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Abstract

In this thesis, our task was to design, im-
plement and evaluate an algorithm for
the safe crossing of public roads with a
middle-size mobile robot.

The first part of this task is to conclude
whether it is safe to cross the road in
the robot’s current location. If it is, the
second part of the task is developing a
control algorithm to perform the move-
ment needed to cross the road. Continu-
ous monitoring of the traffic situation is
necessary for the safety of the maneuver.
We are also to provide evaluation metric
for determining the functionality and opti-
mality of developed algorithms. The veri-
fication and evaluation of the developed
algorithm will be conducted in simulation
and controlled real-world experiment.
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operation, behavior trees, collision
avoidance, collision detection, finite-state
machines, road crossing, ROS
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Abstrakt

V této praci je nasim tkolem navrhnout,
implementovat a vyhodnotit algoritmus
pro bezpecény prejezd silnic s mobilnim
robotem stiedni velikosti.

Prvni ¢ast tkolu je zjistit, zda je bezpecné
prejit silnici v misté, kde se robot pravé na-
chézi. Pokud ano, tak druhou ¢asti ukolu
je navrzeni algoritmu pro rizeni pohybu
potiebného k prejeti silnice. Pro bezpec-
nost manévru je nutné provadét kontinu-
alni monitorovani dopravni situace.

V neposledni fadé je tfeba navrhnout me-
triku pro vyhodnoceni funkcénosti a opti-
malnosti vyvinutych algoritmi. Verifikaci
a vyhodnoceni vyvinutého algoritmu pro-
vedeme nejprve v simulaci a nasledné i
v kontrolovaném experimentu v realném
sveté.

Klicova slova: Autonomni operace
robota, detekce kolizi, konecné stavové
automaty, prejizdéni silnic, ROS,
rozhodovaci stromy, vyhybani se kolizim

Preklad nazvu: Autonomni prejezd
silnice mobilnim robotem
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Introduction

In today’s world, mobile robots are increasingly being utilized in a variety of
applications. In many of these applications, the robots must cross roads to achieve
their goals, making it essential to design an algorithm that enables the robot to
cross the road safely.

The algorithm should be able to determine whether the current place is suitable
for crossing. The algorithm will accept contextual inputs such as expected vehicle
velocity, road type, number of lanes, and the presence of a pedestrian crossing with
or without traffic lights. These data will be used to assess the current situation
and determine whether it is safe to cross the road. If it is, it should facilitate
the crossing itself. If the location is not suitable, the algorithm should provide a
reason and suggest a more appropriate location nearby. The algorithm must also
be designed to operate on different robots with various sensor configurations and
on all roads without any additional limitations.

This thesis aims to provide a theoretical background to the problem and explore
possible solutions, this is done in chapter 1. In chapter 2, we will present the
hardware and software used for real-world and simulation experiments. In chapters
3 and 4, we will discuss our chosen approach and its functionality and present the
algorithms we developed and implemented. Chapters 5 and 6 will explain and
evaluate the results of our experiments and discuss their significance. And chapter
7 is dedicated to the comparison of our work to other works in the field of the
autonomous road crossing.

Our work also depends on the output of other projects, such as vehicle detection
and localization or path planning. We cannot rely on these projects to be com-
pleted or entirely functional. Therefore, we need a way to simulate and test our
algorithm without them.

In simulation experiments, we will inject data directly into our algorithm. For
real-world experiments, we will try to use the outcomes of the projects mentioned
earlier. However, we can inject data directly into our algorithm, provided the
projects are not finished or functional.



. Used abbreviations

® AT — Artificial Intelligence

® API - Application Programming Interface
® BT - Behavior Tree

® CRAS — Center for Robotics and Autonomous Systems
® ENU - East-North-Up

® FSM — Finite State Machine

® GINSS — Global Navigation Satellite System
# GPS - Global Positioning System

® GUI - Graphical User Interface

® HFSM - Hierarchical Finite State Machine
# IMU - Inertial Measurement Unit

® LiDAR - Laser imagining Detection and Ranging
® NED - North-East-Down

® NPC - Non-Player Character

® OSM - Open Street Map

®# REP - ROS Enhancement Proposals

® RL — Reinforcement Learning

® ROS - Robot Operating System

® TPI — Terrain Profile Index

# UTM - Universal Transverse Mercator

B WGS84 — World Geodetic System 1984

® ZABAGED - Zékladni baze geografickych dat (Basic database of geographic
data)



Chapter 1

Theoretical background

. 1.1 Behavior trees

A behavior tree (BT) is a way to structure algorithms — the switching between
individual tasks in an autonomous agent. It was created to express behavior
patterns for NPCs (non-player characters) in computer games. Since then, it has
found many more applications, and nowadays, it is also widely used in robotics
and Al applications.

BTs, as the name suggests, are tree-like structures where each node represents
an action, a condition, a control, or a decorator node. Action and control nodes
are leaves of the tree structure. Control nodes are used to control and modify
the flow of the tree. Examples of these nodes are Sequence, fallback, or repeat.
Decorator nodes are used to modify the return values, thus modifying the behavior
of its children. Examples of these nodes are force-success, force-failure, or
inverter.

The execution of a BT commences at the root node and then progressively traverses
the tree structure in a depth-first fashion ticking its nodes. The nodes’ ticking,
also known as polling, is periodically repeated. Each node, once ticked, begins its
execution process, and once finished, it returns a status. This status can be either
SUCCESS, FAILURE, or RUNNING. The action and control nodes are responsible for
determining and returning these states. The control nodes alter the tree’s flow
and tick handling based on its children’s return states. Decorator nodes modify
the return states of their children. The return states of some nodes are shown in
table 1.1.

Node type | SUCCESS | FAILURE [ RUNNING

Action Action succeeds Unable to complete During completion
Condition | Condition is true Condition is false NA

Sequence | All children succeed | One child fails One child running
Fallback | One child succeeds | All children fail One child running
Parallel | N children succeed | < N children succeed | Children running
Repeat Child succeeds Child fails x times Child running

Table 1.1: Return states of some nodes.



1. Theoretical background

The first chapter in [1] provides a more thorough explanation of the behavior
trees.

B 1.1.1 Commonly used nodes

Here we will present the most commonly used nodes and their functionality.

Sequence — Control node that ticks its children one at a time in a predefined
order. If one of the children were to return FAILURE, the ticking of other children
is stopped, and the Sequence node returns FAILURE. The same happens if one of
the children returns RUNNING. If all children return SUCCESS the sequence node
returns SUCCESS.

Fallback — Also known as Selector is a control node that ticks its children
one at a time in a predefined order. If one of the children were to return SUCCESS,
the ticking of other children is stopped, and the fallback node returns SUCCESS.
The same happens if one of the children returns RUNNING. If all children return
FAILURE the fallback node returns FAILURE.

Parallel — Control node that allows multiple actions to run concurrently. It
returns SUCCESS if NV or more children return SUCCESS and FAILURE if less than
N children return SUCCESS. If all children return RUNNING the parallel node
returns RUNNING.

Repeat — Control node that ticks its child a specified number of times or until
the child returns SUCCESS, whichever comes first. If the child returns RUNNING,
the repeat node returns RUNNING. If the child does not return SUCCESS before
the number of repetition is reached the repeat node returns FAILURE.

Inverter — Decorator node that inverts the return state of its child. If the
child returns SUCCESS, the inverter node returns FAILURE and vice versa. If the
child returns RUNNING the inverter node returns RUNNING.

Force-success — Decorator node that returns SUCCESS regardless of the return
state of its child.

Force-failure — Decorator node that returns FAILURE regardless of the return
state of its child.

B 1.1.2 Graphical representation of BTs

We will represent the BTs in this work in the following way. Action nodes will
be rectangular with the name of the action written inside. Control nodes will be
elliptical with the name of the condition written inside. Control and decorator
nodes will be rectangular with a corresponding symbol inside. The symbols are
shown in table 1.2.

If the BT has a sub-tree in its structure, we will represent it as a diamond-shaped

4



1.1. Behavior trees

node with the sub-tree’s name written inside.

Node type Description Symbol
Root The root of the tree Root
Sequence Ticks its children if the return is SUCCESS —
Fallback Ticks its children if the return is FAILURE ?
Parallel Allows multiple actions to run concurrently =
Repeat Repeats the child node z times o(x)
ForceSuccess | Allways returns SUCCESS v
ForceFailure | Allways returns FAILURE X
Inverter Inverts the return value of its child %

Table 1.2: Symbols used for control and decorator nodes in BTs.

B 1.1.3 BT example

We will present a simple example demonstrating the BTs structure and design
principles.

The example BT is shown in figure 1.1. This BT was created in the algorithm
design’s beginning phase, and its modified version will be presented later as it is
used in the final implementation. The goal of this sub-tree was to position the
robot so that it would cross the road as fast as possible, meaning we want the
robot to stand perpendicular to the road.

Root
Y
%
GetAzimuth Heading o(10)

N

RobotPerpendicular X

Figure 1.1: BT example.

We start in the root node and continue straight to the Sequence node. From
there, we go to the action node GetAzimuth, which gives us the current heading of
the robot. If the execution of the GetAzimuth node is successful, we continue to
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the Heading sub-tree node. This sub-tree aims to calculate the heading the robot
needs to achieve in order to be perpendicular. If the execution of the sub-tree is
successful, we continue to the Repeat node. This node will repeat its children
ten times (or less if success is achieved sooner). The first child we will tick is a
Fallback node, with its first child being a condition node RobotPerpendicular.
The condition node return value states whether or not the robot is already
perpendicular to the road, we mean to cross. If we are not yet perpendicular, we
continue. The next node we tick is a Force-Failure node with a sub-tree node as
its child. The sub-tree is responsible for rotating the robot to the desired heading.

B 1.1.4 Other used BT nodes

Here we will present other BT nodes. These nodes are an expansion of the common
ones and are implementation specific.

SequenceStar (—*) — Also know as SequenceWithMemory, a control node that
functions in the same way as Sequence. The only difference is that this node does
not repeat children that returned SUCCESS until all children have. Meaning until
the SequenceStar node returns SUCCESS, it will tick only the children that have
not succeeded yet.

ReturnSuccess — A leaf node that returns SUCCESS once ticked. We will repre-
sent this node as an ellipse with a checkmark character (v') inside.

ReturnFailure — A leaf node that returns FAILURE once ticked. We will represent
this node as an ellipse with a cross character (x) inside.

B 1.1.5 Common BT structures

Common programming principles can explain some BT structures. We will present
a few of these structures that we have used in our BT structure.

If-else

The if-else structure starts with a Fallback node, and the first child a Sequence
node with its first child a condition node and second child an action node, ticked
if the condition is true. The second child of the Fallback node is also an action
node that is performed if the condition is false.

The structure is shown in figure 1.2a.

Condition-action

We could also name this structure as if not.

The condition-action structure starts with a Fallback node. Its first child is a
condition node, and its second is an action node. The idea behind this structure is
to check if an action has been performed, and if it has not, we want to perform it.
The structure is shown in figure 1.2b.
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— Action2 \
@ Actionl (b) : The condition-action structure.

(a) : The if-else structure.

Figure 1.2: The common structures used in the creation of BTs.

. 1.2 Finite-state machines

Finite-state machines (FSM) are a mathematical model of computation. They are
used to model the behavior of a system in a finite number of predefined states.
The system can be in only one state at a time. In each state, a computation or
an action is performed. The change of a state is possible only via predetermined
transitions triggered by a condition.

FSMs are a common method of describing and solving high-level sequential control
problems. They are used in many fields, such as robotics, computer science,
electrical engineering, etc.

FSM offers a very effective method in the implementation of complex robot
behavior in comparison to monolithic programming.[2] Moreover, the learning
curve for using FSM is minor; it is quite likely the reader already knows about
FSMs from math or logic courses. Secondly, the integration itself is almost
painless, especially when one takes the FSM into account from the early stages of
the design.[3]

However, the FSMs are unsuitable for large and complex systems as they tend
to become unmanageable and difficult to extend and reuse. The unsuitability
becomes more evident for a fully reactive system, where each state must be able
to transition to any other state. Such a condition imposes the FSM to become a
fully connected graph (O(n?)). Maintaining and modifying such a graph is quite
a labor-intensive and error-prone task.

FSMs are also unsuitable for systems requiring a high degree of autonomy. The
FSMs are not able to learn and adapt to the changing environment.

The formal definition of an FSM and several examples can be found in [3].

B 1.2.1 FSM example

Here we will show the FSM for the example BT (figure 1.1) from the previous
section.
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Root Heading

Perpendicular

Rotate

Figure 1.3: FSM for the example BT.

This is not a typical representation of an FSM. It is a one-to-one rewrite of the
BT example. If we were to develop the algorithm using FSMs, the FSM would
look different. BTs and FSMs require different mindsets and design principles,
and while they may be transformed from one to the other, it usually results in a
nonoptimal structure.

