
Bachelor Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Machine Learning for the Leptoquark Search
Using CERN ATLAS Data

Lukáš Viceník

Supervisor: doc. Dr. André Sopczak
Field of study: Cybernetics and Robotics
May 2022

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483424Personal ID number:Viceník LukášStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Machine Learning for the Leptoquark Search Using CERN ATLAS Data

Bachelor’s thesis title in Czech:

Hledání leptoquarků pomocí strojového učení v datech z CERN ATLAS experiment

Guidelines:

At the Large Hadron Collider (LHC) at CERN protons are collided and the collisions are recorded by the ATLAS detector.
A motivation to construct the LHC has been the search for new particles. Such new particles could be Leptoquarks.
Leptoquarks are predicted by several theories, but so far have not been detected in the rec-orded data. Their mass is
unknown. Leptoquark signal events have been simulated, together with other events re-sulting from background reactions.
The task is to recognize these simulated signal events automatically from other (background) events using the techniques
of machine learning and possibly deep learning. Instructions:
1. Get familiar with the data and basic principles of searching for elementary particles in high-energy physics.
2. Get familiar with the existing implementation of classifiers to separate events of interest from the background, using
high-level features and classical machine-learning techniques.
3. Design and implement a classifier based on high-level features using either classical machine learning or deep-learning
or both.
4. Evaluate its performance on simulated data and determine the leptoquark sensitivity over a large mass range.
5. Compare and discuss the obtain sensitivity with previous results.
BONUS:
Study the effect of systematic uncertainties of the feature simulations on the performance of the machine learning results
and the corresponding reduction in sensitivity.

Bibliography / sources:

[1] https://atlas.cern (“learn more”) An introduction to the ATLAS experiment for the public
[2] Dan Guest et al. Deep Learning and its application to LHC Physics. Annu. Rev. Nucl. Part. Sci. 2018, 68:1-22
[3] Pierre Baldil et al: Searching for Exotic Particles in High-Energy Physics. arXiv:1402.4735
[4] ATLAS Collaboration: Search for pair production of third-generation scalar leptoquarks decaying into a top quark and
a tau-lepton in pp collisions at √s = 13 TeV with the ATLAS detector. JHEP 06 (2021) 179
[5] A.Sopczak, Searches for Leptoquarks with the ATLAS Detector, arXiv:2107.10094
[6] R.Duda, P.Hart, D.Stork: Pattern classification. Willey-Interscience, 2000
[7] Goodfellow, Bengio, Courville: Deep learning. MIT Press. 2016

Name and workplace of bachelor’s thesis supervisor:

doc. Dr. André Sopczak Institute of Experimental and Applied Physics CTU Prague

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 28.01.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
doc. Dr. André Sopczak

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgements

Thank you to my supervisor, doc. André
Sopczak, who has given me a lot of his
time and advice and whose patience and
optimism always motivated me to con-
tinue working under any circumstances.
Thank you to my consultant, prof. Jan
Kybic, who has given me valuable advice
and remarks. And thank you to my family,
for never ending support.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

In Prague, May 20, 2022

v

Abstract

In this thesis, we improve the cross-
section limit for pair production of third-
generation scalar leptoquark decaying into
a top quark and a τ -lepton and design a
method to predict its mass. Events are se-
lected if they have two light leptons (elec-
tron or muon) of the same sign and exactly
one hadronically decaying τ -lepton.
Algorithms from two machine learning
categories widely used for tabular data
classification, gradient boosting decision
trees and deep neural networks, are de-
ployed to analyze simulated data for lep-
toquark masses from 300 to 2000 GeV.
The data for all available masses are com-
bined to show that one universal classifier
can be used for all Leptoquark mass cases.
The dependence of the performance on
the number of features and the size of the
simulated data set is demonstrated.
Finally, the TRExFitter program devel-
oped in CERN is used to achieve reliable
results for cross-section limit calculation.
Additionally we study how to recognize
Leptoquark mass using another connected
classifier.

Keywords: CERN, ATLAS,
Leptoquark, Machine learning, Deep
learning, cross section, CatBoost,
TabNet, LightGBM, XGBoost, MLP,
Scikit-learn, Optuna, ROOT

Supervisor: doc. Dr. André Sopczak

Abstrakt

V této práci vylepšíme hodnotu cross-
section limitu pro párovou produkci ska-
lárních Leptokvarků třetí generace při roz-
padu na top quark a τ -lepton. Událost je
vybrána pokud obsahuje dva lehké leptony
(elektron nebo muon) stejného znaménka
nebo jeden hadronicky se rozpadající τ -
lepton. Algoritmy ze dvou široce používa-
ných kategorií strojového učení jsou na-
sazeny k analýze simulovaných dat pro
hmotnosti Leptokvarků od 300 do 2000
GeV. V rámci klasifikace jsou data zkom-
binována za účelem dokázat, že je možné
využít jednoho univerzálního klasifikátoru
pro analýzu libovolné hmotnosti. Pro dva
nejlépe predikující klasifikátory jsou pro-
vedeny experimenty snížení počtu vstup-
ních příznaků a velikosti datasetu pro
trénování. Na závěr je použit program
TRExFitter vyvynutý v CERNu k dosa-
žení věrohodných výsledků při výpočtu
cross-section limitu. Navíc prověříme, jak
odhadnout hmotnost Leptokvarků s pou-
žitím dalšího napojeného klasifikátoru.

Klíčová slova: CERN, ATLAS,
Leptoquark, Machine learning, Deep
learning, cross section, CatBoost,
TabNet, LightGBM, XGBoost, MLP,
Scikit-learn, Optuna, ROOT

Překlad názvu: Hledání leptoquarků
pomocí strojového učení v datech z
CERN ATLAS experiment

vi

Contents

1 Introduction 1

Part I
Theory

2 CERN 5

2.1 LHC . 5

2.2 ATLAS . 6

3 Leptoquark theory 9

3.1 Cross-section 9

3.2 Luminosity 9

3.2.1 Branching ratio 10

3.3 Yukawa coupling 10

3.4 Quarks . 11

3.5 Leptons . 11

3.6 Leptoquarks 12

3.7 Higgs boson decay similarity . . . 13

3.8 State-of-the-art research 14

4 Machine learning algorithms 17

4.1 Boosted decision trees 17

4.1.1 Decision tree 17

4.1.2 Ensemble learning 18

4.1.3 Boosting 18

4.1.4 Gradient boosting 19

4.1.5 XGBoost 21

4.1.6 LightGBM 23

4.1.7 CatBoost 24

4.2 Neural networks 25

4.2.1 Perceptron 25

4.2.2 Multilayer perceptron (MLP) 26

4.2.3 TabNet 27

5 Approach to analysis 31

5.1 Important concepts 31

5.1.1 Confidence level 31

5.1.2 Weights 31

5.1.3 Significance 32

vii

5.1.4 Leptoquark scaling factor . . . 33

5.2 Analysis diagram 33

5.3 The aim of the analysis 35

Part II
Implementation

6 Data and pre-processing 39

6.1 Code . 39

6.2 Introduction 39

6.3 Important Tools 40

6.3.1 ROOT. 40

6.3.2 NumPy 40

6.3.3 Pandas 40

6.4 Data structure 41

6.5 Data conversion 41

6.6 Weights and pre-selection 42

6.7 Data preparation 44

6.7.1 LQ scaling factor 44

6.8 Data split . 45

6.8.1 Splitting challenges 45

6.8.2 Negative weights 45

6.8.3 Cross training-test 45

6.8.4 Mass combined for training . . 46

7 Classification 47

7.1 Introduction 47

7.2 Tools and libraries 47

7.2.1 Scikit-learn 48

7.2.2 Pytorch 48

7.2.3 Optuna 48

7.3 Algorithm hyperparameters 49

7.3.1 XGBoost 49

7.3.2 LightGBM 50

7.3.3 CatBoost 51

7.3.4 TabNet 51

7.3.5 MLP . 52

7.3.6 Validation and test 52

viii

7.3.7 Hyperparameters and
architecture 53

7.4 Classification 54

7.4.1 Accuracy (Acc) 54

7.4.2 F1 . 55

7.4.3 AUC . 55

7.4.4 ROC curve 55

7.5 Finalization 58

7.5.1 Signal versus Background . . . 58

7.5.2 Significance 59

7.5.3 Confusion matrix 59

Part III
Analysis results

8 Analysis results 65

8.1 Comparison of classifiers 66

8.1.1 Description 66

8.1.2 Results 66

8.1.3 Conclusion 68

8.2 All masses combined versus
separate masses 68

8.2.1 Description 68

8.2.2 Results 68

8.2.3 Conclusion 70

8.3 Effect of the dataset size 70

8.3.1 Description 70

8.3.2 Results 70

8.3.3 Conclusion 71

8.4 Feature selection 71

8.4.1 Description 71

8.4.2 Results 72

8.4.3 Conclusion 74

8.5 Cross-section limit 75

8.5.1 Description 75

8.5.2 TRExFitter 75

8.5.3 Results 77

8.5.4 Conclusion 79

ix

8.6 Mass prediction 80

8.6.1 Description 80

8.6.2 Results 81

8.6.3 Conclusion 81

9 Conclusions 83

Bibliography 85

Appendices

A Pre-selection formula 93

x

Figures

2.1 Overall view of the Large Hadron
Collider, including the ATLAS, CMS,
ALICE and LHCb experiments.
Figure taken from [3]. 6

2.2 Computer generated image of the
whole ATLAS detector. Figure taken
from [3]. 7

3.1 The concept of cross-section [5]. 10

3.2 Feynamn diagram showing the
Yukawa coupling λl =

√
βλ between

a Leptoquark, a lepton (l) and a
quark (q). 12

3.3 Feynman diagram of
pair-production of Leptoquarks,
taken from [1]. 13

3.4 Left: Leptoquark decay after pair
production, with final state identical
to Higgs boson and two top quarks.
Right: Production of Higgs boson
and two top quarks. 13

3.5 The 95% confidence level observed
and expected upper limit in
2lSSor3+ ≥ 1τhad channel after
taking all systematics uncertainties
into account [11][12](Figure 75). . . 15

4.1 Green node corresponds to root,
blue outcome of the test and red to
leaves [14]. 18

4.2 The original model is corrected by
newly created successors, then are all
learners combined [15]. 19

4.3 Model of perceptron where blue
circles are inputs, green rectangles
are weights, Σ is sum of weights and
last block is activation function [26]. 26

4.4 Depiction of multilayer perceptron
[28]. 27

4.5 Schematic depiction of TabNet
architecture [30]. 28

4.6 Schematic depiction of feature
transformer [30]. 29

4.7 Schematic depiction of attentive
transformer [30]. 30

5.1 Diagram describing the whole
process of analysis. Blue blocks are
related to pre-processing, green are
related to classification and pink ones
indicate some recalculation. 34

5.2 Substitution by specialized
software. The feed-back loop for
scaling factor ξ is replaced by
TRExFitter program, therefore
manual recalculation is not needed
anymore. 35

7.1 ROC curve with highlighted AUC
region. On the horizontal axis is the
False Positives rate. On the vertical
axis is the True Positive rate. 56

xi

7.2 Top: ROC curve for TabNet
trained on all the masses and tested
on 500 GeV mass. Bottom: ROC
curve for TabNet trained on all the
masses and tested on 1600 GeV
mass. 57

7.3 Green: Curve depicting signal.
Brown: Background curve. 58

7.4 Significance plotted for all
thresholds and chosen significance
definitions. 59

7.5 Simple schematic version of
confusion matrix, taken from [48]. . 60

7.6 Confusion matrix for the best
threshold, mass 800 GeV. 61

8.1 Mean results for all five algorithms
tested in this thesis, XGBoost,
LightGBM, CatBoost, TabNet and
MLP with standard deviation after
ten repetitions. 67

8.2 CatBoost and TabNet trained on
all masses available. 69

8.3 CatBoost and TabNet trained on
Top: 600 GeV, Middle: 1000 GeV,
Bottom: 1500 GeV. 69

8.4 CatBoost and TabNet tested on
600 and 1500 GeV with dataset size
reduction from 100% to 20% with
20% steps. 71

8.5 CatBoost and TabNet trained on
Top: 600 GeV, Middle: 1000 GeV,
Bottom: 1500 GeV. 72

8.6 Histogram for features with the
best score. 74

8.7 Example of Job section code. . . . 76

8.8 Example of Fit section code. . . . 76

8.9 Example of Region section code. 76

8.10 Example of Sample section code. 77

8.11 Top: Limit from original paper
[11] and [12](Figure 75). Bottom:
Result of our analysis. Red line
indicates σt, solid line σo and dashed
line is σe . 78

8.12 Comparison of two σe. Magenta:
new result. Black: previous result
[11] and [12](Figure 75). 79

8.13 Green: Blocks corresponding to
data separation. Blue: Blocks
corresponding to mass prediction.
Yellow: Data that are no longer
used. 80

8.14 On the horizontal line is the mass
that we would expect, on the vertical
line is the predicted mass, then we fit
the results to stress the tendency.
The solid line is the diagonal for
comparison. The error bars indicate
the statistical uncertainty on the
predicted mass, calculated as√

variance. 81

xii

A.1 The full version of the
pre-selection 2lSS + 1τ in Python
code. 93

Tables

3.1 Overview of lepton flavors with
corresponding symbol, anti-particle
and mass. Generations of particles
are separated by lines. 11

3.2 Overview of lepton flavors with
corresponding symbol, charge and
mass. Generations of particles are
separated by line. 12

5.1 Feature names corresponding to
the IDs from the formula 5.1. 32

6.1 First dataset: Number of events
before n-tuple selection, after n-tuple
selection and number of events that
remain after pre-selecting restrictions
are applied. The last column is the
percentage of remaining events after
pre-selection. 42

6.2 Second dataset: Number of events
before n-tuple selection, after n-tuple
selection and number of events that
remains after pre-selecting
restrictions are applied. The last
column is percentage of remaining
events. 43

7.1 Used neural network architecture. 53

8.1 Comparison of training speed for
XGBoost, LightGBM, CatBoost,
TabNet and MLP, Events = 81830,
Features = 89, runs = 40. 68

xiii

8.2 Feature importance results for
twenty the most important features,
based on 20 experiments. 73

8.3 Cross-section chosen for the most
important feature plots. They
correspond to significance of 2σ
expected cross-section calculation. 73

xiv

Chapter 1

Introduction

A new idea is that there could be a possibility to reinterpret results from
Higgs boson searches as limit for Leptoquarks [1]. A difference is that while
the Higgs boson of the Standard Model has a known mass, for Leptoquarks
that are beyond the Standard Model of particle physics which means have
not yet been discovered, the whole range of masses has to be analyzed. For
every mass we have to delimit the cross-section which is proportional to the
number of expected particles in the detector. The cross-section is established
with precision of 2σ significance. In this thesis, we consider only particles
decaying into the channel 2lSS + 1τ . This means two light leptons (electron
and muon) of the same-sign electric charge, and one hadronically decaying
tau lepton. After this pre-selection, we apply a gradient boosted decision
trees and neural networks to separate simulated Leptoquark events from other
events. When the separation is completed, we have studied the Leptoquark
mass determination possibilities.

