
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Mission planning system for autonomous
vehicle

Marek Boháč

Supervisor: Ing. David Vošahlík
May 2022

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

465967Personal ID number:Boháč MarekStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Mission planning system for autonomous vehicle

Master’s thesis title in Czech:

Návrh systému pro plánování mise autonomního vozidla

Guidelines:

The goal of this master’s thesis will be to design a mission planning system for autonomous vehicle.The system will consist
of global planning module, that will be responsible for the over-all trajectory planning, and local planning module responsible
for local situation the vehicle is facing at a given moment.The system receives camera-based measurements of surrounding
environment and provides the trajectory plan as a sequence of reference states and vehicle inputs to be tracked.
The thesis will compose of following points:
1) Get familiar with mission planning systems, motion planning, sampling-based trajectory planning methods like RRT and
its variations.
2) Design and implement global and local motion planning systems for autonomous vehicle.
3) The planning systems must follow safety rules and should minimize operation costs.
4) Design of mission planning system combining global and local motion plan.
5) Validate resulting planning algorithm using real world data from sub-scale demonstration platform.

Bibliography / sources:

[1] LaValle, Steven M.: Planning algorithms. Cambridge University Press, 2006.
[2] LaValle, Steven M., and James J. Kuffner Jr.: Rapidly-exploring random trees: Progress and prospects, (2000).
[3] Dieter Schramm, Manfred Hiller, Roberto Bardini – Vehicle Dynamics – Duisburg 2014
[4] Robert Bosch GmbH - Bosch automotive handbook - Plochingen, Germany : Robet Bosch GmbH ; Cambridge, Mass.
: Bentley Publishers

Name and workplace of master’s thesis supervisor:

Ing. David Vošahlík Department of Control Engineering FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 20.05.2022Date of master’s thesis assignment: 28.01.2022

Assignment valid until:
by the end of summer semester 2022/2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. David Vošahlík

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgements

First, I would like to thank my supervisor
Ing. David Vošahlík for his advice and
guidance.

Next, I would like to thank team leaders
doc. Ing. Tomáš Haniš, Ph.D. and
Ing. Jan Čech, Ph.D. for the support
throughout this difficult project.

Finally, I express my thanks to all the
team members Bc. Adam Konopiský, Bc.
Jan Švancar, and Bc. Tomáš Twardzik for
all the work they have done. Without the
endless hours we have spent in the office
working on the project, it would not have
been possible to finish this thesis.

Declaration

I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university theses.

In Prague, 20 May 2022.

v

Abstract

Motion planning is a known challenge
that allows further advancement of
autonomous vehicles. Path-planning
algorithms are well-established and
efficient. However, designing an algorithm
that would plan a state-space trajectory
remains a challenge. This thesis focuses
on designing and developing a motion
planning algorithm for an autonomous
vehicle. The designed random sampling
minimum violation planning algorithm
is a general algorithm that can be
used on multiple nonholonomic models
and respects traffic and safety rules in
compliance with their priorities.

The goal is achieved by implementing
an algorithm that combines random
sampling algorithms (Rapidly-exploring
random tree (RRT)) and Minimum-
violation planning (MVP). The developed
library allowed tests on real hardware of
a subscale platform with recorded data
from the drive, proving computational
efficiency and practical results of the
thesis.

The work is done as part of the team
project which is aimed at designing and
developing a full autonomous vehicle.
Other parts of the pipeline, apart from
motion planning, are not described in this
thesis unless necessary for the goals of the
thesis.

Keywords: motion planning,
autonomous vehicle, Rapidly-exploring
random tree, minimum-violation
planning

Supervisor: Ing. David Vošahlík
Department of Control Engineering FEE

vi

Abstrakt

Algoritmy pro plánování pohybu
autonomního vozidla jsou známým
problémem a jeho vyřešení by znamenalo
významný posun v jejich vývoji. Oproti
plánování cesty, což je problém, na
který máme mnoho efektivních a
rychlých algoritmů, plánování trajektorie
ve stavovém prostoru je stále řešený
problém. Tato závěrečná práce se
zaměřuje na návrh a vývoj plánovacího
algoritmu pro autonomní vozidlo,
který by plánoval trajektorii v jeho
stavovém prostoru. Navržený algoritmus
je obecným algoritmem, který je možné
nasadit na různé typy modelů vozidel
a respektuje dopravní a bezpečností
pravidla a jejich priority.

Navržený algoritmus je kombinací
method postavených na náhodném
vzorkování stavového prostoru vozidla a
metody zvané MVP, tedy plánování které
porušuje nejméně pravidel. Knihovna,
které je vyvinuta v rámci této práce a
která implementuje navržený algoritmus
umožňuje testy na reálné platformě. K
testování jsou použity výpočetní jednotky
z platformy a kromě vytvořených
testovacích scénářů jsou zpracovány také
data získané z provozu vozidla.

Práce je součástí týmového úsilí
k vytvoření plně autonomní testovací
platformy. Autor se jako jediný v
týmu zaměřuje na práci plánovacím
algoritmu, nicméně pokud je to nezbytné,
ostatní součásti autonomního systému a
platformy jsou v této práci také popsány.

Klíčová slova: plánování pohybu,
autonomní vozidla, RRT, MVP

Překlad názvu: Návrh systému pro
plánování mise autonomního vozidla

vii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem definition 2

1.3 Thesis structure 4

2 Motion planning algorithms 5

2.1 Random sampling algorithms 6

2.2 Rapidly-exploring random tree
original and improved version 6

2.3 Minimum-violation planning 9

2.4 Minimum-violation planning with
rapidly-exploring random tree 10

3 Planning algorithm design and
implementation 13

3.1 RRT*-MVP algorithm adaptation 13

3.2 Practical considerations, data and
requirements 18

3.2.1 Global planning system 18

3.2.2 The local planning system . . 20

3.3 Developed library 22

3.3.1 TreeNode 23

3.3.2 Model . 23

3.3.3 RRTGraph 24

4 Subscale platform 27

4.1 Platform base 27

4.2 Hardware architecture 28

4.3 Software architecture 30

5 Algorithm results on testing
scenarios and real-world data 33

5.1 Benchmark tests 33

5.1.1 Local planner 34

5.1.2 Global planner 41

5.2 Processing data from platform . . 42

6 Conclusion 53

A Bibliography 55

B Motion planning library header
files 59

B.1 RRTGraph 59

viii

B.2 Model . 61

B.3 TreeNode 64

ix

Figures

1.1 Autonomous vehicle pipeline 2

2.1 Example of RRT under
kinodynamic model, adopted from
[13] . 7

2.2 Example of simple automaton and
planned path, adopted from [19] . . 10

3.1 Area of planning of global planning
system . 19

3.2 A detailed view of the surface
types . 20

3.3 High-level library overview 26

4.1 Photo of the Losi platform 28

4.2 Hardware overview 29

4.3 Subscale platform pipeline 30

5.1 Dependency of number of nodes on
time of growing the tree 35

5.2 Local planner benchmark scenario
1, underlying mask: undesired surface
(yellow) and preferred surface
(violet) . 36

5.3 Local planner benchmark scenario
1 - tree growth. Red points - nodes,
blue lines - trajectories, white -
chosen path . 36

5.4 Tree with 2500 nodes 37

5.5 Local planner benchmark scenario
1 - final tree with 2500 nodes. Red
points - nodes, blue lines -
trajectories, white - chosen path . . 37

5.6 Local planner benchmark scenario
2, underlying mask: undesired
surface (yellow) and preferred surface
(violet) . 37

5.7 Local planner benchmark scenario
2 - Tree growth. Red points - nodes,
blue lines - trajectories, white -
chosen path . 38

5.8 Local planner benchmark scenario
2 - Tree with 2500 nodes. Red points
- nodes, blue lines - trajectories,
white - chosen path 38

5.9 Local planner benchmark scenario
3, underlying mask: undesired
surface (yellow) and preferred surface
(violet) . 38

5.11 Local planner benchmark scenario
3 - final tree with 2500 nodes. Red
points - nodes, blue lines -
trajectories, white - chosen path . . 39

5.10 Local planner benchmark scenario
3 - tree growth. Red points - nodes,
blue lines - trajectories, white -
chosen path . 39

x

5.13 Planned path with initial
conditions of 1.5 ms−1 40

5.12 State development in zigzag
scenario . 40

5.14 Planned path with initial
conditions of 2.5 ms−1 41

5.15 Dependency of number of nodes
on time of growing the tree 42

5.16 Underlying grid for the global
planner . 43

5.17 Local planner benchmark scenario
3 - tree growth. Red points - nodes,
blue lines - trajectories, white -
chosen path . 44

5.18 Local planner benchmark scenario
3 - final tree with 2500 nodes. Red
points - nodes, blue lines -
trajectories, white - chosen path . . 44

5.19 Cost functions development . . . 45

5.20 Underlying mask classifying
surface into two classes: undesired
surface (yellow) and preferred surface
(violet) . 46

5.21 Growth of the tree. Red points -
nodes, blue lines - trajectories, white
line - chosen path 46

5.22 Tree with 2500 nodes. Red points
- nodes, blue lines - trajectories,
white line - chosen path 47

5.23 Growth of the tree. Red points -
nodes, blue lines - trajectories, white
line - chosen path 47

5.24 Tree with 2500 nodes. Red points
- nodes, blue lines - trajectories,
white line - chosen path 48

5.25 State-space trajectory for chosen
path in test-case 1 and 2 in scenario1
of the local planner 49

5.26 View on image input captured by
the stereocamera 49

5.27 Image processing 50

5.28 Global map with tree (nodes - red,
connections - blue) planned
trajectory (white) and approximate
area captured by image processing
(yellow square) 50

5.29 Local image frame with planned
trajectory (white) 51

xi

Tables

xii

Chapter 1

Introduction

1.1 Motivation

In recent years, massive investments have been made in the development
of autonomous vehicles. The replacement of a driver with an autonomous
system can result in a significant reduction in costs and is expected to prevent
accidents, thus reducing causalities. Connected vehicles can also improve
traffic flow on our congested roads by sharing its intentions and data about
the actual state of the road.

These tasks used to be part of projects such as the DARPA Urban Challenge
[1], but as these projects transition from experiments to roads used by human
drivers, it is necessary to ensure safety by obeying law and other safety rules.
We need to find algorithms that plan vehicle movements while obeying traffic
and safety rules.

