
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Learning a Structured Locomotion
Algorithm for Hexapod Robots

Jiří Hronovský

Supervisor: Ing. Teymur Azayev
May 2022



ii



BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

491868Personal ID number:Hronovský  JiříStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Learning a Structured Locomotion Algorithm for Hexapod Robots 

Bachelor’s thesis title in Czech:

Učení strukturovaného algoritmu pro chůze hexapoda 

Guidelines:

The task is to implement a locomotion algorithm which is a hybrid of manually-designed and learnable elements which
can be optimized using random search algorithms, giving an interpretable locomotion structure in contrast to end-to-end
trained black box neural network policies. The task deliverables are as follows:
1) Implement an algorithm for hexapod locomotion which is centered around a learnable state-machine architecture for
gait-phase (stance, swing, etc) transition for each leg. The algorithm has to use exteroceptive information of the terrain
for foot placement and feedback to compensate for slippage and other factors.
2) Use an off-the-shelf Reinforcement learning or any other Random search algorithm to optimize locomotion parameters
on various simulated terrains.
3) Evaluate the locomotion algorithm on several rough terrains in simulation, showing where it is suitable and in which
cases it fails.
4) Compare proposed algorithm against an end-to-end learned unstructured neural network algorithm (can be without use
of exteroceptive data) on several terrains in simulation.
5) Optionally test locomotion algorithm on analogous real platform.

Bibliography / sources:

[1] Karim, Ahmad & Gaudin, Thibaut & Meyer, Alexandre & Buendia, Axel & Bouakaz, Saida. (2013). Procedural Locomotion
of Multi-Legged Characters in Dynamic Environments. Journal of Visualization and Computer Animation. 24. 3-15.
10.1002/cav.1467.
[2] Homberger, Timon & Bjelonic, Marko & Kottege, Navinda & Borges, Paulo. (2016). Terrain-Dependant Control of
Hexapod Robots Using Vision. 10.1007/978-3-319-50115-4_9.
[3] Campos, Ricardo & Matos, Vitor & Santos, Cristina. (2010). Hexapod locomotion: A nonlinear dynamical systems
approach. 1546 - 1551. 10.1109/IECON.2010.5675454.

Name and workplace of bachelor’s thesis supervisor:

Ing.Teymur Azayev    Vision for Robotics and Autonomous Systems  FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 28.01.2022

Assignment valid until: 30.09.2023

_________________________________________________________________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Teymur Azayev

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1



III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1



Acknowledgements
I would like to thank my thesis supervisor,
Ing. Teymur Azayev, for his guidance,
support, and motivation during my work
on this thesis.

I would also like to give thanks to
doc. Ing. Jan Bauer, Ph.D. for a consul-
tation on servomotors.

Lastly, I would like to thank my family for
their immense support during my studies.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of inspiration used within
it in accordance with the methodical in-
structions for observing the ethical princi-
ples in the preparation of university theses.
used in the bibliography.

Prague, May 20, 2022

v



Abstract
This thesis focuses on generation of hexa-
pod locomotion using a learnable struc-
tured algorithm consisting of a neural net-
work that generates control parameters
to a hand-designed movement generator.
The proposed method is compared with a
variant in which the neural network is re-
placed by a simple hand-designed gait con-
troller. The proposed method is also com-
pared with an end-to-end neural network.
All neural networks are trained using an
evolution strategy optimizer. The results
of training and evaluation on five terrains
show that the control parameters given by
the trained neural network give a higher
performance than the hand-designed con-
trol parameters. The proposed method
also gives smoother results than the end-
to-end neural network and trains faster.
This method provides a robust founda-
tion with predefined behavior, but can
adapt to different terrains without having
to redesign the implementation.

Keywords: hexapod, neural network,
structured algorithm, adaptive
locomotion, evolution strategy,
simulation

Supervisor: Ing. Teymur Azayev

Abstrakt
Tato práce se zaměřuje na generování
chůzí hexapoda pomocí učení strukturo-
vaného algoritmu skládajícího se z neu-
ronové sítě, která generuje řídící parame-
try ručně navrženého generátoru pohybu.
Navrhovaná metoda je porovnána s va-
riantou, kde je neuronová síť nahrazena
ručně navrženým ovladačem chůze. Navr-
hovaná metoda je také porovnána s neuro-
novsou sítí, která přímo řídí úhly kloubů
hexapoda. Všechny použité neuronové sítě
jsou trénovány pomocí evoluční strategie.
Výsledky tréninku a hodnocení na pěti
terénech ukazují, že řídící parametry ge-
nerované naučenou neuronovou sítí dávají
lepší výsledky než ručně navržené řídící
parametry. Navrhovaná metoda také dává
hladší výsledky než samotná neuronová síť
a učí se rychleji. Tato metoda poskytuje
robustní základ s předdefinovaným chová-
ním, ale je schopná se adaptovat na různé
terény, bez nutnosti změnit implementaci.

Klíčová slova: hexapod, neuronová síť,
strukturovaný algoritmus, adaptivní
chůze, evoluční strategie, simulace

Překlad názvu: Učení strukturovaného
algoritmu pro chůze hexapoda

vi



Contents
1 Introduction 1
1.1 Related work . . . . . . . . . . . . . . . . . . 2
2 Methods 5
2.1 Movement generator . . . . . . . . . . . 5

2.1.1 Movement generator pipeline . 5
2.1.2 Hexapod description. . . . . . . . . 6
2.1.3 Point cloud sampling . . . . . . . . 7
2.1.4 Locomotion generation . . . . . . 8
2.1.5 Direct kinematics . . . . . . . . . . 13
2.1.6 Inverse kinematics . . . . . . . . . 14

2.2 Neural network (NN) . . . . . . . . . . 17
2.3 Policy . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Learnable Structured Algorithm
(LSA) . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Structured Algorithm (SA) . . 25
2.3.3 Learnable Unstructured

Algorithm (LUA) . . . . . . . . . . . . . . 26
2.4 Environment . . . . . . . . . . . . . . . . . 28

2.4.1 Physics simulation . . . . . . . . . 28
2.4.2 Hexapod representation . . . . . 29
2.4.3 Terrain representation . . . . . . 29

2.5 Training . . . . . . . . . . . . . . . . . . . . . 30
2.5.1 Training pipeline . . . . . . . . . . . 31
2.5.2 Optimization method . . . . . . . 32

2.6 Evaluation . . . . . . . . . . . . . . . . . . . 32
2.6.1 Distance reached . . . . . . . . . . . 32
2.6.2 Smoothness . . . . . . . . . . . . . . . 33
2.6.3 Power consumption . . . . . . . . 34

2.7 Terrain set . . . . . . . . . . . . . . . . . . . 35
3 Results 37
3.1 Results on terrain (a) . . . . . . . . . 38
3.2 Results on terrain (b) . . . . . . . . . 39
3.3 Results on terrain (c) . . . . . . . . . 39
3.4 Results on terrain (d) . . . . . . . . . 40
3.5 Results on terrain (e) . . . . . . . . . 40
4 Discussion 41
5 Conclusion 45
Bibliography 47

vii



Figures
2.1 Hexapod description. The arrow

pointing forward. . . . . . . . . . . . . . . . . 7
2.2 Hexapod leg description. . . . . . . . 7
2.3 Point cloud approximation by

heightmap. . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Visualization of leg range. Purple

cube is the center point. Green circle
represents horizontal cut through a
vertically oriented cylinder. . . . . . . . 8

2.5 Visualization of different scenarios.
Leg is assumed to be in stance phase:
(a) leg is stuck, (b) leg is not stuck
because it is not on the edge of the
range, (c) leg is not stuck because the
dot product of torso moving direction
and Foot position is positive. . . . . . . 9

2.6 Visualization of foot placement
defined by Equations 2.3 and 2.5. . 11

2.7 Speed characteristics. Scores are
defined in Section 2.6 . . . . . . . . . . . . 12

2.8 Leg with coordinate frames for
each particular joint based on
DH-notation. Each frame is labeled
with a number. . . . . . . . . . . . . . . . . . 14

2.9 Flipping leg form convex
orientation to concave orientation. 16

2.10 Diagram of NN. . . . . . . . . . . . . . 17
2.11 ReLU activation function. . . . . 18
2.12 Diagram of learnable structured

algorithm. Green color highlights the
learnable part, red color highlights
the structured part. . . . . . . . . . . . . . 19

2.13 Average sum of all leg policy
rewards during training each leg
parameter vector separately. . . . . . 21

2.14 Visualization of bilateral weight
sharing. . . . . . . . . . . . . . . . . . . . . . . . 22

2.15 The course of separately learning
the gait-phase transitions with
bilateral sharing. . . . . . . . . . . . . . . . 22

