Figure 1.2 was developed at the Czech Technical University in Prague at AA4CC

centre.16. Even smaller UAV platform is developed by Harvard university in Robobee17

project, promising a small artificial insect only a few centimetres long.

Using external reference (for example VICON18 motion capture system), an advanced

control algorithms can be applied to control a lone quadrotor as well as whole swarm of

them. State of the art consists of aggressive manoeuvres (flips, flight through windows,

perching19), formation flying20 and cooperative behaviour of quadrotor swarm (building

a predefined structure21)[38].

1.2.2 Outdoor quadrotors

Outdoor applications generally require quadrotors that are more durable, take higher

payload and can fly on longer missions than their indoor counterparts[41]. Absolute

positioning is provided via GPS receiver. Probably the best commercially available VTOL

15http://www.sfly.org/
16http://aa4cc.dce.fel.cvut.cz/
17http://robobees.seas.harvard.edu/
18http://www.vicon.com/
19http://www.youtube.com/watch?v=MvRTALJp8DM
20http://www.youtube.com/watch?v=-cZv5oKABPQ&feature=related
21http://www.zeitnews.org/robotics/flying-robots-build-a-6-meter-tower.html
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Figure 1.3: Draganflyer X8 (http://www.draganfly.com/ )

platform is Draganflyer22 shown in Figure 1.3 in eight rotor configuration. Maximum

payload is 800g, the platform has an attitude stabilization, and can follow predefined

way points.

A VTOL platform is also developed at CSOIS. Full specification of this platform

is provided in Appendix A. It is worth mentioning that this platform is designed to

carry a commercial RGB camera for remote sensing and is able to automatically follow

way-points in a similar manner as the aforementioned Draganflyer X8.

1.3 Modelling of quadrotor dynamics

This section presents basic quadrotor dynamics, as well as control concepts. It is based

on [2], where a complete derivation of the following equations can be found. Comprehen-

sive derivation of the equations can be also found in [16]. The basic idea of quadrotor

movement is shown in Figure 1.4. As can bee seen, a quadrotor is mechanically simple

in comparison with a common helicopter. Movement in horizontal plane is achieved by

tilting the platform whereas vertical movement is achieved by change in total thrust.

However, quadrotor is still an under-actuated vehicle, which arises certain difficulties

with control design.

A coordinate frame of the quadrotor is shown in Figure 1.5. The developed model is

22Draganfly innovation Inc. http://www.draganfly.com/
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Figure 1.4: The quadrotor concept. The width of the arrows is propor-

tional to the propellers’ angular speed[2]

Figure 1.5: Quadrotor coordinate system[2]

based on the following assumptions[2]:

• The structure is supposed to be rigid

• The structure is supposed to be axis symmetrical.

• The centre of gravity (CoG) and the body fixed frame origin are assumed to coincide.

• The propellers are supposed to be rigid.

• Thrust and drag are proportional to the square of propeller’s speed.

1.3.1 General Moments and Forces

The forces acting upon a quadrotor are provided below. Jr is a rotor inertia, T is thrust

force, H is hub force (a sum of horizontal forces acting on blade elements), Q is a drag
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moment of a rotor (due to aerodynamic forces), Rm is a rolling moment of a rotor.

Ground effect, according to [2] becomes important when z/R ≤ 1(e.g. a ratio of vertical

distance from the ground to propeller radius). For a platform described in Appendix A

this happens only few centimetres above the ground (due to relatively high landing gear),

thus ground effect can be neglected.

Rolling moments:

body gyro effect θ̇ψ̇(Iyy − Izz)

rolling moment due to forward flight (−1)i+1
4
∑

i=1

Rmxi

propeller gyro effect Jrθ̇Ωr

hub moment due to sideward flight h
4
∑

i=1

Hyi

roll actuators action l(−T2 + T4)

Pitching moments:

body gyro effect φ̇ψ̇(Izz − Ixx)

hub moment due to forward flight h
4
∑

i=1

Hxi

propeller gyro effect Jrφ̇Ωr

rolling moment due to sideward flight (−1)i+1
4
∑

i=1

Rmyi

pitch actuators action l(T1 − T3)

Yawing moments:

body gyro effect θ̇φ̇(Ixx − Iyy)

hub force unbalance in forward flight l(Hx2 −Hx4

inertial counter− torque JrΩ̇r

hub force unbalance in sideward flight l(−Hy1 +Hy3)

counter torque unbalance (−1)i
4
∑

i=1

Qi

Where l stands for a distance between the propeller axis and CoG, h is a vertical

distance from centre of propeller to CoG, Ωr is an overall residual propeller angular

speed and I is moment of inertia. Note that the DC motor dynamics is described by a

first-order transfer function.
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1.3.2 Equations of motion

The equations of motion are derived as follows, using moments and forces described in

Section 1.3.1. Note that g is a gravitational acceleration and m represents a mass of the

rigid body.

Ixxφ̈ = θ̇ψ̇(Iyy − Izz) + Jrθ̇Ωr + l(−T2 + T4)− h
4
∑

i=1

Hyi + (−1)i+1
4
∑

i=1

Rmxi

Iyy θ̈ = φ̇ψ̇(Izz − Ixx)− Jrφ̇Ωr + l(T1 − T3) + h
4
∑

i=1

Hxi + (−1)i+1
4
∑

i=1

Rmyi

Izzφ̈ = θ̇φ̇(Ixx − Iyy) + JrΩr + (−1)i
4
∑

i=1

Qi + l(Hx2 −Hx4) + l(−Hy1 +Hy3)

mz̈ = mg − (cosψ cosφ)
4
∑

i=1

Ti

mẍ = (sinφ sinψ + cψ sin θ cosφ)
4
∑

i=1

Ti −
4
∑

i=1

Hxi

mÿ = (− cosψ sinφ+ sψ sin θ cosφ)
4
∑

i=1

Ti −
4
∑

i=1

Hyi

(1.1)

1.3.3 State-space model

Using equations 1.1 we develop a non-linear state space model in form ẋ = f(x,u) where

x is a state vector and u is an input vector.

x = [φ φ̇ θ θ̇ ψ ψ̇ z ż x ẋ y ẏ]T (1.2)

u = [u1 u2 u3 u4]
T (1.3)

States are mapped as:

x1 = φ x2 = ẋ1 = φ̇

x3 = θ x4 = ẋ3 = θ̇

x5 = ψ x6 = ẋ5 = ψ̇

x7 = z x8 = ẋ7 = ż

x9 = x x10 = ẋ9 = ẋ

x11 = y x12 = ˙x11 = ẏ
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Input vector is mapped as:

u1 = b(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

u2 = b(−Ω2
2 + Ω2

4)

u3 = b(Ω2
1 − Ω2

3)

u4 = d(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4)

(1.4)

where b is a thrust coefficient and d a drag coefficient. Putting equations 1.1 – 1.4

together, we obtain:

f(x,u) =























































φ̇

θ̇ψ̇a1 + θ̇a2Ωr + b1u2

θ̇

φ̇ψ̇a3 − φ̇a4Ωr + b2u3

ψ̇

θ̇φ̇a5 + b3u4

ż

g − (cosφ cos θ) 1

m
u1

ẋ

ux
1

m
u1

ẏ

uy
1

m
u1























































(1.5)

Where:

a1 = (Iyy − Izz)/Ixx) b1 = l/Ixx

a2 = Jr/Ixx b2 = l/Iyy

a3 = (Izz − Ixx)/Iyy) b3 = 1/Izz

a4 = Jr/Iyy

a5 = (Ixx − Iyy)/Izz)

ux = (cosφ sin θ cosψ + sinφ sinψ)

uy = (cosφ sin θ sinψ − sin φ cosψ)

This model is general enough to be used for a controller design for almost all sizes

of quadrotors with satisfactory results. However, it does not cover all aerodynamics

effects. First possible improvement of this model is to include blade flapping dynamics

as suggested in [42] and deeply analysed in [5].
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Another issue is that certain parameters are changing according to the flight condi-

tions (for example a tilted rotor in a forward flight produces a different lift than during

hovering)[31]. To provide a precise model, these changes should be taken in account too.

Identification of the model is addressed in [14] and [16].

1.3.4 Octorotor modelling

Derivation of equations describing octorotor dynamics is identical to the quadrotor case

as described in 1.3.1 and 1.3.2. We just have to be careful about direction of forces and

momentum produced by each rotor. Octorotors have four coupled counter rotating rotors

at end of each beam, thus the net torque from a couple of counter rotating rotors is zero.

As a result, the movement in horizontal plane is achieved in a slightly different way than

for quadrotors.

To rotate a quadrotor, two opposite rotors increase their angular velocity whereas the

other two slow down as is demonstrated in Figure 1.4. It is important that the total

thrust remains the same. In case of an octorotor, only one rotor in the pair increases its

velocity while the other one in the pair slows down (according to the desired direction of

rotation), so the total thrust is constant. Tilting is achieved in the same way as in case

of a quadrotor.



Chapter 2

Visual servoing in theory

In this chapter a necessary theoretical background of visual servoing, visual odometry, and

visual simultaneous localisation and mapping (V-SLAM) is provided. Finally a few words

about optical flow are added. If the reader is already aware of the methods presented,

it is possible to skip this chapter and move directly on visual servoing applications in

Chapter 3.

Visual servoing is an important concept of a robot control based on visual informa-

tion (e.g. a camera image). Other two concepts (visual odometry in Section 2.2 and

visual SLAM in Section 2.3) are aimed at localisation and pose estimation of a robot

in an unknown environment, based also on visual information. Although not directly

related to a control, they can be thought of as a subset of Position Based Visual Servoing

(Section 2.1.2). Optical flow (Section 2.4), on the other hand, is related to Image Based

Visual Servoing (Section 2.1.1) as it extracts information directly from the 2D image.

2.1 Visual servoing

Visual servoing (VS) refers to the use of visual information (gathered for example by a

camera) to control the motion of a robot. We assume that the camera is fixed at the

robot end-effector (or more precisely rigidly mounted at the flying platform), which is

commonly known as eye-in-hand system[7].

