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Abstract

The aim of this bachelor thesis is to familiarize with the problem of computation
of digital audio amplifier and to implement the algorithm for solving the optimal
pulse width modulated (PWM), odd single-phase bi-level waveform.

The algorithm has been written in C using a freely available GCC compiler.Final
application can be used in a microcontroller to drive PWM signal output which is
then demodulated providing power output for driving loudspeakers.
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Chapter 1

Introduction

During the last 20 years has appeared a new technology for audio amplification
called Class-D amplifiers or switching amplifiers. Its important property is very high
power conversion efficiency, usually over 90% vs. 50% for a linear amplifer. This
means that more then 90% of the energy consumed goes into powering your speakers
and the remaining over 50% is converted into heat. Their foundation is that these
amplifiers produce a PWM equivalent (this modulated signal has the same root
mean square (RMS) value as the original signal) of the analog input signal which is
fed to the loudspeaker via a suitable filter network to block the carrier and recover
the original audio.

The main task of this thesis is to implement the algorithm for computation of
optimal switching angles for bi-level odd symmetry waveforms in programming lan-
guage C. Firstly, I would like to introduce the short overview of Class-D amplifiers
then I will describe an established method for generating bi-level waveforms with
low base-band distortion. The principal problem is to determine the switching times
(angles) so as to produce the base-band and not to generate specific higher order har-
monics. Such a way, which is possible to separate the undesirable highest harmonics.
Finally, I will show step by step procedure to implement the given algorithm.
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Chapter 2

Overview of Class-D amplifiers

The ”D” in class-D is sometimes said to stand for ”digital”. This is not correct
because the operation of the class-D amplifier is based on either analog or digital
principles. The first group of Class-D amplifiers allowing to process the input signal
directly in digital form see Figure 2.4 and the second group requires necessary to
work with the analog input signal see Figure 2.2. However, the same character for
both groups of amplifiers is their fundamental structure and it is displayed in Figure
2.1. That block structure is presented for both types.

Preprocessing Modulator
Switching
controll and
output stage

Output filters

Input
signal

Output
signal

Modulated
signal

High-power
modulated signal

Figure 2.1: Principal block scheme of Class-D amplifiers.

Input signal is typically introduced into the block Preprocessing. Here it is
possible to realize the needed gain for the analog input signal or to recover the
digital input signal. This block often also implements its own impedance of the
audio amplifier to separate out the signal source e.g. CD player, PC, etc. . . .

Another important part of class-D amplifiers is Modulator. Primary function
of this block is a transfer of input signal into PWM signal, that makes a main
difference of two variants.� The classic method of generating the drive signal by the analog principle is to

use a differential comparator C. One input is driven by the incoming audio
signal Input, and the other by a Triangular wave generator at the required
switching frequency. Then the voltage output of the comparator is applied to
the input of a complementary common-source MOSFET output stage. Each
transistor operates as a switch. A basic analog class-D amplifier is shown in
Figure 2.2, and the PWM process is illustrated in Figure 2.3.
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CHAPTER 2. OVERVIEW OF CLASS-D AMPLIFIERS 10

Figure 2.2: Block diagram of an Analog class-D amplifier.(assumed from
[7])

The biggest problem of this method is that clearly the triangular wave needs
to be linear (i.e., with constant slope) to prevent distortion being introduced
at this stage. There are other ways to create the required waveform, such as
a sigma-delta modulator, but in the practical reality it never can be achieved.
Thereby causing the quality of the processed signal i.e. lower value of distor-
tion.� In the case of digital solutions can evade this problem, because entire signals
processing in digital signal processor (DSP) and it is illustrated in Figure 2.4.
For example using specialised microprocessors such as the MSC825X produced
by Freescale Semiconductor, the DA8x or TAS3308 from Texas Instruments
etc, . . . . For faster applications often might be used an integrated circuit,
the Field-programmable gate array (FPGA) or digital signal processing can
be implemented on Embedded Systems using powerful PCs with a Multi-core
processor.

