
Transformer-Based
Robust Multi-Object Tracking
using Historical Trajectories

Master Thesis

presented by

Jan Frederik Meier

Supervisor:
Prof. Dr.-Ing. Johannes Stegmaier

Institute of Imaging & Computer Vision
Prof. Dr.-Ing. Johannes Stegmaier

RWTH Aachen University





MASTER‘S THESIS ASSIGNMENT 

I. Personal and study details 

516393 Personal ID number:  Meier  Jan Frederik Student's name: 

Faculty of Electrical Engineering Faculty / Institute: 

Department / Institute:    Department of Control Engineering 

Cybernetics and Robotics Study program: 

II. Master’s thesis details 

Master’s thesis title in English: 

Transformer-Based Robust Multi-Object Tracking using Historical Trajectories  

Master’s thesis title in Czech: 

Robustní sledování mnoha objektů pomocí transformeru s využitím historických trajektorií  

Guidelines: 

1) Literature research on transformer-based end-to-end Multi-Object Tracking 
2) Investigate new ways to include temporal-visual cues in transformer-based end-to-end Multi-Object Tracking 
3) Investigate new ways to faciliate long-term robust association 
4) Evaluate the model on current benchmarks 

Bibliography / sources: 

[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko: End-to-End 
Object Detection with Transformers, https://doi.org/10.48550/arXiv.2005.12872 
[2] Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixe, Christoph Feichtenhofer: TrackFormer: Multi-Object Tracking with 
Transformers TrackFormer,https://doi.org/10.48550/arXiv.2101.02702 
[3] Fangao Zeng, Bin Dong, Yuang Zhang, Tiancai Wang, Xiangyu Zhang, Yichen Wei: End-to-End Multiple-Object Tracking 
with Transformer, https://doi.org/10.48550/arXiv.2105.03247 

Name and workplace of master’s thesis supervisor: 

Prof.Dr.-Ing. Johannes Stegmaier    RWTH AAchen University  

Name and workplace of second master’s thesis supervisor or consultant: 

Ing. Martin Hlinovský, Ph.D.    Department of Control Engineering  FEE 

Deadline for master's thesis submission:   17.12.2024 Date of master’s thesis assignment:   28.02.2024 

Assignment valid until:   
by the end of summer semester 2024/2025 

___________________________ ___________________________ ___________________________ 
prof. Mgr. Petr Páta, Ph.D. 

Dean’s signature 
doc. Ing. Zdeněk Hurák, Ph.D. 

Head of department’s signature 
Prof.Dr.-Ing. Johannes Stegmaier 

Supervisor’s signature 

III. Assignment receipt 
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1 





Erklärung nach §18 Abs. 1 ÜPO

Hiermit versichere ich, dass ich die vorgelegte Master Thesis selbständig angefertigt
habe. Es sind keine anderen als die angegebenen Quellen und Hilfsmittel benutzt
worden. Zitate wurden kenntlich gemacht.

I hereby confirm that I have written this Master Thesis independently using no
sources or aids other than those indicated. I have appropriately declared all cita-
tions.

Jan Frederik Meier
Aachen, 17.12.2024

Céline Nöhl



Céline Nöhl



Céline Nöhl



Céline Nöhl



Céline Nöhl



Céline Nöhl



Céline Nöhl







Contents

List of Figures VII

List of Tables VIII

List of Listings IX

List of Abbreviations IX

1 Introduction 1

2 Related Works 3
2.1 Multiple Object Tracking . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . 10
2.3 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Detection Transformer Models . . . . . . . . . . . . . . . . . . . . . 17
2.5 End-to-End Multi Object Tracking . . . . . . . . . . . . . . . . . . 32

3 Methods 45
3.1 Mixed-Query Selection . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Trajectory Prediction Module . . . . . . . . . . . . . . . . . . . . . 49
3.4 Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Experiments 55
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Results 63
5.1 High-Resolution Tests . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 Training Time and Memory Requirement . . . . . . . . . . . . . . . 76

6 Discussion 79

Bibliography i

A Reproducibility of Results ix

B Hyperparameters xi

V



C Extended Results xii

D Visualization xv

VI



List of Figures

1.1 Exemplary tracking targets for MOT . . . . . . . . . . . . . . . . . 1

2.1 Classical MOT metrics . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Visualization of HOTA metrics . . . . . . . . . . . . . . . . . . . . 8
2.3 Overview of different association concepts . . . . . . . . . . . . . . 8
2.4 Timeline of influential CNNs . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Structure of a residual block . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Structure of ResNet-50s Bottleneck block . . . . . . . . . . . . . . . 11
2.7 Resnet-50 architecture . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8 Visualization of the scaled dot-product attention . . . . . . . . . . . 14
2.9 Architecture of the multi-head attention module . . . . . . . . . . . 15
2.10 Transformer architecture . . . . . . . . . . . . . . . . . . . . . . . . 16
2.11 Timeline of DETR models . . . . . . . . . . . . . . . . . . . . . . . 17
2.12 Overview of DETR model structure . . . . . . . . . . . . . . . . . . 18
2.13 DETR architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.14 Structure of the deformable attention module . . . . . . . . . . . . 22
2.15 Extraction of multi-scale features from ResNet-50 . . . . . . . . . . 23
2.16 The structure of the DAB-DETR decoder . . . . . . . . . . . . . . 26
2.17 Comparison of different DETR-like models decoders . . . . . . . . . 27
2.18 Overview of DN-DETR’s decoder . . . . . . . . . . . . . . . . . . . 29
2.19 Overview of DINO’s architecture . . . . . . . . . . . . . . . . . . . 31
2.20 Overview of different query generation methods . . . . . . . . . . . 32
2.21 Visualization of Look Forward Twice . . . . . . . . . . . . . . . . . 32
2.22 Timeline of E2E models . . . . . . . . . . . . . . . . . . . . . . . . 33
2.23 Overview of TrackFormer architecture . . . . . . . . . . . . . . . . . 33
2.24 Overview of DN-MOT’s denoising query generation . . . . . . . . . 38
2.25 DN-MOT’s cascaded self-attention mask . . . . . . . . . . . . . . . 39
2.26 Overview of MOTR architecture . . . . . . . . . . . . . . . . . . . . 40
2.27 Structure of the Query-Interaction Module . . . . . . . . . . . . . . 40
2.28 Overview of MOTRv3 architecture . . . . . . . . . . . . . . . . . . 42

3.1 Overview of our model architecture . . . . . . . . . . . . . . . . . . 45
3.2 Visualization of MQS . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Example of false association due to occlusion . . . . . . . . . . . . . 49
3.4 Overview of the Trajectory Prediction Module during training . . . 50
3.5 Architecture of the Trajectory Prediction Module . . . . . . . . . . 51
3.6 Structure of the predictor . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Visualization of the utilized datasets . . . . . . . . . . . . . . . . . 55

VII



4.2 MOT17 ablation split . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Effect of bounding box noise scales λ . . . . . . . . . . . . . . . . . 69
5.2 Selection probability for each query type . . . . . . . . . . . . . . . 71
5.3 Time per training iteration comparison . . . . . . . . . . . . . . . . 77
5.4 VRAM requirement during training . . . . . . . . . . . . . . . . . . 78
5.5 VRAM requirement of different models . . . . . . . . . . . . . . . . 78

D.1 Visualization of predictions on test sets . . . . . . . . . . . . . . . . xv

List of Tables

1.1 Training Time of E2E MOT models . . . . . . . . . . . . . . . . . . 2

2.1 Complexity of different attention modules . . . . . . . . . . . . . . 24

3.1 Comparison of our DETR base to existing ones . . . . . . . . . . . 47
3.2 Comparison of our denoising strategy to existing ones . . . . . . . . 48
3.3 Summary of all used losses . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Datasets Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Ablation study configurations . . . . . . . . . . . . . . . . . . . . . 58
4.3 Comparison of image augmentations . . . . . . . . . . . . . . . . . 60

5.1 Final results on MOT17 test split . . . . . . . . . . . . . . . . . . . 63
5.2 Training configurations on MOT17 . . . . . . . . . . . . . . . . . . 64
5.3 Final results on DanceTrack test split . . . . . . . . . . . . . . . . . 65
5.4 Final results on SportsMOT test split . . . . . . . . . . . . . . . . . 65
5.5 Comparison of different DETR bases . . . . . . . . . . . . . . . . . 66
5.6 Ablation conflict avoidance . . . . . . . . . . . . . . . . . . . . . . . 67
5.7 Effect of pFN on other DETR architectures . . . . . . . . . . . . . . 67
5.8 Ablation false negative probabilities . . . . . . . . . . . . . . . . . . 68
5.9 Comparison of different denoising types . . . . . . . . . . . . . . . . 69
5.10 Comparison of different trajectory integration methods . . . . . . . 70
5.11 Comparison of trajectory prediction training methods . . . . . . . . 71
5.12 Effect of masking shadow queries . . . . . . . . . . . . . . . . . . . 71
5.13 Effect of quality focal loss . . . . . . . . . . . . . . . . . . . . . . . 72
5.14 Effect of different noise models . . . . . . . . . . . . . . . . . . . . . 72
5.15 Effect of different motion models . . . . . . . . . . . . . . . . . . . 73
5.16 Effect of different image augmentations . . . . . . . . . . . . . . . . 74
5.17 Results from hyperparameter optimization . . . . . . . . . . . . . . 74
5.18 Performance with optimized hyperparameters . . . . . . . . . . . . 75
5.19 Ablation on DanceTrack . . . . . . . . . . . . . . . . . . . . . . . . 75

VIII



5.20 Time spend per component . . . . . . . . . . . . . . . . . . . . . . 76

B.1 Overview of hyperparameters . . . . . . . . . . . . . . . . . . . . . xi

C.1 Results per sequence on MOT17 test . . . . . . . . . . . . . . . . . xiii
C.2 Results per sequence on DanceTrack test . . . . . . . . . . . . . . . xiv

List of Listings

4.1 Structure of image augmentations . . . . . . . . . . . . . . . . . . . 60

A.1 Reproducibility settings . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Abbreviations

AssA Association Accuracy
BN Batch Normalization
CAL Collective Averaging Loss
CDN Contrastive Denoising
CMC Camera Motion Compensation
CNN Convolutional Neural Network
COLA Coopetition Label Assignment
DetA Detection Accuracy
DETR Detection Transformer
DN Denoising
DNN Deep Neural Network
E2E End-to-End
FC Fully Connected
FFN Feed-Forward Network
FN False Negative
FNA False Negative Association
FP False Positive
FPA False Positive Association
GC Gradient Coordination
gIoU generalized Intersection over Union
GPU Graphics Processing Unit

IX



HOTA Higher Order Tracking Accuracy
HSV Hue-Value-Saturation
IDF1 Identity F1-score
IDFN Identity False Negative
IDFP Identity False Positive
IDP Identity Precision
IDR Identity Recall
IDSW Identity Switches
IDTP Identity True Positive
IoU Intersection over Union
LFT Look Forward Twice
LSTM Long Short-Term Memory
MHA Multi-Head Attention
MLP Multi-Layer Perceptron
MOT Multiple Object Tracking
MOTA Multiple Object Tracking Accuracy
MOTP Multiple Object Tracking Precision
MQS Mixed Query Selection
NMS Non-maximum Suppression
NN Neural Network
PLD Pseudo Label Distillation
PSD Pseudo Label Distillation
QIM Query Interaction Module
Re-ID Re-Identification
ReLU Rectified Linear Unit
RFS Release-Fetch-Supervision
RNN Recurrent Neural Network
SGD Stochastic Gradient Descent
SOT Single Object Tracking
TAN Temporal Aggregation Network
TbD Tracking-by-Detection
TGD Track Group Denoising
TP True Positive
TPA True Positive Association
TPM Trajectory Prediction Module
VRAM Video Random Access Memory



1 Introduction

Multiple Object Tracking (MOT) represents a fundamental computer vision task,
which consists of locating multiple objects, maintaining their identities, and yielding
their individual trajectories within a given video sequence. It is employed for the
tracking of a diverse array of objects, including pedestrians [1,2], dancers [3], sport
players [4], vehicles [5] and animals [6] (Figure 1.1). Furthermore, Multiple object
tracking also serves as a preprocessing step for other high-level tasks such as pose
estimation [7] and action recognition [8] in video data.

a) Pedestrians b) Pedestrians in crowded scene c) Ballet dancers

d) Basketball players e) Vehicles f) Fish

Figure 1.1: Exemplary tracking targets for Multiple Object Tracking. a),b)
show the tracking of pedestrians, which is one of the most common targets [1, 2]. In
c), ballet dancers are tracked during a performance [3]. d) features the tracking of
basketball players during a match, which can be used to calculate player metrics [4].
e) contains tracked vehicles in a common traffic scenario [5]. Vehicle tracking can be
utilized in autonomous driving applications. In f) an example of animal tracking is
given [9].

The foundation for all of these applications is a robust Multiple Object Track-
ing model. At present, the Tracking-by-Detection (TbD) paradigm represents the
most prevalent Multiple Object Tracking approach. In this two-stage approach, ob-
jects are first detected in each frame and then associated to form trajectories [10].
Although existing object detection models lead to a good detection performance,
Tracking-by-Detection (TbD) models encounter difficulties in establishing robust
associations in sequences characterized by complex motion and occlusion [3]. New
End-to-End approaches based on Detection Transformer (DETR) [11] are capable
of performing well in such cases. They are iteratively updating tracked object

1



1 Introduction

representations on a frame-to-frame basis to handle changing motion and appear-
ance [12, 13]. End-to-End models are well suited for scenarios with uniform ap-
pearances and complex motion patterns, such as dance performances [3] or animal
tracking [9].

Nevertheless, the current End-to-End (E2E) approaches are confronted with
a plethora of challenges. As illustrated in Table 1.1, these models have pro-
longed training times and require a considerable amount of Video Random Ac-
cess Memory (VRAM), which constrains their practical applications. Furthermore,
numerous models incorporate intricate training schedules comprising separate pre-
training phases [12, 14] [TrackFormer, DN-MOT] and the incorporation of supple-
mentary training data, a consequence of the data-intensive nature of transformer
models [12–15].

Table 1.1: Training Time of different End-to-End Multiple Object Tracking
models. Despite the utilization of multiple high-end GPUs, the training process for
a small dataset, such as MOT17, spans multiple days.

Model GPU Training Time

TrackFormer 7 × 32 GB GPUs 2 days
MOTR 8 × NVIDIA V100 2.5 days

The objective of this thesis is to design a lightweight End-to-End Multiple Object
Tracking model with a simple training routine. We refrain from utilizing supple-
mentary data during the training phase and instead employ generic initialization
weights in lieu of task-specific pretrained models. To further capitalize on the ro-
bust association performance observed in E2E models, we are integrating a motion
prediction module based on historical trajectory data. In the initial chapter, we
present a comprehensive overview of existing literature on the subject, commencing
with an examination of the Multiple Object Tracking (MOT) task in its entirety,
followed by an analysis of its associated metrics, an investigation of the various deep
learning architectures employed, an exploration of the different Detection Trans-
formers, and a detailed account of the existing E2E MOT models. In the Methods
chapter, we present our own architecture. Subsequently, we discuss the experi-
mental setup and implementation details. We then compare our results with those
of other trackers on the MOT17 [1], DanceTrack [3], and SportsMOT [4] data-
sets. Finally, we summarize our results and provide possible directions for future
research.

2



2 Related Works

This chapter discusses previous work relevant to this thesis. First, the MOT task
itself is considered. For this purpose, the various approaches and metrics are ana-
lyzed. Next, a brief introduction to Convolutional Neural Networks (CNNs) is
given. The focus will be on the ResNet [16] architecture. Subsequently, the Trans-
former [17] architecture is explained in detail. Based on this, the DETR [11] and
modifications of it are explained. Finally, various E2E MOT models are analysed
in detail.

2.1 Multiple Object Tracking

Multiple Object Tracking is a basic computer vision task that aims to detect and
track objects (of one or more classes) over a video sequence. The task is closely
related to object detection, as it also returns a bounding box for each detected
object, while additionally assigning an ID to each detection. This ID allows objects
of the same class to be distinguished and tracked over several frames. In Single
Object Tracking (SOT), the appearance of the object to be tracked is a priori
knowledge. In MOT this prior information about the number of objects and their
appearance is missing, therefore a detection step is necessary [18].

The main challenge in MOT is occlusion, which refers to the situation where
an object is partially or fully covered by another object in the same frame. The
effect is more severe in crowded scenes. Inaccurate detections present an additional
challenge, as they result in significant tracking difficulties. Detection is made even
more difficult by changing backgrounds, lighting and motion blur [19].

2.1.1 Approaches

Most Multiple Object Tracking algorithms can be divided into two different ap-
proaches. TbD is currently the predominant approach and is based on the separa-
tion of detection and association. In the first step, the objects are detected in the
frame and then assigned an ID in the second step. E2E MOT, on the other hand,
is a new approach and does not separate detection and association. Both tasks
are performed in the same step. The two approaches are discussed in more detail
below.

Tracking by Detection

In Tracking-by-Detection, the targets in the frame are detected first. The boxes are
associated by assigning IDs over several frames. For this reason, the problem is also

3



2 Related Works

described as an assignment problem. Due to the rapid progress in object detection,
currently strong and fast object detection models are employed in the detection
stage. As a result, most TbD algorithms only try to improve the association.
This is also reflected in the MOT datasets, which often contain a standard set of
detections. Due to this, the association performance of different algorithms can be
compared independently of the detection performance [18]. TbD approaches can
be classified according to the type of information used for association.

Motion-based Motion-based methods are using motion models to predict future
locations of the tracks and then apply a heuristic to match the predictions with
the detection. SORT [20] uses a Kalman filter as a linear motion model and then
matches based on Intersection over Union (IoU) using one-to-one matching. Other
approaches are using Camera Motion Compensation (CMC) in addition to handle
cases with camera motion [21,22].

Appearance-based Other models are focusing on appearance features to asso-
ciate detection. The authors in [23] propose to extract features from detection
patches for Re-Identification (Re-ID). Based on similarity between features, new
detections are then assigned to existing tracks using one-to-one matching. These
approaches are robust to motion and occlusion, as the extracted appearance fea-
tures are temporally stable [24].

End-to-End Tracking

End-to-End Multiple Object Tracking, also known as Tracking-by-Query [25] or
Tracking-by-Attention [12] is a new approach based on the DETR [11]. The DETR
architecture makes it possible to perform detection and association in one step.
DETR detects objects by processing ‘object queries’ in the decoder. In E2E MOT,
additional ‘track queries’ are added to the object queries, each of which tracks a
specific object. These queries are then passed from one time step to the next and
thus track the same object without separate association [25]. DETR, as well as
the models inspired from it, are described in chapters section 2.4 and section 2.5 in
detail.

2.1.2 Metrics

In order to evaluate a model and enable comparability between different models, a
group of metrics must be defined. However, unlike other tasks, MOT is difficult to
evaluate. While the performance of classification and object detection is comparat-
ively easy to describe with a few metrics, MOT is about balancing the importance
of detection and association. As a result, there are many different metrics. At the
beginning of this section the classical MOT metrics [26] are considered. Then the
CLEAR [27] and Identity [28] metrics will be discussed. Finally, the Higher Order
Tracking Accuracy (HOTA) [29] metrics are examined.

4



2.1 Multiple Object Tracking

Classical MOT Metrics

These metrics were introduced by [26] to quantitatively evaluate the performance
of their algorithm. They were designed to cover most typical errors which were
observed during their experiments. A visualization of the different metrics is given
in Figure 2.1.

• Mostly Tracked (MT) trajectories: More than 80% of the trajectory is
tracked

• Fragments: Less than 80% of a ground truth trajectory

• Mostly Lost (ML) trajectories: More than 80% of the trajectory is lost

• False trajectories: A trajectory corresponding to no real object

• ID switches: Identity Switches (IDSW) between two trajectories

Mostly Lost ID SwitchFragmentsMostly Tracked False Trajectory

Ground Truth Trajectory Predicted Trajectory

Figure 2.1: Visualization of the classical MOT metrics. Blue denotes the
ground-truth trajectory and red the predicted ones (adapted from [26]). (for the final
figure false alarm will be left out and all cases will be separated by vertical lines)

CLEAR MOT Metrics

The CLEAR MOT metrics [27] were developed to enable an objective comparison
between different multi-object trackers. The focus is on the precision of the ob-
ject localization, the accuracy of the configuration recognition and the consistency
of the IDs over time. To achieve this, two metrics were introduced: Multiple Ob-
ject Tracking Accuracy (MOTA) and Multiple Object Tracking Precision (MOTP).
These metrics are each made up of other simpler metrics. MOTA & MOTP are de-
signed so that they can be applied 2D as well as 3D MOT problems with a single or
multiple cameras. In this thesis, only the 2-dimensional case with a single camera
is considered [27].

To determine the performance of multi-object trackers, correspondences between
the predictions and the ground-truth must first be established. Afterwards, the
simple metrics, which MOTA and MOTP are summarizing, can be calculated. The
procedure for this is described below.

Let {ŷ1, ..., ŷm} be the prediction of the tracker in each frame and {y1, ..., yn} the
real object. Let Mt = (yi, ŷj) be the set of correspondences made up to time t and
initialize Mt with ∅.

5



2 Related Works

1. Check every correspondence in Mt−1. If the corresponding object still exists in
frame t and if their IoU is above a certain threshold τ , keep the correspondence
for frame t.

2. Check all unmatched objects and try to establish a correspondence whose IoU
is higher than τ . The matching should minimize the total object-hypothesis
error. Since only one-to-one matches are allowed, the problem can be solved
with the Hungarian Algorithm [30]. If a correspondence (yi, ŷk) is established
that contradicts a correspondence (yi, ŷj) from the previous frame t−1, replace
(yi, ŷj) with (yi, ŷk). This is counted as a mismatch error. The number of
mismatch errors in frame t is mmet.

3. ct is the number of matches in frame t. Calculate the distance di
t between the

object and its corresponding prediction for each match.

4. All remaining predictions are considered false positives and all remaining
objects misses. Let fpt be the number of false positives, mt the number of
misses and gt the number of objects present in frame t.

5. Repeat the procedure from step 1 for the next frame.

Based on the number of misses mt, false positives fpt and mismatches mmet for
frame t, MOTA and MOTP can be calculated.

Multiple Object Tracking Accuracy MOTA can be derived from the error rate
Etot which is the sum of the false positive ratio, the miss ratio and the mismatch
ratio. The formula is given in Equation 2.1. It can be seen as an intuitive measure
of the tracker’s performance at detecting objects and keeping their trajectories,
independent of the precision with which the object locations are estimated [27].

MOTA = 1−
∑

t(mt + fpt +mmet)∑
t gt

(2.1)

Multiple Object Tracking Precision MOTP is the localization error for each
match, averaged by the total number of matches. It reflects the tracker’s ability to
precisely estimate the object position independent of its association performance
and other aspects. The calculation is depicted in Equation 2.2 [27].

MOTP = 1−
∑

t,i d
i
t∑

t ct
(2.2)

Identity Metrics

Existing performance metrics, such as the CLEAR metrics, indicate the frequency
with which a tracker makes erroneous decisions and the types of them. However,
in certain instances, the user may be more interested in rewarding a tracker that is
able to follow an object for the longest possible duration. Therefore, the Identity

6



2.1 Multiple Object Tracking

metrics [28] are trying to measure performance not by how often mismatches occur,
but by how long the tracker correctly identifies targets.

Analogous to the calculation of the CLEAR metrics, ground-truth and predic-
tions must first be matched. However, to calculate the Identity metrics, the pre-
dicted trajectories are matched with the ground-truth trajectories via one-to-one
matching rather than frame-wise matching. Standard metrics such as Precision,
Recall and F1-score are then calculated based on this matching. The matching is
calculated such that the number of False Negative (FN) and False Positive (FP) is
minimized. Then Identity False Negative (IDFN), Identity False Positive (IDFP)
and Identity True Positive (IDTP) can be determined. These metrics are the exten-
sion of FN, FP and True Positive (TP) for matched trajectories. Based on them,
it is possible to compute Identity Precision (IDP), Identity Recall (IDR), and the
corresponding Identity F1-score (IDF1) according to Equation 2.3 [28].