The aim of VS is to minimize an error e(t), defined as[7]:

e(t) = s(m(t), a)− s∗ (2.1)

12
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where m(t) is a set of image measurements (e.g. image coordinates of points of

interest), s(m(t), a) is a vector of k visual features, in which a is a set of parameters

representing a potential additional knowledge about the system (e.g. camera intrinsic

parameters), and vector s∗ represents the desired values of the features (e.g. position in

the image plane). There are two main approaches how to define s - Image Based Visual

Servoing (IBVS) defines s to represent a set of features immediately available in the image

(e.g. image plane coordinates of tracked points), whereas Position Based Visual Servoing

(PBVS) defines s by means of a set of 3D parameters, which has to be estimated from

the image.

Assume we want to design a velocity controller with a simple proportional control.

Define spatial velocity of the camera as vc = (vx, vy, vz, ωx, ωy, ωz). Then we can derive a

the relationship between ṡ and vc as:

ṡ = Jsvc (2.2)

where Js ∈ R
k×6 is reffered as interaction matrix [7] or image Jacobian[7], [12]. From

Equations 2.1 and 2.2 we obtain a relationship between the camera velocity vc and time

change of the error e:

ė = Jevc (2.3)

where Je = Js. Using a proportional control (i.e. ė = −λe), we obtain (using

Equation 2.3):

vc = −λJ+

e e (2.4)

Note that J+
e ∈ R

6×k is a pseudo-inverse of Je such as J+
e = (JT

e Je)
−1JT

e . This is

the basic idea implemented in most VS controllers[7]. In the next two sections (2.1.1

and 2.1.2) we show derivation of Je for IBVS and PBVS respectively. In real systems,

however the image Jacobian is never known exactly, thus only an approximation can be

used.

2.1.1 Image based visual servoing

In IBVS s contains a set of 2D features (e.g. points, lines or circles in image plane).

Image measurements m(t) are typically (in case of point features) the respective point
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coordinates in image plane, and a = (u0, v0, f, α, ρu, ρv) represents camera intrinsic pa-

rameters (u0, v0 are pixel coordinates of the principal point, f is focal length of camera,

ρu, ρv is the pixel width and height and α is pixel aspect ratio).

2.1.1.1 Perspective camera model

Assume we have a calibrated perspective camera and s is a single point. Relation between

3D world coordinates of that point and 2D image plane coordinates is:

x = X/Z = (u− u0)/fα

y = Y/Z = (v − v0)/f
(2.5)

The interaction matrix then become[7]:

Je =

[

−1

Z
0 x

Z
xy −(1 + x2) y

0 −1

Z

y

Z
1 + y2 −xy −x

]

(2.6)

Note that J in Equation 2.6 is generally time variant and explicitly depends on Z. It

is thus necessary to estimate depth of the scene, as will be addressed later. If s consists

of n points, we can simply stack image Jacobians for each point:

vc = −λ









J1

...

Jn









+

e (2.7)

2.1.1.2 Spherical camera model

Detailed derivation of spherical camera equations as well as transformation from fish-eye

camera to a unit sphere can be found in [12]. Image Jacobian for a calibrated spherical

camera and s containing a single point is described in terms of colatitude angle θ, azimuth

angle φ and distance from the camera origin to the point in world coordinates R. Then

we can rewrite Equation 2.2 as [12]:

[

θ̇

φ̇

]

= Je(θ, φ, R)vc (2.8)

where:

Je =

[

− cos φ cos θ

R
− sinφ cos θ

R
sin θ
R

sinφ − cosφ 0
sinφ

R sin θ
− cosφ

R sin θ
0 cosφ cos θ

sinφ

sinφ cos θ

sin θ
−1

]

(2.9)
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Note that instead of Z we need to estimate R. However, similar techniques as for

perspective camera can be used, as only first three columns of Je depends on R. A

proportional control law from Equation 2.4 would be then written as (⊖ denotes modulo

subtraction and returns the smallest angular distance given that θ ∈ 〈0, π〉 and φ ∈
〈−π, π) [12]):

vc = −λJ+

e (s(φ, θ)⊖ s∗(φ, θ)) (2.10)

2.1.1.3 Depth estimation

Depth of the scene Z can be estimated in various ways. The simplest solution is to

assume a constant depth, which is a valid assumption as long as the camera motion

is in the plane parallel to the planar scene[12]. Another option is to use sparse stereo

techniques to estimate the scene depth from consecutive images. This approach is valid

as long as there is sufficient displacement between the two images. Third option is

to estimate Z using measurements of robot and image motion - a depth estimator [12].

Rewrite Equation 2.6 as:

Je =

[

− f

ρuZ
0 ū

Z

0 − f

ρvZ
v̄
Z

|
ρuūv̄

f
−f2+ρuū

2

ρuf
v̄

f2+ρv v̄
2

ρvf
−ρv ūv̄

f
ū

]

(2.11)

where ū = u− u0 and v̄ = v − v0. Substitute Equation 2.11 to 2.2 and rearrange:
[

u̇

v̇

]

= Je

[

v

ω

]

[

u̇

v̇

]

=
[

1

Z
Je|Jω

]

[

v

ω

]

[

u̇

v̇

]

= 1

Z
Jev + Jωω

1

Z
Jev =

[

u̇

v̇

]

− Jωω (2.12)

On the right hand side vector [u̇ v̇]T represents the observed optical flow, from which

the optical flow caused by camera rotation is subtracted. This process is called derotating

of optical flow. The left hand side is optical flow caused by pure translation. Equation 2.12

can be written as:

Ax = b (2.13)
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where x = 1/Z. This set of linear equations can be then solved using least-squared

method. Note that depth estimation for a spherical camera would be derived in a similar

manner.

As can be seen from the previous derivations, optical flow described in Section 2.4 is

a natural part of IBVS, as it describes motion of the image features (in the simplest case

points) between two consecutive images (u̇, v̇).

2.1.2 Position based visual servoing

In PBVS, vector s contains a set of 3D features, which are defined with respect to the

current camera pose and world coordinate frame (e.g. world coordinates of the target).

Then a contains camera intrinsic parameters (described in Section 2.1.1) and a 3D model

of the object (3D model can degenerate to a single point)[7]. Camera pose can be esti-

mated by Visual odometry (Section 2.2, Visual SLAM (Section 2.3) or other method[8].

In this case, image Jacobian is independent on the camera model, as we are working with

3D features (camera model is necessary for camera pose estimation), but depends on s

and s∗

Let’s define s = (t∗, θu), s∗ = 0, e = s, where t∗ ∈ R
3×1 gives coordinates of the

origin of the object frame relative to the desired camera frame and θu gives the angle/axis

parametrization for the rotation. Image Jacobian is then[7]:

Je =

[

R 0

0 Jθu

]

(2.14)

where R ∈ R
3×3 is the rotation matrix describing orientation of the camera relative

to the desired position. Jθu is defined in [7]. In this case rotational and translational

motion is decoupled, which simplifies the control law:

vc = −λRTt∗

ωc = −λθu
(2.15)

Because the control law is expressed in Cartesian coordinates, PBVS produces smooth

and linear movement of the camera in world coordinate system, however as there is no

direct control of the features movement in the image plane, they move in a non-linear

manner and can even fall outside the visible region (as shown in Figure 2.1). On the

other hand, IBVS produces linear movement of the features in the image plane, but there

is no direct control of the camera motion, which can undergo undesirable paths.
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Figure 2.1: Image plane feature paths for a PBVS and b IBVS[12]

2.2 Visual odometry

Visual odometry (VO) is the process of estimating the egomotion of an agent (e.g. a flying

platform) using only the input of a single or multiple cameras attached to it[44]. In a

similar way as a classical odometry, VO incrementally estimates a position of the platform

from images taken by an onboard camera. VO is especially useful in environments where

it is not possible to use GPS for absolute positioning[51]. For our purpose we assume

only monocular VO.1

As any other visual method, VO is usable only when certain assumptions about the

scene are fulfilled. Namely a sufficient illumination of the scene is required, as well as

a static scene with sufficient texture. Moreover the consecutive images have to have a

sufficient overlap. Note that VO is a specific case of a recovery of a relative camera pose

and 3-D structure from a set of camera pictures, which is called structure from motion

problem[44].

VO problem is defined as follows. Two camera positions at time instances k − 1 and

k are related by the rigid body transformation:

Tk,k−1 =

[

Rk,k−1 tk,k−1

0 1

]

(2.16)

where Tk,k−1 ∈ R
4×4, Rk,k−1 ∈ SO(3) is the rotation matrix, and tk,k−1 ∈ R

3×1 is the

1The reason is that stereo vision degenerates into monocular case when the distance to target is much

larger than the distance between the two cameras (baseline). Stereo vision thus would bring no benefit

to flying platforms (just additional payload mass). Note also that stereo VO was already used in many

applications, for example in Mars rovers[44]
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Figure 2.2: An illustration of the visual odometry problem. The relative

poses Tk,k−1 of adjacent camera positions (or positions of a

camera system) are computed from visual features and con-

catenated to get the absolute poses Ck with respect to the

initial coordinate frame at k = 0[44].

translation vector. Ck is a camera pose at time instance k with respect to the origin,

Ck = Ck−1Tk,k−1. The task of VO is to compute the relative transformation from images

Ik and Ik−1, and concatenate the transformations to recover camera poses from C0 to

Ck[44]. Whole situation is shown in Figure 2.2 (note that it shows a stereo VO problem).

A pipeline of a VO algorithm is presented in Figure 2.3. First, two consecutive images

are captured. Then, in both images are detected significant features using appropriate

detectors (e.g. corner detectors Harris[21], Shi-Tomasi[47], or blob detectors SIFT[33],

SURF[1]). Features found in image Ik−1 are then tracked or matched with features

in image Ik. Most commonly is used random sample consensus RANSAC[18] and its

modifications. For details see [44].

Once the features are matched (tracked) between the images, motion can be estimated.