Last part of class-D amplifiers is block Output filters.The purpose of this block
is to get low-frequency useful audio signals (useful information), to reduce unwanted
high-frequency spectral components, that are present in the modulated signal and
also to improve efficiency. So It is best suited to use here low-pass filter.
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Figure 2.3: A simple method to generate the PWM pulse train correspond-
ing to a given signal is the intersective PWM: the signal (here
the green sinewave) is compared with a sawtooth waveform
(blue). When the latter is less than the former, the PWM
signal (magenta) is in high state (1). Otherwise it is in the
low state (0). (assumed from [8])
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Output
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Figure 2.4: Principal block scheme of a Digital Class-D amplifiers.The
ADC block is an analog-to-digital converter, the DAC is an
digital-to-analog converter



Chapter 3

Optimal odd single-phase bi-level
problem

3.1 Optimal PWM problem

As already indicated, the whole process for digital audio signal processing takes place
in a DPS to that output signal is modulated PWM. Find an efficient algorithm for
DSP is the task of designers. One of the many options can be seen from Figure
3.1. Key issue of the optimal PWM problem is to determine the switching times
(angles) so as to produce the signal portion (base-band) and not generate specific
higher order harmonics (guard band or zero band). This spectral gap separates
the base-band which has to be identical to the required output waveform, from an
uncontrolled higher frequency portion. The required output signal can be recovered
by means of an analog low-pass filter (LPF) with cutoff frequency in the guard band.

Methods described in this section are based on exploiting appropriate trigono-
metric transcendental equations that define the harmonic content of the generated
periodic PWM waveform p(t) which is equal to required finite frequency spectrum
of f(t). The main problem lies in solving these systems of equations.

The solution of the optimal PWM problem is a sequence of switching times
α ⋆ = (α1, . . . , αn). This sequence is obtained from the solution of the system of
equations

ap0(α) = af 0 ,

apk(α) = af k

bpk(α) = bf k

}

for all k ∈ HC ,

apk(α) = 0

bpk(α) = 0

}

for all k ∈ HE ,

subject to 0 < αi < T,

where α = (α1, . . . , αn) are unknown variables, ap0 and apk, bpk are zeroth and k-
th cosine, respectively sine Fourier coefficients of the generated waveform p(t), af 0

and af k, bf k are zeroth and k-th cosine, sine Fourier coefficients of the required
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Figure 3.1: (a) Frequency spectrum of a separated base-band signal. The
base-band can be recovered by an LPF. (b) Principal scheme
for optimal PWM problem.

output waveform f(t). The HC is the set of controlled harmonics and the number
of elements is nC . The HE is the set of eliminated harmonics and the number of
elements is nE. The number of equations is n = 1 + 2(nC + nE).

3.2 Switching odd bi-level PWM Waveforms

The Fourier series of T periodic odd bi-level PWM waveform p(t) with amplitude A
(see the Figure 3.2) is sine with the following coefficients

bk =
4A

kπ

(

on+k +
n∑

i=1

(−1)i cos(ωkαi)

)

, (3.2)

k = 1, 2, . . . ,

where 0 < α1 < α2 < · · · < αn < T/2 are the unknown switching times and
bk, k = 1, 2, . . . , nC on the hand side (RHS) of equations are real numbers defining
the required signal f(t) (base-band frequency spectrum). The integer nC defines the
number of controlled harmonics.
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Figure 3.2: Odd bi-level PWM waveform.



Chapter 4

Implementation

4.1 pseudocode algorithm

In this section I use a pseudocode to describe the algorithms. This pseudo-code
specifies the form of the input to be supplied and the form of the desired output.
Not all numerical procedures give satisfactory output for arbitrarily chosen input.
As a consequence, a stopping technique independent of the numerical technique is
in corporated into each algorithm to avoid infinite loops.

A pseudo-code algorithm which embodies the above strategy is shown below:

4.1.1 Optimal PWM

Algorithm 1 (OptimalPWM): Compute optimal PWM problem.

Input:

n . . . the number of switching times (it is equal to num-
ber of controlled harmonics nC plus number of zero
harmonics nE),

(bf1
, . . . , bfnC

) . . . the sequence of controlled harmonics,

ω . . . frequency,
A . . . amplitude of PWM waveform.

Output:

(α1, . . . , αn) . . . the optimal switching times.

