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Abstract

This thesis introduces an autonomous
chess-playing robotic manipulator utiliz-
ing computer vision methodologies for
chessboard detection. We delve into the
design of the robot, capable of playing a
game of chess against human opponents,
and discuss various implementation ap-
proaches. We introduce a robust detection
system for the chessboard, the individual
pieces and the playerŠs move. This system
empowers the robot to operate under var-
ious lighting conditions, utilizing a single
non-static RGB camera mounted on the
robotŠs frame. Furthermore, we outline
the methodologies used to generate syn-
thetic and real-world datasets essential
for machine learning processes.

Keywords: autonomous robot, chess,
computer vision, chess piece recognition,
synthetic data generation

Supervisor: Ing. Martin Hlinovský,
Ph.D.
ČVUT v Praze,
Fakulta elektrotechnická,
Katedra řídicí techniky,
Karlovo náměstí 13,
121 35 Praha 2

Abstrakt

Tato diplomová práce představuje auto-
nomní šachový robotický manipulátor vy-
užívající metod počítačového vidění k de-
tekci šachovnice. Věnujeme se návrhu ro-
bota schopného hrát šachy proti lidským
oponentům a diskutujeme různé přístupy
implementace. Představujeme spolehlivý
detekční systém šachovnice, jednotlivých
Ągurek a tahů hráče. Tento systém umož-
ňuje robotu fungovat za různých světel-
ných podmínek s využitím jedné nesta-
tické RGB kamery umístěné na rámu ro-
bota. Dále popisujeme metody použité k
vytváření syntetických a reálných data-
setů nezbytných pro procesy strojového
učení.

Klíčová slova: autonomní robot, šachy,
počítačové vidění, rozpoznávání
šachových Ągurek, generování
syntetických dat

Překlad názvu: Návrh a realizace
autonomního robota hrajícího šachy
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Chapter 1

Introduction

Chess, an ancient strategic board game with origins tracing back over a
millennium, has always been a testament to human intellect, strategy, and
the ability to foresee the opponentŠs move. Two players face off on an 8x8
grid chessboard, each commanding 16 pieces. The game offers 6 distinct types
of pieces, each with unique movement capabilities and strategic value. The
ultimate objective of both players is to dismantle the opponentŠs defences
and expose their king to inescapable danger.

Over the centuries, chess evolved from a game cherished by nobility to a
universally recognized sport played by the masses. Competitions emerged
in which players optimize every move of the vast strategic landscape. The
gameŠs complexity made it an object of intensive study and admiration.

With the dawn of the computer age in the mid-20th century, the exploration
of chess strategies began transitioning to the digital realm. For computer
scientists, the game of chess became a benchmark for the performance of
algorithms in reasoning, pattern recognition, and decision-making. Naturally,
humanity began to ponder whether a computer algorithm could ever match
or even surpass human intellect and defeat a human player in a game of chess.

This groundbreaking moment came to pass in 1997 when IBMŠs supercom-
puter, Deep Blue, bested the former world chess champion, Garry Kasparov
[1]. This match marked a pivotal moment in human history when a machine
crafted by humans triumphed over the human intellect, symbolically defeating
its creator. Since then, advances in computing and chess algorithms enabled
people to challenge a virtual chess grandmaster on their personal mobile
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1. Introduction .....................................
devices.

However, humanityŠs defeat in the game of chess did not mark the end of our
pursuit of knowledge. In the world of computer chess, a new frontier emerged,
transitioning from the realm of virtual chessboards and computer screens to
tangible reality. The objective now extends beyond crafting an algorithm
that generates moves to designing a platform that physically executes these
moves, interacting with both its environment and the human opponent. This
introduces new challenges from the realms of robotics and computer vision,
which are the main focus of this thesis.

1.1 Previous work

Chess has long held humanityŠs fascination, not only as a game of intellect
but also in the domain of automation. In the late 18th century, the world
was introduced to the "Mechanical Turk", a supposed automaton created by
Wolfgang von Kempelen. This chess-playing machine wowed audiences across
Europe, though it concealed a human player secretly directing its moves. A
notable step forward came with "El Ajedrecista" in the early 20th century.
Designed by Leonardo Torres Quevedo, it was one of the Ąrst true automated
chess players, capable of managing a speciĄc endgame scenario.

The drive to develop autonomous chess-playing machines intensiĄed with
the dawn of the computer and robotics era. Various solutions emerged, each
showcasing diverse levels of complexity and success. However, as highlighted in
[2], "A number of existing implementations of chess-playing robots exist in the
literature. However, there are often a number of signiĄcant constraints that
simplify the problem greatly.". Any superĆuous conditions inevitably limit
the systemŠs applicability in real-world settings or increase its deployment
cost. The most common simpliĄcations found in various implementations
include:..1. Fixed Chessboard and Camera: Many systems utilize a permanently

Ąxed camera and chessboard setup [3, 4, 5], often eliminating the need
for chessboard detection. In some implementations, the user must cal-
ibrate the system at the start of each game by manually marking the
chessboardŠs corners in the graphical user interface [6]. This setup allows
the use of basic image recognition methods like image subtraction, signif-
icantly simplifying the task of chess piece detection and hand detection...2. Top-Down Camera View: This perspective is favoured by many [3, 4, 5]
as it simpliĄes board recognition. Pieces do not occlude the gridlines

2



.................................... 1.1. Previous work

nor the edges of the chessboard. The pieces are not distorted and do
not overlap, making identiĄcation based on attributes like diameter or
colour more straightforward...3. Controlled Environment: Some systems need to operate in a controlled
environment to mitigate issues caused by improper lighting conditions
[3, 4, 7]. Shadows from spectators, players and chess pieces can cast
sharp shadows that further complicate the image recognition task...4. ModiĄed chessboards: Expensive digitization boards, or boards with
integrated sensor arrays, can be used to detect or even classify pieces
on board reliably [8]. To ad computer vision recognition, some systems
utilize contrasting chessboards with pieces of distinct colours [4, 7]...5. ModiĄed chess pieces: Special piece shapes and pieces with embedded
magnets are also employed for easier robotic grasping...6. Advanced sensors: Depth cameras, stereo cameras or LIDARs have been
employed in some systems [9].

Numerous studies have delved into the challenges of autonomous chess-
playing robots, but often, they concentrate on particular facets of this complex
system. One of the frequent focal points is chessboard state recognition
through a camera, which, under unrestricted conditions, is still considered a
very challenging computer vision task, and a universal and reliable solution
is still yet to be found.

In [2], a humanoid robot capable of playing chess against human opponents
is introduced. They utilize Canny edge detection for piece detection, which
leads to issues with sharp shadows and doesnŠt allow for identifying the type
of piece. They highlight the limitations of using a collaborative robot, which
requires approximately 45-90 seconds to execute a move. Their implementa-
tion is one of the few that doesnŠt require a Ąxed position of the chessboard
relative to the robot.

In studies [10] and [11], the authors focus on creating a synthetic chess
dataset. Both papers train neural networks on the generated dataset, achiev-
ing excellent chess piece recognition capabilities.

The study [12] introduces a robust corner-based method for detecting
partially occluded checkerboard patterns. The presented system can identify
the chessboard even in images with low resolution or lens distortion. In study
[13], a system coupling line-based and corner-based chessboard detection is
introduced, which can reliably detect chessboard even at a lower-angle view.

3



1. Introduction .....................................
In conclusion, while there have been signiĄcant advancements in the domain

of chess-playing robots and chessboard recognition, many systems still rely on
various simpliĄcations to achieve their objectives. The challenge remains to
develop a system that can operate in real-world settings without compromising
on the authenticity of the chess-playing experience.

1.2 Introduction of the implemented system

This thesis introduces an autonomous robotic system developed to play
chess against a human opponent. Initially, this project was conceived as a
technological demo to represent CTU at public events. For this reason, we
set ourselves strict limiting conditions:

• For image detection, we utilize a monocular RGB camera mounted
directly to the robotŠs frame. This setup confronts us with challenges of
image distortion, autofocus failures, over-exposure, and high dynamic
range (HDR) effects.

• We employ a standard, unmodiĄed, wooden chessboard with low contrast
between chess pieces and squares, signiĄcantly complicating all computer
vision-related tasks. Furthermore, the chessboard lacks well-deĄned
edges between the individual squares.

• To ensure the systemŠs reliability in dynamic environments, weŠve im-
plemented a robust system for recognizing the opponentŠs moves. This
employs a combination of chessboard, chess piece, and hand detection
algorithms. The environment in which the robot operates is very chal-
lenging from the computer vision standpoint as it often contains moving
shadows and Ćashing lights.

• From a robot-human interaction perspective, it was desirable that the
robotŠs design did not obstruct the view of the chessboard. Furthermore,
we aimed for the robot to autonomously recognize the progression and
completion of a playerŠs move, enabling Ćuid gameplay without the need
for explicit user signalization. WeŠve also integrated a graphical user
interface (GUI) that displays the gameŠs current status.

The implemented system is segmented into three main modules: the chess-
playing robot, the control computer, and the graphical user interface. A robust
communication layer connects all modules, ensuring the systemŠs functionality
even with unstable connectivity. Our robotic system is illustrated in Figure
1.1.

4



..................................1.3. Outline of the work

Figure 1.1: The autonomous chess-playing robot introduced in this thesis, along
with the used wooden chess set.

1.3 Outline of the work

Chapter 2 delves deeper into the robotŠs design, elucidating its hardware
components, their integration, and the rationale behind each decision. We
introduce a unique dual-rotational gripper solution and familiarize the reader
with the challenges encountered during the development.

Chapter 3 provides an in-depth discussion of computer vision techniques
for detecting the chessboardŠs state from camera imagery. In Section 3.1, we
introduce methods for chessboard detection, while the subsequent Section
3.2 explores dataset generation techniques and piece recognition strategies.
Section 3.3, dedicated to player move detection, integrates the gathered
insights and presents a system capable of Ćawlessly tracking an entire chess
game. Section 3.4 enhances the systemŠs robustness by implementing a
hand-detection feature for end-of-move recognition.

Chapter 4 details our implementation. We introduce the system as a whole,
discussing its components and the communication among them. We introduce

5



1. Introduction .....................................
our implemented collision-free motion planning technique, the algorithms
for the control computer, and the algorithm powering the robot itself. This
chapter concludes by presenting the graphical user interface we developed.

In Chapter 5, we evaluate the outcomes of this thesis and showcase the
robot in action.

Finally, in Chapter 6, we summarize our efforts and set the direction for
future research and enhancements.

All the results presented in this work were obtained using a computer with
the following speciĄcations (unless stated otherwise): AMD Ryzen 7 6800HS
CPU, 32GB DDR5 RAM, NVIDIA GeForce RTX 3070 Ti (120W laptop
edition) GPU, Pop!_OS 22.04.

6



Chapter 2

Design, construction and hardware

implementation

The design and construction of the Chess-Playing Robot is a complex task
that starts with carefully evaluating different mechanical structures (Figure
2.1). We have to consider the key functional requirements - the robot must
be capable of identifying pieces and executing precise movements to pick
and place pieces while navigating around obstacles (other pieces) on the
chessboard. We have already set several requirements for this thesis in
chapter 1.2. Adding to the complexity, the thesis supervisor has outlined
two speciĄc constraints: the robot must be constructed primarily from parts
included in the LEGO® Mindstorms® Education 45544/45560 sets, and the
robot must be capable of holding two chess pieces simultaneously, simulating
human-like captures.

Figure 2.1: Overview of most common mechanical structure types for robotic
manipulators. (P = prismatic joint, R = revolute joint)

These constraints impose unique challenges on the design process. The
use of ABS plastic, the primary material of the robotŠs body, introduces
a considerable degree of Ćexibility, which reduces the movement accuracy
signiĄcantly. The robotŠs structure is further constrained by the limited power
and precision of the available actuators. Due to these reasons, most of the
mechanical structures depicted in Figure 2.1 cannot be used.

7



2. Design, construction and hardware implementation ....................
Ultimately, we have chosen a cartesian coordinate robot with a rotary

dual gripper head. With its 4 degrees of freedom (DOF), this design allows
us to fulĄl all the speciĄed requirements. The cartesian coordinate robot
efficiently distributes the load by supporting the robotŠs frame from two
points, ensuring precise movements with straightforward kinematics and
optimal work envelope at the expense of increased motor load on the Z-axis.
Figure 2.2 shows an overview of the robotŠs Ąnal design.

2

3

3

4

1

4

5
8

6

7

9
10

11

12

Figure 2.2: The Ąnal design of the chess-playing robot.

The robot is equipped with two identical MCUs (Microcontroller Units)
featuring ARM9 CPU clocked at 300 MHz, 64/16 MB of RAM/Ćash, Blue-
tooth and USB connectivity. The right unit 1 functions as the master,

while the left one 2 serves as the client. In total, the robot is outĄtted with
seven motors, comprising four large motors (part number 45502) and three
medium motors (part number 45503). The large motors, under the control of
the master MCU, facilitate movement along the Z 3 and Y 4 axes. The
client MCU manages the medium motors responsible for head movements
along the X-axis 5 , rotation 6 of the grippers 7 , and control of both

grippersŠ opening and closing 8 . An elevated camera bridge 9 provides

sufficient distance between the camera 10 and the chessboard, compensating
for cameraŠs limited horizontal Ąeld of view (HFOV) of 60◦. All of the robotŠs
DOFs are capable of sensorless auto-calibration except for the rotation of
grippers, which uses a light sensor 11 in combination with a reĆective target

12 to self-calibrate.