. 1.3 Hierarchical FSMs

Hierarchical state machines (HFSM), also known as statecharts, were developed
to alleviate the cumbersome transition duplication required in large FSMs and
add structure to aid comprehension of complex systems. It clusters states into
a group (named superstate) where all the underlying internal states (substates)
implicitly share the same superstate.[4]

While the HFSM solves the problem of transition duplication, it does not solve
the complexity problem. The HFSM is still a fully connected graph unsuitable for
large and complex systems.

B4 Comparison and chosen approach

We can use several design approaches to solve the task of crossing a street. We
will briefly present them and state a few advantages and disadvantages of each
one. We will mainly use the information and insights from [1].

8



1.4. Comparison and chosen approach

Monolithic approach

We can use a monolithic approach, where we write a single program that will
handle all the tasks.

This approach is the most straightforward and easiest to implement but is not
very flexible. It would be complicated to modify or extend the abilities of our
program to the point where we would be forced to rewrite it in its entirety. This
approach also generates a design that is not easily readable, and it would be
almost impossible to find and correct bugs and glitches.

For all those reasons, the monolithic approach is unsuitable for anything other
than elementary systems, and we will not use it for our solution.

FSM approach

The second approach is to use an FSM. More specificallyy, HFSM as it is an
improvement over FSM and addresses a few of the FSM issues.

The advantages of HFSMs are that the structure is intuitive and generally easy to
understand. Being common in many parts of computer science and used for quite
some time, they are also easy to implement. FSMs also offer good flexibility and
maintainability for many problems.

The main disadvantage of HFSMs is that the flexibility is limited to certain areas
of use and systems with limited scale. It is impossible to add new states or
transitions in complex systems easily.

The scalability of FSMs is also a problem. With rising demands on agent Al
complexity, game programmers found that the FSMs that they used scaled poorly
and were difficult to extend, adapt and reuse.|[5]

The FSM’s poor scalability makes this approach unsuitable for our solution.

BT approach

The third approach is to design the algorithm in the form of a BT.

The advantages of this approach are its modularity, reusability, reactivity, read-
ability, and scalability. Modularity is closely linked with reusability. The design
principles of BTs allow us to decompose the algorithm into sub-trees which may
be implemented and tested separately. Decomposition also allows us to tackle
large complex systems with relative ease. The BTs are reactive in the sense that
they can react quickly and effectively to the changing environment. Even though
they require a different design approach than FSMs, they provide a coherent and
compact structure that is easy to understand and maintain.

The main disadvantage of BTs is that they are not very common in the industry
and are not as well known as FSMs. For this reason, the tools and libraries are not
as numerous or mature as those available for FSMs. As mentioned earlier, they
are different from FSMs and, as such, require a different approach to designing an
optimal solution.

Chosen approach

The approach we have chosen to use in this thesis is the BT approach. We have
chosen it for many reasons, mainly its scalability, readability, and maintainability
of large complex systems. The BTs are also very flexible and can be easily extended
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and modified. The supervisor also suggested the use of the BT approach.

B 15 Maps and orientation

We will use the maps from the OpenStreetMap (OSM) project!. The maps will be
used to determine the surroundings of the robot and whether the current position
is suitable for crossing.

OSM is a project that creates and distributes free geographic data. The data is
created by the community of users and is available for anyone to use.[6]

The map data are expressed by a node, a way, or a relation. A node is a singular
point in a map, it could be a landmark, a corner of a building, or a spot on the
road. A way is an object created from multiple nodes. It can be either closed or
open. Closed ways may represent a park, building, or other types of areas. Open
ways commonly represent roads, rivers, or other linear features. The relation is a
collection of nodes, ways, or other relations. It is used to describe more complex
objects, such as a bus line, a building complex, etc.

We must also clarify the terminology we will use regarding azimuth and heading.
An azimuth is a bearing, more precisely, a compass bearing from a specific point
of observation like a radar station. A heading (in the general case of moving
"forward") is the direction your nose is pointed in.

This description is taken from [7]. For us, the most important distinction is that
while azimuth is obtained from the magnetometer, the heading is calculated from
two consecutive GPS coordinates. We also assume that the azimuth is absolute
while the heading might be relative. In figure 1.4, we can see the difference between
the two. The (¢, is absolute heading, while @2 is heading relative to the azimuth
3 of the robot. The azimuth and headings are shown for the ENU orientation.

Figure 1.4: Difference between azimuth and heading.

"https://www.openstreetmap.org
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Chapter 2

Used hardware and software

. 2.1 Software

All programming work in this thesis is aimed to work with the Robot Operating
System (ROS) [8]. More specifically, we will use ROS1 in version Noetic Ninjemys!.
The list of all used libraries with versions is in Appendix B.

Programming languages

The majority of implementation work will be done in a C++ programming language.
The version of C++ standard used is C++14, as it is the default for the ROS version
we use.

The C++ language was chosen for its speed and efficiency. It was also chosen for
compatibility with some of the libraries we need to use for our project.

The second programming language we will use is Python in versions 3.8 and 2.7.
Python was chosen for its simplicity and ease of use, as well as for integrating our
previous work in OSM data processing.

BT library

There are a few possibilities regarding the BT library we can use for our solution.
As BTs are not very commonly used in robotics, the choice is more limited than if
we were to use an FSM. Another limiting factor we imposed is support or direct
integration with ROS.

We still have a few options, and we can even choose a programming language in
which to implement the BT nodes. The two programming languages with the
most library options are C++ and Python. This copies the ROS mentality, where
these two languages are natively supported. Several available BT libraries are
discussed here [9].

We have decided to use a C++ behaviortree-cpp-v3 library. The choice was made
for multiple reasons. This library was written with deployment in ROS in mind.
Moreover, it is regularly updated and maintained, making it a safe choice for us.
It also comes with documentation that will be helpful during the implementation
process. There are two versions of the documentation [10] and [11]. We will mainly
use the newer one (the second mentioned), but we will cross-reference it with the

"http://wiki.ros.org/noetic
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2. Used hardware and software

older one.

Another benefit of this implementation is that it comes with a GUI application
for creating BTs called Groot?. This application creates an .xml file with the BT
structure we can import into our code later.

Libraries for OSM and work with geographical data

There are a lot of libraries to choose from when it comes to working with OSM
data. These libraries are created for different programming languages and have
different features.

Even though the majority of our work was written in C++, we were building on
top of previous work of assigning costs to road segments in OSM data. This work
was done during the 2022 summer as a part of the RobInGas project here at the
CTU under the Center for Robotics and Autonomous Systems (CRAS?) group.
The work was done in Python, and the library used was the overpy library. This
library is used to access the OSM Overpass API and download the map data.
The Overpass API (formerly known as OSM Server Side Scripting) is a read-only
API that serves up custom selected parts of the OSM map data. The difference
between the main API is that the Overpass API is optimized for small to large
consumers (up to roughly 10 million elements). Many services and applications
use it as a database backend.[12]

Other libraries used for work with the OSM data were shapely and numpy. These
libraries were used to classify and assign costs to individual road segments in the
downloaded OSM data.

In our work, we also need to convert the coordinates of the robot from the GPS
coordinate system to the UTM coordinate system. The conversion is done using
the GeographicLib library in C++ and utm in Python.

B 2.2 Hardware for real-world experiments

B 2.2.1 Robots

In this section, we will present the robots available for use in the real-world
experiments. We have two robotic platforms available for us: Husky and Spot.

Husky

Husky is a medium all-terrain robot developed by Clearpath Robotics. It is a
four-wheeled robot with a payload capacity of 75 kg. The weight of this robot
without the payload is 50 kg, and its maximal speed is 1 ms~!. This robot is
mainly used outside of urban areas. The photo of the Husky in the configuration
we use is shown in figure 2.1a.

More information about the Husky platform is available at the Clearpath Robotics
website?.

*https://github.com/BehaviorTree/Groot
Shttps://robotics.fel.cvut.cz/cras
‘https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
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2.2. Hardware for real-world experiments

Spot

The Spot is a medium all-terrain robot developed by Boston Dynamics. It is
a four-legged robot with a payload capacity of 14 kg. The weight of this robot
without the payload is 33 kg, and its maximal speed is 1.6 ms~!. This robot is
designed to be mainly used in urban and industrial areas. The photo of the Spot
robot with our payload is shown in figure 2.1b.

More information is available at the Boston Dynamics website®.

(a) : The Husky robot configuration. (b) : The Spot robot configuration.

Figure 2.1: Robots available for real-world experiments.
The photos are courtesy of CRAS at FEE CTU.

B 22.2 Sensors

The capabilities of our robots are highly dependent on the sensors we attach to
them. Without them, the possibilities and options for missions are minimal. In
our work, we will use some sensors directly and some indirectly. The indirect
usage of sensors is connected with dependencies on other projects. One notable
example is the detection of vehicles and other obstacles. This detection is not
in the scope of our work but is instrumental to its success. The design of the al-
gorithm was done in a way to not be reliant on a specific sensor for vehicle detection.

Magnetometer

This is one of the sensors we use directly. We use it to determine the azimuth of
our robot and help it position itself perpendicular to the road it will try to cross.
We say that the sensor is used directly. However, the transformation of the IMU
magnetometer data into the azimuth was not implemented as a part of this work.

Camera

Our robots are fitted with cameras pointing forward, backward, left, right, and up.
This sensor is mostly used to determine the classification of obstacles rather than
detecting the obstacles themselves. As this sensor is not vital to the functionality
of our algorithm, we will not discuss them further.

Shttps://www.bostondynamics.com/sites/default/files/inline-files/
spot-specifications.pdf
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2. Used hardware and software

The cameras on our robots are Gigkl Basler ace2 PRO.

LiDAR

LiDAR is another essential sensor installed on our robots. It is responsible for
detecting approaching vehicles and providing information such as their speed,
position vectors, and other relevant parameters. The data generated by LiDAR
plays a critical role in our algorithm, as we expect the processed data to serve as
the primary condition for determining the velocities during the crossing.

More detailed information on the scanning mechanisms and function of LiDARs
can be found in [13].

The LiDARs used on our robots are Ouster OS0-128.

GNSS

All robots also have a GPS sensor. We use this sensor for precise localization of
the robots in the global coordinate system.

The GPS sensors we use are Emlid Reach M+.

. 2.3 Simulation environment

We will simulate the behavior of our robot in the Gazebo Classic simulator®.
Gazebo is a 3D simulator for robots. Its biggest advantage is its direct integration
with ROS. This means that we can simulate similar behavior to the one expected
of the robot in real-world experiments.

We will use the Husky robot model for our simulations. The Husky was chosen as
it is one of the robots we may use in the following real-world experiments, and its
model was available to us.

As the creation and implementation of the simulation were not the main focus
of this thesis, we have used previously created simulation environments. As the
basis for our simulations, we used the robingas_mission_gazebo project’. This
project was created by the CTU CRAS group. We have modified the project to
fit our needs.

The simulation project was named road_crossing_gazebo and is available on

GitHub8.

Shttps://classic.gazebosim.org/
"https://github.com/ctu-vras/robingas_mission_gazebo
Shttps://github.com/vlk-jan/road_crossing_gazebo
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Chapter 3

Behavior tree algorithm structure

One of the most important parts of this thesis is the design of the BT algorithm.

This chapter aims to present the design we created and provide the reasoning
behind it.

B 31 Creating a behavior tree structure

First, we need to choose the correct approach to designing the BT structure.
There are several possible approaches to creating a BT structure. We will discuss
a few of these approaches and state the used one. The insight from [14], was
instrumental for the selection and overview in this section.

The first approach is creating the complete BT structure by hand. Meaning we
have to design every node, its position, and its function within the structure. This
approach is the easiest but more time-consuming and error-prone than others.
The second approach is creating an initial BT and letting RL algorithms improve
the BT’s functionality and optimality. There are several options for this particular
approach, as multiple possible RL algorithms exist for this task.

The third possible approach is constructing the BT from previously recorded hu-
man behavior. This approach also uses RL algorithms to transform the recorded
behavior into a BT structure.

The last possible approach lets an RL algorithm construct the BT structure from
the ground up.

Each of the presented approaches has its advantages and disadvantages. It is,
therefore, vital to select the correct approach based on the possibilities and re-
quirements of the task.

Chosen approach

We have chosen the first approach, meaning we will construct the whole tree
structure by hand. This was done as it is the easiest approach to this task and
requires no additional steps.

Using different approaches to designing and improving the BT structure may be
an interesting task for future work.

We will design the BT structure in the GUI application designed alongside our
chosen BT library, Groot. The application’s interface is shown in figure 3.1.
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Groot.

File Tools Help
@ TreeNode Palette =& 1@ kbehaviorTree init values get perpendicullar_to_road road crossing get_heading _start_crossing

Paralle
Reactivefallback
ctiveSequence

Sequencestar
Switchz

Switch3

WhileDoElse

Decorator
BlackboardcheckBool
BlackboardcheckDouble
Blackboardcheckint
Blackboardcheckstring

Inverte
KeepRunningUntilFailure

pea
Retryuntilsuccessful
Timeout

- SubTree

Figure 3.1: The Groot application interface.

B 32 Structure hierarchy — Main BT

We will divide the whole tree structure into several sub-trees to help with read-
ability, modularity, and maintainability.