1

2

Part I

Theory

3

4

Chapter 2

CERN

The European Organization for Nuclear Research, known as CERN is the
largest particle physic laboratory in the world. Its name is derived from
French Conseil Européen pour la Recherche Nucléaire. The main function of
CERN is to provide the particle accelerators and other infrastructure needed
for high-energy physics research [2].
The laboratory is located just outside of Geneva, Switzerland, it was estab-
lished in 1954 as one of the first European joint projects that today has 23
member states.

Major successes were the discovery of particles called the W and Z boson
in 1983, the invention of the World Wide Web in 1989 by development of
the HTTP protocol. In 1995, atoms of hydrogen antimatter counterpart
were created. In 2000, a new state of matter called quark-gloun plasma was
discovered. The last major event was the observation of the Higgs boson in
2012, at that time the Large Hadron Collider was already deployed [3].

2.1 LHC

The Large Hadron Collider (LHC) is the main accelerator at CERN, located
in France and Switzerland as shown in Figure 2.1. It was built between 1998
and 2008 as the world’s largest and most powerful particle collider. The
27-kilometer LHC ring, located 100 m underground, is the last element on
a succession of accelerators. The particle beams are accelerated just below

5

2. CERN..
the speed of light before they are forced to collide with counter-circulating
beams, reaching a total collision energy of 14 TeV [3].

Figure 2.1: Overall view of the Large Hadron Collider, including the ATLAS,
CMS, ALICE and LHCb experiments. Figure taken from [3].

2.2 ATLAS

ATLAS is the largest volume detector ever constructed for a particle collider.
It has dimensions of a cylinder, is 46 m long and has 25 m in diameter. It is
placed 100 meters underground and its weight is 7000 tonnes.
It consists of an inner tracking detector, which is surrounded by a supercon-
ducting solenoid providing an axial 2 T magnetic field, an electromagnetic
and hadronic calorimeter, and a muon spectrometer. The detector model
is shown in Figure 2.2. When proton-proton collisions occur, the produced
particles are detected in sub-detectors according to their type. A trigger
system selects 100 collisions per second out of 109 and sends them to the
storage. Data are later analyzed with Offline computing methods [4].

6

....................................... 2.2. ATLAS

Figure 2.2: Computer generated image of the whole ATLAS detector. Figure
taken from [3].

7

8

Chapter 3

Leptoquark theory

3.1 Cross-section

Given the particle approaching another particle, the cross-section for this
process is the probability that the particles interact which each other.
Let us denote cross-section with a letter σ. The used units are barns, denoted
b. For our use, fb or pb are the most suitable units. For better intuition, we
can write

1 barn = 10−24cm2. (3.1)

Figure 3.1 shows the graphical interpretation of cross-section. The figure was
taken from [5]. More information can also be found there.

3.2 Luminosity

The quantity that measures the ability of a particle accelerator to produce
the required number of interactions is called the luminosity and is the pro-
portionality factor between the number of events per second dR/dt and the
cross-section σ. The equation

dR

dt
= L(t) · σ (3.2)

9

3. Leptoquark theory

Figure 3.1: The concept of cross-section [5].

relates the number of events per second, luminosity and cross-section as
mentioned. Therefore, the unit is cm−2s−1 [6]. In this thesis, integrated
luminosity (L) is used, which we can express as

L =
∫ t2

t1
L(t) dt, (3.3)

where we integrate over operational time. The final formula is

R = L · σ. (3.4)

The unit is cm−2 or b−1.

3.2.1 Branching ratio

The branching ratio, BR or β, is the fraction of particles decaying to a
particular final state [7].

3.3 Yukawa coupling

Yukawa coupling is an interaction between particles according to Yukawa
potential [8]. This potential can be written as

VY ukawa(r) = −g2 e−αmr

r
, (3.5)

10

....................................... 3.4. Quarks

where g is a magnitude scaling constant, m is the mass of the particle, r is
radial distance and α is scaling constant, so that r ≈ 1

αm . If m = 0 Yukawa
potential is reduced to Coulomb potential, and we can write,

VCoulomb(r) = −g2 1
r

, (3.6)

where g2 = q1q2
4πϵ0

, (3.7)

which is well known equation for Coulomb potential.

3.4 Quarks

Quarks are elementary particles of the Standard Model [9]. There are six
flavors of quarks with spin 1/2 specified and separated by generations in
Table 3.1. Each of the six flavors of quarks can have three different colors [9].
Quarks form so-called color triplets with charge quantized into multiples of
1/3e. They are invariant under rotations in color space, which implies SU(3)
color symmetry. Quarks can therefore form color singlets according to rules
of SU(3). It is believed that all observed particles are colorless. Therefore,
quarks can not exist in a free state [10].

Quark Symbol Charge Mass [MeV]

Up u +2/3 1.7-3.3
Down d -1/3 4.1-5.8
Charm c +2/3 1270
Strange s -1/3 101

Top t +2/3 172000
Bottom b -1/3 4190, or 4670

Table 3.1: Overview of lepton flavors with corresponding symbol, anti-particle
and mass. Generations of particles are separated by lines.

3.5 Leptons

Leptons are particles of the Standard Model which do not undergo strong
interaction. There are two classes of leptons, charged and neutral. For
every lepton exists its antiparticle. Details are described in Table 3.2, where
generations correspond to quark generations.

11

3. Leptoquark theory
Lepton Symbol Anti-particle Mass [MeV/c2]

Electron e− e+ 0.511
Neutrino νe ν̄e 7 · 10−6

Muon µ− µ+ 105.7
Neutrino (Muon) νmu ¯νmu 0.27

Tau τ− τ+ 1777
Neutrino (Tau) νtau ¯νtau 0.31

Table 3.2: Overview of lepton flavors with corresponding symbol, charge and
mass. Generations of particles are separated by line.

3.6 Leptoquarks

Leptoquarks are hypothetical particles placed beyond the Standard Model
which combine properties of both leptons and quarks, particles of the Standard
Model. They are supposed to be color triplet bosons with fractional charge
that interact with quarks and leptons. Figure 3.2 shows the Leptoquark
decay into a lepton and a quark. The Yukawa coupling is determined by two
parameters: the branching ratio β, and a coupling parameter λ. For lepton,
we have λl =

√
βλ and for neutrino and quark λν =

√
1 − βλ.

Figure 3.2: Feynamn diagram showing the Yukawa coupling λl =
√

βλ between
a Leptoquark, a lepton (l) and a quark (q).

There are three main production modes, pair-production, single-production
and off-shell production. For our purpose, the first mentioned mode is relevant.
It has the Yukawa coupling described with λ and has large cross-section.
Figure 3.3 shows a Feynman diagram for Leptoquark production. We can
see that two Leptoquarks are produced, and each decays into a quark and a
lepton.

12

.............................. 3.7. Higgs boson decay similarity

Figure 3.3: Feynman diagram of pair-production of Leptoquarks, taken from [1].

3.7 Higgs boson decay similarity

Recently, the possibility of reinterpretation of Higgs boson searches was
noticed [1]. Figure 3.4 compares final states of Leptoquark pair and tt̄H
production. We note that the final states are identical. The mentioned
phenomenon is crucial for this work. The same methods as for the Higgs
boson search can be used because of this remarkable identity.

Figure 3.4: Left: Leptoquark decay after pair production, with final state
identical to Higgs boson and two top quarks. Right: Production of Higgs boson
and two top quarks.

13

3. Leptoquark theory
3.8 State-of-the-art research

A search for pair production of third-generation scalar Leptoquark decaying
into a top quark and τ − lepton was performed before [11]. The search is
based on a dataset of pp collisions at

√
s = 13 TeV recorded with the ATLAS

detector during Run 2 of the Large Hadron Collider, corresponding to an
integrated luminosity of 139 fb−1. Events are selected if they have one light
lepton (electron or muon) and at least one hadronically decaying τ − lepton,
or at least two light leptons. In addition, two or more jets, at least one
of which must be identified as containing b − hadrons, are required. Six
final states, defined by the multiplicity and flavor of lepton candidates, are
considered in the analysis [11] and [12].
Six final states, termed channels were analyzed, defined by multiplicity and
flavor of the lepton candidates:

. 1l+ ≥ 1τ : one light lepton and at least one τ -had candidate.

. 2lOS+ ≥ 1τ : two opposite-charge (denoted by OS, standing for opposite-
sign) light leptons and at least one τ -had candidate.

. 2lSS/3l+ ≥ 1τ two same-charge (denoted by SS, standing for same-sign)
light leptons or three light leptons, and at least one τ -had candidate.

. 2lOS/ + 0τ : two OS light leptons and no τ -had candidates.

. 2lSS + 0τ : two SS light leptons and no τ -had candidates.

. 3l + 0τ : three light leptons and no τ -had candidates.

In this thesis 2lSS + 1τ is analyzed. The 2lSS/3l+ ≥ 1τ is the most similar
channel, therefore we compare this channel result with our result.
For comparison, we need to determine the so-called expected cross-section
(σe) and compare in with the cross-section given to us by theory, the co-called
theoretical cross-section (σt). Figure 3.5 shows the expected cross-section
(dashed line) and the observed cross-section (solid line) limit at 95% confidence
level for 2lSSor3l+ ≥ 1τhad. A comprehensive description of how cross-section
is computed will be given in the following text. Symbols for cross-section will
be used only for equation purposes to avoid confusion with significance units.

14

................................3.8. State-of-the-art research

Figure 3.5: The 95% confidence level observed and expected upper limit in
2lSSor3+ ≥ 1τhad channel after taking all systematics uncertainties into account
[11][12](Figure 75).

15

16

Chapter 4

Machine learning algorithms

For this analysis, we decided to use algorithms from two families that are used
the most for tabular data classification nowadays, gradient boosted decision
trees (GBDT) and neural networks. Neural networks are a very frequently
used algorithm to solve problems related to machine learning, but when we
look at results of many kaggle competitions, GBDTs have the upper hand
[13]. Therefore, we would like to verify this fact.

4.1 Boosted decision trees

As mentioned in the introduction part of this chapter, gradient boosted deci-
sion trees and neural networks are used for the analysis. At first, we focus on
decision trees. Three most frequently used algorithms nowadays are XGBoost,
CatBoost and LightGBM. We will start our explanation with XGBoost as
basic model. Then we introduce improvements that are incorporated in
CatBoost and LightGBM that have origins in XGboost.

4.1.1 Decision tree

A decision tree is a structure in which each internal node represents a test
on an attribute, each branch represents the outcome of the test, and each

17

4. Machine learning algorithms
leaf node represents a class label. The paths from root to leaf represent
classification rules. Figure 4.1 demonstrates the structure.

Figure 4.1: Green node corresponds to root, blue outcome of the test and red
to leaves [14].

4.1.2 Ensemble learning

Ensemble learning is a machine learning paradigm where multiple models
are trained to solve the same problem and combined to get better results.
The main hypothesis is that when weak models are correctly combined, we
can obtain more accurate models. The tree main classes of ensemble learning
machines are bagging, stacking and boosting [15]. In our case, we will focus
on boosting method.

4.1.3 Boosting

Boosting is an ensemble learning method where we sequentially fit multiple
weak learners. Each model in the sequence is fitted, giving more importance to
observations in the dataset that were badly handled by the previous models in
the sequence. Each new model therefore focus its efforts on the most difficult
observations to fit up to now, so that we obtain a better learner with lower
bias.
The models are fit and added to the ensemble sequentially such that the

18

................................ 4.1. Boosted decision trees

second model attempts to correct the predictions of the first model, the third
corrects the second model, and so on 4.2.

Figure 4.2: The original model is corrected by newly created successors, then
are all learners combined [15].

4.1.4 Gradient boosting

Models are fit using any arbitrary differentiable loss function and gradient
descent optimization algorithm. This gives the technique its name, as the
loss gradient is minimized as the model is fit, much like a neural network.
Let’s take a look at how gradient boosting works in a more detail.