2.16 Demonstration of observation.
Each number indicates from which
leg the value should be taken. . . . . 23

2.17 Average policy reward during
supervised learning. . . . . . . . . . . . . . 23

2.18 Diagram of structured policy. . 25

2.19 Tripod gait. The leg groups can
be distinguished by the red and green
color. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.20 Diagram of Unstructured
learnable policy. . . . . . . . . . . . . . . . . 27

2.21 Caption . . . . . . . . . . . . . . . . . . . . 28
2.22 Hexapod in PyBullet simulation. 29
2.23 Generated point clouds. . . . . . . 30
2.24 Terrain representation in

PyBullet. . . . . . . . . . . . . . . . . . . . . . . 30
2.25 Reward during training on terrain
(d). . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

viii



Tables
2.1 Control inputs to the movement

generator. . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Parameters of the DH-notation. 13
2.3 Parameters of DH-notation used in

experiments. . . . . . . . . . . . . . . . . . . . 14
2.4 Two architectures of gait-phase

neural networks. . . . . . . . . . . . . . . . . 19
2.5 State representation for gait-phase

neural network. . . . . . . . . . . . . . . . . . 20
2.6 Architectures of torso height NN. 24
2.7 Observation representation for

torso height NN. . . . . . . . . . . . . . . . . 24
2.8 Architectures of leg height NN. . 25
2.9 Observation representation for leg

height NN. . . . . . . . . . . . . . . . . . . . . . 25
2.10 Two architectures of end-to-end

unstructured neural networks. . . . . 27
2.11 Observation representation for

end-to-end neural network. . . . . . . . 28
2.12 Terrains that the policies ware

trained and evaluated on. . . . . . . . . 35

3.1 Comparison of all policies on
terrain (a). Movement generator has
speed set to 0.3. D is the distance
reached, S is the smoothness per
distance, P is the power consumption
per distance. Red indicates worst in
class. Blue indicates best in class. . 38

3.2 Comparison of all policies on
terrain (a). Movement generator had
speed set to 1.0. D is the distance
reached, S is the smoothness per
distance, P is the power consumption
per distance. Red highlights worst in
class. Blue highlights best in class. 38

3.3 Comparison of all approaches on
terrain (b). D is the distance reached,
S is the smoothness per distance, P is
the power consumption per distance.
Red highlights worst in class. Blue
highlights best in class. . . . . . . . . . . 39

3.4 Comparison of all approaches on
terrain (c). D is the distance reached,
S is the smoothness per distance, P is
the power consumption per distance.
Red highlights worst in class. Blue
highlights best in class. . . . . . . . . . . 39

3.5 Comparison of all approaches on
terrain (d). D is the distance reached,
S is the smoothness per distance, P is
the power consumption per distance.
Red highlights worst in class. Blue
highlights best in class. . . . . . . . . . . 40

3.6 Comparison of all approaches on
terrain (e). D is the distance reached,
S is the smoothness per distance, P is
the power consumption per distance.
Red highlights worst in class. Blue
highlights best in class. . . . . . . . . . . 40

ix





Chapter 1
Introduction

As electronics becomes smaller and computational power grows, research into
legged robots is expanding rapidly. It is practically impossible to coordinate
the movement of many joints without computer control, especially on rough
terrains [1]. Rough terrains are probably the biggest motivation for developing
legged robots. There are many places on Earth’s surface that can be accessed
by animals, but lots of them are inaccessible by wheeled and tracked vehicles
[2]. This is why most legged robots are bio-inspired, because we can take
advantage of the long natural evolution.

Advantages of legged robots according to [1]:..1. Legs can step over obstacles and up and down stairs and therefore can
overcome even very rough terrain...2. Legs can overcome soft terrain where the wheels could dig themselves...3. Legs can cause less damage to some surfaces than wheels and tracks...4. Legged robots can level themselves on rough terrain better, which can
be, for example, beneficial for some types of payload.

Legged robots also have disadvantages:..1. They are much more complex because they require more actuators,
sensors, and on-board computers to be controlled properly...2. Very often, the actuators consume energy because they have to actively
compensate for gravity even when standing still...3. Generally, legged robots are slower than wheeled robots.

Most physically studied and physically tested in recent years were bipeds,
quadrupeds, and hexapods. In this thesis, I decided to work with hexapod
robots because they offer a great amount of stability and do not require as
much dynamic control as quadrupeds. However, the proposed concept should
be applicable in a wider scope.

1



1. Introduction .....................................
There are many approaches to generate hexapod locomotion. Before machine
learning was used in this field, many algorithms have been proposed that
manually-designed the locomotion. However, very often they have to be
specifically designed for some type of terrain, and redesigning the algorithm
can be a long process and requires knowledge of the code or a qualified
person. In recent years, machine learning has become a very popular ap-
proach. Machine learning enables adaptation to various terrains, but in
most situations it cannot be manually changed without having to retrain
the network, which can take a lot of time and can also lead to unwanted results.

In this thesis, I study whether an algorithm that is a hybrid between hand-
designed and machine learning approaches is a viable solution in cases where
an ordinary person needs to improve the performance of hexapod locomo-
tion without having to change the code. The structured algorithm should
provide a robust foundation that constrains movement to mitigate the un-
wanted results that a neural network can give. The structured algorithm
should also allow the neural network enough room to adapt to various terrains.

To study the problem, I implemented a structured learnable algorithm for
locomotion generation for a hexapod robot. The structured algorithm consists
of a neural network that generates control parameters to a hand-designed
movement generator. The movement generator calculates joint angles for
hexapod legs based on exteroceptive data and the control parameters that
consist of gait-phases, torso height, and leg lifting heights. It also compensates
for slippage and other factors. Exteroceptive data are represented by a point
cloud. The movement generator uses the point cloud for foot placement. To
evaluate the performance, I generated five custom terrains. The results are
compared to a variant of the proposed method in which the neural network
is replaced by a hand-designed gait controller. The results are also compared
with an end-to-end neural network. The parameters of all neural networks
are optimized using an evolution strategy optimizer.

1.1 Related work

Generating locomotion for hexapod robots is a well-documented topic. One
way is to hand-design an algorithm that generates locomotion using inverse
kinematics and exteroceptive data [3],[4],[5],[6]. In [7] they generate adaptive
terrain locomotion for animation purposes by voxelizing the terrain and
pathfinding the legs through it. In [8] gait is controlled by designing a non-
linear oscillator for each leg, and the frequencies of the individual oscillators
were then controlled to generate the locomotion. Oscillators were also used
in [9]. Machine learning approaches have become popular in recent years
[10]. In [11] reinforcement learning was used to classify the type of terrain
and based on that the gait was adjusted. Closely related work to this thesis
is [12] where they used a neural network to learn gait patterns but without

2



.....................................1.1. Related work

exteroceptive data such as point cloud for foot placement. In [13], [14] they
adapt locomotion to terrain using open loop gait control. [15] also trained
structured policy but represented by Graph Neural Network. A decentralized
neural network was used in [16] to learn each leg separately.

3



4



Chapter 2
Methods

In this chapter, I describe what methods were used during this research.
This includes the design of algorithms, simulation environment, optimization
methods, terrain generation, etc.

2.1 Movement generator

In this section, I describe how the movement generator was implemented and
how all its individual core parts work.

The movement generator is initialized with the hexapod parameters. The
movement generator was created to generate locomotion based on:. Control input1

. Current state of the hexapod (position, orientation, joint angles). Control parameters (gait-phases, torso height, leg lifting heights). Point cloud. Speed

The movement generator takes inputs and performs a step in which it calcu-
lates the next position of the torso and also the next positions of the feet of
the legs. Movement generator then calculates the joint angles using inverse
kinematics and returns them as output.

2.1.1 Movement generator pipeline

I demonstrate the workings of the movement generator on Algorithms 1 and
2. All parts are described in the following sections.

1Control input defines the direction in which the movement should be generated

5



2. Methods.......................................
Algorithm 1 Movement generator step

Estimate surface normal
Update torso pitch and roll based on the surface normal
if no leg is stuck then

Move torso based on control input
Update torso yaw based on control input

end if
Update torso height based on control parameter
Calculate torso transformation matrix
for each leg do

Update leg (see Algorithm 2)
end for
return all joint angles

Algorithm 2 Leg update
Calculate direct kinematics
Calculate target foot position
if swing-phase then

if foot height < required height parameter then
Increase foot height

else
if distance from footXY to targetXY < threshold then

Interpolate between footXY and targetXY
else

Interpolate between foot and target
end if

end if
end if
if stance-phase then

Set foot height to the sampled height from the heightmap
end if
Clamp foot position to leg range
Calculate inverse kinematics
return joint angles

2.1.2 Hexapod description

Hexapod is a six-legged robot. The legs were labeled according to their
position, as can be seen in Figure 2.2.