The autonomous vehicle pipeline can be divided into three sections. First,
sensing, which is responsible for describing the environment, detecting obstacles,
and determining the pose of the vehicle in the world. Second, there is decision
making. On the basis of the data obtained from the sensing, the vehicle must
decide which actions to perform to achieve its goals. The third and last part
of the pipeline is the execution of the plan.

1

1. Introduction

Figure 1.1: Autonomous vehicle pipeline

This thesis focuses on the decision making process; other parts (sensing and
plan execution) are not within the scope of this thesis. Designing an efficient
decision-making or motion planning algorithm is a well-known challenge. We
can divide motion planning into two main categories based on the time and
distance range. The first is the long horizon (possibly tens or hundreds of
kilometers). The long-horizon plan is usually a high-level plan that describes
(e.g., which street to take). Long-horizon planning usually uses long-range
sensors such as Global positioning system (GPS) and map data. Second, we
have short-horizon planning. The task of planning on small area covered by
short-range sensors such as lidar and camera is more challenging, as the state
space needs to be explored in a shorter time before the vehicle gets out of
the planning area.

The thesis elaborates on both short- and long-horizon planning. The result
of the thesis should be the algorithm that can be used on the real subscale
platform.

1.2 Problem definition

The thesis describes the design and development of a mission and motion
planning system for an autonomous subscale platform. Motion- and mission-
planning algorithms will be part of the pipeline that can control the platform
in a fully autonomous regime. The algorithm should be based on a family
of RRT algorithms accompanied by Linear Temporal Logic (LTL) [2]. The
systems responsible for the recognition of the surrounding environment, the
location, and the execution of the plan (trajectory tracking controller) are
not part of this thesis.

2

.................................. 1.2. Problem definition

An autonomous vehicle must be able to navigate in an unseen environment.
Some information can be provided to the system in the form of map data,
but as it cannot be precise and up-to-date in an ever-changing world, the
vehicle must react to what it senses at the moment. For these purposes, it is
necessary to design a system that achieves a given goal (the vehicle reaches a
given location) while avoiding obstacles and using what is considered to be
true information about the road a few meters in front of the vehicle.

This problem is divided into two tasks which will be solved in the thesis.
First, the motion planning system plans the path using map data. It does
not process information about the environment provided by vehicle sensors
other than localization. It is expected that the global goal will not change
and the car will rarely deviate, thus this system can run on low rate with
low computational requirements. Planning must be based at least on the
kinematics of the vehicle. In this thesis, this system will be referred to as a
global or mission-planning system.

The second motion planning system will process only information provided
by vehicle sensors. The vehicle must always navigate in the environment;
therefore, all constraints raised by planning must be considered soft. All
constraints come with their priority. For example, as the vehicle navigates
through space, it should stay on the road, but this condition has a lower
priority than obstacle avoidance. Hitting an obstacle would mean crash; thus
it should be avoided at all costs. In this thesis, this system will be referred
to as a local planning system.

The local planning system processes data on the road a few meters in front
of the vehicle. Because the vehicle is considered to be moving continuously
and dynamically and because the information provided by the sensing systems
is more accurate at shorter distances, the local planning system should run
at high frequency to process the data before it is out of date and to take
greater advantage of more accurate data. The local planner must also process
the global path provided by the global planner to ensure the achievement
of the global goal. The output of the local planner is directly fed to the
trajectory tracking system; thus, the output trajectory has to comply with
vehicle kinematics or dynamics to be directly executable.

Other requirements on both local and global planning system are raised as it
should be part of onboard system thus communicating with other algorithms
in pipeline, as well as running under limited computational power provided
by embedded hardware. Both the autonomous pipeline and the subscale
platform and its hardware are described in the following chapter.

3

1. Introduction
1.3 Thesis structure

The work is divided into two parts, each consisting of two chapters. In the
first part, the theory and state-of-the-art algorithms are summarized, the
designed algorithm is presented, and the developed library is described. In
the second part, a subscale platform is introduced and the designed and
developed algorithm is tested with simulation and real-world scenarios.

At the end of the thesis, the results are summarized, and the conclusion is
given together with suggestions for future work.

4

Chapter 2

Motion planning algorithms

Motion planning considering system dynamics is a computationally demanding
task. Most of the algorithms developed focus on hard constraints such as a
simple rule of path feasibility. When designing a motion planning algorithm for
an autonomous vehicle, many safety rules with different priorities are required
to be followed. In general, many motion planning algorithms were developed
over the years of study of this field. Motion algorithms can be divided into
three main classes: sampling-based, grid-based, and optimization-based.

Grid-based methods for planning under differential conditions sample state-
space of the model and its inputs in order to generate a state transition system
on which planning can be done. Planning on the grid can then be done with
methods such as A* [3] or Dijkstra [4]. Although grid-based algorithms work
in a deterministic way, they are not suitable as methods for high-dimensional
problems. These methods suffer from the curse of dimensionality.

Optimization-based methods commonly employ optimization techniques to
find a solution to the motion planning task given as a two-point Boundary
value problem (BVP). In real-world problems, the given task is usually non-
convex, which is a problem for most optimization solvers, as these can mostly
solve only convex problems. Commonly used techniques are Model predictive
control (MPC) [qian_motion_2016] or Dynamic programming (DP) [5].

Sampling-based methods are probabilistic methods for finding a trajectory
in a configuration space. Instead of creating a grid in advance, the grid is
gradually created while the algorithm is running. The representation of the
sampled space can vary and depend on the chosen method. Algorithms such

5

2. Motion planning algorithms
as RRT [6] and its variants or Probabilistic road map (PRM) are commonly
used. Algorithms based on PRM or RRT are commonly used in the literature
to generate feasible trajectories under dynamical constraints [7]. Combining
these algorithms with formal language such as LTL, which can be used
to express traffic rules, may provide a computationally efficient algorithm
to handle such complex tasks as navigating a vehicle in an environment
shared with human drivers. For its properties, these methods were chosen as
appropriate for the given task (a justification is given throughout the work)
and will be further described in this thesis.

2.1 Random sampling algorithms

Given problem definition in the Section 1.2, both the planners of the thesis
are subject to the system dynamics. Given the complexity of the problem
and high number of dimensions, the family of the RRT algorithm, introduced
in [6], was chosen as the appropriate method to solve the problem. RRT
was proven computationally efficient [8] and is commonly used in robotics to
solve motion planning for nonholonomic systems [9]. Given its simple data
structure and graph background, it is pruned for fast growth and sampling
of the state space. It is probabilistic complete, and most variations are also
asymptotically optimal [10].

Other random sampling techniques such as PRM (e.g., [11]) or potential
field algorithms (e.g., [12]) do not provide the unique feature of handling
nonholonomic problems of RRT [6].

2.2 Rapidly-exploring random tree original and
improved version

RRT is a randomized data structure for motion planning specifically designed
for systems with nonholonomic constraints. Let us consider that we need
to solve the path planning problem in the continuous configuration space
C, which is, for the sake of simplicity, obstacle free. However, the original
algorithms did not consider an obstacle-free environment; for the purposes of
this thesis, the simplification can be justified by recalling the definition of the
problem in Section 1.2, where it is stated that all constraints of the system
are considered soft; thus, there cannot be an obstacle in the environment. We

6

................ 2.2. Rapidly-exploring random tree original and improved version

Figure 2.1: Example of RRT under kinodynamic model, adopted from [13]

have an initial configuration q0 ∈ C, the final number of vertices in the tree
K, and the time interval ∆t. See Algorithm 1.

Algorithm 1 Original RRT adopted from [6]
Require: q0, K, ∆t;
Ensure: T tree with K vertices;
T .init(q0);
while T .count_vertices() < K do

qrand ← Rand();
qnear ← NearestNeighbour(qrand, T);
u← SelectInput(qrand, qnear);
qnew ← NewState(qnear, u, ∆t);
T .add_vertex(qnew);
T .add_edge(qnear, qnew);

end while

First, the tree T is initialized with the root configuration q0. In the next
step, the Rand function returns uniformly distributed random samples from
C. NearestNeighbour function in the next step finds the closest configuration
in tree T to qrand followed by the SelectInput function, which finds the input
whose trajectory minimizes distance to qnear. Lastly, the NewState function
is called to evaluate the new state with respect to the original sample in the
tree, input, time limit, and differential constraint q̇(t) = f(q, u, t). Tree T is
then updated with this new configuration and new edge.

The original Algorithm 1 is probabilistic complete but it is not asymptotically
optimal. Compared to PRM, it uses a much simpler structure with few vertices.

7

2. Motion planning algorithms
However, like in PRM, the solution is not guaranteed to be optimal. Later,
the improved version of RRT called RRT* [14] solved the issue of optimality.
See Algorithm 2. Recall that all previous assumptions are valid and the
configuration space C is considered obstacle-free.

Algorithm 2 RRT* adopted from [14]
Require: q0, K, ∆t;
Ensure: T tree with K vertices;
T .init(q0);
while T .count_vertices() < K do

qrand ← Rand();
qnearest ← NearestNeighbour(qrand, T);
u← SelectInput(qrand, qnear);
qnew ← NewState(qnear, u, ∆t);
Qnear ← Near(T , qnew);
qmin ← qnearest;
for qnear ∈ Qnear do

c′ ← Cost(qnear) + c(Line(qnear, qnew));
if c′ < Cost(qnear) then

qmin ← qnear;
end if

end for
T .add_vertex(qnew);
T .add_edge(qmin, qnew);
for qnear ∈ Qnear \ {qmin} do

if Cost(qnear) > Cost(qnew) + c(Line(qnew, qnear)) then
qparent ← T .get_parent(qnear)
T .remove_edge(qparent, qnear);
T .add_edge(qnew, qnear);

end if
end for

end while

The start of Algorithm 2 is the same as that of Algorithm 1 until qnew is
created. Once qnew is found, a set of configurations Qnear in tree T is found
within the specified state distance of qnew. The distance usually depends on
the number of vertices in the tree T . In the next step, the algorithm iterates
on the set Qnear and, for each configuration, qnear ∈ Qnear checks the cost of
connecting qnew to the tree through qnear. After finding such a tree vertex,
qnew is connected to the tree through it. The second iteration on Qnear is
then performed. Now, we look for vertices that would have a lower cost if
connected to the tree T through qnew instead of their current parent. If such
a vertex is found, it is rewired.