19

4. Machine learning algorithms

We are given some data (xi, yi)n
i=1 where x is vector of input variables and y

is output variable. Then we need some differentiable loss function. Types of
loss functions differ according to task we want to perform. For explanatory
purpose, let us use the general term

L(y, F (x)), (4.1)

where y is observed and F (x) is a function equivalent to predicted value.
Then we want to minimize it as

F0(x) = arg min
p

n∑
i=1

L(y, p), (4.2)

where F0(x) is initial model value and p corresponds to predicted value. To
minimize the loos function, we compute

rim = −
[

∂L(yi, F (xi))
∂F (xi)

]
F (x)=Fm−1(x)

for i = 1, ..., n, (4.3)

where rim is the pseudo-residual after derivative for sample i and tree m
that we are building. This step corresponds approximately to subtracting of
predicted value from observed value. We can also point out that this step is
the gradient that Gradient Boost is named after.
Now we have to fit CART (Classification and Regression Trees) to pseudo-
residuals and label terminal regions, Rjm where j is a number of regions that
are leaves of the tree. To determine the output values, we compute,

pjm = arg min
p

∑
xi∈Rij

L(yi, Fm−1(xi) + p), (4.4)

which is a similar equation to 4.2. The difference is that previous prediction
is now considered. To compute the output value for each leaf, we pick only
y values that correspond to this region. Then we are looking for p that
minimizes the equation.
The final step is to make a new prediction, as

Fm(x) = Fm−1(x) + ν
Jm∑
j=1

pjmI(x ∈ Rjm), (4.5)

where ν is a learning rate. This equation means that we take the original
prediction and add values of corresponding leaves from our newly build tree
multiplied by learning rate. Then, we continue with the next iteration. It is
desirable to mention that this step represents boosting method described in
4.1.3. More information can be found in [16].

20

................................ 4.1. Boosted decision trees

4.1.5 XGBoost

XGboost is a scalable end-to-end tree boosting system which allows to achieve
state-of-the-art results on many machine learning task. Novel technics used
are sparse-aware algorithm for sparse data and weighted quantile sketch for
approximate tree learning. More insight on cache access patterns is achieved
to build a scalable tree boosting system[17].

Let us briefly explain how XGBoost builds its trees and what are new ides in
comparison to gradient boosting algorithm. We start with objective function

L(ϕ) =
∑

i

l(yi, pi) +
∑

k

Ω(ft),

where Ω(f) = γT + 1
2λ||w||2.

(4.6)

Here l is differentiable loss function, T is a number of leaves and Ω is
regularization term that helps to prevent overfitting. The formula 4.6 can
not be optimized by standard optimization methods, therefore we have to
calculate its second-order Taylor approximation. When we remove constant
values, we obtain

L(t) ≈
n∑
1

[gift(xi) + 1
2hif

2
t (xi)] + Ω(ft), (4.7)

where g is gradient ant h corresponds to hessian.
Define Ij = {i|q(xi) = j}, then we can write

L̃ =
T∑

j=1
[(
∑
i∈Ij

gi)wj + 1
2(
∑
i∈Ij

hi + λ)w2
j] + γT. (4.8)

Here outer sum just iterates over all leaves. The first inner sum is an expansion
of sum from 4.7, where we sum all the gradients belonging to one leaf and
multiply them by the corresponding leaf output value w. The second sum is
the same, except for λ the term that came from the expansion of Ω. When
we minimize

(
∑
i∈Ij

gi)wj + 1
2(
∑
i∈Ij

hi + λ)w2
j (4.9)

by standard method, we obtain

w∗
j = −

∑
i∈Ij

gi∑
i∈Ij

hi + λ
. (4.10)

Now we just plug w∗
j in equation 4.8 and obtain

L̃(q) = −1
2

T∑
j=1

∑
i∈Ij

gi∑
i∈Ij

hi + λ
+ γT. (4.11)

21

4. Machine learning algorithms
Let us just remind that gi and hi are gradients and hessians corresponding to
chosen loss function l that we could substitute for some particular example
as negative log-likelihood. Equation 4.11 is used to measure quality of a
tree structure q. The greedy algorithm is then used to iteratively add nodes,
aiming to reduce the loss. The algorithm is called greedy because when it
is building trees, it does not take overall structure into consideration. The
tree is therefore built in such a way that the condition is chosen according to
the division that is made just by this condition, even though there could be
better one if combined with another consequential condition.

In fact, XGBoost introduces an improved version of this paradigm. Even
though the greedy approach increases speed, it is still slow if we had to choose
a new threshold for every observation. Because of this difficulty, an improved
version called Approximate Greedy Algorithm is used. It samples data into
quantiles and then instead of trying to separate every observation, it builds
conditions according to quantiles. The more quantiles the algorithm has, the
more accurate it is.
To reach even better performance, XGBoost uses parallel learning which
means that dataset is split into smaller ones, that can be processed by more
computers at the same time. After that, the Weighted Quantile Sketch
algorithm is used to merge data into an approximate histogram. Histogram
is then divided into weighted quantiles, which means that confidence of
predictions is combined to be more-less the same.

Another important improvement is used when some values in the dataset
are missing. The algorithm is called Sparsity-Aware Split Finding. At the
beginning, it creates a separate table for observations that contain missing
values. When it is building a tree, it tries to add pseudo-residuals of these
separated observations to both sides. A case with the better result is chosen.
When we later on encounter another observation with more values missing
but already processed is among them, it’s pseudo-residual is placed to the
same side.

XGBoost is also aware of hardware. Derivatives are very computationally
demanding, therefore it is using a technique called Cache-Aware Access to
store all gradients g and hessians h in the cache memory of the CPU, so
they are computed quickly. Blocks for Out-of-Core Computation is used to
compress in such a way that it is trying to minimize amount of data store on
Hard Drive. Decompressing the data with CPU is still faster than reading
them from Hard Drive. Sharding is used to read separate subsets of data at
the same time from separate Hard Drives.

XGBoost is an optimized distributed gradient boosting library designed to
be highly efficient, flexible and portable. It implements Machine Learning

22

................................ 4.1. Boosted decision trees

algorithms under the Gradient Boosting framework. It provides a parallel
tree boosting to solve many data science problems in a fast and accurate way.

More information about XGBoost features is given in [16].

4.1.6 LightGBM

Similar to XGBoost, LightGBM is a distributed high-performance framework
that uses decision trees for classification [18].
Now we take a look at some fundamental difference related to leaf growth,
categorical feature handling, missing values handling and missing values
handling.

Gradient-Based One-Side Sampling (GOSS) GOSS is a novel approach which
down samples instances on base of training error. It means that gradient of
every instance is observed. If the gradient is low, the instance is well-trained,
if it is high, it is not trained well. LightGBM does not discard instances with
small gradient to focus on instances with large gradient, it uses following
steps:

. Sorts the instances according to absolute gradients in descending order.. Selects some fraction a/100 of instances, where a < 100. These instances
correspond to untrained data.. Randomly samples b/100 instances from the rest of the data to reduce
the contribution of well-trained instances.. To maintain the original distribution, the algorithm increases the con-
tribution of samples with small gradients by (1 − a)/b to focus more on
under trained instances. It puts more focus on under trained instances,
but maintains distribution similar.

Exclusive Feature Bundling (EFB) Highly dimensional data very often contain
features which are mutually exclusive, which means they never take zero
values at the same time. Such features are identified and bundled into a
single feature to reduce the complexity, it uses following steps.

. Constructs a graph with weighted edges which measures an overlapping
between features.

23

4. Machine learning algorithms
. Sort the features in descending order by number of conflicts.. Loop over the feature list and if a feature has threshold > conflict, add

it to the bundle. Otherwise, create a new bundle.

To merge features, algorithm proceeds in the following way,

. Calculate the offset to be added to every feature in feature bundle.. Iterate over every feature in every instance.. Initialize the new bucket as zero for instances where all features are zero.. Calculate the new bucket for every non-zero instance of a feature by
adding the respective offset to the original bucket of that feature.

These are the most important improvements proposed by LightGBM, more
details are given in [19] and [20].

4.1.7 CatBoost

CatBoost is the last GBDT algorithm that we mention in this thesis. Ac-
cording to [21] every implementation of gradient boosting face shift of the
distribution which leads to prediction shift of the learned model because of
boosting dependency on targets of all training examples. The same problem
affect standard algorithms of preprocessing of categorical features. Mentioned
issues are related to target leakage, which is the problem that should be dimin-
ished by usage of novel principles called Ordered boosting and Target-Based
with prior.

Target-Based with prior (TBS) is a method inspired by online learning
algorithms which get training examples sequentially in time. There is no time
in processing tabular data, therefore "artifical time" has to be introduced,
which is some permutation σ of the training examples. New feature values
are computed in the following way

x̂i
k =

∑
xj∈D ⊮{xi

j=xi
j} · yj + ap∑

xj∈D ⊮{xi
j=xi

j} · yj + a
, (4.12)

where Dk = {xj : σ(j) < σ(k)} is all the available history, x̂i
k is a new feature

coding, y is target, p is prior and a > 0 is constant.

24

................................... 4.2. Neural networks

Ordered boosting Classic boosting algorithms are prone to overfitting on
small or noisy datasets due to a problem known as prediction shift. In
ordered boosting, random permutation of training examples is performed and
n different supporting models is maintained. The model Mi is then trained
using only the first i samples in the permutation. At each step, in order to
obtain the residual for the step j, the model Mj−1 is used. Model training
and residual computation are therefore performed on different subsets, which
prevents target leakage. More information is given in [22] and [23].

4.2 Neural networks

Neural networks are deep learning algorithms inspired by functionality of
Biological neurons. Building blocks of network are node layers, where the
first one is called input layer, then there is an arbitrary number of hidden
layers and at the end there is output layer. Every neuron of a layer has its
weight and threshold [24].

For purposes of our analysis, we will introduce and describe two neural
networks algorithms. The first one is a multilayer perceptron, that was
designed in PyTorch. The second one is a state-of-the-art deep learning
model based on transformers called TabNet. We will follow the same path as
in the description of gradient boosted decision trees, at first we explain the
theory and then the implementation. In the following, a few basic terms are
defined.

4.2.1 Perceptron

A perceptron is an algorithm for supervised learning of binary classifiers. This
algorithm enables neurons to learn and processes elements in the training set
one at a time.

Multiple input signals are weighted and summed. If the input signal exceeds
a certain threshold, it outputs a signal, otherwise output is suppressed. This
corresponds to a class prediction.

25

4. Machine learning algorithms
We can express perceptron as a function

f(x) =
{

1 if w · x + b > 0
0 otherwise (4.13)

where w ∈ Rn are weights b is bias and x is input vector. Figure 4.3 shows
the structure of a perceptron. More information can be found in reference
[25].

Figure 4.3: Model of perceptron where blue circles are inputs, green rectangles
are weights, Σ is sum of weights and last block is activation function [26].

Perceptron uses gradient descent for learning of its weights,

w∗ = w − α
∂L(x, w)

∂w
, (4.14)

where x is input vector, w are weights and w∗ are updated weights. Details
are given in [27].

4.2.2 Multilayer perceptron (MLP)

A multilayer perceptron has input layer, output layer and arbitrary number
of hidden layers in between. If a network contains more than one hidden
layer, it is called a deep neural network. It differs from perceptron in a
way that a linear combination of weights is propagated to the next layer.
Algorithm of propagation of weights is called feed forward. When propagation

26

................................... 4.2. Neural networks

reaches the output layer, it has to propagate acquired information back to
original weights. To achieve this, back propagation is used in such a way
that backward gradients are computed through the network using chain rule.
This calculation corresponds to 4.14. We also have to make sure that the
activation function is differentiable. More information is given in [28]. A
diagram of multilayer perceptron is shown in Figure 4.4.

Figure 4.4: Depiction of multilayer perceptron [28].

4.2.3 TabNet

For the majority of data analysis task where tabular data are used, Gradient
boosted decision trees algorithms are the best option, especially solution
that is explained in the previous sections. On the other hand, deep neural
networks are considered to be the best solution for variety of recognition
tasks. TabNet neural network architecture stands somewhere in between and
even though being a neural network it mimics certain aspects of GBDT [29].

27

4. Machine learning algorithms
Architecture

TabNet works with sequence of estimators similarly as boosting ensemble
learning method uses a method called sequential attention. For single step,
the following processes are present:

. Feature transformer: Four consecutive GLU decision blocks.. Attentive transformer: uses sparse-matrix to give Sparse feature selection
which enables interpretability and better learning as the capacity is used
for the most important features..Mask: Used with the transformer to give out the decision parameters
n(d) and n(a).

At the beginning before any feature transformation Batch normalization is
performed. Then data goes to feature transformer, it passes through four
activation functions called GLU and n(d) and n(a) are obtained. The n(d)
outputs a decision from a particular step giving its prediction of continuous
classes. The n(a) goes is an input for next attentive transformer.
After the attentive transformer, importance for every feature is acquired.
Individual importances are then multiplied by the importance of the overall
step and added with other steps to give feature importance for the overall
model. A depiction of architecture is shown in figure 4.5

Figure 4.5: Schematic depiction of TabNet architecture [30].

28

................................... 4.2. Neural networks

Feature transformer

The feature transformer consists of four blocks. Fully connected layer, Batch
Normalization and GLU, where GLU stands for Gated linear unit and is
computed as sigmoid multiplied by x can be written as

GLU = S(x) · x. (4.15)

For robust learning, the layers are shared across two steps. Normalization√
0.5 is present to stabilize learning. Outputs are n(d) and n(a). The scheme

is visible in Figure 4.6.

Figure 4.6: Schematic depiction of feature transformer [30].

Attentive transformer

Attentive transformer consists of FC layer, BN layer, Prior scales layer, and
Sparsemax layer. At the beginning, n(a) goes through fully connected layer
and Batch normalization [31]. Then it is multiplied by a Prior scale, which
tells us how much we already know about the feature. The Sparse matrix is
used which is like softmax function but instead of all features adding to 1,
we have some features equal to 0 but the rest adds up to 1. This helps to
make instance-wise feature selection when we can choose different features
for every step, then output is fed into a mask layer. A depiction of attentive
transformer can be seen in figure 4.7.