There are three approaches, in short in 2D-to-2D the motion is estimated using essential

matrix and a minimal set of features in the image plane. In 3D-to-2D approach, 3D

features have to be first computed in the first image (for example by triangulation),

and then projected into the second image plane (2D). In the last case (3D-to-3D), 3D

features are computed in both images. In all three situations is our aim to minimize

the re-projection error caused by feature misalignment. Finally, it is possible to further

optimize the camera pose estimation, for example by window bundle adjustment [44].

In comparison with visual SLAM (VSLAM, presented in Section 2.3), VO is aimed

at local consistency of the trajectory (over last n frames), whereas VSLAM is focused on



2.3. VISUAL SLAM 19

Figure 2.3: A block diagram showing the main components of a VO

system[44].

global consistency of the map. VO is significantly easier to implement and is less memory

and computationally demanding than VSLAM, and thus preferable in some applications.

In other words, VO trades off consistency for real-time performance, without the need to

keep track of all the previous history of the camera[44].

A natural approach for pose estimation of a flying platform would be a fuse of vi-

sual odometry and measurements from on-board Inertial Measurement Unit (IMU). This

fusion uses Kalman filtering and both theoretical analysis ([49], [35], [39] and especially

[27] for UAVs) and practical implementations ([26], [28], [43]) were done. UAV attitude

estimation using IMU and visual data is addressed in Section 3.4.

2.3 Visual SLAM

Simultaneous localisation and mapping problem is aimed not only at providing a pose

estimation of the robot (as Visual Odometry does), but also at building a consistent map

of an a-priori unknown environment surrounding the robot. Thus we know not only the

position of the robot, but also its location within the on-line built map. A solution to

the SLAM problem has been seen as a ”holy grail” for the mobile robotics community as

it would provide the means to make a robot truly autonomous[15]. Visual simultaneous

localization and mapping (V-SLAM) emphasise that information about the surrounding

environment is gathered through a camera. State of the art is implementation of V-SLAM

algorithm for autonomous navigation, take-off and landing of a quadrotor[51].

SLAM is a process by which a mobile robot can build a map of an environment and
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Figure 2.4: The essential SLAM problem. A simultaneous estimate of

both robot and landmark locations is required. The true loca-

tions are never known or measured directly. Observations are

made between true robot and landmark locations[15].

at the same time use this map to deduce its location. In SLAM, both the trajectory of

the platform and the location of all landmarks are estimated online without the need for

any a priori knowledge of location[15]. A visualisation of a SLAM problem is shown in

Figure 2.4. It can be viewed as an extension of a visual odometry problem, where we

keep history of the estimated poses and tracked features (landmarks) and refine our guess

as we are getting more observations.

To achieve this goal, extended Kalman filter or Rao-Blackwellized particle filter is

used[15]. This implies that we have to know a model of a vehicle kinematics and a proba-

bilistic estimation of the measurement noise. Another important concept in (V)SLAM is

a loop closure - i.e. once the robot returns to its initial position, it is possible to globally

optimize its previous path.

In practical implementations of V-SLAM, a 3D map of the environment is built based

on keyframes, which are images rich on features selected from the image sequence. An

example of such a map is shown in Figure 2.5. The need to store the map and the

observed features practically limits its use for indoor UAV only, as the problem reaches

computational capacity of current hardware.
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Figure 2.5: A real-time SLAM visualisation[40].

2.4 Optical Flow

Optical flow (OF) is a vector field mapping one image to another in a consecutive image

sequence. Optical flow represents movement in the image, and can be caused either by

moving objects in the scene, or by camera motion. Furthermore, optical flow can be

also caused by a moving source of light, producing a virtual motion[25]. Generally it is

impossible to determine whether the movement was caused by a moving object or by a

moving camera without any a-priori knowledge (assuming a static light source). However,

placing certain constraints on the scene (e.g. a planar scene without moving objects, or

a stationary camera) allows us to use optical flow in a variety of applications, such as

target tracking[10], point of contact estimation[11], VTOL terrain following[22] or VTOL

hovering and landing[23].

OF is calculated by tracking movement of image pixels between two images. If all

pixels in the image are tracked a ”dense” OF is produced. If only a subset of pixels

(features) in the image is tracked, the produced OF is ”sparse”. All OF methods assume

uniform illumination of the scene, brightness constancy between the images, temporal

consistency on ”small” movements (e.g. the tracked feature is constant during a small

motion) and spatially smooth image motion.

The basic method of calculation OF is Horn-Schunck method[25]. It is a ”dense”

method, as in its native implementation it calculates optical flow for each pixel in the

image. Another popular method is Lukas-Kanade Tracker[34], which tracks only a-priori
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Figure 2.6: Image pyramid of level 3 using the famous Lenna Sjööblom

picture (http://www.lenna.org)

selected features (thus a ”sparse” method). In practice these features are either selected

by an appropriate feature detector (e.g Harris[21]), placed on a mesh grid to evenly cover

the image or a combination of both methods is used. Note that in a limit case when

number of features is close to number of pixels, we might obtain a dense OF.

Third method is Fractional Order Optical Flow[9], which is a dense method and utilises

fractional order calculus. In short, as both Horn-Schunck and Lukas-Kanade methods

work with first derivation of pixel intensity, with fractional order calculus it is possible

to use r-th derivation(d
ru

dxr
, r ∈ R), where r serves as an additional parameter.

If a large motion in the scene is expected, it is beneficial to extend the OF algorithm

using image pyramids. It means that the image is down-sampled according to the pyramid

height, and OF is then calculated from the smallest to the largest image (”coarse to fine

strategy”, see Figure 2.6), iteratively improving OF estimation. Details about pyramidal

implementation of LK Tracker can be found in [3].



Chapter 3

Visual servoing in applications

In this chapter the concepts described in Chapter 2 are applied on real flight tasks,

specifically:

Take-Off and Landing: theoretical analysis, prototype development and evaluation,

real-time implementation

Ground Speed Estimation: theoretical analysis, prototype development

Obstacle Avoidance: theoretical analysis

Attitude Estimation: theoretical analysis

Detailed description of each task as well as possible visual servoing concepts are de-

scribed in the rest of this chapter. Discussion about the flight tasks and description of

further steps is provided in Section 3.5.

3.1 Vertical take-off and landing

The task of the biggest concern is autonomous vertical take-off and (especially) landing.

Landing is probably the most difficult part of the flight, namely while wind gusts are

present. Having a safe and robust landing procedure is desired as it increases the overall

reliability of UAV. Even though take-off seems to be simple in comparison with the

landing, it is still a non-trivial procedure while side winds are present.

Visual servoing for landing have been already successfully applied to fixed wings UAV

([45], [48]). Similar attempts were also made for high-end outdoor VTOL platforms ([46]

23
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and [50]), and more recently for small indoor quadrotors too ([29] and [51]). Vision-

based landing is theoretically well described, however a reliable implementation on a

medium sized outdoor platform (such as an quadrotor described in Appendix A) is still

challenging.

VTOL platform landing phases consist of selection (or finding) a landing spot, sta-

bilization of the platform, descend and touchdown, and are described in the following

sections.

3.1.1 Landing spot selection

There is a number of ways of selecting a suitable landing spot. In indoor applications,

the spot is marked by a distinctive marker (a target) and this target is tracked during

whole landing procedure (as in [29]).

In outdoor applications, the landing pad can be highlighted as in the indoor case,

however it requires the UAV to look for the target during whole flight. A common

approach is to select GPS coordinates of the landing pad. This is sufficient in general

case, but due to precision of most commercially available GPS receivers (±2 meters) it

is not sufficient for a precise landing. Another possibility is to let the UAV to select a

safe landing spot automatically, based on an unstructured terrain analysis procedure[6].

This method is favourable, as it would ensure safe landing in unknown environment

(e.g. in case of emergency landing). Moreover it can be used in indoor applications too.

Unfortunately autonomous safe landing spot identification is not yet reliable enough and

further research in this area is needed.

A combination of previous methods is indeed possible. Imagine given GPS coordinates

(waypoint) of the marked landing spot. Once UAV gets to the coordinates, it starts

looking for the target and once it finds it, it tracks it. This approach saves computational

power as target tracking is performed only during the landing phase. There is a number

of search patterns (as shown in Figure 3.1) in which the UAV can move from the initial

position. Once the target is found, UAV moves to the descent phase (Section 3.1.2).

3.1.2 Stabilization and descend

Once the landing spot is found (using any method mentioned in Section 3.1.1), it is

desirable to stabilize UAV over the landing spot (i.e. φ, θ = 0 and φ̇, θ̇, ψ̇ = 0). The
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Figure 3.1: Left: Creeping line search, Middle: Box search,

Right: Sector search

(http://www.scribd.com/doc/15048146/91/CREEPING-

LINE-SEARCH )

Figure 3.2: Centring the target in the image plane (target taken from

http://air.guns.20megsfree.com

target should be in the middle of the image plane as is shown in Figure 3.2, so losing

the target during descend is less likely. The descend and touchdown is identical to a

helicopter landing.

3.1.3 Vision-based autopilot

As shown in Section 2.1, there are two basic concepts of Visual Servoing. Image-based

VS, where we are concerned about the motion of tracked features within the image plane

(i.e. optical flow), and Position-based VS, where we estimate camera position relative to

the target (using e.g. VO or V-SLAM). Both concepts have been already applied (IBVS:

[29], PBVS: [51]) and the choice depends on the platform and intended mission.

For indoor platforms is generally more suitable PBVS scheme (with VO or V-SLAM),
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Figure 3.3: Indoor (left) and outdoor (right) ground image at altitude of

2 meters. (Courtesy of CSOIS )

Figure 3.4: Ground image in HD resolution at altitudes of 2 meters (left)

and 100 meters (right). (Courtesy of CSOIS )

because indoor environment typically offers better features to track and stable illumina-

tion, in comparison with outdoor environment (see Figure 3.3). Using V-SLAM gives

us simultaneously a map of the surrounding environment, which is beneficial for other

tasks (e.g. obstacle avoidance and ground speed estimation). Note that PBVS is more

computationally demanding (especially when using V-SLAM) than IBVS.