IDP =
IDTP

IDTP + IDFP

IDR =
IDTP

IDTP + IDFN

IDF1 =
2 · IDTP

2 · IDTP + IDFP + IDFN

(2.3)

IDP and IDR are the proportion of correctly identified detections out of all
predicted or ground-truth detections. While IDP and IDR highlight the trade-offs
in tracking, the IDF1 score provides a means of ranking trackers by calculating
their harmonic mean [28].

Higher Order Tracking Accuracy

Previous MOT metrics overestimate the importance of detection or association,
which can be seen in Figure 2.2. MOTA overemphasizes detection and IDF1 as-
sociation performance. To solve this, HOTA [29] explicitly balances both aspects
into one single unified metric, while also taking the localization accuracy into con-
sideration. The HOTA metric is a combination of the Detection Accuracy (DetA)
and Association Accuracy (AssA), which are each focusing solely on their respect-
ive subtask of MOT. These sub-metrics allow a detailed analysis of the tracking
performance [29].

Furthermore, the newly introduced metrics are readily comprehensible. DetA is
defined as the percentage of aligning detections and AssA as the average alignment
between matched trajectories averaged over all detection. HOTA is then calculated
by taking the geometric mean of these two scores and averaging it over different
localization thresholds. The detailed computation of HOTA and its sub-metrics is
explained below [29].

1. Matching Predictions and Ground-Truth: Similar to MOTA, matching
is performed bijective frame-wise. A TP is a pair (ground-truth detection,

7



2 Related Works

gt:

A:

B:

C:

100

50

35
35

25
25

25
25

DetA MOTA HOTAAssA IDF1

50%

50%

50%50% 50% 50%

35%52%69%70%

67.5%

25%97%100% 25%

Increasingly 
Measuring 
Detection

Increasingly 
Measuring 
Association

Figure 2.2: Visualization of HOTA metrics. Comparison of HOTA, its sub-
metrics DetA and AssA with MOTA and IDF1 for various tracking scenarios. The
black line is the ground-truth trajectory and each blue line a predicted trajectory
(adapted from [29]).

predicted detection) with a localization similarity S ≥ threshold α. A FN
is an unmatched ground-truth detection. A FP is an unmatched predicted
detection. Since multiple combinations of matches can occur, the matching is
performed with the Hungarian algorithm [30] to maximize the HOTA score.

2. Measuring Association: To measure the association, the concept of TP,
FN and FP is adapted to association. The set of True Positive Association
(TPA) is the set of TP for which ground-truth detection and predicted de-
tection have the same ID. For a given TP (referred to as ’c’), the set of False
Negative Association (FNA) is the set of ground-truth detections Detgt with
the same ID as c, which were either assigned a different or no IDpred. At last,
for a given c, the set of False Positive Association (FPA) is constituted by the
set of Detpred with the same IDpred as c, which were either assigned a different
IDgt than c or no IDgt. These definitions are visualized in Figure 2.3.

Predicted Trajectory

Ground-truth Trajectory 1

Ground-truth Trajectory 2

TP of interest (c)

True Positive
Associations TPA(c)

False Negative
Associations FNA(c)

False Positive
Associations FPA(c)

Figure 2.3: Overview of different association concepts. TPA, FPA and FNA
extend the concept of TP, FP and FN by including the trajectory ID. In this figure
they are highlighted for a specific c ∈ TP (adapted from [29]).

8



2.1 Multiple Object Tracking

3. Scoring Function: Based on the previously defined metrics, it is now pos-
sible to calculate the HOTAα score for a given localization threshold α. The
equation is given in Equation 2.4. Even though A, TP,FN, etc. depend on
α, α is left out of the equation for visual clarity.

HOTAα =

√ ∑
c∈{TP}A(c)

|TP |+ |FN |+ |FP |

A(c) =
|TPA(c)|

|TPA(c)|+ |FNA(c)|+ |FPA(c)|

(2.4)

4. Matching to Optimize HOTA: The matching in HOTA maximizes the
HOTA score. To achieve this, the Hungarian Algorithm is used in combination
with a suited scoring function. The primary objective is to maximize the
number of TP. The secondary objective is the maximization of the association
score and the third objective is maximizing the similarity S. The scoring
function between each potential match Detgt i and Detpred j is shown in
Equation 2.5.

Score(i, j) =
{
1

ϵ
+ Amax(i, j) + ϵ · S(i, j) , if S(i, j) ≥ α

}
(2.5)

5. Integrating over Localization Thresholds: The HOTAα score (Equa-
tion 2.4) does not take the localization accuracy into consideration. To in-
clude the localization, the HOTAα score is averaged over a distinct set of α
values (Equation 2.6). This functions as an approximation of the integral of
the HOTAα score across α.

HOTA =

∫ 1

0

HOTAα dα ≈ 1

19

0.95∑
α=0.05

HOTAα (2.6)

6. Decomposing HOTA into sub-metrics: The decomposition of HOTA
into different sub-metrics has the further advantage that it enables users to
select algorithms or tune algorithms’ hyper-parameters based on the nuances
of their particular use-case. DetA and AssA are measuring detection and
accuracy respectively. They can be calculated according to Equation 2.7 [29].

DetAα =
|TP |

|TP |+ |FN |+ |FP |

AssAα =
1

|TP |
∑

c∈{TP}

A(c)

HOTAα =

√ ∑
c∈{TP}A(c)

|TP |+ |FN |+ |FP |

=
√

AssAα ·DetAα

(2.7)

9



2 Related Works

It can be seen that HOTAα is equal to the geometric mean of DetAα and
AssAα. This ensures that both detection and association performance are
evenly balanced in HOTA [29].

2.2 Convolutional Neural Networks

CNNs made impressive achievements in many areas, including computer vision and
are in most tasks still state of the art. The term ’convolution’ was first used in this
context by LeCun et al. [31] in the original version of LeNet, which is a CNN for
handwritten zip code recognition. In 2012, CNNs made a significant advancement
in computer vision with the release of AlexNet [32], which achieved a new record
score in the ImageNet LSVRC-2010 [33] image classification challenge. Since then,
numerous variations of CNN models have been developed. A representative sample
of these models is presented in Figure 2.4 [34].

1998

LeNet-5

2012 2013 2014 2015 2016 2017 2018 2019 2020

AlexNet ZFNet VGGNets ResNet DCGAN ResNext MobileNet
 v2

MobileNet
v3

GhostNet

GoogleNet

NiN

(Inception) v1
Inception

v1/2

SqueezeNet

DenseNet

SENet

ShuffleNet v1

Inception v4

MobileNet v1

ShuffleNet
v2

Figure 2.4: Timeline of influential CNNs. This thesis exclusively considers
ResNet (adapted from [34]).

This thesis only provides a cursory examination of CNN and focuses on the Res-
Net [16] architecture, which is employed as a fundamental component of the DETR.
The ResNet architecture is presented in the following subchapter. In particular,
ResNet-50 is discussed.

2.2.1 ResNet

Deep CNNs have been the source of a number of breakthroughs in various com-
puter vision tasks. The idea is that deep networks naturally extract low-, mid-
and high-level features and that the features can be enriched by stacking more
layers. When learning Deep Neural Network (DNN) problems like vanishing/ex-
ploding gradients which counteract convergence occur. This has however already
been addressed by methods such as normalized parameter initialization, Batch Nor-
malization (BN) and Stochastic Gradient Descent (SGD). Another problem is that
when the network depth increases, the performance saturates and then degrades
rapidly. This degradation is not due to overfitting as stacking more layers also
leads to an increased training error. This implies that deeper models are more

10



2.2 Convolutional Neural Networks

difficult to optimize. ResNet addresses this degradation problem by introducing
residual connections. These connections add the input of a module to its output
via identity mapping. A block featuring these residual connections is visualized in
Figure 2.5 [16].

Weight Layer

ReLU
Weight Layer

+

Identity

x

F(x)

F(x) + x 
ReLU

Figure 2.5: Structure of a residual block. A residual connection is added which
adds input of the module to the output via identity mapping. This addresses the
degradation problem which occurs in CNNs with increasing depth (adapted from [16]).

ResNet-50

The ResNet family comprises five CNNs, each with a distinct depth (ranging from
18 to 152 layers). Given the multifaceted applications of ResNet-50, this subchapter
will focus on an in-depth examination of ResNet-50 as a specific case study. The
ResNet-50 model is composed primarily of a series of standard blocks, also referred
to as ’bottleneck blocks’. These blocks comprise three convolutional layers, each fol-
lowed by a batch normalization and a Rectified Linear Unit (ReLU). Subsequently,
a residual connection is employed to integrate the input of the block with its output.
The structural configuration of a bottleneck block is illustrated in Figure 2.6 [16].

1x1, 64

3x3, 64

1x1, 256

ReLU

256D

ReLU

+
ReLU

Figure 2.6: Structure of ResNet-50s Bottleneck block. Resnet-50 is build from
multiple of those blocks with changing kernel sizes, channel dimensions and strides
(adapted from [16]).

11



2 Related Works

The Resnet-50 network is composed of five fundamental building blocks. The
Conv1 block constitutes the initial module of the network. The block comprises a
convolutional layer, a BN layer, a ReLU, and a max-pooling layer. The subsequent
building blocks, Conv2 to Conv5, are simply repeated bottleneck blocks with dis-
tinct kernel sizes and channel numbers. Subsequently, an average-pooling layer is
introduced, followed by a feed-forward layer. Afterwards, the output of this layer is
fed into a softmax layer, which outputs the probabilities for each class. The initial
portion, including the average-pooling layer, learns a general representation of the
image. The subsequent Fully Connected (FC) layer is the classification head of
the network. The architectural design of ResNet-50, including the kernel sizes and
channel numbers, is displayed in Figure 2.7 [16].

7×7, 64Image
H×W×3

1×1, 64
3×3, 64

1×1, 256

1×1, 128
3×3, 128
1×1, 512

1×1, 256
3×3, 256

1×1, 1024

1×1, 512
3×3, 512

1×1, 2048
FC Output

C1 C2 C3 C4 C5

Backbone

Figure 2.7: Overview of the ResNet-50 architecture. Each block contains the
kernel size of its convolutional layers and their output channel dimension (adapted
from [35]).

2.3 Transformers

Prior to the emergence of the transformer architecture, the prevailing approaches
for sequence modeling and transduction problems were Recurrent Neural Networks
(RNNs), Long Short-Term Memory (LSTM) networks [36], and gated RNNs [37].
Recurrent models are typically constructed in a sequential manner, which pre-
cludes the possibility of parallelization. This presents challenges for longer input
sequences due to the limitations of memory resources. The transformer architecture
deliberately abstains from the use of recurrence and instead relies entirely on an
attention mechanism to establish dependencies between the input and the output.
This results in a higher degree of parallelization and state-of-the-art performance
on a range of benchmarks. Furthermore, the transformer requires considerably
less training data than previous state-of-the-art models. In previous models, the
number of operations required to relate signals from two arbitrary input or output
positions increases with the distance between the positions. In the Transformer, the
needed number of operations is independent from the distance. [17] The following
subsections provide a comprehensive description of the transformer model, start-
ing with an overview of attention and the proposed Multi-Head Attention (MHA)
module.

12



2.3 Transformers

2.3.1 Attention

A significant attribute of human perception is the tendency to process informa-
tion in a selective manner, rather than attempting to process the entirety of the
information at once. This enables humans to focus their attention on a specific
region. Attention mechanisms in deep learning have been designed to reflect this
concept. In general, the implementation process of the attention mechanism can
be divided into two steps. The first is to compute the attention distribution on
the input information, and the second is to compute the context vector according
to the attention distribution. In computing the attention distribution, the Neural
Network (NN) initially encodes the source data feature as K, which is referred to
as the key. The key can be expressed in a variety of representations, depending on
the specific task and architecture in question. Furthermore, it is typically required
to incorporate a task-specific representation vector, denoted as query Q, into the
process. Subsequently, the NN employs a score function to compute the correlation
between queries and keys, thereby obtaining the energy score that reflects the im-
portance of queries with respect to keys in determining the subsequent output. The
score function plays a pivotal role in the attention model, as it determines the man-
ner in which keys and queries are matched or combined. The energy score is then
often used to weight the elements of a new feature representation V , called values.
The two most commonly utilized attention mechanisms are additive attention and
multiplicative (dot-product) attention [38].

In summary, the authors in [17] describe the attention mechanism: "as mapping
a query and a set of key-value pairs to an output, where the query, keys, values, and
output are all vectors. The output is computed as a weighted sum of the values,
where the weight assigned to each value is computed by a compatibility function
of the query with the corresponding key.”

Scaled Dot-Product Attention

The attention employed in the transformer is referred to as ’scaled dot-product
attention’. This attention mechanism is identical to the previously presented dot-
product attention, except for a scaling factor. It takes queries and keys of dimension
dk and values of dimension dv as input. Then it takes the dot-product of query
and keys and multiplies it with the scaling factor

√
dk

−1. Afterwards, softmax is
applied and the result is multiplied with the values. This process is visualized in
Figure 2.8 [17].

The intuition behind the scaling is that the dot products magnitude grows for
higher query dimensions, which pushes the softmax function into saturation. This
results in vanishing gradients. The scaling is used to counteract this effect. The
attention function is implemented in the form of matrix multiplications and is
computed over a set of queries simultaneously. The vectorized computation is
shown in Equation 2.8.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.8)

13



2 Related Works

Mask (opt.)

SoftMax

MatMul

Scale

MatMul

Q K V

Figure 2.8: Visualization of the scaled dot-product attention. This attention
mechanism is used in the transformer architecture. The scaling factor

√
dk

−1 is intro-
duced to keep the values from pushing the softmax function into saturation (adapted
from [17]).

Multi-Head Attention

Instead of directly applying the scaled dot-product attention on the dmodel-dimensional
K,V and Q, the transformer applies h different learned linear projections on the
inputs. The attention function is then applied on each of these projected inputs
separately. Each separate attention function is referred to as a single head of the
MHA. The outputs of each attention function are then concatenated and projec-
ted. The calculations are summarized in Equation 2.9. This multi-head attention
is depicted in Figure 2.9. The idea behind this approach is that the model is able
to attend to information from different representation subspaces [17].

MultiHead(Q,K, V ) = Concat(head1, ..., headn)W
Out

with headi = Attention(QWQ
i , KWK

i , V W V
i )

(2.9)

,where WOut refers to the output projection weights.

2.3.2 Architecture

The transformer employs an encoder-decoder structure, wherein both the encoder
and decoder are constructed from stacked attention and feed-forward layers. The
input tokens are initially transformed into vectors through the input embedding
process. Subsequently, positional encoding is added to the vectorized tokens. The
vectors are then processed by N stacked encoder layers. Thereafter, the (shifted)
outputs are vectorized in a manner analogous to the inputs and fed into the decoder.
The decoder consists of N subsequent decoder layers and generates the output
sequence based on the vectorized outputs and the encoder output [17]. The model
architecture is illustrated in Figure 2.10.

The transformer uses multi-head attention in three different ways:

14



2.3 Transformers

Linear Linear

Scaled Dot-Product
Attention

Concat

Linear

Linear

V K Q

h

Figure 2.9: Architecture of the multi-head attention module. The query, key
and value are projected by h different linear layers and then processed by the scaled
dot-product attention. The output is concatenated and then projected to obtain the
output (adapted from [17]).

• Encoder Self-Attention. Queries, keys and values are the outputs from
the previous encoder layer. In the first encoder layer, the input embeddings
are used. Each position in the encoder can attend to all positions from the
previous layer.

• Decoder Self-Attention. Similar to encoder self-attention, except that
each position in the decoder can only attend to all positions in the decoder
up to and including that position.

• Decoder Cross-Attention. The queries are from the previous decoder
layer, while the keys and values are from the output of the last encoder layer.
Due to this, every position in the decoder can attend over all positions in the
encoder.

All components will be explained in detail in the following subsections.

Encoder

The transformer encoder is comprised of six identical encoder layers, each of which
contains a MHA layer followed by a feed-forward layer. A residual connection is
present around both layers, followed by a layer normalization. The input shape of
each encoder layer is identical to the output shape of each layer [17].

Decoder

Analogous to the encoder, the decoder is build from N = 6 identical layers. The
structure of the decoder layer is very similar to that of the encoder layer, with the

15



2 Related Works

Linear

Softmax

Add & Norm

Feed Forward

Multi-Head
Attention

Add & Norm

Masked
Multi-Head
Attention

Add & Norm

Add & Norm

Feed Forward

Multi-Head
Attention

Add & Norm

Output Probabilities

+

Input
Embedding

Output
Embedding

+Positional
Encoding

Positional
Encoding

Inputs Output (shifted right)

N×

N×

Figure 2.10: Architecture of the transformer model. The input embeddings
are refined in the encoder. The final layer encoder output is then passed to the
decoder. The decoder applies attention between the output embeddings and the
encoder output to generate the output sequence. A positional encoding is necessary
as the MHA is translation invariant (adapted from [17]).

exception of the insertion of an additional block between the MHA layer and the
feed-forward layer. This additional block is also a MHA layer, but it takes both
the previous sub-layers’ output and the output from the last encoder layer as an
input. It performs what is known as cross-attention between these two inputs. The
first MHA layer, which performs self-attention, is also modified in the decoder. It
uses a mask to ensure that the predictions for position i only depend on the known
outputs at positions < i [17].

Embeddings

Learned embeddings are used to vectorize the input and output tokens. Both
embedding layers are sharing the same weights [17].

16



2.4 Detection Transformer Models

Positional Encoding

The MHA is position-invariant, it does not preserve any information about the
order of the input sequence. Therefore, a positional encoding is added to the input
and output embeddings. Both embeddings and positional encodings have the same
dimensions. In the transformer, sine and cosine waves of different frequencies are
used as relative positional encodings (Equation 2.10). ’pos’ refers to the position
of the element in the sequence and i to the dimension [17].

PE(pos, 2i) = sin(
pos

100002i/dmodel
)

PE(pos, 2i+ 1) = cos(
pos

100002i/dmodel
)

(2.10)

2.4 Detection Transformer Models

This section discusses different Detection Transformer [11] models, which consti-
tute the fundamental component enabling E2E MOT. Since the publication of the
original DETR paper in 2020, a number of different models based on it have been
developed. Figure 2.11 presents a chronological overview of select DETR-like mod-
els.

2021 2022 2023 2024DETR

Efficient
DETR

DN-DETR

Deformable
DETR

Conditional
DETR

Hybrid
DETR
Group
DETR RT-DETRCO-DETR MS-DETR

Sparse
DETR

Dynamic
DETR

DAB-DETR

DINO

Figure 2.11: Timeline of selected DETR models. Only supervised learning
models are considered. This thesis focuses on the standard, deformable, DAB-, DN-
and DINO DETR.

The following subsections provides a comprehensive analysis of the original DETR
and influential follow-up models. It starts with a review of the original DETR. Af-
terwards, the Deformable DETR [39] is covered, which introduces a significant
speed-up and the use of multi-scale features. Subsequently, DAB-DETR [40] is
considered, which reinterprets the role of so-called object queries in DETR models.
Instead of learning queries as a high-dimensional embeddings, the authors propose
to learn 4-dimensional anchor boxes directly. Based on this, DN-DETR [41] is ex-
amined, which introduces an additional reconstruction task. This leads to better
performance and convergence speed. Finally, a consideration of DINO [42] follows.

17



2 Related Works

DINO builds on all previously considered DETR-like models and further improves
performance. Given that DINO represents the gold standard for DETR-like models,
we do not consider any more recent models.

2.4.1 DETR

DETR represents an object detection architecture that regards object detection as
a direct set prediction problem. It simplifies the object detection pipeline by elim-
inating manually crafted components, such as Non-maximum Suppression (NMS)
and anchor generation. DETR is leveraging the transformer encoder-decoder struc-
ture in combination with a bipartite matching strategy and a suited loss function
to achieve this goal. The general architecture, which is illustrated in Figure 2.12,
shows this process. DETR extracts features using a CNN and feeds them through
the transformer encoder-decoder to predict all objects. During training, a bipartite
matching loss is then used to train the model in an End-to-End manner [11].

CNN

no object no object 

Transformer 
Encoder-
Decoder

set of image features
set of box predictions bipartite matching loss

Figure 2.12: Overview of the basic DETR model structure. The model
utilizes a transformer encoder-decoder structure to always predicts a fixed number
N of detections. During training the predictions are matched with the ground-truth
using bipartite matching (adapted from [11]).

In order to achieve a direct set prediction in object detection, two components
are essential. The first of these is an appropriate architecture that predicts a set of
objects. The second is a prediction loss which forces the model to learn a bipartite
matching between the predicted and ground truth boxes [11].

Architecture

The fundamental structure of DETR is straightforward and is illustrated in Fig-
ure 2.13. The figure depicts the three primary components of the model: the CNN
backbone, which extracts a representation of the image; the transformer encoder-
decoder structure; and the prediction heads, which generate the final prediction
based on the decoder output. The following sections provide a comprehensive de-
scription of these components [11].

Backbone A conventional CNN backbone (e.g. ResNet-50 without its classifica-
tion head) is used to generate a feature map f ∈ RC×H×W from the input image
I ∈ R3×H0×W0 [11].

18



2.4 Detection Transformer Models

set of image features

positional encoding

class,
box

+

Backbone Encoder Decoder

Transformer
Decoder

Transformer
Encoder

Prediction Heads

CNN
FFN

FFN

FFN

FFN
object queries

no 
object

no
object

class,
box

Figure 2.13: The DETR architecture and its main components. The back-
bone extracts features from the image, which are then processed in the transformer
encoder-decoder. The output generated by the decoder is then employed as input to
FFNs, which yield the final predictions (adapted from [11]).

Encoder The extracted feature map from the backbone is modified by a 1×1
convolutional layer, reducing its channel dimension from C to d. Given that the
encoder expects a sequence as input, the spatial dimensions of the feature map,
represented by f ∈ Rd×H×W , are flattened. This results in z0 ∈ Rd×HW . The
encoder structure itself is similar to the original one described in subsection 2.3.2.
It consists of 6 identical encoder layers, each containing a MHA module and a
Feed-Forward Network (FFN). Due to the permutation-invariance of the encoder,
a position-encoding is added to the input of each layer [11].

Decoder Similarly to the encoder, the decoder is also analogous to the standard
transformer decoder. However, in contrast to the original transformer, all input
embeddings (referred to as ’object queries’ in DETR) are decoded in parallel, rather
than in series. Given that the decoder is also permutation-invariant, the output
embeddings must be distinct in order to generate differing results. These so called
object queries are learned positional encodings. They are added to the input of
each attention layer in the decoder. The N object queries are transformed into an
output embedding by the decoder. Afterwards, each object query is independently
decoded into box coordinates and class labels by two FFNs [11].

Feed-Forward Networks As previously stated, each object query is fed into two
distinct FFNs, each comprising a Multi-Layer Perceptron (MLP) with three layers,
a ReLU activation function, a hidden dimension dFFN , and a linear projection
layer. One FFN predicts the bounding box (x, y, h, w) of the detected object,
while the other predicts the class label of the prediction using a softmax function.
Additionally, a class label for the background class (no detected object) is utilized.
As the model predicts N bounding boxes, where N is typically greater than the
number of actual objects, a ’no object’ class, denoted as ∅, is essential [11].

Spatial Positional Encoding A d-dimensional fixed position encoding is added
to the encoder input. Given that the input in DETR is a 2-dimensional feature
map, rather than a 1-dimensional sequence as in the original transformer, the posi-

19



2 Related Works

tional encoding needs to be modified accordingly. To achieve this, two independent
d
2

sine and cosine functions with different frequencies are generated and then con-
catenated [43].

Loss

The number of objects predicted by the DETR model is typically significantly
larger than the actual number of objects present in the image. During training
those predictions need to be matched with the ground truth objects based on class,
position and size. This is accomplished through an optimal bipartite matching
between the predicted and ground truth objects which minimizes a specific loss
function [11].