Finding the best candidate for the parent and then rewiring the tree solves
the problem of optimality, as proved in [14]. The tree is now guaranteed to

8

.............................. 2.3. Minimum-violation planning

be asymptotically optimal. Thus, in a single query, we can find the shortest
and optimal path.

2.3 Minimum-violation planning

Until now, only system dynamics constraints have been considered, leaving
safety and other rules as given in Section 1.2. In this chapter, the transition
of traffic and safety rules to LTL and the adaptation of the RRT* algorithm
will be discussed. Next, we will discuss how priorities can be introduced
to these algorithms as required by the thesis specification. MVP is recent
approach for solving motion planning for autonomous vehicles.

LTL is used in MVP to formulate safety rules. Because we are planning on
a finite time horizon, we can restrict LTL to Finite Linear Temporal Logic
(FLTL). FLTL formula is constructed from:

. finite set of atomic propositions Π. logical operators ¬ and ∨. temporal operators U (until) and N (next)

Using these fundamental operators, we can construct operators such as /land,
=⇒ , ⇐⇒ , true, and false. Also, we can construct the following temporal
operators, such as eventually or always. Let us consider that we have a
finite word w = l1..li..ln ∈ (2Π)n and formula FLTL ϕ over Π and then
if w satisfies ϕ we write w |= ϕ. According to [15], FLTL can be further
reduced to si-FLTLGx formula. This restriction is justified and completely
acceptable according to [16] and [17] where it was proven that traffic rules
can be expressed using si-FLTLGx formulas.

MVP can be described using FLTL as follows. Similarly to feedback
optimization methods approach, robot can be modeled using deterministic
transitions model. The states of the transition system represent the vehicle
configuration. Each transition system state can be assigned a set of atomic
propositions. These propositions describe, for example, conflicts with safety
rules, in the case of this thesis e.g. "Vehicle is on grass" or "Vehicle is conflicting
with obstacle detected by lidar". The task is then defined using FLTL formulas
and atomic propositions used to label the states of the transition system

9

2. Motion planning algorithms

(a) : Planned path avoiding as many
sidewalks and obstacles as possible

(b) : Automaton for rule "Do not
enter sidewalk"

Figure 2.2: Example of simple automaton and planned path, adopted from [19]

together with the priorities of these formulas. MVP is now solved by a trace
on the transition system such that it satisfies as many high-priority tasks as
possible [18].

In previous works such as [19] MVP was solved as follows. Each rule
is translated into a weighted finite automaton. All weighted automata
are combined into a single automaton with respect to their weights and
priorities. Eventually, the weighted product of the transition system and
the combined automaton are calculated. Now, the shortest path can be
found. This approach is computationally demanding and grows exponentially.
Furthermore, because it is based on the transition system, it is significantly
restrictive for high-dimensional systems under differential constraint. In the
next subsection, a state-of-the-art approach will be introduced that combines
the power of RRT and MVP [15].

2.4 Minimum-violation planning with
rapidly-exploring random tree

The state-of-the-art approach suggested in [15] combines the powers of RRT*
described in Section 2.2 and MVP described in Section 2.3 was suggested. As
opposed to the approach suggested in the previous section, instead of creating
the product of the transition model and the weighted finite automaton, which
is the product of the weighted finite automata constructed from safety rules
and is exponential in size, the Kripke structure [20] is built incrementally
using a weighted transition based on safety rules.

RRT algorithm is used to incrementally build the Kripke structure, while
FLTL is used to express safety rules and calculate the weights of the transitions.
See Algorithm 3 adopted from [15]. K is the Kripke structure. Other variables

10

...............2.4. Minimum-violation planning with rapidly-exploring random tree

remain the same as in Algorithm 2. The description of functions follows.

Algorithm 3 RRT*-MVP
Require: q0, K, K;
Ensure: Kripke structure K with K states;
K.init(q0);
while K.count_states() < K do

qnew ← Rand();
Qnear ← Near(K, qnew);
qmin ← qnearest;
min_cost← Cost(qnearest) + c(qnearest, qnew);
for qnear ∈ Qnear do

if steer(qnear, qnew) ̸= ∅ then
c′ ← Cost(qnear) + c(qnear, qnew);
if c′ ≺ Cost(qnear) then

qmin ← qnear;
min_cost← c′;

end if
end if

end for
K.add_transition(qmin, qnew, min_cost);
K.add_state(qnew);
for qnear ∈ Qnear \ {qmin} do

if steer(qnew, qnear) ̸= ∅ then
c′ ← Cost(qnew) + c(qnew, qnear)
if c′ ≺ Cost(qnear) then

qparent ← K.get_parent(qnear)
K.remove_transition(qparent, qnear, c′);
K.add_transition(qnew, qnear);

end if
end if

end for
end while

Steer function returns trajectory from first to second argument if such
exists and is finite. The trajectory is cropped if it is longer than the steer
time limit T . The Cost function computes weights of all weighted transitions
on the trace from the state to the root. The function c calculates the vector
cost of the transition from the first state to the second state. The cost is
based on the safety rules described using the formula FLTL. The comparison
of costs is always considered lexicographic, denoted by the symbol ≺, which
will be used in this thesis to express lexicographic less.

Algorithm 3 overcomes issues of most of the algorithms mentioned above.

11

2. Motion planning algorithms
Given the properties of the RRT* algorithm, it is probabilistic complete
and asymptotically optimal. It is suitable for nonholonomic problems and
is computationally efficient. Given the properties of MVP, it plans under
the safety rules specified in FLTL, which is sufficient for traffic rules with
different priorities, always preferring traces with lower cost in higher priority
rules. As such, it was chosen as an appropriate solution to the problem of
this thesis and will be implemented in the following chapter.

12

Chapter 3

Planning algorithm design and
implementation

Based on the theory given in the previous chapter, the motion planning
algorithm is designed. Design and development takes into account the
practical limitations of the task and platform that are used for testing and
final deployment.

For the purpose of this thesis, other autonomous systems than motion
planning are considered to be working but are outside the scope of the
thesis. However, a full pipeline is developed as part of the team project; thus,
requirements for output of the motion and mission planning system will be
raised, as well as requirements for input during the project, and are part of
this thesis.

Finally, the motion planning algorithm will be implemented as a general
library allowing for future development and multicase usage.

3.1 RRT*-MVP algorithm adaptation

Changes and adaptations of the RRT*-MVP algorithm introduced in Algorithm 3
in this section. The main goal of this thesis is to design and develop a motion
planning system that operates on the vehicle specified in the Chapter 4.

13

3. Planning algorithm design and implementation
Simplifications must be made so that the system works as expected, ensuring
safe operation of the vehicle in fully autonomous mode.

The software and hardware architecture of the subscale platform is limited
in computing time. From a hardware point of view, the main computing
unit has low single-core computing capability. However, it offers a fast and
reasonably large memory. From a software point of view, motion planning
is time-constrained. The local planner has 500 ms not only to compute the
trajectory, but also to handle all necessary communication with other systems.
The more efficient the planner is in time, the more samples it can generate.
Given the property of probabilistic completeness and asymptotical optimality,
more samples provide a better trajectory.

Let us recall the Steer function used in Algorithm 3. The Steer function
returns the trajectory between two states if such a trajectory exists and is
finite. Both variants of the planner developed in the thesis use dynamics
models, which means the Steer function must solve two-point BVP [21].

Finding an analytical solution of two-point BVP given by both models
is computationally demanding because both models have nonlinear terms.
In control theory, the two-point BVP is commonly solved using shooting
methods, the gradient method, and quasilinearization [22]. All of these
methods are computationally exhaustive. Solving the two-point BVP each
time the steering function is evoked in Algorithm 3 would result in a significant
demand for computing power [23]. Instead of creating a bottleneck in the
algorithm and lowering its performance, a different approach is chosen.

Input sampling is introduced. In this way, BVP is reduced to Initial
value problem (IVP), which can be solved with numerical integrators and
the problem of finding the closest point. Furthermore, initial states can
be sampled, which would result in loss of precision, but now all possible
trajectories can be pre-computed and saved in memory before running the
algorithm, sacrificing memory for speed. Due to the geometric meaning
of some states (position x and y and heading ϕ), IVP can be considered
independent of such states, allowing transformation of precomputed trajectories
to actual initial values. IVP has to be solved only for states that would actually
change its solution. Then the precomputed solution can be transformed. In
the case of the models used in this thesis, the solution of IVP depends only
on the velocity v in the local planner. Although this approach suffers from a
slight loss of precision given by sampling both input and state, it is greatly
overweighted by computational benefits.

Now, the first for loop of the algorithm is unnecessary. The algorithm is

14

............................3.1. RRT*-MVP algorithm adaptation

now randomly selecting the configuration to cycle over near nodes to find
the closest point in the pre-computed trajectories. Let us optimize random
selection to save computing time as the main limiting factor. Heuristics are
commonly used to improve the growth of the tree in a desired direction. The
improvement in sample selection is made as follows. First, a random sample
and a set of near nodes are generated in the same way as in the original
Algorithm 3. Second, near-nodes are sorted in ascending lexicographical
order on the basis of their cost. Lastly, a random endpoint from a random
precomputed trajectory originating in the node that is the least violating
near the node is selected as the new node.

The approach is based on the following assumptions. There is a presumption
that the least violating near node will produce a better trajectory in terms
of MVP as the basis is already the least violating near node. The second
assumption is that with tree growth, the set of near nodes occupies a smaller
subspace in configuration space. If the subspace given by the set of near
nodes shrinks with the growing tree, the probability of expanding nodes that
are relatively more violating will rise.

The final Algorithm 4 is presented together with the supporting methods
explained in Algorithm 5, Algorithm 6, Algorithm 7, and Algorithm 8. All
algorithms are commented on in the following paragraphs.