6



................................. 2.1. Movement generator

Figure 2.1: Hexapod description. The arrow pointing forward.

In this thesis, each leg has 3 joints and 3 links. To describe the hexapod leg,
the terminology that can be seen in Figure 2.2 is used.

Figure 2.2: Hexapod leg description.

2.1.3 Point cloud sampling

To make the sampling from the point cloud easier and more efficient, I
implemented a heightmap that divides the region of the point cloud into a
grid. Each grid tile stores the height of the highest point inside that tile, as
can be seen in Figure 2.3. The tiles are stored in a 2D array. Sampling the
heightmap at some point is then faster because the array can be accessed
directly by converting the point’s coordinates. If the point cloud is not dense
enough to fill every tile of the heightmap, the heights of the empty tiles are
calculated by iteratively interpolating the neighboring tiles.

7



2. Methods.......................................

Figure 2.3: Point cloud approximation by heightmap.

2.1.4 Locomotion generation

In this section, I describe how locomotion was generated.

Definition of leg being stuck

Every leg is restricted to a range in which its foot must remain. This range
is a cylinder with a center point and a radius.

Figure 2.4: Visualization of leg range. Purple cube is the center point. Green
circle represents horizontal cut through a vertically oriented cylinder.

For leg to be stuck, these criteria must be satisfied:..1. The foot must be at the edge of its range...2. The leg has to be in the stance-phase...3. The angle between the torso moving direction and the direction from
the center point to the foot position must be greater than 90 degrees
i.e., the dot product must be negative.

These criteria are visualized in Figure 2.5.

8



................................. 2.1. Movement generator

Figure 2.5: Visualization of different scenarios. Leg is assumed to be in stance
phase: (a) leg is stuck, (b) leg is not stuck because it is not on the edge of the
range, (c) leg is not stuck because the dot product of torso moving direction and
Foot position is positive.

Torso movement

Locomotion is generated by moving the torso, while the legs have to com-
pensate for the offset of the center of mass. The torso can be moved only in
the xy-axis. If a leg is stuck, the torso cannot continue moving and has to
wait for the leg to be put into the swing-phase. The movement is calculated
based on the control input. All control inputs are relative to the hexapod
frame. There are seven control inputs, as can be seen in Table 2.1. Inputs
are discredited for simplicity, but in reality the direction can be R2 if more
precise control is needed.

Input name Direction (x,y) Turn direction
Nothing ( 0, 0) 0
Forwards ( 1, 0) 0

Backwards (-1, 0) 0
Left ( 0, 1) 0

Right ( 0,-1) 0
Turn left ( 0, 0) 1

Turn right ( 0, 0) -1

Table 2.1: Control inputs to the movement generator.

The torso is moved by adding the control input direction or the rotation
scaled by the speed.

Movement generator calculates the torso height as follows:

htz = 1
6

6∑
j=1

tjz + hd + hi (2.1)

where

9



2. Methods.......................................
. htz is the torso height in world coordinates,

. t1z , t2z , . . . , t6z are z-coordinates of the target positions,

. hd is the default height value,

. hi is the torso height control parameter.

Gait-phases

Locomotion had two gait-phases:

. Stance-phase

In stance-phase, the leg is on the ground. Because the algorithm is
designed to work in global coordinates, the foot position stays the same
for the entire duration of the stance-phase. The only thing the leg has to
handle during stance-phase is inverse kinematics to adjust for potentially
moving torso.

. Swing-phase

Swing-phase is divided into 3 sub-phases:..1. The leg foot is lifted by increasing its z-coordinate until it reaches
the desired height...2. The leg foot is translated towards the target foot position by in-
terpolating the xy-coordinates of the current foot position and the
xy-coordinates of the target foot position...3. The leg foot is placed by interpolating the current foot position and
the target foot position.

Leg height when lifting is calculated as follows:

hl = ht + hd + hi (2.2)

where

. hl is the leg height in the world coordinates,

. ht is the terrain height sampled from heightmap,

. hd is the default lifting height,

. hi is the leg lifting height control parameter.

10



................................. 2.1. Movement generator

Target foot position calculation

Foot placement depends on the control input. The following examples can be
seen in Figure 2.6.

When the input is Nothing, the foot target is placed to the center point of the
range. When the input does not involve turning. The foot target is placed at
the edge of the range in the desired direction:

txy = cxy + r
d

∥d∥
(2.3)

where. txy is the xy-coordinate of the foot target,. cxy is the xy-coordinate of the range center point,. d is the direction,. r is the leg range.
When the control direction involves turning, then the target foot position is
calculated as:

w = (Jcoxa − c) × zworld (2.4)

txy = cxy + rd
wxy

∥wxy∥
(2.5)

where. txy is the xy-coordinate of the foot target,. cxy is the xy-coordinate of the range center point,. Jcoxa is the coxa joint position,. d is the turning direction,. r is the leg range,. zworld is the z-axis of the world coordinate system.

Figure 2.6: Visualization of foot placement defined by Equations 2.3 and 2.5.

11



2. Methods.......................................
After calculating the xy-coordinates of the target foot position, the z coordi-
nate is sampled from the heightmap.

Surface normal estimation

The surface normal is estimated based on target foot positions. This is
because the torso is oriented relative to the terrain based on the surface
normal. In this way, each leg has a similar chance of reaching its foot target.
The surface normal is calculated as:

t = 1
6

6∑
i=1

ti (2.6)

n =
6∑

i=1

6∑
j=1

c(ti − t) × (tj − t) (2.7)

where. n is surface normal,. ti and tj are the target foot positions if i-th and j-th leg,. t is the median of the target foot positions,

. c =


1.0, ((ti − t) × (tj − t))z ≥ 0
−1.0, ((ti − t) × (tj − t))z < 0
0.0, i = j

.

Speed

Speed is a parameter of the movement generator that controls the amount of
distance that the torso and legs can move in one step.

The speed characteristics can be seen in Figure 2.7.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
−100

−50

0

50

100

150

200

Speed

Sc
or

es

Distance
Smoothness

Power

Figure 2.7: Speed characteristics. Scores are defined in Section 2.6

12



................................. 2.1. Movement generator

Based on Figure 2.7, the most energy efficient locomotion can be achieved
with a speed of around 1.0, where the power consumption per distance is the
smallest, the distance reached is the highest and the smoothness does not yet
drop.

2.1.5 Direct kinematics

There are multiple ways to calculate direct kinematics. I used the Denavite
Hartemberg notation (DH-notation) because it is used to describe serial
kinematic chains. It uses 4 parameters to describe the spatial relationship
between successive coordinate frames. (More about HD-notation can be
found in [17])

The description can be obtained by following two constraints for each two
successive frames:..1. The axis xj is perpendicular to the axis zj−1...2. The axis xj intersects the axis zj−1.

The 4 parameters and operations associated with them are described in Table
2.2.

Parameter Operation

θ rotation around z-axis
d translation along z-axis
a translation along x-axis
α rotation around x-axis

Table 2.2: Parameters of the DH-notation.

These parameters do not include the actual angle of the joint ϕ, therefore, ϕ
must be added to θ:

γ = θ + ϕ (2.8)

There is a transformation matrix T ∈ R4×4 for each parameter, and by
multiplying them together we can transform the coordinates from frame i to
frame i − 1:

Ti−1
i =


cos(γ) − sin(γ) cos(α) sin(γ) sin(α) α cos(γ)
sin(γ) cos(γ) cos(α) − cos(γ) sin(α) α sin(γ)

0 sin(α) cos(α) d
0 0 0 1

 (2.9)

where i is the number of frames to which we are transforming the coordinates.

13



2. Methods.......................................

Figure 2.8: Leg with coordinate frames for each particular joint based on DH-
notation. Each frame is labeled with a number.

To get the coordinates of the foot frame P4 in the torso frame, we must first
transform the coordinates from the coxa frame to the body frame by matrix
T0

1 and then use the matrices obtained from the DH-notation such that:

P0 = T0
1T1

2T2
3T3

4P4 (2.10)

These parameters were used in all experiments:

Frame number Frame name θ d a α

1 coxa 0 0 0.063 -90
2 femur 0 0 0.100 0
3 tibia 90 0 0.160 0

Table 2.3: Parameters of DH-notation used in experiments.

All parameters can be passed into the movement generator during initialization
and can therefore be changed very easily 2.

2.1.6 Inverse kinematics

The inverse kinematics of the legs of the hexapod was performed by Cyclic
Coordinate Descent (CCD). I chose this method because it is simple to im-
plement, computationally fast, and numerically stable. The number of links
can be changed very easily without changing the implementation. Another
important aspect of why I chose an iterative method over an analytic one is
that it gives a solution even if the leg cannot reach the desired position by
giving the closest solution.