The first sub-tree will accomplish the initialization and will be responsible for
determining whether the crossing should commence. It is also responsible for
navigating the robot to a suitable crossing place. This sub-tree will be called
Init-BT.

The second sub-tree is responsible for positioning the robot such that it is
perpendicular to the road it is trying to cross. This sub-tree will be called
Perpendicular-BT.

The third sub-tree is responsible for the navigation of the robot during the crossing.
It will check the position and velocity of incoming traffic and determine the best
strategy for the crossing. This sub-tree will be called Crossing-BT.

There are a few more sub-trees in our structure, but as those are not the main ones,
we will not present them here. They will be presented when they are mentioned
in the main sub-trees’ structure. Their main task is to help with the modularity
and reusability of the behavior they encode.

The main BT is shown in figure 3.2.

The main BT starts with a Sequence node. First, we need to check if the algorithm
should be even started — to avoid collision between two nodes trying to control
the robot. This we achieve with a condition node StartAlgorithm. This node
will check if the algorithm should be started. If it should not, the algorithm will
not progress. The second child is a SequenceStar node. This node will tick the
sub-trees responsible for the whole algorithm.
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3.3. Init BT

Perpendicular

Figure 3.2: Main BT structure.

However, the first child is again a SequenceStar node. This is done to ensure
that each preparation sub-tree will be executed only once, providing they return
SUCCESS.

The first preparation sub-tree is the Init-BT, its structure shown in chapter 3.3
and its implementation in chapter 4.1.3.

The second preparation sub-tree is the Perpendicular-BT, its structure shown in
chapter 3.4 and its implementation in chapter 4.1.4.

The last sub-tree is the Crossing-BT, its structure shown in chapter 3.5 and its
implementation in chapter 4.1.5.

B 3.3 it BT

As mentioned earlier, this BT is responsible for determining if we should start the
crossing and for navigating the robot to the optimal location. This tree will be
executed only once for each crossing. The Init-BT structure is shown in figure
3.3.

The ticking of nodes in the structure is done in the following way. We start at
a Sequence node. With its first child, a SequenceStar control node, we start
the Init-BT’s first branch. The first node in this branch is an action node
GetPosition followed by a condition node CrossRoad. The idea behind this
branch is to determine the proximity of the robot to the road. If the robot is too
far away from the road, the algorithm should not progress. This will help combat
the possibility of trying to cross the wrong road, should it happen that two roads
are close by.

The second branch of this sub-tree starts with a Fallback node. The goal of this
branch is to place the robot in an ideal position for crossing. This action should
have been done before the mission, and the robot should have been sent to the
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Figure 3.3: The Init-BT structure.

optimal location by a path-planning node.

However, if such pre-mission planning was not performed, the PlaceSuitable
condition node will check if the place is suitable. If not, the BetterPlace condition
node will return if a better location has already been found. An action node
MoveToPlace will steer the robot to a better location if it has been found. If it
has not, the action node GetBetterPlace will try to find a more suitable place.
We will not perform the sub-tree again if a better place cannot be located. Instead,
we will move on to the following sub-tree and cross the road in the position the
robot is currently situated. This is done to avoid an infinite loop and is achieved
with a ReturnSuccess node at the end of the second branch.

B 34 Perpendicular BT

This sub-tree is responsible for positioning the robot in the most optimal way for
crossing the road. We have determined that to be the one in which the robot will
cross the road the fastest. As such, the robot’s heading should be perpendicular
to the road it will cross. Figure 3.4 shows the BT structure for achieving so.

The first branch of this tree only needs to be ticked once in each run of the crossing
algorithm. Therefore, we have a SequenceStar control node after the Root node.
The primary responsibility of the first branch is to calculate the azimuth that
will position the robot perpendicular to the road. As obtaining the robot’s
azimuth does not need to be repeated once successful, we start the branch with
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3.4. Perpendicular BT
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Figure 3.4: The Perpendicular-BT structure.

a SequenceStar node. The node has two children, both being a Repeat control
node. The action to be repeated behind the first node is the obtaining of the
robot’s azimuth. The actions behind the second Repeat node are connected in
a Sequence. This part of the algorithm calculates the optimal azimuth for the
robot. Firstly we need to obtain the robot’s position — GetPosition action node.
Next, we need to determine the heading of the road closest to the robot. For this
purpose, we have the action node RoadHeading. Finally, we calculate the optimal
heading for the robot with the action node ComputeHeading. This concludes the
left branch of our Perpendicular-BT.

The right branch starts with a Repeat node, followed by a Sequence node. The
idea behind this branch is to utilize the heading value computed in the left branch
and orient the robot accordingly. Firstly we need to obtain the robot’s azimuth
with the GetAzimuth action node. While this might seem redundant, we have
just got the azimuth for calculation, it is vital to update the current azimuth as
the value of obtained azimuth is only valid in the first run of the second branch.
After receiving the current azimuth, we follow with a Fallback node and its first
child, a condition node RobotPerpendicular. This node tells us if the robot has
achieved the optimal heading we calculated earlier. If not, we continue to the last
part of this sub-tree.

The last part shall always return FAILURE and is responsible for the movement

19



3. Behavior tree algorithm structure

of the robot. This is necessary because we check the correct position before the
movement. Firstly we try to rotate the robot with an action node RotateRobot.
If the rotation was unsuccessful, we try to move the robot away from the road
with an action StepFromRoad. The last action is a precaution, as the robot’s
rotation might have moved the robot onto the road, which is forbidden.

While we could unite the first two Repeat nodes, maybe even all three, we chose
not to do so. The reason for not merging the nodes is to allow each part of the
algorithm to fail independently. The number of repetitions for each node was set
to 10, which we determined to be the optimal value.

B 35 Crossing BT

This tree is the most important part of the whole algorithm as it facilitates the
road crossing. Figure 3.5 shows the structure of the sub-tree.

This tree starts with a Sequence node with three children. In the structure of
this tree, there are two further sub-trees. These sub-trees are shown in figures
3.6a and 3.6b, and will be explained separately at the end of this section.

The first branch of this tree is responsible for obtaining the data of all detected
vehicles from other ROS nodes. This functionality is implemented in just one
action node GetCars.

The second branch starts with a Fallback node with two further sub-branches
both behind Sequence nodes. This branch is responsible for the decision-making
and control of the robot’s movement.

The first sub-branch of the second branch deals with movement if no cars are
present. First, we check this condition with a condition node CarsInTrajectory.
If there are no vehicles, we are free to continue with our movement or start it
if we have not done so yet. This is performed with a sub-tree StartCrossing,
followed by the MoveFwdFull action node. This action node controls the robot to
move forward with the highest velocity possible.

The second sub-branch is the decision-making part of the tree. First, it checks
the movement status with a StartCrossing sub-tree. The following node is the
CalculateCollision action node. The primary role of this node is to calculate
the velocities necessary for the robot to collide with each individual vehicle among
all the vehicles detected. These velocities are vital information on which the
decision-making is based.

The third child of the Sequence node is a structure of cascading if-else statements.
The structure gradually checks the following conditions and performs the corre-
sponding actions based on the results.

The first condition is the CollisionFwdMove. This node checks if the robot is
about to collide with any of the detected vehicles in front. If it is not, the robot
will continue moving forward.

If a collision is detected, we check if another collision would occur if we were to stop
the robot. A condition node CollisionOnStop is responsible for the detection. If
not, we can stop the robot.

With condition node CollisionBwdMove, we check if the robot can move backward.
If it can, we do so, providing there would be a collision on stop. If there would be
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3.5. Crossing BT

a collision on the backward movement, we will stop the robot instead.

The robot will also stop its movement if we tick a movement node and the move-
ment is unsuccessful. This could arise if the velocity options do not provide a safe
margin.

Root

GetCars ?

/

StartCrossing

CarsInTrajectory

StartCrossing

MoveFwdFull || CalculateCollision ?

A

— || MoveFwd || StopMovement

CollisionFwdMove

N
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#* MoveBwd

CollisionOnStop
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CollisionBwdMove

Figure 3.5: The Crossing-BT structure.
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3. Behavior tree algorithm structure

B 3.5.1 Crossing BT sub-trees

StartMovement BT

The StartMovement sub-tree is responsible for detecting if the movement process
has started (the NotStarted condition node). If not, it starts the movement (the

StartMovement action node).

Finished BT

The Finished sub-tree detects if the robot has crossed the road. There are
two ways we can detect if the road was crossed. The first condition node
CrossingFinished performs the check with the current GPS coordinates of
the robot and road data, namely the global coordinates of the robot with the
road’s width. The second check is the condition node StartAlgorithm, where the
condition could be set from outside the algorithm, for example, from a different

ROS node.
Root
1
?
AN
#* StartMovement

Y

(a) : The StartMovement-BT structure.

Root

CrossingFinished

Y

StartAlgorithm

(b) : The Finished-BT structure.

Figure 3.6: The structures of sub-trees inside the Crossing-BT.
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Chapter 4

Nodes implementation

This chapter will provide the implementation details for individual nodes used in
our BT algorithm. We will split these descriptions into BT nodes and auxiliary
functions used in the nodes. We will also provide the implementation details
for ROS nodes and other ROS-related parts. All developed code is available on
GitHub!.

. 4.1 Behavior tree nodes

Here we will present the implementation of individual nodes in our algorithm. We
will split the nodes into categories based on the sub-tree they belong to. We will
also show the basic functionality of the library used.

B 4.1.1 Introduction

The BT algorithm is implemented using the behaviortree-cpp-v3 library. Therefore,
we will present how we create, implement and start the ticking of the tree. We
will also show how nodes are created, implemented, and used.

Creating the node

To create the node, we need to create a class that inherits from one of the parent
classes in the library. The parent classes depend on the type of node we want to
create. If we create an action node, we inherit from the SyncActionNode class. If
we create a condition node, we will inherit from the ConditionNode class.
There are two mandatory functions for all nodes, the tick and providedPorts
functions. These two functions must be implemented, or an error will occur.
The tick function is responsible for the actual implementation of the node. It is
called every time the node is ticked. It is also responsible for returning the state
of the node.

The providedPorts function defines the ports the node will use. This function
must be defined even if the node does not use any ports.

Using the node
To use a node, we must register it in the BehaviorTreeFactory object. We do

"https://github. com/v1k-jan/road_crossing.git
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4. Nodes implementation

this by calling the registerNodeType function. For this function, we need to
specify the class of the node we want to register, e.g., one of the nodes we created.
It also takes one std::string parameter, which identifies the name of the node
in our BT algorithm .xml file.

Creating and running the tree

To create the tree, we first must have a .xml file with the tree structure. This file is
then parsed by the BehaviorTreeFactory object using the createTreeFromFile
function. The result is a Tree object which we can store and later run. Ahead of
calling the parsing for the tree file, all the nodes used in the file must be registered.
To run the tree, we call the tickRoot function on the Tree object. This function
returns the state of the root node of the tree.

Blackboard

The blackboard is a shared memory between the nodes of the tree. It is used to
store data that is being utilized by multiple nodes.

It is also the reason why we implement the providedPorts function. This function
specifies the ports the node will use. The ports can serve as an input, an output,
or both. Input ports can take a constant value (specified in the .xml file of the
tree structure) or look for a value in the blackboard.

Logging

The BT library also provides us with logging functionality. This functionality is
useful for debugging and testing.

We can use different types of loggers. The most common one is the StdCoutLogger
which logs to the standard output. We can also use the FileLogger, which saves
logs to a file.

We will use the FileLogger to log the tree execution. This logger is useful for its
integration with the Groot application as we can import the produced file and
visualize the ticking of our BT structure.

The logging will be used only for debugging and testing purposes and serves no
other function in the final product.

B 4.1.2 Main BT

In this BT, we only have one non-sub-tree node. This is because this sub-tree
encodes the algorithm’s structure rather than having nodes for execution.

Start Algorithm — Condition node

This node is responsible for determining whether the robot is in the phase of
crossing the road during its mission. It is necessary to implement such a node
to facilitate the transfer of control from path planning and navigation to road
crossing. In contrast, we could determine if the crossing should start based on the
distance of the robot from the road. However, this method would fail whenever
our robot has to walk alongside any road.

This node is implemented as a ROS service updating a static variable, which is
checked when the node is ticked.
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4.1. Behavior tree nodes

This service should be used mainly by other nodes outside of the package itself,
with one notable exception. The exception being the very last node of our tree. It
serves as a prevention against the looping of our algorithm.

M 413 it BT

Here we will present the nodes used in the Init sub-tree. This sub-tree is used to
initialize the BT algorithm. It is the first sub-tree to be executed. This tree is
going to be executed only once per road crossing.

GetPosition — Action node

This node is responsible for obtaining the current GPS position of the robot and
converting it to the UTM coordinate system. It is implemented as a ROS topic
subscriber. The topic subscribed is /gps/fix where the GPS data are being
published.

The obtained data are then converted to UTM using the gps_to_utm function
defined in 4.2.3. The result is then stored as two BT blackboard variables —
easting and northing.

For every obtained value, it also calls a ROS service place_suitability to de-
termine the suitability of the current position for crossing.