The set of ground truth objects is denoted as y and the set of predictions as
ŷ = {ŷi}Ni=1. Under the assumption that there are more predictions than ground-
truth objects, the set y is padded with no-class objects. The optimal matching
which minimizes a cost function can also be seen as finding the permutation of N
elements σ ∈ PN with minimal cost. The pair-wise matching cost function between
the ground truth yi and the prediction with index σ(i) is denoted Lmatch(yi, ŷσ(i)).
The matching problem is formulated in detail in Equation 2.11 and can be solved
efficiently using the Hungarian algorithm [11,30].

σ̂ = argmin
σ∈PN

N∑
i

Lmatch(yi, ŷσ(i)) (2.11)

The matching cost is comprised of two components: A class loss and a bounding
box loss. Each ground truth object is build as follows yi = (ci, bi) with target class
label ci and bounding box bi ∈ [0, 1]4. The bounding box is normalized to the
image size and consists of the center point coordinates (x, y), the height h and the
width w. For the prediction with index σ(i), the probability of class ci is defined as
p̂σ(i)(ci) and the predicted bounding box as b̂i. With these definitions, it is possible
to define the bounding box loss Lbox(bi, b̂σ(i)) [11].

Bounding Box Loss The bounding box loss is used to evaluate the quality of
the bounding boxes. It is a linear combination of the l1 loss and the generalized
Intersection over Union (gIoU) loss LgIoU . This is done to balance the scale-variant
l1 loss with the scale-invariant LgIoU . The bounding box loss is defined in Equa-
tion 2.12 with hyper-parameters λL1, λgIoU ∈ R. The loss is then normalized by the
number of objects inside the batch [11].

Lbox(bi, b̂σ(i)) = λgIoU · LgIoU(bi, b̂σ(i)) + λl1

∥∥∥bi − b̂σ(i))

∥∥∥
1

(2.12)

Matching Cost Using the definition of the bounding box loss and including a
cost term depending on the classification score, the matching cost Lmatch(yi, ˆyσ(i))
can be defined (Equation 2.13). It is notable that the matching cost between an

20



2.4 Detection Transformer Models

object and ∅ is independent of the prediction, which implies that in such a scenario,
the cost is a constant [11].

Lmatch(yi, ŷσ(i)) = −[ci ̸= ∅] · p̂σ(i)(ci) + [ci ̸= ∅] · Lbox(bi, b̂σ(i)) (2.13)

Hungarian Loss The actual training loss is then computed using the matching
from Equation 2.11. It is defined as the sum of the negative log-likelihood of
the class prediction and Lbox. In the implementation the class loss term is down-
weighted by a factor 10, when ci = ∅. This is done to counter class imbalance. The
loss is depicted in Equation 2.14 [11].

LHungarian(y, ŷ) =
N∑
i=1

[
−logp̂σ̂(i)(ci) + [ci ̸= ∅] · Lbox(bi, b̂σ̂(i))

]
(2.14)

Auxiliary Losses DETR uses auxiliary losses in the decoder during training. Pre-
diction FFNs with shared weights are added after each decoder layer to generate
the predictions. Subsequently, the Hungarian loss is applied to the predictions of
each layer to compute the auxiliary losses [11].

2.4.2 Deformable DETR

DETR suffers from slow convergence speed and limited feature spatial resolution,
due to the computational complexity of the attention modules. To solve this prob-
lems, [39] proposes the use of the deformable attention module. Deformable at-
tention only attends to small set of sampling locations instead of all tokens. The
better computational and memory efficiency enables the use of higher resolutions
and multi-scale feature maps. Furthermore, Deformable DETR utilizes an iterative
bounding box refinement mechanism to improve detection performance [39].

Deformable Attention

Instead of looking over all possible input tokens, deformable attention only attends
to a set of key sampling points around a reference point. Only a small fixed number
of keys is assigned to each object query. This boosts the convergence speed and
mitigates the resolution limitation of DETR [39].

For a given input feature map x ∈ RC×H×W , let q index a query element with
content query zq ∈ Rd and a 2-dimensional reference point pq, the deformable
attention is calculated by

DefAttn(zq, pq, x) =
M∑

m=1

Wm

[
K∑
k=1

Amqk ·W ′
m · x (pq +∆pmqk)

]
(2.15)

with M attention heads and K sampled keys (K << M). ∆pmqk ∈ R2 denotes the
sampling offset for the kth key in the mth attention head. The attention weights

21



2 Related Works

Amqk ∈ [0, 1] are normalized by
∑K

k=1Amqk = 1. Both ∆pmqk and Amqk are gener-
ated by feeding the query features zq through a linear layer. To obtain the attention
weights a softmax layer is applied to the linear projection outputs. The deformable
attention module is illustrated in Figure 2.14 [39].

Query Feature zq

Reference Point pq

0.2

0.3

0.5

0.4

0.2

0.4

0.3

0.4

0.3

Aggregate

Aggregate

Aggregate

Aggregate

Aggregate

Values {W 'mx}

Sampling Offsets {∆pmqk} Attention Weights {Amqk}

Head 1

Head 1

Head 2

Head 2 Linear

Aggregated Sample Values

(pqx, pqy)

Head 3 Head 3

Head 1 Head 2 Head 3Head 1 Head 2 Head 3

Linear

Linear
Linear

Softmax

Input Feature Map x

Output

Figure 2.14: Structure of the deformable attention module. The module
takes queries, reference points and a feature map as an input. The keys are generated
by adding projected offsets to the reference points. The values are a linear projection
of the feature map. Deformable attention only attends to a small number of keys
(adapted from [39]).

Multi-scale feature maps are commonly used in modern object detection models
to improve small object detection performance. The deformable attention module
can be extended for multi-scale feature maps [39].

Let
{
xl
}L

l=1
be the multi-scale feature maps with L scale levels, where xl ∈

RC×Hl×Wl and let p̂q ∈ [0, 1]2 be the normalized reference point for each query
element q. The multi-scale deformable attention is then defined by

MSDefAttn(zq, p̂q,
{
xl
}L

l=1
) =

M∑
m=1

Wm

[
L∑
l=1

K∑
k=1

Amlqk ·W ′
m · xl (ϕl (p̂q) + ∆pmlqk)

]
(2.16)

∆pmlqk and Amlqk denote the sampling offset and attention weight for the kth

sampling point in the lth feature level in the mth attention head. In the multi-
scale version, the reference points p̂q are normalized with respect to the image
size. This is done so that the function ϕl (p̂q) can rescale it to the lth level feature
map [39].

22



2.4 Detection Transformer Models

Deformable Encoder Deformable DETR replaces the self-attention module in
the encoder with the proposed multi-scale deformable attention module. It takes{
xl
}L

l=1
(L = 4) as input and outputs a multi-scale feature map with the same di-

mensions. The first 3 scale-level feature maps are the output feature maps from
the C3, C4 and C5 stages of ResNet-50 transformed by a 1×1 convolution. The
last scale-level feature map is obtained by feeding the C5 feature map through a
convolution layer with kernel size 3×3 and stride 2. The extraction of the multi-
scale feature maps is visualized in Figure 2.15. All multi-scale feature maps have
C = 256 channels. In the encoder the reference points are the feature map pixels
themselves. To distinguish between different scale-levels, a learned scale-level em-
bedding

{
el
}L

l=1
is added to the positional embedding [39].

ResNet-50 Feature Maps

C3

C4

C5

H/16×W/16×1024

H/8×W/8×512

H/32×W/32×2048

H/16×W/16×256

H/8×W/8×256

H/32×W/32×256

H/64×W/64×256

Conv. 1×1
Stride 1

Conv. 1×1
Stride 1

Conv. 1×1
Stride 1

Conv. 3×3
Stride 2

Input Multi-scale Feature Maps

Figure 2.15: Extraction of multi-scale features from ResNet-50. The outputs
of the last three layers are convoluted to have 256 channels (adapted from [39]).

Deformable Decoder Deformable DETR only replaces the cross-attention mod-
ule with the multi-scale deformable attention module. The self-attention modules
remain unchanged. For each object query, the reference point is predicted by feed-
ing its query embedding (also called content query) through a linear layer followed
by a sigmoid function. The sigmoid function guarantees p̂q ∈ [0, 1]2. To reduce the
optimization difficulty, the detection head predicts the bounding box as a relative
offset with respect to the reference point [39].

Complexity

The main argument in favor of the deformable attention module is the lower com-
putational complexity, which allows the use of higher resolutions and multi-scale
feature maps. Table 2.1 illustrates the advantage of deformable attention over clas-
sical attention for self-attention in the encoder and cross-attention in the decoder,
where the input image is I ∈ RC×H×W and K denotes the number of keys per query.
Since HW ≫ C and HW ≫ K, the deformable attention module is significantly
more efficient and enables much higher resolutions due to the linear scaling with
the number of pixels in the encoder [39].

23



2 Related Works

Table 2.1: Complexity of the different attention modules in DETR and Deformable
DETR.

DETR Deformable DETR

Encoder (Self-Attention) O (CH2W 2) O (C2HW )
Decoder (Self-Attention) O (C2N + CN2) O (C2N + CN2)
Decoder (Cross-Attention) O (CHWN) O (C2KN)

Iterative Bounding Box Refinement

The detection head predicts the relative offset with respect to the reference point
p̂q = (p̂q,x, p̂q,y). In this process p̂q is used as an initial guess for the bounding box
center. Sigmoid σ and inverse sigmoid σ−1 are used to guarantee that b̂q ∈ [0, 1]4.
This process is shown in Equation 2.17 [39].

b̂q =
{
σ
(
bq,{x,y}

)
+ σ−1

(
p̂q,{x,y}

)
, σ

(
bq,{w,h}

)}
(2.17)

The idea behind the bounding box refinement is that each decoder layer refines the
bounding box based on the predictions from the previous decoder layer. Let D be
the number of decoder layers and b̂d−1

q be the normalized bounding box predicted
from decoder layer (d− 1). Then the dth decoder layer refines the bounding box by

b̂dq =
{
σ
(
∆bdq,{x,y,w,h} + σ−1

(
b̂d−1
q,{x,y,w,h}

))}
(2.18)

with d ∈ {1, ..., D}. The offsets predicted by the dth decoder layer are denoted
as ∆bdq,{x,y,w,h} ∈ R. The center coordinates of the initial bounding box b̂0 are the
reference points. The height and width are set to 0.1. To stabilize training, the
gradients are blocked at σ−1

(
b̂d−1
q,{x,y,w,h}

)
. In addition, the sampling offset ∆pmlqk

is modulated by the box size, by multiplying it with the width and height. This
makes the sampling locations related to both center and size of the box predictions
from the previous decoder layer [39].

Two-Stage

In the normal Deformable DETR, object queries are learned and do not depend on
the current image. The Two-Stage Deformable DETR is a variant of Deformable
DETR which extracts the object queries from the input image. These extracted
queries can be seen as a region proposals. This approach is strongly inspired by
two-stage object detectors [39].

In the first stage, all pixels of the encoder output feature map are seen as object
query candidates. A detection head consisting of a 3-layer FFN for bounding box
regression and a linear layer for classification (foreground/background) is applied
to each pixel. The top-K scoring pixels and their corresponding predicted bounding
boxes are used as object queries. The pixel channels form the content query and the
predicted box forms a 4-dimensional reference point. The reference point can be

24



2.4 Detection Transformer Models

seen as a region proposal. In the second stage, the extracted object queries are fed
into the decoder. The detection head is trained by using the Hungarian Loss [39].

2.4.3 DAB-DETR

Dynamic Anchor Boxes (DAB)-DETR [40] is an alternative approach to mitigate
the slow training convergence and improve the performance of the original DETR.
This is achieved by a more detailed examination of the cross-attention module
and the use 4D anchor boxes (x, y, w, h) as learnable object queries. The primary
insight derived from this formulation is that each query in DETR is composed
of two distinct parts. A content part (the decoder self-attention input) and a
positional part (learnable queries in original DETR). In the cross-attention module,
the attention weights are then computed by comparing the queries with a set of keys.
These keys also contain a content part (encoded image features) and a positional
part (positional embeddings). Therefore, queries in the decoder can be interpreted
as pooling features from a feature map based on query-to-feature and positional
similarity. This motivates the formulation of queries as anchor boxes, the use of the
center position (x, y) of the anchor box to pool features around the center and the
use of the box size (w, h) to modulate the cross-attention map. Furthermore, the
use of anchor boxes as queries allows them to be updated layer-by-layer. Except
for the decoder and its queries, DAB-DETR is structurally identical to the original
DETR. The structure of the DAB-DETR decoder is shown in Figure 2.16 [40].

Learning Anchor Boxes

As discussed before, DAB-DETR directly learns anchor boxes as queries and derives
the actual positional queries from them. Let Aq = (xq, yq, wq, hq) ∈ R4 be the qth

anchor, Cq ∈ Rd and Pq ∈ Rd its corresponding content and positional query. For
a given anchor Aq, its positional query is calculated as followed [40].

Pq = MLP (PE (Aq))

PE (Aq) = Cat (PE (xq) , PE (yq) , PE (wq) , PE (hq))
(2.19)

where PE is the positional encoding which generates a sinusoidal embedding with d
2

from a float number
(
PE : R → Rd/2

)
. The MLP then projects the 2d-dimensional

vector into d-dimensional representation
(
MLP : R2d → Rd

)
[40].

The self-attention inputs are identical to the original DETR. Queries, keys and
values all have the same content queries, while the positional queries are added
to the queries and keys. In the cross-attention module, the queries and keys are
formed by concatenating position and content information together. Moreover, a
MLP is learned to rescale the positional embeddings

(
MLP (scale) : Rd → Rd

)
. The

generation of the cross-attention inputs is described in Equation 2.20 [40].

25



2 Related Works

CC

++

VariablesAnchor Boxes
(x, y, w, h)

Decoder 
Embeddings Modules

Spatial Positional
Encodings

Image
Spatial

Features

(x, y, 
w, h)

(x, y, w, h)

(x, y)

(Δx, Δy,
Δw, Δh)

Anchor Sine 
EncodingsMLPV

V K

K

MLP MLP

MLP

Output

New Anchor Boxes
(x', y', w', h')

Add & Norm

Add & Norm

Add & Norm

FFN

Width & Height-
Modulated
Multi-Head

Cross-Attention

Multi-Head
Self-

Attention

Q

Q

(Wref, href)

(    ,    )1 1
w h
_ _

N×

Figure 2.16: The structure of the DAB-DETR decoder. It uses anchor boxes
as positional queries and updates them layer-by-layer. The MHA module in the
cross-attention is exchanged with a width & height modulated version. Analog to
Deformable DETR, it predicts relative offsets for the corresponding anchor box (ad-
apted from [40]).

Qq = Cat
(
Cq, PE (xq, yq) ·MLP (scale)(Cq)

)
,

Kx,y = Cat(Fx,y, PE (x, y)),

Vx,y = Fx,y

(2.20)

where Fx,y ∈ Rd is the image feature at position (x, y).

Anchor Update

Using anchor boxes as queries enables a layer-by-layer update by adding the pre-
dicted relative position offsets (∆x,∆y,∆w,∆h) to them. For other models, like
the original DETR, it is hard to perform iterative query refinement, because it is
unclear how to convert the updated anchor boxes back to the query embeddings [40].

DAB-DETR uses only single-scale feature maps as input. As a result, the de-
tection performance is inferior to that of Deformable DETR. However, the idea of
dynamic anchor boxes is transferable to the Deformable DETR, and the resulting

26



2.4 Detection Transformer Models

model is the DAB-Deformable DETR. Since this version is superior to the DAB-
DETR, a detailed consideration of the DAB-DETR specific components is omitted
and the DAB-Deformable DETR is considered instead [40].

DAB-Deformable DETR

The DAB-Deformable-DETR is derived by incorporating the dynamic anchor boxes
design into the Deformable DETR framework. The primary distinction between
this approach and Deformable DETR is that, rather than learning a dm-dimensional
positional query, anchor boxes are learned. The actual positional queries and anchor
updates are then handled in a manner consistent with the approach previously
described for DAB-DETR. To provide a comprehensive illustration of the differences
between the various DETR architectures, the decoder structures for all previously
mentioned DETR variations are presented in Figure 2.17 [40].

Figure 2.17: Comparison of different DETR-like models’ decoders. a) shows
the original DETR decoder. The positional queries are learned, while the content
queries are kept empty. b) depicts the Deformable DETR. It uses learnable content
and positional queries in combination with the deformable attention module. It can
be seen that the reference points are updated layer-by-layer. In c) the DAB-DETR
decoder can be seen. Positional queries are learned directly as 4-dimensional anchor
boxes. d) illustrates the DAB-Deformable DETR decoder. It adopts the anchor boxes
and the refinement from DAB-DETR, while keeping the content queries learnable and
uses deformable attention (adapted from [40]).

27



2 Related Works

2.4.4 DN-DETR

Denoising (DN)-DETR [41] introduces a universal denoising training method to
speed up the convergence of DETR models. It reasons that the instability of the
bipartite graph matching used in the Hungarian loss is the main reason for the slow
convergence. As a solution, [41] propose to feed ground-truth boxes with noise into
the decoder and train the model to reconstruct the original boxes. This reduces
the bipartite graph matching difficulty, leading to faster convergence and better
performance [41].

Hungarian Matching Instability

Hungarian matching introduces instability as a small change in the cost matrix
may lead to a vastly different matching. This negatively effects the convergence
speed as it leads to inconsistent optimization goals for the decoder queries. The
training process of DETR-like models can be interpreted as a two stage process,
where the first stage is learning anchors (in the form of queries) and the second
stage is learning relative offsets. The inconsistent anchor updates introduced by
the Hungarian matching complicate the learning of relative offsets [41].

DN-DETR, therefore introduces an additional denoising task, which bypasses the
bipartite matching, to make the offset learning easier. It achieves this by generat-
ing ’good anchors’ in the form of noisy ground-truth boxes. These 4-dimensional
anchors can be interpreted as queries. The denoising task is then that each of this,
so called denoising queries tries to reconstruct the original ground-truth box. This
task has a clear optimization which avoids the conflict introduced by the bipartite
matching [41].

Overview

DN-DETR is based on DAB-DETR. The architecture is identical. The only differ-
ence is the introduction of the denoising task during training [41].

During training, the DN-DETR queries consist of two different parts. The match-
ing part are the already known learnable anchors from DAB-DETR. They are as-
signed to the ground-truths by bipartite matching. The denoising part are noised
ground-truth box-label pairs (so called ground-truth objects). These queries try
to reconstruct their original ground-truth object. This is done to increase the effi-
ciency. In addition, an attention mask is used to prevent information leakage from
the denoising part to the matching part. The DN-DETR decoder during training
is illustrated in Figure 2.18. It is important to keep in mind that the denoising is
only used during training. In inference only the matching part is present [41].

Denoising

The denoising queries are generated by adding random noise to all ground-truth
objects’ bounding boxes and class labels. Noise is applied to the boxes in two
different ways:

28



2.4 Detection Transformer Models

learned anchors
+ unknown label

Hungarian loss

noised 
boxes

& labels

reconstruction loss reconstruction loss

Attention mask Attention mask

short cut

Denoising part Matching part

denoising group 0

Attention mask

group 0

group 1

group 1group 0

matching 
part

matching 
part

denoising group 1

Figure 2.18: Overview of DN-DETR’s decoder. The decoder is separated in
the denoising part and the matching part. It can be seen that the object queries can
not attend to the denoising queries due to the attention mask (adapted from [41]).

1. center shifting: Adding noise (∆x,∆y) to the center coordinates of the box.
To guarantee that the new center point is still in the original bounding box,
the following needs to hold (|∆x| < λw

2
, |∆y| < λh

2
).

2. box scaling: The width and height (w, h) are randomly sampled from the
intervals [(1− λ)w, (1 + λ)w] and [(1− λ)h, (1 + λ)h].

where λ ∈ (0, 1) is a hyper-parameter. For label noising, the ground-truth labels
are randomly changed to different ones. This forces the model to predict labels
according to the noisy boxes. The reconstruction losses for the denoising part are
the same as for the matching part (gIoU and l1 loss for the box regression, focal
loss [44] for label classification). To increase the efficiency of the denoising training,
multiple noisy versions of each ground-truth object are created [41].

Attention Mask

An attention mask is necessary to ensure that no information leakage occurs, which
would harm the performance. There are two possibilities for information leakage
which need to be prevented. One is that the matching part may see the noisy
ground-truth objects. This eases the prediction during training and would lead to
worse performance during inference, where the denoising queries are not present.
The other one is that a noisy version of a ground-truth object can see other versions
of the same object [41].

To describe the structure of the attention mask, the denoising queries are separ-
ated into groups. Each group contains exactly one noisy version of each ground-
truth object. The attention mask is denoted as A ∈ [0, 1]N×N , where N is the
total number of queries. With D denoising groups, G ground-truth objects and
M matching queries N = D · G +M . The attention mask is structured such that
the first D ·G columns and rows represent the denoising part and the latter M the
matching part. When Aij is 1, the ith and jth query do not interact during attention.

29



2 Related Works

If they are able to see each other Aij is 0. The attention mask is then generated
according to Equation 2.21 and an example mask can be seen in Figure 2.18 [41].

f(x) =

 1 , if j < D ·G &
⌊

i
M

⌋
̸=

⌊
j
M

⌋
1 , if j < D ·G & i ≥ D ·G
0 , else

(2.21)

Label Embedding

The decoder embedding (content query) is 0 in DAB-DETR. DN-DETR uses a
learned label embedding to support both box and label denoising. The embedding
has the dimension (num_classes + 1) × (dmodel − 1). In the denoising part, the
label embedding for each query is picked according to its noisy class label. To
keep semantically consistency, the matching part also uses a label embedding. The
embedding is the (num_classes + 1)th embedding which represents an unknown
class embedding. Moreover, an indicator is concatenated to the label embeddings.
The indicator is set to 1 if it is a denoising query and 0 otherwise [41].

Complexity

The effect of the additional denoising queries on the training time is negligible.
When training on MS COCO 2017 [45] with 5 denoising groups and a ResNet-50
backbone, the GFLOPS during training increase from 94.4 (DAB-DETR) to 94.6.
This is due to the fact, that the majority of the computational complexity is due
to the encoder. [46] observed that the encoder has a 4-8 times higher latency and
computational cost than the decoder for most DETR-like models [41].

2.4.5 DINO

DINO [42] builds upon Deformable, DAB- and DN-DETR. It proposed a Mixed
Query Selection (MQS) strategy to extract 4-dimensional positional queries from
the encoder while keeping the content queries learned. Furthermore, it uses deform-
able attention analog to Deformable DETR. DINO also adopts the denoising train-
ing from DN-DETR. Instead of using the standard denoising, it introduces a con-
trastive approach by including hard negative samples. Finally, it expands Deform-
able DETRs iterative bounding box refinement with its own Look Forward Twice
(LFT) method. The complete DINO architecture is visualized in Figure 2.19 [42].

Contrastive Denoising

DN-DETRs denoising training helps anchors to predict nearby ground-truth ob-
jects, but it lacks the ability to reject low quality anchors. Contrastive Denoising
(CDN) addresses this issue. During CDN, a negative and a positive denoising
query is generated for each ground-truth object. Therefore, for n ground-truth
objects, each denoising group contains 2n denoising queries. Positive queries have
a noise scale smaller than λ1, whereas negative queries have one between λ1 and

30



2.4 Detection Transformer Models

ImageImage

Encoder

Query Selection

Decoder

Matching CDN

GT + Noise
Learnable Content QueriesBackbone

 Anchor Boxes 

Image

Figure 2.19: Overview of DINO’s architecture. The positional queries are
extracted from the encoder outputs, whereas the content queries are learned. Positive
and negative denoising queries are fed through the decoder during training (adapted
from [42]).