15



CHAPTER 4. IMPLEMENTATION 16

1. Compute the RHS of composite sum of powers pi, i = 1, . . . , n using

p2i = on − 2−2i π

A

K
∑

j=1

(

2i

i− j

)

j bf2j
, (4.1a)

K :=







i . . . i < ⌊nC/2⌋

⌊nC/2⌋ . . . i ≥ ⌊nC/2⌋
, i = 1, 2, . . . , ⌊n/2⌋ , (4.1b)

p2i−1 = on+1 − 2−2i π

A

K∑

j=1

(

2i− 1

i− j

)

(2j − 1) bf2j−1
, (4.1c)

K :=







i . . . i < ⌈nC/2⌉

⌈nC/2⌉ . . . i ≥ ⌈nC/2⌉
, i = 1, 2, . . . , ⌈n/2⌉ . (4.1d)

for bi-level PWM odd waveform, where on is the odd parity test:

on =
1− (−1)n

2
=







0 for even n,

1 for odd n.
(4.2)

2. Compute composite sum of powers

yi
1 + · · ·+ yi

⌈n/2⌉ − yi
⌈n/2⌉+1 · · · − yi

n = pi, i = 1, . . . , n (4.3)

using Algorithms PadeCSoP.
Set (y+, y−) = PadeCSoP (p1, . . . , pn).

3. if y+ ∈ R(−1,1) ∧ y− ∈ R(−1,1) then continue else exit - no exact solution

4. end if

5. Set y+
s = (y+

s1
, y+

s2
, . . . , y+

s⌈n/2⌉
) = sort>y+, where y+

s1
> y+

s2
> . . .

Set y−
s = (y−

s1
, y−

s2
, . . . , y−

s⌊n/2⌋
) = sort>y−, where y−

s1
> y−

s2
> . . .

6. Set x = (x1, . . . , xn) = riffle(y+
s , y−

s ) = (y+
s1

, y−
s1

, y+
s2

, y−
s2

, . . . )

7. Return α⋆ = (α⋆
1, α

⋆
2, . . . , α

⋆
n) = 1/ω arccos x

4.1.2 Padé method

Algorithm 2 (PadeCSoP): Compute composite sum of powers for optimal odd
PWM problem via solving Hankel linear system (Padé approximation).

Input:

p1, . . . , pn . . . the right hand side of composite sum of powers,
solved according to (4.1).

Output:
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(y+, y−) = ((y1, y2, . . . , y⌈n/2⌉), (y⌈n/2⌉+1, y⌈n/2⌉+2, . . . , yn))
. . . the solution of composite sum of powers (4.3).

1. Set p = (−1)np (* for condition k ≤ ⌊n/2⌋ *)

2. Set k = ⌊n/2⌋

3. Compute the moments µi, i = 1, . . . , n according to

µ0 = 1, µi = −
1

i

i∑

j=1

pjµi−j (4.4)

4. if n is odd integer then

5. Solve linear Hankel system for







µ0. . . µk
... . .

. ...
µk. . . µ2k






·







wk+1,0
...

wk+1,k







= −







µk+1
...

µ2k+1







(4.5)

6. Solve matrix equation with triangular Hankel matrix






vk,k−1
...

vk,0







=







0 . . . µ0
... . .

. ...
µ0. . . µk−1






·







wk+1,1
...

wk+1,k







+







µ1
...

µk







7. Set Wk+1(y) = xk+1 +
∑k

i=0 wk+1,ix
i and Vk(y) = xk +

∑k−1
i=0 vk,ix

i

8. Return (y+, y−) = (roots(Wk+1(y)), roots(Vk(y)))

9. else

10. Solve linear Hankel system for






µ1. . . µk
... . .

. ...
µk. . . µ2k−1






·







wk,0
...

wk,k−1







= −







µk+1
...

µ2k







11. Solve matrix equation with triangular Hankel matrix






vk,k−1
...

vk,0







=







0 . . . µ0
... . .

. ...
µ0. . . µk−1






·







wk,0
...

wk,k−1







+







µ1
...

µk







12. Set Wk(y) = yk +
∑k−1

i=0 wk,iy
i and Vk(y) = yk +

∑k−1
i=0 vk,iy

i

13. Return (y+, y−) = (roots(Vk(y)), roots(Wk(y)))

14. end if

For more detail obout this method see [4].
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4.2 Implementation in C

Programming language C allows programmers to break up programs into smaller
components (such as classes and subroutines) and distribute those components
among many translation units (typically in the form of physical source files), which
the system can compile separately - here header files (*.h). Thus, completed aplica-
tion to compute the optimal switching times of PWM output signal, implemented in
programming language contains five header files, main file, Make file, which compiles
the program and one text file containing the input, i.e. the sequence of controlled
harmonics (bf1

, . . . , bfnC
). In this case I declared bfnC

to equal five. For programming
I used many literatures see [2], [5], [6]. The source files as follows.