CrossRoad — Condition node

This node tells our algorithm if we are close enough to a road to take over the
robot’s controls. If we are not the path-planning or other node is left in control.
We use the return values of the ROS service call issued in the GetPosition node.
This service has two return values — validity and suitability. Suitability
uses the road cost as well as context score to judge the place for crossing. For
validity, we only calculate the distance of the current location to road segments
from OSM. The distance limit we proposed as sufficient is %wr from the center of
the road, where w, is the road’s width.

Therefore the validity variable is the one determining the output of this node.

PlaceSuitable — Condition node

This node states whether the current robot’s location, stored as a blackboard
variable, is suitable for crossing.

It uses the second return value from the ROS service called in the GetPosition
node. As stated, this value takes into account the road cost for our location from
the road-cost algorithm (4.2.1) and the context score calculated separately before
the service call.

The context score is based on the contextual information that is available to us.
This information may be passed from other nodes (e.g., computer vision node for
detecting road parameters) or set by the operator.

The calculation of the context score and the process of obtaining the contextual
information is described in 4.2.4.

Other nodes shown it the BT structure (fig 3.3) are currently returning FAILURE.
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These nodes are there to show the potential for further work. Their main purpose
is to steer the robot to a more optimal location for crossing. In this work, we
assume that the correct location was chosen in the pre-mission planning.

B 4.1.4 Perpendicular BT

The task of this tree is to position the robot perpendicular to the road. It is the
second sub-tree to be executed, and as well as Init BT, it is used to prepare the
robot for the crossing and is only executed once.

GetAzimuth — action node

This node is responsible for obtaining the robot’s current azimuth. We have a
ROS subscriber listening to topic published by compass node?.

The compass node may publish the azimuth in several different formats. In our
program, we use the ENU format in radians. But if the compass node publishes
the azimuth in a different format, we have subscribers that can convert it to the
desired format.

The azimuth is then stored as a blackboard variable azimuth.

RoadHeading — action node

This node calculates the heading of the closest road to the robot. We take the
current robot’s position from the blackboard variable easting and northing and
send a request to the ROS service get_road_heading.

The service returns the two coordinate points representing the closest road seg-
ment’s starting and ending points.

We then calculate the heading of the road segment using the function defined in
section 4.2.3.

The calculated road heading is then stored as a blackboard variable road_heading.

ComputeHeading — action node

This node uses the blackboard variable azimuth and road_heading to calculate
the heading the robot should achieve to be perpendicular to the road.

The calculation is defined in section 4.2.3.

The result is stored as a blackboard variable req_azimuth.

RobotPerpendicular — condition node

This node checks if the robot is perpendicular to the road. It works by comparing
the current azimuth with the required heading. Both of these values are stored in
the blackboard.

We use the function defined in section 4.2.2 to compare the values to calculate
the difference between two angles. The result is then compared to the threshold
value, which is set to 0.1745 rad or 10°.

RotateRobot — action node
This node rotates the robot to the required heading.

’https://github.com/ctu-vras/compass
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First, we calculate the difference between the robot’s current and desired azimuth.
Then, based on the difference, we set the rotation direction and velocity.
The calculated movement is then published to the /nav/cmd_vel topic.

StepFromRoad — action node

If, for whatever reason, the robot is not able to rotate safely, primarily due to the
possibility of ending on the road, we use this node to move the robot away from
the road.

Firstly we check the difference between the robot’s current azimuth and the road
heading. Based on the difference, we set the direction of the movement.

The movement is then published to the /nav/cmd_vel topic.

B 4.15 Crossing BT

In this tree, the main decision-making of the road crossing is located. It is the
third sub-tree to be ticked and the only one to be ticked repeatedly.

In multiple nodes, we will use information about the detected vehicles and collision
parameters for each vehicle. Therefore, we must first define the data structures
used to store this information.

Vehicle data

The data structure for storing the information about the detected vehicles is
defined in A.1.

The first struct vehicle_info stores the information about the single detected
vehicle. The position of the vehicle is expressed in relation to the robot’s frame.
The robot frame means the center of the robot is the origin of the coordinate
system. The x-axis points forward from the robot, and the y-axis points to the
right.

The other options for expressing the position of the vehicle are in the global
coordinate system or in the coordinate system of the road. The global coordinate
system is defined by the GPS. The road coordinate system would be defined by
the robot’s position at the beginning of the crossing.

We can use the coordinate system defined by the robot’s current position for several
reasons. Firstly, because the calculations are done periodically, and the results
are only relevant for the current time step. We expect to obtain new information
about the vehicles with a frequency of 5Hz. And secondly, it simplifies the process,
as the vehicle positions are already expressed in the robot’s frame.

The second struct vehicles_data stores the vehicle_info structs of all detected
vehicles.

Collision data

The data structure for storing the collision parameters has the definition in A.2.
The first struct collision_data is used to store the collision parameters for a
single vehicle.

The velocities required for the robot to make contact with the front or back of
the vehicle are stored in the variables v_front and v_back, respectively. Figure
4.1 shows the contact points we calculate the velocities for. The figure is more

27



4. Nodes implementation

thoroughly explained in the next part.

The collide variable is a boolean value that tells us if the robot will collide with
the vehicle. It is calculated based on the current velocities of the robot and the
vehicle.

The second struct collisions_data stores the information about collisions with
all detected vehicles.

Used units
We use these units for the measured and calculated parameters:

® Position — meters [m]
® Time — seconds [s]

® Velocity — meters per second [ms™!]

® Acceleration — meters per second squared [ms~?]

® Dimensions — meters [m]

Calculating the collision parameters

First, we need to state the assumptions we are making in order to simplify the
calculation.

The first assumption is about the coordinate system we are using. We are using
the robot’s frame, where the robot’s center is the system’s origin, and all the
positions are expressed in relation to this origin. The z-axis points forward, and
the y-axis points to the right. The reasons for the validity of this assumption were
stated earlier.

The second assumption is about the movement of the robot. We assume the robot
is moving in a straight line with constant velocity. This is reasonable as we want
the robot to be as predictable as possible, so we do not want to move the robot to
the side. The assumption about the constant velocity, meaning the acceleration is
zero, is also reasonable. The speeds the robot can achieve are much lower than
the robot’s acceleration, which can, therefore, be neglected.

The third assumption is about the movement of the vehicle. We assume the vehi-
cle’s acceleration is constant. This is a reasonable simplification as the calculation
is done periodically with a high enough frequency.

The fourth assumption is that we will calculate the collision only in two dimen-
sions. This is reasonable as the z-axis will not impact the occurrence of a collision.
Moreover, the area over which the collision can occur is relatively small. Therefore,
any terrain deviations will not significantly impact the collision.

Figure 4.1 depicts a schematic view of the collision, and figure 4.2 shows the
collision in the collision points. There are two contact points, both on the robot
and the vehicle. The first one (blue) is the point where the robot is going to
collide with the front of the vehicle. The second one (red) is the point where the
robot is going to collide with the back of the vehicle.

For the first point, we calculate the velocity v_front. This velocity depicts the
minimal speed of the robot to cross in front of the vehicle. We calculate the
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Figure 4.1: Visualization of collision points, coordinate system, and vehicle parame-
ters.

Figure 4.2: Visualization of the collision in collision points.

velocity v_back for the second point. This velocity depicts the maximal speed of
the robot to cross behind the vehicle.

The subscript r is used for the parameters of the robot, and the subscript v is
used for the parameters of the vehicle.

The calculation is divided into three parts. In the first part, we determine the
starting positions of the robot and the vehicle. In the second part, we calculate
the time when the vehicle will reach the intersection point (zi, yi). And in the last
part, we calculate the velocities for the robot to collide with the vehicle.

The first part is necessary as the coordinates of both the robot and the ve-

hicle are at the center of their respective bodies. We must move the starting
points concerning the robot’s and vehicle’s length and width. The starting points
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for the robot are calculated using these equations:

l
ZEr’f = r _|_2wV, (41)
N (4.2
’ 2
Yrf =UYrb = Oa (43)
where [, is the length of the robot and w, is the width of the vehicle.
The starting points for the vehicle are calculated as follows:
! r
Ty f = Ty ~ —; < COS ((Pv)7 (44)
l
Typ = Ty — — —;wr cos (pv), (4.5)
Iy +wy .
Yvf = Yv + % sin (¢pv), (4.6)
Iy +wy .
Yvbo = Yv — % sin (pv), (4.7)

where ¢, = arctan (%z) is the angle of the vehicle, [, is the length of the vehicle
and w; is the width of the robot.

We put the width of the robot to calculate the vehicle’s starting points and vice
versa because we want to flatten objects in one dimension. This is done to simplify
the calculation of the intersection point of the robot’s and vehicle’s trajectory.
The second part of the calculation is further divided into two parts. The reason is
that there are two possible scenarios for the calculation. We will use the general
equation of motion [15] for both calculations.

In the first scenario, the vehicle’s acceleration in the y-axis is zero. That means
we can calculate the time using the following equations:

Yv f

tr = ———, 4.8
0 (4.8)
Yv,b

t, = — 22, 4.9
i (4.9)

In the second scenario, the acceleration of the vehicle in the y-axis is non-zero.
This scenario is more probable, as vehicles rarely drive at a constant speed. In
this case, the time is calculated in the following way:

—yv £ \/ Y2 — 2ijvy f
A -, (4.10)

tr10 =
Yv
_yv + \/ y\2/ - vayv,b
th1,2 = . (4.11)
Yv

There are two possible solutions for each time. The reason is that the vehicle may
be decelerating and therefore change the direction of its travel. The interpretation
of the results and the selection of the correct solution is discussed in the next
section.

30



4.1. Behavior tree nodes

The last part of the calculation is the calculation of the velocities. First, we need
to calculate the position of the vehicle in the z-axis at the time of the collision.
We use the general equation of motion with tg = 0s:

1

Tif = Ty g+ Tyts + idfvt%, (4.12)
1

Tip = Tyb + Dylp + int%. (4.13)

Now we can calculate the velocities for the robot.

Tif — X
g = b (4.14)
b tf
Tip — T
dpp = 2ol (4.15)
133
The calculated velocities may be positive or negative. The interpretation is ex-

plained in the following section.

Interpretation of the calculated collision parameters

We will divide this section into two parts. The first part is the interpretation
of the calculated time. The second part is the interpretation of the calculated
velocities.

If the calculated time is positive, the intersection point of the robot’s and vehicle’s
trajectory is in the future. This means that the robot can collide with the vehicle
without either of them changing the direction of travel.

If the calculated time is negative, it means that the intersection point of the
robot’s and vehicle’s trajectory is in the past. This means that the robot can
collide with the vehicle, but only if the vehicle or the robot, depending on the
situation, would change its direction of travel.

The time can also be zero. This means that the robot and vehicle already collided.
Therefore, we do not expect such time to arise as a result of the calculation.

We may have up to two solutions when calculating the times for non-zero acceler-
ation in the y-axis. If we have none, the robot’s and the vehicle’s trajectories do
not intersect.

If we have one solution, the robot’s and the vehicle’s trajectories intersect once.
The interpretation is that the vehicle is decelerating and will stop at the intersec-
tion point and then start reversing.

If we have two solutions, the robot’s and the vehicle’s trajectories intersect two
times. Multiple intersections could have several physical interpretations. We can
interpret this as the vehicle decelerating, and therefore, changing the direction
of travel after passing the intersection point. We can also interpret this as the
vehicle accelerating, and therefore, the second time of the intersection is likely
negative.

When choosing the calculated time, we will use the following criteria. If both
times are positive, we will use the shorter time. If both times are negative, we will
use the larger time (the time that is closer to the present). If one time is positive
and the second is negative, we will use the time with a smaller absolute value.
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The velocities can also be positive or negative. The interpretation is similar to
the one of time. Positive velocity means moving forward, while negative velocity
means moving backward. If the resulting velocity was calculated using negative
time, then it also must be negative.

While it may seem irrelevant to calculate the time and velocity for backward
movement, it is essential. This is because there is a possibility that another vehicle
may be in motion, which could result in a collision with the robot. In that case,
the robot will have to move backward to avoid the collision, and we need to be
able to set the correct backward velocity to not collide with the first vehicle.

GetCars — action node

The action node GetCars obtains information about the detected vehicles. The
detection node was not yet implemented when this thesis was written. Therefore,
we will use the GetCars node to simulate the detection of vehicles.

We will subscribe to the topic /road_crossing/injector. We will publish this
topic from a separate node designed solely to simulate the detection node.

The information about the detected vehicles will be stored in a static variable for
later use. The variable is of the format shown in listing A.1.

CarsInTrajectory — condition node

This node is important for optimizing the flow of ticks in our behavior tree. The
node is responsible for checking if there are any detected vehicles. We do not need
to go through the calculation and decision-making if there are no vehicles. This
speeds up the completion of this run of the BT and allows us to start the next
run sooner.

NotStarted — condition node

This node is responsible for checking if the movement across the road has been
started. If it has not, we need to start the movement. If it has, we may continue
with it.