λ2 with λ1 < λ2. Positive queries are expected to reconstruct their corresponding
ground-truth object, while negative queries should predict ’no object’. λ2 is chosen
relatively small to get hard negative samples. Similar to DN-DETR, DINO uses
multiple denoising groups. CDN assists the model in selecting the optimal anchor
in instances where there are multiple anchors in close proximity to the ground-truth
object, and in rejecting those that are more distant [42].

Mixed Query Selection

In previous works positional and content queries are either both learned or both
extracted. DETR, DAB-DETR and DN-DETR learn the positional queries and set
the content queries to 0. (DAB-)Deformable DETR learns both queries while its
two-stage version extracts both from the encoder output. DINO proposes MQS,
where the positional queries (in the form of 4-dimensional anchor boxes) are extrac-
ted from the encoder output and the content queries are learned. It reasons that
the selected preliminary content queries from the encoder may be confusing for the
decoder as they may contain multiple objects or only parts of an object. There-
fore, DINO keeps the content queries learned. The positional queries are extracted
to help the model to pool more comprehensive content features from the encoder
during the cross-attention. A comparison between the different query generation
methods for DETR-like models is given in Figure 2.20 [42].

Look Forward Twice

DINO employs a modified a version of Deformable DETRs iterative bounding box
refinement to predict its bounding boxes. Deformable DETR blocks gradients dur-
ing backpropagation, such that the parameters of the ith layer are updated based
only on the ith auxiliary box loss. DINO however assumes that the information
from later layers may be beneficial to correct the box predictions in the previous

31



2 Related Works

Encoder Decoder

Matching
Selection

Encoder
Decoder

Matching
Selection

Encoder
Decoder

Matching

Static Anchors &
Content Queries

Dynamic Anchors
& Content Queries

Dynamic Anchors &
Static Content Queries

(b) Pure Query Selection(a) Static Queries (c) Mixed Query Selection

Figure 2.20: Overview of different query generation methods. In (a) both
query parts are learned, while in (b) both are extracted from the encoder outputs. (c)
depicts DINO’s Mixed Query Selection. There the positional queries are extracted
and the content queries are learned (adapted from [42]).

layers. Hence, it updates the ith layers parameters depending on ith and the (i+1)th
auxiliary box loss. Since, the parameters are updated twice, the method is called
LFT. A visualization of the iterative bounding box refinement and LFT is displayed
in Figure 2.21 [42].

prediction prediction prediction

prediction prediction prediction

Layer
i

Layer
i+1 Δbi+1Δbi ΔbiΔbi-1 Δbi-1 Δbi+1

gradient detach

(a) Look Forward Once (b) Look Forward Twice

Layer
i

Layer
i+1

bi+1bi+1bibi-1 bi-1 bibi' bi'bi-1' bi-1' bi+1'bi+1'

bi+1
(pred)

bi+1bi
(pred)

bi
(pred)

(pred)
bi-1

(pred)

bi-1
(pred)

Figure 2.21: Comparison of iterative bounding box refinement and LFT.
a) depicts the iterative bounding box refinement. It can be seen that the ith layer’s
parameters only depend on ith auxiliary box loss. b) shows LFT. There the ith layer’s
parameters also depend on the (i+1)th loss (adapted from [42]).

2.5 End-to-End Multi Object Tracking

Tracking-by-Detection is currently the most widespread MOT paradigm. Most of
the existing methods separate the MOT temporal association into appearance and
motion: appearance variance is usually measured by pair-wise Re-ID similarity [23]
while motion is modeled via IoU or Kalman-Filtering heuristic [20].

Transformer-based E2E models, also known as Tracking-by-Query [25] paradigm,
pursue a different approach. Instead of splitting detection and association in two
stages, the association is handled implicitly through the queries in the DETR ar-
chitecture. Furthermore, this paradigm features a joint motion and appearance
modeling. Since the publication of the first E2E models, many publications have

32



2.5 End-to-End Multi Object Tracking

followed. The most influential models of this paradigm are TrackFormer [12] and
MOTR [13]. While TrackFormer only trains on two consecutive frames, MOTR
trains on a sequence of up to 5 frames. A selection of different models is illustrated
in Figure 2.22. It can be seen that most of the models are based on MOTR.

2021 2022 2023

MO3TR

TrackFormer

CO-MOT

MOTRv3MOTR

MeMOTR

DN-MOT

Figure 2.22: Timeline of selected transformer-based end-to-end models.
The models highlighted in blue are based on TrackFormer, whereas the ones in green
are based on MOTR. The gray models are independent.

This section looks at the various architectures. First, the basic functionality is
explained using the example of TrackFormer. Then the changes that DN-MOT [14]
proposes are discussed. The focus is then placed on MOTR. Finally, the modifica-
tions proposed in MOTRv3 [47] are examined.

2.5.1 TrackFormer

TrackFormer [12] repurposes the DETR architecture for MOT and interprets the
tasks as a frame-to-frame set prediction problem. It achieves data association
between frames by propagating a set of track predictions through a video sequence.
The decoder initializes new tracks from object queries which are detecting ob-
jects and continues existing tracks with new identity preserving track queries. The
structure of TrackFormer is nearly identical to DETR and no new components are
introduced. The tracking process is visualized in Figure 2.23 [12].

Figure 2.23: Overview of the TrackFormer architecture. TrackFormer is
based on DETR. It propagates successful object queries through a sequence of frames
to track objects. These queries are called track queries. A track query tries to track
the same object over the whole sequence (adapted from [12]).

The following subsection introduces the Tracking-by-Query paradigm and the

33



2 Related Works

concept of track queries. Subsequently, a comprehensive examination of the train-
ing process, including tracking-specific image augmentations, and implementation
details is conducted.

Tracking-by-Query

In DETR models, objects are implicitly represented by the decoder queries, which
are embeddings utilized by the decoder to predict the bounding box and class label.
The Tracking-by-Query paradigm leverages this fact by adding auto-regressive track
queries in addition to the already existing object queries. The object queries allow
the model to initialize tracks by detecting objects, while the track queries are
responsible for tracking objects across frames. By simultaneously providing object
and track queries to the decoder, the model is capable of performing detection and
tracking in a unified manner [12].

Track Queries In order to achieve frame-to-frame association, TrackFormer in-
troduces the concept of track queries to the decoder. Track queries follow objects
through a video sequence carrying over their identity information while adapting
to their changing position and appearance in an auto-regressive manner [12].

For this purpose, each new object which is successfully detected by an object
query (classification score above τobject) initializes a track query. The track quer-
ies are initialized with the positional and content part from their corresponding
object queries after the final decoder layer. The newly initialized track queries,
already existing track queries and the object queries are then fed into the decoder
in the next frame. The cross-attention between the frame features and the queries
continuously updates the representation of the tracked object in each track query.
The self-attention mechanism of the decoder allows the detection of new objects
while simultaneously suppressing the detection of already tracked objects. The de-
coder refines the joint set of queries and provides them to the bounding box and
classification head to generate the predictions [12].

Whereas the number of object queries Nobjects is static, the number of track
queries Ntrack changes between frames due to the detection of new objects and
the removal of tracks. Tracks can be removed if their class score drops below a
threshold τtrack or by NMS. TrackFormer uses a high IoU-threshold τNMS, which
only removes highly overlapping duplicate boxes. NMS is used since the decoders
self-attention mechanism is not able to suppress these conflicts by itself [12].

Re-Identification As a result of occlusion or short-term appearance changes, it
can happen that the class score of a track query falls below τtrack. To have to
possibility to continue these tracks nonetheless, TrackFormer introduces a short-
term re-identification process. Instead of discarding queries directly when the class
score drops below τtrack, the queries are kept for an additional Treid frames. During
this time window, track queries are considered to be inactive. This means that
they are not contributing to the track until they reactivate themselves by achieving
a class score above Treid. Since a track query contains spatial information that

34



2.5 End-to-End Multi Object Tracking

does not adapt during the inactive time, this Re-ID mechanism is only suitable for
short-term recovery [12].

Training

Since track queries are initialized by successful detections in the previous frame,
training must be performed on a sequence of at least two adjacent frames. As a
result, TrackFormer trains on frame t and a previous frame t− 1. The loss is only
calculated on frame t as it contains both track and object queries which allows to
optimize both detection and tracking at once. Similar to DETR, the loss consists
of a class loss and bounding box component for each query. The training process
consists of the two following steps [12]:

1. Detection step: Object Detection on frame t−1 with Nobject object queries.
Detections are then matched with ground-truth objects. The matched object
queries are initializing track queries for frame t.

2. Tracking step: Joint Detection and Tracking on frame t with N = Nobject+
Ntrack queries. Object queries are detecting new-born objects, while track
queries track their corresponding object. The loss is then calculated for all
N queries.

Bipartite Matching DETR performs a bipartite matching between its predictions
and the ground-truth objects which minimizes a given cost function. TrackFormer
handles its object queries similar, but uses a fixed assignment strategy for matching
the track queries with the ground truth. The matching (yi, ŷσ(i)) between the
ground-truth object yi and the prediction ŷi is based on similarity for object queries
and on track identity for track queries [12].

To formulate the matching process, the set of ground-truth track identities in
frame t is denoted as Kt. In the first training step (Detection step), there are
no track queries. Therefore the object queries are matched with the ground-truth
analogue to DETR. Each matched query is assigned its corresponding track identity
from the set Kt−1. In the next step (Tracking step), when there are track queries
present, the matching is performed according to:

1. Kt−1 ∩Kt : For tracks which are present in both frames, the track query
initialized by the detections in frame t − 1 is expected to detect the same
object in frame t. These track queries are matched by their track identity k.

2. Kt−1 \Kt : For tracks which are ending/occluded in frame t, the correspond-
ing track queries are matched with the background class in frame t.

3. Kt \Kt−1 : Newly appearing object identities are matched with object queries
by minimizing a cost function. This process is identical with the bipartite
matching in DETR (2.4.1).

Object queries which are not matched during the Hungarian matching are as-
signed to the background class [12].

35



2 Related Works

Loss The MOT set prediction loss is computed over all N = Nobject+Ntrack output
predictions from frame t:

LMOT (y, ŷ) =
N∑
i=1

[
Lclass(yi, ŷσ̂(i)) + Lbox(yi, ŷσ̂(i))

]
(2.22)

The loss function itself is identical to the one used in DETR. It uses cross-entropy/
focal loss [44] as label loss and a combination of gIoU and l1 loss as box loss. It is
important to keep in mind that the loss is only calculated for frame t. Frame t− 1
is only needed to initialize track queries [12].

Track Augmentation In addition to conventional image augmentation, like crop-
ping or horizontal flipping, TrackFormer introduces track specific augmentation to
mimic different possible tracking scenarios. The following three augmentations are
proposed [12]:

1. Previous Frame Sampling: By sampling frame t− 1 for the first training
step (detection step) from an interval around frame t, low frame rates and
more difficult tracking scenarios can be simulated.

2. False Negatives: Track queries initialized in step in the first training step are
removed with a probability pFN before continuing with the next step (tracking
step). This frees their corresponding ground-truth objects for matching with
object queries. A high pFN is needed to joint-train tracking and detection.
Without false negatives, nearly exclusively track queries would be trained as
the loss is only calculated for frame t.

3. False Positives: By adding false positive track queries, the removal of du-
plicate/incorrect track queries is improved. The false positive queries are
sampled from object queries which were not matched in frame t− 1. A false
positive query can be generated for each track query with the possibility pFP .

Implementation Details There are two versions of TrackFormer, one is based on
the original DETR and the other one on Deformable DETR. Due to the superior
performance of the Deformable DETR version, all implementation details are based
on this version [12].

As Deformable DETR uses reference points, the track queries adapt the center
points of the previous frame bounding boxes as reference points. Moreover, Track-
Former stacks the encoder outputs from the current frame and the previous frame
and computes the cross-attention between them and the queries. This aims to im-
prove the temporal relation modeling. To allow the queries to distinguish between
the different frame features, a temporal encoding analogous to [48] is used [12].

36



2.5 End-to-End Multi Object Tracking

2.5.2 DN-MOT

DeNoising-MOT [14] builds upon the TrackFormer architecture by introducing de-
noising training and modifying the interaction between different kinds of queries in
the decoder self-attention. It focuses on improving TrackFormer’s performance in
crowded scenes, where a lot of occlusion occurs.

In the denoising training, DN-MOT uses specific noise to simulate scenarios with
occlusion to make the model more robust and perform better in crowded scenes.
To modify the self-attention, it employs a cascaded self-attention mask to prevent
the suppression of spatial close tracks in crowded scenarios. Moreover, DN-MOT
uses MQS as opposed to TrackFormer which learns both positional and content
query. Due to this, DN-MOT is based on 4D anchor boxes instead of 2D reference
points [14].

Denoising

The role of track queries and object queries remains unchanged in DN-MOT, but
denoising queries are added in the same way as in DN-DETR. The novelty of DN-
MOT lies in how the various queries are handled and the way in which noise is
applied.

The denoising query generation is strongly inspired by DINO, as for each ground-
truth object a corresponding positive and negative noise query is generated. Even
though, most MOT dataset only contain objects of the same class (e.g. pedestri-
ans), label noise is used nonetheless. The goal is not to be able to differentiate
between multiple classes, but to learn different representations of the same class.
For track queries, the learned label embedding is replaced with the track queries
content embedding. Moreover, instead of applying noise to the ground-truth boxes,
for track queries noise is applied to their anchor boxes. The process is shown in
Figure 2.24 [14].

In order to generate positive noise, DN-MOT differentiates between scenarios in
which other objects are nearby and those in which they are not. If there is no other
bounding box which overlaps with IoU > τcond, then noise is applied by sampling a
noise vector N ∈ [−λpos, λpos]

4 and applying it to the bounding box B = [x, y, w, h]
as follows:

Bnew = B +B ⊙N (2.23)

If an objects overlaps with IoU> τcond, then a conditional noise strategy is em-
ployed. In this case, the noisy box is a linear combination of the two overlapping
boxes. The strategy is shown in Equation 2.24 [14].

Bnew = λcB + (1− λc)Bn (2.24)

,where λc ∈ [0, 1] is a hyper-parameter and Bn refers to the neighboring box.
The idea behind this strategy is to model occlusion scenarios and make the denois-
ing process more difficult. The negative noise is generated by sampling N from

37



2 Related Works

Replacement

Embedding

Noise

4

T1 T2 T3

Track Anchor Box
Track Content Query

Track Queries

Ground-truth Bounding Box
Class Embedding

Denoising Group 0

Positive Negative

7 2 0 1 Random Class Labels

Figure 2.24: Overview of DN-MOT’s denoising query generation. Class
embeddings are generated by picking random class labels and choosing the corres-
ponding embedding. When a denoising queries’ corresponding ground-truth object is
already tracked, it is replaced with the corresponding track query. Afterwards, noise
is added to the boxes. For the positive denoising queries a lower noise scale is used
than for the negative ones (adapted from [14]).

[−λneg, λneg]
4 instead, while λneg > λpos. Analog to DN-DETR, multiple denoising

groups are used [14].

Cascaded Mask Self-Attention

During self-attention, queries interact which each other to exchange information.
However, different kinds of queries have different demands during this process [14].

• Object Queries: Need to interact with other object queries and track queries
to avoid duplicate detections.

• Track Queries: Track queries are suppressing other queries in their proxim-
ity. This is needed for detection queries, but may lead to the suppression of
other track queries. However, inter-track communication can also positively
effect the tracking process.

• Denoising Queries: Need to be blocked from the object/ track queries and
other denoising groups to prevent information leakage (see DN-DETR).

DN-DETR aims to resolve the conflict of the track queries by modifying the
attention mask accordingly. In the first half of the decoder layers, all track queries
can interact with each other. In this stage information between tracks is exchanged.
In the latter half of the layers, track queries can not interact with other track queries.
The rationale is to prevent track query suppression. The self-attention mask for
the latter layers can be seen in Figure 2.25. The gray parts are blocked, while the
colored ones are visible [14].

38



2.5 End-to-End Multi Object Tracking

Denoising
Queries

Group 0

Group 1

Object
Queries

Track
Queries

Denoising
Queries

Object
Queries

Track
Queries

Figure 2.25: DN-MOTs cascaded self-attention mask for the latter layers.
The gray parts are blocked, while the colored ones are visible. During the first half of
the decoder layers, all track queries can interact with each other. In the latter half,
track queries do not see other track queries. This is done to prevent the suppression
of track queries in the second half of the decoder, while still allowing information
exchange in the first half (adapted from [14]).

2.5.3 MOTR

MOTR [13] is an E2E MOT model, which was developed concurrent with Track-
Former. It handles the bipartite matching between predictions and ground-truth
identical to TrackFormer. The main differences between TrackFormer and MOTR
are that MOTR uses additional components and that the training is on a sequence
of up to 5 images while TrackFormer only trains on two adjacent frames. MOTR
adds a Query Interaction Module (QIM) to the DETR architecture. This refines
the current track queries qttrack based on the track queries from the previous frame
qt−1
track before they are passed to frame t + 1. MOTR also follows a different loss

strategy. While TrackFormer only determines the loss on frame t, it calculates the
loss over the whole sequence with Collective Averaging Loss (CAL). Since the loss
is calculated over a sequence, detections and tracking are included inherently. This
means that MOTR is not dependent on false negatives for joint learning. These two
components improve the temporal relation modeling and allows MOTR to waive
NMS and Re-ID. The architecture is visualized in Figure 2.26 [13].

Query-Interaction Module

This section describes the QIM. This module handles the initialization of new
tracks, the erasure of old tracks and the refinement of current tracks. The re-
finement is handled by the Temporal Aggregation Network (TAN). An overview of
the QIM is given in Figure 2.27 [13].

Initialization & Erasure In a video sequence objects may appear or disappear. To
handle this, the QIM filters the object and track queries. During training, tracks are
initialized by object queries which are successfully matched via bipartite matching.

39



2 Related Works

Figure 2.26: Overview of MOTR architecture. In the first frame, tracks are
initialized by object queries. This is done in the QIM. Afterwards the track queries are
propagated to the next frame and concatenated with the object queries. The queries
are then fed into the decoder to either track existing objects or detect new-born ones
(adapted from [12]).

1

2

3

4

5

0.15 1

2

3

4

5

0.84

0.09

0.23

0.87

(a) Object Entrancescore

filter

filter
2

5 TAN

(b) Object Exit

C
5
2

qtrack
t+1

TAN
+qtrack

t

MHA

Add & Norm

FFN

Add & Norm

K Q
V

Query Interaction Module

Figure 2.27: Structure of the Query-Interaction Module. The QIM handles
track initialization and erasure by filtering the predictions. Object queries are marked
in blue and track queries in red. Persisting track queries are refined by the TAN which
can be seen on the right (adapted from [13]).

Track queries are deleted when the tracked ground-truth object disappears or the
IoU between prediction and ground-truth is lower than 0.5. During inference, the
classification score is used. When object queries score above τen, they initialize a
new track and if an existing track scores below τex for M consecutive frames, it is
deleted [13].

Temporal Aggregation Network This components enhances the temporal re-
lation modeling by processing the current track queries together with the ones
from the previous frame. It consists of the cross-attention block of a transformer
decoder-layer. The idea behind it is that it provides contextual priors to the tracked
objects [13].

40



2.5 End-to-End Multi Object Tracking

Collective Average Loss

MOTR reasons that training within two frames is not able to generate training
samples which contain long-range object motion. Therefore, it tales a video se-
quence as input. This enables it to learn better temporal relation modeling [13].

To train on a sequence of frames, it calculates the loss over the whole sequence
at once instead of calculating it on a frame-to-frame basis. This approach is called
CAL. CAL is the loss over the sequence of M frames averaged by the number of
objects. It is displayed in Equation 2.25 [13].

LCAL =

∑M
t=1

∑Nt

i=1 Lquery,(t,i)∑M
t=1 Vt

(2.25)

,where Nt denotes the number of queries and Vt the number of ground-truth objects
in frame t. Lquery,(t,i) is the loss for the ith query in the tth frame. It is calculated
identical to DETR [13].

2.5.4 MOTRv3

MOTRv3 [47] builds upon MOTR and claims that the poor detection performance
occurs due to a conflict between detection and association. It argues that this con-
flict is caused by an unequal label assignment between track and detection queries.
To counteract this, MOTRv3 proposes Release-Fetch-Supervision (RFS). This in-
volves adapting the bipartite matching strategy between queries and ground-truth
objects to place a greater emphasis on detection. In addition, two further modi-
fications are presented. Pseudo Label Distillation (PSD) uses an additional object
detection model to generate pseudo labels for training. Track Group Denoising
(TGD), on the other hand, is a tracking-specific denoising strategy. Both methods
are designed to provide more supervision during the training process. The three
previously mentioned strategies only affect the decoder during training and are
illustrated in Figure 2.28. This section focuses on these methods, starting with
RFS [47].

Release-Fetch Supervision

In the conventional MOTR label assignment strategy, track queries are fixed as-
signed to their corresponding ground-truth objects, while the object queries are
assigned to the ’free’ ground-truth objects by bipartite matching. RFS weakens
this fixed assignment by only performing it in the last decoder layer. The previous
layers are now using pure Hungarian matching between all queries (including track
queries) and all ground-truth objects [47].

Due to this, all ground-truth object are used to train both object and track
queries. At the beginning of the training, the ground-truth objects are mostly
assigned to the object queries as the track queries are not able to correctly follow
the objects. Then, when the track queries are able to localize the corresponding
objects, the labels are automatically fetched back to the track queries [47].

41



2 Related Works

Decoder
Layer 1

Decoder
Layer 6

All GTs

Locked GTs

Pseudo GTs

Pretrained Detector

Locked GTs

Pseudo GTs

Object Query Track Query Noise Locked Matching Free Matching

Free GTs

Figure 2.28: Overview of the MOTRv3 architecture. It uses three different
matching strategies. The RFS matching between all queries and the ground-truth
objects, the fixed assignment between denoising queries and ground-truths and the
matching with the pseudo labels (adapted from [47]).

Pseudo Label Distillation

Pseudo Label Distillation (PLD) uses an additional trained object detector (e.g.
YOLO-X [49]) to generate pseudo ground-truth objects as an additional supervision
during training. Due to the diverse nature of those so called pseudo labels, the
MOTR detection part can be trained more efficiently [47].

In PLD, a confidence threshold is used to select suitable candidates from the
trained object detector predictions. The selected predictions are then used as
pseudo labels and are assigned via bipartite matching to both object and track
queries. Queries which are not matched are assigned to the background class.
Based on this assignment the detection loss is calculated. As the predictions from
the detection model are noisy, the detection loss for each query is weighted with the
classification score of the detection model. The calculation of the loss is described
in Equation 2.26 [47].

LPLD =
N∑
i=1

wi · Lquery(yi, ỹσP (i)), wi =

{
cp , if ỹp ̸= ∅
0.5 , else (2.26)

,where σP (i) denotes the mapping between the ith query and the pth pseudo label
ỹp and cp the classification score of the pth pseudo label [47].

Track Group Denoising

While the previous two methods improve the detection performance, TGD aims on
boosting the association. Inspired by DN-DETR and Group-DETR [50], multiple
noisy versions of each track query are generated. Each noisy version is assigned
the corresponding ground-truth of the original track query. As opposed to previous
denoising versions, TGD only applies noise to the height and width of the an-
chor box. Analog to DN-DETR, an attention mask is used to prevent information
leakage [47].

42



2.5 End-to-End Multi Object Tracking

Loss

Since all three methods presented assign a separate matching between queries and
ground-truth objects or pseudo labels, the final loss is made up of three components.
One loss term is calculated based on the RFS matching, one on the matching
between the queries and pseudo labels and one by the fixed assignment by TGD.
The final loss is over the sequence of M frames is formulated as:

Lseq =

∑M
t=1 LRFS(t) + LPLD(t) + LTGD(t)∑M

t=1 Vt

(2.27)

,where LRFS/PLD/TGD(t) denotes the corresponding loss and Vt the number of
ground-truth objects in the tth frame [47].