Outdoor environments is more challenging in terms of disturbances (wind gusts, vary-

ing illumination and cloud cover), as well as in wider range of operating altitudes (see

Figure 3.4). As shown in [51] the achieved worst-case bandwidth of the pose estimation

system was 5Hz (using PBVS with V-SLAM). To mitigate aforementioned disturbances

at least doubled bandwidth is desirable. The speed constrain then favours IBVS and

Optical flow. Note that fusion of information from camera and IMU might be necessary

to further improve autopilot’s precision (see Section 3.4 for details). Implementation of

a VTOL autopilot as well as experimental results can be found in Chapter4.



3.2. GROUND SPEED ESTIMATION 27

Figure 3.5: UAV and its footprint on the Earth.

(Courtesy of Austin Jensen)

3.2 Ground speed estimation

Ground speed estimation (GSE) becomes important during a forward flight (a constant

speed is desired), as well as during hovering (the desired speed is zero). Constant ground

speed is important for remote imaging purposes.

For a fixed wing platform a ground speed can be estimated from GPS and accelerom-

eter data, using Kalman filtering. However, dynamics of a VTOL platform is less pre-

dictable and thus estimation based only on GPS and accelerometers is not reliable.

To correctly estimate the ground speed, we need to know a camera pose (or UAV

attitude) and altitude. In case we estimate camera pose using VO or V-SLAM, ground

speed is the horizontal translation between frames. In case we use IBVS and OF, atti-

tude is taken from IMU, altitude from the altimeter and ground speed is calculated using

simple geometric relations. Averaging magnitude and direction of OF gives a good ap-

proximation of the ground speed at the image principal point. Figure 3.5 shows relation

between body frame, camera frame and world coordinate frame. Note that once we know

the camera pose or calculate OF, GSE is not computationally expensive and thus can

run simultaneously on a top of another visual servoing system.
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Figure 3.6: Saccade away from obstacle

(http://centeye.com/technology/optical-flow/ )

3.3 Obstacle avoidance

Obstacle avoidance (OA) is of a growing importance for two main reasons. First, having

a reliable OA method, it is possible to autonomously operate UAV at low altitudes in

completely unknown environment, and in narrow areas (such as urban canyons). Second,

as number of UAVs in air will most likely increase in near future, so will the possibility

of a collision. A reliable OA method can safely recover UAV from a collision course.

First possibility is to use V-SLAM (Section 2.3) and a map of the environment to

avoid stationary obstacles. However, first problem arises when we assume non-stationary

obstacles (such as other UAVs) which are not tracked in the map. Second problem is

speed. As mentioned in Section 3.1.3, worst-case bandwidth of the state-of-the-art V-

SLAM systems is around 5 Hz. In case of an aggressive manoeuvres or a fast flight close

to obstacles, higher bandwidth is desirable.

An inspiring solution is provided by nature itself. Pigeons use optical flow to precise

velocity control during landing[30]. Insects (such as dragonflies) use optical flow to avoid

obstacles during flight[20]. A rapid motion of an insect away from the obstacle is called

saccade and is shown in Figure 3.6. Objects close to a camera (or an eye) naturally

induce larger optical flow than objects in distance. Using this simple principle, insects

turn away from areas with large optical flow. This approach was already implemented

both on insect-like1 and fixed wing2 UAVs, using a small and fast optical flow sensor.3.

1http://robobees.seas.harvard.edu/
2http://www.youtube.com/watch?feature=player embedded&v=qxrM8KQlv-0
3http://centeye.com/
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Figure 3.7: Time delay in the sensor fusion[24]

3.4 Attitude estimation

Precise and robust attitude estimation is of an utmost importance for low-cost UAV,

which are typically equipped with low-end sensors. Correctly estimated attitude is ex-

tremely important for performance of all other tasks mentioned before.

Although a complementary filter is widely used for precise attitude estimation([17]),

we are interested in fusion of visual and inertial data. One solution is V-SLAM (Sec-

tion 2.3). Main benefit of V-SLAM is that it estimates not only the camera pose, but

also a map of the surrounding environment. However, as mentioned in Section 2.3, its

main disadvantage is computational complexity and thus is effectively limited to indoor

use only. Second approach is to use VO (Section 2.2) combined with state estimation.

This approach is further described.

Optimal state estimator (Kalman filter) for UAV and theoretical analysis of the

method is already available ([39] and more recent [35]). In [43] an overview of pub-

lished work on IMU and vision data fusion is provided. Obviously, a speed of camera is

limiting the bandwidth of the system, as gyroscopes and accelerometers operate on sig-

nificantly higher frequencies. Using a high-frame-rate camera as in [24] an outstanding

precision can be obtained, however such a camera is out of question for the real UAV use.

With standard cameras (up to 30 fps), time delay between the measurements have to be

taken in account while designing the estimator (as shown in Figure 3.7).

In previously mentioned work only simple features such as points or corners were

used. A significant improvement in precision of outdoor flights can be made if we track

the horizon line (as proposed in [19]), or line segments in urban areas[26].
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3.5 Summary

In this chapter the possible visual servoing applications were presented. Taking in account

the available platform (in Appendix A) and the given time-frame, VTOL autopilot is the

priority task to be implemented. With VTOL autopilot, the aforementioned platform is

capable of fully autonomous missions, which is a desirable goal. Implementation of the

Vision-based VTOL autopilot is described in Chapter 4. Obstacle avoidance is a task

of high interest, however it requires a forward facing camera and thus changes in the

airframe design. Attitude estimation on the current airframe is assumed to be precise

enough, thus no specific effort is put into this task.

In summary, a detailed description of the VTOL autopilot is provided in Chapter 4,

whereas experimental results and flight tests are described in Chapter 5.



Chapter 4

VTOL autopilot

In this chapter a complete design of a VTOL autopilot is presented. The chapter is divided

as follows. In Section 4.1 the autopilot structure is described, as well as specifications

and mission requirements. Section 4.2 is dedicated to the optical flow estimation during

the landing manoeuvre. Selection of an optimal field of view of the camera is addressed

in Section 4.2.1.

In Section 4.2.2 an algorithm for finding focus of expansion is proposed and evaluated

on sample videos. Recommendations for real time FOE estimation are summarized in

Section 4.2.3. Section 4.3 is dedicated to a landing pad detection. Design of the landing

pad is addressed, as well as recommendations for real time implementation. Finally in

Section 4.4 a discussion over the selected flight hardware is provided.

4.1 Autopilot design

When designing the VTOL autopilot, we first have to deal with the given requirements.

The requirements are following:

• The airframe arrives at given GPS coordinates, then it has to autonomously find

the landing spot and perform a safe descend.

• The initial altitude prior to the landing manoeuvre is 5 meters.

• The landing autopilot has to be able to land safely in presence of wind gusts up to

3 m/s.

31
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• The take-off autopilot has to be able to perform a safe ascend from zero to 5 m

altitude in presence of wind gusts up to 3 m/s.

• Maximal allowed pitch and roll angle is 10◦

• The output of the VTOL autopilot is the desired position of the airframe. It is then

fed into the position controller.

• The desired VTOL autopilot bandwidth is at least 10 Hz

Prior to the design process, certain assumptions about the viewed scene have to be

made to allow us to use image processing algorithms. The assumptions are following:

• Assume a planar landing surface without moving object in the scene.

• Assume an uniform illumination within the viewed scene.

• Assume brightness constancy, i.e. an image pixel does not change its brightness

between two consecutive frames[4].

• Assume ”small movement,” i.e. the image motion of a surface patch changes slowly

in time[4].

• Assume spatial coherence, i.e. neighbouring points in the scene belong to the same

surface and have a similar motion[4].

Block diagram of the VTOL controller structure is shown in Figure A.7. Velocity

and attitude control loops, as well as a position controller are already implemented. The

airframe can fly in two autonomous modes - Auto1 when attitude stabilization is active

and the airframe follows commands from RC safety pilot (e.g. thrust increase, turn

left, right). Auto2 is fully autonomous mode when the airframe can follow predefined

way-points and stabilize itself. Details about the airframe can be found in Appendix A.

4.1.1 Landing autopilot

Taking in account requirements from the preceding section, we can aim at landing au-

topilot design. A flowchart of the landing procedure is shown in Figure 4.1. Assume we

are starting at given landing coordinates (x1, y1, h1). Given h1 is 5 m, expected h2 is 2 m

(a this distance from the ground the ultrasonic sensors should be accurate enough).



4.1. AUTOPILOT DESIGN 33

1. Start searching for the landing spot (the target). The target is described in Sec-

tion 4.3. Use box search (Figure 3.1), as it is easiest to perform.

2. Once the target is found, stabilize over the target (i.e. hover in such a way that the

target is in the middle of the image plane, as in Figure 3.2)

3. Start descending from height h1 to height h2 using optical flow and target tracking

to keep the target right under the airframe.

4. Once is h2 reached (ground is close enough), start fine touchdown control mainly

driven by ultrasonic sensors.

5. After touchdown, switch-off the motors.

Because the position of the target is controlled, the autopilot is based on IBVS.

However, we need to know the current attitude and position to be able to determine

desired position for the position controller. A simple proportional controller should be

sufficient for this task.

4.1.2 Take-off autopilot

Take-off autopilot is relatively simple in comparison with its landing counterpart. The

identical requirements apply, thus output of the autopilot is also desired position. The

biggest problem during take-off is a side wind, which can carry the airframe far away

from its initial position. The autopilot has to be able to reject this disturbance. The

take-off will be performed from the landing pad, which can provide additional position

reference. The desired take-off altitude is 5 m (h1). The take-off procedure is following:

1. Start motors

2. Start ascending. Use optical flow and target tracking to keep the airframe right

over the target. Use ultrasonic sensors for precise altitude reference.

3. When the desired altitude is reached, stabilize over the target.

4. Hand over the control to flight autopilot (Auto1 or Auto2 )

Position of the target in the image plane is controlled, so the take-off autopilot is based

IBVS. During the initial part of the take-off when the airframe is close to the ground,
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Figure 4.1: Landing autopilot flowchart
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Optical flow

Figure 4.2: Take-off autopilot flowchart

proximity sensors have the highest importance for control. Note that unless altitude of

at least 1 m is reached, the target occupies almost whole image plane and thus is difficult

to track it reliably. However, at higher altitudes (close to 5 m), target tracking will be

the most important method.