StartMovement — action node

This node is responsible for starting the movement across the road. We will set
zero forward linear velocity to our inner static variable. This variable is responsible
for storing the current velocity.

MoveFwdFull — action node

This node is used when no vehicles are detected, and therefore, we want to move
the robot across the road as fast as possible. We publish the maximal forward
linear velocity to the topic /nav/cmd_vel. The maximal velocity is chosen based
on the maximal velocity of the robot used.

CalculateCollision — action node

In this node, we will calculate the collision parameters. We will use the formulas
described earlier. The results will be stored in the inner static variables.

This node will run the calculation for each vehicle independently. As each vehicle
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has its ID, we will use it to differentiate between them. This ID will also be used
to delete all the results from the inner static variable when the vehicle is no longer
detected.

MoveFwd — action node

This node is used when vehicles are detected and a forward movement is possible.
We will publish the forward velocity to the topic /nav/cmd_vel. The forward ve-
locity is determined from the calculated velocities from the CalculateCollision
node. We will set the maximal forward velocity while avoiding collisions.

MoveBwd — action node

When the system detects the presence of other vehicles and determines that a
backward movement is required, this node comes into play. To enable back-
ward movement, we will publish the relevant velocity information to the topic
/nav/cmd_vel. The specific velocity will be calculated using the output from the
CalculateCollision node. We will set the minimum backward velocity such
that collisions are avoided.

StopMovement — action node

This node is used when there is no possible movement forward without the robot
colliding with a vehicle, and movement back is unnecessary or would also result in
a collision. This node is also used as an emergency stop in case a movement is
requested, but no velocity could be chosen. We will stop the robot by publishing
zero velocity to the topic /nav/cmd_vel.

CollisionFwdMove — condition node

This node is used to determine whether there are vehicles in front of the robot in
such a position and velocity that the robot would collide with them if it moved
forward.

CollisionBwdMove — condition node

Same as the previous node, this one is used to determine whether there are vehicles
in such a position and velocity that the robot would collide with them if it moved
backward.

CollisionOnStop — condition node

As the two condition nodes before, this node is used to determine whether there
are vehicles in such a position and velocity that the robot would collide with them
if we were to stop the robot.

CrossingFinished — condition node

In this node, we check the current position of the robot. If the distance of the
current position from the middle of the road is greater than half of the width of
the road, we consider the crossing finished.

Another condition for finishing the crossing is if the robot’s distance from the
starting point is greater than the width of the road.
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Having both of these conditions is beneficial, as the robot’s position may be
imprecise.

B a2 Auxiliary functions

In this section, we will present the auxiliary functions used by the nodes of our
BT algorithm.

These will include the functions used for conversions, more complex or repetitive
mathematical operations, and other functions that are not directly related to the
BT algorithm.

One of the big sections will be the algorithm used for determining the classification
and cost of road segments in the road network.

We will split the functions into categories based on their purpose.

B 4.2.1 Road cost algorithm

We will use the algorithm developed during the summer of 2022 for the RobInGas
project at the CTU CRAS. The algorithm was designed to determine the cost of
crossing the road based on the road classification, curvature, and other factors.
We will briefly present the functionality of the algorithm. The full description
with implementation details can be found in [16].

This is also the part of the final solution in our thesis written in Python instead
of C++ this is due to it being part of a different project. Other reasons include
the usage of Python-specific libraries. While we could rewrite the code to C++, it
was not deemed necessary as this part is run only once at the beginning of the
mission and therefore does not need to be optimized for speed.

Overview

We use multiple parameters to determine the cost of crossing. The most important
ones are the geometrical properties of the road. This includes the curvature of
the road, the elevation profile, and the proximity to intersections. We also use the
road classification to add to the cost function.

Other parameters would be beneficiary, such as the road width, the presence of a
pedestrian crossing, and the expected traffic speed.

Unfortunately, we do not have access to all of these parameters. We use the
OSM data, which does not necessarily contain all those additional parameters.
Therefore, we will inject this contextual information directly into the algorithm
and deal with these parameters separately. The contextual information is discussed
in section 4.2.4.

The OSM data also do not contain the elevation profile of the road. Acquiring
this data is not straightforward, as it is not readily available through free or
open-source channels. The elevation data we use were purchased from the Land
Survey Office of the Czech Republic. We use the ZABAGED [17] data. This data
from the Land Survey Office are available only for the area of the Czech Republic.
However, any file with elevation data with the correct formatting can be used.
The file format in use conforms to the following specifications: each line of the
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text file contains the easting, northing, and altitude coordinates for a single point,
separated by a space. Each point is described in a separate line, and lines are
separated using the newline character "\n".

If the elevation data are not provided, the algorithm will still function. It will just
not take the elevation profile into account. The road cost will be determined only
from the curvate, proximity to intersections, and road classification.

Algorithm

The algorithm is divided into several parts.

The first part is obtaining the road segments from downloaded OSM data. This
part is also responsible for logging the road classification for each segment. The
road segments from OSM data are divided into multiple smaller equidistant seg-
ments.

The second part is responsible for determining the curvature of the roads. This is
done by calculating the radius of the circumcircle of the triangle formed by the
two adjacent road segments. This approach is visualized in image 4.3a. We then
sort the road segments into multiple classes based on their radius. In this part,
we also detect intersections and penalize the road segments close to them.

In the third part, we determine the elevation profile of the road. We then classify
the road segments using the TPI (Terrain Profile Index) method. Some TPI
classes are presented in image 4.3b.

In the last part, we combine the results from the previous parts and calculate the
final cost of crossing for each segment. These costs are then saved to a file to be
used later.

Usage

As was stated earlier, this algorithm is executed only once, preferably during the
pre-mission planning. Later we only keep the final costs, and based on them, we
determine if the location where the robot is trying to cross is suitable and safe.
We rely on ROS to enable the communication between our main algorithm and
the algorithm for determining the suitability of the location for crossing. We
implemented a ROS service for this purpose.

Another part of the algorithm that could be implemented in future work is to try
and provide the robot with a more suitable crossing place. This could be used if
the pre-mission planning was not performed or the robot’s path changed, and the
current location is unsuitable. If such a place is found and provided, a cost map
that will be used to change the current cost map of the path planner should be
published. This is done so that the robot’s controls are not overridden until we
begin the crossing itself.

The effect of this algorithm on a path planner is shown in image 4.4.

B 4.2.2 Mathematical functions

Difference between two angles

This function is used to determine the difference between two given angles. We
assume the angles given are in radians, and both are in the interval (0; 27). This
difference is calculated to be the smallest possible and to fit within the interval
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(b) : Representation of certain TPI classes.

Figure 4.3: Visualization of key elements in the road cost algorithm.

(—m; ). The formula we use is a modified version of the one from [18] and has
the following form

Ap = ((p2 —p1+m) mod (27)) — 7. (4.16)

Before returning the result, we check whether the result is within the specified
interval.

B 4.2.3 Geographical functions

Here we will present the functions used for geographical calculations. These
include conversions between coordinate systems, calculating azimuths, and others.

Converting GPS to UTM

While most geographical data are stored in the WGS84 coordinate system, gener-
ally known as GPS, the UTM coordinate system is more suitable for calculations.
Therefore, we will convert the GPS coordinates to UTM.

When working with geographical conversions in C++, we use the library Ge-
ographicLib. The function from this library that provides the conversion is
GeographicLib: :UTMUPS: :Forward. This function takes the point’s latitude and
longitude and returns the point’s easting and northing in the UTM coordinate
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Figure 4.4: The effect of the road cost algorithm on path planning.

system. It also returns the zone number and whether the point is in the northern
or southern hemisphere.

We use the utm library when converting geographical data in Python. The function
facilitating the conversion from WGS84 to UTM is utm.from_latlon.

Converting NED to ENU

There are two possible orientations of an azimuth. The NED (North-East-Down)
and the ENU (East-North-Up).

NED means that azimuth 0 points north, and its value increases clockwise. This
orientation is mainly used in cartography and everyday life.

ENU means that azimuth 0 points east, and its value increases counterclockwise.
This orientation is mainly used in navigation and robotics, as it is consistent with
REP-103 [19].

In the entire project, we use the ENU orientation. However, as we rely on other
ROS nodes to provide us with the azimuth, we need to be able to convert the
azimuth from NED to ENU.

The conversion should be much simpler since we do not deal with coordinates but
with already computed azimuths.

The image 4.5 shows the two possible orientations of the azimuth. This image
also provides us with the insight we need to determine the conversion formula.
We need to divide the formula into two parts.

The first option is when the azimuth (in NED) is between O rad and 7 rad. In
this case, the azimuth in ENU is computed in the following way

™

PENU = 5 — ¥NED; (4.17)
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ST W E:0

ST

Figure 4.5: Two possible orientations of the azimuth.

where pgNu is the azimuth in ENU and ¢ngp is the azimuth in NED.
The second option is for all other azimuths, e.g., when the azimuth is between
5 rad and 27 rad. In this case, the azimuth in ENU is computed in the following

way
5%

YENU = -~ — PNED- (4.18)

Compute azimuth from coordinates

This function is used to compute the azimuth (in NED) for an observer standing
at the first point and looking at the second point.

We will use a slightly modified version of the formula from [20]. This calculation was
created for the WGS84 coordinate system, however, we use the UTM coordinate
system. Having said that, we can use the same formula, as the WGS84 to
UTM projection is conformal [21]. In testing the difference between calculated
azimuths using the WGS84 and UTM coordinates was around Ag = 0.097 rad or
Ay = 5.541°.

The computational equations are as follows

Ay =y —y1, (4.19)
a = sin (Ay) cos (x2), (4.20)
B = cos (z1) sin (x2) — sin (z1) cos (z2) cos (Ay), (4.21)
¢ = arctan (6>, (4.22)
©=(p+27) mod (27). (4.23)

Where z; and y; are the latitude and longitude of the first point, and x9 and ys
are the latitude and longitude of the second point.

Compute heading for robot

The use of this function is to determine the heading of the robot. It is used to get
the robot perpendicular to the road.

The function takes the robot’s azimuth and the road’s heading. The algorithm
creates two new variables, one +5 and one —7 from the road’s heading. This is
necessary as we do not know in what order road points are stored, and we do not
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need to differentiate the side we approach the road from.
Then it computes the difference between the robot’s heading and the two new
azimuths. The smaller difference is then returned.

B 4.2.4 Contextual information and score

Contextual information

Contextual information provides us with valuable information about the environ-
ment. This information is a vital part of choosing the best location for crossing.
The contextual information we use is the following

® Maximal speed — The maximal speed of vehicles on the road.
® Number of lanes — The number of lanes on the road.

® Road width — The width of the road.

Road type — The type of the road.

Pedestrian crossing — Whether there is a pedestrian crossing on the road
and its location.

Obtaining contextual information

Contextual information may be obtained from several sources. One source could
be the OSM database. However, this database is not always up to date, and there
is no guarantee that the necessary information will be available. Other sources
could be the direct observations of the environment or the information provided
by other ROS nodes.

In our case, the operator will submit the information. We have prepared a Python
class with the appropriate variables and functions. To use the contextual informa-
tion, the operator should create an instance of this class and fill in the appropriate
variables.

The creation of the class is recommended to be done in advance. It can be auto-
mated or done manually. The class also contains functions necessary for saving
and loading contextual information to a file.

During the execution of our algorithm, the tree node will call a ROS service
to obtain the contextual information. This service will return the contextual
information for the closest road to the requested location.

By employing this approach, we can effectively capture and record contextual
information for multiple roads, which in turn enables us to perform multiple road
crossings during a mission.

Calculating the context score
The final score is determined by the sum of points assigned to each contextual
information.

n
gcontext = Z gcontext,iy (424)
=1

since we currently have only five distinct types of contextual information, we set
n equal to 5.
The individual points are set as follows
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B Maximal speed — vpax

Umax <30 — fcontext,l =3
Umax <00  — gcontext,l =2

Umax < 80 — fcontext,l =1

® Number of lanes — napnes

Nanes = 1 — écontext,Z =35

Nanes = 2 — gcontext,Q =4
Nlanes = 3 — fcontext,? =2
Nlanes = 4 — gcontext,Q =1

® Road width — wygaq

Wroad < 3.5 = Econtext,3 = 4
Wroad < 4.5 —  Econtext,3 = 3
Wroad < 5.5 = &context,3 = 2
Wroad < 6.5 = Leontext,3 = 1
® Road type

motorway — 5context,4 = —50
trunk — &context,a = —90
primary — Eeontext,a = 1
secondary  —  &context,d = 2
tertiary —  &context,d = 3

8 Pedestrian crossing

if present  —  &context,5 = 100

B 43 ROs specific functions

Here we will present the ROS specific parts of our algorithm. These include the
ROS nodes, services, and messages.

B 4.3.1 ROS services

We use multiple ROS services in our algorithm. These services are mostly used to
obtain information about the road we are crossing. All services are implemented
within the road_crossing package.

We will present the individual services and their purpose in the algorithm. How-
ever, we will not show the definition of the service messages or go into details
about the implementation of the services.
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GetFinish

This service is used to determine whether the robot’s current position is optimal
for finishing the crossing.