29

4. Machine learning algorithms

Figure 4.7: Schematic depiction of attentive transformer [30].

More comprehensive explanation and corresponding formulas are given in
[29] and [30].

30

Chapter 5

Approach to analysis

5.1 Important concepts

In order to better outline how we will approach the problem, it is necessary
to state the relevant tools and concepts. At first, we will describe in detail
what will be needed for the analysis explanation and at the end of the chapter
we will reveal the whole picture.

5.1.1 Confidence level

Confidence Level is a statistical measure of the percentage of test results that
can be expected within a specific range. Confidence level 95% means that
the result of the action will probably meet expectations 95% of the time [32].

5.1.2 Weights

For every single event, we can calculate its weight. It tells us the relative
frequency of events, therefore we can make an appropriate prediction how
many events of certain class to expect actually appear in the ATLAS detector.

31

5. Approach to analysis
For the weight calculation, we use the following formula.

w = Y (ef0) · ef1 · ef2 · ef3 · ef4 · ef5 · ef6 · ef7 · ef8 · ef9

ef7

, (5.1)

where w are computed weights and Y is luminosity corresponding to the year
of production defined as

Y (ef0) =

36205.66, if ef0 = 2015 ∨ ef0 = 2016
44307, if ef0 = 2017
58450, if ef0 = 2018.

(5.2)

Particular factors efi
from equation 5.1 are described in Table 5.1. The

purpose of mentioning this equation should be understood in such a way that
certain properties from root n-tuples are used to calculate weights. These
weights improve the agreement between simulated and recorded data.

Index Feature name

f0 RunYear
f1 custTrigSF_LooseID_FCLooseIso_DLT
f2 weight_pileup
f3 jvtSF_customOR
f4 bTagSF_weight_DL1r_70
f5 weight_mc
f6 xs
f7 totalEventsWeighted
f8 lep_SF_CombinedTight_0
f9 lep_SF_CombinedTight_1

Table 5.1: Feature names corresponding to the IDs from the formula 5.1.

5.1.3 Significance

Especially in particle physics, a specific metric called significance is used to
measure the outcome. For the approach called general approximation formula
we have

η = S√
S + B

(5.3)

and for simplified version

η = S√
B

, (5.4)

32

................................... 5.2. Analysis diagram

where η is the symbol for significance. S is the number of signal events which
means all the true positives and B is the number of background which means
all the false positives [33]. True positive means predicted as signal and being
signal, and true negative means predicted as signal but being background.
Let us assume that we split data into two parts, expressible as x for testing
and 1 − x for training. At this point we work with only x for significance
calculation, therefore we have to multiply S and B by a factor 1/(1 − x) to
obtain a result for total data, thus the

η = 1
1 − x

· S√
1

1−x · B
. (5.5)

5.1.4 Leptoquark scaling factor

Let us assume that data related to Leptoquarks have calculated weights.
After classification, we obtain the significance as a result, but we would like to
adjust it to a certain value to set upper limit for cross-section with required
confidence level. To fulfil such goal, we need to multiply data weights by a
factor. Let us denote this factor as ξ. We can rewrite equation 3.4 to

R = w · ξ, (5.6)

where w is given in 5.1 and ξ is the Leptoquark scaling factor. This scaling
factor is important if we want to calculate a limit for expected cross-section.
In the last chapter, we will introduce software called TRExFitter that calcu-
lates the expected cross-section without explicit scaling factor tuning. It is
important to state that the scaling factor is applied before training of the
classifier to have possibility to observe the effect of changing weights on the
loss function of the classifier, otherwise it would not be required to retrain
the classifier using a feedback loop.

5.2 Analysis diagram

To better understand the overall process, let us introduce the diagram show
in Figure 5.1 that encapsulates the major logically distinctive parts of code
to separate blocks. At this point, our ambition is not to comprehensively
describe every block, just to gently indicate the meaning of regions with the
same color, which indicates similar functionality:

33

5. Approach to analysis
. Blocks painted blue correspond to code that is responsible for data

pre-processing..Green blocks are related to data classification.. Pink blocks indicate some kind of decision-making or recalculation.. For the end and beginning cyan color was chosen.

data
conversion

channel
application

?
recalculation

data
preparation

and
scaling

data
splitting

data
classification

hyperparameter
optimization

? > 1.95
& ? <
2.05

no yes

k = k + 1

data
finalization

Input

output

Already
prepaired

data

Figure 5.1: Diagram describing the whole process of analysis. Blue blocks
are related to pre-processing, green are related to classification and pink ones
indicate some recalculation.

All the blocks and especially blue and green ones will be described in detail
in the following chapters, for now let us just introduce the meaning of pink
blocks and feedback loops
When the finalization block is complete, we obtain the results. One of the
results is significance, denoted as η. At this point, its value is completely
arbitrary, but would like to set its value as close as possible to 2, which is
our required significance level of 95%. Therefore, we propagate the value
of significance back to the pre-processing section, where the value is used
to recalculate the Leptoquark scaling factor ξ to find optimal weights. This
process is repeated until the correct ξ is found. This calculation can be
avoided by use of TRExFitter program, related results will be shown in the
last chapter. Diagram 5.2 illustrates how we can substitute the mentioned
process by specialized software.

34

................................ 5.3. The aim of the analysis

data
conversion

channel
application

data
preparation

and
scaling

data
splitting

data
classification

hyperparameter
optimization

k = k + 1

data
finalization

Input

output

Already
prepaired

data
TRExFitter

Figure 5.2: Substitution by specialized software. The feed-back loop for scaling
factor ξ is replaced by TRExFitter program, therefore manual recalculation is
not needed anymore.

5.3 The aim of the analysis

Leptoquarks are particles not belonging to the Standard Model, therefore
we do not know their mass. Thus, multiple distinguished masses are used to
analyze the entire mass region. For these masses, we are given a theoretical
cross-section and want to calculate the expected one as given in 3.5. We
aim to move the expected cross-section as low as possible. It means that
when we look at the intersection of the mentioned cross-sections, we would
observe larger segment of expected cross-section curve being under the curve
of the theoretical one. This intersection is called the exclusion limit, and the
mentioned interval is marked as excluded. It means that Leptoquarks within
this mass region would be detected with 95% CL or excluded with 95% CL.

35

36

Part II

Implementation

37

38

Chapter 6

Data and pre-processing

6.1 Code

Scripts written for the overall analysis can be found on the web address
https://gitlab.fel.cvut.cz/vicenluk/leptoquark.

6.2 Introduction

In an early stages of the analysis, real data is not used. To acquire data for
training, it is needed to run Monte-Carlo simulations that generates data
according to the known theory. Data that are produced in Monte Carlo
simulation are latter stored in specialized files serving exactly for this purpose.
Files are then converted by us to csv file format for better access to particular
events. After conversion, data are separated to folders according to their class
(LQ, ttH, ttW, ttZ, tt, V V, Other). In this stage, we pre-process the data and
prepare them for classification. This part of the work was inspired by the
master’s thesis of Jakub Malý [34].

39

6. Data and pre-processing
6.3 Important Tools

This chapter describes how data are pre-processed before they are used as
input of a classifier. Let us at first introduce crucial tools that we will reference
in further explanations.

6.3.1 ROOT

ROOT is an open-source framework built for analyzing high energy physics
data in CERN [35]. Data from Monte-Carlo simulations are stored in files
constructed by this framework. Thanks to ROOT, it is very straightforward
to access particular features and plot corresponding histograms. For faster
data manipulation and analysis, a python interface called PyROOT was
introduced [36]. In this work, described tool is mainly used for manipulation
with root files. Our data are stored in root n-tuples. N-tuples are root files
structured similarly to algorithmic structures called trees.

6.3.2 NumPy

NumPy is the fundamental package for scientific computing in Python. It
is a Python library that provides a multidimensional array object, various
derived objects (such as masked arrays and matrices), and an assortment of
routines for fast operations on arrays, including mathematical, logical, shape
manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear
algebra, basic statistical operations, random simulation and much more [37].

6.3.3 Pandas

Pandas is a Python open sources library mediating flexible and easy data
manipulation and analysis. Pandas is built on top of NumPy, which provides
support for multidimensional arrays. The most used data structure used in
this thesis is Pandas DataFrame, which suits as very convenient representation
for tabular data [38].

40

.................................... 6.4. Data structure

6.4 Data structure

Data from Monte-Carlo simulation are stored in specific files with tree-like
structure called ROOT n-tuples. N-tuples are created with the help of ROOT
framework that extends classical C++ programming language.
If we extend our idea about tree-like structure of an n-tuple, branches cor-
respond to properties called variable or features for classification purposes.
Every feature is represented by a histogram that contains values for every
event with respect to the feature we are about to examine.

Every file carries its ID, which is a five-digit number identifying the particular
file. Every single file includes only events corresponding to one class. Classes
are the following

. LQ: Leptoquark events.. ttH: top quark, anti-top quark, Higgs boson.. ttZ: top quark, anti-top quark, Z boson.. ttW : top quark, anti-top quark, W boson.. tt: top quark, anti-top quark.. V V : W or Z boson, W or Z boson.. Other: Aditional reactions that could occur.

For our purposes we will use LQ as the signal and the rest as the background.
This means that the events belonging to LQ are the ones we are looking for.
In this work, we will use two LQ datasets, which differ by LQ model factor
β corresponding to branching ratio. Table 6.1 and 6.2 show the number
of events passing several selections. If we focus our attention on the Table
6.2, we realize that the number of events that remain is too small for the
classification process, and therefore we will use only the first dataset for this
analysis.

6.5 Data conversion

Now that we know how the data is distributed among the files, we can
proceed to its conversion to more suitable format. For this purpose, a

41

6. Data and pre-processing
LQ mass Σ bef. select. Σ aft. select. Σ aft. pre-select. %

500 206504 78806 2889 3.666
600 279192 64795 2562 3.954
700 176098 30914 1236 3.998
800 212365 83293 3376 4.053
900 213017 83232 3304 3.970
1000 160280 27301 1074 3.934
1100 213738 80948 3071 3.794
1200 214342 47055 1742 3.702
1300 107047 39532 1423 3.600
1400 106954 39134 1400 3.577
1500 106732 38210 1296 3.392
1600 115607 31073 1076 3.463
sum 2111876 644293 24449 3.795

Table 6.1: First dataset: Number of events before n-tuple selection, after n-
tuple selection and number of events that remain after pre-selecting restrictions
are applied. The last column is the percentage of remaining events after pre-
selection.

script data_convert_new.py was written. It is necessary, at first, to place
ROOT files in folders with appropriate names so that the name contains the
corresponding class, then the content of the folder is loaded, and every file
included is converted into the array. At this point, data are transformed into
a table where columns correspond to features and rows correspond to events.
For this purpose, Pandas DataFrame structure is used [39]. The final step
of the conversion is to save the DataFrame as a csv file with an appropriate
name containing the currently processed class.

6.6 Weights and pre-selection

For the purpose of the weights calculation and the pre-selection application
script data_weights_new.py is used. The following description outlines its
functionality.
At this point, we can easily manipulate created csv files. For the purpose
of classification, it is needed to calculate the so-called weights. Weights are
obtained for every single event in such a way that we calculate a specific
linear combination of the features and additional temporary variables as year
of detector run.
They are then used in the loss function of the classifier. For this purpose,
significance on the output is always propagated back to have updated scaling
at our disposal. We also use them to scale a number of simulated events to

42

............................... 6.6. Weights and pre-selection

LQ mass Σ bef. select. Σ aft. select. Σ aft. pre-select. %

300 92422 8143 122 1.498
500 341131 45238 1229 2.717
600 121854 16810 493 2.933
700 126643 17995 501 2.784
800 131077 18531 495 2.671
850 92953 13531 354 2.702
900 320584 45113 1260 2.793
950 94833 13241 339 2.560
1000 94930 13295 356 2.678
1050 95434 13474 359 2.664
1100 96291 13383 344 2.570
1150 96577 13335 365 2.737
1250 46595 6269 171 2.728
1300 260247 34897 904 2.590
1350 23463 3196 84 2.628
1400 23269 3099 72 2.323
1450 23652 3144 89 2.831
1500 23450 3037 77 2.535
1550 14228 1857 55 2.962
1600 14119 1755 34 1.937
1700 66286 12770 258 2.020
1800 14308 1689 36 2.131
1900 14117 1723 30 1.741
2000 14227 1677 40 2.385
sum 2242690 306774 8067 2.630

Table 6.2: Second dataset: Number of events before n-tuple selection, after n-
tuple selection and number of events that remains after pre-selecting restrictions
are applied. The last column is percentage of remaining events.

the number of events that are actually detected.

In order to distinguish the events that belong only to the selected channel, we
apply the so-called pre-selection. By pre-selection, we mean the application of
a filter that passes only events belonging to the chosen channel. As mentioned
in previous text, our channel is 2lSS + 1τ . Details of the channel definition
are given in the Appendix A1.

43

6. Data and pre-processing
6.7 Data preparation

Before the classification, it is necessary to convert the data into a suitable
format for this task. The script data_prepare_new.py serves this purpose.
At this point, we need to remove the string names and replace them for
numerical variables more suitable for classification. Every event was so far
identified by its class name. We use script constants.py containing required
dictionaries to substitute strings with corresponding integer values. Then we
can produce the input matrix X and the truth label vector y. The weights
are multiplied by a scaling factor.