4.1.3 Safety considerations

Because we are dealing with the control of a flying vehicle, it is important to examine

safety issues related with VTOL control. Mechanical and power failures are mitigated by

careful pre-flight inspection. Failures in the lower control loops are also assumed to be

mitigated. In case of the VTOL autopilot, we are concerned about two possible issues:

1. Initialization failure
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2. Target tracking failure

To mitigate possible initialization failure, it has to be possible to visually check if the

autopilot is ready before the flight (e.g. a flashing light). If the autopilot for some reason

does not initialize prior to the landing sequence, the position controller has to regain the

control authority and warn the safety pilot while keeping the airframe steady. In that

case manual landing has to be performed.

Target tracking failure incorporates both incorrect target detection and target loss,

Possibility of incorrect target detection can be reduced by placing the target far away

from objects with similar appearance as the target, and from uneven terrain and obstacles.

If the landing is performed within a view of the safety pilot, a visual control is possible.

If the target is lost during the landing/take-off manoeuvre, the airframe should sta-

bilize itself at its current position and wait if the target is to be found again. If not,

the landing procedure should be restarted - i.e. the airframe will go back to its initial

position and start the box-search for the target.

Another possibility is that the desired position will be calculated incorrectly due to

noisy data (e.g. incorrect target detection, FOE estimation or altitude estimation). This

would usually happen for only a few frames, then the estimation should be corrected. To

mitigate this problem, only a maximal allowed change in the desired position should be

allowed, excluding too aggressive manoeuvres.

4.2 Optical Flow Estimation

As mentioned in Section 2.4 there are three main methods of calculating optical flow.

Horn-Schunck method[25], Lukas-Kanade Tracker[34] and Fractional Order Optical Flow[9],

which extends HS method using fractional order calculus. It was desirable to use a method

which produces the most precise optical flow. For a comparison of the available methods

a Matlab prototype was developed.

Matlab implementation of each method was downloaded from Matlab Central1. Opti-

cal flow was calculated from sample videos and image sequences taken either by hand or

from [37]). Resulting OF from each method is shown in Figure 4.3. Note that although

the images are in colours, optical flow is calculated from grayscale (intensity) images.

1http://www.mathworks.com/matlabcentral/fileexchange/
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Figure 4.3: Left: Lukas-Kanade Tracker with a mesh of tracked points,

Middle: Horn-Schunck method,

Right: Fractional Order Optical Flow

The sample videos were not annotated,2 and thus it was impossible to provide a qual-

itative analysis of the correctness of the OF. However, a comparison of all three methods

is provided in [9], where on the annotated datasets FOOF method outperforms the other

two. Nonetheless, none of the method was superior on the given video data. As a result,

the final choice of the method depends on the performance of their C++ implementation,

however FOOF is preferred. Regarding the frame rate, it was experimentally concluded

that if the frame rate drops below 10 fps, a movement between two consecutive images

is too large and optical flow is not estimated correctly.

4.2.1 Camera lenses

Both narrow field-of-view and fisheye camera lenses were used for a comparison:

• Canon PowerShot A495:3 FOV ∼ 45◦, 320× 240 px

• GoPro Hero2:4 FOV 170◦, HD resolution

• Omni-tech Unibrain Fire-i BCL:5 a lens on a standard CCD chip, FOV 190◦,

256× 256 px, (datasets taken from [37])

A sample image from three different cameras is shown in Figure 4.4 (note the lens

distortion). Advantages and disadvantages of both types of lenses are summarized below.

2i.e. no ground truth was known
3http://www.canon-europe.com/For Home/Product Finder/Cameras/Digital Camera/PowerShot/PowerShot A495/
4gopro.com
5http://www.omnitech.com/fisheye.htm
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Fisheye lens FOV ≥ 100◦

• + Target is less likely to leave the image plane

• − Complicated geometry (image projected on a unit sphere)

• − Moving objects can appear on the edge of the image (as FOV is wider)

• − Sun or other strong light sources can appear in the image plane and dete-

riorate camera performance

Narrow FOV lens

• + Simple geometry

• − Target more likely to leave the image plane as FOV is narrower

Obviously fisheye lens has certain issues that has to be overcome (such as more com-

plicated image projection). On the other hand, wider FOV ensures that the target (i.e.

landing spot) stays in the image plane and can be tracked. A rule of thumb in robotics

says that wider FOV of the vision sensor allows the robot to observe larger area with

smaller motion. This is beneficial when UAV search for the target. As a result, a fisheye

lens is preferred.

It is important to briefly address camera autofocus, because a vast majority of USB

webcams nowadays has this ability. Assume a lens with a fixed focal length (prime lens).

When focusing at a specific distance, the focal length inevitably slightly changes. This

effect is called focus breathing and is proportionally dependent on focal length. Webcams

usually have focal length of a few millimetres[19],6 but the focus breathing is still visible.

Fisheye lenses have smaller focal length,7 as it is inversely proportional to FOV. Thus

the wider FOV, the smaller focus breathing.

A preferred camera would have a fixed focus, because autofocus adds unnecessary

complexity to the system. A fisheye lens with a small focal length has its focus range

usually from few centimetres to infinity, which is sufficient for our system.

6For example Logitech HD Pro Webcam C910 f=4.3mm, Microsoft LifeCam Cinema f=4.5mm
7For example ORIFL190-3 fisheye lens from Omnitech has only f=1.24mm
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Figure 4.4: Left: GoPro (FOV 170◦)

Middle: Unibrain fisheye lens (FOV 190◦)

Right Canon PowerShot A495 (FOV ∼ 45◦)

Figure 4.5: Diverging optical flow and the FOE[36]

4.2.2 Focus of Expansion

When approaching a planar surface, the time of contact τ is inversely proportional to the

divergence of the optical field([36] and [37]). Divergence is defined as:

D(x, y) =
∂u(x, y)

∂x
+
∂v(x, y)

∂y
(4.1)

where u(x, y) is the horizontal component of OF, and v(x, y) is the vertical component

of OF. In an ideal situation OF is diverging from a single point in the image plane, as

shown in Figure 4.5. This point is called Focus of Expansion (FOE). During landing on

a planar surface, FOE represents the point of contact with the ground. When we know

position of FOE in the image plane, we know at which point the UAV will touch the

ground. It is indeed desirable to align FOE and the landing spot.
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Several methods of FOE estimation exist ([36], [37] and [32]). After several experi-

ments, a novel approach was suggested, based solely on the magnitude of the optical flow.

Assume FOE lies within the image, and that the surface is perfectly planar. FOE is then

the point with the smallest magnitude (M(u, v) =
√
u2 + v2) of optical flow, as is clearly

visible in Figure 4.5.

The basic algorithm pipeline is following (assume that OF was already calculated):

1. Grab a new image and corresponding OF

2. Down-sample OF (use every n-th pixel only)

3. Calculate magnitude of the OF

4. Convert magnitude into binary image with a selected threshold

5. Invert (low values of magnitude are now 1 instead of 0)

6. Label separate components

7. Discard unreliable components

• Optional: Apply morphological operations (e.g. opening/closing)

• Discard components that are not solid enough

• Discard components that are not circular enough

• Select a component with the largest area

8. FOE is the centroid of the final candidate

This algorithm should be further improved to be robust enough, although for the

sample sequences it provided good results. A Matlab prototype was developed to test

the performance over various datasets. Note that using fixed thresholds required tuning

for specific video sequences, thus it might be necessary to use adaptive thresholding.

Another possible improvement is to include IMU measurements, so the algorithm will

search for FOE only when the platform undergo horizontal acceleration (i.e. ascend or

descent).

In Figures 4.6 and 4.7 is shown outdoor landing sequence taken with the Omni-tech

fisheye lens. We can see a correct FOE estimation, especially during the last part of

the landing (which is critical as UAV is close to the ground). In Figure 4.8 is shown

an indoor landing sequence. The landing was under approximately 20◦ and FOE was
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Figure 4.6: Outdoor grass landing, dataset from [37], FOE marked red.

a) Original image with plotted OF, b) magnitude, c) labelled

components

estimated correctly. Note that for a fisheye lens we have to take in account only the

spherical part of the image plane and discard the bounding box.

Figure 4.9 shows outdoor landing sequence taken by hand with GoPro camera. Note

the texture-poor environment. FOE estimation is biased because of moving objects in the

scene (e.g. shadows). This has to be taken in account for the real-time implementation.

In Figures 4.10, 4.11 and 4.12 is shown a narrow FOV footage. Note correct FOE

estimation even in presence of rotational movement (Figure 4.11). Figure 4.12 shows a

take-off sequence. Note that FOE estimation as proposed in Algorithm 8 works also for

take-off sequence, when the distance to the ground is increasing. This is an important

fact for take-off autopilot implementation. Obviously when using Algorithm 8, better

performance is achieved with perspective camera images (i.e. narrow FOV). For a fisheye

camera, optical flow should be either mapped to local tangent planes of the image sphere

(as proposed in [37]), or the algorithm for FOE estimation should be fed with angular

rates and position angles from IMU.
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Figure 4.7: Outdoor cement landing, dataset from [37], FOE marked red.

a) Original image with plotted OF, b) magnitude, c) labelled

components.

Video available at http://www.youtube.com/watch?v=C7U4V0lqyVo
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Figure 4.8: Indoor carpet landing, dataset from [37], FOE marked red.

a) Original image with plotted OF, b) magnitude, c) labelled

components.

Video available at http://www.youtube.com/watch?v=ZrpEa1oZLCY

Figure 4.9: Outdoor cement landing, GoPro camera, FOE marked red.

a) Original image with plotted OF, b) magnitude, c) labelled

components.

Video available at http://www.youtube.com/watch?v=cK8D8-

HkEGs
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Figure 4.10: Outdoor gravel landing, Canon PowerShot, FOE marked red.

a) Original image, b) magnitude, c) labelled components.