8



.............................. 2.1. Actuators and transmission

2.1 Actuators and transmission

This thesis uses two types of motors consisting of three fundamental com-
ponents: a DC motor, a gearbox, and an optical encoder. The gearbox of
the large motor comprises a series of 7 plastic gears, resulting in a noticeable
backlash, which is often exacerbated by wear and tear of the components over
time. In contrast, the medium motor features a two-stage planetary gearbox
with minimal backlash, and based on our observations, it is less prone to
wear and tear. Additionally, the medium motor is equipped with thermal
protection, which shuts down the motor in the event of overheating.

The manufacturer claims that the large motor should achieve a torque
of 20 N · cm, while the medium motor should have a torque of 8 N · cm.
Additionally, the large motor is expected to attain a rotational speed of
160-170 rpm (960-1020 deg/s), and the small motor should reach 240-250
rpm (1440-1500 deg/s). We validated the torque and speed values using a
simpliĄed measurement setup and the motorŠs integrated optical encoder
- both the measurement setup and the measurement results are shown in
Figure 2.3.

Motor

Mass
Static 

surface

String

Winch

⌀10cm

Figure 2.3: The measurement setup used to measure the torque and speed of
large/medium motors (left) and the results of the measurement (right).

The measurement results show that neither motor achieves the manu-
facturerŠs claimed speed. The medium motor reached a torque of 10 Ncm
before stalling, surpassing the speciĄed values. However, the large motor
only achieved about 18 Ncm before stalling. ItŠs important to mention that
the large motors frequently fail, leading to multiple replacements during
the robotŠs development. On the other hand, the medium motor did not
require any replacements but experienced overheating during dataset creation
(Chapter 3.2.2).

9



2. Design, construction and hardware implementation ....................
To convert rotational motion into translational movement along the X,

Y, and Z axes, we employ a gear rack and pinion mechanism. The Z-axis
utilizes two gear racks around the pinion, forming a highly compact lifting
mechanism that can elevate the robot by up to 13 cm (Figure 2.4). The gear
ratios on all translational axes were carefully chosen to achieve comparable
speeds while optimally utilizing the torque-speed characteristics of the large
motors (see Table 2.1).

Figure 2.4: The lifting mechanisms of the Z-axis consists of 4 pinions and 8 gear
racks powered by the large motor.

Axis Movement per rotation of motor Number of motors
X-axis 5.0944 cm/rot 1 Medium
Y-axis 6.8774 cm/rot 2 Large
Z-axis 4.5850 cm/rot 2 Large
R-axis 0.1429 rot/rot 1 Medium

Gripper 200 deg to open/close 1 Medium

Table 2.1: An overview of the motors and gearboxes used on each axis, where
axis R represents the 4th degree of freedom of the robot, i.e., the rotation of the
gripper pair:

2.2 Rotary head and the grippers

Most robotic manipulators start their capture move by removing the playerŠs
piece from the chessboard [3, 2, 4, 8]. This is because these manipulators
cannot grasp two pieces simultaneously; thus, they must free up space for
the attacking piece Ąrst. This motion confuses most players since a human
player typically picks up their own piece Ąrst and then exchanges it with the
opponentŠs piece, removing it from the playing surface. As our goal is to
create a robot for human-robot interaction, we designed a unique rotating
double gripper to address this issue (Figure 2.5).
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Rubber 

gripper tips

Silicone 

band

grooves

R-axis

Gripper-axisTurntable

Closed gripper

Opened gripper

Pushing 

gear rack
Actuating pin Actuation lever

Gripper arm

Figure 2.5: A simpliĄed sketch of the rotary dual gripper with descriptions of
its individual components.

The majority of the dual gripper was 3D-printed. Two medium motors
power the dual gripper. One of the motors controls the R-axis, enabling
unlimited rotation of the entire dual gripper around its axis. The second
motor moves the pushing gear rack, activating one of the actuating pins
that open the gripper arms using the actuation lever. The movement of the
gripper motor must be synchronized with the movement of the R-axis. We
utilize inverted logic to control both grippers with just one motor, meaning
the gripper motor doesnŠt close the gripper; instead, it opens it. This trick
relies on the fact that both grippers never need to be open simultaneously
during the game. The silicone band is responsible for closing the gripper and
thus gripping the chess pieces. At the end of each gripper arm, there is a
rubber gripper tip (see Figure 2.6).

Figure 2.6: Illustration of the movement of Ćexible gripper tips while gripping a
chess piece (knight).

The 3D-printed Ćexible gripper tips utilize the base collar of the chess
pieces (a circular groove at the base of the piece) present on most chess sets,
including the standardized Staunton chess set. This base collar allows for
a secure attachment of the chess piece. The design of these gripper tips
enables adjusting their radius to accommodate chess pieces with different
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2. Design, construction and hardware implementation ....................
base diameters (the chess pieces in the set we are using vary signiĄcantly in
size). If a set without the base collar needs to be used, the rubber gripper
tips can be easily replaced with foam cushions that surround the chess piece
from all sides, ensuring a stable grip.
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Chapter 3

Computer vision

In the realm of robotics, computer vision plays a pivotal role in empowering
robots to interact with their environment and make intelligent decisions
based on visual information. This chapter delves into the critical aspects of
vision-based perception and recognition, enabling our robot to perceive and
interpret the chessboard pieces and their positions.

We have limited ourselves to using a monocular camera for chessboard
state recognition. This cost-effective solution provides a substantial amount
of information at the expense of more challenging data processing. The
Logitech C920 HD PRO USB camera was chosen for its compatibility with
older drivers in the MCU units. The webcam features automatic exposure
and focusing capabilities and provides RGB images of acceptable quality at a
resolution of 640x480 pixels. However, the camera lacks HDR support, and
during our testing, the images were often overexposed or poorly focused.

In contrast to other research works, which often utilize statically mounted
and calibrated top-down cameras above the chessboard, signiĄcantly simpli-
fying image processing, our approach involves directly attaching the camera
to the robot to avoid obstructing the playerŠs view. Additionally, we do not
use special high-contrast chessboards or coloured pieces commonly used in
other works. In this thesis, we use a wooden chessboard with pieces that have
nearly the same colour as the chessboard itself, making image recognition
signiĄcantly more challenging. Figure 3.1 shows the output images from the
camera under various lighting conditions.

Many previous research works deploy chess robots only in a static labora-
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3. Computer vision ...................................

(a) : Daylight (cloudy) (b) : LED ceiling light (c) : Halogen lamp

(d) : Studio light (e) : Daylight (sunny) (f) : Bad autofocus

Figure 3.1: Examples of camera output under different lighting conditions.

tory environment. This thesis introduces image recognition that functions
effectively under a wide range of lighting conditions, as the robot is intended
to operate in exhibitions and public events where coloured/Ćashing lights
and large crowds of people are expected. Shadows, reĆections, and uneven
lighting are well known for posing a signiĄcant challenge in computer vision
applications.

In general, the computer vision pipeline for chessboard state recognition
consists of three main components: chessboard detector, chess piece recogni-
tion, and move detector. In the following text, we will delve into the detailed
implementation of these components. Additionally, we implement hand de-
tection, enabling us to detect the end of a playerŠs move without any explicit
input from their side. Figure 3.2 shows an overview of the implemented
pipeline for move detection from a chessboard image.

Chessboard

detector

Chess piece

recognition

and

classification

input

chessboard

location

Hand

detector

hand 

detected

elsecamera

image

camera

image

error

Move

detector

board

setup

output

detected 

move

no/invalid move
board not found

Figure 3.2: Overview of the implemented pipeline for move detection from a
chessboard image.

This thesis utilizes the open-source library OpenCV [14] for standard image
processing methods and the YOLO (You Only Look Once) [15, 16] neural
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................................. 3.1. Chessboard detection

network for the implementation of the beforementioned pipeline.

3.1 Chessboard detection

This chapter discusses different approaches and the intricacies of developing a
robust algorithm for chessboard detection in an image. Successful chessboard
detection forms the critical Ąrst step in the computer vision pipeline of our
robot. At the end of this chapter, we introduce two implemented algorithms
for board detection and discuss their positive and negative attributes.

Based on the camera mounting, we can categorize the approaches for
chessboard detection as follows:..1. Static calibrated camera: The most straightforward solution; often re-

quires a static laboratory environment and/or a Ąxed frame around the
chessboard. Typically, the camera is placed directly above the chess-
board. With proper calibration, the chessboard detection step can be
skipped entirely. This setup allows for the utilization of the background
subtraction method, which signiĄcantly simpliĄes the steps of chess piece
detection and hand detection...2. Close-range dynamic camera: A signiĄcantly more challenging scenario
when the chessboard occupies most of the image, but its precise position
is unknown. The chessboard must be correctly detected in each frame
(typically searching for its four outermost corners). The output of this
step (a cropped image of the chessboard) resembles the output from
a static top-down camera from point 1. However, due to distortion,
methods from point 1 (e.g., background subtraction) cannot be reliably
used (see Figure 3.3). There are various approaches to Ąnding the
chessboard, which we explore in later parts of this chapter. These
methods often leverage the geometric properties of the chessboard in
combination with classical image processing techniques; neural networks
are rarely used here. The robot addressed in this thesis falls into this
category...3. Distant dynamic camera: The position of the chessboard in the image is
unknown, and it occupies a small portion of the image. Image processing
approaches from point 2 typically fail here due to numerous distracting
objects around the chessboard. Region of interest (ROI) is commonly
used to tackle this issue, deĄning a sub-area of the image where the
chessboard is sought. Techniques like probability heat maps of the chess-
board occurrence can be employed to locate the ROI. ROI is obtained
from the heat map by selecting the tetragonal region with the highest
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3. Computer vision ...................................
probability values [17]. Another alternative for Ąnding the ROI is the
utilisation of neural networks. Once the ROI is located, algorithms from
point 2 can be applied.

Figure 3.3: The distortion effects in a processed image of an angled camera
(left) compared to a cropped image from a static top-down camera (right).

The two most commonly used approaches for detecting the chessboard in
the camera image are:..1. Corner-based detector: These algorithms are popular for their speed and

straightforward implementation. They have found applications in [13, 7].
They are robust to camera distortion. The algorithmŠs output is a list
of 2D points representing all detected corners in the image. Points
corresponding to the chessboard can be Ąltered based on the geometric
properties of the chessboard. In [9], they utilise a template matching
with the RANSAC (Random sample consensus) algorithm to search for
a 9x9 grid of chessboard points in the 2D point cloud. This algorithm
can be sensitive to occlusions, so it is best used with a top-down camera...2. Line-based detector: These algorithms leverage the most distinctive vi-
sual feature of the chessboard - the lines separating individual squares.
Thanks to this, these detectors are highly effective, even in cases of partial
occlusion. As lines contain more information than points (corner-based
detectors), these algorithms are generally more accurate and less sensitive
to poor lighting conditions. However, it is still necessary to Ąlter out
detected lines that do not belong to the chessboard. Line-based detectors
are sensitive to image distortion, high noise and require high-contrast
transitions between chessboard squares. The parameters need to be set
correctly for the speciĄc conĄguration. Line-based detectors have found
applications in [17, 10, 13, 2, 11].

Many other approaches have been tested with mixed results. In [3], they
Ąnd edges in the image and then segment it into 65 regions (64 squares +
border). This calibration can only be done before the game as no pieces
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................................. 3.1. Chessboard detection

can be on the chessboard - this approach requires a static camera. In [5],
they utilise the Ramer-Douglas-Peucker algorithm to detect rectangles in the
image. The chessboard is obtained by selecting the largest rectangle with the
desired geometric properties. However, the authors note that the algorithm
is sensitive to poor lighting conditions. In [18], they employ the Ćood-Ąll
method - by random sampling, they attempt to Ąnd all empty squares of the
central 4x8 grid in the initial conĄguration. The positions of the squares with
pieces are extrapolated. A static camera is required.

3.1.1 Algorithm 1: Gradient descent chessboard detector

In this section, we will describe the implemented gradient descent algorithm
for chessboard detection and evaluate its performance on various test cases.
The proposed approach employs a gradient descent technique to iteratively
reĄne the positioning of a grayscale mask over the chessboard image based
on a calculated correspondence score. Figure 3.4 shows a visualisation of the
algorithmŠs functionality.

iteration 0

iteration 1

iteration 2

iteration 3

iteration 4

iteration 5

iteration 6
mask

camera image

Figure 3.4: A visualisation of the algorithmŠs functionality.

The algorithm starts with a mask in pre-deĄned initial corners (their
positions can be estimated or provided as input of the function). For faster
iterative descent, a variable step length was implemented (in our case, the
initial value is step = 16 pixels). Each iteration Ąnds the optimal movement
direction for each mask corner (the direction returning the highest score). If
no corner movement results in a higher score than the current position of the
mask, the step size is halved. The algorithm terminates when the current
position of the mask yields the highest score, and the step size is already 1.
The pseudo-code for this algorithm is shown in Algorithm 1.
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3. Computer vision ...................................