Algorithm 4 Adjusted RRT*-MVP
Require: q0, T , K;
Ensure: The tree T with K nodes;
K.init(q0);
while K.count_nodes() < K do

qrand ← Rand();
Qnear ← Near(T , qrand);
qparent ← SelectNode(Qnear);
qnew ← SelectRandomTrajectory(qparent);
cost← T .get_cost(qparent) + c(qnear, qnew)
T .add_edge(qparent, qnew, cost);
T .add_node(qnew);
Qnear ← Near(T , qnew);
for qnear ∈ Qnear \ {qparent} do

Rewire(T , qnew, qnear)
end for

end while

Algorithm 4 is described in the previous section. It creates a tree T with
K nodes with root in configuration q0. At each iteration, a random sample
is created from the uniform distribution within the configuration space C.
The set of near nodes Qnear is then found using the Near() method, which

15

3. Planning algorithm design and implementation
is described in Algorithm 7 and the following paragraphs. The SelectNode()
method then selects the configuration qparent from the tree T to be expanded.
The method is described in Algorithm 5 and in the following paragraphs.
The SelectRandomTrajectory() method described in Algorithm 6 and in the
following paragraphs then selects a new configuration qnew using pre-computed
trajectories originating in configuration qparent. Configuration qnew is then
added to the tree. The set Qnear is then reset with a new value using the
Near method() and the configuration qnew. The tree T is then rewired in the
set Qnear using the Rewire() method described in Algorithm 8 and in the
following paragraphs. In this way, the tree is kept asymptotically optimal.

Algorithm 5 The SelectNode method used in Algorithm 4
Require: Qnear;
Ensure: qbest is the most promising configuration in the set Qnear;

qbest ← null;
min_cost←∞;
for qnear ∈ Qnear do

c← T .get_cost(qparent);
if c ≺ min_cost then

qbest ← qnear;
min_cost← c;

end if
end for

The SelectNode method, described with Algorithm 5, selects the most
promising configuration qbest in the set Qnear. The most promising configuration
qbest is selected as the lexicographic minimum of the costs of the configurations
in the set Qnear. The cost of each configuration is recovered from the tree T ,
therefore, it is also dependent on the trajectory from the root of the tree T to
the selected configuration. In other words, the cost also depends on the way
in which the configuration is reached, not only on the configuration itself.

Algorithm 6 The SelectRandomTrajectory method used in Algorithm 4
Require: qparent;
Ensure: Configuration qselected is randomly selected node that succeeds

qparent;
qselected ← null;
input← SelectRandomInput(qparent);
selected_trajectory ← GetTrajectory(qparent, input);
max_time← min(length(selected_trajectory), steer_time_limit);
rand_time← RandomUniform(sampling_period, max_time);
qselected ← selected_trajectory.get_configuration_at_time(rand_time);

The SelectRandomTrajectory method, described with Algorithm 6, selects
the configuration qselected that is preceded by the configuration qparent. First,
a random input is selected from the sample range. Second, the pre-computed
trajectory, which is a solution to IVP qparent and a constant input selected

16

............................3.1. RRT*-MVP algorithm adaptation

in the previous step. The trajectory is cropped to a random length. The
trajectory length is selected randomly from the uniform distribution from the
sampling period of the model (the trajectory contains at least one sample)
to the maximum time. The maximum time is set to the minimum of the
two values: the current trajectory length and steer_time_limit which is a
tunable parameter used to reduce the maximum expansion of a single node.
The configuration qselected is the configuration from the selected trajectory at
the time determined in the previous step.

Algorithm 7 The Near method used in Algorithm 4
Require: Tree T , configuration q;
Ensure: Set of configurations Q near configuration q;

Q← ∅;
for qi ∈ T .get_all_nodes() do

if weighted_state_distance(q, qi) < dist_lim(T .count_nodes()) then
Q← Q ∪ {qi};

end if
end for

The Near method, described with Algorithm 7, creates a set Q near the
configuration q. The algorithm is straightforward; If the distance between
the configuration q and the other configuration qi of the tree is less than the
distance limit, qi is added to the set Q. A remarkable part of this method is
that the state distance is weighted. These weights are use-case specific and,
moreover, model specific. For example, given the definition of model used
in the global planner, we place greater stress on the distance in the states
x, y, and ϕ, but the velocity v has a lower weight. The main reason is that
the tracking algorithm can tolerate jumps in the speed reference but jumps
in heading and position main cause an instability. The second remark is on
the distance limit. The distance limit is based on the number of nodes in
the tree. It is a non-linear nonincreasing function; reasoning behind this was
provided in the previous section. The function and its parameters are based
on the use case and the configuration space and should be tuned together
with steer_time_limit parameter used in the previous paragraph.

Algorithm 8 The Rewire method used in Algorithm 4
Require: T , qnew_parent, qchild;
Ensure: Optimal tree T ;

c′ ← T .get_cost(qnew_parent) + c(qnew_parent, qchild)
if c′ ≺ T .get_cost(qchild) then

qparent ← T .get_parent(qchild)
T .remove_edge(qparent, qchild, c′);
T .add_node(qnew_parent, qchild);

end if

The Rewire method, described with Algorithm 8, rewires the configuration
qchild to the configuration qnew_parent if it had been lexicographically lower

17

3. Planning algorithm design and implementation
cost than it currently is. The cost of qchild is calculated with respect to the
trajectory of the root configuration; therefore, it also depends on the way the
configuration was reached in the tree T and not only on the configuration qchild

itself. Rewiring the tree T after adding each node ensures the asymptotical
optimality of the algorithm.

This algorithm combines the powers of RRT* and MVP. It plans under
differential constraints; other constraints are soft constraints with priorities.
This algorithm can solve the problems defined in Section 1.2.

3.2 Practical considerations, data and
requirements

In this section, the practical consideration given by the intended use case
on the subscale platform is introduced. In addition, necessary details on the
input of the algorithm given by the image processing and the output required
by the trajectory tracking algorithm are introduced.

3.2.1 Global planning system

At the time of design and development, it is assumed that the Internet
connection is not available and that the vehicle will drive in a limited
environment; therefore, important landmarks and coordinates are given
together with the task and are available to the executed program. However,
given that the vehicle uses Differential global positioning system (DGPS),
the origin of the coordinate system map will change at each start based on
the position of the base station and the global path must be represented with
respect to this frame.

The assumed area for the global planner is captured in Fig. 3.1. It is in
the inner courtyard of the Czech Technical University in Prague in Karlovo
náměstí 13, Praha 2.

The global planning system is subject to dynamic constraints expressed as

18

..................... 3.2. Practical considerations, data and requirements

(a) : Map view [24] (b) : Orthophoto map view [25]

Figure 3.1: Area of planning of global planning system

Dubins vehicle [26]:

ẋ = V cos θ (3.1)
ẏ = v sin θ (3.2)

θ̇ = V
sin δf)

L
(3.3)

where x and y are coordinates in the plane, θ is the direction of the vehicle,
V is the constant speed, and δf is input of the steering angle of the front
wheels. The constant L is the distance between the axles.

Dubins vehicle model was selected as the best because of its simplicity.
The global planner works as a reference generator for the local planner. It
needs to guarantee that the trajectory is feasible and the vehicle can follow it,
but at the same time, it should be simplified as much as possible to reduce
the dimensionality of the problem.

The priority of constraints for the global planning system is as follows:..1. Surface type..2. Energy consumption

This order is straightforward and ensures that the vehicle avoids undesirable

19

3. Planning algorithm design and implementation

(a) : Sett paving (b) : Grass (c) : Paving stone

Figure 3.2: A detailed view of the surface types

surfaces at the possible cost of a higher input cost.

3.2.2 The local planning system

The local planning system should be developed as a proof of concept and
must adapt to future change in input. For the purposes of this thesis, the
inputs for the local planning system are the Lidar scan and the occupancy
grid of the 4x4 m area in front of the vehicle classifying surface of the road.
As visible in Fig. 3.1, it has 3 surface types:

.Grass in the middle. Sett paving around the central square that serves as a service road. Flat and smooth paving stones in the central square that serves as a
footpath

A detailed view of the surface types is shown in Fig. 3.2. Only pavement
stones are considered desirable surfaces for driving; others will be negatively
classified and should be avoided.

The local planning algorithm must be able to work with different types of
input used either as soft constraints or as dynamic constraints. It is assumed
that in future work this local planning system will be used in an unknown
environment with input given by the predictor of surface friction [27] and
should be easily interchangeable by reusing the planning algorithm itself. This

20

..................... 3.2. Practical considerations, data and requirements

requirement ensures the continuous development of the autonomous system
and raises high standards in the architecture and design of the algorithm and
the planning system.

As specified in Section 1.2, the algorithm has to prioritize the inputs in
the following order (the first has the highest priority):..1. Lidar scan and obstacle avoidance..2. Surface classification..3. Global goal reference..4. Energy consumption

The order ensures that any obstacle detected by lidar is avoided at all other
costs. The vehicle will drive on the desirable surface unless it is obstructed
by the aforementioned obstacle detected by lidar. The global goal is injected
to direct the growth of the tree in a desirable direction. The different order
of priorities and its results will be discussed in the following sections and
chapters.

The local planning algorithm is subject to the following dynamic constraints
of the kinematic model:

ẋ = v cos θ (3.4)
ẏ = v sin θ (3.5)
θ̇ = u (3.6)
v̇ = a (3.7)

where states x and y are coordinates in the plane, θ is the angle of direction
(or yaw), and v is the speed of the vehicle. The input a represents the
acceleration of the vehicle and the input u is the yaw rate.

Compared to the model used in the global planner, the yaw rate is considered
as direct input instead of being calculated from the steering angle. Although
it may seem counterintuitive, let me first remind you that the rear wheels
can also be steered. The yaw rate is calculated from both steering angles as
follows.

θ̇ = v
sin (δf − δr)

L cos δr
(3.8)

where δf and δr is the steering angle of the front and rear wheels, respectively,
v is the vehicle velocity and L is the axle distance. Because the kinematic

21

3. Planning algorithm design and implementation
model does not have state in relation to the side-slip angle of the vehicle,
aligned-steering is never considered and vehicle can only be counter-steering.

The input range of the yaw rate is set so that the maximum yaw rate is equal
to the full counter-steering of the vehicle at the lowest considered velocity.
With increasing speed, the vehicle can achieve the maximum yaw rate with
decreasing steering angles. Because the platform used is overactuated, it
can easily lose traction. This way the maximum steering angle is limited by
the velocity of the vehicle; thus it is ensured that maneuvers with shorter
radius of the turn are preformed at lower speeds; therefore, operation of the
autonomous is much safer.

Now, the vehicle will have an incentive to brake or accelerate. If same way
to compute the yaw rate as in the global planner model

θ̇ = V
sin δf

L
(3.9)

would be used, then vehicle could always make the turn with the shortest
possible radius at any speed. Now, the only way to make the turn with the
shortest radius is to decelerate to the lowest speed.