4.2.1 PWMPowerSum.h

This header file contains functions, that allow to calculate the RHS of composite
sum of powers pi. They are function pEven( ) for computing even elements of pi

and pOdd( ) to calculate the other elements. Look at that equations (4.1a) and
(4.1c). There I face two problems to be solved. First one is that how to write

∑
in

C and the second problem of calculating binomial coefficients.

1. The
∑

can be implemented in C using one for loop. For example

n∑

i=m

xi = xm + xm+1 + xm+2 + · · ·+ xn−1 + xn,

and equivalent write in C:

int i,sum = 0;

for(i = n; i <= m; i++)

sum += x[i];

2. Recursive formula for binomial coefficients as follows

(

n

k

)

=

(

n− 1

k − 1

)

+

(

n− 1

k

)

for all integers n, k > 0,

with as initial values
(

n

0

)

= 1 for all n ∈ N,

(

0

k

)

= 0 for all integers k > 0.

It may be re-written
(

n

k

)

= sumk =
k∑

i=1

sumi−1(n− k + i)

i
(4.6a)

where sum0 = 1
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Thanks to equation (4.6a) I can directly implement a function binom(unsigned
n, unsigned k) with two input variables n and k and this function returns required

value of
(

n
k

)

. The next step necessary to do is that determine values of K and

K, which are defined in (4.1b) and (4.1d), then they can be achieved by method
UnderK(int i, int nC) and OverK(int i, int nC), which returns the value to
variable i or nC.

Everything is already available for implementation of function pEven( ) and
pOdd( ). Proposed pEven(double * data,unsigned int num,int Amp,double
*Even) has a parametr *data, which is pointer to array type double and its elements
are the sequence of controlled harmonics. Variable num is the number of switching
times and Amp is elected value of amplitude of PWM waveform. The routine returns
the roots p2i and the *Even part to be added it.

Using same concept could be made the funtion void pOdd(double * data,unsigned
int num,int Amp,double *Odd) to compute the p2i−1 then will add their address
into *Odd.
After a call of two functions pEven( ) and pOdd( ) I’m getting the calculated values
of p2i and p2i+1 . The following function join(double * joinEven,double * join-
Odd, unsigned int num,double *Join) could join p2i with p2i−1 then will add
them to *Join. Finally I’m just getting a sequence (p1, p2, . . . , pn−1, pn).

The next step in strategy computing optimal PWM problem is that finding of
composite sum of powers (see (4.3)) using Padé method. To accomplish that I have
created three functions i.e. function moments( ), Hankel( ), GaussResol( ) and
polyroots( ). Now I would like to describe function of different methods:

4.2.2 Moments.h

In this header file has been located function moments(double *data, unsigned
int num, double *uArray), which allows to compute the moments µi. The
argument *data is input pointer to array containning the pi from previous item.
Variable num is the number of switching times and returned adrress of unknown µi

could be added into the pointer *uArray. It is according to (4.4).

4.2.3 Hankel.h

In linear algebra, a Hankel matrix is a special case of a square matrix with constant
positive sloping diagonals. In mathematical terms is defined as follows:

ai,j = ai−1,j+1 (4.7)

For example, if I want to creat a Hankel matrix of numbers from 1 to 7, I’m getting
a 4x4 dimensional matrix and it looks like:








1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7








.
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It’s clear to see one interesting of Hankel matrix. For any sequence of numbers
num ≥ 4 plus num must be odd number is possible to creat some Hankel matrix
with dimension

⌈
num

2

⌉

x
⌈

num
2

⌉

. So it will very easy to fill a Hankel matrix with a
array elements in C using only double for loops.

A upper triangular Hankel matrix is a special case of the Hankel matrix,where
the entries above the main diagonal are zero. For example upper triangular Hankel
matrix of numbers from 1 to 7 has a form:








0 0 0 4
0 0 4 5
0 4 5 6
4 5 6 7








In programming language C can be created by an analogous procedure with the
method of Hankel matrix, nevertheless the first (

⌈
num

2

⌉

− 1) values are replaced by
zeros.