Algorithm 1: The gradient descent chessboard detector
Data: input image, optionally initial corners values
Result: coordinates of chessboard corners
img ← Normalize0to1(GrayScale(input.png));
mask ← Normalize0to1(mask.png);
corners← InitCornerValues();
step← 16;
while true do

goodCorners← [true, true, true, true];
for c ∈ corners do

for d ∈ Directions() do

// Get corners with c moved in d direction

testCorners← GetTestCorners(corners, c, d);
score← GetScore(img, mask, testCorners);
if IsNewBestScore(score) then

goodCorners[c]← false;
corners← testCorners;

end

end

if All(goodCorners) then

if step = 1) then
return corners

step← step/2;
end

The mask is an image of an ideal chessboard consisting of an 8x8 matrix
of alternating black and white squares. Each square contains a grey area in
the centre, which aids the Ąnal iterations of the algorithm (precisely aligning
with chessboard lines) by giving less weight to the centre of the squares,
where pieces are typically located (see Figure 3.4). The correspondence
score is calculated using Equation 3.1, where the transMask represents the
mask after the perspective transformation (Equations 3.2 and 3.3). The
denominator of the Equation 3.1 normalizes the score for differently-sized
transMasks.

score =

∑

x,y∈transMask
transMask[x, y] · img[x, y]

∑

x,y∈transMask
1

(3.1)
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................................. 3.1. Chessboard detection

transMask(x, y) = mask
(

M11x + M12y + M13

M31x + M32y + M33

,
M21x + M22y + M23

M31x + M32y + M33

)

(3.3)

This approach utilizes the geometric properties of the chessboard, but unlike
corner-based and line-based detectors, it leverages the entire chessboard area
as a source of information. This enables it to correctly detect chessboard
corners even in cases where other algorithms fail. However, its gradient-based
approach is susceptible to local minima of the correspondence score, which can
lead to algorithm failure. Unilateral lighting of the chessboard can negatively
affect the score computation due to the nonlinearity of the cameraŠs light
perception. In Figure 3.5, a series of inputs and outputs of the discussed
algorithm can be observed together with the number of iterations and the
processing time of each image.

As can be observed in Figures 3.5b and 3.5c, the algorithm can handle
challenging situations, such as overexposure and image blur. The main
advantage of this approach is its ability to cope with occlusions in the image,
as demonstrated in Figure 3.6. On the other hand, Figure 3.5d illustrates the
algorithmŠs failure due to the unilateral lighting of the chessboard.

Despite the aforementioned limitations, we have successfully played several
games of chess using this algorithm without any perception errors (laboratory
environment). Future work could enhance the algorithm by incorporating
methods to mitigate local-minima issues in the gradient descent approach.
Additionally, calibrating the cameraŠs light perception could address problems
caused by unilateral lighting conditions.

In the next part of this work, we will focus on our line-based algorithm
implementation, which was integrated into the Ąnal version of the robotŠs
control program due to its high reliability under various lighting conditions.
However, we believe that the simplicity and functionality of the gradient-based
approach will be appealing to many researchers, and we hope that future
versions will bring many improvements.

3.1.2 Algorithm 2: Line-based chessboard detector

This section introduces the second implemented algorithm, utilizing the
popular line detection method. We propose a novel approach utilizing Hough-
line detection to recognize a chessboardŠs vertical and horizontal lines, thereby
accurately detecting the entire grid structure. We will present the individual
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3. Computer vision ...................................

(a) : Standart chessboard image [17 iters, 179 ms].

(b) : Blurred image - camera autofocus failure [16 iters, 207 ms].

(c) : Over-exposed unbalanced lighting [16 iters, 206 ms].

(d) : Algorithm failed due to inconsistent lighting [69 iters, 911 ms].

Figure 3.5: Examples of the algorithmŠs inputs and outputs with each imageŠs
number of iterations and processing time.
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................................. 3.1. Chessboard detection

Figure 3.6: Digitally edited images demonstrating the algorithmŠs ability to cope
with many occlusions in the image. The majority of corner-based and line-based
detectors would fail on these example images. [17 iters, 154 ms (top); 15 iters,
175 ms (bottom)]

steps the algorithm performs and discuss the results achieved at the end of
this section.

Step 1: Line detection

The Hough Transform is a feature extraction technique used in computer
vision image processing to identify simple shapes such as lines and circles.
The algorithm works by transforming points in the image space into curves in
the Hough space (Figure 3.7). To detect straight lines, the Hough Transform
maps each point in the image to a line in Hesse normal form (Equation 3.4)
in the Hough space. The most dominant intersection points of the Hough
space curves correspond to collinear points in the image.

r = x cos θ + y sin θ, where r is the lineŠs distance from the origin
θ is the angle of the lineŠs normal (3.4)

As shown in Figure 3.7a, the input to the Hough Line detector is an
image with highlighted edges. We perform this preprocessing step using
the Canny edge detector. Thanks to edge detection, the line-detection
algorithm is less dependent on the illumination conditions of the chessboard,
as edge detection is scarcely affected by the overall image exposure (except
for overexposure). Both the Hough line and the Canny edge detectors have
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(c) : Hough space

Figure 3.7: An illustration of the Hough transform algorithm applied to a
chessboard image (3.7a) after the Canny line detector processing. We can observe
continuous rows of dominant points in the Hough space (3.7c, highlighted),
corresponding to the detected lines on the chessboard (3.7b, highlighted).

many tunable parameters that must be correctly set for speciĄc purposes
(see Figure 3.8). Our algorithm extracts the 100 most dominant points
from the Hough space (a typical 8x8 chessboard contains 18 lines), from
which it then selects those that most correspond to the characteristics of the
chessboard using the RANSAC algorithm (i.e., two groups of collinear points
in the Hough space - see Figure 1 below). Due to the low contrast of our
chessboard, we cannot rely on the most dominant points in the Hough space
corresponding to the lines of the chessboard. The Hough line algorithm is
typically applied in the range θ = [0, π) (the direction of the lines is negligible).
We perform the Hough line transformation in the range θ = [−π/2, π) to
avoid situations where the colinear points pass through the 0/π border; the
RANSAC algorithm would fail in these cases. The RANSAC method is the
only stochastic part of our algorithm. We tried to replace RANSAC with
DETSAC (deterministic RANSAC), which tries all possible combinations,
but this solution was ultimately scraped for its slower speed.
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................................. 3.1. Chessboard detection

Figure 3.8: A comparison between well-set parameters of the Hough line algo-
rithm (left) and poorly set parameters (right).

Step 2: Line Ąltering

If the output of Step 1 contains at least Ąve lines in both directions (termed
a_lines and b_lines), the algorithm proceeds to the line Ąltering step. The
outcome of Step 1 frequently includes lines unrelated to the chessboard and,
conversely, might miss lines that are a part of the chessboard. In this part of
the text, we will show the implemented methods by which we were able to
Ąlter out the outliers and supplement missing lines.

In the Ąrst step, the algorithm detects the arrangement of lines in a_lines
and b_lines and sorts them according to their orientation. Subsequently, it
identiĄes the four outermost corners, arranging them in a clockwise direction
from their central point. We calculate a transformation that removes the
image distortion using four corners and the equations 3.2 and 3.3 from
Chapter 3.1.1. This transformation is applied to all detected lines, resulting
in distortion-free trans_a_lines and trans_b_lines. The output of this
step is visualised in Figure 3.9.

The algorithm can then proceed with detecting the chessboard pattern in
the lines. This is done separately for both groups of lines (directions). The
algorithm can be divided into these three steps:..1. Compute the reference gap size: This calculates the reference gap size

between lines, which is later used to help deĄne valid lines. This step
uses two essential functions. The compute_diffs_and_ratios(lines)
function returns a sorted list of gap sizes between the trans_lines. The
mean_largest_group(gaps, epsilon) returns the mean of the largest
contiguous group of numbers within the epsilon range of each other,
which in our case represents the reference gap size between valid lines
(i.e. the chessboard square size in a given direction)...2. Valid line detection: For each combination of lines, the algorithm at-
tempts to Ąt the expected number of lines (samples) between them
(based on the distance of the pair and the reference gap size). If the
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3. Computer vision ...................................

Figure 3.9: A visualisation of the detected lines after removing the camera
distortion, i.e. trans_a_lines and trans_b_lines. The leftmost line of the
chessboard was not detected, while many lines in the image do not belong to the
chessboard. The image is stretched in the x and y axes because, at this point,
no assumptions can be made about the dimensions of the detected lines.

selected pair cannot Ąt at least MIN_LINES (4 in our case) sam-
ples between them, it is automatically rejected. Each combination pair
is scored based on the number of generated samples that match the
trans_lines with at least max_deviation accuracy (in our case 1

10
of

reference gap size). The pair with the highest score is selected, and
missing lines between the points of this pair are generated (Figure 3.10)...3. Additional line generation: While the previous step supplemented lines
between the detected chessboard lines, it may happen that the outermost
lines of the chessboard are missing, as seen in Figure 3.9. In fact, the
outermost lines are often not detected, as they are not as distinctive and
are often occluded by chess pieces. The algorithm automatically adds
(9−Ndetected_lines) + EXTRA_LINES to each side by extrapolating
the inner lines. EXTRA_LINES (in our case 1) is a variable that we
were forced to add, as our chessboard has edges precisely the same size
as the squares themselves, thus behaving like an 11x11 grid from the
perspective of a line detector. For this reason, we always need to add
one more line on each side to ensure that the generated grid contains
the actual 9x9 chessboard.

The Ąnal output of the line Ąltering step can be seen in Figure 3.11. We
can observe that the chessboard pattern was correctly detected, all outlier
lines have been removed, and new missing lines have been generated that
extend beyond the borders of the chessboard to enhance the robustness of
the algorithm.
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................................. 3.1. Chessboard detection

Figure 3.10: The generated samples (green dots) of the winning pair of lines in
the worst-case scenario situation (some of the missing lines were deleted manually
for testing purposes).

Figure 3.11: Output of the line Ąltering step. The chessboard pattern was
correctly detected. The lines for the chessboard candidates reach beyond the
borders of the image.

Step 3: Template matching

In this Ąnal step, the algorithm searches for the chessboard in the m × n
grid from Step 2, where m, n ≥ 8. We use the same mask as in the Gradient
Descent approach (see Figure 3.4). Here, however, we do not move the mask
over the image; instead, we transform individual candidates (sub-grids of 8x8)
over the mask. Similarly to the Gradient Descent algorithm, we compare the
image with the mask and calculate a correspondence score (here, we apply a
different calculation method). The candidate with the highest score is chosen.

To calculate the correspondence score, we Ąrst overlay the mask with the
candidate, thereby reducing the size of the candidate to 24x24 pixels (Figure
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3. Computer vision ...................................
3.12, left). We then convert the candidate into a black-and-white image using
OtsuŠs Binarization (Figure 3.12, middle). The black-and-white image is
normalized so that black corresponds to negative values and white corresponds
to positive values of the same magnitude. The correspondence score is then
obtained by element-wise multiplication (Figure 3.12, right) of the normalized
candidate with the normalized mask. We obtain the correspondence score by
summing all the values in the resulting matrix. The output of this algorithm
is the four corners of the winning candidate, i.e., the candidate with the
highest correspondence score (Figure 3.13).

Transformed candidates Binarized candidates Normalized candidate multiplied 

with the normalized mask

Figure 3.12: Visualization of template matching for all candidates from Figure
3.11. In the right picture, the winning candidate can be distinctly identiĄed as
the image with the highest brightness.

Figure 3.13: The output of the line-based chessboard detector. [processing time:
497 ms]

Performance analysis of the Line-Based Detector

The line-based detector was utilized to generate the real-world image dataset
(refer to Chapter 3.2.3). Out of the total number of 5032 captured images,
our line-based detector successfully identiĄed the chessboard in 4814 images.
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................................. 3.1. Chessboard detection

This Ągure can be slightly misleading as there are numerous poor-quality
images (e.g. total darkness, severe overexposure, etc.) among the shots
where the algorithm failed. A notable beneĄt is our ability to identify
instances of algorithmic failure. The dataset generator successfully detected
and eliminated all images where the chessboard detector failed without a
single error. Chapter 3.2.3 shows examples from the real-world dataset that
our implemented algorithm successfully detected.

The literature, speciĄcally Paper [10], posits that the parameters of a line-
based chessboard detector utilizing the Hough line algorithm must be modiĄed
in response to every alteration in lighting conditions. However, our results
demonstrate that it is indeed feasible to construct a highly robust chessboard
detector based on this principle, negating the necessity for frequent parameter
adjustments. In fact, our detector displayed immediate functionality with
several other chessboard conĄgurations, as depicted in Figure 3.14.

Figure 3.14: Our proposed line-based chessboard detector deployed on never-
before-seen chessboards without any parameter tuning or other modiĄcations.
[Processing time: 269 ms (top), 336 ms (bottom)]

Figure 3.15 compares the results of our line-based detector with the results
of the gradient descent detector (Figure 3.5) introduced in Chapter 3.1.1.
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(a) : Standart chessboard image [378 ms]. (b) : Camera autofocus failure [488 ms].

(c) : Over-exposed lighting [518 ms]. (d) : Inconsistent lighting [553 ms].

(e) : Challenging image [274 ms]. (f) : Algorithm failure [468 ms].

Figure 3.15: Examples of the algorithmŠs inputs and outputs with each imageŠs
processing time. A direct comparison to Figures 3.5 and 3.6.

3.2 Chess piece detection and classiĄcation

The detection and recognition of chess pieces is an integral component of a
chess-playing robot. Most of the available literature simpliĄes this exceedingly
challenging task by detecting only changes on the chessboard or colours of the
pieces. ScientiĄc papers presenting more sophisticated algorithms, typically
based on machine learning methodologies, frequently mention the lack of
available chess datasets. In this chapter, we will address the issue of automated
generation of datasets (both synthetic and real), implement a highly reliable
chess piece detector utilising a neural network, and evaluate the achieved
results.