43





3 Methods

We propose an efficient End-to-End Multiple Object Tracking model, based on
TrackFormer’s [12] joint learning strategy, which uses historical trajectories to en-
hance its temporal-relation modeling. Different from most existing methods, that
only update spatial information on a frame-to-frame basis, we are proposing to use
spatial information from n previous frames to enhance the positional part of the
track query. We achieve this by adding a new Trajectory Prediction Module (TPM),
which predicts a refined initial spatial position based on the historical position of
the tracked object.

Moreover, we are exchanging the Deformable DETR [39] base of TrackFormer [12]
with a MQS-based DETR. We propose that the propagation of 4D anchor boxes
further enhances the temporal modeling capabilities of the architecture. In addi-
tion, an encoder loss is introduced to learn the positional part of the object queries
independently from the track query assignment. This lessens the reliance on false
negatives to perform joint training.

Inspired by DN-MOT [14] and MOTRv3 [47], we are utilizing a specific denoising
strategy to further improve both detection and association performance. Due to
these methods, we reason that we no longer rely on TrackFormer’s [12] NMS of
track queries and the previous frame features to achieve high association perform-
ance. This leads to a significant training speed-up over TrackFormer-based models
which are already faster than MOTR-based models as these rely on the sequen-
tial processing of up to 5 frames during training. Our architecture is visualized in
Figure 3.1.

Figure 3.1: Overview of our model architecture. Instead of learning positional
queries, we are extracting them from the encoder output (MQS). The TPM is added
which predicts the next position of a track query based on the n previous ones.
The predicted bounding boxes are combined with the track queries’ content part
to form the shadow queries. The shadow queries and the original track queries are
concatenated and propagated to the next frame (adapted from [12]).

45



3 Methods

The following sections will present a discussion of the three previously mentioned
methods. The initial section will address MQS and its impact on the tracking and
detection joint training. Subsequently, our denoising strategy is presented. Finally,
the chapter will conclude with an examination of TPM.

3.1 Mixed-Query Selection

Our model exchanges the Deformable DETR [39] base with DINO’s [42] MQS. It
extracts the positional part of the object queries adaptively from the encoder out-
puts instead of learning them directly. Analog to DAB-DETR [40], the positional
queries are in the form of 4D anchor boxes. We reason that this change should lead
to better detection performance due to the adaptively selected positional queries.
Moreover, we expect an increase in the association performance as 4D anchor boxes
can propagate more spatial information than the standard 2D reference points from
Deformable DETR. The generation of the object queries with MQS is visualized in
Figure 3.2.

ImageImage

Encoder

Query Selection

Learnable Content QueriesBackbone
 Anchor Boxes 

Image

Object Queries Track Queries

Decoder

Matching

Encoder Loss
(Pure Hungarian Matching)

MOT Loss
(Track queries are fixed assigned)

Figure 3.2: Visualization of MQS. Each element from the encoder output is a
potential query candidate. By feeding them through two FFNs, a prediction box
and score are obtained for each candidate. The predicted boxes of the top-K scoring
candidates are chosen as the positional parts of the object queries. The content part
is still learned. MQS only affects the object queries explicitly. The track queries are
still initialized by successful detections in the previous frame (adapted from [42]).

To teach the model to select good positional queries, a separate encoder loss
Lenc is introduced [42]. This loss is calculated between the prediction scores and
boxes of the query candidates and all ground-truth objects. Analog to DETR,
the predictions and the ground-truth objects are matched by Hungarian matching.
There is no differentiation between tracked and untracked objects. LEnc consists of
a box and a class component analog to the normal loss. The box loss is normalized
by the number of ground-truth objects inside the batch and the class loss by the

46



3.2 Denoising

number of queries.

Lenc(y, ŷ) =
N∑
i=1

[
Lclass(yi, ŷσ̂(i)) + Lbox(yi, ŷσ̂(i))

]
(3.1)

As a consequence of the pure Hungarian matching in the encoder loss, the positional
component of the object queries is trained without reliance on high false negative
probabilities pFN . Accordingly, pFN was set to 0.1, with the objective of facilitating
more efficient training of the association. A comparison between our DETR base
and other models is provided in Table 3.1. Despite the fact that both TrackFormer
and its subsequent variation, DN-MOT [14], utilize both the preceding and current
frame features within the encoder, our approach diverges from this strategy. We
propose that the minimal increase in performance is offset by the increase in com-
putational time and VRAM requirements. As a result, our model does not require
temporal encoding to differentiate between frame features. Additionally, our model
employs a standard feature dimension of dfeat = 256, enabling the utilization of
pre-trained DETR models as an initial point for training. In contrast, other ar-
chitectures necessitate the retraining of DETR from scratch, as their architectural
modifications are incompatible with existing pre-trained model weights [12,14].

Table 3.1: Comparison of our DETR base to existing ones. Since we use a
feature dimension of 256 and no prior frame features, our architecture can use already
trained DETR weights as initialization. Thus, there is no need to pretrain a custom
DETR model. ’-’ denotes unknown values.

Model DETR-Base Enc.-Loss pFN dfeat. Prev. frame feat.

TrackFormer [12] Def. 0.5 288 ✓
DN-MOT [14] MQS ✓ - 288 ✓

MOTR [13] Def. 0.1 256
MOTRv3 [47] Def. - 256
CO-MOT [51] Def. 0.1 256
MeMOTR [15] DAB-Def. 0.0 256

Ours MQS ✓ 0.1 256

3.2 Denoising

Inspired by DN-MOT [14] and MOTRv2/v3 [47, 52], we use denoising to improve
both convergence speed and performance. Due to the low pFN and the fact that
we only calculate the loss for frame t, hardly any object queries are matched with
ground-truth objects during training. We try to design our denoising strategy to
shift focus back onto the object detection. As a result, we improve MOTRv2’s [52]
denoising strategy by adding label noise and multiple denoising groups. We argue

47



3 Methods

that label noise also makes sense in scenarios with only one class, as it learns
different representations of the denoising content query. The noise application of
our method is shown in Equation 3.2. B = (x, y, w, h) denotes the ground-truth
bounding box and D = (w

2
, h
2
, w, h) is a scaling vector to guarantee that the new

center point is still inside of the old bounding box. It is important that the cropping
is performed on the bounding box in (x, y, w, h)-representation, as we want to allow
boxes to ’overflow’, while still forcing the center point to be inside the image.

Bnew = B +D ⊙N ,N ∈ [−λ, λ]4

Bnoise = min(max(Bnew, 0), 1)
(3.2)

Our method does not differentiate between tracked and untracked ground-truth
objects. For every single ground-truth object, a denoising query is generated. The
bounding box noise is uniformly sampled with a noise scale λ of 0.1. The content
part of the denoising queries is a learned embedding. We are randomly choosing a
class label from {0, ..., 19} and then use the corresponding embedding. Our method
employs five denoising groups. Other methods, such as DN-MOT [14] and MO-
TRv3 [47] apply noise to the track anchor boxes and use the track queries’ content
part instead of learned denoising embeddings when generating denoising queries for
tracked ground-truth objects. Moreover, DN-MOT [14] uses both conditional posit-
ive noise and contrastive denoising [42]. Our method does not employ this concepts.
We are in principle using DN-DETR’s [41] denoising strategy with a suitable bound-
ing box noise scale for the tracking task. In contrast to MOTRv2’s [52] method,
we utilize label noise and multiple denoising groups. A comparison between the
different denoising strategies is given in Table 3.2.

Table 3.2: Comparison of our denoising strategy to existing ones. Our ar-
chitecture uses DN-DETR’s denoising strategy with a tracking-specific noise scale ’+’
denotes strategies, where noise is only applied to the width and height of the bounding
box and λ. ’-’ denotes unknown values. The terms ’tracked’ and ’untracked’ describe
the manner in which the method addresses the respective ground-truth objects. In
the case of ’gt,’ the tracked ground-truth object is treated in a manner identical to
that of the untracked ones. Conversely, the term ’query’ indicates that the noise is
applied directly to the track queries. ’cond’ and ’contr’ refer to conditional positive
noise [14] and contrastive denoising [42] respectively.

tracked

Model gt query untracked contr. cond. label n. groups λ

DN-DETR ✓ ✓ 5 0.4

DN-MOT ✓ ✓ ✓ ✓ ✓ dynamic 0.2
MOTRv2 ✓ ✓ 1 0.1
MOTRv3 ✓ 4 -

Ours ✓ ✓ ✓ 5 0.1

48



3.3 Trajectory Prediction Module

3.3 Trajectory Prediction Module

Current End-to-End Multiple Object Tracking methods take the bounding boxes
from the previous frame as anchor boxes for the track queries. We reason that this
method is suboptimal, as it only allows pooling of information at the previous object
location instead of the current one. Moreover, it shifts the focus on appearance
information in the content query to match objects correctly in spatial ambiguous
scenarios. This may lead to false associations in scenes with occlusion and objects
with similar appearance. This scenario is shown in Figure 3.3.

Figure 3.3: Example of false association in scenarios featuring occlusion.
Despite the opposing motion of the two objects, the high level of occlusion results in
an ID switch between frames 2 and 3 (adapted from [53]).

We propose to use a Trajectory Prediction Module to predict a track anchor box,
which takes previous motion behavior into consideration. Instead of taking the
bounding box from the previous detection, we predict the next bounding box based
on the previous ones. For linear motion, as in MOT17 [1], a Kalman filter [54] is
a suitable motion prediction. However, it fails in scenarios with complex nonlinear
motion patterns as in DanceTrack [3].

Inspired by MotionTrack [53], we propose a transformer encoder-based prediction
module which takes the n previous locations to predict the next one. Since this
is a learning-based component, unlike the Kalman filter [54], we have to train the
module. In order to continue to act in the spirit of E2E methods, we joint train
the module together with the rest of our architecture. As we only have access to
two frames during training and therefore only have one previous location for each
track, we are generating pseudo historical trajectories by applying noise to previous
ground-truth boxes.

Instead of only supplying the model with the predicted anchor boxes directly, we
are generating an alternative version of each track query which uses the predicted
anchor box instead of the previous one. Both versions are sharing the same content
query. Inspired from CO-MOT [51], we are referring to these alternative queries as
shadow queries. Each tracked objects then has one corresponding track and shadow
query. During training, both version are matched with the same ground truth. The
training process is visualized in Figure 3.4.

49



3 Methods

Figure 3.4: Overview of the Trajectory Prediction Module during training.
The TPM processes the n + 1 locations of the object to predict the bounding box
in the next frame. It generates a shadow query for each track query, which uses the
predicted bounding box as an anchor box. During training, the historical trajectories
are artificially generated by applying noise to the previous ground-truth boxes (ad-
apted from [12]).

During inference, the model picks either the shadow query or the track query for
each track based on the prediction score. The individual components of TPM are
described in detail in the following subsections.

3.3.1 Architecture

The Trajectory Prediction Module consists of several components. We use a noise
module that adaptively models the noise during training and then applies it to
the ground-truth bounding boxes. The feature extraction module then extracts a
series of features from the historical trajectory. These features are then passed to
the prediction module, which predicts the next bounding box. Instead of predicting
the box directly, the offset to the previous box is predicted. In this way, the previous
box serves as a positional bias, which simplifies the problem. A detailed view of
the module architecture is shown in Figure 3.5.

Noise Modulation

To realistically simulate the historical trajectories during training, we use mul-
tivariate Gaussian noise, which models the prediction behavior of our architecture.
During training, we store the last 1000 prediction-ground-truth pairs and compute
the relative error for each pair using Equation 3.3. The error function is chosen so
that 0 elements in the ground-truth (possible for the center point) are not leading
to undefined expressions. ϵ is added for numerical stability.

erri = 2 · bi − b̂i

|bi|+ |b̂i|+ ϵ
(3.3)

Given that the noise is applied by multiplication to the ground-truth boxes, we
add 1 to the relative error in order to obtain an error factor. In the next step, the
noise vector err is concatenated with the predicted scores. We do this, because

50



3.3 Trajectory Prediction Module

A.-ratios
Scores

bt-1
^

bt-n-1:t-2
^...

Feature
Extraction

Prediction
Module

Boxes
Diffs Offsets

C

Anchor
Boxes

Track
Queries

Shadow
Queries

Next Frame

Trajectory Prediction Module

+C

C

Figure 3.5: Architecture of the Trajectory Prediction Module. The Traject-
ory Prediction Module concatenates the n + 1 previous (predicted) bounding boxes
to form historical trajectories. Features are extracted for each bounding box at each
time step. The features are then fed through the prediction module to generate a
bounding box offsets relative to the bounding boxes b̂t−1. By adding the offsets to
b̂t−1, the predicted bounding box for the next frame is generated. We take this pre-
diction and use it as an anchor box for alternative versions of the track queries, so
called shadow queries (inspired from [51]). The track and shadow queries are then
propagated to the next frame.

we expect that there is a relation between the quality of the prediction box and
the predicted score. Then we fit a multivariate Gaussian to the values. This
is done in each iteration of our model. We generate the noise by sampling a 5-
dimensional vector from the distribution N (µ,Σ) for each bounding box. The first
four dimensions are the relative errors, which we use as noise and the last dimension
is a prediction score.

data =concat(err + 1, scores)

µ =mean(data)
Σ =cov(data)

noise model =N (µ,Σ)

(3.4)

Trajectory Generation

During training, we are sampling the previous frame from the interval [t− 5, t+5].
We are using the same sampling distance d ∈ [t−5, t+5] between the current frame
and the previous frame to uniformly sample n more previous time steps. Accord-
ingly, all time steps in the trajectory are equally spaced. The ground-truth boxes
are then extracted from each of these n time steps. By grouping the ground-truth
boxes according to their object ID, we obtain the ground-truth trajectories. Missing
objects in certain frames are padded with zeros. By sampling noise from N (µ,Σ)
and multiplying it with the ground-truth trajectories, we obtain the pseudo histor-
ical trajectories. Furthermore, we also obtain prediction scores by sampling from
N (µ,Σ), which we concatenate with the trajectories. As we are already using noise

51



3 Methods

which models the actual prediction characteristic, we reason that augmentations
like false positives or spatial jitter are already handled implicitly. We are only us-
ing false negative augmentation, where we exchange random boxes in the trajectory
with zeros. In the final step, the actual predictions from the previous frame are
concatenated with the pseudo historical trajectories. The historical trajectory for
a single tracked object can be denoted as T =

(
xt−d(n+1), .., xt−d

)
∈ R(n+1)×5.

Feature Extraction

Currently, the historical trajectories consists of a bounding box and a score for
each element. Inspired by MotionTrack [53], we are extracting the aspect ratio
and the normalized offset to the previous bounding box (’velocity’) according to
Equation 3.5. The offset is calculated between two non-zero bounding boxes. Due
to false negatives, there can be a gap of length n ̸= 1 between two nonzero boxes.
Accordingly, the term n−1 is employed for normalization purposes.

∆x,y,w,h(t) =
1

n

[
b̂x,y,w,h(t)− b̂x,y,w,h(t− n)

]
(3.5)

The new features are then concatenated with the existing ones for a final feature
dimension of 10. The representation of the object at a single time step t−1 is then
denoted as xt−1 = (x, y, w, h,∆x,∆y,∆w,∆h, aspect ratio, score).

Prediction Module

The prediction module is a transformer encoder. The extracted features are passed
through a MLP to gain a 256-dimensional representation for each time step and
track. Then a temporal encoding is added to distinguish the different time steps.
Afterwards, the trajectories are passed through the encoder. The encoder outputs
are average-pooled along the time domain and fed through another MLP to gain the
prediction offsets δ̂t = (δ̂x, δ̂y, δ̂w, δ̂h). A self-attention mask is used such that tracks
are only able to see themselves. Similar to MotionTrack, there is no inter-frame
communication. The structure of the module is illustrated in Figure 3.6.

Prediction Module

Features
MLP +

Temporal
Encoding

Attention
Mask

Transformer
Encoder

Avg.
Pooling MLP

Offsets

Figure 3.6: Structure of the prediction module. The module is based on
a transformer encoder. A temporal encoding is then added to distinguish between
different time steps. The encoder employs an attention mask to ensure that there
is no inter-track communication. As a result of the mask, a track-specific encoding
is not necessary. The information is pooled track-wise before being fed through the
MLP to predict the final offsets.

52



3.4 Losses

3.3.2 Shadow Queries

Inspired by CO-MOT [51], we utilize shadow queries to integrate the predicted
anchor boxes. For each track query, a shadow query is generated that has the same
content part but a new predicted anchor box as a positional query. During training,
the shadow queries are matched in an identical manner to their corresponding
track queries. Consequently, we no longer have a one-to-one matching between
track queries and ground-truth objects, but a one-to-set matching. This allows to
learn different representations for the same object, thereby accelerating training
as more track predictions are backpropagated. The matching of object queries to
untracked ground-truth objects is still conducted on a one-to-one basis. To avoid
duplicate predictions during inference, the prediction with the higher prediction
score is selected from a track-shadow query pair.

3.3.3 Prediction Loss

The TPM is trained with two distinct losses: The decoder losses (Lclass & Lbox)
and a prediction loss Lpred. The prediction loss is based on the difference between
the prediction and the ground-truth bounding box. Analogous to MotionTrack,
the smooth l1 loss is employed. The prediction loss is calculated according to
Equation 3.6.

Lpred =
∑

i∈{x,y,w,h}

l1,smooth

(
bi(t)−

[
b̂i(t− 1) + δ̂i

])
(3.6)

,where Equation 3.7 denotes the smooth l1 loss.

l1,smooth (x) =

{
0.5
β
· x2 ,if |x| < β

|x| − 0.5 · β ,otherwise
,with β = 1 (3.7)

3.4 Losses

Given that each additional component introduces a distinct loss, the model in
conjunction with the TrackFormer loss is characterized by four losses. These include
the TrackFormer loss LMOT after each decoder layer, the encoder loss Lenc designed
to extract higher quality query candidates for MQS, the denoising loss LDN and
the prediction loss Lpred. The total model loss is displayed in Equation 3.8.

Ltotal = LMOT + Lenc + LDN + Lpred (3.8)

The various losses differ primarily in the manner in which the matching between
prediction and ground-truth is determined, as well as their individual loss compon-
ents. A summary is given in Table 3.3.

53



3 Methods

Table 3.3: Summary of all used losses in our model. In addition to the
standard TrackFormer loss LMOT , our model employs three further task-specific loss
terms.

Loss Matching Components

LMOT untracked: hungarian; tracked: fixed Lfocal,Ll1,Lgiou

Lenc hungarian Lfocal,Ll1,Lgiou

LDN fixed (based on ground-truth box) Lfocal,Ll1,Lgiou

Lpred fixed (based on track ID) Lsmooth_l1

54



4 Experiments

This chapter presents an overview of the experimental setups. Initially, the datasets
and metrics utilized in the experiments are examined. Subsequently, the implement-
ation methodology is outlined. The implementation section provides comprehensive
descriptions of the experimental setups.

4.1 Datasets

The model is evaluated on MOT17 [1], DanceTrack [3] and SportsMOT [4]. Each
of these datasets exhibits a distinct characteristic with regard to scenario, appear-
ance and motion pattern. Example images from all three datasets are displayed in
Figure 4.1.

(a) MOT17. This data-
set features crowded pedestrian
scenes in urban scenarios [1].

(b) DanceTrack. Dan-
ceTrack contains mostly group
dancing videos [3].

(c) SportsMOT. SportsMOT
consists of football, basketball
and volleyball sequences [4].

Figure 4.1: Visualization of the utilized datasets. We test our model on
MOT17, DanceTrack and SportsMOT.

MOT17 It consists of 14 sequences with crowded scenarios, featuring different
viewpoints, camera motion and diverse weather conditions. It has multiple labeled
classes, but only pedestrian tracking will be evaluated. The pedestrians are di-
verse in appearance and exhibit mostly linear motion. Due to the high density of
pedestrians, MOT17 features a considerable number of cases of occlusion [1].

DanceTrack DanceTrack is a multi-human tracking dataset which contains mostly
group dancing videos. The dancers have a uniform appearance, due to similar or
identical clothes, and complex motion patterns. It has frequent occlusion and body
deformations. This makes the association challenging [3].

55



4 Experiments

SportsMOT SportsMOT is a multi-object tracking dataset of diverse sports scenes.
It consists of basketball, volleyball and football videos. All players in the court are
supposed to be tracked. SportsMOT is characterized by variable speed motion and
similar appearance. The statistics for all previously discussed datasets are displayed
in Table 4.1 [4].

Table 4.1: Statistics for used datasets. Split ratio denotes how many sequences are
in each split. Average lengths and tracks refers to the average length and amount of
tracks in a sequence.

Datasets

Metrics MOT17 DanceTrack SportsMOT

splits train/test train/val/test train/val/test
split ratios 7/7 40/25/35 45/45/150
sequences 14 100 240
frames 11,235 105,855 150,379
length (s) 463 5,292 6,015
tracks 1,342 996 3,401
avg. length (s) 33.1 52.9 25.1
avg. tracks 95.9 10.0 14.2
frames per second 14-30 20 25
resolution 480-1080p 720-1080p 720p

4.2 Metrics

We are using the HOTA metrics [29], CLEAR metrics [27], Identity metrics [28]
and IDSW [26] for evaluation. The evaluation of the association is conducted using
AssA, IDF1, and IDSW. The focus is on AssA. The assessment of detection per-
formance employs DetA and MOTA. DetA is the preferred metric as it exclusively
evaluates detection. HOTA is the overall metric, encompassing both subtasks. The
use of MOTA and IDF1 is primarily for the purpose of enhancing comparability, as
some existing trackers utilize only the CLEAR metrics for evaluation.

4.3 Implementation Details

The model implementation is primarily based on the official DN-DETR reposit-
ory [55] and the official TrackFormer repository [56]. It utilizes the DINO imple-
mentation from the official DN-DETR repository and also its pretrained weights.
Instead of employing DN-DETR’s multi-scale deformable attention module, we are
using the MMCV [57] implementation. For evaluation, TrackEval [58] is utilized.

56



4.3 Implementation Details

4.3.1 High-Resolution Tests

In the final high-resolution tests, a batch size of 8 is employed in conjunction with
gradient accumulation. The AdamW [59] optimizer is used with an initial learning
rate of 5 · 10−5 and a weight decay of 1 · 10−4, whereas the backbone and the MHA
input projections utilize a learning rate of 5 ·10−6. The learning rate is reduced by a
factor of 10 for the final 10 epochs. The dropout ratio for the attention mechanism
is set to zero. The model is trained for 50, 20, and 28 epochs on the MOT17 [1],
DanceTrack [3], and SportsMOT [4] datasets, respectively. All high-resolution tests
are conducted using PyTorch in conjunction with a single NVIDIA L40s GPU.

The track augmentations employed in this study are those proposed by Track-
Former, which sample the previous frame from the interval [t− 5, t+ 5]. The false
negative and false positive probability are set to 0.1. The image augmentations of
MOTRv2/CO-MOT [51, 52] are employed. During training, the images are scaled
so that the longest side is 1536 pixels long, and the aspect ratio remains constant.
Conversely, during inference, the images are scaled to 1333 pixels. The image sizes
are chosen to ensure comparability with other E2E methods. A complete list of the
hyperparameter choices are given in Appendix B.

4.3.2 Ablation Study

In order to test a large selection of different configurations, an ablation study is
conducted on a small dataset, such as MOT17 [1]. As MOT17 has only one train
and test split, and the test split ground-truth is not publicly available, the train
split is divided into two parts. The initial 50% of each sequence constitutes the
training set, while the remaining 50% is designated as the validation set. The
process is visualized in Figure 4.2

0% 50% 100%Training Set Validation Set

Figure 4.2: MOT17 ablation split. MOT17 does not contain a validation set.
During the ablation tests, we take the first 50% of each sequence in the train set for
training and the latter half for validation.