This service is used by the CrossingFinished node of the Crossing sub-tree.
The determining factor is explained in the CrossingFinished node section.

GetRoadlInfo

This service is used to obtain information about the road we are crossing. This
information includes the position of the road, contextual information, and the
starting position of the robot. The position of the road is set by the two points
defining the road segment we used in the road cost algorithm. The contextual
information contents were described earlier. The robot’s starting position was the
geographical position of the robot when the crossing algorithm started.

The service call takes the position of the robot in the UTM format. It then finds
the closest road segment from the saved segments with information. The final
distance to the road segment does not matter; we pick the closest one. It then
returns the information about the road segment.

GetRoadSegment

This service is used to obtain the road segment the robot is crossing. The road
segment’s definition was presented in the previous service.

The service call takes the position of the robot in the UTM format. It then
finds the closest road segment from the saved segments from the road cost algo-
rithm. The location of the two defining points of the road segment is then returned.

GetSuitability

This service is used to determine if the position of the robot is valid and suitable
for crossing the road.

The service call takes the geographical position of the robot in the UTM format
and the contextual score. It finds the closest road segment from the road cost
algorithm results. If the distance to any road segment is greater than 10 meters,
the position is deemed invalid for crossing, and such is returned.

If the position is valid, it then calculates the final cost score based on the cost
of the road segment and the contextual score. The position is deemed unsuit-
able for crossing if the final score is below a set threshold. The threshold is set to 20.

StartAlgorithm

This service is used to start and end the crossing algorithm. This service is
intended to be used from the outside of the algorithm.

The call takes two boolean values, start and stop. Only one is permitted to be set
as true. Otherwise, a warning is raised.

B 4.3.2 ROS nodes and messages

Our algorithm uses several ROS nodes, primarily service servers. The main
crossing algorithm is executed by a dedicated node, while other non-server nodes
simulate the operation of various ROS projects. For example, some nodes handle
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vehicle detection simulation, while others initiate the start or stop of the algorithm.
All nodes are encapsulated within the road_crossing package.

The communication between nodes is provided via ROS topics with custom ROS
messages.

Start messages

The message file is shown in A.3.

These messages communicate the change in the run state of the main algorithm.
This is necessary as the start/stop service is in a different node, making the state
variable inaccessible from the main algorithm.

Injector messages

The message file is shown in A.4.

We use these messages to emulate the behavior of the vehicle detection node,
as they enable us to input vehicle information into the algorithm. Specifically,
they simulate the data that would typically be obtained from a 3D bounding box
generated from LiDAR data. The data they simulate is later parsed and stored as
a vehicle_info object from A.1.

Service nodes

To implement the services detailed in the previous section, we created sepa-
rate nodes for each. Each node was designed as a service server. We opted to
implement the nodes using Python, as they depend on data generated by the
road cost algorithm and require access to the data structures used to store the costs.

Crossing algorithm node

The primary algorithm developed in this thesis is executed using a single node.
This node is responsible for subscribing to the relevant topics required for the algo-
rithm’s execution, including /gps/fix, /compass/. .., /road_crossing/start,
and /road_crossing/injector. The specific compass topic is determined dy-
namically during the algorithm’s runtime based on the available compass topics.
Additionally, the node initializes all of the required publishers and server clients.
For each iteration of the main loop within this node, we perform a single round of
ROS callbacks and tick the behavior tree.

Launch files

Within our package, we have three launch files. The first, services.launch, is
responsible for initializing and running the service servers. Alongside this, it
launches two other nodes. The get_mag_shift and magnetometer_compass from
gps_to_path and compass packages respectively.

The second launch file, crossing. launch, is used to launch the primary algorithm
node.

Finally, the demo.launch file combines the previous two launch files, making it
possible to execute both the service servers and the primary algorithm node in
one launch command.
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Chapter b

Simulation experiments

The simulation experiments served a vital role in the validation and enhance-
ment of the algorithm. The primary objective was to verify the functionality of
the algorithm’s design and implementation of individual parts. Secondly, the
experiments were designed to identify areas of improvement within our algorithm.
Lastly, creating diverse scenarios allowed us to test and assess the algorithm’s
performance in different situations.

All of the experiments were conducted in the Gazebo Classic simulator.

B 51 Algorithm functionality experiments

The first runs of simulation experiments were focused on testing the execution
capabilities of the algorithm. They aimed to verify the nodes’ stability, testing
if they would crash or stall the execution of the algorithm. These experiments
served a major role in exposing errors in the implementation of our nodes and
were instrumental in ensuring the stability of our solution.

Moreover, we were able to detect several mistakes and places for improvement in
the design of the algorithm’s BT structure. The Groot application’s log viewer
was an invaluable tool for detecting these weak spots. The screen of the log viewer
is shown in 5.1.

B 5.2 Algorithm behavior experiments

Once the stability of our algorithm was verified, we proceeded to test its behavior
in different scenarios. We created several settings, each with a different configu-
ration of the environment. With these scenarios, we tested the optimality and
universality of our algorithm.

We will present a few of the scenarios we created and discuss the results of the
experiments and their importance within the validation process.

We will present multiple figures with the settings of the vehicles relative to the
robot. All used units correspond to the ones defined in section 4.1.5. The distances
between objects in overviews are relative, not absolute. Also, if acceleration is not
specified, it is assumed to be zero.
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5. Simulation experiments

Figure 5.1: Log viewer in Groot application.

B 5.2.1 Used metrics

One of our tasks in the thesis assignment was to propose a metric for measuring
the optimality of the robot’s movement. The metric we created and used for
evaluation is presented in this section.

With each simulation experiment, we will present two graphs. One graph will
show the minimal distance between the bounding boxes of the robot and the
vehicle. The second graph will show the velocities of the vehicles and the robot
during its movement.

The minimal distance between the bounding boxes of the robot and the vehicle is
a good metric for measuring the safety of the robot’s movement. The smaller the
distance, the higher the risk of collision.

The velocities of the robot are also a good metric for measuring the optimality of
the robot’s movement. The higher the velocity, the faster the robot will reach its
goal.

Other useful metrics for measuring the optimality of the robot’s movement are
the time it would take the robot to cross the road should it be empty and the
time it took to cross the road in the given scenario. Another parameter is whether
the robot was able to cross the road. And lastly, the minimal and average time to
collision and the difference from start time to collision.

The time to collision represents the estimated duration it would take for the robot
to collide with the vehicle, assuming the robot maintains its current trajectory
while the vehicle comes to a stop. The average time will be calculated from all
relevant measurements. It would be pointless to calculate the time of collision if
such collision is not possible.

The deviation from the initial time to collision refers to the amount of time the
robot would need to adjust the start time of its movement to ensure a collision
occurs.
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5.2. Algorithm behavior experiments

B 5.2.2 Simulation scenarios and results

In most of the scenarios, we have tested certain behavior patterns. However,
evaluation of algorithm robustness is also necessary. In some scenarios, there
are one or more detection imprecisions or false detections altogether. The main
scenario in which we verified robustness was scenario 5.

Scenario 1

The environment of the first scenario is shown in figure 5.2. This simulation aims
to test the algorithm’s capabilities of calculating the optimal velocities for the
robot. As this was our first proper experiment, the condition node determining if
the road was crossed was also tested.

e
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Figure 5.2: Environment for the first simulation scenario.

The graphs detailing the results of the experiment are shown in figure 5.3.
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Figure 5.3: Results for the first scenario of simulation experiments.

Scenario 2

In the second scenario, we used the configuration shown in figure 5.4. This sce-
nario was used to test our algorithm’s prediction of the vehicle’s trajectory. We
constructed three further sub-scenarios. Firstly, the deceleration of the vehicle
would stop the vehicle in the path of the robot. Secondly, the vehicle would come
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5. Simulation experiments

to a stop after crossing the robot’s path. Lastly, with the highest deceleration,
the vehicle would stop before crossing the robot’s path.
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Figure 5.4: Environment for the second simulation scenario.

The results of the first sub-scenario are shown in 5.5, the second sub-scenario in
5.6, and the third sub-scenario in 5.7.
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Figure 5.5: Results for the first sub-scenario in the second scenario of simulations.
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Figure 5.6: Results for the second sub-scenario in the second scenario of simulations.
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Figure 5.7: Results for the third sub-scenario in the second scenario of simulations.

Scenario 3

With this simulation experiment, we wanted to validate the algorithm’s ability
to handle multiple vehicles in a line. In this simulation, the vehicles also started
from a greater distance and moved with greater velocities. The environment of
the simulation is shown in figure 5.8.
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The results are shown in graphs 5.9a and 5.9b.

Figure 5.8: Environment for the third simulation scenario.
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Figure 5.9: Results for the third scenario of simulation experiments.
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Scenario 4

Figure 5.10 shows the setting for this simulation experiment. This experiment
aimed to test the impact of the velocity margin on the robot’s behavior. The
velocity margin is a set constant value, we want to keep the robot’s velocity from
the calculated velocity interval by this margin. This should ensure that the robot
will keep some minimal distance from the vehicles. We ran two simulations, one
with a velocity margin set to 0.15 ms~! and the other with a velocity margin set
to 0.25ms~!. The results are shown in graphs 5.11 and 5.12.
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Figure 5.10: Environment for the fourth simulation scenario.

By comparing the two runs, it becomes evident that in the second simulation
run, with a larger safety margin, the robot waited for both vehicles to pass before
crossing. On the contrary, in the first run, the robot decided to cross the road in
front of the closer vehicle.
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Figure 5.11: Results for the first run of the fourth scenario of simulation experiments.
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Figure 5.12: Results for the second run of the fourth scenario of simulation experi-
ments.

Scenario 5

The last simulation experiment aimed to evaluate and test the robustness of
our algorithm. We run multiple iterations of the same configuration, each with
detection imprecisions. As these imprecisions are generated randomly, we obtained
a more comprehensive insight into the algorithm’s robustness. The environment
of the simulation is shown in figure 5.13.
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Figure 5.13: Environment for the fifth simulation scenario.

The results of one of the runs are shown in graphs 5.14. The graph 5.14b shows
that the robot would move in a jerking motion. While a smoothing filter could
be implemented, we opted not to do so, as it would remove the robot’s ability to
escape danger quickly.

The effect of imprecise detection is quite evident on the lines detailing the minimal
distance between vehicles and the robot. This graph was constructed from the
detected positions and not from the actual position of the vehicles. Even though
it does not provide us with the safety aspect of the robot’s behavior, it gives an
insight into the algorithm’s decision-making. The difference between the actual
and detected position is also not so significant to render this data unusable for
the discussion of safety.
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Figure 5.14: Results for the fifth scenario of simulation experiments.

B 5.2.3 Evaluation of the results

In this section, we will discuss the results of the simulation experiments. We will
use the metric proposed in section 5.2.1.

From the distance graphs, we can see that the robot was able to maintain a safe
distance from the vehicles. The minimal distance, shown in table 5.1, was never
smaller than 0.5 m, and most of these minimal distances were achieved after the
vehicle crossed the robot’s path. Therefore, there was no danger of collision even
if the vehicle performed some unexpected maneuver.

Scenario 1 21 | 22 | 23 3 4.1 | 4.2 5
Minimal distance [m] || 0.54 | 1.74 | 1.00 | 0.63 | 1.01 | 0.74 | 0.52 | 0.85

Table 5.1: Minimal distance between the robot and vehicles in the simulation
experiments.

Another two parameters of the metric are the ratio of time it would take to
cross the empty road to the time of the crossing in the simulated environment
and whether the robot crossed the road. The time ratio is calculated with the
following equation

At — tsimulated

(5.1)
tempty

These two parameters are shown in table 5.2.

Scenario 1 2.1 | 2.2 2.3 3 4.1 4.2 5
Time ratio At || 1.53 | NA | 1.71 | 1.07 | 2.36 | 1.34 | 2.61 | 1.35
Crossed Yes | No | Yes | Yes | Yes | Yes | Yes | Yes

Table 5.2: Simulation experiment results showing the time ratio and successful
crossing parameters of the metric.
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5.2. Algorithm behavior experiments

In all except one scenario, the robot was able to finish the crossing. However,
scenario 2.1 was specifically designed for the robot not to be able to cross the
road. It is also evident that the At is highly relative as this parameter depends
on the traffic and the velocity margin gap we imposed on the robot.

Table 5.3 shows the metric’s last two parameters.

Scenario ;{iﬁ;gg Colil/[tiici;g Start time change [s]
Scenario 1 6.36 1.16 —6.38, —4.22
Scenario 2.1 NA NA NA
Scenario 2.2 4.28 1.14 —-3.15
Scenario 2.3 NA NA NA
Scenario 3 4.46 1.47 —3.46, —2.55
Scenario 4.1 3.41 1.24 —3.65, 7.99
Scenario 4.2 1.96 1.17 —16.45, —5.27
Scenario 5 2.72 0.88 —4.94, —2.51, —4.49

Table 5.3: Calculated values for time to contact and start time change for the
simulation experiments.

There are two scenarios where the answer is NA (not answered). In scenario 2.1,
the robot did not start moving, and in scenario 2.3, no vehicle crossed the robot’s
path. Calculating the result for either of these scenarios is nonsensical.