3.2.1 Introduction to the problem

There exist numerous techniques for chess piece detection, each with varying
capabilities and implementation complexities. Broadly, we can categorise
these approaches into three fundamental categories based on the level of
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......................... 3.2. Chess piece detection and classification

information they provide:..1. Piece Presence Detection Methods: These are the most straightforward
techniques that focus on detecting whether a piece exists on a particular
square. They often employ specially modiĄed chessboards and are usually
not highly reliable. In scenarios like piece capture, they must detect
the actual process of Ągure exchange to identify the capture reliably.
These methods depend on the knowledge of the previous state of the
chessboard, and a single detection error can affect the remaining game...2. Piece Presence And Colour Detection Methods: Typically, these meth-
ods require a laboratory environment and/or a static camera. They are
capable of identifying the presence of a piece and its colour. Like the
Ąrst category, they also rely on the knowledge of the previous state of
the chessboard, and any single detection error can impact the rest of the
game. These algorithms fail to detect pawn promotion (a scenario when
a pawn reaches the last rank and changes into a queen, bishop, knight,
or rook of the same colour)...3. Piece Presence, Colour, And Type Detection Methods: These are the most
sophisticated algorithms, usually based on machine learning techniques.
They enable the detection of all chess situations, even without knowledge
of the previous state of the chessboard.

Overview of chess piece detection methods

Hardware solutions:

These methods employ specially modiĄed chessboards and chess pieces.
In [8], they make use of a reed switch array (a sensor under each of the 64
squares) and chess pieces equipped with magnets. Other popular approaches
include utilising mechanical switches, built-in LC oscillating circuits with
an antenna in the pieces, and Near Field Communication (NFC) equipped
pieces. These methods eliminate the need for complex image processing by
requiring a modiĄed chessboard. As our goal is to create a robot that plays
on a standard, unmodiĄed chessboard, none of these methods were considered
suitable for our purpose.

Standart computer vision approaches:..1. Background/Image Subtraction Methods: These methods work by com-
paring the current image of the chessboard with a stored image of the
empty board or an image from the previous board state [3, 5]. Combined
with a Blob Detection algorithm, this approach provides changes on the
board as long as a static top-down camera in a controlled environment is
used. Usually, a simple computer vision technique, such as thresholding,
is used to decide the colour of the moving pieces [19]. The Ąrst iteration
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of the robot presented in this thesis utilised the method of image sub-
traction. However, any camera shake or change in lighting caused failure.
Due to the positioning of the camera, we also had to deploy complex
methods to detect overlapping pieces and pieces that, from the cameraŠs
perspective, encroached into other squares...2. Color Histogram Methods: This technique detects changes in the colour
histogram of individual squares after each move to determine which
squares have changed [10]. The critical weakness of this algorithm is
its sensitivity to light changes and limited performance with pieces on
squares of the same colour...3. Coloured Piece Methods: A popular technique among the research com-
munity is using distinctively coloured (e.g., green, red, etc.) chess pieces
[4]. By analysing the HSV colour space, the chess pieces can be detected
with very high reliability and accuracy. However, this method is limited
by the requirement for speciĄcally coloured chess pieces and, typically, a
top-down camera positioning...4. Edge Detection Methods: Edge analysis methods focus on each of the
64 chessboard squares within an image. Using a well-tuned Canny Edge
detector [10], for instance, accurately detects chess piece edges, even when
the pieceŠs colour closely matches the square behind it. This technique
requires the use of a top-down camera and a diffused light source, as
it can misinterpret shadows cast on empty squares as the presence of
pieces...5. Shape Descriptor Methods: These methods leverage the symmetrical na-
ture of chess pieces, distinguishing individual pieces based on their unique
shapes [20]. The advantage of this approach is that it does not require
knowledge of the previous state of the chessboard. The disadvantage,
however, lies in the necessary compromise regarding the positioning of
the camera. A top-down view does not provide the shape descriptor
with sufficient information. A side view offers excellent recognition but
also leads to numerous occlusions. Therefore, a well-placed camera that
balances these occlusions with the algorithmŠs reliability is needed.

Machine learning computer vision approaches:

Traditional computer vision techniques often come with a range of restric-
tions and limitations. The relatively new Ąeld of research utilising machine
learning brings forth many advantages while eliminating most of the limita-
tions...1. Convolutional Neural Networks (CNN): The convolutional neural net-

work is a type of deep learning model particularly effective for image
analysis tasks and thus is well-suited for chess piece classiĄcation tasks.
Paper [17] uses the Xception with over 57 000 labelled images and
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achieves an accuracy of more than 90%. In the study [21], GoogleŠs
inception v3 DNN was employed to achieve a classiĄcation accuracy of
approximately 97.5%, with the lowest accuracy recorded being 92.39%,
speciĄcally for the black bishop. The research paper [11] conducts a
comparative analysis of CNNs. The researchers utilise a synthetically
generated dataset of 4888 chessboard images to train their victorious
ResNet model. They claim to have introduced a state-of-the-art solution,
given that their system accurately classiĄes 99.77% of the chess pieces
(corresponding to 93.86% of chessboard conĄgurations). Additionally,
their system enables the training of the network on a new chess set using
just two images...2. Support Vector Machines (SVM): Support vector machines work by di-
viding the feature space with multidimensional hyperplanes. Paper [6]
uses two separate descriptors - scale-invariant feature transform (SIFT)
and histogram of oriented gradients (HOG) for feature extraction with
a resulting classiĄcation accuracy of 85%. The study [22] uses SVMs
combined with a VGG19 convolutional neural network as the feature
extract, achieving an accuracy of 98.07%

Machine learning-based methods yield impressive results, but they typically
require a substantial amount of training data. There is a lack of quality
annotated datasets that are publicly available [10, 6]. In Chapters 3.2.2 and
3.2.3, we will address the creation of both synthetic and real-world datasets
for our purposes. In Chapter 3.2.4, we will utilise these datasets to train a
neural network and present the results.

Transitioning from Image Subtraction to Machine Learning

During the development of our chess-playing robot, it became clear that the
image subtraction method we initially implemented was overly sensitive to
external inĆuences and the structural rigidity of the robot. Additionally, the
method struggled to accurately detect chess pieces overlapped by others and
movements of larger pieces that spanned multiple squares. Despite extensive
efforts to stabilise the image, the image subtraction method proved unreliable
without a static camera, making it challenging to play an entire chess game
without detection errors.

Due to these challenges, we decided to explore a new solution for piece
recognition, leveraging machine learning techniques. A common approach
to the piece detection problem involves partitioning the chessboard into
8x8 squares. Each square is then separately analysed using a classiĄcation
neural network. Despite the intuitive appeal of this approach for a grid-like
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chessboard, the work in [11] found that adding a 50% overlap to each square
signiĄcantly improved training results. Given the camera positioning on our
robot, which results in overlaps and overhangs of individual pieces, we decided
to take a different approach.

Our work utilises the neural network You Only Look Once (YOLO), specif-
ically versions YOLOv5 [15] and later YOLOv8 [16]. This network specialises
in object detection, offering us several advantages over other methods. YOLO
processes the entire image in a single pass, detecting and classifying objects
concurrently. This method signiĄcantly reduces computational costs, making
it an ideal solution for real-time applications like our chess-playing robot.

One of the main strengths of YOLO is its ability to detect partially
overlapped objects, an essential capability in our case. Several publicly
available pre-trained models allow us to utilise transfer learning techniques
to adequately train the neural network, even with a dataset of limited size.

We believe the implementation of YOLOv8 signiĄcantly improved the
robustness and performance of our robot, as evidenced by the results discussed
in Chapter 3.2.4. This approach allowed us to remove most limitations from
our application and, in combination with our chessboard detector, to create
a very robust algorithm for move recognition.

3.2.2 Generation of the Synthetic Dataset

In the domain of machine learning, particularly where deep learning algo-
rithms are used, the quality and quantity of data play a critical role in the
performance and robustness of the model. However, in many real-world appli-
cations, acquiring a large, diverse, and well-labelled dataset can be challenging,
expensive, and time-consuming. This is particularly true in the case of our
chess-playing robot, where we require a large number of images featuring up
to 32 chess pieces each. Since manually labelling a dataset of 5000 images
would require about 4 months of continuous work, we resort to creating a
synthetic dataset. This dataset is generated programmatically, allowing us to
produce a virtually limitless and diverse array of chessboard conĄgurations
under different lighting conditions and from multiple perspectives.
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Obtaining 3D Models of the Chess Pieces

To transport the chess pieces into the virtual world, we utilized the Shining
3D EinScan-SE 3D scanner. This scanner enabled us to capture the geometry
and texture of all chess pieces. The scanning process is depicted in Figure
3.16. Each piece was scanned from various angles using a motorized turntable
and angled wedge to avoid splits in the modelŠs geometry. This step was most
crucial for the rook, whose upper part is hollow and, therefore, difficult to
scan. By merging these scans, we obtained a model comprising approximately
3 million polygons. In the subsequent step, we manually reduced all models to
approximately 10% of their original size, cleaned them of scanning artefacts,
aligned their position and orientation to the world coordinate axes, and
rescaled them to match the size of the real-life pieces (Table 3.1).

Figure 3.16: The photographs depict the process of 3D scanning using the
Shining 3D EinScan-SE. The images feature two chess pieces being scanned
concurrently, placed on a motorized turntable, some of them with a wedge for
angling the piece. The 3D scanner uses the projected patterns to capture the
geometry and texture of the chess pieces.

Chess piece Height
Pawn 40 mm
Rook 47 mm
Knight 48 mm
Bishop 66 mm
Queen 82 mm
King 88 mm

Table 3.1: Height of all chess piece types.

Due to the glossy surface of the chess pieces, the textures of the scanned
models were full of artefacts (pink spots and white reĆections). The textures
of all pieces had to be manually cleaned of gloss and reĆection artefacts.
Figure 3.17 depicts a white queen before and after processing.

The outcome of this step is a database of all types of chess pieces in both
colours, which we subsequently utilize to create the synthetic dataset and
game visualization (Figure 3.18).
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Figure 3.17: Comparison of the 3D model of the white queen before and after
manual processing. On the left is a model depicted after merging the scanned
point clouds and converting them into a mesh model. On the right is an oriented,
scaled model that has been cleaned of artefacts.

Figure 3.18: 3D models of chess pieces rendered in Blender.

The 3D Environment

To create the synthetic chess dataset, use Unreal Engine 4.27 [23], a powerful
game engine known for its realistic visuals and excellent performance. The real-
time rasterization rendering greatly expedites the data generation process. To
put this into perspective, in a comparable study [10], the researchers employed
Blender for image rendering, where each image requires approximately Ąve
minutes to render.

Unreal Engine 4 provides advanced features that closely simulate real-
world physics and lighting. We utilize the Dynamic Volumetric Clouds
with Ray Marching system. This technology allows us to simulate different
environmental lighting conditions in a highly realistic manner, leading to a
wider variety and better quality of synthetic images (Figure 3.19).
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Figure 3.19: The effects of light scattering in dynamic volumetric clouds on the
illumination and shadows of the virtual chess pieces.

Data generation

To augment the chessboard and environmental conditions, we utilize UnrealCV
[24], a plugin for the Unreal Engine that provides a suite of valuable tools
for computer vision applications. The primary advantage of UnrealCV is
the associated Python package of the same name, which allows for executing
commands in the Unreal Engine from a Python environment.

Our implemented algorithm generates random chessboard conĄgurations
involving all 32 chess pieces. This diverges from the method used in [11],
where the images are generated according to chessboard conĄgurations from
games by the chess grandmaster Magnus Carlsen. In this manner, we are able
to avoid some frequent conĄgurations (such as the initial chess conĄguration)
and generally obtain a more balanced dataset. Each of the 32 pieces is slightly
adjusted in its position within the square, and a random rotation is applied.
The cameraŠs position and orientation are also randomized within a speciĄed
window, roughly resembling our real-life conĄguration. Subsequently, the
system modiĄes the lighting conditions, including the sunŠs position, the
intensity of light emission (both ambient and solar), and the volume and
location of the volumetric clouds.

Following these adjustments, a series of 34 high-resolution (1920x1440)
images are captured: the rendered chessboard, a segmentation image of all
pieces, and 32 individual segmentation images for each piece. The algorithm
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saves the rendered image, the Forsyth-Edwards Notation (FEN) representation
of the chessboard conĄguration, and the segmentation image featuring all
chess pieces. The algorithm then uses the 32 images of individual pieces
to create an annotation Ąle describing the location of each piece for object
detectors, such as the YOLO neural network. Finally, the algorithm renders
one last chessboard image, this time with a random background. The three
output images for a single dataset entry can be seen in Figure 3.20.

Figure 3.20: The three output images of a single dataset entry. The image
with a randomized background (left), the original image with ArUco markers for
calibration purposes and a segmentation image.