6.7.1 LQ scaling factor

Each event has its own weight, where the theoretical cross-section from n-
tuples is used, because the scale of weights for LQ signal is unknown, it
is necessary to scale the given cross-section to a new value called expected
cross-section. Scaling consequently affects the weights. At this point, we
introduce the iterative process of how final scaling for cross-section is obtained.
It is important to mention that iteration is needed only if we want to update
weights that are used in the loss function of classifier, otherwise we would
just rescale the significance obtained after first iteration and used this scaling
for the cross-section limit determination.
We would like to recalculate the scaling factor in such a way that it corresponds
to 2σ significance in every iteration. Let us assume that we are in n − th
iteration. At this point we know the value of the scaling factor and the
significance from the previous iteration. Let us denote the scaling factor as
ξn−1 and the significance as ηn−1. Now we calculate the current value of the
scaling factor as

ξn = 2 · ξn−1
ηn−1

. (6.1)

Now if

ηn ∈ [1.95, 2.05], (6.2)

we declare the given scaling factor final and the iteration process is terminated,
otherwise we continue with the next iteration. It should be mentioned that
the only reason for the iterations is the change of significance on the output
of the classification process as consequence of rescaled weights used in the
loss function of the classifier. Otherwise, formula 6.1 would be used just once.

44

...................................... 6.8. Data split

6.8 Data split

In the thesis, a method called train-test split is used. It means that we split
the dataset into training and test sub-datasets, and each of them is suitable
representations of the problem domain. The main important parameter is
the size of datasets, commonly expressed as percentage between 0 and 1. Our
chosen ratio was 0.8 to 0.2 in favor of training dataset.

6.8.1 Splitting challenges

For our purposes, we need to be able to organize data in the following ways:

. Events with negative weights have to be removed from the training
dataset to prevent classifier confusion.. Possibility to train on different separated masses.. Possibility to train on all the masses and test on one particular mass.

The script data_split_new.py serves this purpose.

6.8.2 Negative weights

At this point, data are loaded into NumPy data-frames. For the purpose of
negative weights removal, we simply use condition weights > 0 for feature
weights.

6.8.3 Cross training-test

To achieve correct results, we have to be very cautious. We want to swap just
the LQ signal in the test part of the data, therefore if we had swapped entire
test parts of two datasets, we would achieve data leakage because splits for
datasets are different and contain different events for train and test datasets.

45

6. Data and pre-processing
6.8.4 Mass combined for training

If it is needed to train on all the masses together, we need to have information
about masses included in the DataFrame. This artificial feature is labeled as
y_lq_all and contains mass that particular events belongs to. At this point,
we just use a condition y_lq_all == lq_mass_test which will ensure that
only the mass we are testing on is present in the test set, but the training set
contains all the masses. When the process is finished, artificial features are
removed from the data table.

46

Chapter 7

Classification

7.1 Introduction

Classification is the most important part of the thesis. At this point we have
our data converted, pre-processed and split in such a way that it is suitable
for the experiment we are intended to perform.
To achieve better reliability of the results, we used two type of machine
learning algorithms, gradient boosted decision trees and neural networks.
When the classification is finished, we need to evaluate results. The metric
that determines the correctness of the classification is called significance and
was theoretically described in section 5.1.3. Now we will focus on the way in
which it is calculated.

7.2 Tools and libraries

We will describe tools that were used for implementations of classifiers and
their hyperparameter tuning.

47

7. Classification.....................................
7.2.1 Scikit-learn

Scikit-learn is a python language free software machine learning library.
Functions from this library are used very frequently is this work. More details
are given in [40].

7.2.2 Pytorch

PyTorch is an open source machine learning library based on the Torch library
[41]. In this work, it is used for neural network algorithm implementation.

7.2.3 Optuna

Optuna is an automatic hyperparameter tuning software framework, particu-
larly designed for Machine Learning, and one use it with other frameworks
like PyTorch or Scikit-learn. Optuna uses something called define-by-run API,
which helps the user to write highly modular code and dynamically construct
the search spaces for the hyperparameters. Different samplers like grid search,
Random, Bayesian and Evolutionary algorithms are used to automatically
find the optimal parameter. Algorithms used are

. Grid Search: It searches the predetermined subset of the whole hyperpa-
rameter space of the target algorithm.. Bayesian: This method uses a probability distribution to select a value
for each of the hyperparameters.. Random Search: As the name suggests, randomly samples the search
space until the stopping criteria are met.. Evolutionary Algorithms: The fitness function is used to find the values
of the hyperparameters.

Important terminology used in the following text is

.Objective function: Function we want to minimize or maximize

48

.............................. 7.3. Algorithm hyperparameters

. Study: The whole optimization process is based on an objective function.
The study needs a function which it can optimize.. Trial: A single execution of the optimization function is called a trial.
Thus, the study is a collection of trials.

For Hyperparameter optimization, we use the following process:

. At the beginning we use a classifier without any hyperparameters to set
certain threshold.We start hyperparameters tuning by manual optimization. The hyperpa-
rameter documentations and machine learning competitions serve this
purpose..Optuna is deployed to find more optimal solutions.

7.3 Algorithm hyperparameters

In chapter 4 we discussed the theory behind algorithms used in this thesis.
Now it is time to use this theory in practice. In this section, we will describe
which hyperparameters are important for particular algorithms and the theory
behind them.
At the end of the sentence in the parentheses, there is the value of the
hyperparameter that was used for the analysis.

7.3.1 XGBoost

For XGBoost we have chosen parameters described in the following text.

. n_estimators : Specifies the number of decision trees to be boosted.
(2300).max_depth : It limits how deep each tree can grow. (6).min_child_weight : Minimum sum of instance weight (hessian) needed
in a child. If the tree partition step results in a leaf node with the sum of

49

7. Classification.....................................
instance weight less than min_child_weight, then the building process
will give up further partitioning. (0.043). reg_alpha : Is the L1 regularization parameter, increasing its value
makes the model more conservative. (0.0036). gamma : Is the regularization parameter for tree pruning. It specifies
the minimum loss reduction required to grow a tree. (0.00025). learning_rate : Is a regularization parameter that shrinks feature weights
in each boosting step. (0.5). colsample_bytree : The algorithm will randomly select a subset of
features on each iteration (tree). (1.0). subsample : It represents the subsample ratio of the training sample.
(0.8). scale_pos_weight : This parameter is useful in case we have an imbal-
anced dataset, particularly in classification problems, where the propor-
tion of one class is a small fraction of total observations. (10)

7.3.2 LightGBM

For LightGBM we have chosen parameters described in the following text.
Some hyperparameters are the same as ones used for XGBoost, therefore we
only refer to them.

. n_estimators: *. (2500).max_depth: *. (3). reg_alpha: *. (0.79). colsample_bytree: *. (0.5). reg_lambda: L2 regularization term on weights. Increasing this value
will make model more conservative. (7.4).min_child_samples: Minimal number of data in one leaf. Can be used
to deal with over-fitting. (42).min_data_per_group: Minimal number of data per categorical group.
(54)

50

.............................. 7.3. Algorithm hyperparameters

7.3.3 CatBoost

For CatBoost we have chosen parameters described in the following text.
Some hyperparameters are the same as ones used for XGBoost, therefore we
only refer to them.

. n_estimators: *. (1550).max_depth: *. (3). learning_rate: *. (0.5). subsample: *. (0.659). random_strength: The amount of randomness to use for scoring splits
when the tree structure is selected. This parameter is used to avoid
overfitting the model. (9.14). bagging_temperature: Use the Bayesian bootstrap to assign random
weights to objects. (0.8). border_count:The value of this parameter significantly impacts the speed
of training on GPU. The smaller the value, the faster the training is
performed. (80). l2_leaf_reg: Coefficient at the L2 regularization term of the cost function.
(0.32)

7.3.4 TabNet

For TabNet, features are very different from ones used for GBDT we describe
them in following text.

. n_steps: Number of steps in the architecture. (3). gamma: This is the coefficient for feature reusage in the masks. A value
close to 1 will make mask selection least correlated between layers. (1.3). n_shared: Number of shared Gated Linear Units at each step. (1).mask_type: Masking function to use for selecting features. (entmax). optimizer_fn: Used to choose the optimizer. (Adam)

51

7. Classification.....................................
. lr: A scalar used to determine gradient step in gradient descent training.

(0.02). weight_decay: Decrease of weight values in time. (3 ·10−6).momentum: Momentum for batch normalization. (0.7). scheduler: Pytorch Scheduler to change learning rates during training.
(-). patience: Number of consecutive epochs without improvement before
performing early stopping. (9)

7.3.5 MLP

Multilayer perceptron was written with help of PyTorch framework. We will
explain the important parts of implementation in the following sections.

Train

In this section, training loss is recomputed and back propagation is performed
to update weights of the network. This process is repeated for every batch.
At first, we load the data and the weights. A gradient is zeroed to obtain
correct parameters update when back propagation is performed. When loss
is calculated, we multiply it by w/

∑
w to help the training. Then, back

propagation is performed and optimizer is called. We update overall loss and
make prediction.

7.3.6 Validation and test

Validation is applied on a subset of the original data. It should provide
an unbiased evaluation of a model fit on the training dataset while tuning
hyperparameters. When hyperparameters are tuned, bias is incorporated into
the validation set.
Validation is very similar to the train section, it only performs calculations
on validation dataset.

52

.............................. 7.3. Algorithm hyperparameters

For testing, we use the fact that test data are unbiased, and therefore we can
evaluate the final model on them.

7.3.7 Hyperparameters and architecture

For neural network we use the learning rate, number of epochs and batch size
as hyperparameters, because these hyperparameters were already described
in the previous text, we will focus mainly on the neural network architecture.
Table 7.1 illustrates which building blocks are used. The linear layer is a
simple connection of neurons. Dropout represents the probability that a
layer is zeroed during the process, which prevents overfitting. ReLU is the
activation function which mean that it makes decision whether neuron should
fire or not. It is defined as

f(x)ReLU =
{

0, if x < 0
x, if x ≥ 0.

(7.1)

The overall architecture is ended with LofSoftMax layer which is important
for classification into multiple classes, which is defined as

f(xi)SF M = log
(

exp(xi)∑
j exp xj

)
. (7.2)

Block Value

Linear layer 7, 20
Dropout 0.2

ReLU -
Linear layer 20, 50

Dropout 0.2
ReLU -

Linear layer 50, 10
Dropout 0.2

ReLU -
Linear layer 10, 7

Dropout 0.2
LogSoftmax -

Table 7.1: Used neural network architecture.

53

7. Classification.....................................
7.4 Classification

In previous sections, we described algorithms that will be used for the classifi-
cation process. For this purpose, a script classify.py was written. The script
is divided into two functions, where the first one is responsible for training
and the other for testing. There are separate classes tabnet_agent.py and
mlp_agent.py for deep learning algorithms.

When we pick the classifier that we want to use for consequential analysis,
at first data are normalized by StandardScaler() a function that normalizes
every column of the input matrix X so that for mean and standard deviation
we have µ = 0 and σ = 1 [42]. Then we just choose a library function for
corresponding classifier and pass tuned hyperparameters. We can also choose
to use weights to affect performance of loss function. When the model is
trained, we save the information for later use.

For the second part of classification, the model and test input matrix Xt

are loaded. At this point, we want to obtain predictions and prediction
probabilities. Functions predict(Xt) and predict_proba(Xt) are used for this
purpose [43] and [44]. Then, we can compute the metrics. Implementation of
metrics is inspired by [34].

7.4.1 Accuracy (Acc)

Accuracy is the fraction of predictions that our model got right. The formula
is

Acc = TP + TN

TP + TN + FP + FN
, (7.3)

where TP stands for True Positive, TN is True Negative, FP is False Positive
and FN is False Negative [45].

54

.................................... 7.4. Classification

7.4.2 F1

The F1 score is a certain combination of metrics called Precision and Recall.
Let us therefore define these two terms in advance. For Precision, we have

Precision = TP

TP + FP
(7.4)

and recall is calculated as

Recall = TP

TP + FN
. (7.5)

At this point we have everything we need to compute the F1 metric. It
corresponds to the formula

F1 = 2 · Precision · Recall

Precision + Recall
. (7.6)

More details are given in [46].

7.4.3 AUC

AUC stands for Area Under the Roc Curve. It measures the entire two-
dimensional area underneath the entire ROC curve. It corresponds to the
gray region in Figure 7.1.

7.4.4 ROC curve

An ROC curve stands for receiver operating characteristic curve and represents
a graph showing the performance of a classification model at all classification
thresholds. This curve plots two parameters, True positive on vertical line
and False Positive rate on horizontal line, they are defined as

TPR = TP

TP + FN
FPR = FP

FP + TN
, (7.7)

Where TPR is True Positive Rate and FPR is False Positive Rate. Figure
7.1 shows a simple ROC graph where dashed line corresponds to ROC curve
[47].

In our analysis, we classified the data into seven classes (LQ, tt̄H, tt̄W, tt̄Z,
tt̄, V V , Other), therefore we obtain seven ROC curves. Figure 7.2 shows the

55

7. Classification.....................................

Figure 7.1: ROC curve with highlighted AUC region. On the horizontal axis is
the False Positives rate. On the vertical axis is the True Positive rate.

ROC curves for testing on 500 and 1600 GeV masses, respectively. Metrics
from previous sections are also computed and visualized in the legend. Figure
7.2 shows better separation for 1600 GeV mass, even though for both masses,
the Leptoquark signal is remarkable. This is probably caused by higher the
energy of heavier Leptoqurks which results in even larger differences from
background.

56

.................................... 7.4. Classification

Figure 7.2: Top: ROC curve for TabNet trained on all the masses and tested on
500 GeV mass. Bottom: ROC curve for TabNet trained on all the masses and
tested on 1600 GeV mass.