The results for the time to contact indicate that the robot would be able to react
and avoid a collision even in the case of an unexpected stop of the vehicle. The
minimal values are all above 0.8 s, and with the expected rate of detection node
being 5 Hz, it would have enough time to adapt. This is true even when we take
into consideration the latency of obtaining the data from the detection node. We
do not expect this latency to be higher than 0.2 s, which would still provide about
0.4 s for the robot to react.

Interpretation of the results for the start time change is straightforward. The robot
starts moving at the time ¢ = 0. The negative values mean the robot must start
earlier to collide, and the positive values indicate the robot must start later. The
calculated times correspond to the velocities the robot had during the successful
crossings. Each result in a scenario is associated with a specific vehicle, and their
order is determined by their ID.

B 5.2.4 Interesting points from trajectories

We will show some interesting points from the trajectories of the movement of
the robot and the vehicles. The parts we will show were when the robot began
its movement, figure 5.15, and got closest to the vehicle, figure 5.16. We will not
show the starts in scenarios 2.1 and 2.3, as in scenario 2.1 the robot never began
its movement, and in 2.3 it started immediately.

The points shown as trajectories are the centers of the objects. In the vehicle
trajectories, it is evident that most of the experiments contained a vehicle detection
error.
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Figure 5.15: Start of the robot’s movement in the simulation experiments.
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Figure 5.16: The places of the minimal distance between the robot and vehicle in
the simulation experiments.
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Chapter 6

Real-world experiments

We designed and implemented the algorithm to be used by robots in real-world
missions and applications. Therefore, real-world experiments played a vital role
in ensuring our algorithm’s implementation can perform in the real world. For
this reason, multiple experiments were conducted to test the performance of our
algorithm.

The experiments were conducted in a controlled environment, with the robot
crossing the road at a pre-defined location. For our experiments, we used the
robot Spot from Boston Dynamics. As the detection node was not a part of this
thesis and was not finished when the experiments took place, we had to use a
different method to simulate the detection of vehicles.

. 6.1 Simulation of vehicle detection node

For simulating the detection of vehicles, we opted to use a detector of AprilTags.
AprilTags are a type of fiducial markers that are used for localization and pose
estimation. They are specifically designed to be easily detectable by cameras. We
used the tagl6hb family, and the tag used to represent the vehicle is shown in
figure 6.1.

For the detection of the AprilTag, we used the apriltag ros package'. This

Figure 6.1: AprilTag used for simulating the detection of vehicles.

package provides a ROS node, which subscribes to the image topic and publishes
the pose of the detected AprilTags.

"https://github. com/AprilRobotics/apriltag_ros
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6. Real-world experiments

A node to transform the pose from the camera frame to the body frame of the
robot was also implemented. This node’s other task was to take the transformed
pose and convert it to the vehicle information necessary for our algorithm. The
calculation of the velocity and acceleration of the vehicle was done only from the
current and previous measurements.

B 6.2 Experimental setup

The experiments were performed in the courtyard of our faculty. The robot was
placed at the edge of the sidewalk, which served the purpose of a road the robot
should cross. The map of the experimental area with the initial position of the
robot is shown in figure 6.2.

In experiments containing the detection of vehicles, the AprilTag was carried by
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Figure 6.2: Map of the experimental area taken from OSM.

the thesis supervisor alongside the road.

For all experimental setups, the width of the road was set to 6 m. And the width
and length of the detected vehicle were set to 1 m and 2 m respectively.

The maximal number of vehicles in the experiments was set to 1. This was done
to simplify the experiments, as the detection of multiple AprilTags would require
a more complex setup.
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B 6.3 Conducted experiments

Due to the limited time and resources, we could only conduct a limited number of
experiments. The experiments were conducted in two phases. In the first phase,
we tested the algorithm without any vehicles present. In the second phase, the
vehicles were introduced into the environment.

B 6.3.1 Experiments without vehicles

The first phase was designed to test the algorithm without any vehicles present.
The goal of this phase was to ensure that the robot could cross the road, meaning
that the algorithm was able to control the movement of the robot.

As a part of the algorithm, where the robot is being positioned perpendicular to
the road, could not be tested in simulations, we tested it extensively as a part of
these experiments. We were unable to test it in the simulation experiments as the
simulation of the magnetometer was not functional.

Results

We started with the robot angled away from the ideal position, figure 6.3a. The
robot was able to rotate itself to reach the ideal perpendicular position, figure
6.3b. After reaching the perpendicular position, the robot was able to cross the
road and stop at the other side, figure 6.3d.

The algorithm successfully determined the correct azimuth for the robot and

P I

i

(a) : Initial position. (b) : Perpendicular position.

Bomcg N R0 R RN

(c) : Robot during the crossing. (d) : Final position.

Figure 6.3: Photos from the experiment without vehicles.

rotated it to reach the position. The robot was able to cross the road and evaluate
its position to determine that it had reached the other side. The trajectory of the
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robot is shown in figure 6.4.
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Figure 6.4: Trajectory of the robot during the experiment without vehicles, the
robot’s position is shown with odometry and gps (fix) data.

B 6.3.2 Experiments with vehicles

In the second phase, we tested the algorithm with vehicles present. The goal
was to test the algorithm in a more realistic scenario. We wanted to test the
decision-making of the algorithm with real-world data from the detection node.

These experiments were more challenging as we had to troubleshoot the detection
node. The implementation and functionality of the detection node were not a
part of this thesis, and the time for its development was limited. We were able to
conduct only one successful experiment with the detection node, as the detection
node could not consistently detect the AprilTag in the other experiments. Given
the constraints on the time available, fixing the detection node to conduct more
experiments was not feasible. Furthermore, the omission of a result from the
successful experiment was not intentional, as it was not presumed that only a
solitary experiment would succeed. Therefore the experiment was not recorded.

B 6.3.3 Evaluation of the experiments

The performed experiments were successful in testing the algorithm’s ability to
use real data. The robot was able to utilize data from GNSS and magnetometer
to determine its position and orientation. Furthermore, providing the detection
data were available, the robot was able to interpret them correctly.

The experimental verification demonstrated the algorithm’s effective control over
the robot’s movement. Rigorous testing of the safety measures was not possible,
however, from the observed behavior, we could conclude that they are functional,
but not if they are optimal.
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Chapter 7

Discussion

The challenge of robot navigation in urban environments is a widely acknowledged
and extensively studied problem within the field of autonomous robotics. However,
the specific challenge of autonomous road crossing for robots is more specialized,
resulting in a comparatively limited body of research in this domain. In this
chapter, we will explore the existing literature and relevant works in the field of
road crossing by autonomous agents.

Most of the research in the field of autonomous crossing concentrates on the
challenge of crossing the road at a pedestrian crossing. These studies encompass
both pedestrian crossings with and without traffic lights.

Chand and Yuta proposed a solution for navigation and path planning of road
crossing for robots in urban areas [22]. The proposed navigation strategy was sep-
arated into four phases. The first phase being sidewalk detection and navigation.
In this phase, the robot moved along the sidewalk and navigated past obstacles.
The second phase was navigation toward the push button. As these buttons are
only found at crossings, it was used to navigate the robot to it. The third phase
was approaching the crossing. The use of previously recorded positional data was
used to determine the position of the crossing. The fourth and final phase was the
crossing itself. The robot used a camera to detect the traffic lights and determine
the path during the crossing maneuver.

The work by Radwan et al. relies on laser and radar data to teach a Random Forest
classifier to predict the safety of crossing the road [23]. During the evaluation
of the crossing’s safety, the robot gathered data from sensors over a short time
interval. It then used the learned classifier to determine whether it was safe to
cross the road. While this study provides a complete, robust, and reliable safety
prediction, the result is a binary decision. No control algorithm was proposed or
designed to facilitate the movement.

In [24], Baker and Yanco utilize a vison-based system to determine the traffic situ-
ation. Their solution uses two cameras with a view to the sides to detect incoming
traffic and determine the safety of the crossing. The tracking of traffic situations is
also performed during the crossing maneuver. Since this work was carried out for
assistive robots, which could be installed in wheelchairs, it was designed assuming
the crossing would occur at a designated pedestrian crossing. This paper only
presents an algorithm for vehicle tracking without the implementation of a control
algorithm. Moreover, the tracking algorithm assumes the velocity of the vehicles
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7. Discussion

is constant.

There are also several works regarding the safe crossing of an intersection by
autonomous vehicles. While these works are not directly applicable to the problem
of crossing the road by a robot, they do provide some insight into the issue of
autonomous maneuvering in an urban environment regarding the determination
of the safety of the crossing.

The use of communication between vehicles, traffic structures, and traffic lights
could be used to enable and improve autonomous operation. This approach, with
its possibilities and drawbacks, was explored by Torres and Malikopoulos in [25].
Moreover, the communication between vehicles and traffic infrastructure could
be utilized by robots to allocate the right of way for the crossing. Autonomous
cooperative driving was also explored by Lee and Park in [26] and Campos et al.
in [27].

Approaches to autonomous crossing of intersections without vehicle-to-vehicle
communication were also explored. In [28], the authors present a general-purpose
multi-sensor tracking algorithm using a classifying multiple-model PHD filter.

In contrast to the aforementioned works, which primarily focused on sensor
selection and data processing techniques or were capable of crossing only if specific
requirements were met, our primary focus was the development of universal control
algorithm facilitating the crossing maneuver.

The designed control algorithm is universal in the sense that it does not require
specific sensors. It can utilize any sensor or combination of sensors. The only
requirement is that the output of the data processing is in the form of vehicle
data, i.e., position, velocity, and acceleration. The results of different crossing
safety prediction algorithms can also be used as input.

The algorithm is also universal in the sense that it can be used for crossing at
any location. It is, therefore, not only limited to designated pedestrian crossings.
This allows for autonomous robotic applications in a broader range of urban
environments.

The problem of autonomous road crossing is complex, requiring not only suf-
ficient sensor data and processing but also a robust and reliable control algorithm.
Another important aspect is the safety of the robot and its surroundings. There-
fore, it is vital to ensure that all necessary safety measures are in place.
Henceforth, there is a need for a legal framework to regulate the operation of
autonomous agents in urban environments and public spaces. This framework
should ensure the safety of the agent and its surroundings while also allowing for
the development of new technologies. The responsibilities of the agent and the
human operator should be clearly defined as well.

Until such framework is in place, the deployment of autonomous agents will be
limited to controlled environments, such as factories and warehouses.
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Conclusion

In this thesis, our objective was to design, implement, and evaluate an algorithm
for safely crossing public roads with a middle-sized mobile robot. After evaluating
various development approaches, we used a behavior tree as the main control
algorithm structure. This decision allowed us to create a modular and flexible
algorithm that can be easily modified or extended.

The algorithm was designed to fulfill three main tasks: determining the suitable
position for crossing, changing the location if necessary, and executing the crossing
maneuver itself. The implementation involved utilizing the C++ and Python
programming languages, with C++ handling the robot’s maneuvering tasks and
Python managing map-related tasks. It is worth mentioning that the navigation
to a better position for crossing still needs to be implemented and remains open
for future work.

To evaluate the algorithm’s performance, we proposed a metric to determine
its suitability and optimality. We conducted tests both in simulation and in a
real-world environment away from public roads. Simulation tests took place in the
Gazebo Classic simulator, while the real-world experiments were in a controlled
environment under the supervisor’s supervision. However, one limitation we
encountered was the absence of a vehicle detection node, preventing us from
testing the algorithm with actual vehicles.

The results of the experiments demonstrated that the algorithm successfully
executed the crossing maneuver in a safe manner. Additionally, it displayed
adaptability to changes in the environment and exhibited robustness in handling
certain errors that may occur in the vehicle detection node.

Overall, the developed algorithm showcases promising potential for the safe
crossing of public roads with a middle-sized mobile robot. Future work could
focus on implementing the remaining task from the design stage and perform
further testing of the algorithm with real vehicles to enhance its practicality and
real-world applicability.

The work we performed aims to enable the use of mobile robots in real-world
environments. We believe the results will contribute to the development of
autonomous robots and their use in missions that are too dangerous or repetitive
for humans. Before the deployment of such robots, further research and testing is
required, as well as the need for a legal framework to regulate their use in public
spaces.
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Appendix A

Data structures

. A.1 C++ structures

Listing A.1: Vehicle data structure

struct vehicle_info {
int id;
double x_ pos;
double y_ pos;
double x_dot;
double y_ dot;
double x_ddot;
double y_ddot;
double length;
double width;

I

struct vehicles_data {
int num_ vehicles;
std:: vector<vehicle info> data;

}s

Listing A.2: Collision data structure

struct collision_info {
int car_id;
double v front;
double v_ back;
bool collide;
bool collide_stop;
H
struct collisions data {
int num_ collisions;
std:: vector<collision__info > data;

}s
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A. Data structures
B A2 ROS messages

Listing A.3: Start message file
Header header

bool wvalid
bool start

Listing A.4: Injector message file
Header header

# Clear data
bool clear

# Vehicle identifier
int64 veh id

# Position of the vehicle
float64 easting
float64 northing

# Velocity of the vehicle
float64 x dot
float64 y_dot

# Acceleration of the vehicle
float64 x ddot
float64 y_ ddot

# Vehicle dimensions
float64 length
float64 width

# Vehicle orientation
float64 phi
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Appendix B

Libraries

This chapter will specify the libraries we used in our code. We will provide a short
description of the library alongside a link to the library and specify the version
we are using. We will divide the libraries by the programming language they are
written for.