The background of the rendered images was randomized using images from
the COCO dataset [25]. By introducing background variation, we ensure a
more robust learning process that generalizes better to real-world conditions,
reducing the chance of overĄtting. In our research, we do not utilize the
segmentation image; it is included in the dataset for the purposes of other
scientiĄc studies. The included FEN Ąle allows researchers to identify the
board conĄguration from a single line of text. To illustrate, the corresponding
FEN Ąle for the conĄguration depicted in Figure 3.20 reads as follows:

r1P1N2Q/P2ppnN1/b1k1R1p1/5ppR/1p1B4/PqPpP3/BPr1p1P1/nPK3b1 w KQkq − 0 1

The annotation Ąle carries information regarding the positions of all 32
chess pieces. The corresponding annotation Ąle for the conĄguration shown
in Figure 3.20 appears as follows:

4 0.26536458 0.70868056 0.04739583 0.05625000
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11 0.39765625 0.72812500 0.03385417 0.04652778
9 0.52526042 0.71076389 0.03385417 0.06180556
6 0.75390625 0.72534722 0.07447917 0.08541667
11 0.27864583 0.62152778 0.03333333 0.05000000
5 0.46276042 0.63680556 0.02864583 0.05000000
5 0.53619792 0.64236111 0.02968750 0.04861111
3 0.60677083 0.62951389 0.04166667 0.06597222
9 0.66458333 0.64097222 0.03541667 0.06527778
2 0.27526042 0.52881944 0.04635417 0.07013889
1 0.40677083 0.54652778 0.04479167 0.08611111
10 0.53125000 0.53923611 0.03229167 0.06458333
5 0.66510417 0.56111111 0.03333333 0.05138889
5 0.58906250 0.47638889 0.02812500 0.05555556
5 0.66041667 0.47638889 0.03229167 0.05416667
10 0.73046875 0.47812500 0.04531250 0.06597222
5 0.34635417 0.38958333 0.03020833 0.05694444
8 0.47161458 0.38750000 0.03072917 0.08055556
11 0.29348958 0.32187500 0.03281250 0.05347222
0 0.35651042 0.30486111 0.04947917 0.10833333
11 0.42005208 0.31666667 0.02656250 0.05972222
5 0.47968750 0.31493056 0.02604167 0.05902778
11 0.53802083 0.32048611 0.02604167 0.05486111
8 0.30260417 0.23888889 0.04062500 0.08472222
11 0.36197917 0.25277778 0.03020833 0.05833333
4 0.41927083 0.23819444 0.03229167 0.07361111
5 0.52812500 0.24965278 0.02500000 0.06041667
11 0.65598958 0.25659722 0.02968750 0.06180556
3 0.31250000 0.17256944 0.03750000 0.07708333
11 0.35989583 0.18333333 0.02812500 0.05694444
7 0.41979167 0.16388889 0.04375000 0.12361111
2 0.64088542 0.16840278 0.03281250 0.08958333

Each line of the annotation Ąle represents a single chess piece. Each line lists
the following details in this order: the ID of the piece type, the x-coordinate
of the centre point, the y-coordinate of the centre point, the relative width,
and the relative height. The ID number ranging from 0-11 represents the
following types and colours of pieces in this order: black queen, black king,
black bishop, black knight, black rook, black pawn, white queen, white king,
white bishop, white knight, white rook, white pawn.

Results

We have developed a system capable of generating a realistic-looking synthetic
dataset. The output of a single iteration, which computes approximately
30 seconds, consists of Ąve Ąles: the FEN conĄguration, annotation data,
an annotation image, a real image with calibration ArUco markers, and a
real image with a randomized background. Using this algorithm, we have
generated a dataset comprising a total of 5000 images. Sample images from
this dataset (speciĄcally those with random backgrounds used in our training
of the YOLO model) are depicted in Figure 3.21.

We trained the YOLOv5 on 2,400 images from the synthetic dataset. This
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Figure 3.21: An example of training images from the synthetic dataset.

model was built upon the publicly available pre-trained YOLOv5s checkpoint
[15] with 7.2 million parameters initially trained on the COCO dataset. Due
to the hardware constraints of the computer used at the time, we opted for
this smaller model and a reduced number of images. The images were resized
to a resolution of 640x480, aligning with the speciĄcations of our utilized
camera, and their hue and saturation were further adjusted within a range of
±20%. Training this model on an NVIDIA GeForce MX150 graphics card
took roughly 24 hours (100 iterations). While the resulting model performed
sufficiently well under optimal lighting conditions (Figure 3.22), it struggled
in scenarios not covered by the synthetic dataset, as illustrated in Figure
3.23.

Since we aim to develop a robust system that functions under all lighting
conditions, these results were unsatisfactory. While object detection performed
relatively well, the classiĄcation of the individual piece types often failed.
We leverage these results in Chapter 3.2.3, where we discuss generating and
automatically labelling a real-world dataset using our chess-playing robot.
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Figure 3.22: The trained model, when recognizing a real chessboard under
ordinary lighting conditions, correctly identiĄed the majority of the pieces.

Figure 3.23: The trained model, when recognizing a real chessboard under
challenging lighting conditions, fails in classiĄcation multiple times. One piece
was undetected, while two shadows were mistakenly identiĄed as chess pieces.

The confusion matrix of the model trained on synthetic data, when validated
on the testing subset of the real-world dataset from Chapter 3.2.3, is depicted
in Figure 3.24.
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Figure 3.24: The normalized confusion matrix of the model trained on synthetic
data when validated on the testing subset of the real-world dataset. Uppercase
letters correspond to the white chess pieces.

3.2.3 Generation of the Real Dataset

Given that we had a robust chessboard detection system from Chapter 3.1.2
and a reliable system for marking the chess pieces from the previous chapter,
we decided to enhance our results by creating a real-world dataset. Manually
annotating the chessboard images would be highly complicated and time-
consuming. For this reason, we developed a script for our chess robot, enabling
it to generate the dataset autonomously.

The algorithm we used to generate the real-world dataset was similar to
the one we employed for the virtual dataset generation. Initially, all the
pieces must be arranged according to the standard chess conĄguration. In a
randomized order, the robot grasps each of the 32 pieces and places them on
a random empty square. This randomized chessboard serves as the starting
state for our data generator. The algorithm records every move made by the
robot, maintaining a virtual twin of the real-world chessboard in its memory.
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In a continuous loop, the robot performs two completely random moves
and then captures an image of the chessboard. The chessboard image is
saved along with a Ąle containing the current FEN representation of the
board and an SVG visualization of the board for user veriĄcation. Using
this method, the robot collected 5032 images over several days under various
lighting conditions. At night, the chessboard was typically illuminated by a
studio light with a softbox. During the day, natural daylight was utilized.

Labeling the data

The collected data was labelled using an automatic script. In the Ąrst step,
the script detects the chessboard using the line-based detector from Chapter
3.1.2. The pieces on the board are then identiĄed using a YOLOv5 model
trained on the synthetic dataset. Based on the saved FEN Ąle conĄgurations,
each detected piece is correctly labelled by colour and type. If the algorithm
fails to detect the chessboard in the image, that image is discarded. Notably,
most of the discarded images were of very poor quality, and excluding them
from the dataset was on point.

Out of 4814 images that the algorithm automatically labelled, additional 14
images were manually discarded due to their exceedingly poor quality. This
left a total of 4800 images with 152,652 annotated pieces. This automated
process, owing to the imprecision of the YOLOv5 model, failed to label
948 pieces. These had to be subsequently manually labelled by a person.
Most of the undetected pieces were either overexposed or almost entirely
obscured behind larger pieces. Figure 3.25 displays samples of images labelled
automatically through our annotation system, highlighting its capability
under varied conditions.

The dataset generated through random placements has a very balanced
distribution of pieces, as demonstrated by the annotation heatmap in Figure
3.26. Given the typical distribution of chess pieces, there is an inherent
imbalance in the class representation (e.g., eight times more pawns than kings),
but YOLOv8 is speciĄcally designed to handle this imbalance. The results
achieved in this thesis prove that less frequent pieces were not disadvantaged
compared to more frequent ones.
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(a) : A standard photo under good lighting conditions - all pieces labelled.

(b) : Photo with high dynamic range - one piece unlabelled.

(c) : An overexposed photo - many pieces unlabelled, hardly recognizable by a human.

(d) : Unbalanced lighting, sharp shadows - all pieces labelled.

(e) : insufficient lighting - many pieces unlabelled.

Figure 3.25: The automated process of labelling images and the achieved results
under various lighting conditions. The blue dots at the base of the pieces in the
middle image indicate their detection using YOLOv5 trained on the synthetic
dataset.
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Figure 3.26: Annotation heatmap of the real dataset.

Dataset augmentation

To enhance the properties and size of our dataset, it was expanded threefold
through data augmentation. ItŠs essential to mention that the data selected
for the validation and test subsets were not augmented. Each augmented
image had a 50% chance of being horizontally Ćipped, underwent a horizontal
shear of up to ±5% and a vertical shear of up to ±1%, and adjustments
to exposure and saturation within ±5%. In the study presented in [11],
researchers managed to retrain a neural network using just two images of a
new chess set. They achieved this remarkable result by heavily augmenting
these two images. The authors of that study highlighted the shear operation
as particularly effective when training chess piece detection since it mimics
the natural camera distortion.

The resultant dataset, comprising 12,578 images, was then divided into
training (93%), validation (6%), and testing (1%) subsets. Figure 3.27
showcases an original image from the primary dataset alongside its two
augmented versions.

Figure 3.27: The original image (middle) and its two augmentations.
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Conclusion

We introduced a highly robust system for the automated generation of real-
world chess datasets. This solution could address the frequently mentioned
issue among researchers regarding the lack of chess datasets. Only a mere
0.62% of the dataset required manual annotation, primarily for very low-
quality images. Thanks to the universal design of our robotŠs gripper, the
algorithm could be easily applied to other chess sets. Furthermore, any robotic
manipulator able to reliably grasp and move a chess piece could beneĄt from
this data generation approach. We hope that future works will seize this
opportunity, leading to the creation of many more publicly available chess
datasets.

In our case, one drawback was the battery life of our robot. It could only
sustain the dataset creation process for about 12-16 hours before needing a
6-hour recharge. Unfortunately, the old Li-ion batteries used in our robot
canŠt charge quickly enough to match the high consumption of the motors, as
their charging is limited to 700mA at 10V. Another challenge was the frequent
failures of our large motors, necessitating a tedious replacement procedure.

3.2.4 Chess piece detector

We trained YOLOv8 on 11,667 training images from the augmented real-
world dataset from the previous chapter. The trained model is based on
the publicly available YOLOv8m checkpoint [16], which has 25.9 million
parameters originally trained on the COCO dataset. Thanks to the use of
transfer learning, our model was quickly trained to detect chess pieces (Figure
3.28).

The validation losses begin to stagnate around the 60th iteration while
the training losses continue to evolve. This unfavourable trend could suggest
overĄtting of the neural network to the training dataset. This suspicion is
further supported by comparing the 60th and 100th epochs on the testing
dataset (i.e., images the neural network has never seen during training)
containing over 3000 pieces. While the 60th epoch on the testing dataset
made only 4 errors (2 pieces misclassiĄed, 2 false positive detections), the
100th epoch made 7 errors (3 pieces misclassiĄed, 4 false positive detections).

We conducted a comparison of the neural networks YOLOv5 and YOLOv8
trained from publicly available checkpoints YOLOv_n, YOLOv_s, and
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Figure 3.28: Evolution of classiĄcation, box, and dual focus losses over 100
epochs of training based on the YOLOv8m checkpoint.

YOLOv_m. The results of the comparison are shown in Table 3.2. We
couldnŠt utilize larger models due to the hardware limitations of our system.
The development of validation losses over the 100 training epochs is depicted
in Figure 3.29.

YOLOv5 YOLOv8
params inference mAP50-95 params inference mAP50-95

v_n 1.9 M 1.1ms 0.957 3.2 M 1.1ms 0.959
v_s 7.2 M 2.0ms 0.966 11.2 M 2.1ms 0.967
v_m 21.2 M 4.3ms 0.969 25.9 M 4.8ms 0.969

Table 3.2: Performance comparison of YOLOv5 and YOLOv8 based on check-
points of various model sizes (n, s, m) after 100 epoch training.

These results indicate that the model size plays a more signiĄcant role than
the YOLO generation. For our purposes, any of the mentioned models can
be used with negligible differences in reliability. Since an inference time of
4.8ms on our control computer was sufficient for our needs, we chose to use
the model based on YOLOv8m checkpoint. The normalized confusion matrix
for this model is shown in Figure 3.30.

Comparing the confusion matrix 3.30 with the confusion matrix 3.24 from
Chapter 3.2.2 reveals that transitioning from a synthetic dataset to a real-
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Figure 3.29: The development of box/classiĄcation/dual focal validation losses
over the 100 training epochs of YOLOv5 and YOLOv8 based on checkpoints of
various model sizes (n, s, m).

Figure 3.30: Normalized confusion matrix of the trained model based on the
YOLOv8m checkpoint, when validated on the testing subset of the real-world
dataset. Uppercase letters correspond to the white chess pieces. This Ągure can
be directly compared with Figure 3.24.
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world dataset signiĄcantly improved training results. Despite our best efforts,
the synthetic dataset did not encompass enough image variation. The real-
world dataset introduced a countless amount of image imperfections that
would be challenging to reproduce in the synthetic dataset generator.

The reliability of the trained model could potentially be further enhanced
by a larger dataset, which would also counteract tendencies for overĄtting in
later training epochs. Nevertheless, given the limited size of our dataset, our
achieved results are highly satisfactory (see Figure 3.31). The performance of
our system aligns closely with top-tier results from other research studies on
chessboard recognition [10, 11].