2θ can be changed in GUI when setting the 0 angle joint position. The parameter "a"
corresponds to the length of the leg segment

14



................................. 2.1. Movement generator

Method is used in 2D in a way that builds links from the target point3 to the
root4 point. In each iteration, links are rotated one by one to point towards
the next joint and translated so that they connect with the next link. This is
done for all links, and then all links are translated so that the last processed
link joint matches the root point. I demonstrate the process in Algorithm 3.

Algorithm 3 CCD algorithm
1: J : n+1 joints, first being the target point
2: l : n lengths of links
3: Pr : root point
4: for i = 1, 2, . . . , N do
5: for i = 1, . . . , n do
6: v = J[i] - J[i-1] - Find vector to the next joint
7: vl = l[i] · v

||v|| - Set length of v to the link length
8: J[i] = J[i-1] + vl - Update joint position
9: end for

10:
11: d = Pr − J[n] - Find vector to the base root point
12:
13: for i = 1, 2, . . . , N do - Translate all joints by d
14: J[i] = J[i] + d
15: end for
16:
17: if ||J[n] - Pr|| < some threshold then
18: Satisfactory solution found
19: end if
20: end for

In this thesis, the CCD is implemented so that the coordinates of the target
position Pw are first transformed into 2D by rotating the leg into the XZ
plane. To obtain the 2D coordinates of the target position Pw the position
must first be transformed into the coxa frame:

P1 =
(
Tw

0 T0
1

)−1
Pw (2.11)

where.Tw
0 ∈ R4×4 is the transformation from the world frame to the hexapod

torso frame,.T0
1 ∈ R4×4 is the transformation from the hexapod torso frame to the

coxa frame.

The angle of the coxa joint can then be calculated as:

ϕcoxa = atan2(P 1
y , P 1

x ) + θcoxa (2.12)
3In this case the desired foot position
4In this case the coxa joint

15



2. Methods.......................................
where θcoxa is the DH parameter of the coxa link, which can be found in
Table 2.3. P1 then can be transformed into the XZ plane by rotating it by
−ϕcoxa around the z-axis with the matrix Rz.

P1
XZ = RzP1 (2.13)

And transformed into the femur frame like:

P2
XZ = P1

XZ +

lcoxa

0
0

 (2.14)

where lcoxa is the length of the coxa link. 2.14 can be done because the coxa
joint axis is vertical and lies in the XZ-plane. The representation of P2

XZ in
2D is then:

P2
2D =

[
P 2

XZx

P 2
XZz

]
(2.15)

This coordinate transformation was done because CCD operates in 2D. CCD
is then run with the target point P2

2D, the root point being at the origin, and
two randomly initialized points Jtibia, Jfoot ∈ R2.

If the CCD solution is in a convex configuration as can be seen in Figure 2.9,
then the leg is flipped to the concave configuration as:

b = Jfoot − Jfemur (2.16)

w = J tibiaconvex − Jfemur (2.17)

wrej = w − wT b

∥b∥2 b (2.18)

J tibiaconcave = J tibiaconvex − 2wrej (2.19)

Figure 2.9: Flipping leg form convex orientation to concave orientation.

16



................................. 2.2. Neural network (NN)

Finally joint angles are calculated using the atan2 function:

ϕfemur = −atan2(Jtibiay , Jtibiay ) + θfemur (2.20)

ϕtibia = −atan2(Jfooty − Jtibiay , Jfooty − Jtibiay ) − ϕfemur + θtibia (2.21)
where θfemur and θtibia are the DH parameters of the corresponding links
2.3.

2.2 Neural network (NN)

Neural networks (NN) or also artificial neural networks (ANN) have become
very popular in machine learning. NNs are used in many applications,
including business, economics, science, engineering, medicine, climate, etc.
[18]

Figure 2.10: Diagram of NN.

NN have an input layer, an output layer and zero or more hidden layers, as
seen in Figure 2.10. The forward pass of a single layer is calculated as follows.

f(x) =
m∑

i=1

n∑
j=1

wijxj + bi (2.22)

where. x ∈ Rn is the input,. wji is the element of matrix W ∈ Rm×n in row i and column j,. bi is the i-th element of the vector b representing bias.

Equation 2.22 can be written in matrix format as:

f(x) = W x + b =
[
W b

] [
x
1

]
= Q

[
x
1

]
(2.23)

17



2. Methods.......................................
where Q ∈ Rm×n+1. The matrix Q contains all parameters of a particular
layer. The parameters of all layers can be written in one vector θ. I will refer
to θ as the parameter vector (or weights) of NN or the parameter vector of
the policy if NN is part of that policy.

As an activation function, I used Rectifier Linear Unit (ReLU), which can be
seen in Figure 2.11.

−1 0 1 2
−1

0

1

2

x

y

ReLU

Figure 2.11: ReLU activation function.

Definition of the ReLU function is as follows:

f(x) = max(0, x) (2.24)

In this thesis, I used mainly architectures with zero hidden layers i.e. Single
Layer Perceptron. If I tested NN with hidden layers, the ReLU was used only
for these hidden layers.

2.3 Policy

In this thesis, the policy is used to generate the locomotion of the hexapod
robot by controlling its joints. All joints are position controlled. The policy
generates the target angle positions based on the current observation:

π(ot) = ϕt+1 (2.25)

where. π is the policy,. ot ∈ Rn is the observation at time t,. ϕt+1 ∈ R18 are the joint target positions at time t + 1.

In this thesis, the policy was represented by three algorithms.

18



........................................2.3. Policy

2.3.1 Learnable Structured Algorithm (LSA)

This is the algorithm (policy) proposed in this thesis. It has two parts:..1. Movement generator centered around state-machine for gait-phase tran-
sitions. Torso height and leg lifting heights are also parameterized and
controlled through an input. A detailed description of the movement
generator can be found in Section 2.1...2. Learnable NNs that calculate the control parameter to the movement
generator based on the observation. There is a separate NN for each
input, as can be seen in Figure 2.12. NNs are separate because they can
be optionally excluded from the decision process and replaced with the
solution proposed in Section 2.3.2.

Figure 2.12: Diagram of learnable structured algorithm. Green color highlights
the learnable part, red color highlights the structured part.

In following sections I describe architectures of the three NNs.

Gait-phase transition neural network (GP)

Motivation behind learning gait-phase transitions was to adapt the gait pat-
tern of the legs to different terrains.

I kept the NN architecture simple without hidden layers. I experimented with
two types of output layers, as can be seen in Table 2.4.

Input layer Output layer Number of parameters
1. 25 2 52
2. 25 1 26

Table 2.4: Two architectures of gait-phase neural networks.

19



2. Methods.......................................
The first architecture in Table 2.4 was designed as a classification problem in
which each output neuron represented either swing-phase or stance-phase:

gait phase =
{

swing-phase, a1 > a2

stance-phase, a1 ≤ a2

where a ∈ R2. The motivation behind this was that more parameters would
make the NN more expressive.

The second architecture was designed in such a way that if the output was
smaller than or equal to 0 the gait-phase was classified as stance-phase or
swing-phase if the output was greater than 0:

gait-phase =
{

swing-phase, a > 0
stance-phase, a ≤ 0

where a ∈ R. This concept ended up being sufficient to learn locomotion and
was used in the experiments in the rest of the thesis.

Observation vector o ∈ R25 was the same for both architectures. A detailed
representation of the observation can be seen in Table 2.5.

Name Dimension
Gait-phases 6
Stuck states 6

Feet ground contacts 6
Distance to the target position 1

Surface normal 3
Leg joint angles 3
Final dimension 25

Table 2.5: State representation for gait-phase neural network.

Learning the gait-phase transitions was the most challenging part. The main
problem was that the reward landscape was very flat with very narrow opti-
mum spikes. This was caused by the design of the movement generator. Even
when a single leg got stuck (defined in Section 2.1.4), the entire movement
was on hold. This caused saturation in the reward.

To tackle the problem, I experimented with four solutions:..1. Learning each leg separately

This divided the parameter vector into six smaller parts which reduced
the number of parameters to optimize at once. Each leg had its own
optimizer. This solution sped up the learning process because the opti-
mizer could not break the parameters of the other well-trained legs while

20



........................................2.3. Policy

trying to improve badly trained legs.

Because gait-phase policies could no longer be rewarded collectively, I
had to introduce individual rewards for legs. The legs were rewarded
for good transitions and penalized for bad transitions. To reduce fast
switching between the phases, the legs were slightly penalized for each
transition.

A problem emerged with this approach because each policy was trained
separately, but it was uncertain whether they will work together. Because
each leg policy had as an input observation gait-phases of other legs.
Badly trained legs could act randomly and, therefore, influence the other
legs.