This file contains function Hankel(double *Udata, unsigned int num, const
caseN typ, double ** uHankel). It’s first parametr *Udata is pointer to input
elements, the µi. The next parametr is length of a required Hankel matrix, a variable
num and it’s value equals

⌈
number of elements µi

2

⌉

. The variable typ offers three dis-
tinct options to set a form of Hankel matrix - typ equals 1 for case, when the number
of switching times n is odd integer, typ = 2 for case even n and the last case, when
the typ equals 3, I can set it like upper triangular Hankel matrix.Then the address
of final matrix can be written in **uHankel with dimension (

⌈
number of elements µi

2

⌉

+

1)x
⌈

number of elements µi

2

⌉

. Into the last row of this matrix have been added elements
of right hand side of linear Hankel system

4.2.4 GaussResol.h

A part of this Padé method demands solving systems of linear equation see Algo-
rithm 2 equation (4.5) (lines 5 a 10). For finding roots of such systems becomes
reality using many different methods like Gaussian elimination, LU decomposition,
cholesky decomposition, Levinson recursion etc, . . . . For simplicity, I chose method
Gaussian elimination, that elementary row operations are used to reduce a matrix
to triangular form then the next step uses back substitution to find the solution of
the system above. As an example look at the following linear system






1 −2 1
3 2 −2
−2 4 1




 ·






x
y
z




 =






5
4
2




 , (4.8)

then it can be rewritten to allowing form:






1 −2 1 5
3 2 −2 4
−2 4 1 2
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After an elimination,





3 2 −2 4
0 8 −5 −11
0 0 3 12






Now to use the back substitution to find the solution of the system. It follows,

z =
12

3
= 4; y =

−11 + 5.4

8
= 1.125; z =

4 + 2.4− 2.1.25

3
= 3.25

Implemented method GaussResol(double **a, unsigned int n, double *x)
solves linear system by Gausian elimination with input Hankel matrix a, n number
of row’s matrix a. Roots of linear system will be added into *x.

4.2.5 polynsolve.h

Knowledge of algebra can be said that every function P (x), which has the following
form

P (x) = anxn + an−1x
n−1 + · · ·+ a1x + a0 =

n∑

i=0

aix
i, (4.9)

where a0, a1, . . . , an ∈ R, respectively in C and an 6= 0.

It’s called polynomial in x of degree n and a0, a1, . . . , an are the coefficients of
this polynomial. By the way I can rewrite (4.9) into another representation, the
factored form of the polynomial simultaneously I set P (x) = 0, then I’m getting a
polynomial equation and the solutions to the equation are called the roots of the
polynomial, that here are the αi. Note, the αi in this subsection are not the optimal
switching times!

P (x) = a0(x− α1)
k1 . . .

︸ ︷︷ ︸

real roots

(x− αm)km . . .
︸ ︷︷ ︸

complex roots

P (x) = an(x− α1)
k1 . . . (x− αr)

kr . . . [(x− c1)
2 + d2

1]
r1 . . . [(x− cs)

2 + d2
s]

rs,

where α1,. . . ,αm real roots of multiplicity k1,. . . ,kr and (c1 ±jd1),. . . ,(cs±jds)
complex roots of multiplicity r1,. . . ,rs .

Finding exact roots of polynomials is often impossible to obtain in practice (a
problem of continuous mathematics - round off errors in digital computers, a num-
ber is not rational etc, . . . ). So, it is necessary to use a numerical analysis,which
are concerned with obtaining approximate solutions while maintaining reasonable
bounds on errors. Well-known methods of numerical analysis for finding roots of
polynomial are as Newton-Raphson, Muller’s method, Laguerre’ method etc, . . . .
Each method has its advantages and disadvantages, for more details see [3].