3.3 Developed library

With this section, we get to the second part of the thesis. The practical
approach to Algorithm 4 introduced in the previous section will be discussed.
The algorithm needs to be written in code and run on an embedded computational
unit. The algorithm was designed with the help of Python3, but, as expected,
performance wise, it was insufficient.

The algorithm was incorporated into a single library written in C++ [28].
This approach allows modularity and facilitates future development. The
library was used for both the benchmark scenarios and the ROS wrapper
used on the platform discussed in the next chapter. The library contains 3
classes that are used to construct the tree.

In the practical approach, using formulas FLTL or building finite automatons
is inefficient. It is a useful concept for the theory and design of the algorithm,
but implementing it would mean that all nodes would have to be labeled with
atomic propositions and then cycle over the atomic proposition to assign cost
to the node. Instead, we simplify the implementation into a single run through

22

...................................3.3. Developed library

a set of cost functions. The result is the same, while saving computational
time.

All classes are heavily based on the Eigen library [29], which is used for
matrix operations.

3.3.1 TreeNode

TreeNode is a simple class that is used to store the data of the node in the
tree. Saves all necessary node description such as parent node, trajectory
from the parent node, cost of the trajectory from the parent, and the final
configuration.

It provides a few useful methods. The user can ask for the cost and time
to the parent node. These are recursive methods that recursively query the
cost or time to root from the parent node and add the saved cost or time of
the current node from the parent. The recursive approach is taken because
of tree rewiring. Each time the node is rewired, the cost or time in all nodes
that succeed it must be updated. Due to the simplification of the class and
the better maintainability of the tree, the recursive approach was chosen as
the best alternative. Another method is used to generate the Yaml [30] node
to log node to postprocess the data and debug the algorithm.

TreeNode is also equipped with the necessary getter and setter functions.
For full interface description, check the header files in the Appendix of this
thesis. For a high-level overview of the library, see Figure 3.3.

3.3.2 Model

The Model class is an abstract class. It creates a dynamic model that is
passed to the RRTGraph class described in the following section. Model class
is used to create the model of a dynamic agent for which planning should be
done.

The class provides a method that must be overridden by dynamic constraints.
This function is used in the other methods to compute the trajectories. It
also implements methods that directly copy the methods used in Algorithm 4,

23

3. Planning algorithm design and implementation
namely, the state distance and select random trajectory functions. The
state distance can also be overridden to completely change the method of
computing the state distance; otherwise, the method computes the distance
using a standard norm with weights on individual states.

d =
√∑

i

wi(xi − yi)2 (3.10)

where d is the weighted distance between the configurations x and y, wi is
the weight of the ith state, xi and yi is the ith state of the first and second
configurations, respectively.

The model class also precomputes the trajectories by numerical integration
IVP. The trajectory is then stored in the object and used by other methods
in the class.

The class also provides convenient methods to check whether the state is
feasible and to generate random configurations, since it basically constructs
the configuration space C. Some of the attributes passed as constructor
arguments were also mentioned in previous sections as tunable parameters,
namely, the steer time limit and sampling period.

The model class is also equipped with a function that can generate the yaml
node as a description of the model to postprocess the data and debug the
algorithm. It is also equipped with the necessary setter and getter functions.
For full interface description, check the header files in the Appendix of this
thesis.

3.3.3 RRTGraph

RRTGraph is the last class in the library. It is a wrapper for the aforementioned
Algorithm 4. From a user point of view, it is a simple library with only a
few methods. Once object is created with Model class object and TreeNode
object used as root. The user can call the method to run Algorithm 4 to
achieve the specified number of nodes, run a single attempt adding a single
node, or retrieve all nodes in the tree, or query directly for a solution to the
path planning problem.

The class is also equipped with the method of generating a yaml node of
the tree, which is constructed as a sequence of yaml nodes from tree nodes.

24

...................................3.3. Developed library

For full interface description, check the header files in the Appendix of this
thesis.

In the following chapter, results obtained while using this library will be
presented and properties of Algorithm 4 will be discussed on examples.

25

3. Planning algorithm design and implementation

RRTGraph

Nodes

Main agent

Sampling method

Add sample

TreeNode

States

Trajectory from parent

Time to parent

Parent node

Input

Cost to root

Time to root

Rewire node

Model

Steer time limit

Dynamic constraints

Inputs

Precomputed trajectories

Compute trajectories

Select random trajectory

Create random configuration

State distance

Check feasibility

Create tree with n nodes

Figure 3.3: High-level library overview

26

Chapter 4

Subscale platform

The subscale platform used for testing is described in this section. The
algorithm was designed to run on the platform. Respectively, the platform is
used to validate the algorithm in real-world scenarios.

4.1 Platform base

The autonomous vehicle is built on the Losi 1:5 DBXL-E platform [31] which
was redesigned and rebuilt for the purposes of this project [32]. The redesigned
platform has each wheel individually steered. It is driven by the rear wheels.
The fully loaded vehicle weighs 22.5 kg and can reach speeds of more than
10 ms−1. The power to the motors is delivered from two 4S LiPo batteries.
Another 4S LiPo battery is used to power the main computational unit, and
the vehicle also has a 5V source for ultra-low voltage units.

The platform is equipped with the following sensors (only relevant to the
topic of the thesis are presented):

. Stereolabs camera’s ZED2 stereocamera. Emlids’s Navio2. Hokuyo’s URG-04LX-UG01 lidar

27

4. Subscale platform...................................

Figure 4.1: Photo of the Losi platform

. 4 hall effect sensors for accurate measurement of wheel’s rotations. DGPS with two antennas on vehicle for accurate localization and heading

The platform is also equipped with an RC controller and is capable of
running under manual command. This ability was kept, and the autonomous
mode is an optional mode that can be switched on and off anytime.

4.2 Hardware architecture

Platform was equipped with the following computing units:

. NVIDIA’s Jetson AGX Xavier

28

.................................4.2. Hardware architecture

Figure 4.2: Hardware overview

. Raspberry Pi 4

. Raspberry Pi 4 with Navio2

.Arduion Nano

. STM Nucleo

NVIDIA Jetson Xavier is the main processing unit for the autonomous
system and is the unit that handles computing of both global and local
planners. Raspberry Pi 4 and Raspberry Pi 4 with Navio2 shield are used
for lower control of motor and steering; these are also for manual control
mode. STM Nucleo and Arduino Nano are lower processing units which do
not provide computation power for autonomous system, but process data
from sensors.

As illustrated in Fig. 4.2, sensor data are available to Raspberry Pi 4 over
UART at 100Hz frequency. Raspberry Pi 4 then processes these data and
provides the necessary information to the processes running on Jetson AGX
Xavier.

29

4. Subscale platform...................................
4.3 Software architecture

Autonomous system uses ROS Foxy middleware [33, 34] to handle communication
and data recording. The distribution of the nodes on the computation units
and all nodes can be seen in Fig. 4.3. As can be seen, NVIDIA Jetson Xavier
handles most of the computations of the autonomous system. For this reason
and because NVIDIA Jetson Xavier is commonly used in these projects, it
will be used for benchmarking of planning algorithms.

The autonomous system follows a standard pipeline in which the camera
image is processed, where the surface is segmented and labeled [35]. The
global planning algorithm receives the position. The local planning algorithm
uses processed data from the camera and the lidar, as well as velocity and
position. Local planning algorithm also processes the planned global route
in the global planning node. The local planner’s output is then fed into the
trajectory tracking algorithm [36]. Now, for safety purposes, the pipeline that
processes commands and controls motors and steering servos is running on
the Raspberry Pi 4. This way if higher functions of the pipeline or hardware
itself stop working, the vehicle is still controlled via Raspberry Pi 4. It also
processes sensors and GPS signals and provides odometery [37]. As NVIDIA
Jetson Xavier is quite occupied by processes, it is more pruned to latching
and failing, separating direct motor control to Raspberry Pi 4 ensures that it
has enough computation capacity at all times and can shut down the vehicle
if autonomous system fails.

Figure 4.3: Subscale platform pipeline

The output frequency of the image processing is set to 2 Hz. This frequency
is given by the method used to process the image and compromises the

30

................................. 4.3. Software architecture

computational demands of all systems running on NVIDIA Jetson Xavier.

Most of the codebase is written in C++17, but some of it is written in
Python3. The algorithm used in this thesis was designed and tested in
Python3, but all the results presented in this thesis are from C++17, which
is deployed in the platform.

31

32

Chapter 5

Algorithm results on testing scenarios and
real-world data

Practical usage of the library designed and described in previous chapter is
presented in this chapter. Test scenarios were designed to test the desired
behavior of the algorithm. These scenarios and its results are shown in the
Section 5.1. Test were done on the platform specified in Chapter 4. That is,
benchmark tests were performed on the Nvidia Jetson Xavier AGX unit.

In Section 5.2, the results of the processing of real-world data are shown.
The data were post-processed although the algorithm is running properly on
the unit itself. The reasons for this are purely practical. While running on
the subscale platform, splitting the time between computation and logging
data necessary to generate figures for the thesis would severely degrade the
algorithm performance. Therefore, the input data is recorded, as these are
recorded all the time for debugging purposes, and the output presented was
not computed while the full pipeline was running. The performance of the
algorithm during post-processing is capped by the performance experienced
while running the pipeline.

5.1 Benchmark tests

In this section, benchmark tests are presented. Benchmarking was performed
on the Nvidia Jetson AGX Xavier computing unit. Tests are standalone

33

5. Algorithm results on testing scenarios and real-world data
scenarios that are run multiple times as proofs of the correct design of the
algorithm and performance tests.

Note that the graphs in this section show the planned path in the plane.
Planning is carried out in the configuration space of 4 or 3 dimensions for the
local or global planner, respectively, which means that even if some nodes
shown in the figures below overlap in the x-y plane, they are not the same
configuration.

5.1.1 Local planner

Local planner benchmark test is done on the designed aritificial input from
image processing system. These were chosen so that they stretch the algorithm
and show that the algorithm is well designed. In the following text, each
scenario is described and its purpose is explained.

The local planner uses two inputs as given by the model described in
Section 3.2. Each input has 21 samples. The only state that must be sampled
for the precomputation of the trajectories is the velocity that is sampled with
step of 0.1 ms−1 within range [0.5, 3.0]. The area is limited to 4x4m square
and the ranges x and y are set to [0, 4] and [−2, 2], respectively.