This caused an almost endless training loop where the reward constantly
oscillated, as can be seen in Figure 2.13.

0 10 20 30 40 50 60 70 80 90 100 110

300

600

900

1,200

1,500

1,800

2,100

Episode number

Av
er

ag
e

to
ta

lr
ew

ar
d

Separate learning

Figure 2.13: Average sum of all leg policy rewards during training each leg
parameter vector separately.

Although some improvement can be seen in Figure 2.13 with an increasing
number of episodes, this method is highly impractical because it does
not guarantee convergence to a usable result. The trained policy was
rarely usable...2. Bilateral weight sharing

This aimed to reduce the number of parameters by symmetrically sharing
the policy with the opposite legs (Figure 2.14) in both cases of training
all parameters together and training them separately.

21



2. Methods.......................................

Figure 2.14: Visualization of bilateral weight sharing.

0 10 20 30 40 50 60 70 80 90 100
0

400

800

1,200

1,600

2,000

2,400

Episode number

To
ta

la
ve

ra
ge

re
w

ar
d

Separate learning with bilateral sharing

Figure 2.15: The course of separately learning the gait-phase transitions with
bilateral sharing.

The observation vector had to be changed to represent the same state
for both legs that share the same policy. This includes gait-phases,
stuck-states, and feet ground contacts. The observation was structured
as shown in Figure 2.16.

In case of training each leg separately, this did not help as can be seen
in Figure 2.15. In case of training the three legs together, this had a
positive effect on training speed, but no major results were achieved...3. Supervised learning

The idea behind this approach was to avoid the unwanted observation
dependency that could arise from individual training.

22



........................................2.3. Policy

Figure 2.16: Demonstration of observation. Each number indicates from which
leg the value should be taken.

The policy was trained using the controller described in Section 2.3.2 as
a reference. The training pipeline remained the same, except that the
gait-phases were determined by the controller. Based on the observation
returned by the environment, the policy tried to predict whether the leg
was in the swing or stance phase. If the prediction matched with the
controller output, the policy gained reward. In this way, the policy could
learn basic tripod gait and then could be trained optimizer with a very
small training rate.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150500
550
600
650
700
750
800
850
900

Episode number

To
ta

la
ve

ra
ge

re
w

ar
d

Supervised learning

Figure 2.17: Average policy reward during supervised learning.

As can be seen in Figure 2.17, the policy gains the most rewards in the
beginning. In this specific case, the simulation steps were set to 150

23



2. Methods.......................................
steps. In each step, the policy made a prediction and if the prediction
matched the controller prediction, the policy gained a +1.0 reward. This
meant that the maximum reachable reward was 150 for each leg, which
was 900 in total. In Figure 2.17 the policy trains very fast during the
first 40 episodes but then begins to learn very slowly. The result was
usable most of the time, but unsupervised learning on rougher terrains
usually diverged and made the method impractical...4. Sharing one policy between all of the legs

This is one step further from the bilateral parameter sharing. This
addresses all the previous issues. Advantages are that it uses the least
amount of parameters and because all the legs use the same policy, the
observation and reward are consistent. The best results were achieved
with this approach. Basic locomotion could be achieved even during the
first training episode. This was the method I ended up using in this
thesis.

Torso height neural network (TH)

Torso height above the terrain is another parameter of the movement generator
that can be learned. To speed up the learning, the movement generator has
a default height value already predefined, and the policy learns to adjust this
value by adding its output to it. The idea behind it was to enable adjustment
to rough terrain and increase performance in situations where some legs can-
not reach the target position on the ground or when overcoming tall obstacles.

For learning the torso height I used architecture which can be seen in Table
2.6

Input layer Output layer Number of parameters
1. 25 1 26

Table 2.6: Architectures of torso height NN.

Representation of the observation vector o ∈ R24 can be seen in Table 2.7.

Name Dimension
Gait-phases 6
Stuck states 6

Feet ground contacts 6
Surface normal 3

Torso orientation 3
Torso height sampled from heightmap 1

Final dimension 25

Table 2.7: Observation representation for torso height NN.

24



........................................2.3. Policy

Leg height neural network (LH)

The concept of learning leg height is similar to the torso height. Lifting the
legs higher is beneficial on terrains with great height differences. On mainly
flat terrains, lifting legs lower could be faster and more power efficient.

Input layer Output layer Number of parameters
1. 8 1 9

Table 2.8: Architectures of leg height NN.

Representation of the observation vector o ∈ R7 can be seen in Table 2.9.

Name Dimension
Surface normal 3
Leg joint angles 3

Leg ground contact 1
Current leg height 1
Final dimension 8

Table 2.9: Observation representation for leg height NN.

2.3.2 Structured Algorithm (SA)

The structured algorithm is similar to the LSA except that the input to the
movement generator comes from the controller, as can be seen in Figure
2.18. This is the first of the two baseline algorithms that were evaluated for
comparison with the proposed LSA.

Figure 2.18: Diagram of structured policy.

25



2. Methods.......................................
Controller

The controller was created to test the basic functionality of the movement
generator.
To control the gait-phases, the controller generates a basic tripod gait. In
tripod gait, the legs are divided into two groups, as can be seen in Figure
2.19. The advantage of this gait is that there are always at least three legs
on the ground to maintain balance.

Figure 2.19: Tripod gait. The leg groups can be distinguished by the red and
green color.

I demonstrate the gait-phase transition decision process implemented in the
controller on Algorithm 4.

Algorithm 4 Gait-phase transition
1: if Group 1 is in stance phase and some leg from Group 2 is stuck then
2: Put Group 2 in swing phase
3: end if
4: if Group 2 is in stance phase and some leg from Group 1 is stuck then
5: Put Group 1 in swing phase
6: end if
7:
8: for leg in All legs do
9: if leg distance from target foot position < some threshold then

10: Put leg in stance pahase
11: end if
12: end for

The torso height and leg lift heights were left as default values because the
default values were designed to be versatile.

2.3.3 Learnable Unstructured Algorithm (LUA)

This algorithm is represented by an end-to-end neural network (E2E_NN). All
joint angles are controlled directly by the E2E_NN, as can be seen in Figure
2.20. This is the second of two baseline algorithms that were implemented

26



........................................2.3. Policy

and evaluated for comparison with the proposed LSA.

The disadvantages are that it requires a lot of reward shaping to achieve the
desired locomotion. In some cases, it is very difficult and time consuming to
restrict unwanted movements.

Figure 2.20: Diagram of Unstructured learnable policy.

I experimented with two NN architectures, as can be seen in Table 2.10.

Input layer Hidden layer Output layer Number of parameters
1. 51 0 18 936
2. 51 20 18 1418

Table 2.10: Two architectures of end-to-end unstructured neural networks.

The firs architecture in Table 2.10 without hidden layers was sufficient for
training on various terrains and trained faster due to the smaller number of
parameters.

In this setup, the policy directly controlled the 18 joint angles of the legs of
the hexapod:

a ∈ R18

The angles were calculated as a forward pass based on the current observation.
A detailed representation of the observation o ∈ R51 can be seen in Table
2.11.

27



2. Methods.......................................
Name Dimension

Torso velocity 3
Torso orientation (roll, pitch, yaw) 3

Torso angular velocity (roll, pitch, yaw) 3
Joint angles 18

Joint velocities 18
Feet ground contacts 6

Final dimension of parameters 51

Table 2.11: Observation representation for end-to-end neural network.

2.4 Environment

I created an environment with similar API to an OpenAI Gym. The environ-
ment is initialised with point cloud, hexapod parameters, maximum steps,
noise level, and starting position.

Figure 2.21: Caption

The environment has two functions:

. reset - resets the environment and returns the initial observation. step - takes action as an input, steps the physics simulation and return
observation, reward and information whether the objective was reached

Objective is reached after a certain number of iterations 5 or also if the torso
pitch or roll exceeds a certain threshold.

2.4.1 Physics simulation

For simulating the physics, I used PyBullet Real-Time Physics Simulator [19].
PyBullet is a fast and easy-to-use Python module for robotics simulation and
machine learning.

5Number of iterations could be set at the start of the training via the GUI

28



.....................................2.4. Environment

2.4.2 Hexapod representation

The hexapod robot is created based on the Unified Robot Description Format
(URDF) file which is generated from the hexapod parameters. To generate the
URDF file from hexapod parameters i wrote a Python script. In this way, I
can quickly change the hexapod parameters using my GUI and automatically
generate the URDF file.

Figure 2.22: Hexapod in PyBullet simulation.

Hexapod parameters are:. positions of the coxa joints 6,. length of all links of the leg,. position of the centre point,. leg ranges,. leg orientations,. DH-parameters.