In this part I chose a robust strategy for finding all real and complex roots of real
polynomials by C. Bond. The main reasons for choosing this method is its stability
and very high accuracy of test results. However it has one restriction that only can
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solve a polynomial of order n = 22, although for computation PWM problem with
the number of switching times n = 22 is more than enough. Original method was
implemented in C++ by its author. So I had to re-write it into C to correspond
my aplication. For more information obout this method see [1] A description in
pseudo-code of the method as follows,

1. Copy the original (monic) polynomial to pa, pa ←− P ,

2. Copy polynomial (monic) derivative to pb, pb ←− p′a,

3. Find GCF of pa/pb using Euclid’s algorithm, (q, r) = pa/pb,

4. If GCF is 1, submit pa to estimator/solver, add roots to root list, goto 11

5. Divide GCF out of pa, q = pa/r,

6. If order of q is less then 3, add roots to root list, goto 10,

7. Submit q to estimator/solver, add roots to root list,

8. If order of r less than 3, add roots to roots list, goto 10,

9. Copy r to pa,

10. If more rooots to find, goto 2,

11. End.

In this code, P is the original polynomial, n is its order, p′a is the monic form of pa

derivative and (q, r) respresents the quotient and remainder after division. If the
algorithm terminates with r = 0 the polynomial representing the greatest common
factor(GCF) of the original polynomial and its derivative is in b. Note that monic
polynomial with degree n is such polynomial, when its coefficient an = 1.

Finally the method for searching of roots of a polynomial implemented in C looks
as polyroots(double *a, int n, double *wr, double *wi). Its first parametr
∗a is a pointer to array involving coefficients of the polynomial, note they are sorted
from the highest oder to the lowest i.e. (an, an−1, . . . , a1, a0). The second parametr n
is a order of the polynomial ekvivalent of the number of switching times. Then real
roots of polynomial will be added into a array using pointer *wr, similarly complex
roots using *wi.

4.2.6 OptimalPWM.C

Complete program was written in this file using all header files, which have been
described. When the program starts. Firstly, it opens the text file ”Input.txt”. The
sequence of input audio spectrums has been saved here, since takes first five value of
them correspond of the sequence of controlled harmonics. Next step with available
Input computes the RHS of composite sum of power using method pEven( )and
pOdd( ), then they are joined using method join( ). The Values obtained are now
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as input values for calculating of the moment µi thanks method moments( ). Then
it solves a linear Hankel system (4.5)or via method GaussResol( ), while the Hankel
matrix is created by Hankel( ). After resolution of matrix equation it based on
the values wk,i and vk,i, which are coefficients of the apropriate polynomials Wk(y)
and Vk(y). Therefore, available method polyroots( ) it easy finds their roots, that
are just the unknown composite sum of powers, since this values must be sorted
according to item 8. or item 13. in Algorithm 2 and item 5. in Algorithm 1 via
function qsort( ). After all the program computes the requested switching times of
PWM waveform see item 7. in Algorithm 1. Note, an input sampling frequency w
can be written as following

w = 2πf =
2π

T
,

where T is a sampling interval of sampling audio signal.

4.3 Test of algorithm

In this section I carry out a verification of the proposed algorithm with some nu-
merical experiment. For example:

(bf1, bf2, bf3, bf4, bf5) = (4,−5, 3, 1,−2), A = 10, T = 1,

for two case n = 17 and n = 18, then I obtained their corresponding results, which
are imported into the following tables:
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Figure 4.1: Odd bi-level PWM waveform for case n = 17

Figure 4.1 and 4.3 show the input waveform and its computed PWM waveform
for both case n -odd and -even. Setting of the values n and T has a big influence on
a quality of signal. Indeed, the value of n is inversely proportional to the value of
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Figure 4.2: Spectrums of Odd bi-level PWM waveform for case n = 17
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Figure 4.3: Odd bi-level PWM waveform for case n = 18

total harmonic distortion(THD), that says, how the output signal is different than
the input. THD is defined:

THD(α)[%] = 100

√
√
√
√
√
√

∑n+N
i=nc+1

(
api (α)+bpi (α)

i

)2

∑nc
i=1

(
api (α)+bpi (α)

i

)2 . (4.10)

On the basis of equation (4.10) it’s clear to see, that the THD is minimal, if

n+N∑

i=nc+1

(

api
(α) + bpi

(α)

i

)2

(4.11)
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Figure 4.4: Spectrums of Odd bi-level PWM waveform for case n = 18

is minimal, ideally THD = 0 if the term (4.11) equals zero, that requires the
elements of the guard band and uncontrolled harmonics to be minimal or zero (see
the section Optimal PWM problem). In case of setting T is necessary to adhere to
the Nyquist-Shannon sampling theorem, which says, that the sampling frequency
must be at least two times greater than the highest frequency in the original signal
to allow for perfect reconstruction. So in practice it is always absolutely necessary
to find a good compromise for them.