Since TrackFormer [12] has to stack its track queries for a batch size > 1, the
number of track queries is cut to the lowest number in the batch. This signific-
antly reduces the association performance. Normally the problem is circumvented
by processing only one frame pair at a time on several Graphics Processing Units
(GPUs) in parallel. Due to limited hardware, only one GPU is used during the
ablation study and the process is simulated using gradient accumulation. All ab-
lation experiments on MOT17 are performed on NVIDIA RTX 2080 Ti, while the
ones on DanceTrack are done on NVIDIA L40s. A batch size of 8 is employed in all

57



4 Experiments

ablation experiments. The input images are resized so that the longest side is 1000
pixels long, maintaining the aspect ratio. The images are normalized using the Im-
ageNet [33] statistics. During training, multi-scale cropping and horizontal flipping
are used as image augmentations analogous to TrackFormer. The track augment-
ations are also adapted from TrackFormer. The false positive probability is kept
at 0.1 and the previous frame is randomly sampled from the interval [t− 5, t+ 5].
The models are trained for 50 epochs on the MOT17 ablation train split and are
tested on the MOT17 ablation validation split. For the tests on DanceTrack, we
are training for 20 epochs on the train set and evaluate the performance on the
validation set. For the last 10 epochs, the learning rate is dropped by a factor of
10. An overview of the ablation configurations is given in Table 4.2.

Table 4.2: Ablation study configurations. All tests are performed on the best
configuration of the previous experiment

Optimization Target Datasets

(1) DETR base MOT17

(2) Conflict resolution strategy & pFN MOT17, DanceTrack

(3) Denoising strategy MOT17
(4) Noise scale λbox

(5) TPM inclusion strategy MOT17
(6) TPM training strategy
(7) Query masking
(8) Quality Focal Loss

(9) Image augmentations MOT17, DanceTrack

(10) Inference hyperparameter MOT17, DanceTrack

DETR Bases

In the first set of ablation experiments, different DETR bases are compared. De-
formable DETR, its two-stage version, DAB-Deformable DETR and DINO’s MQS
are tested. To ensure comparability, all models utilize 300 object queries. The com-
parison is limited to the query selection and processing components. Consequently,
only DINO’s MQS is included in the comparison, and other components, such as
CDN or LFT, are not considered. The learning rate is set to 5 · 10−5 for the trans-
former and 5 · 10−6 for the backbone, as this has demonstrated the best results
in previous experiments. All DETR models are initialized with the corresponding
official weights from object detection training on MS COCO 2017 [45].

58



4.3 Implementation Details

Conflict Resolution

In these ablation tests, the effect of various detection-tracking conflict resolution
methods in combination with different false negative probabilities pFN is investig-
ated. We are testing the following methods:

• Gradient Coordination (GC): This method was proposed in OneTrack [60],
which is a 3D E2E MOT model. It introduces an additional classification
head which matches the object queries to all ground-truth objects. Based on
this assignment and the original assignment, gradients of predictions which
are only matched in one of these heads, are cut. The idea is that by re-
moving contradicting gradients, the conflict between detection and tracking
is resolved.

• Coopetition Label Assignment (COLA): COLA was introduced by CO-MOT [51]
and changes the matching process in the first 5 decoder layers. Instead of only
matching untracked ground-truth objects to the object queries, all ground-
truth objects are matched with them. The idea behind this method is that the
matched object queries can enhance the representation of the corresponding
track queries.

• RFS: RFS was introduced by MOTRv3 (subsection 2.5.4) and also modifies
the matching process in the first 5 decoder layers. In these layers all queries
and ground-truth objects are solely matched based on Hungarian matching.
This is supposed to lead to a focus on detection in the beginning and shifts
back to tracking, when the track queries are achieving better predictions.

All tests are performed on the best DETR base from the previous ablation test.
Promising configurations are in addition tested on DanceTrack as MOT17 is not
suited to highlight the difference in association performance due to its simple motion
patterns.

Denoising Strategies

In this ablation test stage, the previously best configuration is taken and different
denoising strategies are tested on top of it. We are comparing DN-MOT’s [14],
MOTRv2’s [52] and MOTRv3’s [47] denoising strategies with our own method. To
ensure a fair comparison, all methods are using 5 denoising groups and a box noise
scale λ of 0.1. After the best denoising strategy was chosen, different box noise
scales are compared. All test are performed on MOT17 validation split.

Trajectory Prediction Module

During these experiments, we are taking the best performing previous model and
are testing our TPM on it. We are comparing different integration and training
strategies as well as different other influencing factors. Most tests are performed
on the MOT17 validation split and some selected ones on Dancetrack.

59



4 Experiments

Image Augmentations

Most E2E MOT models are based on either TrackFormer or MOTR and have
adopted many components of their respective base models, including the image
transformations. As a result, there are currently two different sets of image aug-
mentations. These augmentations differ mostly in the choice of parameters, the
methods themselves are except for MOTR’s colorspace augmentations identical.
The training augmentations are shown in Listing 4.1.

T.MotCompose([

T.MotRandomHorizontalFlip(),

T.MotRandomSelect(

T.MotRandomResize(scales, max_size),

T.MotCompose([

T.MotRandomResize(resizes),

T.FixedMotRandomCrop(crops),

T.MotRandomResize(scales, max_size=1536),

])

),

T.MOTHSV(),

normalize])

Listing 4.1: Structure of used image augmentations. ’MOTHSV’ modifies the
colorspace in Hue-Value-Saturation (HSV) format. It add/subtracts random values
from each channel.

All augmentations are applied to frame t and t − 1 identically. The different
parameters for the augmentations are displayed in Table 4.3.

Table 4.3: Comparison of image augmentations. TrackFormer-based and MOTR-
based models are using different augmentation parameters. HSV augmentations are
only used in MOTR-based archtectures.

TrackFormer MOTR

horizontal flip ✓ ✓
max_size 1333 1536
scales [480, ..., 800] [608, ..., 992]
resizes [400, 500, 600] [800, 1000, 1200]
crops (384, 600) (800, 1200)
HSV ✓

These augmentations are only applied to the train set. For the validation/test set
all models try to resize the shortest image side to 800px, while limiting the longest
side to 1333px and keeping the aspect ratio constant. To check the influence of the
augmentations, we test our final model on both possible configurations before pro-
ceeding to the high-resolution tests. This experiment is performed on the MOT17

60



4.3 Implementation Details

and DanceTrack validation set. As we are using a maximum size of 1000px during
the ablation experiments, all values are scaled down accordingly.

Inference Hyperparameter

Regardless of the training hyperparameters such as learning rate or batch size,
our model has inference-specific hyperparameters. These are the thresholds for
detection τdet, track initialization τtrack and track reidentification τreid, as well as
the number of frames a track can be inactive before it is deleted Treid. Given the
numerous alterations made to the architectural design and parameter settings, it
is no longer reasonable to assume that the tracking hyperparameters employed by
TrackFormer remain the optimal selection for our model. Since no retraining is
necessary to optimize these parameters, we can use an iterative optimizer. We use
Optuna [61] for the optimization. As sampler we choose ’TPESampler’ and optimize
for 50 iterations on MOT17 and 20 on DanceTrack. As optimization criterion we
use the HOTA score. The optimal obtained hyperparameters are rounded to 0.05
increments. The ranges of the hyperparameters are listed below.

• τdet ∈ [0, 0.9]

• τtrack ∈ [0, 0.9]

• τreid ∈ [0, 0.9]

• Treid ∈ {0, 1, .., 20}

Different components on DanceTrack

In this experiments, we are testing the effect of each newly introduced compon-
ent/modification on DanceTrack. We are comparing the performance change due
to MQS, lower pFN , our denoising strategy, the TPM and the image augmentations.

4.3.3 Training Time and Memory Requirement

For the measurements of the computational time and the VRAM requirements, we
are using the configurations from the high-resolution tests (subsection 4.3.1). We
are training the model for one epoch on the MOT17 train set to get the train-
ing time per iteration and the maximum training VRAM requirement. For the
values during inference, we are tracking all sequences in the MOT17 train set
once. Due to the about 5000 frames in the train set, we get a reliable estim-
ate for the time per iteration. To calculate the VRAM requirement, we employ
’torch.cuda.max_memory_allocated()’ and log the maximum value encountered
during the epoch.

In order to facilitate a comparison of the computational time and VRAM re-
quirement of our model with those of other E2E models, we proceed in a manner
analogous to that previously described. However, due to compatibility issues, the
tests are conducted on an NVIDIA RTX Titan. To ensure greater comparability,

61



4 Experiments

a batch size of 1 is employed for all models, and the longest side of the image is
scaled to 1536 pixels. In the case of MOTR, all tests are conducted with a sequence
length of five.

62



5 Results

5.1 High-Resolution Tests

This section presents the results of our model, which was trained with a maximum
image size of 1536 pixels and tested with a maximum image size of 1333 pixels.
The model is being tested on the MOT17, DanceTrack, and SportsMOT datasets.
Table 5.1 presents a comparative analysis of the performance of our model with
other state-of-the-art models on the MOT17 test split.

Table 5.1: Final results on MOT17 test split. ’∗’ denotes the usage of
ConvNeXt-B [62] backbone instead of ResNet-50 [16], ’+’ joint training on the
CrowdHuman [63] dataset and ’†’ the usage of a pretrained object detector for pseudo
label generation during training. ’↑’/’↓’ indicates that a higher/lower score is better.
Tracking-by-Detection models perform significantly better than End-to-End models
on MOT17 due to the focus on detection and the simple motion patterns. Our archi-
tecture performs worse than other End-to-End models. We reason that this is due to
our renounce of additional dataset and the short training schedule. The best results
are highlighted in bold.

Metrics

Model HOTA ↑ DetA ↑ AssA ↑ MOTA ↑ IDF1 ↑ IDSW ↓

Tracking-by-Detection
ByteTrack [64] 63.1 62.0 - 80.3 77.3 2,277
OC-SORT [65] 63.2 63.2 - 78.0 77.5 1,950
ETTrack [66] 61.9 60.5 - 79.0 75.9 2,118

End-to-End
TrackFormer+ [12] 57.3 - - 74.1 68.0 2,829
DN-MOT+ [14] 58.0 - - 75.6 68.1 2,529
MOTR+ [13] 57.8 60.3 55.7 73.4 68.6 2,439
MOTRv3∗,† [47] 60.2 62.1 58.7 75.9 72.4 2,403
MeMOTR+ [15] 58.8 59.6 58.4 72.8 71.5 -
CO-MOT [51] 60.1 - 60.6 72.6 72.7 -
Ours 56.5 58.7 55.0 71.9 68.4 2,664

It can be seen that Tracking-by-Detection (TbD) models perform significantly
better than End-to-End models on MOT17. This is because MOT17 has a strong
focus on detection, whereas the association following the simple motion patterns of
the pedestrians is comparatively simple. As a result, TbD models that use a strong

63



5 Results

detector in the first step and then exploit the a priori knowledge of the motion pat-
tern perform significantly better than End-to-End models. Another disadvantage
for E2E architectures on MOT17 is the size of the training set. Since MOT17 train
only includes 5,316 frames, the performance of the data-intense transformer models
suffers. Our architecture performs worse on MOT17 than other DETR-based mod-
els. We claim that this is primarily due to the length of the training and the fact
that we do not use any additional datasets. Table 5.2 compares the datasets used
and the total training iterations of different End-to-End models. It can be seen
that our model makes 4-10 times fewer iterations during training than comparable
models, apart from MOTRv3, which leverages a pretrained object detector to speed
up convergence.

Table 5.2: Training configurations on MOT17. ’†’ denotes the usage of a
pretrained object detector for pseudo label generation during training. Our model
is trained for 4-10 times less iterations than other End-to-End models except for
MOTRv3, which leverages a pretrained object detector to speed up convergence.

Model Epochs Datasets Training Iterations

TrackFormer 85 + 40 CH/ MOT17 + CH 2.54 · 106
DN-MOT 80 + 40 CH/ MOT17 1.76 · 106
MOTR 200 CH + MOT17 1.94 · 106
MOTRv3† 50 MOT17 0.27 · 106

MeMOTR 130 CH + MOT17 1.26 · 106
CO-MOT 200 MOT17 1.06 · 106

Ours 50 MOT17 0.27 · 106

In order to evaluate the efficacy of our model in terms of its association perform-
ance, we evaluate it on the DanceTrack dataset. Given the comparatively simple
detection and complex motion patterns, the objective of this benchmark is to as-
sess the association performance. The results on the DanceTrack test split are
listed in Table 5.3. E2E models demonstrate markedly improved performance on
DanceTrack, reflecting a pronounced emphasis on association. The most successful
models are all based on the MOTR architecture, which is both time and hardware
intensive because of training on a sequence of five frames. It was not possible for
more lightweight models, such as DN-MOT, which train on only two frames, to
match this performance. Our model demonstrates that architectures that train on
a sequence of only two frames can achieve competitive results on the DanceTrack
dataset by improving the performance of the previously best two training frame
model DN-MOT by 8.1 HOTA.

64



5.1 High-Resolution Tests

Table 5.3: Final results on DanceTrack test split. ’∗’ denotes the usage of
ConvNeXt-B [62] backbone instead of ResNet-50 [16] and + additional training on
the CrowdHuman [63] dataset. End-to-End models are achieving significantly better
results due to their better association performance in scenarios featuring complex
motion pattern. The best performing models are based on the MOTR architecture.
Our model achieves the best results among E2E models, which are trained on two
frames, beating DN-MOT by 8.1 HOTA. The best results are highlighted in bold.

Metrics

Model HOTA ↑ DetA ↑ AssA ↑ MOTA ↑ IDF1 ↑ IDSW ↓

Tracking-by-Detection
ByteTrack 47.7 71.0 32.1 89.6 53.9 -
OC-SORT 55.1 80.3 38.3 92.0 54.6 -
ETTrack 56.4 81.7 39.1 92.2 57.5 -

End-to-End
DN-MOT 53.5 - - 89.1 49.7 -
MOTR 54.2 73.5 40.2 79.7 51.5 -
MOTRv3 68.3 - - 91.7 70.1 -
MOTRv3∗ 70.4 83.8 59.3 92.9 72.3 -
MeMOTR 68.5 80.5 58.4 89.9 71.2 -
CO-MOT 65.3 80.1 53.5 89.3 66.5 -
Ours 61.6 80.3 47.5 90.3 61.8 1,244

At last, we assess the performance of our model on the SportsMOT test set, the
results of which are presented in Table 5.4. It is evident that Tracking-by-Detection
models demonstrate superior performance in both detection and association.

Table 5.4: Final results on SportsMOT test split. Specialized Tracking-
by-Detection models achieve the best results. Our models is not able to match
MeMOTR’s performance due to worse association performance. The best results
are highlighted in bold.

Metrics

Model HOTA ↑ DetA ↑ AssA ↑ MOTA ↑ IDF1 ↑ IDSW ↓

Tracking-by-Detection
ByteTrack 62.8 77.1 51.2 94.1 69.8 4,499
OC-SORT 71.9 86.4 59.8 94.5 72.2 3,474
ETTrack 74.3 88.8 62.1 96.8 74.5 3,862

End-to-End
MeMOTR 70.0 83.1 59.1 91.5 71.4 -
Ours 66.5 81.5 54.4 93.7 68.9 3,526

65



5 Results

5.2 Ablation Study

This section discusses the effects of various components in our architecture. First,
different DETR bases are analyzed. Afterwards various conflict avoidance strategies
are discussed, followed by a comparison of different denoising techniques. Then
our proposed trajectory prediction module is analyzed. Finally, the effect of the
components of our architecture on DanceTrack is discussed.

5.2.1 DETR Base

The performance of different DETR bases on the MOT17 validation split is dis-
played in Table 5.5. It can be seen that MQS achieves the best results, closely
followed by DAB-Deformable DETR. This shows that learning 4D anchor points
as positional queries and the iterative query refinement are suitable additions to
the our architecture. This methods significantly increase both DetA and AssA.
The Two-Stage approach performs worst, due to its poor detection performance.
Deformable DETR has an acceptable DetA, but falls behind in association. This
could be due to the fact, that Deformable DETR propagates 2D reference points
while all other models use 4D anchor boxes. It also needs to be taken into con-
sideration that each model is initialized with the corresponding DETR parameter
from object detection on MS COCO 2017 [45]. Therefore, DAB-Deformable DETR
and MQS (DINO) already have an advantage as those models have a significantly
better performance in the object detection task.

Table 5.5: Comparison of different DETR bases. MQS achieves the best
association performance and DAB-Deformable DETR the best DetA. Taking both
aspects into consideration, MQS performs best. The tests are performed on MOT17
val. The best results are highlighted in bold.

Metrics

DETR HOTA ↑ DetA ↑ AssA ↑ MOTA ↑ IDF1 ↑ IDSW ↓

Deformable 51.8 54.8 49.8 61.4 59.4 903
Two-Stage 50.8 51.7 50.9 55.7 59.2 534
DAB-Deformable 56.3 57.2 56.3 65.5 64.5 534
MQS 57.0 56.8 58.5 63.5 66.7 503

5.2.2 Conflict Avoidance

This subsection compares different strategies to reduce the conflict between tracking
and detection. We are analyzing the effect of GC, COLA and RFS in combination
with different false negative probabilities on our model. The results are visualized
in Table 5.6. It can be seen that MQS with pFN = 0.5 performs best, while MQS
with pFN = 0.1 achieves the 2nd best results. There seems to be no positive effect
of either of the other methods on our architecture.

66



5.2 Ablation Study

Table 5.6: Effect of different conflict avoidance strategies. Different strategies
are tested in combination with different false negative probabilities pFN on MOT17
val. No tested methods improves the performance over the MQS baseline. The best
results are highlighted in bold.

Metrics

pFN HOTA ↑ DetA ↑ AssA ↑ MOTA ↑ IDF1 ↑ IDSW ↓

Baseline 0.0 55.4 52.1 59.7 60.2 66.6 248
0.1 56.8 57.6 56.9 65.2 66.9 487
0.2 55.9 56.6 56.2 63.5 65.5 523
0.3 55.6 55.1 56.1 64.9 66.2 437
0.5 57.0 56.8 58.5 63.5 66.7 467

+ GC 0.2 56.1 57.4 55.8 64.8 65.4 532
0.5 55.1 57.0 54.2 63.7 64.1 629

+ COLA 0.2 55.4 55.6 56.5 63.5 65.2 522
0.5 55.1 55.4 55.8 61.9 64.0 654

+ RFS 0.2 52.3 54.4 52.0 59.7 61.7 635
0.5 50.1 52.7 49.0 55.5 57.3 885

Surprisingly, MQS with pFN = 0.0 achieves an acceptable DetA score even though
TrackFormer [12] reasons that a high pFN is needed for successful joint-training.
We are suggesting that this is due to the additional encoder loss which trains
the extraction layers in MQS. This loss Lenc is obtained by matching the encoder
proposals with the ground-truth objects independent of if they are tracked or not.
Due to this the positional queries are also trained when all ground-truth objects are
assigned to track queries in the decoder. Furthermore, we propose that positional
queries are more important as the original DETR and DAB-DETR achieve good
detection performance with only positional queries. To validate our hypothesis, we
tested the effect of pFN = 0.0 on DAB-Deformable DETR. The results are listed in
Table 5.7.

Table 5.7: Effect of pFN on other DETR architectures. The tests are per-
formed on MOT17 val. MQS achieves a significantly better detection performance
than DAB-Deformable DETR when no false negatives are used. This observation sug-
gests that the MQS-specific encoder loss mitigates the necessity for high false negative
probabilities.

Metrics

pFN HOTA ↑ DetA ↑ AssA ↑ MOTA ↑ IDF1 ↑ IDSW ↓

MQS 0.0 55.4 52.1 59.7 60.2 66.6 248
DAB-Def. 0.0 50.2 45.2 56.3 50.8 58.5 212

67



5 Results

It can be seen that MQS performs significantly better without false positives
than DAB-Deformable. That DAB-Deformable DETR still achieves a moderate
DetA is due to the fact, that MOT17 features many newborn objects. Therefore,
the detection task is still trained in this scenario.

Furthermore, we propose that the MOT17 set is not suited for showing advant-
ages in the association performance as it only features simple motion patterns.
Due to this we are testing MQS with pFN = 0.1 and pFN = 0.0 as well as GC with
pFN = 0.2 on DanceTrack validation set. The results are displayed in Table 5.8. It
can be seen that a low pFN leads to significant better AssA, while having nearly
no impact on DetA. GC also does not have a positive influence on DanceTrack.
Due to this, we are continuing with MQS with pFN = 0.1 for the following ablation
tests.

Table 5.8: Effect of different pFN on DanceTrack val. A lower pFN has a
considerable impact on the association performance, as the model primarily matches
track queries during training. In the MOT17 dataset, the effect is not discernible due
to the relatively simple motion pattern.

Metrics

pFN HOTA ↑ DetA ↑ AssA ↑ MOTA ↑ IDF1 ↑ IDSW ↓

Baseline 0.1 54.8 72.6 41.8 83.1 55.0 1,962
0.5 53.3 72.7 39.4 83.1 52.9 1,891

+ GC 0.2 53.8 72.3 40.4 81.8 53.9 2,171

5.2.3 Denoising Strategies

In this ablation experiment, multiple denoising strategies are compared with our
own strategy. The results are compared in Table 5.9. ’gt’ and ’query’ refer to how
tracked ground-truth objects are denoised. For ’gt’, the query is handled analog
to untracked ground-truths, where the noise is directly applied to the ground-truth
bounding box and a separate denoising embedding is used as the content query.
’query’ refers to the case, where the track query is replacing the denoising query
of the corresponding ground-truth object and the noise is applied to the track
box. Contrastive (’contr.’) refers to DINO’s CDN and conditional (’cond.’) to
DN-MOT’s conditional positive noise. It can be seen that our model performs
best when using the MOTRv2 denoising strategy in combination with label noise.
Other strategies, like MOTRv3’s or DN-MOT’s are only able to achieve marginally
gains or even harm our performance. We reason that the choice of MQS and the
low pFN have a dramatical effect on the optimal choice of the denoising strategy.
Consequently, strategies that have demonstrated considerable performance gains on
alternative architectures may not necessarily be the most suitable for our model.

68



5.2 Ablation Study

Table 5.9: Comparison of different denoising types. The best results are
highlighted in bold. All tests are performed on MOT17 val. ’+’ denotes strategies,
where noise is only applied to the width and height of the bounding box and ’∗’
strategies, where the denoising class embeddings are randomly chosen. Dn-DETR’s
denoising strategy achieves the best results with our model.

tracked Metrics

gt query untracked contr. cond. HOTA ↑ DetA ↑ AssA ↑

DN-MOT∗ ✓ ✓ ✓ ✓ 56.6 58.0 56.2
✓ ✓ ✓ 57.6 57.6 58.5
✓ ✓ 56.6 57.7 56.5

MOTRv2 ✓ ✓ 57.3 57.6 57.9
✓ ✓ ✓ 56.8 57.1 57.2

MOTRv3+ ✓ 57.0 56.9 57.9
✓ 56.6 57.0 57.0
✓ ✓ 56.8 56.2 58.1

Ours∗ ✓ ✓ 57.8 58.3 58.4

Given that previous denoising methods use very different noise scales, we test the
effect of different noise scales on our method. The results are shown in Figure 5.1.
It can be seen in Figure 5.1a that λ = 0.1 achieves the best results. Lower values
lead to a rapid drop in detection and association performance.

0.0 0.1 0.2 0.3
Noise scale  (a.u.)

57

58

M
et

ri
c 

sc
or

e 
(a

.u
.)

HOTA
DetA

AssA

(a) HOTA, DetA and Assa for different
noise scales.

0 20 40
Epochs (a.u.)

50

52

54

56

58

H
O

T
A

 (
a.

u.
)

= 0.05
= 0.1

= 0.2
= 0.3

(b) HOTA for different noise scales over the
training duration.

Figure 5.1: Effect of bounding box noise scales. The noise scale has a significant
effect on the performance. Our own method achieves best results with λ = 0.1.

69



5 Results

We reason that the performance decrease is because too little noise leads to a
reconstruction task that is too simple. Consequently, the model is unable to learn
any meaningful relationships. On the other hand, if the noise scale is too high, the
association accuracy suffers. This may be due to the fact that too high noise is
implausible in tracking scenarios. The model may erroneously learn to associate
over larger distances, which is rarely advantageous in videos with moderate frame
rates.