The local planner always starts to plan from the point (0, 0) with the
heading of 0 radians. The image is captured in the vehicle coordinate frame,
so no further transformation is needed. Another remark on the grid is that
for the purposes of the planner, the grid is dilated, so that vehicle dimensions
are taken into account.

Before diving into scenarios, some global properties of the algorithm can
be analyzed. In Figure 5.1, the dependence of the nodes in the tree on
the time of growth is shown. The more the configuration space is sampled,
the more samples might be rejected because they conflict with the already
sampled configuration. This gives the following non-linear dependency of
number of nodes in tree on time of the growth. For each data point, 100 runs
were performed. The vertical line represents the standard deviation of the
execution times.

All scenarios selects tree with 2500 nodes as final node. This threshold
was chosen because 2500 nodes is reasonable number of samples given the
dimensions of the area. Also these scenarios should test viability of the

34

................................... 5.1. Benchmark tests

Figure 5.1: Dependency of number of nodes on time of growing the tree

implementation for the subscale platform and as specified in Section 3.2 tree
is reset (new data is received) approximately every 0.5 seconds thus 2500
nodes is reasonable goal given data shown in Figure 5.1.

Scenario 1 - straight

In this scenario, the vehicle faces the straight segment of the road. The
purpose of this scenario is to prove that the tree is built correctly and that
the planner can navigate in a relatively tight corridor. The underlying grid
for this scenario can be seen in Figure 5.2. The vehicle has an initial speed of
0.5 ms−1, which is the minimum speed of the model. The global goal is set
to the point (4.0, 0.0).

The progress of tree growth can be seen in Figure 5.3. The tree keeps
a relatively straight line and navigates successfully through the grid. The
correct branching of the tree can also be seen, as the tree is expected to be
branching from the center line. The final tree with 2500 nodes and the best
trajectory is shown in Figure 5.5.

35

5. Algorithm results on testing scenarios and real-world data

(a) : Underlying mask classifying surface
- original

(b) : Underlying mask classifying surface
- dilated

Figure 5.2: Local planner benchmark scenario 1, underlying mask: undesired
surface (yellow) and preferred surface (violet)

(a) : Tree with 500 nodes (b) : Tree with 1000 nodes

Figure 5.3: Local planner benchmark scenario 1 - tree growth. Red points -
nodes, blue lines - trajectories, white - chosen path

Scenario 2 - turn

In the second scenario, the ability of the model and the tree to generate a
curve is shown. The local goal is set at (2.0,−2.0) The underlying grid is
shown in Figure 5.6. The resulting tree is shown in Figure 5.7. For a further
test of the planning ability, the vehicle has an initial speed of 3.0 ms−1, which
is the maximum speed allowed by the model.

In Figure 5.7, growth of the tree and all random samples togheter with
connecting trajectories are shown. As seen in Figure 5.8, where the final tree
is shown, the planned trajectory takes the turn correctly.

36

................................... 5.1. Benchmark tests

Figure 5.5: Local planner benchmark scenario 1 - final tree with 2500 nodes.
Red points - nodes, blue lines - trajectories, white - chosen path

(a) : Underlying mask classifying surface
- original

(b) : Underlying mask classifying surface
- dilated

Figure 5.6: Local planner benchmark scenario 2, underlying mask: undesired
surface (yellow) and preferred surface (violet)

Scenario 3 - zigzag

In the third scenario, the vehicle is headed for a zigzag road. The vehicle
has the lowest possible speed of 0.5ms−1 in the beginning. The grid and its
dilated variant are captured in Figure 5.9. Tree growth and final results are
in Figure 5.10 and Figure 5.11, respectively.

37

5. Algorithm results on testing scenarios and real-world data

(a) : Tree with 500 nodes (b) : Tree with 1000 nodes

Figure 5.7: Local planner benchmark scenario 2 - Tree growth. Red points -
nodes, blue lines - trajectories, white - chosen path

Figure 5.8: Local planner benchmark scenario 2 - Tree with 2500 nodes. Red
points - nodes, blue lines - trajectories, white - chosen path

(a) : Underlying mask classifying surface
- original

(b) : Underlying mask classifying surface
- dilated

Figure 5.9: Local planner benchmark scenario 3, underlying mask: undesired
surface (yellow) and preferred surface (violet)

38

................................... 5.1. Benchmark tests

Figure 5.11: Local planner benchmark scenario 3 - final tree with 2500 nodes.
Red points - nodes, blue lines - trajectories, white - chosen path

(a) : Tree with 500 nodes (b) : Tree with 1000 nodes

Figure 5.10: Local planner benchmark scenario 3 - tree growth. Red points -
nodes, blue lines - trajectories, white - chosen path

The vehicle successfully takes both turns but, therefore, slightly breaks
the rule of not going on the undesired surface, but as soon as possible, the
vehicle is navigated on the road and starts copying its shape. Note that the
underlying grid shown is not dilated. As can be seen in Figure 5.12, the
vehicle gradually increases speed, but is capped at 1.5 ms−1.

39

5. Algorithm results on testing scenarios and real-world data

(a) : Tree and best path (b) : State trajectory

Figure 5.13: Planned path with initial conditions of 1.5 ms−1

Figure 5.12: State development in zigzag scenario

For comparison, two scenarios with the same underlying grid but different
initial conditions. First, in Figure 5.13, the vehicle starts at a speed of 1.5
ms−1, and second, in Figure 5.14, the vehicle starts at a speed of 2.5 ms−1. In
both, it can be seen that the vehicle successfully decelerates and accelerates
keeping optimal speed and plans the optimal route.

40

................................... 5.1. Benchmark tests

(a) : Tree and best path (b) : State trajectory

Figure 5.14: Planned path with initial conditions of 2.5 ms−1

5.1.2 Global planner

Given the problem that the global planner is solving, the only way to
benchmark the global planner is by changing its initial pose. In this section,
multiple scenarios with different poses are tested to demonstrate the viability
of the algorithm. The description of each scenario is given in its subsection,
respectively.

Similarly to the local planner, in Figure 5.15, the dependence of the
number of nodes in the tree on the growth time is depicted. The dependence is
exponential. Vertical lines represent the standard deviation of the measurements.
For each data point, 100 runs were performed.

The underlying grid is the same for all scenarios and is captured in
Figure 5.16.

Scenario 1

In this scenario, the vehicle is placed at (−35.0, 15.0) with a heading of −π
2

radians. The goal is set to (0, 0). This scenario is a general test of the
planner’s ability to plan across the entire grid. Tree growth can be seen in
Figure 5.18. The results are shown in Figure 5.17.

The heurstic bias can be seen in tree growth. Tree prefers to create
samples on the paving stone, occasionally exploring the grass. Although grass
sections are not explored extensively, it is assumed that the vehicle will not

41

5. Algorithm results on testing scenarios and real-world data

Figure 5.15: Dependency of number of nodes on time of growing the tree

be commanded to navigate to the grass segment; therefore, a global goal will
be set on the paving stone footpaths.

The development of the cost based on the number of nodes in the tree
is shown in Figure 5.19. Recall that the order of the cost functions follows:
surface, distance from the global goal, and input. Vertical lines are the
standard deviation of the cost over 100 runs. As seen, at the first level, the
highest priority cost function increases. This is caused by the distance to the
global goal; At fewer nodes, a node farther from the goal is selected. The
farther away from the goal, the less chances you have of violating the highest
priority rule. After enough nodes are selected to select the path leading to
the global goal, the highest priority rule cost function starts to decrease.

5.2 Processing data from platform

In this section, selected cases captured in the data sets are analyzed and shown.
Data were captured live and the trajectory was computed live; however, the
results presented here are generated later. Reasoning is given at the beginning
of the chapter. The general performance of the ROS wrapper for planners is

42

............................. 5.2. Processing data from platform

Figure 5.16: Underlying grid for the global planner

given in each subsection, respectively.

Scenario 1: local planner - split

In this scenario, the car has detected a branching road and is supposed to
navigate through it. See Figure 5.20 for details on the input. The input
also contains false detections of the undesirable surface on the path. For the
second input, Lidar does not return any detections in this scenario.

As specified in the previous section and its respective subsection, the local
planner always starts to plan from the point (0, 0) with the heading 0 radians.

During post-processing, the local planner is bounded by the number of
nodes it reaches on average while running live, as this parameter is being
logged. The local planner on average reaches 2012 nodes (measured on 1000
runs).

This scenario was chosen for the following purposes:

43

5. Algorithm results on testing scenarios and real-world data

(a) : Tree with 500 nodes (b) : Tree with 1000 nodes

Figure 5.17: Local planner benchmark scenario 3 - tree growth. Red points -
nodes, blue lines - trajectories, white - chosen path

Figure 5.18: Local planner benchmark scenario 3 - final tree with 2500 nodes.
Red points - nodes, blue lines - trajectories, white - chosen path

. Proving the ability of the vehicle to steer and accelerate..The vehicle should have a tendency to avoid false detections, but is
allowed to cross them for a short period of time.. Selection of the trajectory based on the global goal.

The growth of the tree is depicted in Figure 5.21. The tree was guided
towards the goal, given by the global planner at approximately (2.4,−2.0).
Results are in Figure 5.22

The result of the same task but with the goal moved to (4.0, 1.0) can be
seen in Figure 5.23. In this case, the location of the goal is artificially chosen
to prove that the car is guided towards the right goal.

44

............................. 5.2. Processing data from platform

Figure 5.19: Cost functions development

As can be seen in both Figure 5.21 and Figure 5.23, the constraints given by
the underlying grid are soft. The tree is growing, so it avoids these areas but
occasionally explores them. It is also visible that the planner works properly
with the dynamics model and that both control inputs work as intended. The
full state-space description of the chosen path is depicted in Figure 5.25.

Scenario 2: full system showcase

In this section, a complete overview of the system is presented. Data for this
scenario were captured while driving. In Figure 5.27 image from left and
right lens of the stereocamera is shown.

In ??, the transformed into bird-eye view of the 4x4m area in front of the
vehicle, and next to it the results of the surface classification. Note that local
frame respects NED coordinate. Origin of the frame is in front of the vehicle,
x-axis extends forward in the direction of the vehicle, y-axis increasing to the
right of the vehicle.