Figure 3.31: Examples of detections from the testing subset of the real-world
dataset using a model trained on the YOLOv8m checkpoint. The trained model
accurately detects even complex situations caused by poor lighting, misfocus, or
overlapping pieces.
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3.3 Move detector

Most scientiĄc studies dealing with chessboard detection from camera imagery
identify player moves based on recorded changes in the chessboard occupancy.
This is often due to the adoption of piece recognition methods that discern
only the presence or colour of a piece, not its type. In such cases, the following
rules can be used to detect a playerŠs move [4]:..1. No change detected → no move has occurred...2. Swap of a piece with an empty square → no-capture move...3. Change in the colour of a piece and disappearance of a piece of the same

colour → direct capture move...4. Two no-capture moves of the same colour → castling move...5. No-capture move and the disappearance of one of the opponentŠs pieces
→ en-passant move.

ItŠs always crucial to verify the legality of the detected moves based on the
prior state of the chessboard. Additionally, the fact that each player can have
at most 16 pieces, precisely one king, and no more than eight pawns can be
used to detect incorrect chessboard recognition. However, these simplistic
methods are susceptible to errors and cannot detect complex situations, such
as pawn promotion.

Our implemented algorithm for recognizing player moves combines the
results obtained in Chapters 3.2 and 3.1. Initially, the algorithm uses the
chessboard and piece detectors to assign each square a predicted type and
prediction conĄdence. The piece recognition has a set conĄdence threshold
min_conf of 30%. Squares, where no piece is detected, are thus assigned a
min_conf conĄdence value.

The algorithm generates a list of all legal moves from the previous state of
the chessboard. For each legal move, "affected squares" are generated, which
can comprise 2 to 4 squares depending on the type of move. The degree of
correspondence of all affected squares of the legal moves with the detected
chessboard is determined using conĄdence levels. The legal move with the
highest normalized conĄdence wins - see Algorithm 2.
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Algorithm 2: The move detection algorithm
Data: previous chessboard state b, camera image img
Result: highest correspondence move mbest or null
// 8×8 matrices with detected type and confidence

T, C ← DetectChessboard(img);
mbest ← null; cbest = 0;
for m ∈ LegalMoves(b) do

ASm ← GetAffectedSquares(b, m);
boardm ← ApplyMove(b, m);
cm ← 0; // Move correspondence

for as ∈ ASm do

if T [as] = boardm[as] then

cm ← cm + C[as];
end

cm ← cm ÷ ♣ASm♣;
if cm > cbest then

cbest ← cm; mbest ← m;
end

return mbest

If the algorithm does not detect any legal move, it evaluates whether there
has been any change on the chessboard. This step is purely informative
and has no more profound signiĄcance. If the algorithm detects a change, it
notiĄes the user that an invalid move has been detected. If it doesnŠt detect
any change on the chessboard, the algorithm does not perform any action.
The Human Player (see Chapter 4.3) repeatedly attempts to recognize the
userŠs move until it succeeds.

3.4 Hand detector

A hand detection algorithm can signiĄcantly enhance the Move detectorŠs reli-
ability and lower the systemŠs overall computational complexity. We leverage
the fact that no change can occur on the chessboard without user interaction.
The hand detector thus allows tracking the progress and completion of the
userŠs move without the need to repeatedly query the Move detector or use
a physical button to conĄrm the moveŠs end. Moreover, the Move detector
may misinterpret the chessboard state when the user partially occludes the
camera view with their hand. For this reason, it is desirable to activate the
Move detector only after the userŠs movement has ended.

Many previous research studies have employed hand detection to detect
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the end of a move and to prevent incorrect move detections. In this section,
we will discuss three methods we have tested, outlining their advantages
and disadvantages. The last of these methods was implemented in the Ąnal
system.

3.4.1 Background subtraction

Background subtraction is a technique employed in numerous systems due to
its reliability and simplicity. Similar to piece detection using the background
subtraction approach (as discussed in Chapter 3.2.1), this method requires
a stationary camera and, ideally, a controlled laboratory environment with
consistent lighting. Applying this technique to our robot proved challenging.
The background subtraction method was sensitive to movements from the
robotŠs Ćexible structure and surrounding shadows. Most prominently, the
userŠs own shadow frequently triggered false positive hand detections. These
issues are illustrated in Figure 3.32.

Figure 3.32: The false positive movement detections produced by the background
subtraction method. The left image displays the camera output under the given
conditions (with the user in front of the chessboard). The middle image illustrates
the effects of camera shake, while the right image highlights how the userŠs shadow
is misinterpreted as a movement.

Given that our chess set uses colours similar to human skin tones, the
userŠs hand was typically detected only partially. Amateur chess players
often initiate their move by grasping the piece they intend to play with,
during which they begin to validate their decisions. In such scenarios, the
background subtraction method fails as it gradually adapts to the userŠs
stationary hand. When the hand is removed, the algorithm perceives the
chessboardŠs re-emergence as movement, leading to an undesirable effect. A
visualization of this phenomenon is illustrated in Figure 3.33.
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Figure 3.33: The algorithm adjusting over time to the userŠs stationary hand
(from left to right). It can be observed that the handŠs shadow is also detected
as a movement.

3.4.2 Machine learning

We explored the use of a machine learning approach for human hand de-
tection utilizing GoogleŠs MediaPipe Hand Landmark detector [26]. This
implementation can reliably detect and track hand movement in a camera
image, as demonstrated in Figure 3.34.

Figure 3.34: The output of GoogleŠs MediaPipe Hand Landmark detector.

Unfortunately, even this method was not suitable for our purposes. The
MediaPipe Hand detector was primarily trained for gesture recognition, and
its reliability signiĄcantly decreased when viewing the hand from the top or
side. Given the limited Ąeld of view of the camera we used, the detector also
struggled to identify the hand when picking up pieces from ranks 6 and 7,
and it failed to detect the hand entirely when picking up pieces from rank 8.
These scenarios are illustrated in Figure 3.35.

Figure 3.35: Illustrations of described instances where the MediaPipe hand
detector struggled or completely failed.
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3.4.3 Motion Flow

The Ąnal method for hand detection we have tested employs the Gunnar
Farnebäck algorithm [27] for calculating the optical Ćow of an image. Using
this algorithm, we obtain an approximation of the magnitude and direction of
motion for all image pixels. The normalized magnitude is depicted in Figure
3.36.

Figure 3.36: Normalized motion magnitude obtained using the Gunnar
Farnebäck algorithm. The left image shows the chessboard without interference;
the middle image shows the chessboard with a camera shake, and the right image
shows the userŠs stationary hand above the chessboard.

The obtained magnitude is dimensionless, making it unsuitable to use
with a Ąxed threshold to Ąlter out the userŠs hand. Instead, we employ
the interquartile range (IQR) outlier detection to Ąlter the data. This
approach reliably differentiates between the background (chessboard) and the
foreground (userŠs hand) under the assumption that the foreground occupies
less than 25% of the entire image. We then binarize the Ąltered image and
search for contiguous shapes within it. The normalized area of the largest
shape provides the score for the given frame. We calculate a running average
score over the last 30 frames. If the average normalized area of the largest
shape from the last 30 frames surpasses a Ąxed threshold (in our case, 0.4%),
the frame is labelled as containing a hand.

The hand detection method we introduced is capable of detecting a hand
under various conditions. Due to its high sensitivity to movement, it can
reliably detect a stationary hand placed on a chess piece. It is capable
of detecting piece movements in rank 8. Moreover, this method is highly
resistant to moving shadows and changing lighting conditions. However, due
to the cameraŠs rolling shutter effect, strong camera shakes can sometimes be
misinterpreted as movement.

Due to its positive attributes, this method was implemented in the Ąnal
version of our autonomous chess robot. The Move detector from Chapter 3.3
utilizes the Hand detector to recognize the playerŠs move - it gets activated
only after the move is completed. If the Move detector detects no move or an
illegal move, it waits for another player interaction using the Hand detector.
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The results of the implemented Hand detector are displayed in Figure 3.37.

(a) : Chessboard with no hand movement.

(b) : User holding a piece over the chessboard.

(c) : User moving a tall piece in rank 8.

(d) : User holds their hand as still as possible on a chess piece.

Figure 3.37: Visualization of the optical Ćow based Hand detectorŠs functionality.
The left image displays the camera output, the middle image shows the normalized
magnitude of movement, and the right image presents the largest contiguous
shape after IQR Ąltering and binarization.
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Chapter 4

Implementation

This chapter focuses on the implementation details of our autonomous chess
robot. We will break down the overall system, highlighting how different parts
work together to make the robot autonomously play chess. Our choice of chess
algorithm, the underlying game logic, and the robotŠs internal algorithm will
be discussed in detail. Additionally, we will discuss the implemented motion
planner that enables the robot to optimize its path while avoiding collisions
with other pieces. Lastly, we will give an overview of the user interface.

4.1 System overview

Given the complexity of the task and the limited performance of the MCUs,
a majority of the computations had to be executed on an external control
computer (PC), which also runs the GUI (the GUI is not conĄned to just
the control computer and may be run anywhere on the local area network).
The implemented system comprises three main modules: the chess-playing
robot, the control computer, and the GUI. All these modules communicate
with each other over TCP. Figure 4.1 depicts an overview of the modules and
their submodules.
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Figure 4.1: An overview of the system, its modules, and the most crucial
submodules.

4.1.1 Intermodule communication

The entire system is interconnected using Transmission Control Protocol
(TCP). MCU1 establishes its own personal area network (PAN). MCU2
connects to this network via Bluetooth tethering, while the control computer
connects through USB tethering. This network operates separately from the
local area network (LAN), which the control computer uses to communicate
with the graphical user interface (GUI). The camera is connected to the
control computer via USB.

The communication framework connecting all modules was designed to
ensure maximal independence between the individual modules. This architec-
ture guarantees that each module can respond adequately to connectivity loss.
For example, the system can operate without the GUI activated or seamlessly
resume gameplay after power restoration if the robotŠs battery was drained.

MCU1 (host of the PAN) uses a static IP address 10.0.0.1, where it sets up
a TCP server for communication. The control computer runs a TCP client
that tries to connect to MCU1Šs server. Once connected, they exchange state
information and requests through the "PC Interface" in the robot and the
"Robot Interface" in the control computer. Each robot command is treated
as a request with its unique ID and arguments. Upon task completion, the
robot (MCU1) sends an acknowledgement signal to the control computer,
conĄrming the fulĄlment of the request with a given ID. In case of a connec-
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tion interruption, such as accidentally unplugging the USB cable, the robot
autonomously completes buffered requests and then awaits reconnection.

MCU1 and MCU2 communicate over TCP via Bluetooth tethering. They
share their actions and synchronize their progress. Simple commands are dis-
patched to MCU2, such as "light up LED", "rotate the motor at a given speed
to a given angle", "report the current motor encoder angle", etc. The "Axis-
Controller" submodule running on MCU1 aims to synchronize the movements
of all robot axes.

While the MCU1-to-PC connection is responsive and fully meets our re-
quirements (speed: avg. 23.814 Mbps; delay: avg. 1.354ms, max. 3.130ms),
the MCU1-to-MCU2 connection is considerably slower. The Bluetooth tether-
ing TCP communication has to handle low transmission speeds and signiĄcant
transfer delays (speed: avg. 284 kbps; delay: avg. 60.913ms, max. 90.071ms).
This caused the motor synchronization between the two MCUs to be highly
challenging. The challenges related to slow motor synchronization will be
discussed in greater detail in Chapter 4.3.2 about Trajectory Planning).

Both MCUs are powered by the Angstrom 2010.12 operating system,
running on the Linux kernel 2.6.33-rc4, with driver support for older external
USB Wi-Fi adapters. Unfortunately, at the time of writing, we did not have
access to any Wi-Fi adapters compatible with this lightweight operating
system.

For communication between the control computer and the GUI, the control
computer sets up a TCP server and waits for the GUI clientŠs connection.
The computer then updates the GUI with the current game and chessboard
state. Simultaneously, the GUI sends back events (similar to requests, but
without acknowledgement) to the computer, such as game restart commands.
If connection loss occurs, the control computer continues the game while the
GUI awaits reconnection.

4.1.2 Camera stream

In our initial endeavours, we aimed to connect the camera directly to one
of the MCUs, transmitting images to the control computer via the TCP
communication. This section presents our Ąndings and the reasons that
ultimately lead us to connect the camera directly to the control computer.
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As stated in Chapter 3, the Logitech C920 HD PRO camera was chosen

primarily due to its compatibility with the old drivers present in the MCU
units. These drivers only support the UVC (USB Video Class) devices and
a subset of gspca (Generic Software Package for Camera Adapters) devices.
Furthermore, the cameraŠs backward compatibility with USB 1.1, found in
the MCU units, made it a preferred choice.

The supported transmission protocols between the camera and the MCU
provide raw YUV images or an MJPEG video stream. The raw YUV image
transmission is capped at a resolution of 192x144 pixels. The MCUŠs com-
putational capacity constrained streaming at this resolution to the control
computer, resulting in an average of 7 frames per second. It is imperative to
note that this small resolution was insufficient for our purposes.

On the other hand, the MJPEG stream from the camera supports a resolu-
tion of up to 640x480 pixels. However, the MCU unit requires approximately
3 seconds to capture a single frame, rendering it unsuitable for our require-
ments. Moreover, the MJPEG introduces compression artefacts, as depicted
in Figure 4.2.

Given these constraints, we were ultimately compelled to directly connect
the camera to the controlling computer. This conĄguration enabled us to
process images at a resolution of 640x480 pixels at up to 30 fps, devoid of
any compression artefacts.