Video available at http://www.youtube.com/watch?v=1A-

brG4Wq1Y

Figure 4.11: Outdoor grass landing, Canon PowerShot, FOE marked red.

a) Original image with plotted OF, b) magnitude, c) labelled

components.

Video available at http://www.youtube.com/watch?v=9Yb9g9N8nR4

Note the rotational motion.
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Figure 4.12: Outdoor gravel take-off, Canon PowerShot, FOE marked

red.

a) Original image, b) magnitude, c) labelled components.

Video available at http://www.youtube.com/watch?v=QfiwmshgLVQ

Note that the performance is consistent despite the blurred

image.

4.2.3 Recommendation

Summarizing the previous experiments, we can give this recommendation for the real

time implementation of the autopilot:

Down-sample the original image - to improve performance.

Calculate OF selectively - chose only a mesh of points/features for which will be OF

calculated to further improve performance.

Use pyramid implementation - of the OF method to be able to track even large

motion.

Use Fisheye lens with fixed focus - with wide FOV it is easier to track the target,

fixed focus decreases complexity of the system.

For the FOE estimation, the following suggestions should be taken in account:

Tune component selection - implement adaptive thresholding and possibly apply mor-

phological operations to labelled components.
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Fuse with IMU data - to provide a robust FOE estimator.

Computational cost of FOE estimation is negligible in comparison with OF calcu-

lation. The real bottleneck is the OF calculation and thus should be made as fast as

possible. On a desktop computer with quad core 64-bit AMD processor and 8 GB RAM

we were able to achieve frame rate roughly 10 fps. However, main delay was caused by

highly unoptimized code and Matlab visualisation issues, so it is reasonable to expect a

similar worst-case frame rate for a real-time implementation.

Note that FOE cannot be found when there is no movement in vertical direction. Also

when the vertical velocity is small relatively to the altitude, FOE cannot be found either.

These two constraints put a limit for real time application, and taking them in account,

we can assume that optical flow and FOE estimation will be most reliable in a proximity

of the ground (i.e. final part of the landing and initial part of the take-off manoeuvres).

4.3 Target detection

A reliable method for landing spot selection is a combination of GPS coordinates and a

specially designed landing pad, as described in Section 3.1.1. Once reaching the given

coordinates, UAV will start searching for a landing pad. When the landing pad (target)

is found, it will be tracked until a successful touchdown. Similar procedure can be used

during take-off, when the target provides a position reference.

The originally proposed target is shown in Figure 4.13. Assuming that perfectly

circular objects are scarce in outdoor environment, such a target can be easily found

using Hough circular transform. Knowing the target dimensions and a height from which

UAV starts its search, we can specify minimal and maximal radius of the searched circle.

Reliability of the detection can be increased if the target is painted in a distinctive color.

We can then incorporate color filtering before Hough transformation.

Indoor sample images were processed with Matlab implementation of Hough Trans-

form8 to prove the feasibility of this method. Results are shown in Figure 4.14 for the

black and white target. As a rule of thumb we can say that no reliable detection of the

target is possible if it covers less than 1/10 of the image plane. To further improve the ro-

bustness of the tracking, a new bright red target was designed (as shown in Figure 4.13),

8Matlab Central: http://www.mathworks.com/matlabcentral/fileexchange/
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Figure 4.13: Left: The landing pad as proposed in [29]

Right: The final landing pad.

which allows color filtering. Red color was chosen because it is distinctive and relatively

rare in natural scenes.

Using the same desktop computer as for OF estimation and images in HD resolution,

a similar worst-case frame rate was achieved (at least 10 fps). Hough transform is known

to be computationally intensive, but it is a simple and reliable method. There are a few

options how to reduce the computational load, namely:

Down-sample images - using the same resolution as for OF calculation should be

sufficient

Use the color mask - to reduce computation time and increase robustness

Note that in case of a fisheye lens, objects close to the edge of the image are distorted.

A modification (such as elliptical Hough transform) of the detection method might be

necessary. A combination of circular Hough transform in vicinity of the principal point

and elliptical Hough transform near the edges of the image is an option.

Taking in account the previous recommendations, an optimal radius of the target was

determine to be 0.75 m. Details about this calculation are provided in Appendix D.

4.4 Hardware

In this section separate hardware components of the autopilot are described.
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Figure 4.14: Hough transformation of sample images (GoPro camera)

Left: Grayscale images, Middle: Edges and detected circles,

Right: Hough accumulator space.

4.4.1 Camera and the lens

The main requirements for the camera were USB connection, frame rate at least 10fps

with a resolution of 640 × 480 pixels, fixed focus and easy access to the lens and CCD

sensor. A natural solution is a webcam, as it has an USB connection and all electronics

packed on a small board. Unfortunately a majority of new webcams comes with autofocus

lenses, and those are more difficult to remove.

The selected camera is a Logitech Webcam C600 9. It has USB 2.0, 2 Megapixel 1/3.2”

CCD sensor, frame rate up to 30 fps, video resolution up to 1600× 1200 pixels at 10 fps,

and fixed focus M10 × 0.5mm lens. Logitech don’t ship this type any more, but it can

be ordered either new or used from Amazon10 or other resellers. A used camera can be

bought for 20$. Another option for a similar price is a PS Eye Camera11.

The selected lens is an M12 × 0.5mm fisheye lens DSL125 12 with horizontal FOV of

175◦ (at 1/3.2” sensor). DSL125 can be ordered for 99$. A step-by-step procedure of

customizing the webcam is provided in Appendix B, the camera is shown in Figure 4.15.

9http://www.gizmag.com/logitech-c600-webcam-vid-software-review/12500/
10http://www.amazon.com/Logitech-Webcam-C600-Built-Microphone/dp/B002GP7ZT6
11http://www.amazon.com/PlayStation-Eye-3/dp/B000VTQ3LU
12http://www.sunex.com
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Figure 4.15: Logitech Webcam C600 with DSL125 lens without a cover

box

4.4.2 On-board computer

As an on-board computer to perform all necessary computations is used Pandaboard13.

It is a platform based on Texas Instruments OMAP4 processor (dual-core ARM9, 1Ghz),

with 1GB DDR2 RAM and SD/MMC card as a memory storage. Full specification can

be found at the web page. For our purposes it is important that Pandaboard is powerful

(yet affordable) enough to perform image processing on-board. To operate the board an

operating system is required.

The camera is plugged into an USB port, the position controller is connected via

RS-232 serial port. The detailed set-up of the Pandaboard is shown in Appendix C and

the description of the VTOL airframe is provided in Appendix A.

4.4.3 Ultrasonic proximity sensor

For range measurements an ultrasonic sensor XL-MaxSonar MB121014 is used. It has the

following features: ±1 cm resolution, measurement ranges from 20 to 700 cm, reading

rate 10 Hz and either analog or serial (digital) output. One sensor can provide reasonable

measurements of altitude, however having four of these sensors (one on each leg of the

13http://www.pandaboard.org
14http://www.maxbotix.com
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airframe) gives enough information for precise position estimation (taking in account

difference in measured height).

Pandaboard has only two serial ports available and one is needed for communica-

tion with position controller. For that reason a custom made board was used, which is

equipped with a number of A/D converters and I2C interface. The details of the board

and ultrasonic sensor set-up can be found in Appendix C.

4.5 Software

In this section the software structure of the VTOL autopilot is described. Autopilot

is written in C++ which is a natural choice for on-board devices programming, where

performance is an issue. For image processing part is used OpenCV library[4] which is

open source and provide a vast amount of ready-to-use functions. Additional libraries

for RS-232 and I2C communication are used, as well as TinyXML15 for reading XML

document.

An operating system for the on-board computer is required, thus Ubuntu 12.04 Desk-

top edition is used. Real time operation systems were also considered (and Linux kernels

with pre-emptive planning are available), but as the bandwidth of the autopilot is only

10 Hz, using real-time OS is not worth the added complexity. The autopilot pipeline is

shown in Figure 4.16, and it should be described more thoroughly.

• Upon initialization, settings are read from an XML file and various checks are

performed to ensure that all components are working correctly.

• After initialization and a correct set-up, the main loop is entered.

1. A frame is queried from the camera and transformed to an appropriate color-

space (RGB)

2. Target recognition algorithm finds the areas with desired color (e.g. red), on

this color-based mask Hough circular transformation is performed.

3. Optical flow between the current and the previous frame is calculated, and

FOE is estimated.

15http://www.grinninglizard.com/tinyxmldocs/index.html
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4. The controller compares the position of the target, the location of FOE and

received range measurements with the airframe position and calculates the

new desired position.

5. The controller also checks if the target was lost or incorrectly tracked (see the

Safety considerations in Section 4.1.3).

6. The new desired position is send to the position controller.

7. Check if the desired altitude is reached. If no, go back to the beginning of the

loop.

When the desired altitude is reached (which means either a successful take-off or touch-

down), the autopilot switched to standby mode and hands over the control of the airframe.

The code is included on the CD with all necessary libraries.

4.6 Summary

In this chapter a complete design of the VTOL autopilot was presented. Autopilot

structure was described in Section 4.1, optical flow and FOE estimation was tested on

sample videos and the results are presented in Section 4.2. Target detection algorithm

was tested on sample images (see Section 4.3), and the results were used for designing

a new target as shown in Appendix D. An overview of used hardware and software was

provided in Sections 4.4 and 4.5.

Based on information from this chapter, an autopilot can be finally implemented and

tested in real-time on the airframe. Results of the flight tests, autopilot calibration and

performance benchmarking are to be found in the next chapter.
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Figure 4.16: VTOL autopilot software pipeline



Chapter 5

Flight tests and Conclusion

In this chapter the real-time implementation of the VTOL autopilot from Chapter 4

is presented. It is important to mention that upon the thesis submission deadline, no

flying platform was available to carry out the tests. The VTOL platform described in

Appendix A was still in the phase of velocity controllers tuning. However, the work is

carried on and the final results are to be presented during the thesis defence (on June 18

2012).