2.4.3 Terrain representation

The terrain was represented by a point cloud. To generate the point cloud, I
wrote a custom terrain generator. Using this generator, I could control the
position, slope, density, size, and scale of the point cloud.
Three types of point cloud could be generated:. Simplex - To generate this type of point cloud, I used the OpenSimplex

noise Python package 7. As an extra input, it takes a seed.
6Coxa joints are also the leg mounting points.
7https://github.com/lmas/opensimplex

29

https://github.com/lmas/opensimplex


2. Methods.......................................
. Rocks - This point cloud also used OpenSimplex noise, but the heights

were discretized.. Stairs - This point cloud is a series of steps, as can be seen in Figure
2.23. The position, length, and height of these steps can be controlled.

(a) : Simplex point cloud.
(b) : Steps point cloud.

Figure 2.23: Generated point clouds.

In PyBullet, the terrain was represented as a concave collision shape. The
point cloud was first converted to an OBJ file format, and this file was used
to initialise the terrain.

(a) : Wire mesh. (b) : Visual mesh.

Figure 2.24: Terrain representation in PyBullet.

2.5 Training

Structured learnable algorithms i.e. LSA, SA+GP, SA+TH, and SA+LH
were trained using sparse rewards in the form of the distance reached in the
x-axis. The number of simulation and evaluation iterations differed from one
terrain to another.

30



.......................................2.5. Training

0 20 40 60 800
5

10
15
20
25
30
35
40

Episode number

Av
er

ag
e

di
st

an
ce

re
ac

he
d LSP

SP+GP
SP+TH

Figure 2.25: Reward during training on terrain (d).

2.5.1 Training pipeline

In this section, I explain how the training pipeline was structured.

Training was divided into episodes. At the beginning of each episode, the
optimizer is asked for a certain number of solutions 8. After each episode, the
optimizer performs an optimization step. During one episode, the requested
potential solutions are evaluated. The evaluation is carried out by stepping the
environment until it returns the information that the objective was reached
(Section 2.4). The evaluation of a solution can be executed more than once
based on the number of evaluation iterations 9, which can be useful when the
observation contains noise. Gait-phases, torso height, and leg heights can be
learned separately or together.

Algorithm 5 Training pipeline
1: obtain observation by initializing PyBullet environment
2: for episode = 1, 2, . . . , N do
3: for solution = 1, 2, . . . , J do
4: for evaluation iteration = 1, 2, . . . , E do
5: for simulation iteration = 1, 2, . . . , S do
6: calculate foot position from observation using DKT
7: use policy to generate action from observation
8: update leg desired positions
9: calculate 18 leg joint angles using IKT

10: get observation by stepping PyBullet simulation
11: end for
12: end for
13: end for
14: end for

8Number of solutions could be set at the start of the training via the GUI
9Number of evaluation iterations can be set at the start of the training via the GUI

31



2. Methods.......................................
2.5.2 Optimization method

For optimisation, I used the Python Nevergrad optimisation library [20].
Nevergrad is a gradient-free optimisation platform that implements all kinds
of evolution strategy (ES) optimizers. These optimizers can optimize con-
tinuous, discrete, or mixed parameters. In this thesis, the optimizer is used
to update the continuous policy parameter vector θ. All of these optimizers
are implemented with an ask-tell interface. I demonstrate the usage of the
ask-tell interface in Algorithm 6.

Algorithm 6 Ask-Tell pipeline
1: for iteration = 1, 2, . . . , N do
2: Ask optimizer for potential solutions
3: for every solution do
4: Calculate loss of the solution
5: end for
6: Tell optimizer the calculated losses
7: end for

Some of the optimizers implemented in Nevergrad are:..1. Random Search..2. Particle Swarm Optimizer (PSO)..3. Covariance Matrix Adaptation Evolution Strategy (CMA-ES)..4. Hammersley Search

In this thesis, I used CMA-ES as it is considered state-of-the-art in evolution-
ary computation [21].

2.6 Evaluation

All evaluation scores were normalised by the number of evaluation steps and
the number of simulation iterations because different kinds of terrain required
a different number of simulation and evaluation iterations.

To evaluate performance, I used a score based on the distance reached on the
x-axis, smoothness and power consumption.

2.6.1 Distance reached

This is the main score of the evaluation. LSA is constrained and performs
well with regard to smoothness, therefore, distance is a good benchmark. If

32



......................................2.6. Evaluation

the learned policy is not efficient, it will not be able to travel as far.

rd = 1
SE

E∑
i=1

di (2.26)

where. rd is the reward for the distance reached,. E is the number of evaluation iterations,. S is the number of simulation iterations,. di is the distance at the end of the evaluation iteration i.

2.6.2 Smoothness

Because the LUP is not directly constrained, the resulting locomotion can be
rough. Smoothness is calculated by summing all accelerations over all simula-
tion steps. This includes torso acceleration and torso angular acceleration.
This score will always be less than or equal to zero. This means that the
larger the value, the smoother.

Performance cannot be evaluated purely based on smoothness because if the
policy outputs zero action, the smoothness value will be greater. Therefore,
calculating smoothness per distance is more intuitive score.

The smoothness is calculated as follows:

rs = − 1
rd

1
SE

E∑
i=1

S−1∑
j=1

∥aij + cϵij∥2 (2.27)

where. rd is the distance reached (Equation 2.26),. E is the number of evaluation iterations,. S is the number of simulation iterations,. ai ∈ R3 is the torso acceleration in step i,. ϵi ∈ R3 is the torso angular acceleration in step i,. c ∈ R is some constant that changes the ratio.

Because PyBullet does not support acceleration readouts, Equation 2.27 can
be written using velocities vi ∈ R3 and angular velocities ωi ∈ R3 as:

rs = − 1
rd

1
SE

E∑
i=1

S−1∑
j=1

∥∥∥∥∥vij+1 − vij

tij+1 − tij
+ c

ωij+1 − ωij

tij+1 − tij

∥∥∥∥∥
2

(2.28)

In this way, I calculated the smoothness of the trajectory in each simulation
step.

33



2. Methods.......................................
2.6.3 Power consumption

Since it is not a real model, the power consumption can be simplified. PyBullet
does not simulate electric servomotors, so I had to use only the quantities
available. PyBullet returns joint torques at each step. Because the servomotor
torque is proportional to the current, the power consumption was defined
as the sum of all the torques from all the simulation and evaluation steps.
To make the power consumption score more intuitive, I divided it by the
distance reached defined in Section 2.6.1. In this way, it says how efficient
the locomotion is.

rp = 1
rd

1
SE

E∑
i=1

S−1∑
j=1

18∑
k=1

|τijk|(tij+1 − tij) (2.29)

where. rd is the distance reached (Equation 2.26),. E is the number of evaluation iterations,. S is the number of simulation iterations,. τ ijk ∈ R is the k-th joint torque in simulation step j in evaluation
iteration i.

34



..................................... 2.7. Terrain set

2.7 Terrain set

Training and evaluation was carried out on several terrains. Terrains can be
seen in Table 2.12.

Label Name Description Picture

(a) Flat A regular flat terrain.

(b) Bumps

This terrain features bumps
with small height differences
that should show how policies
react compared to flat terrain.

(c) Big Bumps

Bumps on this terrain have
more prominent height

differences, some of them are
as tall as the hexapod itself.

(d) Rocks
This terrain features sharp
edges and is the roughest

terrain.

(e) Stairs

This terrain features stairs
that should show whether the

policy is able to climb. To
truly focus on the climbing
aspect, the terrain is made
into a U-shape to help the

policies to keep forward
orientation.

Table 2.12: Terrains that the policies ware trained and evaluated on.

35



36



Chapter 3
Results

In this chapter, I present the results of the trained algorithms introduced
in Section 2.3. More in-depth analysis of the results can be found in the
discussion in Chapter 4.

To further study the performance of the LSA, the individual NNs of the LSA
were also evaluated separately to see which provided the greatest benefit to
the locomotion. In that case, the SA was used and the particular control
parameter of the movement generator was generated by the NN.

The following policies were trained, evaluated and compared:. Learnable Unstructured Algorithm (LUA). Learnable Structured Algorithm (LSA). Structured Algorithm (SA). Structured Algorithm with learnable gait-phases (SA+GP). Structured Algorithm with learnable torso height (SA+TH). Structured Algorithm with learnable leg heights (SA+LH)

Policies were evaluated based on the following scores:.Maximum distance reached in the x-axis. (D). Smoothness per distance (Sd). Power consumption per distance (Pd). Subjectively from a visual point of view.1

The definitions for the first three individual scores can be found in Section 2.6.
The terrains on which the policies were evaluated can be found in Section 2.7

1Video: https://youtu.be/xbi8Kqam6Nc

37

 https://youtu.be/xbi8Kqam6Nc


3. Results .......................................
3.1 Results on terrain (a)

First, all approaches were trained and evaluated on the flat ground to obtain
a basic overview of performance. The results were evaluated using two speed
values.