Figure 4.2: Image with artefacts from the MJPEG video stream captured by
the MCU1 (left Ągure) compared to an image taken by the controlling computer
(right Ągure). Both images have an identical resolution of 640x480 pixels.

4.2 Robot algorithm

Due to the highly constrained computational capabilities of the MCUs, the
majority of computations are executed on the control computer. Nevertheless,
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the MCU units handle everything related to the robotŠs movement. MCU1
secures both the communication with the control computer and the movement
synchronization with MCU2. The MCU1 program operates in two phases:
axes calibration and request processing (Figure 4.3).
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Figure 4.3: A simpliĄed overview of the MCU1 workĆow.

Axes calibration

The robot is equipped with seven servo motors. Embedded within these
motors are optical encoders, which enable the robot to monitor motor move-
ment. However, these encoders only provide a relative position, meaning
their absolute positions are unknown after the programŠs initialization. A
calibration sequence was implemented to avoid manual axis tuning before
each game, which autonomously resets the robot to its default position.

Conventionally, end switches are used for the calibration of motorized axes.
Unfortunately, we did not have these at our disposal since our choice of parts
was limited. For this reason, we deploy a sensorless auto-calibration for 6
out of the 7 motors. This technique leverages the feedback from the motor
encoder to detect a motor stall - a situation where the motor is halted due to
an opposing external force.

The robot employs PID control for positional control of motors. The
PID component values for the medium and large motors are shown in Table
4.1. The integral components are turned off during calibration to prevent
unnecessary motor strain.

The robot calibrates individual axes in the sequence listed in Table 4.2.
This sequence allows the robot to self-calibrate without knocking over chess
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Proportional Integral Derivative

Large motor 4.0 0.04 10.0
Medium motor 8.0 0.04 8.0

Table 4.1: Values used by the positional motor controllers.

pieces on the board. Positional control during calibration enables the synchro-
nization of motors in the Z and Y axes, both of which calibrate two motors
simultaneously. Nevertheless, each motor calibrates itself independently of
the others. A motor halts its movement if the program detects a sudden spike
in the controller error. This purely mechanical solution provides adequate
results for our purposes.

Axis Calibration action
Z (elevation) Raises to avoid collisions with the chess set
Y (rank) Reaches mechanical end-stops in front of the

chessboard, then returns to home position (rank 1)
X (Ąle) Calibrates against the wall with the light sensor

to allow R-axis calibration
R (gripper rotation) Calibrates using the light sensor and reĆective

target on the rotary double gripper
G (gripper opening) Calibrates to the centre between the actuating pins
X (Ąle) Moves above the "a" Ąle
Z (elevation) Lowers to the default position

Table 4.2: RobotŠs calibration sequence with individual actions of each axis in
the order of their execution.

The only motor that uses sensors for its calibration is the R-axis medium
motor, which rotates the dual gripper. The use of sensors was necessary, as
the dual gripper can rotate indeĄnitely around its axis (thus, mechanical
stops are unfeasible). Consequently, we employ a reĆective target affixed to
the rotary dual gripper and a light sensor with a built-in LED mounted on
the robotŠs frame. After the X-axis calibration, the light sensor can detect
the reĆective target. In the Ąrst step, the robot quickly rotates the gripper
by 360°, storing the position with the highest reĆectivity. In the second step,
the algorithm, within a 45° radius of this high reĆectivity point, executes
eight slow and precise sampling rotations, Ąnetuning the relative position of
the reĆective target and sensor. After the R-axis calibration, the light sensor
is permanently disabled.
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Request processing

The robot currently supports three types of requests (commands): utility
actions, legacy controller, and path controller. Utility actions include changing
the colour of the robotŠs LED indicators and sound signalling.

Legacy controller

The legacy controller has a series of commands allowing the robot to grip
and release a piece on a speciĄed square. This controller operates on a very
simple principle where the robot moves above the pieces and lowers only for
the actual gripping or releasing of a piece. Thus, thereŠs no need to detect
potential collisions.

For movement, the legacy controller uses the submodule called "Axis
controller", which synchronizes the individual axes. The Axis controller Ąrst
inquires all axes for a time estimate to complete the planned movement. The
worst of these time estimates (unless the user speciĄes otherwise) is used to
set the speeds for all axes. The previously discussed motor position regulators
then execute the planned movement (Figure 4.4). A motorŠs movement is
considered complete if the motor approaches within an epsilon distance of
the desired position, even though its regulators continue to hold the position.
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Figure 4.4: Response of the regulator to a request for a 720◦ motor movement in
1 second under varying loads. On the left is the response of the medium motor,
and on the right is that of the large motor. The results correspond to the values
from Figure 2.3. It should be noted that a speed of 720◦/s is the limit for the
large motor.

Path controller

The Path controller builds upon the results of the Legacy controller. It
takes a sequence of 4D points specifying the positions of its four main axes (X,
Y, Z, and R) over time. In our application, we utilize this in conjunction with
motion planning, which we delve into in Chapter 4.3.2. The Path controller
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iteratively processes all input points and adjusts the speeds of individual
axes so that their movement follows a straight line between a given pair of
points (linear interpolation). The outcome of this system is precise control of
movement across all axes, as can be observed in Figures 4.5 and 4.6.
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Figure 4.5: Response of the Axis controller following a straight-line path. All of
the motors were controlled through a single MCU. The X, Y and Z axis motors
were limited to 720, 360 and 180◦/s speeds, respectively. The changing colour of
the line indicates 1-second intervals (i.e. changing speed).
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Figure 4.6: Response of the Axis controller following an elliptical path. All of
the motors were controlled through a single MCU. The X, Y and Z axis motors
were limited to 720, 360 and 180◦/s speeds, respectively. The changing colour of
the line indicates 1-second intervals (i.e. changing speed).

Since the Bluetooth tethering used for synchronizing motor movement with
MCU2 provides a slow connection, we were ultimately forced to limit the
sample rate of the Axis Controller to 5 samples per second. This precluded
us from tracking complex paths containing numerous points. As a result, we
simplify the path generated by the motion planning algorithm by excluding all
points which are not required to preserve a collision-free path. We anticipate
that more reliable communication between the MCUs would address this
issue.
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4.3 Control computer aglorithm

The algorithm in the control computer is the core of the presented system. It
runs the entire game logic, recognizes and generates moves for both players
and coordinates the robot and the GUI. Figure 4.7 shows a simpliĄed workĆow
of the control computer algorithm.
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Figure 4.7: A simpliĄed workĆow of the control computer algorithm.

The main thread of the algorithm called "GamePlayer" initiates all other
threads (for example, threads for communication, camera image processing,
etc.) and sets up the default game settings. After initialization, GamePlayer
launches its main loop, where it coordinates the course of the game by setting
up and starting a new "Move Player" thread for each ply and coordinates
its results with the GUI. While the "Move Player" executes the move, the
GamePlayer responds to events sent from the GUI. After each move, the
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GamePlayer checks if the game has been completed.

Move Player thread is speciĄcally created for each ply. Upon its creation,
it is given the current player object and the state of the chessboard. Move
Player Ąrst obtains the move chosen by the player, then plays this move,
records the move on the chessboard, and subsequently, this thread terminates.
The updated chessboard is further processed by the Game Player. Thanks to
object-oriented programming, both players (human/robot) behave the same
despite their implementations being very different.

Human Player

The Human player utilizes algorithms from Chapter 3. Thanks to these robust
image recognition methods, the Human player is capable of recognizing a
move made on the physical chessboard and transferring it to its virtual
representation. The Human player does not perform any further actions, as
the user has already physically moved the piece.

CPU Player

The Robotic player (internally nicknamed the CPU player) obtains its move
using the chess engine from Chapter 4.3.1, which generates a move based
on the set difficulty. Playing a move for the CPU player means physically
moving the pieces according to the generated move. In the case of a standard
piece move, itŠs a relatively simple movement. However, there are more
complex chess moves, such as castling, which consists of several sub-moves.
We distinguish four different types of move, which are listed in Table 4.3.

Move type Sub-move sequence
No capture grab1→ release1
Direct capture grab1→ grab2→ release1→ drop2
Castling grab1→ grab2→ release2→ release1
En-passant grab1→ release1→ grab1→ drop1

Table 4.3: An overview of the generated sub-move sequences for each move type.
The drop sub-move removes a piece from the chessboard. The number after each
sub-move represents the gripper used to perform this action.

The Robotic player then employs motion planning from Chapter 4.3.2,
which plans collision-free transitions between the individual sub-moves. The
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planned trajectory, in the form of a series of 4D points, is sent to the robot
via the "Robot interface", where this movement is executed using the "Path
controller".

4.3.1 Chess engine

One of the critical decisions in the development of our chess robot was selecting
the right chess engine. A chess engine is a computer program/algorithm that
aims to generate the strongest possible move based on the current state of
the chessboard. Given the long-term and extensive development of chess
engines by the research community, creating an engine that would surpass
state-of-the-art solutions was beyond the scope of this thesis.

Given that we didnŠt want our robot to be easily defeated by a human
opponent, our choice naturally gravitated towards StockĄsh [28]. This engine
consistently ranks at the top of leaderboards in all chess engine competitions.
In fact, StockĄsh gained its 6th consecutive SuperFinal title in the Top Chess
Engine Championship in April 2023 [29]. WhatŠs more, StockĄsh is an open-
source and platform-independent chess engine. StockĄsh delivers top-tier
performance while being resource-efficient, with the option to adjust the state
tree search depth, balancing robustness against computational complexity.

This chess engine allows users to choose one of the 20 difficulty settings.
Reducing the difficulty level gives the human user a chance to win, which can
be desirable in certain situations, for instance, if the user uses the robot to
train his chess-playing skills.

4.3.2 Motion Planning and collision avoidance

In robotics, the ability to seamlessly navigate through complex environments
devoid of collisions is a highly researched topic. Collision-free motion planning
is computationally intensive, especially when operating in high-dimensional
spaces. Finding a collision-free trajectory with real-time performance often
necessitates the deployment of advanced motion planning algorithms.

We aimed to avoid the conventional approach where the robot manoeuvres
exclusively above the chess pieces to circumvent potential collisions, even
when such precautions are unnecessary. This simplistic motion planning
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approach, found among many other chess-playing robots, is also implemented
in our robot as the "Legacy controller" from Chapter 4.2. While undeniably
functional and reliable, such movements are often perceived as unnatural and
tend to be less efficient (for instance, when advancing a pawn).

For these reasons, we decided to use the sPRM (SimpliĄed Probabilistic
Road Map) motion planning algorithm, which is probabilistically complete
and asymptotically optimal. The motion planning is executed in a 3D virtual
environment where the chessboard is represented as a 2D plane, and the
individual chess pieces are represented as cylinders of corresponding heights.
The rotary dual gripper is represented as a rotating rectangular cuboid in the
space above the chessboard, mimicking its real-world motions along the X, Y,
Z, and R axes. The described virtual environment is illustrated in Figure 4.8.

Figure 4.8: The simulated virtual environment for motion planning composed
of simple geometric shapes representing the chessboard and individual chess
pieces.

The sPRM algorithm (Algorithm 3) constructs a roadmap by randomly
sampling points within the robotŠs collision-free conĄguration space (in our
case, 4-dimensional). Subsequently, it establishes collision-free paths between
neighbouring samples in a speciĄed radius, wherever feasible. Through
this method, the algorithm systematically explores the robotŠs conĄguration
space, aiming to Ąnd a path that connects the robotŠs initial and target
conĄgurations. While the algorithm is probabilistically complete, meaning
that given a sufficiently large sample size, it will Ąnd a path if one exists, we
have modiĄed the sPRM to guarantee a solution regardless of the sample
size. We leverage the fact that the chess pieces are always accessible from the
top and that there is a safe height at which the gripper can move without
collisions. By adding points above the initial and target conĄgurations at a
safe height, we obtain an always feasible fallback solution reminiscent of the
"Legacy controller".
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.............................. 4.3. Control computer aglorithm

Algorithm 3: The modiĄed sPRM algorithm
Data: qinit, qtarg, number of samples n, radius ρ
Result: Probabilistic roadmap G = (V, E)
Vinit ← ¶qinit, qsh

init, qsh
targ, qtarg♢; // sh = safe height

Vsamples ← ¶SampleFreei♢i=1,...,n;
V ← Vinit

⋃

Vsamples;
E ← ¶(qinit, qsh

init), (qsh
init, qsh

targ), (qsh
targ, qtarg)♢;

for v ∈ V do

U ← Near(G = (V, E), v, ρ)\¶v♢;
for u ∈ U do

if CollisionFree(v, u) then

E ← E
⋃

¶(v, u), (u, v)♢;
end

end

return G = (V, E)

For collision detection, we needed a fast algorithm capable of detecting col-
lisions between two groups of convex objects. Initially, we utilized the RAPID
[30] (Robust and Accurate Polygon Interference Detection) collision checking
library. However, we later transitioned to Trimesh [31]. Trimesh is a Python
library for working with triangular meshes. Trimesh implements the FCL [32]
(Flexible Collision Library) for collision detection. FCL is an open-source
collision detection program that employs numerous optimization methods to
achieve state-of-the-art performance. Trimesh, FCL, and RAPID were tested
under identical conditions, detecting collisions between two cuboids in an
otherwise empty world. The results of this test can be found in Table 4.4.

Detector Collision evaluations per second
RAPID 70,949.74
Trimesh 224,035.99
FCL 236,037.44

Table 4.4: Performance evaluation of the tested collision detectors. Both Trimesh
and FCL deliver over three times the performance compared to the originally
used RAPID library.