At this point, preliminary results are presented in the following section. Note that

both the source code and the sample videos are available on the included CD. Sample

videos were taken both outdoors and indoors, using the camera described in Appendix B.

5.1 Preliminary results

5.1.1 Calibration procedure

As proposed in Section 4.3, the target detection method was improved using color filtering.

The commonly used RGB colorspace is not suitable for computer vision applications

(mainly because it is difficult to express color ”similarity” in the RGB cube), thus Hue-

Saturation-Value1 colorspace is used instead. Its main advantage is that we can express

color similarity in Hue channel (e.g. only red tones) and then specify saturation and

intensity of the color in the remaining two channels. As a result, HSV based color

filtering is more robust against illumination changes.

1http://en.wikipedia.org/wiki/HSL and HSV
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Figure 5.1: Left: Saturation, Middle: Hue, Right: Value

Video taken during a bright sunny day. The target is artifi-

cially marked blue.

The low-grade webcam used in this project perceives the same color differently under

different light conditions (e.g. indoor vs. outdoor, or bright sun vs. cloudy day). To

mitigate this issue and further improve the robustness of the target detection, a calibra-

tion procedure was implemented. This procedure allows the user to either calibrate the

algorithm before the flight, or to define a set of algorithm settings for various conditions

(e.g. different thresholds will be used indoors and outdoors). We can see the three HSV

channels during calibration procedure in Figure 5.1. Note the clear difference between

the target and the background in Hue channel (middle), whereas the scene illumination

(Value channel) is almost uniform.

5.1.2 Improved target detection

The target detection was improved in two ways. First, the color based mask was used

(as mentioned in Section 5.1.1). Second, a circular mask covering the Region of Interest

(ROI) around the centre of the image plane was used to mitigate possible false detection

on the edge of the field of view. Target detection algorithm in practice is shown in

Figure 5.2. Note the color based mask precisely bounding the target.

5.1.3 Optical flow calculation

On the contrary, optical flow calculation and consequent focus of expansion estimation

does not seem to be as precise as expected. In Figure 5.3 is shown a typical example. In

close vicinity of the ground (i.e. altitude ≤ 1 m) the optical flow is calculated correctly (as
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Figure 5.2: Target detection on an asphalt road. Top-left: The original

image with the detected target, Bottom-left: Circular mask

(ROI is white), Top-right: Edges passed to Hough circular

transform, Bottom-right: Color based mask of the original im-

age
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Figure 5.3: Optical flow estimation. Left: Optical flow in close proximity

(below 1 m) to the ground (FOE marked yellow), Right: Op-

tical flow at approximately 2 m altitude. Note the large error

in vicinity of the detected target (blue circle).

there is a feature rich background and significant vertical movement) and we can localize

the focus of expansion (assuming non-zero velocity in vertical direction). However, at

altitudes ≥ 1 m the calculated optical flow is ambiguous and suffer from large errors. This

is caused firstly by featureless background (such as an asphalt road), where it is difficult

to track the motion of pixels. Second, if the vertical velocity is small in comparison

to altitude, there is simply not enough movement between the consecutive images (as

already noted in Section 4.2.3. Thus FOE estimation is not possible. Note that FOE is

found easily for rotational movement, as long as the axis of rotation lies within the image

plane.

Because of the aforementioned reasons, OF calculation and FOE estimation is not reli-

able enough to be used as an input for the VTOL autopilot during the whole landing/take-

off manoeuvre. However, it provides sufficient precision in close vicinity of the ground

(i.e. below 1 m) and shall be used in combination with ultrasonic range measurements.

5.2 Conclusion

In the presented work, the potential of visual servoing techniques for VTOL platforms

was explored. First, an overview of UAV applications and state-of-the-art quadrotors



5.2. CONCLUSION 57

were introduced in Chapter 1. A necessary theoretical background of quadrotor mod-

elling and visual servoing was provided in Sections 1.3 and 2. The solutions based on

visual servoing for the most important flight tasks (such as vertical take-off and land-

ing, obstacle avoidance and attitude estimation) were described in Chapter 3. Finally, a

VTOL autopilot for a medium-sized outdoor quadrotor was developed and described in

detail in Chapter 4.

Note that it is intended to use the developed VTOL autopilot for future versions

of the AggieVTOL platform (the quadrotor developed at Utah State University, see

Appendix A). For that reason all the necessary software and hardware settings were

described in the Appendix, so this thesis can serve as a reference for future use.

As mentioned in the beginning of this chapter, the reason why only the preliminary

results are included is, that no flying platform was available upon the submission deadline

of this thesis. The AggieVTOL platform equipped with the VTOL autopilot is being

prepared for AUVSI Student competition of unmanned aerial vehicles2, which takes place

on June 15 2012 in Maryland. The flight tests and results of the competition are to be

presented during the defence of this thesis.

2http://www.auvsi-seafarer.org/
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Appendix A

AggieVTOL quadrotor

In this section a detailed description of the VTOL platform from Utah State University

CSOIS lab is provided. This platform is developed for scientific and eventually commercial

use, specifically for personal remote sensing. Unlike the flying wing platforms, VTOL’s

main strength is a precise imaging of a specific place, rather than covering a large area.

VTOL and fixed wing UAVs can cooperate in such a way, that the area is firstly scanned

by the fixed wing platform, and consequentially a high-resolution images of the points of

interest are taken by VTOL.

Note that initially an octorotor platform with increased payload capability was de-

veloped, however due to vibration issues the effort was aimed at a quadrotor platform

instead. AggieVTOL is shown in Figures A.1, A.2 and A.3.

Mechanical design

Dimensions

• Length (without propellers): 81 cm

• Height (without legs and payload): 10 cm

• Total take-off mass (without payload): 2500 g

• Maximal allowed take-off mass: 3100 g

Materials

Whole airframe is made from carbon fibre, the arms are made from commercially available

carbon fibre tubes (diameter 15 mm), the payload and battery box is custom made. The

I
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Figure A.1: AggieVTOL without landing gear (Styrofoam landing pad is

used instead during attitude controllers tuning)

Figure A.2: AggieVTOL electronics - LISA board on the top, GMX IMU

hidden below, radio control transmitter on the side of the

battery box
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Figure A.3: Top view of AggieVTOL

only metal part is the middle cross which hold together the four arms.

Motors

Motors from Czech company AXI are used, specifically AXI Gold 2217/20 Outrunner

Motor 1. Motor Avroto 2814 Short Shaft2 has a similar performance and can be considered

as a backup solution. 12× 3.5 SFP APC propellers are used, model LP12038SFP3.

Estimated current taken at nominal thrust (i.e. when the airframe hovers, around

50% of the thrust) is around 4.5 A per motor. The propeller is a standard off-the-shelf

propeller for RC motors. Estimated thrust of each motor is around 1.3 kg.

Battery

Two Thunder Power 4 Li-Polymer batteries are used, each with the capacity 8 Ah and

voltage 14.8 V. Weight of a single battery is 630 g, thus batteries make the majority of

1http://www.modelmotors.cz/
2http://montorc.com/M2814Shaft.aspx
3http://www.apcprop.com/ProductDetails.asp?ProductCode=LP12038SF
4http://www.thunderpowerrc.com/
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the airframe weight. With these batteries and maximal payload is the expected mission

duration around 20 minutes.

Payload

The payload is Canon PowerShot S95 5 camera (weight around 170 g). alternatively an

infra-red camera of similar weight can be used.

Hardware

AggieVTOL is based on Papparazi6 open-source project which comes up with both hard-

ware and software solutions for UAVs. LISA main board is used for the autopilot. LISA

board is driven by a STM32 processor, a 32-bit ARM Cortex MCU that operates at

72MHz. While a separate IMU is necessary, several interfaces are available including

SPI, UART and I2C for communications. On-board features include power management,

two barometric sensors and a connector for a separate GUMSTIX5 Overo single board

computer which features a 600 MHz OMAP3530 processor and USB 2.0 connectivity[13].

As IMU servers 3DM-GX3 7 high-end navigation unit.

System architecture

An overview of the on-board system architecture can be seen in Figure A.4. In this system,

four sensor sources are used to calculate the attitude and the position. The 6 DoF IMU

and the magnetometer are fused together by the Attitude and Heading Reference System

(AHRS) module. The AHRS provides this data to the Inertial Navigation System (INS)

along with positioning data from a GPS module and a barometer. These data are then

processed to form an estimation of the vehicle’s true position and altitude. The attitude

and position information is used by the controller, along with any control information

from either an RC transmitter at 2.4GHz for manual control or a Ground Control Station

(GCS) via the 900Hz modem. The actuators for the UAV are controlled by ESCs. A

payload can be controlled autonomously by the controller or manually through the GCS.

The GCS provides the operator with real-time status information as well as the ability

to form navigational paths for the UAV to follow[13].

5http://usa.canon.com/cusa/consumer/products/cameras/digital cameras/powershot s95
6http://paparazzi.enac.fr/
7http://www.microstrain.com/inertial/3DM-GX3-25
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Figure A.4: Quadrotor software architecture

The velocity control is provided by Electronic Speed Controller (ESC) fromMikrokopter 8.

It has the maximum current capability of 35A and uses I2C to communicate with the

autopilot[13].

The attitude and position control systems within the LISA autopilot are simple PID

controllers with feed forward. The control of Qaudrotors is certainly a well explored

topic, however its commonly accepted a simple PID controller is adequate for attitude

control. Position control as well can be accomplished with a simple PID controller. The

number of control systems that have tried for attitude and position control are vast and

ever expanding. However due to their simplicity and reliability simple PID controllers

were better for for AggieVTOL[13].

The VTOL platform can operate in three modes:

Manual - full manual control over RC transmitter

Auto1 - manual control with attitude stabilization

Auto2 - fully automatic control including way-point following

Communication channels

AggieVTOL uses the following communication channels:

8http://www.mikrokopter.de/
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Telemetry - Digi Xtend 900 MHz serial modem9

Radio Control - Spectrum DX7s 2.4 GHz RC Transmitter10

Payload - Ubiquiti Networks Bullet 5 GHz transmitter11

For safety reasons, a killswitch which immediately shuts down all power is imple-

mented on the RC transmitter.