The results obtained with an speed equal to 0.3 can be seen in Table 3.1.

Policy D Sd Pd

LUA 135.21 -339.17 61.88
LSA 32.58 -9.19 86.67
SA 28.58 -7.40 94.85

SA+GP 31.76 -11.66 86.65
SA+TH 29.41 -8.93 93.32
SA+LH 30.89 -14.14 96.19

Table 3.1: Comparison of all policies on terrain (a). Movement generator has
speed set to 0.3. D is the distance reached, S is the smoothness per distance,
P is the power consumption per distance. Red indicates worst in class. Blue
indicates best in class.

The results in Table 3.1 show that the LUA performed best with respect to
the distance reached and power consumption. LUA was by a large margin
the worst in smoothness. Visually, the LUA movements were very fast and
shaky. The smoothest policy was the SA. From the structured algorithms,
the LSA performed the best. Visually, the structure algorithms were very
smooth, natural looking, and almost indistinguishable from each other.

Policy D Sd Pd

LUA 135.21 -339.17 61.88
LSA 56.59 -68.52 75.54
SA 46.50 -36.65 84.64

SA+GP 62.01 -35.31 64.00
SA+TH 52.86 -30.50 74.81
SA+LH 54.25 -41.26 76.20

Table 3.2: Comparison of all policies on terrain (a). Movement generator had
speed set to 1.0. D is the distance reached, S is the smoothness per distance,
P is the power consumption per distance. Red highlights worst in class. Blue
highlights best in class.

In this case, the structured algorithms moved faster, which had a positive
effect on the distance reached and the power consumption per distance and a
negative effect on the smoothness. Visually, there was a noticeable difference
between the two speeds, but the locomotion looked natural.

38



................................. 3.2. Results on terrain (b)

3.2 Results on terrain (b)

Policy D Sd Pd

LUA 50.46 -653.42 162.68
LSA 43.98 -98.36 97.75
SA 28.34 -87.13 143.19

SA+GP 37.24 -85.34 114.46
SA+TH 30.17 -118.68 137.81
SA+LH 28.34 -105.33 139.05

Table 3.3: Comparison of all approaches on terrain (b). D is the distance
reached, S is the smoothness per distance, P is the power consumption per
distance. Red highlights worst in class. Blue highlights best in class.

As can be seen in Table 3.3, the LUA performed the best with respect to the
distance reached, but was the worst in smoothness and power consumption.
The distances reached by the structured algorithms were similar, while LSA
performed the best and SA and SA+LH performed the worst. LSA also had
the smallest power consumption. From a visual perspective, the LUA has a
problem in maintaining a consistent trajectory.

3.3 Results on terrain (c)

Policy D Sd Pd

LUA 26.36 -839.74 318.13
LSA 32.03 -160.51 135.52
SA 20.83 -173.52 194.49

SA+GP 32.79 -168.71 132.49
SA+TH 20.64 -193.89 196.69
SA+LH 22.37 -174.81 184.01

Table 3.4: Comparison of all approaches on terrain (c). D is the distance reached,
S is the smoothness per distance, P is the power consumption per distance. Red
highlights worst in class. Blue highlights best in class.

This terrain has greater height differences than terrain (b). Some of them
were as high as the hexapod itself. LSA and SA+GP had very similar
performances, having the best in class results between them. The trajectories
of the structured algorithms were more in accordance with the shape of the
terrain than on the terrain (b). LUA had a hard time training on this terrain
and had a problem maintaining a consistent trajectory.

39



3. Results .......................................
3.4 Results on terrain (d)

Policy D Sd Pd

LUA 15.31 -1906.96 643.16
LSA 23.03 -210.42 190.03
SA 16.31 -202.74 262.66

SA+GP 19.62 -228.30 236.77
SA+TH 17.11 -249.76 261.26
SA+LH 20.17 -164.65 192.82

Table 3.5: Comparison of all approaches on terrain (d). D is the distance
reached, S is the smoothness per distance, P is the power consumption per
distance. Red highlights worst in class. Blue highlights best in class.

This was the roughest terrain with very steep slopes and relatively sharp edges.
The LUA had problems training on this terrain and had the worst results.
The best results with regard to distance reached and power consumption had
the LSA. The smoothest was SA+LH with not that bad results regarding
distance and power consumption. Visually, all algorithms had a problem
maintaining a straight trajectory.

3.5 Results on terrain (e)

Policy D Sd Pd

LUA 9.37 -2374.00 818.58
LSA 8.24 -481.10 588.32
SA 6.97 -251.06 603.37

SA+GP 9.96 -219.38 419.85
SA+TH 6.98 -373.71 651.10
SA+LH 15.29 -139.04 259.58

Table 3.6: Comparison of all approaches on terrain (e). D is the distance reached,
S is the smoothness per distance, P is the power consumption per distance. Red
highlights worst in class. Blue highlights best in class.

Terrain (e) was designed to test the ability of the policies to climb. The
results show that SA+LH performed the best in all aspects. Other approaches
had a hard time. The worst performed the algorithms without the ability to
control the leg lifting heights.

40



Chapter 4
Discussion

First, I compared all algorithms on flat ground to obtain an initial picture of
performance. Data were collected using two speeds. (more about speed in
Section 2.1.4)

I also wanted to verify several assumptions:..1. SA will be smoother and more power efficient than LUA...2. SA+GP will perform about as well as SA or slightly worse...3. SA+TH will perform about the same as the SA...4. SA+LH will perform better than SA because the optimal leg height on
flat terrain is as low as possible but not too low to drag the feet.

In the first assumption, I was able to verify the fact that SA was smoother
than LUA, however, according to Table 3.1, the LUA was approximately 50
% more efficient than SA with speed equal to 0.3. The assumption was that
faster movement would require larger accelerations in servomotors, which
would increase the power consumption. This was not the case because the SA
is constrained by the movement generator and with 0.3 speed the movement of
the legs is very slow compared to the LUA. The servomotors have to produce
torque to keep the legs off the ground. The limit example of this would be
that when the hexapod is standing still, the servomotors have to keep the
hexapod standing up, but the hexapod is not generating any movement, so
the power per distance increases to infinity. As can be seen in Table 3.2,
when the speed is set to 1.0, the power per distance decreases, but at the
cost of smoothness. This argument is also supported by the results of the
algorithms that use the movement generator. The speed characteristic is
shown in Figure 2.7.

I did not verify the second assumption because the SA+GP managed to
outperform the SA. In the case of the speed equal to 1.0, it even outperformed
all other structured approaches by a great margin, as can be seen in Table 3.2.
The reason behind it was that with increasing speed, smoothness decreased,
and slippage and other negative factors became more prominent. SA+GP was

41



4. Discussion ......................................
able to learn to eliminate these factors by transitioning between gait-phases
more appropriately.

The third assumption was also incorrect. Changing the torso height on flat
terrain had a similar effect because SA+TH learned to mitigate negative
factors.

The fourth assumption was verified. SA+LH was able to improve the move-
ment generator. This approach also had a lower smoothness. It was because
during locomotion some legs touched the ground.

Training on more rough terrains (b) and (c) showed that LUA had a hard
time learning consistent locomotion. This was due to the lack of exteroceptive
data and the large number of parameters.

The results obtained on terrain (d) show that on the roughest terrain the
LUA performance dropped below all structured approaches. The causes of
this were lack of exteroceptive data and slow training. Unlike terrains (b)
and (c) this terrain had really prominent height differences. It was very easy
for the legs to get stuck. SA+TH did not show good results despite the fact
that the height of the torso was an important aspect on this terrain. This
was because the hexapod got stuck more on smaller obstacles due to the
low lifting height. This terrain required complex adaptation in all aspects,
therefore, the best performance can be seen from LSA.

Results show that with increasing roughness, the distance reached decreased,
the smoothness per distance decreased, and the power consumption per dis-
tance increased. This was expected.

The results obtained on terrain (e) show that SA and SA+TH were unable to
climb the stairs. There were three reasons for this. The first reason was that
the movement generator sampled the point cloud using the heightmap. The
resolution around sharp edges, such as stairs, was not high enough to correctly
approximate the terrain. This caused a large number of slippages and bad
gait transitions of SA. SA+GP was able to slightly improve performance by
adapting the gait, which addressed the problem stated above. The second
reason was that the movement generator did not implement logic to avoid
placing feet on the edges. The third reason was that the default value of
leg lifting height was too small to reliably place the foot on the stairs. This
third reason was addressed by SA+LH, as can be seen in Table 3.6, which
significantly improved performance.

LSA did not perform as well as SA+LH, even though it has the same ability.
This was because a higher number of parameters resulted in slower learning.
LSA would have been able to increase its performance even further if it was
given a longer time to train.