To Ąnd the shortest path in the graph obtained using the sPRM algorithm,
we utilize the popular A* algorithm. Each edge between individual samples in
the conĄguration space is evaluated based on its time requirement. The time
requirement is calculated as the maximum time the robotŠs axes require to
transition between conĄgurations, given the current maximum speed setting of
the axes. The path with the lowest cost, meaning the lowest time requirement,
is chosen.

Due to a limited neighbourhood radius ρ, the obtained path often contains
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4. Implementation....................................
many redundant points. Before sending the path to the robotŠs Path controller,
we simplify the trajectory, eliminating all non-terminal points from the path
whose removal does not cause a collision. Simplifying the path generally
results in a more natural and efficient movement. Simplifying the path also
aids the robotŠs Axis controller, which is constrained by the transfer speed of
Bluetooth tethering between the MCU1 and MCU2 (see Chapter 4.1.1). The
output of this algorithm is visualized in Figure 4.9.

Figure 4.9: Visualization of the output from the implemented motion planning
algorithm. Green points represent the sampled conĄgurations. White cuboids
represent the conĄgurations of the double gripper from the output path. The
conĄguration on the right is the initial setup of the gripper, aiming to place the
piece on the B7 square (left conĄguration). The algorithm avoids colliding with
the piece on the C7 square by adding the middle conĄguration with a slight
gripper rotation.
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4.4 Graphical user interface

The implemented graphical user interface allows the user to view the current
state of the game and the chessboard. We aimed to create a modern-looking
easy to understand interface that can be utilized by both the player and the
spectators. Among other things, the interface displays the current playerŠs
colour and notiĄcations about critical in-game events, such as a check. The
Ąnal implementation of the user interface is shown in Figure 4.10.

Figure 4.10: The graphical user interface displaying the state of the chessboard
after the white playerŠs pawn has moved to square B8. NotiĄcations shown in
the bottom right corner of the screen warn the current player (highlighted at
the top of the screen) about the white pawnŠs promotion and the threat to the
black king. The white pawn, having been promoted to a queen, falls apart.

Similar to the synthetic dataset generator discussed in Chapter 3.2.2, the
GUI was implemented in Unreal Engine 4.27. Communication with the server
on the control computer is facilitated by a TCP client implemented as one of
the actors in Unreal Engine. By "actor", we refer to any object that can be
placed into the virtual world in Unreal Engine - this includes all assets as
well as a signiĄcant portion of the scripts.

All information received by the TCP actor is passed on to the Game
Instance, which is a high-level manager object that runs throughout the
duration of the game. The Game Instance forwards parts of this information
to individual actors who are responsible for spawning/moving/destroying
pieces, managing notiĄcations, rendering the GUI, changing settings, and
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4. Implementation....................................
more. The Game Instance also prepares responses that are sent back to the
control computer, such as user-triggered events (e.g., changes in the settings).

To enhance performance, we utilize models of chess pieces that contain
only 0.1% of the triangles from the original 3D scanned meshes. Additionally,
a level of detail (LOD) system was implemented for all models, selecting
the level of rendered detail based on the modelŠs distance from the camera.
We employ a combination of static lights (lighting the chessboard, blue
backlighting under the chessboard) and dynamic point lighting, which creates
sharp shadows behind the pieces.

A dynamic piece destruction system was implemented to increase user
engagement. Every captured piece becomes a breakable object, and the
collision with the attacking piece (as it moves in to capture the square)
shatters it into many precomputed fragments. These smaller fragments
gradually disappear after 30 seconds to maintain clarity on the chessboard.
In situations like pawn promotion, where a piece ceases to exist without being
captured, the piece shatters without external force applied (see Figure 4.10).
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Chapter 5

Results

As described in the preceding chapters, the autonomous chess-playing robot
was subjected to a series of tests to evaluate its performance in real-world set-
tings. This chapter presents the results obtained from these tests, highlighting
the systemŠs capabilities, strengths, and areas for improvement.

Board detector

The implemented line-based chessboard detector was tested on the real-world
dataset from Chapter 3.2.3. Out of the total of 5,032 images, the algorithm
was able to detect the chessboard in 4,814, translating to a detection accuracy
of 95.668%. Most of the discarded images were of inferior quality. A signiĄcant
advantage of our algorithm is its ability to detect failures or misalignments
with 100% accuracy.

Upon closer analysis, we found that out of the 218 automatically discarded
images, 12% were discarded due to the absence of a chessboard grid, 74%
were discarded due to template matching failure on the candidate grids, and
the remaining 14% were discarded because of 100% piece detection failure
(the piece detector is not part of the board_detector, it is used as a failsafe).

Of the cases where the chessboard grid wasnŠt found, 57% were due to
complete darkness (lights were turned off in the laboratory), and 33% were
caused by severe camera defocus. The remaining 10% remained unidentiĄed
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for unknown reasons.

The most frequent cause of failure was a mismatch during template match-
ing. 35% of these mismatches were caused by severe camera defocus, 29% by
uneven chessboard illumination (HDR issues), 28% remained unidentiĄed for
unknown reasons, 6% of the images were mistakenly out of frame (misaligned
camera), and 1% were taken in complete darkness.

The failure to detect pieces was attributed to poor focus in 86% of cases,
8% were due to uneven chessboard illumination (HDR issues), and 5% were
taken in complete darkness.

Images with poor focus can be detected using the introduced gradient-
descent algorithm from chapter 3.1.1; however, discarding these images might
be more appropriate in our case. A potential solution would be to utilize
a manually focused camera. Uneven chessboard illumination issues can be
addressed by purchasing a camera with HDR support.

Excluding the images discarded by the piece detector (as the piece detector
is applied after the chessboard detector as a failsafe) and images for which
our algorithm isnŠt responsible (out-of-focus, 100% darkness, out of frame),
only 95 failed detections remain, giving an algorithm accuracy of 98.112%. If
we also disregard images with uneven lighting that could be resolved with an
HDR-supporting camera, weŠre left with 48 failed detections, achieving an
overall system accuracy of 99.046%.

The measured mean processing time for the real-world dataset was 407 ms
per image, with a maximum recorded time of 658 ms. Figure 5.1 displays a
histogram of the processing time distribution for images from the real-world
dataset.

These Ąndings are consistent with our in-game testing results. During
gameplay under regular lighting conditions, we did not observe any instances
where the chessboard detection system failed. In the event of a failure,
the board detector identiĄes the error, and the Move Detector retries its
chessboard detection attempt until successful. An example of images where
the chessboard detector failed is shown in Figure 5.2.
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Figure 5.1: Histogram of the processing time distribution for images from the
real-world dataset.

Piece detector

The results of the Piece detector have already been discussed in Chapter
3.2.4. Using the real-world dataset, we trained the YOLOv8 neural network,
achieving impressive results (refer to the confusion matrix in Figure 3.30).
Under normal lighting conditions, itŠs scarce for the pieces to be undetected
or misclassiĄed. In extreme scenarios (e.g., overexposure), a piece may be
misclassiĄed. However, in our implementation, the Move detector typically
rectiĄes this by either deeming the move as invalid or deducing the pieceŠs
colour and type based on the prior state of the chessboard.

Move detector

The implemented Move detector was tested over 12 games with the chess robot,
during which we did not record a single instance of move misidentiĄcation
(Figure 5.3). Throughout these games, the algorithm alerted the user about
an invalid move multiple times, most commonly when the user overlooked
a check (despite the GUI warning) or accidentally played with a piece of
the wrong colour. The Move detector is capable of detecting invalid moves,
but it cannot detect cheating. Suppose a user makes a valid move while
simultaneously making an illegal adjustment to the board (removing a piece,
moving enemy units, etc.). In that case, this illegal move is ignored by the
algorithm. The measured mean processing time of a single image is 606 ms.
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(a) : autofocus failure (b) : uneven lighting

(c) : darkness (d) : unknown (template matching)

Figure 5.2: An example of images where the chessboard detector failed.

Path planning and path execution

The implemented sPRM collision-free path planning algorithm elevates the
robotŠs movements to a new level. By moving the robot in a 4-dimensional
state space, it removes the robotic feel that many users initially expect from
our system.

Unfortunately, we werenŠt able to fully utilize path planning. The limited
communication bandwidth between MCUs restricts us to primitive paths
with a minimal number of waypoints. Moreover, we had to limit the number
of sampled state-space points to 200 per path planning. Despite our best
efforts, the single-threaded Python implementation was not fast enough to
sample more points.

To accelerate path planning, we use a unique system where the path is
planned during the robotŠs actual movement. With the limited number of
sampled points, the path is generated faster than the robot can execute
it, seamlessly masking the fact that the robot isnŠt aware of its full path
beforehand.
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Figure 5.3: A snapshot from the chess robotŠs camera (left image) and a
screenshot of the GUI (right image) after playing an entire chess game using the
Move detector.

For future work, we aim to reĄne the Path planner. Potential improvements
include optimizing the distribution of sampled points and transitioning to a
multi-threaded implementation. We would also like to replace the Bluetooth
tethering between MCUs, allowing us to send more complex paths to the
robot.

Except for a relatively high failure rate of the large motors, the path
execution is Ćawless. After all, this system was used to generate a dataset of
over 5,000 images autonomously. The implemented AxisController faithfully
follows the path created by the Path Planner. A standard no-capture move
typically takes about 25-35 seconds to execute. Captures generally take
around 100-110 seconds. When the robot plays against a human opponent,
returning to the camera position usually takes less than 10 seconds.

User feedback

The system introduced in this thesis has already been presented at public
events such as MakerFaire Prague 2023 (Figure 5.4). The feedback from users
was overwhelmingly positive. The most frequent suggestion was incorporating
a dynamic camera in the GUI to follow events on the chessboard. Users also
desired an option to show legal moves and other quality-of-life improvements.
On the other hand, the GUI was praised for its modern appearance and
real-time representation of the chessboardŠs state. We plan to implement the
suggestions from users in the following GUI update.

A typical user reaction was to test the system with illegal manipulations of
the pieces. Some even took pieces directly from the robotŠs gripper, which
unfortunately cannot be detected. Users typically appreciated the seamless
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gameplay and reliable image recognition.

Figure 5.4: Presentation of the developed chess-playing robot at the Maker
Faire 2023 event.
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Chapter 6

Conclusion

This thesis introduced the challenges associated with the design and develop-
ment of an autonomous robotic system capable of autonomously playing chess
against a human opponent. At the outset, we established several constraining
conditions that signiĄcantly complicated the implementation process. Our
developed system operates with a monocular RGB camera mounted on the
robotŠs moving frame and a wooden chessboard with non-contrasting colours.
The focus of this thesis was on system robustness; we presented solutions
capable of functioning under diverse lighting conditions.

Chapter 2 delved into the various decisions made during the design and
implementation of the presented robotic manipulator with four degrees of
freedom. We introduced the individual components that constitute the robot,
including the dual MCU system responsible for governing and synchronizing
the robotŠs movements. A unique solution was presented for gripping two
chess pieces at once using a rotary dual gripper mechanism. Lastly, we
discussed the actuators employed and the challenges associated with them.

Chapter 3 introduced the reader to the challenges of computer vision
related to recognizing a playerŠs move from a chessboard image. We discussed
a broad range of existing solutions and presented several algorithms we
implemented for the detection of the chessboard, chess pieces, playerŠs moves,
and the presence of the playerŠs hand in the cameraŠs view. All implemented
algorithms are compared, tested, and their results are shared with the reader.
An integral part of this chapter was a detailed description of creating synthetic
and real-world datasets. The output of our work includes a synthetically
generated dataset comprising 5060 images suitable for object detection and
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segmentation tasks and a real dataset of 4800 images suitable for object
detection tasks.

In Chapter 4, we delved into the intricacies of our implementation, spanning
from the robot itself, through the control computer, to the graphical user
interface. We introduced the reader to the complex system housed within
the control computer and its interactions with both the robot and the GUI
through a stable communication layer, allowing the system to operate reliably
even under unstable connections. We discussed the control, planning, and
execution of the robotŠs movement.

Chapter 5 summarized our achieved results, which, in many respects, are
comparable to the top scientiĄc works on the topic of robotic chess players.
We introduced the line-based Chessboard detector with a detection accuracy
of up to 99.046%, a chess Piece detector based on YOLOv8, which, in our
test dataset (98 frames), made only 4 errors, and a Move detector that made
no mistakes during 12 test chess games.

Potential continuations of this work include improving the current Path
planner, where a wide range of planning algorithms and optimization methods
can be implemented. The work can be easily extended to another manipulator,
possibly with improved human-robot interactions. Moreover, this study can
be easily adapted as a universal chess dataset generator if we measure the
detected chessboard using a calibrated camera. This would signiĄcantly
contribute to the scientiĄc community addressing this topic by providing
datasets for machine learning.
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Appendix B

Attached Ąles

Attached to this thesis are all the source Ąles necessary to run the presented
system. Due to attachment size limitations, we were compelled to split the
appendix, so its complete form can be found only at this link [33]. The tree
structure of the Ąle system is illustrated below:

root
ControlComputer_Source_code

game_player.py

DatasetGenerator.py

AnnotationTransfer.py
...

MCU_Source_code
main/src/Runner.java
...

Synthetic_Dataset_Generator
DatasetYolo.py
...

Datasets (online-only)
RealWorldDataset
SyntheticDataset

pretrained weights (online-only)
...

UnrealEngine (online-only)
ChessGame
CNS
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