57

7. Classification.....................................
7.5 Finalization

At this point, the classification is completed, and we obtained our results
from the classifier. To better understand how good is the separation, we need
to find out the ratio between signal and background, compute significance
and visualize the confusion matrix for the best threshold.

7.5.1 Signal versus Background

For every threshold, we determine the number of event belonging to signal
and background. The threshold with the best ratio is chosen as classifier
working point. Figure 7.3 serves as an example.

Figure 7.3: Green: Curve depicting signal. Brown: Background curve.

58

..................................... 7.5. Finalization

7.5.2 Significance

Description of significance classification is described in chapter 5.1.3. At
this point, we just have to transform theory into practice, and use formula
5.4 to calculate the significance for the chosen thresholds, then determine
the working point. This calculation is by definition of significance strongly
connected to the previous chapter.
An example of plotted significance is shown in Figure 7.4. In this thesis, we
use the definition of significance S/

√
B. For this definition, we can encounter

problems when B is close to 0 which results in nonphysical results. For this
reason, another two definitions are introduced. In the figure, a cut-off is
applied. It is applied because no maximum could be found. For this reason,
TRExFitter software is used later.

Figure 7.4: Significance plotted for all thresholds and chosen significance defini-
tions.

7.5.3 Confusion matrix

Figure 7.5 illustrates how the confusion matrix is defined. On the x-axis there
is the actual value and on the y-axis there is the corresponding prediction. It
means, for example, when an observation is classified as true and its target is

59

7. Classification.....................................
also true, it belongs to TP. Then a matrix depicts the number of observations
belonging to a certain category or their relative percentage.

Figure 7.5: Simple schematic version of confusion matrix, taken from [48].

Let us take a look at a little more complicated version that is plotted for
our purpose in Figure 7.6. Our matrix is a transposed definition from Figure
7.5. The first column is the most important one. The matrix value with
coordinates [0, 0] represents the signal that corresponds to True Positives,
therefore the signal is classified correctly. Values on the first column under
the first one are also important, they correspond to background. Background
belongs to the region of False Positives, it means that events are classified
as Leptoquarks even though they belong to some background class. The
first column value over the rest of the column square root corresponds to the
definition of significance.

60

..................................... 7.5. Finalization

Figure 7.6: Confusion matrix for the best threshold, mass 800 GeV.

61

62

Part III

Analysis results

63

64

Chapter 8

Analysis results

At this point, we would like to show what was achieved. We start with a
comparison of classifiers to select two of them that are the most suitable.
When classifiers are chosen, we show that by training only one classifier on all
masses combined results in a versatile classifier with comparable capabilities
to classifiers trained and tested on corresponding masses.
Another task is related to data shrinkage. By reducing the size of the
dataset by a certain percentage, we demonstrate that results tend to be more
dependent on data split and the average performance is decreased. Then, we
reduce the number of features used for training and study if the performance
of classifier is reduced.
When auxiliary experiments are explained, we proceed to the final stage of the
analysis. For one classifier that performed the best, we compute the expected
cross-section limit with the software called TRExFitter and compare results
with the ones from a previous publication.
In addition, the precision of the mass determinations is studied. We use
separated data from previous step as input for another classifier. This classifier
is trained on all masses and is based on this experience determines the mass
of the Leptoquark.

It is important to mention that for the purpose of experiments related to
relative comparisons we set the theoretical cross-section σt = 1 pb, and the
scaling factor ξ = 1, which results in high values of significance η. This has
been done because the TRExFitter program uses its own cross-section and
therefore the one from n-tuples is redundant. For the by hand determination
of the cross-section limit, σt from the n-tuples is used with appropriate scaling
factor ξ.

65

8. Analysis results....................................
8.1 Comparison of classifiers

8.1.1 Description

We have five classifiers at our disposal, their hyperparameters are given in
section 7.3. Every classifier is trained on four masses from 500 − 1600 GeV
interval. At the beginning of every training there is a random split that
slightly changes the structure of the data, experiments are therefore repeated
ten-times for every mass then we also plot the standard deviation for every
classifier.

8.1.2 Results

Figure 8.1 presents results of the performance test. We can observe that it is
very difficult to determine a clear winner. Let us point out that high number
of significance appeared because cross-section parameter in weights was set
to 1 pb. At first five experiments were run and then an additional five. High
value of standard deviation remained similar. Table 8.1 shows how long it
took for every algorithm to finish the task, which is testing on four masses
and repeated ten times. High value for LightGBM is surprising but if we
take into consideration that algorithms were optimized for performance it
happens very often that solutions with high number of estimators prevail
which results in high training time.

66

................................8.1. Comparison of classifiers

Figure 8.1: Mean results for all five algorithms tested in this thesis, XGBoost,
LightGBM, CatBoost, TabNet and MLP with standard deviation after ten
repetitions.

67

8. Analysis results....................................
XGBoost LightGBM CatBoost TabNet MLP

53 m 42 s 89 m 11s 11 m 55 s 38 m 41 s 40 m 52 s

Table 8.1: Comparison of training speed for XGBoost, LightGBM, CatBoost,
TabNet and MLP, Events = 81830, Features = 89, runs = 40.

8.1.3 Conclusion

The results for algorithms are very similar. To choose the two best, we also
take their speed into account. According to this competition, CatBoost and
TabNet are chosen for following experiments.

8.2 All masses combined versus separate masses

8.2.1 Description

This auxiliary experiment shows that it is not needed to use n individual
classifiers to separate signal from background for n masses. We choose three
masses from the interval 500 − 1600 GeV and use them for the analysis. We
train classifiers on all the masses and on chosen separate masses, then test
on masses that corresponds to separate ones used for training. Training is
performed 5 times to achieve a better reliability.

8.2.2 Results

We chose 600, 1000 and 1500 GeV masses, for this experiment. Therefore, we
train on 600, 1000 and 1500 GeV and all the masses combined and test on
600, 1000 and 1500 GeV. Figure 8.2 shows training on all the simulated data.
It is visible that for every chosen mass we acquired good sensitivity.

68

....................... 8.2. All masses combined versus separate masses

600 700 800 900 100011001200130014001500

Mass [GeV]

0

200

400

600

800

1000

1200

1400

1600

1800

]σ
S

ig
ni

fic
an

ce
 [

Train: LQ ALL GeV
TabNet

Significance

600 700 800 900 100011001200130014001500

Mass [GeV]

0

200

400

600

800

1000

1200

1400

1600

1800

]σ
S

ig
ni

fic
an

ce
 [

Train: LQ ALL
CatBoost

Significance

Figure 8.2: CatBoost and TabNet trained on all masses available.

Figure 8.3 shows results of training on one separate mass. we can observe
that for majority of masses, results are good only when tested on corresponding
mass. For CatBoost trained 1500 GeV results are poor even for corresponding
mass.

600 700 800 900 100011001200130014001500

Mass [GeV]

0

200

400

600

800

1000

1200

1400

1600

1800

]σ
S

ig
ni

fic
an

ce
 [

Train: LQ 600 GeV
TabNet

Significance

600 700 800 900 100011001200130014001500

Mass [GeV]

0

200

400

600

800

1000

1200

1400

1600

1800

]σ
S

ig
ni

fic
an

ce
 [

Train: LQ 600 GeV
CatBoost

Significance

600 700 800 900 100011001200130014001500

Mass [GeV]

0

200

400

600

800

1000

1200

1400

1600

1800

]σ
S

ig
ni

fic
an

ce
 [

Train: LQ 1000 GeV
TabNet

Significance

600 700 800 900 100011001200130014001500

Mass [GeV]

0

200

400

600

800

1000

1200

1400

1600

1800

]σ
S

ig
ni

fic
an

ce
 [

Train: LQ 1000 GeV
CatBoost

Significance

600 700 800 900 100011001200130014001500

Mass [GeV]

0

200

400

600

800

1000

1200

1400

1600

1800

]σ
S

ig
ni

fic
an

ce
 [

Train: LQ 1500 GeV
TabNet

Significance

600 700 800 900 100011001200130014001500

Mass [GeV]

0

200

400

600

800

1000

1200

1400

1600

1800

]σ
S

ig
ni

fic
an

ce
 [

Train: LQ 1500 GeV
CatBoost

Significance

Figure 8.3: CatBoost and TabNet trained on Top: 600 GeV, Middle: 1000 GeV,
Bottom: 1500 GeV.

69

8. Analysis results....................................
8.2.3 Conclusion

From previous section results, we can conclude that training on all masses
offers similar and sufficient performance for every testing mass, whereas
training just on a separate mass is sometimes unstable for some classifiers even
for the corresponding mass. Therefore, we can substitute 12 separate classifiers
by an universal one and achieve stable results for signal and background
separation.

8.3 Effect of the dataset size

8.3.1 Description

We would like to study how the dataset size affects the performance of the
classifier. This experiment is approached in such a way that we start with
20% of available data and the size is increased by 20% every step until we
reach 100%. We repeat every run 10 times to obtain reliable results. The
experiment is performed for two masses from 500 − 1600 GeV.

8.3.2 Results

Figure 8.4 shows how TabNet and CatBoost perform on reduced size of
dataset. The experiment is repeated 10 times for higher reliability, thus we
tested only on 600 and 1500 GeV masses.

70

................................... 8.4. Feature selection

20 30 40 50 60 70 80 90 100
Used simulated data [%]

600

800

1000

1200

1400

1600

1800

]σ
S

ig
ni

fic
an

ce
 [

Test: LQ 600 GeV
TabNet

Significance

20 30 40 50 60 70 80 90 100
Used simulated data [%]

600

800

1000

1200

1400

1600

1800

]σ
S

ig
ni

fic
an

ce
 [

Test: LQ 600 GeV
CatBoost

Significance

20 30 40 50 60 70 80 90 100
Used simulated data [%]

600

800

1000

1200

1400

1600

1800

]σ
S

ig
ni

fic
an

ce
 [

Test: LQ 1500 GeV
TabNet

Significance

20 30 40 50 60 70 80 90 100
Used simulated data [%]

600

800

1000

1200

1400

1600

1800

]σ
S

ig
ni

fic
an

ce
 [

Test: LQ 1500 GeV
CatBoost

Significance

Figure 8.4: CatBoost and TabNet tested on 600 and 1500 GeV with dataset size
reduction from 100% to 20% with 20% steps.

8.3.3 Conclusion

We can see from our results that if we would increase size of the dataset,
we would certainly consequently increase stability of results. We can also
conclude that slightly higher significance would be achieved.

8.4 Feature selection

8.4.1 Description

For this analysis, we use n-tuples that contain hundreds of features, during the
pre-selection process when data are prepared for classification this number is
reduced to 89. In this experiment, we perform a similar task as previously, but
the number of features is reduced instead of the dataset size. We train on three
masses from interval 500 − 1600 GeV, every feature and mass combination is
done 5 times.

71

8. Analysis results....................................
Then we determine the four most important features and plot their histograms
to see how much their distribution differs.

8.4.2 Results

We trained on 600, 1000 and 1500 GeV. Figure 8.5 shows the results.

20 30 40 50 60 70 80 90 100
Used features [%] (89)

400

600

800

1000

1200

1400

1600

]σ
S

ig
ni

fic
an

ce
 [

Test: LQ 600 GeV
TabNet

Significance

20 30 40 50 60 70 80 90 100
Used features [%] (89)

400

600

800

1000

1200

1400

1600

]σ
S

ig
ni

fic
an

ce
 [

Test: LQ 600 GeV
CatBoost

Significance

20 30 40 50 60 70 80 90 100
Used features [%] (89)

400

600

800

1000

1200

1400

1600

]σ
S

ig
ni

fic
an

ce
 [

Test: LQ 1000 GeV
TabNet

Significance

20 30 40 50 60 70 80 90 100
Used features [%] (89)

400

600

800

1000

1200

1400

1600

]σ
S

ig
ni

fic
an

ce
 [

Test: LQ 1000 GeV
CatBoost

Significance

20 30 40 50 60 70 80 90 100
Used features [%] (89)

400

600

800

1000

1200

1400

1600

]σ
S

ig
ni

fic
an

ce
 [

Test: LQ 1500 GeV
TabNet

Significance

20 30 40 50 60 70 80 90 100
Used features [%] (89)

400

600

800

1000

1200

1400

1600

1800

]σ
S

ig
ni

fic
an

ce
 [

Test: LQ 1500 GeV
CatBoost

Significance

Figure 8.5: CatBoost and TabNet trained on Top: 600 GeV, Middle: 1000 GeV,
Bottom: 1500 GeV.

The feature importance was changing significantly after every data shuffle,
therefore we decided to use the following method to score the feature. An
experiment of feature importance was performed 20 times and the order was
noted. Then we summed the positions for every feature. The most important
features according to this experiment are given in Table 8.2.
Then, we plot the feature histograms as shown in Figure 8.6. Cross-sections

72

................................... 8.4. Feature selection

Feature Value

sumPsbtag 43
MtLepMet 90
lep_Pt_1 128

nJets_OR_TauOR 149
taus_pt_0 151

taus_RNNJetScore_0 219
met_met 235

taus_JetBDTSigMedium_0 246
DeltaR_min_lep_jet_fwd 293

minDeltaR_LJ_0 345
taus_decayMode_0 380

jet_pt0 408
Mll01 470
Ptll01 497

total_leptons 511
best_Z_other_MtLepMet 520

lep_E_1 550
lep_ID_0 587
jet_pt1 601

minOSMll 605

Table 8.2: Feature importance results for twenty the most important features,
based on 20 experiments.

for particular masses were set to values that correspond to approximately
significance of 2σ. They are shown in Table 8.3.

Mass [GeV] Cross-section [pb]

500 0.0035295
600 0.00202356
700 0.00214232
800 0.0012804
900 0.00102528
1000 0.00148372
1100 0.0012529
1200 0.0011235
1300 0.00131376
1400 0.00140148
1500 0.00147178
1600 0.00158574

Table 8.3: Cross-section chosen for the most important feature plots. They
correspond to significance of 2σ expected cross-section calculation.