The spectrums of the obtained PWM signal, that are shown in 4.2 and 4.4.
It really match the input spectrums (bf1,2,3,4,5) = (4,−5, 3, 1,−2) plus the cutoff
frequency in the guard band and higher harmonics. After calculating the THD
according to the equation (4.10) I obtained: for n = 17, THD = 11.33[%], n = 18,
THD = 10.56[%].
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Table 4.1: The partial results for case n = 17

i pfi
µi wi vi yi αi bpi

0 - 1 - - - - -
1 -0.314 -0.314 -0.002 -0.467 0.985 0.026 4
2 1.392 0.745 0.031 -1.466 -0.989 0.054 -5
3 -0.412 -0.361 0.055 0.590 0.868 0.082 3
4 1.353 0.658 -0.445 0.594 -0.915 0.107 1
5 -0.368 -0.362 -0.255 -0.163 0.647 0.137 -2
6 1.309 0.602 1.677 -0.073 -0.592 0.162 0
7 -0.317 -0.351 0.355 0.008 0.379 0.188 0
8 1.274 0.559 -2.260 0.001 -0.287 0.219 0
9 -0.276 -0.336 -0.153 - 0.056 0.241 0
10 1.248 0.524 - - 0.941 0.266 0
11 -0.242 -0.322 - - 0.781 0.296 0
12 1.227 0.495 - - -0.576 0.293 0
13 -0.216 -0.308 - - 0.188 0.304 0
14 1.211 0.469 - - -0.338 0.3477 0
15 -0.195 -0.295 - - -0.105 0.433 0
16 1.197 0.447 - - -0.943 0.446 7.554
17 -0.178 -0.284 - - 0.520 0.476 4.864

Table 4.2: The partial results for case n = 18

i pfi
µi wi vi yi αi bpi

0 - 1 - - - - -
1 0.685 -0.685 0.001 -0.413 0.947 0.025 4
2 0.392 0.038 0.018 -2.233 -0.988 0.052 -5
3 0.587 -0.114 -0.020 0.896 0.803 0.077 3
4 0.353 0.028 -0.345 1.637 -0.898 0.102 1
5 0.631 -0.077 0.188 0.152 0.570 0.130 -2
6 0.309 0.036 1.426 -0.413 -0.671 0.153 0
7 0.682 -0.066 -0.429 0.152 0.264 0.178 0
8 0.274 0.040 -2.084 0.015 -0.268 0.207 0
9 0.723 -0.059 0.272 -0.004 -0.031 0.227 0
10 0.248 0.040 - - 0.883 0.255 0
11 0.757 -0.322 - - -0.965 0.280 0
12 0.227 0.0402 - - 0.682 0.293 0
13 0.783 -0.051 - - -0.683 0.369 0
14 0.211 -0.048 - - 0.433 0.367 0
15 0.804 -0.295 - - -0.187 0.420 0
16 0.197 0.038 - - 0.142 0.427 0
17 0.822 -0.045 - - 0.987 0.457 6.676
18 0.185 0.037 - - -0.879 0.475 5.692



Chapter 5

Conclusion

This thesis deals with the solution of the optimal PWM problem, i.e. how to
determine the switching times of PWM modulated output signal so that this signal
shoudl have the same spectrums as the spectrums of original signal and in addition n
harmonics zero. This was achieved using an algorithm that is described in Chapter
3 and it was implemented in programming language C see Chapter 4. Finally, I
verified functionality of this procedures graphically in program Mathematica using
the application of my supervisor.

However, the problem can be resolved through other means and using other
available public libraries, but most of them are always multiple function, universal
and not special for this problem. By the way, the next reason especially to be in
control of the aplication, that is very easy to compile with a compiler and latterly can
be used on a FPGA using an embedded microcontroller or on a general embedded
systems. To deal with specific types microcontroler is just beyond the framework of
this topic so I would like to leave it as future work.
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Appendix A

CD-ROM OptimalPWM

In addition a CD
To this work is accompanied by a CD, which preserves the source.� Files C: The sources code of aplication were stored in this directory.� Files text: The final document written in LaTeX can be found here.
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