Next, Figure 5.28 shows the global view of the vehicle in the map coordinates.

45

5. Algorithm results on testing scenarios and real-world data

(a) : Underlying mask classifying surface
- original

(b) : Underlying mask classifying surface
- dilated

Figure 5.20: Underlying mask classifying surface into two classes: undesired
surface (yellow) and preferred surface (violet)

(a) : Tree with 500 nodes (b) : Tree with 1000 nodes

Figure 5.21: Growth of the tree. Red points - nodes, blue lines - trajectories,
white line - chosen path

The global goal and the initial position of the vehicle are connected to the
planned global trajectory. The approximate area captured by the image
processing is also shown. The tree was capped at 5000 nodes. Based on tests
done, this provides enough sampling to safely navigate in the environment
and provides approximate period of 5 seconds between publishing global path.

If Figure 5.28 and Figure 5.27 are compared, a slight difference can be
observed between the areas captured by the camera and the approximate
areas based on odometery. This is the reason to use the local planner. Because
odometery and the global map are never perfect, the decision making on
short-range ensures safe navigating on short horizon. Finally, Figure 5.29
shows the trajectory planned with the local planner together with the local
goal given by the global planner.

46

............................. 5.2. Processing data from platform

Figure 5.22: Tree with 2500 nodes. Red points - nodes, blue lines - trajectories,
white line - chosen path

(a) : Tree with 500 nodes (b) : Tree with 1000 nodes

Figure 5.23: Growth of the tree. Red points - nodes, blue lines - trajectories,
white line - chosen path

47

5. Algorithm results on testing scenarios and real-world data

Figure 5.24: Tree with 2500 nodes. Red points - nodes, blue lines - trajectories,
white line - chosen path

48

............................. 5.2. Processing data from platform

(a) : State-space trajectory for chosen path in test-case 1
in scenario1 of the local planner

(b) : State-space trajectory for chosen path in test-case 2
in scenario1 of the local planner

Figure 5.25: State-space trajectory for chosen path in test-case 1 and 2 in
scenario1 of the local planner

(a) : Original image captured by the left
lens of the stereocamera

(b) : Original image captured by the
right lens of the stereocamera

Figure 5.26: View on image input captured by the stereocamera

49

5. Algorithm results on testing scenarios and real-world data

(a) : Bird-eye view
transformation of the input
image (b) : Classification grid

Figure 5.27: Image processing

Figure 5.28: Global map with tree (nodes - red, connections - blue) planned
trajectory (white) and approximate area captured by image processing (yellow
square)

50

............................. 5.2. Processing data from platform

Figure 5.29: Local image frame with planned trajectory (white)

51

52

Chapter 6

Conclusion

The motion planning algorithm for an autonomous vehicle was designed in the
thesis. The theory of the work was summarized in Chapter 2. In Chapter 3,
an algorithm is designed. The designed algorithm is capable of planning
under dynamic system constraints given by the vehicle model. It respects
traffic and safety rules and their priorities. This makes the algorithm suitable
for implementation as part of a fully autonomous pipeline. The algorithm is
based on random sampling methods, namely RRT, combined with MVP.

The algorithm designed was written in a C++ library, whose API is
described in Chapter 3. In Chapter 5, the library was tested in artificial
scenarios and real hardware to demonstrate computational vialability and
efficiency. The tests were carried out on real hardware used on the subscale
platform described in Chapter 4. Later, the code was also deployed on
the aforementioned platform, and the results of the real-world test are also
presented as part of Chapter 5.

The algorithm was proven efficient and successfully solved all the tasks
given in the thesis specification. In addition to the thesis specification, the
library was developed. Furthermore, using the library, the ROS wrapper of
the library was deployed on the subscale platform. The library enables the
future and continuous development of the autonomous system used on the
subscale platform.

As future work, I would recommend further analyzing possibilities of
heuristics and testing more vehicle models with the library. The first would
allow faster computation of the trajectory, which would result in saving

53

6. Conclusion......................................
computational time of the main computational unit, easing deployment of
other algorithms that are currently not used on the platform. The second is
needed for the intended transition of the underlying mask given by the image
processing system. As the mask should give the surface friction coefficient,
the model needs to be adapted to allow for usage of such data.

I believe that the work done is viable for both these tasks and gives the
user a good starting point for future work to be done.

54

Appendix A

Bibliography

1. LEONARD, John; HOW, Jonathan; TELLER, Seth; BERGER, Mitch;
CAMPBELL, Stefan; FIORE, Gaston; FLETCHER, Luke; FRAZZOLI,
Emilio; HUANG, Albert; KARAMAN, Sertac; OTHERS. A perception-
driven autonomous urban vehicle. Journal of Field Robotics. 2008, vol. 25,
no. 10, pp. 727–774. Publisher: Wiley Online Library.

2. HUTH, Michael; RYAN, Mark. Logic in computer science: modelling
and reasoning about systems. 2nd ed. Cambridge [U.K.] ; New York:
Cambridge University Press, 2004. isbn 9780521543101.

3. ZENG, W.; CHURCH, R. L. Finding shortest paths on real road
networks: the case for A*. International Journal of Geographical Information
Science [online]. 2009, vol. 23, no. 4, pp. 531–543 [visited on 2022-05-
20]. issn 1365-8816, issn 1362-3087. Available from doi: 10.1080/
13658810801949850.

4. WANG, Huijuan; YU, Yuan; YUAN, Quanbo. Application of Dijkstra
algorithm in robot path-planning. In: 2011 Second International Conference
on Mechanic Automation and Control Engineering. 2011, pp. 1067–1069.
Available from doi: 10.1109/MACE.2011.5987118.

5. BELLMAN, Richard. Dynamic programming. Dover ed. Mineola, N.Y:
Dover Publications, 2003. isbn 9780486428093.

6. LAVALLE, Steven M; OTHERS. Rapidly-exploring random trees: A
new tool for path planning. Ames, IA, USA, 1998. Available also from:
http://msl.cs.illinois.edu/~lavalle/papers/Lav98c.pdf.

7. LAVALLE, Steven M. Planning algorithms. Cambridge university press,
2006.

55

https://doi.org/10.1080/13658810801949850
https://doi.org/10.1080/13658810801949850
https://doi.org/10.1109/MACE.2011.5987118
http://msl.cs.illinois.edu/~lavalle/papers/Lav98c.pdf

A. Bibliography.....................................
8. LAVALLE, Steven M.; KUFFNER, James J.; JR. Rapidly-Exploring

Random Trees: Progress and Prospects. In: Algorithmic and Computational
Robotics: New Directions. 2000, pp. 293–308.

9. VONASEK, Vojtech; PENICKA, Robert. Computation of Approximate
Solutions for Guided Sampling-Based Motion Planning of 3D Objects.
In: 2019 12th International Workshop on Robot Motion and Control
(RoMoCo) [online]. Poznań, Poland: IEEE, 2019, pp. 231–238 [visited on
2022-05-20]. isbn 9781728129754. Available from doi: 10.1109/RoMoCo.
2019.8787344.

10. SOLOVEY, Kiril; JANSON, Lucas; SCHMERLING, Edward; FRAZZOLI,
Emilio; PAVONE, Marco. Revisiting the Asymptotic Optimality of RRT.
In: 2020 IEEE International Conference on Robotics and Automation
(ICRA) [online]. Paris, France: IEEE, 2020, pp. 2189–2195 [visited
on 2022-05-18]. isbn 9781728173955. Available from doi: 10.1109/
ICRA40945.2020.9196553.

11. KAVRAKI, Lydia E; SVESTKA, Petr; LATOMBE, J-C; OVERMARS,
Mark H. Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE transactions on Robotics and Automation.
1996, vol. 12, no. 4, pp. 566–580. Publisher: IEEE.

12. AMATO, N.M.; WU, Y. A randomized roadmap method for path
and manipulation planning. In: Proceedings of IEEE International
Conference on Robotics and Automation [online]. Minneapolis, MN,
USA: IEEE, 1996, vol. 1, pp. 113–120 [visited on 2022-05-07]. isbn
978-0-7803-2988-1. Available from doi: 10.1109/ROBOT.1996.503582.

13. LAVALLE, Steven M.; KUFFNER, James J. Randomized Kinodynamic
Planning. The International Journal of Robotics Research [online]. 2001,
vol. 20, no. 5, pp. 378–400 [visited on 2022-05-08]. issn 0278-3649, issn
1741-3176. Available from doi: 10.1177/02783640122067453.

14. KARAMAN, S.; FRAZZOLI, E. Incremental Sampling-based Algorithms
for Optimal Motion Planning. In: Robotics: Science and Systems VI.
Robotics: Science and Systems Foundation, 2010, vol. abs/1005.0416.
Available from doi: 10.15607/rss.2010.vi.034. Journal Abbreviation:
CoRR.

15. WONGPIROMSARN, Tichakorn; SLUTSKY, Konstantin; FRAZZOLI,
Emilio; TOPCU, Ufuk. Minimum-violation planning for autonomous
systems: Theoretical and practical considerations. In: 2021 American
Control Conference (ACC). IEEE, 2021, pp. 4866–4872.

16. CASTRO, Luis I. Reyes; CHAUDHARI, Pratik; TUMOVA, Jana;
KARAMAN, Sertac; FRAZZOLI, Emilio; RUS, Daniela. Incremental
sampling-based algorithm for minimum-violation motion planning. In:
52nd IEEE Conference on Decision and Control. IEEE, 2013. Available
from doi: 10.1109/cdc.2013.6760374.

56

https://doi.org/10.1109/RoMoCo.2019.8787344
https://doi.org/10.1109/RoMoCo.2019.8787344
https://doi.org/10.1109/ICRA40945.2020.9196553
https://doi.org/10.1109/ICRA40945.2020.9196553
https://doi.org/10.1109/ROBOT.1996.503582
https://doi.org/10.1177/02783640122067453
https://doi.org/10.15607/rss.2010.vi.034
https://doi.org/10.1109/cdc.2013.6760374

..................................... A. Bibliography

17. WONGPIROMSARN, Tichakorn; KARAMAN, Sertac; FRAZZOLI,
Emilio. Synthesis of provably correct controllers for autonomous vehicles
in urban environments. In: 2011 14th International IEEE Conference
on Intelligent Transportation Systems (ITSC). IEEE, 2011. Available
from doi: 10.1109/itsc.2011.6083056.