42



...................................... 4. Discussion

This shows that by learning certain aspects of the movement generator, per-
formance can not only be improved, but even new use cases can be created.

In general, LSA and all its variants were able to perform better than SA, even
beyond expectations. From a visual perspective and based on the results, the
structured algorithms performed substantially better with respect to smooth-
ness, leading to more consistent locomotion and trajectories. Structured
algorithms also trained faster and did not require reward shaping to achieve
these results.

43



44



Chapter 5
Conclusion

In this thesis, I designed a learnable structured algorithm (LSA) for gener-
ation of hexapod locomotion consisting of a neural network that calculates
control parameters for a manually-designed movement generator. The control
parameters were gait-phase transitions (GP), torso height (TH), and leg
lifting heights (LH). The movement generator used exteroceptive terrain data
in the form of a point cloud for foot placement. A feedback loop was designed
to compensate for slippage and other factors.

For comparison I implemented a structured algorithm (SA), which was a
variant of LSA in which I replaced the neural network with a hand-designed
controller to generate the control parameters. The controller generated a
basic tripod gait and constant torso height and leg lifting heights. To further
study the performance of LSA, three more variants were created. Each variant
implemented either GP, TH or HL. The remaining control parameters were
generated by the controller created for SA. I also implemented a learnable
unstructured algorithm (LUA) that was represented by an end-to-end neural
network.

The parameters of the neural networks were optimized using the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES).

As a physics simulator, I used PyBullet. In total, six algorithms were evalu-
ated on five custom terrains. The algorithms were evaluated based on the
distance reached in the x-axis, smoothness per distance, power consumption
per distance, and subjectively based on appearance. The definitions of scores
can be found in Section 2.6.

The LUA performed best on smoother terrains. It was able to generate
very fast and power-efficient locomotion, but at the cost of smoothness and
maintaining the trajectory to the point where it would make it impractical
or even impossible to use on a real platform. The main limitations were
the time-consuming reward shaping and parameter optimization using the
black-box evolution strategy method. More reward shaping would have been
necessary to achieve smoother motion with smaller joint velocities. Further-

45



5. Conclusion......................................
more, carefully choosing only the most useful observation, thus reducing the
number of parameters would also speed up the learning process.

The results show that the proposed LSA performed better than SA on all
terrains. The structured approaches were much smoother and more natural
looking than LUA. They did not require reward shaping and were able to
learn from sparse rewards. Because the movement generator constrains the
motion of the LSA, it would be safe to use on a real platform even with
zero training. LSA was able to learn basic locomotion even during the first
few iterations. The SA failed on stairs due to the low default leg lifting
height and ineffective GP transitions and was outperformed by the SA+LH
which involved learning the leg lifting heights. This shows that not only the
performance can be improved, but even new use-cases can be enabled by the
proposed method.

The assignment was satisfied, except that the optional deployment on a real
platform could not be performed due to lack of time.

Probably the biggest limitation in this thesis was the optimization method.
It would be worth trying reinforcement learning instead of evolution strategy
optimizers in future research. If the learning process was faster and more
efficient, there would be a lot of room for training other aspects of the
movement generator, such as:. Torso orientation relative to the terrain,. Leg range,. Center point position for each leg,. Foot placement using heightmap as low-resolution image.

Other improvements could be made to the movement generator. Because
the proposed solution is limited by the movement generator, there may be a
better line between robustness and versatility.

Future work could comprise the implementation of the solution described in
[11]. This would make it possible to switch between trained polices based on
terrain estimation.

46



Bibliography

[1] D. J. Todd, Walking machines: an introduction to legged robots. Springer
Science & Business Media, 2013.

[2] M. H. Raibert, “Legged robots,” Communications of the ACM, vol. 29,
no. 6, pp. 499–514, 1986.

[3] M. Zangrandi, S. Arrigoni, and F. Braghin, “Control of a hexapod robot
considering terrain interaction,” CoRR, vol. abs/2112.10206, 2021.

[4] A. J. P. A. Chávez and J. H. A. Alcántara, “Kinematic and dynamic
modeling of the phantomx ax metal hexapod mark iii robot using quater-
nions,” in 2021 International Conference on Control, Automation and
Information Sciences (ICCAIS), pp. 595–601, 2021.

[5] M. Bjelonic, N. Kottege, and P. Beckerle, “Proprioceptive control of an
over-actuated hexapod robot in unstructured terrain,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 2042–2049, IEEE, 2016.

[6] P. Cizek, D. Masri, and J. Faigl, “Foothold placement planning with a
hexapod crawling robot,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), (Vancouver, BC, Canada),
pp. 4096–4101, IEEE, 2017.

[7] A. A. Karim, T. Gaudin, A. Meyer, A. Buendia, and S. Bouakaz, “Pro-
cedural locomotion of multilegged characters in dynamic environments,”
Computer Animation and Virtual Worlds, vol. 24, no. 1, pp. 3–15, 2013.

[8] R. Campos, V. Matos, and C. Santos, “Hexapod locomotion,” in IECON
2010 - 36th Annual Conference on IEEE Industrial Electronics Society,
(Glendale, AZ, USA), pp. 1546–1551, IEEE, 2010.

[9] L. Minati, M. Frasca, N. Yoshimura, and Y. Koike, “Versatile locomotion
control of a hexapod robot using a hierarchical network of nonlinear
oscillator circuits,” IEEE Access, vol. 6, pp. 8042–8065, 2018.

47



5. Conclusion......................................
[10] H. Hu and Y. Liu, “Blind adaptive gait planning on non-stationary

environments via continual reinforcement learning,” in 2021 IEEE In-
ternational Conference on Unmanned Systems (ICUS), pp. 280–284,
2021.

[11] T. Azayev and K. Zimmerman, “Blind hexapod locomotion in complex
terrain with gait adaptation using deep reinforcement learning and
classification,” Journal of Intelligent & Robotic Systems, vol. 99, no. 3,
pp. 659–671, 2020.

[12] A. S. Lele, Y. Fang, J. Ting, and A. Raychowdhury, “Online reward-based
training of spiking central pattern generator for hexapod locomotion,”
in 2020 IFIP/IEEE 28th International Conference on Very Large Scale
Integration (VLSI-SOC), pp. 208–209, 2020.

[13] J. Vice, G. Sukthankar, and P. K. Douglas, “Leveraging evolutionary
algorithms for feasible hexapod locomotion across uneven terrain,” arXiv
preprint arXiv:2203.15948, 2022.

[14] D. Belter and P. Skrzypczyński, “A biologically inspired approach to
feasible gait learning for a hexapod robot,” 2010.

[15] T. Wang, R. Liao, J. Ba, and S. Fidler, “Nervenet: Learning structured
policy with graph neural networks,” in International Conference on
Learning Representations, 2018.

[16] M. Schilling, K. Konen, F. W. Ohl, and T. Korthals, “Decentralized
deep reinforcement learning for a distributed and adaptive locomotion
controller of a hexapod robot,” in 2020 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp. 5335–5342, IEEE,
2020.

[17] P. Corke, “Denavit-hartenberg notation for common robots,” PeterCorke:
Brisbane, Australia, 2014.

[18] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed,
and H. Arshad, “State-of-the-art in artificial neural network applications:
A survey,” Heliyon, vol. 4, no. 11, p. e00938, 2018.

[19] E. Coumans and Y. Bai, “Pybullet, a python module for physics simula-
tion for games, robotics and machine learning.” http://pybullet.org,
2016–2021.

[20] J. Rapin and O. Teytaud, “Nevergrad - A gradient-free optimization
platform.” https://GitHub.com/FacebookResearch/Nevergrad, 2018.

[21] I. Loshchilov and F. Hutter, “CMA-ES for hyperparameter optimization
of deep neural networks,” CoRR, vol. abs/1604.07269, 2016.

48

http://pybullet.org
https://GitHub.com/FacebookResearch/Nevergrad

	Introduction
	Related work

	Methods
	Movement generator
	Movement generator pipeline
	Hexapod description
	Point cloud sampling
	Locomotion generation
	Direct kinematics
	Inverse kinematics

	Neural network (NN)
	Policy
	Learnable Structured Algorithm (LSA)
	Structured Algorithm (SA)
	Learnable Unstructured Algorithm (LUA)

	Environment
	Physics simulation
	Hexapod representation
	Terrain representation

	Training
	Training pipeline
	Optimization method

	Evaluation
	Distance reached
	Smoothness
	Power consumption

	Terrain set

	Results
	Results on terrain (a)
	Results on terrain (b)
	Results on terrain (c)
	Results on terrain (d)
	Results on terrain (e)

	Discussion
	Conclusion
	Bibliography