5.2.4 Trajectory Prediction

The following series of ablation experiments is designed to investigate the impact of
the TPM and different configurations of it. In the initial experiment, we consider
different ways of integrating the module into our model. We either refine the
existing track query bounding box or generate an additional track query, called
shadow query, which has the same content part but the refined bounding box from
the TPM. The results are presented in Table 5.10. It can be observed that, with
the current configurations, no method improves the performance of the previous
baseline. However, the shadow query integration method achieves significantly
better results than refining the track box directly. Consequently, the shadow query
integration method is employed for the subsequent tests.

Table 5.10: Comparison of different trajectory integration methods. The
tests are performed on MOT17 val. The introduction of shadow queries to integrate
the TPM seems better suited than naively updating the anchor box.

Metrics

HOTA ↑ DetA ↑ AssA ↑ MOTA ↑ IDF1 ↑ IDSW ↓

Baseline 57.8 58.3 58.4 67.0 67.6 444

Refine track box 56.3 56.1 57.4 63.1 65.9 468
Shadow queries 57.7 57.9 58.4 66.6 68.0 400

The next experiment deals with the effect of the different losses on the TPM.
The TPM is trained using a combination of two loss functions: the bounding box
regression loss and the decoder losses, which are propagated back via shadow quer-
ies. To mitigate the influence of the decoder losses, the gradients of the shadow
queries are cut after the TPM. The effects of the two loss components are shown
in Table 5.11. It can be observed, that both losses have a positive effect on the
performance of our model. Although DetA remains relatively constant, the associ-
ation performance declines when one of the two losses is omitted. As a result, both
losses are employed in the subsequent experiments.

70



5.2 Ablation Study

Table 5.11: Comparison of trajectory prediction training methods. The
tests are performed on MOT17 val. Both loss components have a positive effect on
performance.

Losses Metrics

Prediction Decoder HOTA ↑ DetA ↑ AssA ↑

Shadow queries ✓ 55.8 57.2 55.2
✓ 56.3 57.7 56.0

✓ ✓ 57.7 57.9 58.4

One potential explanation for the absence of performance improvement of the
TPM is the fact that both versions of the same track query can interact in self-
attention. Since self-attention is used to suppress duplicate predictions, it is possible
that a conflict occurs within the module due to the forced two versions. This is
investigated in Table 5.12. The results demonstrate that the interaction between
the track queries and the shadow queries has a positive effect on the tracking
performance.

Table 5.12: Effect of masking shadow queries in the trajectory prediction
module. The configurations are tested on MOT17 val. Communication between
shadow and track queries has a positive impact on performance.

Metrics

HOTA ↑ DetA ↑ AssA ↑ MOTA ↑ IDF1 ↑ IDSW ↓

No masking 57.7 57.9 58.4 66.6 68.0 400
Masking 57.6 57.9 58.1 66.5 67.7 431

During inference, the variant with the higher prediction score is selected from a
given track-shadow-query pair. Figure 5.2 demonstrates that both types of queries
are selected.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Selection probability (a.u.)

0.698

0.302

Track Queries
Shadow Queries

Figure 5.2: Selection probability for each query type. During inference the
highest scoring version of each track-shadow query pair is picked. Track queries tend
to achieve higher scores than shadow queries.

71



5 Results

However, the selection based on the prediction score is dependent on the assump-
tion that predictions with a higher score also have a higher gIoU. This assumption
is not necessarily justified by the use of the focal loss, given that the ground-truth
labels are binary. To make quantitative statements regarding the box quality based
on the score, we investigate the effect of quality focal loss [67] instead of focal loss
on our model. The results are presented in Table 5.13. It can be seen that quality
focal loss has no significant effect on the performance, therefore we are staying with
the normal focal loss for the following experiments.

Table 5.13: Effect of quality focal loss (QFL). The methods are tested on
MOT17 val. Quality focal loss does not result in any discernible improvement over
the conventional focal loss.

Metrics

HOTA ↑ DetA ↑ AssA ↑ MOTA ↑ IDF1 ↑ IDSW ↓

Shadow queries 57.7 57.9 58.4 66.6 68.0 400
+ QFL 57.6 58.0 58.3 67.0 68.1 447

Another influencing factor could be the generation of noise. We compare our
modeled noise with Gaussian noise with mean 1 and different standard deviations.
It can be seen in Table 5.14 that the modeled noise performs better and does
not require dataset/model-dependent hyper-parameters as it is fit to the model
predictions directly.

Table 5.14: Effect of different noise models. The methods are tested on MOT17
val. Modeled noise achieves the best results without using additional hyperparamet-
ers. We reason that a fixed noise distribution is not suited for the task, as the real
prediction distribution changes during training.

Metrics

Std HOTA ↑ DetA ↑ AssA ↑ MOTA ↑ IDF1 ↑ IDSW ↓

Modeled noise 57.7 57.9 58.4 66.6 68.0 400

Gaussian 0.01 56.6 56.8 57.3 63.6 66.7 471
0.03 57.3 57.6 57.7 65.1 67.2 502

To verify the basic concept of our method, we test the effect of an already es-
tablished motion model, the Kalman filter. To do this, we replace the TPM with a
Kalman filter during inference. The results are presented in Table 5.15.

72



5.2 Ablation Study

Table 5.15: Effect of different motion models. The Kalman filter demonstrates
a good performance on MOT17, as its linear velocity assumption aligns with the
the simple motion pattern. Conversely, on Dancetrack, it results in a decline in
performance, whereas our proposed TPM exhibits a notable enhancement in AssA.

Datasets Metrics

MOT17 DanceTrack HOTA ↑ DetA ↑ AssA

Baseline ✓ 57.8 58.3 58.4
TPM + Shadow queries ✓ 57.7 57.9 58.4
Kalman + Shadow queries ✓ 57.5 57.8 58.2
Kalman + Box refine ✓ 58.5 57.7 60.3

Baseline ✓ 54.7 73.6 40.9
TPM + Shadow queries ✓ 54.8 72.3 42.0
Kalman + Shadow queries ✓ 54.3 72.2 41.2
Kalman + Box refine ✓ 52.8 72.0 39.2

The results allow us to infer a number of conclusions. First and foremost, a well-
suited motion model can be utilized in conjunction with E2E models to enhance
their performance. This can be seen as the Kalman filter, which is due to its lin-
earity assumption a good motion estimator for MOT17, increases the performance
significantly. Additionally, it is evident that the prediction score is not an effective
surrogate for anchor box quality, as the Kalman filter does not yield any discernible
enhancement when employed in conjunction with shadow queries. Therefore, the
model is unable to reliably select the optimal query. On DanceTrack, the Kalman
filter leads to a decline in performance, which is anticipated given that the Kalman
filter is not applicable to the complex and nonlinear motions that are characteristic
of DanceTrack. Our TPM is currently not an effective motion model for MOT17,
but it does yield modest performance gains on DanceTrack.

5.2.5 Image Augmentations

The primary distinction between MOTR and TrackFormer lies in the utilization of
HSV color space augmentations and the dimensions of the random crops employed
in the image augmentations. The outcomes achieved through the deployment of
MOTR and TrackFormer image augmentation are illustrated in Table 5.16. It
is evident that the use of MOTR augmentations results in superior outcomes in
both the MOT17 and Dancetrack datasets. The lower increase on MOT17 may be
attributed to the fact that MOT17 is a very small dataset, and the use of larger
crops leads to a reduction in variance during training.

73



5 Results

Table 5.16: Effect of different image augmentations. The image augmentations
employed by MOTR result in notable enhancements in performance on both the
MOT17 and Dancetrack datasets.

Metrics

Augmentations HOTA ↑ DetA ↑ AssA ↑ MOTA ↑ IDF1 ↑ IDSW ↓

MOT17 val
TrackFormer 57.7 57.9 58.4 66.6 68.0 400
MOTR 58.0 57.5 59.3 65.5 68.6 358

DanceTrack val
TrackFormer 54.8 72.3 42.0 82.0 55.3 1,890
MOTR 55.2 72.9 42.2 82.7 55.2 1,795

5.2.6 Hyperparameter Optimization

The hyperparameters determined by Optuna [61] are shown in Table 5.17. It is no-
ticeable that in MOT17 both τdet and Treid are chosen significantly higher, whereas
τtrack and τreid remain unchanged. For DanceTrack, all hyperparameters except for
τtrack are increased.

Table 5.17: Results from hyperparameter optimization. We conducted 50
and 20 optimization iterations with Optuna on MOT17 and DanceTrack, respect-
ively. Of particular note are the increases to τdet and Treid. This suggests that more
confident detections result in fewer, but better track initializations. Due to the TPM,
reidentifications are still possible after longer time frames.

Hyperparameters

Hyperparameter MOT17 DanceTrack τdet τtrack τreid Treid

Standard ✓ 0.4 0.4 0.4 5
Optimized ✓ 0.65 0.4 0.4 20

Standard ✓ 0.4 0.4 0.4 5
Optimized ✓ 0.85 0.4 0.6 17

The results in Table 5.18 show that the association performance in particular
benefits significantly from optimized hyperparameters. Since the TPM also up-
dates the anchor box of inactive tracks, reidentifications are still possible after a
longer period of time. The fact that Treid was set to 20 on MOT17 indicates that
this is particularly holds for linear, uniform movements. As the detection task in
DanceTrack is comparatively simple, higher thresholds perform better. The fact
that τdet is higher than τtrack in both datasets ensures that only tracks are initial-
ized if the model is certain, whereas the threshold for continuing an existing track
is significantly lower. This results in fewer competing tracks, reducing the risk of
IDSW.

74



5.2 Ablation Study

Table 5.18: Performance with optimized hyperparameters. The dets are
conducted on MOT17 and DanceTrack val. Our model demonstrates a notable im-
provement in performance when optimized hyperparameters are employed. As a con-
sequence of the architectural modifications, the hyperparameters of TrackFormer are
no longer optimal for our model.

Metrics

Hyperparameter HOTA ↑ DetA ↑ AssA ↑ MOTA ↑ IDF1 ↑ IDSW ↓

MOT17 val
Standard 58.0 57.5 59.3 65.5 68.6 358
Optimized 59.3 57.2 62.4 66.8 71.6 223

DanceTrack val
Standard 55.2 72.9 42.2 82.7 55.2 1,795
Optimized 57.0 72.6 45.2 82.4 58.7 1,152

5.2.7 Different components on DanceTrack

As the majority of previous ablation experiments were conducted using MOT17,
the individual components will be evaluated once more using on the DanceTrack
validation set. Table 5.19 illustrates the performance of each of the components we
introduced.

Table 5.19: Effect of the different components on DanceTrack val. The most
significant factors influencing performance are MQS, the lower pFN , and the use of
MOTR’s image augmentation. The denoising approach evaluated on MOT17 is not
effective on Dancetrack.

Metrics

Component HOTA ↑ DetA ↑ AssA ↑ MOTA ↑ IDF1 ↑ IDSW ↓

(1) Def. DETR 46.1 68.7 31.3 79.1 44.9 2,150
(2) MQS 53.3 72.7 39.4 83.1 52.9 1,891
(3) (2) + pFN=0.1 54.8 72.6 41.8 83.1 55.0 1,962
(4) (3) + DN 54.7 73.6 40.9 84.1 54.1 1,780
(5) (4) + TPM 54.8 72.3 42.0 82.0 55.3 1,890
(6) (5) + Augm. 55.2 72.9 42.2 82.7 55.2 1,795
(7) (6) + Hyperp. 57.0 72.6 45.2 82.4 58.7 1,152

It can be observed that a reduction in pFN has a considerable impact on the
performance of the system, However, the denoising strategy employed in this study
does not appear to be effective for DanceTrack, despite achieving the best results
on MOT17. This suggests that the performance of the model on MOT17 may not
be a reliable indicator of its performance on DanceTrack. The integration of the
TPM has led to a notable enhancement in the models association performance,

75



5 Results

albeit at the cost of detection performance. It is hypothesized that the pronounced
impact of the optimized hyperparameters is, in part, attributable to the TPM, as
this facilitates reidentification after considerably longer intervals. In the absence of
the TPM, the spatial location of inactive track queries exhibits minimal change. In
contrast, the TPM enables the anchor box to be updated in accordance with the
preceding motion.

5.3 Training Time and Memory Requirement

Since our model is trained exclusively on two frames and does not use separate
object detectors or any other frame features, it can be trained quickly. The high
resolution training for 50 epochs on MOT17 took a total of 36h on a single NVIDIA
L40s. The training for 20 epochs on DanceTrack and 28 on SportsMOT took 110h
and 75h respectively. The computing time of the different components per training
iteration is shown in Table 5.20. It is hypothesized that the temporal component of
the criterion is disproportionately represented in the tests, as the loss calculation is
not significantly enhanced by a more rapid GPU, whereas the transformer structure
is optimized for GPU training. On slower GPUs, the percentage shifts more towards
the encoder/decoder.

Table 5.20: Time spend per component for a single iteration. The times were
measured over one epoch of MOT17 train using a NVIDIA L40s. ’(×2)’ denotes, that
the component is called two times during a single training iteration. The criterion
contributes a significant portion of the total computation time, since the loss calcu-
lation does not notably benefit from a faster GPU. The use of a slower GPU results
in a comparatively lower relative contribution of the criterion.

Training Inference

Component Time (ms) Time (%) Time (ms) Time (%)

Backbone 9.4 (×2) 1.9 (×2) 9.8 10.7
Encoder 23.6 (×2) 4.9 (×2) 24.1 26.3
MQS 3.0 (×2) 0.6 (×2) 2.0 2.2
Decoder 29.8 (×2) 6.2 (×2) 17.2 18.7
TPM 28.9 6.0 28.6 31.2
Criterion 81.6 16.9 - -
Backpropagation 169.5 35.1 - -
Other 71.8 28.5 10.1 11.0

Total 483.4 100.0 91.8 100.0

In total, the model requires approximately 0.5 seconds per training iteration and
achieves up to 11 Hz during inference. The impact of MQS and denoising (29.3 vs
29.8 ms in the decoder) on the forward pass of the model is negligible; however,
the introduction of additional parameters and losses results in an increase in time
for both the criterion and backpropagation. Figure 5.3 presents a comparison of

76



5.3 Training Time and Memory Requirement

the time per training iteration of our model with MOTR and TrackFormer. The
runtime of the two architectures also serves as a lower bound for all models based
on them. It can be seen that our model has a significantly lower computation time.
The advantage over TrackFormer lies in the reduced feature dimension and the
fact that we do not use previous frame features. The prolonged processing time of
MOTR can be attributed to its approach of processing five frames in sequence.

0.0 0.5 1.0 1.5 2.0 2.5
Relative time per training iteration (a.u.)

1.0

1.28

2.04

Ours
TrackFormer
MOTR

Figure 5.3: Relative time for a single iteration during training for different
models. Our architecture only trains on to adjacent frames and does not employ
additional features from previous frames. This leads to a significant speedup compared
to TrackFormer and MOTR.

In addition to runtime, the VRAM requirement is a significant consideration. A
reduced VRAM requirement permits the model to be trained on less costly or less
recent GPUs. Figure 5.4 provides a summary of the VRAM requirements for each
of the modifications that have been introduced. It can be observed, that the largest
increase in VRAM is due to MQS. This is due to the fact, that MQS introduces 7
million additional parameters compared to Deformable DETR, resulting in a total
of 47 million parameters. This proportionally increases the required VRAM by
20%. In contrast, denoising has nearly no effect on the allocated VRAM, and the
TPM does also only leads to an increase of approximately 5%.

Figure 5.5 presents a comparative analysis of the VRAM requirements of vari-
ous models. It is evident that our model requires a considerably lesser amount of
VRAM in comparison to other E2E MOT models. As a consequence of the ab-
sence of any previous frame features and the smaller feature dimension employed
in comparison to TrackFormer, our model requires approximately 40% less VRAM
than TrackFormer. The advantage of our approach over that of MOTR is that we
calculate the loss on a single frame, whereas MOTR calculates the loss on all five
frames. This results in a reduction of the allocated VRAM by approximately 70%
in comparison to MOTR.

77



5 Results

3.0 3.5 4.0 4.5 5.0 5.5 6.0
VRAM requirement (GB)

4.068

5.058

5.137

5.386

Def. DETR Base
MQS Base
MQS + DN
MQS + DN + TPM

Figure 5.4: VRAM requirement during training. The maximum allocated
VRAM was measured during one epoch on MOT17 train with a maximum image
size of 1536px. MQS introduces 7 million additional parameters over the Deformable
DETR base resulting in 47 million parameters in total. This leads to an approximate
20% increase in the VRAM requirement. Both denoising and TPM have a minimal
impact on the requirements.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
VRAM requirement (GB)

5.386

9.198

18.282

Ours
TrackFormer
MOTR

Figure 5.5: VRAM requirement of different models during training. Our
architectural approach does not incorporate any additional features from previous
frames and solely calculates the loss on a single frame. Consequently, the number of
requisite gradients during training is substantially reduced. This results in a markedly
lower VRAM requirement in comparison to TrackFormer and MOTR.

78



6 Discussion

We have proposed a lightweight End-to-End Multiple Object Tracking model that
employs the use of historical trajectories. By limiting the training to two adjacent
frames and calculating the loss for a single frame, our model requires less than 6
GB of VRAM and exhibits minimum 20% acceleration compared to TrackFormer-
based and 50% to MOTR-based models. Our model employs MQS to enhance its
performance and mitigate the conflict between detection and association. A specific
denoising strategy is employed to further improve the detection performance. By
leveraging the Trajectory Prediction Module, our model is capable of enhancing
the spatial information associated with track queries, based on the historical tra-
jectories of the tracked objects. Moreover, we optimized both the augmentation
strategy and the track hyperparameters for our model, thereby boosting its overall
performance. Our results demonstrate that lightweight End-to-End approaches are
capable of competing with more heavy-weight approaches, such as MOTR. Addi-
tionally, we were able to demonstrate that the incorporation of additional motion
predictors can significantly improve the performance of End-to-End Multiple Ob-
ject Tracking models.

While our model demonstrates notable advancements over existing TrackFormer-
based models in scenarios with complex motion patterns, it still exhibits inferior
performance compared to more recent MOTR-based models. Furthermore, our ex-
periments revealed that the most effective methods on MOT17 are not always the
most effective on DanceTrack, and vice versa. This resulted in the deployment of a
suboptimal denoising strategy. Additionally, our current motion prediction model
is not fully leveraging the potential of enhancing track queries’ spatial information.
Despite reducing the conflict between detection and association, our model’s detec-
tion performance still lags behind two-stage approaches. We believe that resolving
this conflict is a pivotal challenge for the Tracking-by-Query paradigm.

This thesis suggests two primary directions for future research. The first focuses
on enhancing track bounding box prediction using historical trajectories, while the
second aims at developing a more efficient, lightweight model. For trajectory pre-
diction, selecting an appropriate motion model is essential. It would be beneficial
to draw further inspiration from existing Tracking-by-Detection and trajectory pre-
diction models. To improve efficiency, exploring more advanced and efficient DETR
models, such as RT-DETR [68] or D-Fine [69], would be a promising approach.

79





Bibliography

[1] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler, “MOT16: A
Benchmark for Multi-Object Tracking,” arXiv:1603.00831, Mar. 2016.

[2] P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers, I. Reid, S. Roth,
K. Schindler, and L. Leal-Taixé, “MOT20: A benchmark for multi object
tracking in crowded scenes,” Mar. 2020. arXiv:2003.09003.

[3] P. Sun, J. Cao, Y. Jiang, Z. Yuan, S. Bai, K. Kitani, and P. Luo, “Dan-
cetrack: Multi-object tracking in uniform appearance and diverse motion,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 20993–21002, 2022.

[4] Y. Cui, C. Zeng, X. Zhao, Y. Yang, G. Wu, and L. Wang, “Sportsmot: A large
multi-object tracking dataset in multiple sports scenes,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9921–
9931, 2023.

[5] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and
T. Darrell, “Bdd100k: A diverse driving dataset for heterogeneous multitask
learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2636–2645, 2020.

[6] L. Zhang, J. Gao, Z. Xiao, and H. Fan, “Animaltrack: A benchmark for
multi-animal tracking in the wild,” International Journal of Computer Vis-
ion, vol. 131, no. 2, pp. 496–513, 2023.

[7] R. Girdhar, G. Gkioxari, L. Torresani, M. Paluri, and D. Tran, “Detect-and-
Track: Efficient Pose Estimation in Videos,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), (Salt Lake
City, UT), pp. 350–359, IEEE, June 2018.

[8] P. Pareek and A. Thakkar, “A survey on video-based Human Action Recogni-
tion: recent updates, datasets, challenges, and applications,” Artificial Intelli-
gence Review, vol. 54, pp. 2259–2322, Mar. 2021.

[9] Y. Liu, B. Li, X. Zhou, D. Li, and Q. Duan, “FishTrack: Multi-object tracking
method for fish using spatiotemporal information fusion,” Expert Systems with
Applications, vol. 238, p. 122194, Mar. 2024.

[10] Z. Sun, J. Chen, L. Chao, W. Ruan, and M. Mukherjee, “A Survey of Mul-
tiple Pedestrian Tracking Based on Tracking-by-Detection Framework,” IEEE

i



Transactions on Circuits and Systems for Video Technology, vol. 31, pp. 1819–
1833, May 2021.

[11] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko,
“End-to-End Object Detection with Transformers,” in European Conference on
Computer Vision (ECCV) (A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm,
eds.), vol. 12346, pp. 213–229, Cham: Springer International Publishing, 2020.

[12] T. Meinhardt, A. Kirillov, L. Leal-Taixe, and C. Feichtenhofer, “TrackFormer:
Multi-Object Tracking with Transformers,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), (New Or-
leans, LA, USA), pp. 8834–8844, IEEE, June 2022.

[13] F. Zeng, B. Dong, Y. Zhang, T. Wang, X. Zhang, and Y. Wei, “Motr: End-
to-end multiple-object tracking with transformer,” in European Conference on
Computer Vision (ECCV), pp. 659–675, Springer, 2022.

[14] T. Fu, X. Wang, H. Yu, K. Niu, B. Li, and X. Xue, “DeNoising-MOT: To-
wards Multiple Object Tracking with Severe Occlusions,” in Proceedings of
the 31st ACM International Conference on Multimedia, MM ’23, (New York,
NY, USA), pp. 2734–2743, Association for Computing Machinery, 2023. event-
place: Ottawa ON, Canada.

[15] R. Gao and L. Wang, “MeMOTR: Long-term memory-augmented transformer
for multi-object tracking,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 9901–9910, 2023.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Re-
cognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), (Las Vegas, NV, USA), pp. 770–778, IEEE,
2016.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is All you Need,” in Advances in
Neural Information Processing Systems (NIPS) (I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.),
vol. 30, Curran Associates, Inc., 2017.

[18] G. Ciaparrone, F. Luque Sánchez, S. Tabik, L. Troiano, R. Tagliaferri, and
F. Herrera, “Deep learning in video multi-object tracking: A survey,” Neuro-
computing, vol. 381, pp. 61–88, Mar. 2020.

[19] M. Bashar, S. Islam, K. K. Hussain, M. B. Hasan, A. B. M. A. Rahman,
and M. H. Kabir, “Multiple Object Tracking in Recent Times: A Literature
Review,” 2022.

[20] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and real-
time tracking,” in IEEE International Conference on Image Processing (ICIP),
(Phoenix, AZ, USA), pp. 3464–3468, IEEE, Sept. 2016.

ii



[21] P. Bergmann, T. Meinhardt, and L. Leal-Taixe, “Tracking Without Bells and
Whistles,” in The IEEE/CVF International Conference on Computer Vision
(ICCV), (Seoul, Korea (South)), pp. 941–951, IEEE, Oct. 2019.

[22] S. Han, P. Huang, H. Wang, E. Yu, D. Liu, and X. Pan, “MAT: Motion-aware
multi-object tracking,” Neurocomputing, vol. 476, pp. 75–86, Mar. 2022.