Ground control station

The Paparazzi Center allows for all configuration settings relevant to flight to be defined.

This includes the flightpath set, and various other settings such as the airframe configura-

tion file. Within the airframe configuration file parameters such as the type of actuator,

Com link, IMU, AHRS and controller tuning are defined. Once all the configurations

have been set, the code is compiled and can then be uploaded to the LISA board via

USB. Once uploaded the center can execute the program, this will bring up the GCS

with the uploaded flightpath set, as well as other settings[13].

The Paparazzi GCS (ground control station) consists of several tools including the

flight plan editor, real-time displays and reconfigurable switches. The Paparazzi GCS also

provides the GCS operator with the ability to re-task the UAV in the event of emergent

targets. Paparazzi GCS is shown in Figures A.5 and A.6. Further description can be

found on the Paparazzi web page.

9http://store.digi.com/index.cfm?fuseaction=product.display&Product ID=490
10http://www.spektrumrc.com/Products/Default.aspx?ProdId=SPM7800
11http://www.ubnt.com/bullet
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Figure A.5: Paparazzi GCS (http://paparazzi.enac.fr/wiki/GCS )

Figure A.6: Paparazzi Control Center (http://paparazzi.enac.fr/wiki/ )
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Figure A.7: Quadrotor controllers block diagram



Appendix B

Camera setup

The following components are needed:

• Logitech Webcam C600

• Sunex DSL125 lens

• Sunex CMT107 lens mount

A step-by-step tear-down of the Logitech camera is provided at

http://www.ifixit.com/Teardown/Logitech-2-MP-Webcam-C600-Teardown/1504/1. Follow

the instructions there.

The CMT107 mount thread is 16 mm high, however DSL125 has only 12.5 mm long

thread. Thus the mount has to be shortened by at least 2.5 mm. The CMT107 is also

wider than the original Logitech lens mount, and interferes with on-board resistors and

capacitors. It has to be sanded off on the edges to fit on the board. Finally hot glue was

used to seal the mount and to protect the CCD sensor from dirt.

The board with the camera is screwed on a frame from balsa wood. This frame is

then glued on the airframe. A carbon fibre box (it is light and durable) was made to

protect both the camera and lens. The procedure as well as the final setting is illustrated

in Figures B.1– B.5.

IX
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Figure B.1: Logitech Webcam C600 with removed lens and a bare 1/3.2”

CCD sensor

Figure B.2: Logitech Webcam C600 with CMT107 M12 tits lens mount.

Note the cover tape in vicinity of the mount.
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Figure B.3: Fisheye DSL125 lens

Figure B.4: Logitech Webcam C600 with mounted and sealed DSL125
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Figure B.5: Camera on a balsa wood frame and the carbon fibre box.
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Panda board set-up

The following components are needed:

• Pandaboard

• XL-MaxSonar MB1210

• Custom made A/D converter board

A detailed description and system reference manual for Pandaboard can be found

at http://pandaboard.org/. Installation of operating system (Ubuntu 12.04 Desktop),

OpenCV and additional libraries is described at

https://sites.google.com/site/andrewssobral/pandaboard. When this set-up is done, we

have to add connectors for I2C communication. The following pins on J3 expansion

connector are used:

• Pin 1: 5V DC power

• Pin 23: I2C Serial Data

• Pin 24: I2C Clock

• Pin 25, 26: Digital ground

A layout and circuit diagram of the custom made A/D converter board with Digi-

Key AD7997BRUZ-1-ND chip1 is shown in Figures C.1 and C.2. The ultrasonic sensor

are connected on Pin 3, which provides analog output. The other input is grounded.

1http://search.digikey.com/us/en/products/AD7997BRUZ-1/AD7997BRUZ-1-ND/998053

XIII
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Figure C.1: Layout of the A/D converter board

(Courtesy of Brandon Stark)

The board does not provide power supply, so a separate 5 V power channel has to be

established between the Pandaboard and the sensor.

For reading the analog output from the sensors, an analog low-pass (RC) filter had

to be used. Update rate of the sensor is 10 Hz, bandwidth of the filter is 6 Hz (using

C = 2.2µF , R = 12kΩ). Capacitors at the power supply line has values C1 = 0.1µF ,

C2 = 100µF , C3 = 0.1µF .
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Figure C.2: Circuit diagram of the A/D converter board
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Landing pad design

In this section a method of determining the optimal size of the landing pad (the target)

is described. The requirements are that it has to be possible to track the target reliably

from the initial height of 5 m, and a whole target has to be visible during the final part

of the descend (e.g. at height of 2 m), as described in Section 4. Below this altitude

ultrasonic sensors are the main source of position information and visibility of whole

target is not required.

Fisheye imaging model

A fisheye lens DSL215 with horizontal FOV 175◦ is used. Assume that the principal point

is in the middle of the image plane. Image formation for a fisheye lens is described by

the following equations[12]:

R =
√
X2 + Y 2 + Z2 (D.1)

θ = arccos(
R

Z
) (D.2)

φ = arctan(
Y

X
) (D.3)

where X, Y, Z are the point coordinates in world reference frame. The point is pro-

jected to the image plane in polar coordinates (r, φ) with respect to the principal point.

r = r(θ) and the mapping function depends on the type of the lens. In case od DSL125 an
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equiangular projection1 is used, so we can approximate the equation as r = kθ. Having

a 640× 480 px image, k
.
= 203 (assuming θ ≥ 0). The conversion from polar coordinates

to pixel coordinates (u, v) is:

u = r cosφ (D.4)

u = r sin φ (D.5)

Putting equations D.1 and D.2 together, we obtain:

r = k arccos

(√
X2 + Y 2 + Z2

Z

)

(D.6)

Experimental results

To verify the presented calculations, a calibration scene was prepared. Three signs mark-

ing a center of a circle and 1 m radius were placed in the camera optical axis (i.e.

X = 0 m), and then to 5 m and 10 m distance from the optical axis. A re-projection

of these points was calculated using aforementioned equations and compared with the

image.

In Figure D.1 we can see the result. At the centre of the image plane the re-projection

concurs with the signs, however as we are getting further from the centre, the re-projection

error increases. This is caused by imperfections of the lens (there is a certain angular

distortion at the edges of the image which is not taken in account in the equiangular

equation), and also by the offset of the optical axis (we can see that it is not exactly in

the centre of the image, but slightly on the left). This offset is caused by the camera

mount.

Despite these imperfections, the used projection model provides a sufficient accuracy

and can be used for calculating the re-projection of the target. Two sized of the landing

pad were considered. One meter radius and 0.75 m radius. Assuming average accuracy

of GPS being 2± m, we have to consider three cases. Target size at the distance of 5 m

(the desired starting altitude), of 7 m (worst case starting altitude) and 2 m (altitude

at which ultrasonic sensor are used for fine landing control). Figures D.2, D.3 and D.4

1http://www.optics-online.com/Detail.asp?PN=DSL215B%2D690%2DF2%2E0
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Figure D.1: The calibration scene, h=5 m, red crosses are the calibrat-

ing signs. Red, blue and green dots are representing the re-

projection of a circle with 1 m diameter at 0, 5 and 10 meters

right from the camera optical axis.

shows the target size at various heights (red, blue and green dots). Calibration marks

are also shown (red crosses).

As can be seen, the difference in the landing pad size is most visible at higher altitude.

However, the smaller size (r = 0.75 m) is considered as sufficient for a reliable target

tracking. Thus the final size of the landing pad is a circle with radius of 0.75 m.
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Figure D.2: Left: Height 2 m, target radius 0.75 m,

re-projected at 0, 5, 10 m

Right: Height 2 m, target radius 1 m,

re-projected at 0, 5, 10 m

Figure D.3: Left: Height 5 m, target radius 0.75 m,

re-projected at 0, 5, 10 m

Right: Height 5 m, target radius 1 m,

re-projected at 0, 5, 10 m
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Figure D.4: Left: Height 7 m, target radius 0.75 m,

re-projected at 0, 5, 10 m

Right: Height 7 m, target radius 1 m,

re-projected at 0 m, 5 m, 10 m
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Contents of the CD

The content on the CD is organized as follows:

• AggieVTOL Nonlinear Model - Simulink model of AggieVTOL platform de-

scribed in Appendix A

• Autopilot - C++ code of the designed autopilot described in Chapter 4

• Datasheets - datasheets for hardware (Pandaboard, ultrasonic sensor, A/D con-

verter), see Section 4.4

• MATLAB - related Matlab code

– code

∗ general - general purpose functions

∗ gui - Graphical user interface for FOE estimation, Ground speed estima-

tion and Optical flow calculation (Sections 4.2 and 4.3)

∗ cameraCalculations.m - Script used for calculating the optimal size of the

landing pad (including sample images)

– Flow - implementation of Bronx and Sanders optical flow method (modifica-

tion of Horn-Schunck method)

– FOHS MODEL - implementation of Fractional Order Horn Schunck method

– houghcircle - implementation of Hough circular transform

– HS - implementation of the original Horn Schunck method

– lk - implementation of Lukas Kanate Pyramidal Optical flow algorithm
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– OpticalFlow - implementation of Lukas Kanate Pyramidal Optical flow al-

gorithm for fast computation using a graphical card

– Srinivasan - fast Fourier transform based method for estimating field of ex-

pansion

• Sample sets - sample video and image sets presented in the thesis (an alternative

for youtube viewing)

– Camera calibration - images used for camera calibration and landing pad

design (see Appendix D)

– Flight tests - videos from Chapter 5

– FOE estimation - result of Matlab based FOE estimation, presented in Sec-

tion 4.2

– Target detection - images shown in Section 4.3 for Matlab based Hough

circular transform and landing spot detection

• Status updates - a collection of presentations held during the work on the thesis

• Zotero - references in Zotero format1

• Podhradsky Michal thesis 2012 PRINT.pdf - Printable version of the thesis

• Podhradsky Michal thesis 2012 ONLINE.pdf - Electronic version of the thesis for

on-screen viewing

1http://www.zotero.org/
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