73

8. Analysis results....................................

Figure 8.6: Histogram for features with the best score.

8.4.3 Conclusion

It is visible that after feature selection, performance is affected for lower
masses and small number of features. For testing on 600 GeV and feature
number reduced to 20%, we can observe such behavior. Difference in devia-
tions are probably caused by data shuffle and feature correlations.

74

.................................. 8.5. Cross-section limit

8.5 Cross-section limit

8.5.1 Description

Based on results from the previous experiments, the TabNet algorithm was
chosen as the most suitable for this task. For every mass from interval,
800 − 1300 GeV this experiment is performed and repeated 5 times. When
separation results are obtained from the classifier, we use these results as input
for the TRExFitter program. Result are values for expected cross-section σe

at 95% CL are obtained. The results from [11] and [12] were also acquired
using TRExFitter thus they can be compared directly with our results.

8.5.2 TRExFitter

TRExFitter is a framework used by many ATLAS physics analyses for sta-
tistical inference via profile likelihood fits [49]. It is also used to generate
publication-level pre-fit and post-fit plots and tables.

TRExFitter needs data in root n-tuple format and a configuration file for its
functionality. We already described the structure of n-tuples, therefore we
focus on the configuration file. Important are the following sections [50].

. Job: Block that defines general options as shown in Figure 8.7.

75

8. Analysis results....................................

Figure 8.7: Example of Job section code.

. Fit: Block specifies details of the fit model, as shown in Figure 8.8.

Figure 8.8: Example of Fit section code.

. Region: Blocks define the distributions considered in the fit, as shown in
Figure 8.9.

Figure 8.9: Example of Region section code.

. Sample: Blocks define the samples considered, as shown in Figure 8.10.

76

.................................. 8.5. Cross-section limit

Figure 8.10: Example of Sample section code.

. Systematic: blocks specify systematic uncertainties.

The TRExFitter program was run by trex-fitter command within a special-
ized Docker container [51]. Then ROOT n-tuples, config and replacement file
are needed. A root n-tuple contains required data. A config file contains all
the sections mentioned above. The value of some parameters in the config
file are too long or complicated and placing them explicitly in the file would
complicate readability, therefore a replacement file is used to store these more
complicated parts. The values are then referenced from the config file.
The following commands are used to produce particular results with the
TRExFitter.

. trex-fitter n config_file: loads ROOT n-tuples.

. trex-fitter d config_file: draws pre-fit plots.

. trex-fitter ndwl config_file: additional w and l options are used to
produce cross-section limit for given mass.

8.5.3 Results

Figure 8.11 shows cross-section limits from plots of our and previous results
[11] and [12](Figure 75). The tendency is similar. Let us remind, theoretical
cross-section is σt, expected cross-section is σe and observed one is σo.

77

8. Analysis results....................................

800 900 1000 1100 1200 1300
 [GeV]

3
dLQ

m

4−10

3−10

2−10

1−10

)
[p

b]
3d

LQ 3d
LQ

→
(p

p
σ

-1 = 13 TeV, 139 fbs
 2lSS1tauτtτ t→3

dLQ3
dLQ

95% C.L.

Exp. limit
σ 1±Exp.
σ 2±Exp.

Theory (NNLO+NNLL)

Figure 8.11: Top: Limit from original paper [11] and [12](Figure 75). Bottom:
Result of our analysis. Red line indicates σt, solid line σo and dashed line is σe

Figure 8.12 is a direct comparison of σe from Figure 8.11. It is visible that
the new result moves the σe line slightly down, which indicates improvement.

78

.................................. 8.5. Cross-section limit

Note that the new results considered statistical uncertainties only

800 850 900 950 1000105011001150 120012501300
 [GeV]

3
dLQ

m

4−10

3−10

2−10

1−10

)
[p

b]
3d

LQ 3d
LQ

→
(p

p
σ

-1 = 13 TeV, 139 fbs
τtτ t→3

dLQ3
dLQ

95% CL

 (new result)τ2lSS +

 (old result)τ2lSS/3l +

Theory (NNLO+NNLL)

Figure 8.12: Comparison of two σe. Magenta: new result. Black: previous
result [11] and [12](Figure 75).

8.5.4 Conclusion

Based on the results plotted with TRExFitter we can state that we managed
to achieve a slight improvement in comparison to the previous publication
[11] and [12]. The expected mass limit for the Leptoquark at the 95% CL
was increased from about 1160 GeV to 1210 GeV. No detailed analysis of
statistical and systematic uncertainties are included in this comparison.

79

8. Analysis results....................................
8.6 Mass prediction

8.6.1 Description

The goal of the thesis has been to separate signal (Leptoquarks) and back-
ground (LQ, tt̄H, tt̄W, tt̄Z, tt̄, V V , Other) and calculate σe for our results.
Therefore, at this point we can separate Leptoquarks from background but
for real data, we can not determine their mass. For this purpose, we designed
a second classifier that takes a selected LQ signal as input and predicts its
mass.
For this experiment, it is important to use the same random data split as for
the first classifier to prevent data leakage. Let us explain the overall process.

We focus on the first classifier. The original dataset contains all data remaining
after pre-selection. We train on all LQ masses plus background and test on
one LQ mass plus background. As a result, we obtain separated data. Events
that are assigned as signal are used as input for the second classifier. For
testing purposes we do not need to use separated data, the original 20% of
LQ data is sufficient.
The second classifier is trained only on LQ masses. At this point we want to
recognize which mass is on the input, therefore we classify into 12 classes, one
for every mass. As a result, we obtain the probability that the event on the
input belongs to certain LQ mass class. Diagram 8.13 shows the procedure.

CLASSIFIER
1

CLASSIFIER
2test 1

train 1

The events classified
as LQ are propagated

as test data for the
second classifier

20% of data
containing one
LQ mass and
background

80% of data
containing all

the LQ masses
and background

train 2

Data
classified as
background

Data that are
removed for the

following
process

80% of data
containing only

all the LQ
masses

LQ 500 proba
LQ 600 proba

.

.

.
LQ 1600 proba

Figure 8.13: Green: Blocks corresponding to data separation. Blue: Blocks
corresponding to mass prediction. Yellow: Data that are no longer used.

80

................................... 8.6. Mass prediction

8.6.2 Results

Figure 8.14 shows on the horizontal axis, the mass present on the input of the
classifier. On the vertical line, there is the predicted mass. To calculate the
predicted mass, we use the output predictions from the classifier. Therefore,
we know which event was classified as belonging to a certain mass. The
predicted value is calculated as following

mp =
∑12

i=1 ni · mi
e

N
, (8.1)

where mp is the predicted mass, n is a number of events, me is the expected
mass and N is an overall number of events. The formula is the weighted
mean over mass classes with the corresponding number of events.

600 800 1000 1200 1400 1600

Expected mass [GeV]

600

800

1000

1200

1400

1600

P
re

di
ct

ed
 m

as
s

[G
eV

]

Fit

Ideal prediction

Figure 8.14: On the horizontal line is the mass that we would expect, on
the vertical line is the predicted mass, then we fit the results to stress the
tendency. The solid line is the diagonal for comparison. The error bars indicate
the statistical uncertainty on the predicted mass, calculated as

√
variance.

8.6.3 Conclusion

Figure 8.14 shows that there is a good linear relation between the expected
mass and the predicted mass. Above 1400 GeV there is a deviation from the

81

8. Analysis results....................................
linear dependence beyond the statistical expectation. The linear dependence
allows applying a scaling factor to obtain the predicted mass to be close to
the expected mass.

82

Chapter 9

Conclusions

A method for cross-section limit calculation considering Leptoquark mass
region from 500 to 1600 GeV belonging to 2lSS + 1τhad was developed. It
included five state-of-the-art approaches for tabular data classification. XG-
Boost, LightGBM, CatBoost belong to Gradient boosting decision tree family
of algorithms, whereas TabNet and PyTorch implementation correspond to
neural networks. Classifiers were trained and tested on Monte-Carlo simulated
data.
The classifiers were compared and two most suitable candidates are CatBoost
and TabNet. At first, the performance of the classifiers was compared when
trained on one separate mass and all the masses combined. The mass combi-
nation outperformed the single mass training in significance and reliability.
Then, the effect of dataset size and feature number was studied. It is con-
cluded that with larger dataset size and higher number of features, results
are better and have smaller uncertainties. The 20 most important features
were determined.
To set cross-section limits, TRExFitter software was used to produce limits
for comparison with previous results. The TabNet algorithm was chosen. In
comparison with previous results the cross-section limit was improved, corre-
sponding to an extended Leptoquark mass range sensitivity from 1160 GeV
to 1210 GeV. This is a significant improvement in comparison with previous
results however, systematic uncertainties were not studied.
All tasks of the thesis were fulfilled. In addition, we implemented a Leptoquark
mass determination method. A linear relation between the predicted and
expected mass was observed and thus this allows to determine the Leptoquark
mass, if it is discovered.

83

84

Bibliography

[1] A. Sopczak. Searches for Leptoquarks with the ATLAS Detector. [Online]
https://arxiv.org/abs/2107.10094. 2021. doi: 10.48550/ARXIV.
2107.10094.

[2] CERN. [Online] https://en.wikipedia.org/wiki/CERN.
[3] C. Perkins. CERN: Everything you need to know. [Online] https :

//www.sciencefocus.com/science/cern/. Apr. 2022.
[4] ATLAS Outreach. ATLAS Fact Sheet. [Online] https://cds.cern.

ch/record/1457044/files/ATLAS%20fact%20sheet.pdf. 2010.
[5] P. Grafström. “Lifetime, cross-sections and activation”. In: (2007).

[Online] https://cds.cern.ch/record/1047067, 14 p. doi: 10.
5170/CERN-2007-003.231.

[6] W. Herr and B Muratori. Concept of luminosity. [Online] https://
cds.cern.ch/record/941318/files/p361.pdf.

[7] V. J. Martin. Subatomic Physics: Particle Physics Lecture 3. [Online]
https://www2.ph.ed.ac.uk/~vjm/Lectures/ParticlePhysics2010_
files/Particle3-2Nov.pdf.

[8] J. Zamastil and J. Benda. Kvantová mechanika a elektrodynamika.
Univerzita Karlova v Praze, nakladatelství Karolinum, 2016. isbn:
978-80-246-3223-0.

[9] R. Nave. Quarks. [Online] http://hyperphysics.phy-astr.gsu.edu/
hbase/Particles/quark.html.

[10] M. A. Thomson. Particle Physics, Handout 8 : Quantum Chromo-
dynamics. [Online] https://www.hep.phy.cam.ac.uk/~thomson/
lectures/partIIIparticles/Handout8_2009.pdf.

85

https://arxiv.org/abs/2107.10094
https://doi.org/10.48550/ARXIV.2107.10094
https://doi.org/10.48550/ARXIV.2107.10094
https://en.wikipedia.org/wiki/CERN
https://www.sciencefocus.com/science/cern/
https://www.sciencefocus.com/science/cern/
https://cds.cern.ch/record/1457044/files/ATLAS%20fact%20sheet.pdf
https://cds.cern.ch/record/1457044/files/ATLAS%20fact%20sheet.pdf
https://cds.cern.ch/record/1047067
https://doi.org/10.5170/CERN-2007-003.231
https://doi.org/10.5170/CERN-2007-003.231
https://cds.cern.ch/record/941318/files/p361.pdf
https://cds.cern.ch/record/941318/files/p361.pdf
https://www2.ph.ed.ac.uk/~vjm/Lectures/ParticlePhysics2010_files/Particle3-2Nov.pdf
https://www2.ph.ed.ac.uk/~vjm/Lectures/ParticlePhysics2010_files/Particle3-2Nov.pdf
http://hyperphysics.phy-astr.gsu.edu/hbase/Particles/quark.html
http://hyperphysics.phy-astr.gsu.edu/hbase/Particles/quark.html
https://www.hep.phy.cam.ac.uk/~thomson/lectures/partIIIparticles/Handout8_2009.pdf
https://www.hep.phy.cam.ac.uk/~thomson/lectures/partIIIparticles/Handout8_2009.pdf

9. Conclusions
[11] The ATLAS Collaboration. Search for pair production of third-generation

scalar leptoquarks decaying into a top quark and a τ -lepton in pp colli-
sions at

√
s = 13 TeV with the ATLAS detector. [Online] https://cds.

cern.ch/record/2750498. Jan. 2021. doi: 10.1007/JHEP06(2021)
179. arXiv: 2101.11582.

[12] M. Haleema et al. Search for leptoquark pair production decaying to tτ
tτ . ANA-EXOT-2019-15-INT1, ATLAS note. June 2020.

[13] R. Shwartz-Ziv and A. Armon. Tabular Data Deep Learning is Not All
You Need. [Online] https://arxiv.org/pdf/2106.03253.pdf. Nov.
2021.

[14] javaTpoint. Decision Tree Classification Algorithm. https : / / www .
javatpoint.com/machine-learning-decision-tree-classification-
algorithm. (accessed April 17, 2022).

[15] J. Brownlee. A Gentle Introduction to Ensemble Learning Algorithms.
[Online]https://machinelearningmastery.com/tour-of-ensemble-
learning-algorithms/. April 27, 2021(accessed April 17, 2022).

[16] J. Starmer. STATQUEST!!! An epic journey through statistics and
machine learning. [Online] https://statquest.org/video-index/.

[17] T. Chen and C. Guestrin. “XGBoost”. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. [Online] https://doi.org/10.1145%2F2939672.2939785.
ACM, Aug. 2016. doi: 10.1145/2939672.2939785.