[23] F. Yu, W. Li, Q. Li, Y. Liu, X. Shi, and J. Yan, “POI: Multiple Object Tracking
with High Performance Detection and Appearance Feature,” in Computer Vis-
ion – ECCV 2016 Workshops (G. Hua and H. Jégou, eds.), vol. 9914, pp. 36–42,
Cham: Springer International Publishing, 2016.

[24] Y. Zhang, C. Wang, X. Wang, W. Zeng, and W. Liu, “FairMOT: On the
Fairness of Detection and Re-identification in Multiple Object Tracking,” In-
ternational Journal of Computer Vision, vol. 129, pp. 3069–3087, Nov. 2021.

[25] R. Gao, Y. Zhang, and L. Wang, “Multiple Object Tracking as ID Prediction,”
Mar. 2024. arXiv:2403.16848 [cs].

[26] R. Nevatia, “Tracking of Multiple, Partially Occluded Humans based on Static
Body Part Detection,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), vol. 1, (New York, NY, USA), pp. 951–958,
IEEE, 2006.

[27] K. Bernardin and R. Stiefelhagen, “Evaluating Multiple Object Tracking Per-
formance: The CLEAR MOT Metrics,” EURASIP Journal on Image and
Video Processing, vol. 2008, pp. 1–10, 2008.

[28] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, “Performance
Measures and a Data Set for Multi-target, Multi-camera Tracking,” in Com-
puter Vision – ECCV 2016 Workshops (G. Hua and H. Jégou, eds.), vol. 9914,
pp. 17–35, Cham: Springer International Publishing, 2016.

[29] J. Luiten, A. Osep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, and
B. Leibe, “HOTA: A Higher Order Metric for Evaluating Multi-Object Track-
ing,” International Journal of Computer Vision, pp. 1–31, 2020.

[30] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, vol. 2, pp. 83–97, Mar. 1955.

[31] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel, “Backpropagation Applied to Handwritten Zip Code
Recognition,” Neural Computation, vol. 1, pp. 541–551, Dec. 1989.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks,” in Advances in Neural Information Pro-
cessing Systems (NIPS) (F. Pereira, C. J. Burges, L. Bottou, and K. Q. Wein-
berger, eds.), vol. 25, Curran Associates, Inc., 2012.

iii



[33] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet
Large Scale Visual Recognition Challenge,” International Journal of Computer
Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[34] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A Survey of Convolutional
Neural Networks: Analysis, Applications, and Prospects,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 33, pp. 6999–7019, Dec. 2022.

[35] A. Mahmood, A. G. Ospina, M. Bennamoun, S. An, F. Sohel, F. Boussaid,
R. Hovey, R. B. Fisher, and G. A. Kendrick, “Automatic Hierarchical Classi-
fication of Kelps Using Deep Residual Features,” Sensors, vol. 20, p. 447, Jan.
2020.

[36] S. Hochreiter, “Long Short-term Memory,” Neural Computation, vol. 9,
p. 1735–1780, Nov. 1997.

[37] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” in NIPS 2014 Deep Learning
and Representation Learning Workshop, 2014.

[38] Z. Niu, G. Zhong, and H. Yu, “A review on the attention mechanism of deep
learning,” Neurocomputing, vol. 452, pp. 48–62, 2021.

[39] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable {DETR}:
Deformable Transformers for End-to-End Object Detection,” in International
Conference on Learning Representations (ICLR), 2021.

[40] S. Liu, F. Li, H. Zhang, X. Yang, X. Qi, H. Su, J. Zhu, and L. Zhang, “DAB-
DETR: Dynamic Anchor Boxes are Better Queries for DETR,” in International
Conference on Learning Representations (ICLR), 2022.

[41] F. Li, H. Zhang, S. Liu, J. Guo, L. M. Ni, and L. Zhang, “Dn-detr: Accelerate
detr training by introducing query denoising,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13619–
13627, 2022.

[42] H. Zhang, F. Li, S. Liu, L. Zhang, H. Su, J. Zhu, L. Ni, and H.-Y. Shum,
“DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object
Detection,” in International Conference on Learning Representations (ICLR),
2023.

[43] N. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, N. Shazeer, A. Ku, and
D. Tran, “Image Transformer,” in Proceedings of the 35th International Con-
ference on Machine Learning (ICML) (J. Dy and A. Krause, eds.), vol. 80 of
Proceedings of Machine Learning Research, pp. 4055–4064, PMLR, July 2018.

iv



[44] T.-Y. Ross and G. Dollár, “Focal loss for dense object detection,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2980–2988, 2017.

[45] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, “Microsoft coco: Common objects in context,” in Computer
Vision – ECCV 2014, pp. 740–755, Springer, 2014.

[46] D. Zheng, W. Dong, H. Hu, X. Chen, and Y. Wang, “Less is more: Focus
attention for efficient detr,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 6674–6683, 2023.

[47] E. Yu, T. Wang, Z. Li, Y. Zhang, X. Zhang, and W. Tao, “Motrv3:
Release-fetch supervision for end-to-end multi-object tracking,” arXiv preprint
arXiv:2305.14298, 2023.

[48] Y. Wang, Z. Xu, X. Wang, C. Shen, B. Cheng, H. Shen, and H. Xia,
“End-to-end video instance segmentation with transformers,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 8741–8750, 2021.

[49] Z. Ge, “Yolox: Exceeding yolo series in 2021,” arXiv preprint arXiv:2107.08430,
2021.

[50] Q. Chen, X. Chen, J. Wang, S. Zhang, K. Yao, H. Feng, J. Han, E. Ding,
G. Zeng, and J. Wang, “Group detr: Fast detr training with group-wise one-to-
many assignment,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 6633–6642, 2023.

[51] F. Yan, W. Luo, Y. Zhong, Y. Gan, and L. Ma, “Bridging the gap
between end-to-end and non-end-to-end multi-object tracking,” arXiv preprint
arXiv:2305.12724, 2023.

[52] Y. Zhang, T. Wang, and X. Zhang, “Motrv2: Bootstrapping end-to-end
multi-object tracking by pretrained object detectors,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 22056–22065, 2023.

[53] C. Xiao, Q. Cao, Y. Zhong, L. Lan, X. Zhang, Z. Luo, and D. Tao, “Mo-
tiontrack: Learning motion predictor for multiple object tracking,” Neural
Networks, vol. 179, p. 106539, 2024.

[54] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,”
Journal of Basic Engineering, vol. 82, pp. 35–45, Mar. 1960.

[55] “Implementation of dn-detr.” https://github.com/IDEA-Research/DN-DETR,
Nov. 2024. Accessed: 2024-11-23.

v



[56] T. Meinhardt, “Implementation of "TrackFormer: Multi-Object Tracking with
Transformers”.” https://github.com/timmeinhardt/trackformer, Nov. 2024.
Accessed: 2024-11-23.

[57] M. Contributors, “MMCV: OpenMMLab Computer Vision Foundation.”
https://github.com/open-mmlab/mmcv, 2018. Accessed: 2024-11-23.

[58] J. Luiten and A. Hoffhues, “TrackEval.” ht-
tps://github.com/JonathonLuiten/TrackEval, 2020. Accessed: 2024-11-23.

[59] I. Loshchilov, “Decoupled weight decay regularization,” arXiv preprint
arXiv:1711.05101, 2017.

[60] Q. Wang, J. He, Y. Chen, and Z. Zhang, “OneTrack: Demystifying the Con-
flict Between Detection and Tracking in End-to-End 3D Trackers,” in Com-
puter Vision – ECCV 2024 (A. Leonardis, E. Ricci, S. Roth, O. Russakovsky,
T. Sattler, and G. Varol, eds.), (Cham), pp. 387–404, Springer Nature Switzer-
land, 2025.

[61] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A Next-
Generation Hyperparameter Optimization Framework,” in The 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 2623–2631, 2019.

[62] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A ConvNet
for the 2020s,” Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2022.

[63] S. Shao, Z. Zhao, B. Li, T. Xiao, G. Yu, X. Zhang, and J. Sun, “CrowdHu-
man: A Benchmark for Detecting Human in a Crowd,” arXiv preprint
arXiv:1805.00123, 2018.

[64] Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, and
X. Wang, “ByteTrack: Multi-Object Tracking by Associating Every Detection
Box,” Proceedings of the European Conference on Computer Vision (ECCV),
2022.

[65] J. Cao, J. Pang, X. Weng, R. Khirodkar, and K. Kitani, “Observation-
centric sort: Rethinking sort for robust multi-object tracking,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 9686–9696, 2023.

[66] X. Han, N. Oishi, Y. Tian, E. Ucurum, R. Young, C. Chatwin, and P. Birch,
“ETTrack: Enhanced Temporal Motion Predictor for Multi-Object Tracking,”
arXiv preprint arXiv:2405.15755, 2024.

[67] X. Li, W. Wang, L. Wu, S. Chen, X. Hu, J. Li, J. Tang, and J. Yang, “Gener-
alized focal loss: Learning qualified and distributed bounding boxes for dense

vi



object detection,” Advances in Neural Information Processing Systems, vol. 33,
pp. 21002–21012, 2020.

[68] Y. Zhao, W. Lv, S. Xu, J. Wei, G. Wang, Q. Dang, Y. Liu, and J. Chen, “DE-
TRs Beat YOLOs on Real-time Object Detection,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), (Seattle, WA, USA),
pp. 16965–16974, IEEE, June 2024.

[69] Y. Peng, H. Li, P. Wu, Y. Zhang, X. Sun, and F. Wu, “D-FINE: Redefine
Regression Task in DETRs as Fine-grained Distribution Refinement,” Oct.
2024. arXiv:2410.13842.

[70] “Reproducibility — PyTorch 2.5 documentation.” ht-
tps://pytorch.org/docs/stable/notes/randomness.html, Dec. 2024. Accessed:
2024-12-11.

[71] “API Reference guide for cuBLAS.” https://docs.nvidia.com/cuda/cublas/index.html,
Dec. 2024. Accessed: 2024-12-11.

vii





A Reproducibility of Results

In order to ensure the reproducibility of the results, the code illustrated in List-
ing A.1 is employed before the training starts.

# Reproducibility

# fix seeds

seed = args.seed

os.environ[’PYTHONHASHSEED’] = str(seed)

np.random.seed(seed)

random.seed(seed)

torch.manual_seed(seed)

torch.cuda.manual_seed(seed)

# set environment variable for CuBLAS

os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"

# use only deterministic algorithms or print warning of not possible

torch.backends.cudnn.deterministic = True

torch.use_deterministic_algorithms(True, warn_only=True)

# forces cuDNN to deterministically select an algorithm

torch.backends.cudnn.benchmark = False

# preserve reproducibility for multi−process data loading
def seed_worker(worker_id):

worker_seed = torch.initial_seed() % 2∗∗32
np.random.seed(worker_seed)

random.seed(worker_seed)

g = torch.Generator()

g.manual_seed(seed)

Listing A.1: Necessary settings for reproducibility.

The initial block serves to fix the seeds of the various packages. Given that the
weights are initialized randomly and the augmentations are selected randomly, it
is necessary to utilize a fixed seed [70]. Subsequently, the CUDA-specific settings
are configured. It is necessary to set a CuBLAS environment variable, as the
multi-stream execution introduces non-deterministic behavior [71]. In instances

ix



A Reproducibility of Results

where PyTorch and CUDA have accelerated, non-deterministic implementations of
certain functions, it is essential to ensure that only deterministic algorithms are
employed. Additionally, CUDA selects optimal algorithms based on the hardware,
which can result in non-deterministic behavior [70].

x



B Hyperparameters

Table B.1: Overview of hyperparameters used for each dataset.

Datasets

Parameter MOT17 SportsMOT

Learning rate 5 · 10−5 5 · 10−5 5 · 10−5

Learning rate (backbone) 5 · 10−6 5 · 10−6 5 · 10−6

Batch size 1 1 1
Accumulation steps 8 8 8
Epochs 50 20 28
Learning rate drop epoch 40 10 18
Learning rate drop decay 0.1 0.1 0.1

FFN dimension 2048 2048 2048
Feature dimension 256 256 256
Dropout 0 0 0
Number of object queries 300 300 300

λclass 2 2 2
λbox 5 5 5
λgiou 2 2 2
λpred 50 50 50

Denoising groups 5 5 5
Bounding box noise scale 0.1 0.1 0.1
Label noise scale 1 1 1
Category noise range 20 20 20

Noise queue length 1000 1000 1000
Trajectory false negative probability 0.1 0.1 0.1
Memory length 10 10 10

Previous frame range [-5, 5] [-5, 5] [-5, 5]
Track false positive probability 0.1 0.1 0.1
Track false negative probability 0.1 0.1 0.1

τdet 0.65 0.85 0.65
τtrack 0.4 0.4 0.4
τreid 0.4 0.6 0.4
Treid 20 17 20
τNMS,det 0.9 0.9 0.9

xi



C Extended Results

xii



T
ab

le
C

.1
:

R
es

u
lt

s
p
er

se
qu

en
ce

on
M

O
T

17
te

st
.

M
et

ri
cs

S
eq

u
en

ce
H

O
T
A

D
et

A
D

et
R

e
D

et
P
r

A
ss

A
A

ss
R

e
A

ss
P
r

L
o
cA

M
O

T
A

M
O

T
P

ID
F
1

ID
P

ID
R

T
P

F
P

F
N

R
cl

l
P
rc

n
ID

S
W

M
O

T
17

-0
1

43
.5

43
.6

54
.8

59
.7

44
48

.5
72

.1
79

.5
47

.3
76

.1
51

.9
54

.2
49

.8
45

11
14

16
19

39
69

.9
76

.1
46

M
O

T
17

-0
3

65
.4

70
.3

75
.8

78
.9

61
.2

66
.3

78
.2

82
.5

88
.4

80
79

.7
81

.4
78

.1
96

57
5

39
35

81
00

92
.3

96
.1

11
4

M
O

T
17

-0
6

50
.4

52
.9

60
73

.1
48

.3
60

.6
65

.5
83

.2
60

.9
80

.8
61

.7
68

.5
56

.2
85

02
11

72
32

82
72

.2
87

.9
15

9
M

O
T

17
-0

7
43

.4
50

.7
56

.4
72

.3
37

.8
41

.1
71

.3
81

60
.2

78
.3

51
58

.2
45

.4
11

74
2

14
28

51
51

69
.5

89
.2

14
8

M
O

T
17

-0
8

39
.4

39
.6

42
.1

77
.8

39
.9

43
.9

73
.9

83
.1

45
.6

80
.8

44
.4

63
.3

34
.2

10
61

7
81

1
10

50
7

50
.3

92
.9

18
3

M
O

T
17

-1
2

53
.6

49
.7

55
.9

73
.9

58
.1

62
.4

81
.3

83
.9

57
81

.6
65

.2
75

.7
57

.2
57

65
78

8
29

02
66

.5
88

39
M

O
T

17
-1

4
37

.2
38

.1
43

.6
65

.6
36

.8
41

.4
67

80
41

.9
77

48
.1

60
.2

40
.1

10
11

8
21

80
83

65
54

.7
82

.3
19

9

T
ot

al
56

.5
58

.7
64

.4
76

55
60

.2
76

.1
82

.3
71

.9
79

.7
68

.4
74

.5
63

.2
44

34
90

35
19

0
12

07
38

78
.6

92
.7

26
64

xiii



C Extended Results

T
ab

le
C

.2:
R

esu
lts

p
er

sequ
en

ce
on

D
an

ceT
rack

test.
M

etrics

S
eq

u
en

ce
H

O
T
A

D
etA

A
ssA

D
etR

e
D

etP
r

A
ssR

e
A

ssP
r

L
o
cA

M
O

T
A

M
O

T
P

M
O

D
A

ID
S
W

ID
F
1

ID
R

ID
P

ID
T

P
ID

F
N

ID
F
P

d
an

cetrack
0003

69.2
80.3

59.7
83.6

92.2
64.1

83.3
91.4

90.1
90.6

90.4
32.0

73.6
70.2

77.5
9499.0

4034.0
2764.0

d
an

cetrack
0009

38.7
75.2

20.0
79.9

86.8
22.5

68.0
88.0

88.9
86.7

89.7
79.0

35.7
34.3

37.3
3214.0

6166.0
5412.0

d
an

cetrack
0011

62.4
89.5

43.5
92.5

94.8
44.2

93.1
93.7

96.2
93.3

96.5
19.0

55.2
54.5

55.9
3646.0

3043.0
2875.0

d
an

cetrack
0013

50.0
86.5

28.9
89.5

95.4
31.6

86.4
94.5

92.7
94.4

93.2
20.0

47.1
45.6

48.6
1960.0

2334.0
2071.0

d
an

cetrack
0017

70.1
90.6

54.3
93.3

95.8
58.4

86.0
94.4

96.1
93.9

96.2
18.0

68.5
67.6

69.4
7466.0

3575.0
3293.0

d
an

cetrack
0021

62.3
83.8

46.4
87.3

90.7
49.9

82.5
90.5

95.5
89.8

95.8
21.0

63.2
62.0

64.5
5160.0

3157.0
2842.0

d
an

cetrack
0022

51.6
81.2

32.8
89.7

87.1
39.3

71.3
91.2

93.0
89.7

93.5
30.0

48.9
49.6

48.2
2949.0

2996.0
3173.0

d
an

cetrack
0028

39.1
75.1

20.4
79.2

87.2
24.2

62.3
87.9

88.4
86.5

89.2
85.0

38.6
36.9

40.6
4061.0

6958.0
5947.0

d
an

cetrack
0031

58.7
80.3

43.0
84.9

91.7
50.6

67.9
92.3

88.9
91.8

89.4
48.0

59.2
57.0

61.5
5598.0

4227.0
3500.0

d
an

cetrack
0036

47.2
82.3

27.1
87.0

91.4
31.5

76.4
92.0

90.6
90.8

91.1
43.0

45.6
44.5

46.8
4028.0

5015.0
4580.0

d
an

cetrack
0038

84.8
93.2

77.2
94.8

97.3
78.2

96.8
94.9

97.1
94.7

97.3
10.0

88.5
87.4

89.7
5084.0

734.0
584.0

d
an

cetrack
0040

91.6
93.9

89.3
96.3

96.4
91.4

96.4
94.6

99.8
94.2

99.8
3.0

95.5
95.5

95.6
11027.0

520.0
512.0

d
an

cetrack
0042

43.6
69.9

27.2
74.1

84.5
30.7

66.1
85.9

86.1
83.6

86.9
50.0

44.6
41.8

47.7
2945.0

4093.0
3226.0

d
an

cetrack
0046

42.3
63.8

28.1
68.4

80.2
32.7

64.9
83.3

77.6
81.0

78.4
123.0

50.7
47.0

55.1
7639.0

8614.0
6228.0

d
an

cetrack
0048

60.0
85.7

42.0
90.1

91.8
47.2

78.2
91.9

94.6
91.0

95.0
28.0

61.7
61.1

62.2
4670.0

2971.0
2833.0

d
an

cetrack
0050

48.0
74.3

31.1
78.1

87.8
35.5

71.9
88.2

86.9
86.5

87.4
47.0

49.3
46.6

52.4
4947.0

5680.0
4502.0

d
an

cetrack
0054

77.9
93.1

65.2
95.9

96.0
71.4

82.2
94.3

98.6
94.0

98.7
5.0

79.9
79.8

79.9
3365.0

850.0
844.0

d
an

cetrack
0056

71.2
90.3

56.2
93.7

93.5
63.3

73.5
92.4

98.8
91.7

98.9
5.0

69.7
69.7

69.6
4185.0

1816.0
1824.0

d
an

cetrack
0059

62.4
83.1

46.8
89.6

90.3
52.6

79.3
92.1

97.0
91.4

97.3
15.0

63.8
63.5

64.1
4016.0

2304.0
2254.0

d
an

cetrack
0060

82.6
90.4

75.5
93.3

94.0
77.3

94.7
93.0

97.5
92.5

97.6
5.0

86.1
85.8

86.4
3972.0

660.0
627.0

d
an

cetrack
0064

72.2
88.6

58.9
92.8

92.9
63.5

85.0
92.5

99.1
92.2

99.2
13.0

78.3
78.3

78.4
5870.0

1628.0
1617.0

d
an

cetrack
0067

84.6
91.8

77.9
94.9

94.8
81.0

92.7
93.4

99.2
92.7

99.3
4.0

87.5
87.5

87.5
5393.0

771.0
772.0

d
an

cetrack
0070

71.2
84.1

60.3
88.8

91.7
63.5

88.9
91.9

95.0
92.1

95.2
24.0

72.9
71.7

74.1
8231.0

3247.0
2874.0

d
an

cetrack
0071

92.2
93.9

90.6
95.9

97.3
92.2

97.5
95.5

98.4
95.1

98.5
3.0

96.8
96.1

97.5
2897.0

118.0
74.0

d
an

cetrack
0076

56.4
79.0

40.4
84.6

88.0
45.2

77.2
89.7

90.8
88.1

91.1
25.0

54.5
53.4

55.6
3762.0

3281.0
3003.0

d
an

cetrack
0078

82.3
92.2

73.5
94.3

96.5
76.9

91.4
94.4

97.6
93.8

97.7
7.0

84.9
84.0

85.9
6060.0

1158.0
997.0

d
an

cetrack
0084

63.9
85.3

47.9
89.1

91.7
52.4

80.0
91.3

95.1
90.4

95.4
49.0

67.5
66.5

68.4
10904.0

5491.0
5033.0

d
an

cetrack
0085

38.4
63.8

23.3
68.6

83.0
26.4

65.8
86.0

75.9
84.2

76.8
150.0

40.2
36.7

44.5
5945.0

10241.0
7418.0

d
an

cetrack
0088

65.0
76.7

55.2
80.7

91.9
58.1

90.4
92.1

83.4
91.5

83.9
32.0

72.8
68.4

77.9
3981.0

1843.0
1129.0

d
an

cetrack
0089

60.4
77.6

47.2
83.8

89.1
52.0

81.7
91.8

83.7
91.1

84.3
42.0

63.6
61.8

65.6
4131.0

2557.0
2164.0

d
an

cetrack
0091

63.2
83.7

47.7
87.1

94.3
49.8

84.0
93.7

90.6
92.7

91.2
27.0

61.3
59.0

63.9
2737.0

1901.0
1548.0

d
an

cetrack
0092

51.7
89.1

30.0
91.8

96.1
33.4

81.8
95.0

94.3
94.5

94.6
25.0

43.3
42.3

44.3
3436.0

4687.0
4322.0

d
an

cetrack
0093

56.5
76.9

41.6
82.3

89.7
46.5

79.1
91.5

84.1
90.5

84.7
42.0

57.7
55.3

60.3
4100.0

3317.0
2703.0

d
an

cetrack
0095

49.1
58.8

41.1
62.3

87.0
48.1

69.5
88.9

66.7
87.3

67.8
78.0

58.7
50.3

70.3
3527.0

3481.0
1489.0

d
an

cetrack
0100

49.1
72.4

33.4
75.8

91.3
36.4

76.8
91.2

81.2
89.4

81.9
37.0

50.3
46.0

55.5
2436.0

2857.0
1955.0

T
otal

61.6
80.3

47.5
84.8

90.8
51.6

80.5
91.2

90.3
90.2

90.7
1244.0

61.8
59.8

64.1
172841.0

116325.0
96989.0

xiv



D Visualization

a) MOT17: Sequence MOT-17-01

b) DanceTrack: Sequence dancetrack003

c) SportsMOT: Sequence v_-9kabh1K8UA_c008

Figure D.1: Visualization of the predictions on MOT17, DanceTrack and
SportsMOT test sets.

xv




	Title
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Introduction
	Related Works
	Multiple Object Tracking
	Convolutional Neural Networks
	Transformers
	Detection Transformer Models
	End-to-End Multi Object Tracking

	Methods
	Mixed-Query Selection
	Denoising
	Trajectory Prediction Module
	Losses

	Experiments
	Datasets
	Metrics
	Implementation Details

	Results
	High-Resolution Tests
	Ablation Study
	Training Time and Memory Requirement

	Discussion
	Bibliography
	Reproducibility of Results
	Hyperparameters
	Extended Results
	Visualization