B B.1 C: libraries

behaviortree-cpp-v3

This library provides us with the tools to implement and run a behavior tree. We
used it in version 3.8.

It is available at https://github.com/BehaviorTree/BehaviorTree.CPP and
has two versions of the documentation. The first one is older at [10] and the
second newer one is at [11].

GeographicLib

This library provides us with the tools to convert between different coordinate
systems. We used it in version 2.2.

It is available with documentation at [29].

B B.2 Python libraries

Overpy
This library is used to access the OSM Overpass API. We used it in version 0.6.
It is available at https://github.com/DinoTools/python-overpy.

Shapely
This library is used to work with geometric objects. We used it in version 1.8.2.
Documentation for this library is available at [30].

Numpy

This library is used for mathematical operations and batch operations on data.
We used it in version 1.22.4.

More information alongside the library’s documentation is available at [31].
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B. Libraries

Utm
This library provides bidirectional conversions between UTM and WGS84 coordi-

nate systems. We used it in version 0.7.
It is available at https://github.com/Turbo87/utm.

66


https://github.com/Turbo87/utm

1]

[10]

[11]

Appendix C
Bibliography

M. Colledanchise and P. Ogren. Behavior Trees in Robotics and Al: An
introduction. CRC Press, 2018. I1SBN: 9781138593732.

Mohamad Bdiwi et al. “Towards safety4.0: A novel approach for flexible
human-robot-interaction based on safety-related dynamic finite-state ma-
chine with multilayer operation modes”. In: Frontiers in Robotics and AI 9
(Sept. 2022), p. 1002226. DOI: 10.3389/frobt.2022.1002226.

Richard Balogh and David Obdrzalek. “Using Finite State Machines in In-
troductory Robotics: Methods and Applications for Teaching and Learning”.
In: Jan. 2019, pp. 85-91. 1SBN: 978-3-319-97084-4. por1: 10.1007/978-3-
319-97085-1_09.

Magnus Olsson. “Behavior Trees for decision-making in Autonomous Driv-
ing”. In: 2016.

Matteo Iovino et al. “A survey of Behavior Trees in robotics and AI”. In:
Robotics and Autonomous Systems 154 (2022), p. 104096. 1sSN: 0921-8890.
DOI: 10.1016/j.robot.2022.104096.

OpenStreetMap Wiki. Main Page — OpenStreetMap Wiki, [Online]. 2022.
URL: https://wiki.openstreetmap.org/w/index .php?title=Main_
Page.

voretaq7. What is the difference between azimuth and heading? Aviation

Stack Exchange. (version: 2017-04-13), [Online]. URL: https://aviation.
stackexchange.com/a/24901.

Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In:
ICRA workshop on open source software. Vol. 3. 3.2. Kobe, Japan. 2009,
p- 5.

Razan Ghzouli et al. Behavior Trees and State Machines in Robotics Ap-
plications. 2022. DOI: 10.48550/ARXIV.2208.04211. URL: https://arxiv.
org/abs/2208.04211.

Davide Faconti and Eurecat. BehaviorTree. CPP documentation. Version 3.8.
[Online]. 2022. URL: https://behaviortree.github.io/BehaviorTree.
CPP/.

Auryn Robotics. BehaviorTree. CPP documentation. Version 4.0.1. [Online].
2023. URL: https://www.behaviortree.dev/.

67


https://doi.org/10.3389/frobt.2022.1002226
https://doi.org/10.1007/978-3-319-97085-1_9
https://doi.org/10.1007/978-3-319-97085-1_9
https://doi.org/10.1016/j.robot.2022.104096
https://wiki.openstreetmap.org/w/index.php?title=Main_Page
https://wiki.openstreetmap.org/w/index.php?title=Main_Page
https://aviation.stackexchange.com/a/24901
https://aviation.stackexchange.com/a/24901
https://doi.org/10.48550/ARXIV.2208.04211
https://arxiv.org/abs/2208.04211
https://arxiv.org/abs/2208.04211
https://behaviortree.github.io/BehaviorTree.CPP/
https://behaviortree.github.io/BehaviorTree.CPP/
https://www.behaviortree.dev/

C. Bibliography

[12] OpenStreetMap Wiki. Overpass API — OpenStreetMap Wiki, [Online]. 2023.
URL: https://wiki.openstreetmap.org/w/index.php7title=0verpass_
APT.

[13] Thinal Raj et al. “A Survey on LiDAR Scanning Mechanisms”. In: Electronics
9.5 (2020). 18SN: 2079-9292. URL: https://www.mdpi.com/2079-9292/9/
5/741.

[14] Bikramjit Banerjee. “Autonomous Acquisition of Behavior Trees for Robot
Control”. In: 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2018, pp. 3460-3467. DOI: 10. 1109/ IR0OS . 2018 .
8594083.

[15] Michal Bednatik. Fyzika 1 pro Kybernetiku a robotiku. Equation 5.43. skripta
CVUT FEL, 2021, p. 36.

[16] Jan VIk. Road crossing cost algorithm. [Online]. 2022. URL: https://github.
com/ctu-vras/gps-navigation/blob/dev_road_crossing/osm_path/
scripts/Road%20crossing}20docs/road_crossing_algorithm.pdf.

[17] ZABAGED - planimetric components — introduction. https://geoportal.
cuzk . cz/ (S(dcpfeiOnmxcwgoedfrurwfgm) ) /Default . aspx 7 lng=EN&
mode=TextMeta&text=dSady_zabaged&side=zabaged&menu=24. [Online].

[18] Kyle. Finding the shortest distance between two angles. Stack Overflow.
(version: 2021-04-08), [Online]. URL: https://stackoverflow. com/a/
28037434.

[19] Tully Foote and Mike Purvis. Standard Units of Measure and Coordinate
Conventions. https://www.ros.org/reps/rep-0103.html. 2010.

[20] Nayanesh Gupte. Calculate angle between two Latitude/Longitude points.
Stack Overflow. (version: 2018-03-20), [Online]. URL: https://stackoverflow.
com/a/18738281.

[21] John P. Snyder. Map projections: A working manual. U.S. Government
Printing Office, 1987, p. 48. DOI: 10.3133/pp1395.

[22] Aneesh Chand and Shin’ichi Yuta. “Navigation strategy and path planning
for autonomous road crossing by outdoor mobile robots”. In: 2011 15th
International Conference on Advanced Robotics (ICAR). 2011, pp. 161-167.
DOI: 10.1109/ICAR.2011.6088588.

[23] Noha Radwan et al. “Why did the robot cross the road? — Learning from
multi-modal sensor data for autonomous road crossing”. In: 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2017,
pp. 4737-4742. DOT: 10.1109/IR0S.2017.8206347.

[24] M. Baker and H.A. Yanco. “Automated street crossing for assistive robots”.
In: 9th International Conference on Rehabilitation Robotics, 2005. ICORR
2005. 2005, pp. 187-192. DOI: 10.1109/ICORR.2005.1501081.

68


https://wiki.openstreetmap.org/w/index.php?title=Overpass_API
https://wiki.openstreetmap.org/w/index.php?title=Overpass_API
https://www.mdpi.com/2079-9292/9/5/741
https://www.mdpi.com/2079-9292/9/5/741
https://doi.org/10.1109/IROS.2018.8594083
https://doi.org/10.1109/IROS.2018.8594083
https://github.com/ctu-vras/gps-navigation/blob/dev_road_crossing/osm_path/scripts/Road%20crossing%20docs/road_crossing_algorithm.pdf
https://github.com/ctu-vras/gps-navigation/blob/dev_road_crossing/osm_path/scripts/Road%20crossing%20docs/road_crossing_algorithm.pdf
https://github.com/ctu-vras/gps-navigation/blob/dev_road_crossing/osm_path/scripts/Road%20crossing%20docs/road_crossing_algorithm.pdf
https://geoportal.cuzk.cz/(S(dcpfei0nmxcwgoe4frurwfgm))/Default.aspx?lng=EN&mode=TextMeta&text=dSady_zabaged&side=zabaged&menu=24
https://geoportal.cuzk.cz/(S(dcpfei0nmxcwgoe4frurwfgm))/Default.aspx?lng=EN&mode=TextMeta&text=dSady_zabaged&side=zabaged&menu=24
https://geoportal.cuzk.cz/(S(dcpfei0nmxcwgoe4frurwfgm))/Default.aspx?lng=EN&mode=TextMeta&text=dSady_zabaged&side=zabaged&menu=24
https://stackoverflow.com/a/28037434
https://stackoverflow.com/a/28037434
https://www.ros.org/reps/rep-0103.html
https://stackoverflow.com/a/18738281
https://stackoverflow.com/a/18738281
https://doi.org/10.3133/pp1395
https://doi.org/10.1109/ICAR.2011.6088588
https://doi.org/10.1109/IROS.2017.8206347
https://doi.org/10.1109/ICORR.2005.1501081

[26]

[27]

C. Bibliography

Jackeline Rios-Torres and Andreas A. Malikopoulos. “A Survey on the
Coordination of Connected and Automated Vehicles at Intersections and
Merging at Highway On-Ramps”. In: IEEE Transactions on Intelligent
Transportation Systems 18.5 (2017), pp. 1066-1077. por: 10.1109/TITS.
2016.2600504.

Joyoung Lee and Byungkyu Park. “Development and Evaluation of a Coop-
erative Vehicle Intersection Control Algorithm Under the Connected Vehicles
Environment”. In: IEEFE Transactions on Intelligent Transportation Systems
13.1 (2012), pp. 81-90. DOI: 10.1109/TITS.2011.2178836.

Gabriel Rodrigues de Campos, Paolo Falcone, and Jonas Sjoberg. “Au-
tonomous cooperative driving: A velocity-based negotiation approach for
intersection crossing”. In: 16th International IEEE Conference on Intel-
ligent Transportation Systems (ITSC 2013). 2013, pp. 1456-1461. DOI:
10.1109/ITSC.2013.6728435.

Daniel Meissner et al. “Intersection-Based Road User Tracking Using a
Classifying Multiple-Model PHD Filter”. In: IEEFE Intelligent Transportation
Systems Magazine 6.2 (2014), pp. 21-33. DOI: 10.1109/MITS.2014.2304754.

Charles F. F. Karney. GeographicLib. Version 2.2. [Online]. URL: https:
//geographiclib.sourceforge.io/C++/doc/index.html.

Sean Gillies. The Shapely User Manual. Version 2.0.1. [Online]. 2023. URL:
https://shapely.readthedocs.io/en/stable/manual .html.

NumPy Developers. NumPy documentation. Version 1.24. [Online]. 2022.
URL: https://numpy.org/doc/stable/.

69


https://doi.org/10.1109/TITS.2016.2600504
https://doi.org/10.1109/TITS.2016.2600504
https://doi.org/10.1109/TITS.2011.2178836
https://doi.org/10.1109/ITSC.2013.6728435
https://doi.org/10.1109/MITS.2014.2304754
https://geographiclib.sourceforge.io/C++/doc/index.html
https://geographiclib.sourceforge.io/C++/doc/index.html
https://shapely.readthedocs.io/en/stable/manual.html
https://numpy.org/doc/stable/

	Introduction
	Used abbreviations

	Theoretical background
	Behavior trees
	Commonly used nodes
	Graphical representation of BTs
	BT example
	Other used BT nodes
	Common BT structures

	Finite-state machines
	FSM example

	Hierarchical FSMs
	Comparison and chosen approach
	Maps and orientation

	Used hardware and software
	Software
	Hardware for real-world experiments
	Robots
	Sensors

	Simulation environment

	Behavior tree algorithm structure
	Creating a behavior tree structure
	Structure hierarchy – Main BT
	Init BT
	Perpendicular BT
	Crossing BT
	Crossing BT sub-trees


	Nodes implementation
	Behavior tree nodes
	Introduction
	Main BT
	Init BT
	Perpendicular BT
	Crossing BT

	Auxiliary functions
	Road cost algorithm
	Mathematical functions
	Geographical functions
	Contextual information and score

	ROS specific functions
	ROS services
	ROS nodes and messages


	Simulation experiments
	Algorithm functionality experiments
	Algorithm behavior experiments
	Used metrics
	Simulation scenarios and results
	Evaluation of the results
	Interesting points from trajectories


	Real-world experiments
	Simulation of vehicle detection node
	Experimental setup
	Conducted experiments
	Experiments without vehicles
	Experiments with vehicles
	Evaluation of the experiments


	Discussion
	Conclusion
	Data structures
	C[4]++ structures
	ROS messages

	Libraries
	C[4]++ libraries
	Python libraries

	Bibliography