[18] S. Saha. XGBoost vs LightGBM: How Are They Different. [Online]
https://neptune.ai/blog/xgboost-vs-lightgbm. Feb. 2022.

[19] A. Sharma. What makes LightGBM lightning fast? [Online] https:
//towardsdatascience.com/what- makes- lightgbm- lightning-
fast-a27cf0d9785e. Oct. 2018.

[20] Guolin K. et al. “LightGBM: A Highly Efficient Gradient Boosting
Decision Tree”. In: Advances in Neural Information Processing Systems.
Ed. by I. Guyon et al. Vol. 30. [Online] https://proceedings.neurips.
cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.
pdf. Curran Associates, Inc., 2017.

[21] L. Prokhorenkova et al. CatBoost: unbiased boosting with categorical
features. https://arxiv.org/abs/1706.09516. 2017. doi: 10.48550/
ARXIV.1706.09516.

[22] B. John. When to Choose CatBoost Over XGBoost or LightGBM [Prac-
tical Guide]. [Online] https://neptune.ai/blog/when-to-choose-
catboost-over-xgboost-or-lightgbm.

[23] T. Peretz. Mastering The New Generation of Gradient Boosting. [On-
line] https : / / www . kdnuggets . com / 2018 / 11 / mastering - new -
generation-gradient-boosting.html.

[24] IBM Cloud Education. Neural Networks. [Online] https://www.ibm.
com/cloud/learn/neural-networks. Aug. 2020.

86

https://cds.cern.ch/record/2750498
https://cds.cern.ch/record/2750498
https://doi.org/10.1007/JHEP06(2021)179
https://doi.org/10.1007/JHEP06(2021)179
https://arxiv.org/abs/2101.11582
https://arxiv.org/pdf/2106.03253.pdf
https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm
https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm
https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm
https://machinelearningmastery.com/tour-of-ensemble-learning-algorithms/
https://machinelearningmastery.com/tour-of-ensemble-learning-algorithms/
https://statquest.org/video-index/
https://doi.org/10.1145%2F2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://neptune.ai/blog/xgboost-vs-lightgbm
https://towardsdatascience.com/what-makes-lightgbm-lightning-fast-a27cf0d9785e
https://towardsdatascience.com/what-makes-lightgbm-lightning-fast-a27cf0d9785e
https://towardsdatascience.com/what-makes-lightgbm-lightning-fast-a27cf0d9785e
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://arxiv.org/abs/1706.09516
https://doi.org/10.48550/ARXIV.1706.09516
https://doi.org/10.48550/ARXIV.1706.09516
https://neptune.ai/blog/when-to-choose-catboost-over-xgboost-or-lightgbm
https://neptune.ai/blog/when-to-choose-catboost-over-xgboost-or-lightgbm
https://www.kdnuggets.com/2018/11/mastering-new-generation-gradient-boosting.html
https://www.kdnuggets.com/2018/11/mastering-new-generation-gradient-boosting.html
https://www.ibm.com/cloud/learn/neural-networks
https://www.ibm.com/cloud/learn/neural-networks

...................................... 9. Conclusions

[25] Simplilearn. What is Perceptron: A Beginners Guide for Perceptron.
[Online] https://www.simplilearn.com/tutorials/deep-learning-
tutorial/perceptron. Feb. 2022.

[26] S. Sharma. What the Hell is Percpetron? [Online] https://towardsdatascience.
com/what-the-hell-is-perceptron-626217814f53. Sept. 2017.

[27] sethneha. Is Gradient Descent sufficient for Neural Network? [Online]
https://www.analyticsvidhya.com/blog/2021/04/is-gradient-
descent-sufficient-for-neural-network/. Apr. 2021.

[28] C. Bento. Multilayer Perceptron Explained with a Real-Life Example and
Python Code: Sentiment Analysis. [Online] https://towardsdatascience.
com / multilayer - perceptron - explained - with - a - real - life -
example- and- python- code- sentiment- analysis- cb408ee93141.
Sept. 2021.

[29] A. Rubert. Classification with TabNet: Deep Dive. [Online] https:
//syslog.ravelin.com/classification-with-tabnet-deep-dive-
49a0dcc8f7e8. Jan. 2022.

[30] S. O. Arik and T. Pfister. TabNet: Attentive Interpretable Tabular
Learning. [Online] https://arxiv.org/abs/1908.07442. 2019. doi:
10.48550/ARXIV.1908.07442.

[31] V. Ilango. Tabnet — Deep Learning for Tabular data: Architecture
Overview. [Online] https://vigneshwarilango.medium.com/tabnet-
deep - learning - for - tabular - data - architecture - overview -
448ced8f8cfc. Apr. 2021.

[32] K. Cranmer. Confidence Intervals (Limits). [Online] https://indico.
cern.ch/event/208901/contributions/1501047/attachments/
323314/450930/Cranmer_L3.pdf. 2013.

[33] X. Wang Y. Gao L. Lu. Significance Calculation and a New Analysis
Method in Searching for New Physics at the LHC. [Online] https:
//cds.cern.ch/record/896115/files/com-phys-2005-052.pdf.
Sept. 2005.

[34] J. Maly. “Automatic event recognition for Higgs boson detection”.
Presented 25 Jun 2020. May 2020. url: https://cds.cern.ch/
record/2722145.

[35] R Brun and F Rademakers. ROOT - An Object Oriented Data Analysis
Framework. Version latest. [Online] 10.5281/zenodo.6408044. Apr.
2022. doi: 10.5281/zenodo.6408044.

[36] Python interface: PyROOT. [Online] https://root.cern/manual/
python/.

[37] Ch. R. Harris et al. “Array programming with NumPy”. In: Nature
585.7825 (Sept. 2020). [Online] https://doi.org/10.1038/s41586-
020-2649-2, pp. 357–362. doi: 10.1038/s41586-020-2649-2.

87

https://www.simplilearn.com/tutorials/deep-learning-tutorial/perceptron
https://www.simplilearn.com/tutorials/deep-learning-tutorial/perceptron
https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53
https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53
https://www.analyticsvidhya.com/blog/2021/04/is-gradient-descent-sufficient-for-neural-network/
https://www.analyticsvidhya.com/blog/2021/04/is-gradient-descent-sufficient-for-neural-network/
https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141
https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141
https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141
https://syslog.ravelin.com/classification-with-tabnet-deep-dive-49a0dcc8f7e8
https://syslog.ravelin.com/classification-with-tabnet-deep-dive-49a0dcc8f7e8
https://syslog.ravelin.com/classification-with-tabnet-deep-dive-49a0dcc8f7e8
https://arxiv.org/abs/1908.07442
https://doi.org/10.48550/ARXIV.1908.07442
https://vigneshwarilango.medium.com/tabnet-deep-learning-for-tabular-data-architecture-overview-448ced8f8cfc
https://vigneshwarilango.medium.com/tabnet-deep-learning-for-tabular-data-architecture-overview-448ced8f8cfc
https://vigneshwarilango.medium.com/tabnet-deep-learning-for-tabular-data-architecture-overview-448ced8f8cfc
https://indico.cern.ch/event/208901/contributions/1501047/attachments/323314/450930/Cranmer_L3.pdf
https://indico.cern.ch/event/208901/contributions/1501047/attachments/323314/450930/Cranmer_L3.pdf
https://indico.cern.ch/event/208901/contributions/1501047/attachments/323314/450930/Cranmer_L3.pdf
https://cds.cern.ch/record/896115/files/com-phys-2005-052.pdf
https://cds.cern.ch/record/896115/files/com-phys-2005-052.pdf
https://cds.cern.ch/record/2722145
https://cds.cern.ch/record/2722145
10.5281/zenodo.6408044
https://doi.org/10.5281/zenodo.6408044
https://root.cern/manual/python/
https://root.cern/manual/python/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

9. Conclusions
[38] The pandas development team. pandas-dev/pandas: Pandas. Version lat-

est. [Online] https://doi.org/10.5281/zenodo.3509134. Feb. 2020.
doi: 10.5281/zenodo.3509134.

[39] pandas development team. pandas.DataFrame. [Online] https : / /
pandas . pydata . org / docs / reference / api / pandas . DataFrame .
html.

[40] L. Buitinck et al. “API design for machine learning software: experiences
from the scikit-learn project”. In: ECML PKDD Workshop: Languages
for Data Mining and Machine Learning. 2013, pp. 108–122.

[41] A. Paszke et al. “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”. In: Advances in Neural Information Processing
Systems 32. Ed. by H. Wallach et al. http://papers.neurips.cc/
paper/9015-pytorch-an-imperative-style-high-performance-
deep-learning-library.pdf. Curran Associates, Inc., 2019, pp. 8024–
8035.

[42] sklearn.preprocessing.StandardScaler. [Online] https://scikit-learn.
org/stable/modules/generated/sklearn.preprocessing.StandardScaler.
html.

[43] Supervised learning: predicting an output variable from high-dimensional
observations. [Online] https://scikit-learn.org/stable/tutorial/
statistical_inference/supervised_learning.html.

[44] What Is The Difference Between predict() and predict_proba() in scikit-
learn? [Online] https://towardsdatascience.com/predict- vs-
predict-proba-scikit-learn-bdc45daa5972.

[45] Classification: Accuracy. [Online] https://developers.google.com/
machine-learning/crash-course/classification/accuracy.

[46] J. Korstanje. The F1 score. [Online] https://towardsdatascience.
com/the-f1-score-bec2bbc38aa6. Aug. 2021.

[47] Classification: ROC Curve and AUC. [Online] https://developers.
google.com/machine-learning/crash-course/classification/
roc-and-auc. 2020.

[48] S. Narkhede. Understanding Confusion Matrix. [Online] https://
towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62.
May 2018.

[49] K. Choi et al. “Towards Real-World Applications of ServiceX, an
Analysis Data Transformation System”. In: EPJ Web of Conferences
251 (2021). Ed. by C. Biscarat et al. [Online] https://doi.org/10.
1051%2Fepjconf%2F202125102053, p. 02053. doi: 10.1051/epjconf/
202125102053.

[50] A. Held. Template fits:TRExFitter et al. [Online] https://indico.
cern.ch/event/822074/contributions/3471458/attachments/
1865561/3067487/20190619_TRExFitter_AS.pdf. June 2019.

88

https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/tutorial/statistical_inference/supervised_learning.html
https://scikit-learn.org/stable/tutorial/statistical_inference/supervised_learning.html
https://towardsdatascience.com/predict-vs-predict-proba-scikit-learn-bdc45daa5972
https://towardsdatascience.com/predict-vs-predict-proba-scikit-learn-bdc45daa5972
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://towardsdatascience.com/the-f1-score-bec2bbc38aa6
https://towardsdatascience.com/the-f1-score-bec2bbc38aa6
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
https://doi.org/10.1051%2Fepjconf%2F202125102053
https://doi.org/10.1051%2Fepjconf%2F202125102053
https://doi.org/10.1051/epjconf/202125102053
https://doi.org/10.1051/epjconf/202125102053
https://indico.cern.ch/event/822074/contributions/3471458/attachments/1865561/3067487/20190619_TRExFitter_AS.pdf
https://indico.cern.ch/event/822074/contributions/3471458/attachments/1865561/3067487/20190619_TRExFitter_AS.pdf
https://indico.cern.ch/event/822074/contributions/3471458/attachments/1865561/3067487/20190619_TRExFitter_AS.pdf

...................................... 9. Conclusions

[51] D Merkel. “Docker: lightweight linux containers for consistent devel-
opment and deployment”. In: Linux journal 2014.239 (2014). [Online]
https://www.docker.com/, p. 2.

89

https://www.docker.com/

90

Appendices

91

92

Appendix A

Pre-selection formula

Figure A.1: The full version of the pre-selection 2lSS + 1τ in Python code.

93

	Introduction
	Theory
	CERN
	LHC
	ATLAS

	Leptoquark theory
	Cross-section
	Luminosity
	Branching ratio

	Yukawa coupling
	Quarks
	Leptons
	Leptoquarks
	Higgs boson decay similarity
	State-of-the-art research

	Machine learning algorithms
	Boosted decision trees
	Decision tree
	Ensemble learning
	Boosting
	Gradient boosting
	XGBoost
	LightGBM
	CatBoost

	Neural networks
	Perceptron
	Multilayer perceptron (MLP)
	TabNet

	Approach to analysis
	Important concepts
	Confidence level
	Weights
	Significance
	Leptoquark scaling factor

	Analysis diagram
	The aim of the analysis

	Implementation
	Data and pre-processing
	Code
	Introduction
	Important Tools
	ROOT
	NumPy
	Pandas

	Data structure
	Data conversion
	Weights and pre-selection
	Data preparation
	LQ scaling factor

	Data split
	Splitting challenges
	Negative weights
	Cross training-test
	Mass combined for training

	Classification
	Introduction
	Tools and libraries
	Scikit-learn
	Pytorch
	Optuna

	Algorithm hyperparameters
	XGBoost
	LightGBM
	CatBoost
	TabNet
	MLP
	Validation and test
	Hyperparameters and architecture

	Classification
	Accuracy (Acc)
	F1
	AUC
	ROC curve

	Finalization
	Signal versus Background
	Significance
	Confusion matrix

	Analysis results
	Analysis results
	Comparison of classifiers
	Description
	Results
	Conclusion

	All masses combined versus separate masses
	Description
	Results
	Conclusion

	Effect of the dataset size
	Description
	Results
	Conclusion

	Feature selection
	Description
	Results
	Conclusion

	Cross-section limit
	Description
	TRExFitter
	Results
	Conclusion

	Mass prediction
	Description
	Results
	Conclusion

	Conclusions
	Bibliography

	Appendices
	Pre-selection formula