18. TUMOVA, Jana; CASTRO, Luis I. Reyes; KARAMAN, Sertac; FRAZZOLI,
Emilio; RUS, Daniela. Minimum-violation LTL planning with conflicting
specifications. In: 2013 American Control Conference. IEEE, 2013,
pp. 200–205. Available from doi: 10.1109/acc.2013.6579837. Backup
Publisher: IEEE.

19. TUMOVA, Jana; HALL, Gavin C.; KARAMAN, Sertac; FRAZZOLI,
Emilio; RUS, Daniela. Least-violating control strategy synthesis with
safety rules. In: Proceedings of the 16th international conference on
Hybrid systems: computation and control - HSCC ’13. ACM Press, 2013.
Available from doi: 10.1145/2461328.2461330.

20. KRIPKE, Saul. Semantical considerations of the modal logic. Studia
Philosophica. 2007, vol. 1.

21. ZWILLINGER, Daniel. Handbook of Differential Equations. [online].
Saint Louis: Elsevier Science, 2015 [visited on 2022-05-08]. isbn 978-
1-4832-2096-3. Available from: http://qut.eblib.com.au/patron/
FullRecord.aspx?p=1901454. OCLC: 1041861798.

22. DIEHL, Moritz; GROS, Sébastien. Numerical optimal control. Optimization
in Engineering Center (OPTEC). 2011.

23. TURNOVEC, Petr. Optimal planning and control of vehicle dynamics.
2021. Available also from: http://hdl.handle.net/10467/95322.
MA thesis. Czech Technical University in Prague.

24. OPENSTREETMAP FOUNDATION. OpenStreetMap [online]. 2022-05-
20. [visited on 2022-05-20]. Available from: https://www.openstreetmap.
org/#map=19/50.07645/14.41759.

25. SEZNAM.CZ, A.S. Mapy.cz [online]. 2022-05-20. [visited on 2022-05-20].
Available from: https://mapy.cz/zakladni?x=14.4178885&y=50.
0763904&z=20&base=ophoto.

26. DUBINS, L. E. On Curves of Minimal Length with a Constraint on
Average Curvature, and with Prescribed Initial and Terminal Positions
and Tangents. American Journal of Mathematics. 1957, vol. 79, no. 3,
p. 497. Available from doi: 10.2307/2372560. Publisher: JSTOR.

27. VOSAHLIK, David; CECH, Jan; HANIS, Tomas; KONOPISKY, Adam;
RURTLE, Tomas; SVANCAR, Jan; TWARDZIK, Tomas. Self-Supervised
Learning of Camera-based Drivable Surface Friction. In: 2021 IEEE
International Intelligent Transportation Systems Conference (ITSC).
IEEE, 2021, pp. 2773–2780. Available from doi: 10.1109/itsc48978.
2021.9564894.

57

https://doi.org/10.1109/itsc.2011.6083056
https://doi.org/10.1109/acc.2013.6579837
https://doi.org/10.1145/2461328.2461330
http://qut.eblib.com.au/patron/FullRecord.aspx?p=1901454
http://qut.eblib.com.au/patron/FullRecord.aspx?p=1901454
http://hdl.handle.net/10467/95322
https://www.openstreetmap.org/#map=19/50.07645/14.41759
https://www.openstreetmap.org/#map=19/50.07645/14.41759
https://mapy.cz/zakladni?x=14.4178885&y=50.0763904&z=20&base=ophoto
https://mapy.cz/zakladni?x=14.4178885&y=50.0763904&z=20&base=ophoto
https://doi.org/10.2307/2372560
https://doi.org/10.1109/itsc48978.2021.9564894
https://doi.org/10.1109/itsc48978.2021.9564894

A. Bibliography.....................................
28. RRT-MVP Gitlab repository [online]. 2022-05-20. [visited on 2022-

05-20]. Available from: https://gitlab.fel.cvut.cz/hanistom/
toyota-cross-modal-training/-/tree/master/Code/Cpp/rrtmvp-
planner.

29. Eigen library [Eigen] [online]. 2022-05-20. [visited on 2022-05-20]. Available
from: https://eigen.tuxfamily.org/.

30. The Official YAML Web Site. 2022-05-20. Available also from: yaml.org.
31. HORIZON HOBBY, LLC. Losi | Horizon Hobby RC Cars, RC Trucks,

and RC Vehicle Parts [online]. 2022-05-20. [visited on 2022-05-20].
Available from: https://www.horizonhobby.com/losi/.

32. RUTRLE, Tomas. Development of verification platform for overactuated
vehicles. 2020. Master’s Thesis. Czech Technical University in Prague.

33. QUIGLEY, Morgan; CONLEY, Ken; GERKEY, Brian; FAUST, Josh;
FOOTE, Tully; LEIBS, Jeremy; WHEELER, Rob; NG, Andrew Y;
OTHERS. ROS: an open-source Robot Operating System. In: ICRA
workshop on open source software. Kobe, Japan, 2009, vol. 3, p. 5. Issue:
3.2.

34. THOMAS, Dirk; WOODALL, William; FERNANDEZ, Esteve. Next-
generation ROS: Building on DDS. In: ROSCon Chicago 2014 [online].
Chicago, IL: Open Robotics, 2014 [visited on 2022-05-08]. Available
from doi: 10.36288/ROSCon2014-900183.

35. KONOPISKÝ, Adam. Surface Properties Prediction from Images Using
Self-supervised Learning. [N.d.]. Master’s Thesis. Czech Technical Univeristy
in Prague.

36. ŠVANCAR, Jan. Autonomous vehicle trajectory tracking algorithms.
[N.d.]. Master’s Thesis. Czech Technical Univeristy in Prague.

37. TWARDZIK, Tomáš. Autonomous vehicle position data fusion. [N.d.].
Master’s Thesis. Czech Technical Univeristy in Prague.

58

https://gitlab.fel.cvut.cz/hanistom/toyota-cross-modal-training/-/tree/master/Code/Cpp/rrtmvp-planner
https://gitlab.fel.cvut.cz/hanistom/toyota-cross-modal-training/-/tree/master/Code/Cpp/rrtmvp-planner
https://gitlab.fel.cvut.cz/hanistom/toyota-cross-modal-training/-/tree/master/Code/Cpp/rrtmvp-planner
https://eigen.tuxfamily.org/
yaml.org
https://www.horizonhobby.com/losi/
https://doi.org/10.36288/ROSCon2014-900183

Appendix B

Motion planning library header files

B.1 RRTGraph

#include <c s t d l i b >
#include <vector>
#include <st r ing >
#include <cmath>
#include <Eigen/Dense>
#include <Eigen/Core>
#include <random>
#include " Model . h "
#include " TreeNode . h "
#include <yaml−cpp/yaml . h>

#ifndef RRTMVP_PLANNER_RRTGRAPH_H
#define RRTMVP_PLANNER_RRTGRAPH_H

class RRTGraph {
public :

RRTGraph(TreeNode∗ root ,
s td : : vector<std : : vector<std : : funct ion <

double (Eigen : : RowVectorXd ,
Eigen

: :
RowVectorXd

59

B. Motion planning library header files
,

s td
: :
vector
<
double
>,

Eigen
: :
MatrixXd
,

Eigen
: :
VectorXd
)
>>>

cost_funct ions
,

Model ∗ main_agent ,
int sample_selection_method =4,
double d i s t _ l i m _ c o e f f i c i e n t =1.) ;

~RRTGraph() ;
void c r ea t e_tree (unsigned int n_nodes) ;
s td : : vector<TreeNode ∗> find_shortest_path (Eigen : :

RowVectorXd goal , double xy_dist_lim =4.) ;
int add_sample () ;
const std : : vector<TreeNode ∗> &get_nodes () const ;
YAML: : Node generate_yaml () const ;

private :
Eigen : : VectorXd compute_cost (const Eigen : :

RowVectorXd& sta r t ,
const Eigen : :

RowVectorXd& goal ,
const std : : vector<

double>& inp ,
const Eigen : : MatrixXd&

t r a j e c t o r y ,
const Eigen : : VectorXd&

time_vec) ;

60

....................................... B.2. Model

std : : vector<std : : vector<std : : funct ion <double (Eigen
: : RowVectorXd ,

Eigen
: :
RowVectorXd
,

std : :
vector
<
double
>,

Eigen
: :
MatrixXd
,

Eigen
: :
VectorXd
)
>>>

cos t_funct i ons
;

s td : : vector<TreeNode∗> nodes ;
double d i s t _ l i m _ c o e f f i c i e n t ;
double dist_l im ;
Eigen : : MatrixXd main_agent_states ;
int sample_selection_method ;
Model ∗ main_agent ;
std : : default_random_engine generator ;

} ;

#endif //RRTMVP_PLANNER_RRTGRAPH_H

B.2 Model

#include <c s t d l i b >
#include <vector>
#include <st r ing >
#include <cmath>
#include <Eigen/Dense>
#include <Eigen/Core>
#include <random>

61

B. Motion planning library header files
#include <iostream>
#include <yaml−cpp/yaml . h>

#ifndef RRTMVP_PLANNER_MODEL_H
#define RRTMVP_PLANNER_MODEL_H

class Model {
public :

Model (std : : vector<std : : vector<double>> inputs = std
: : vector<std : : vector<double>>() ,

std : : vector<double> upper_state_l imits = std
: : vector<double>() ,

std : : vector<double> lower_state_l imi t s = std
: : vector<double>() ,

std : : vector<bool>
solution_dependent_on_states = std : : vector
<bool >() ,

bool load = false ,
s td : : s t r i n g data_dir = " " ,
s td : : s t r i n g precomputation_method = " runge " ,
s td : : vector<double> distance_weights=std : :

vector<double>() ,
double s t e e r_d i s t_thre sho ld = 0 . 2 ,
std : : vector<double> state_sampl ing = std : :

vector<double>() ,
double s teer_t ime_l imit = 1 . 0 ,
double sampling_period = 0 . 05) ;

int get_n_states () const { return n_states ; }

virtual Eigen : : VectorXd s ta t e_d i s tance (const Eigen
: : MatrixXd& state1 , const Eigen : : RowVectorXd&
s ta t e2) const ;

virtual Eigen : : VectorXd s ta t e_d i s tance (const Eigen
: : RowVectorXd& state1 , const Eigen : : MatrixXd&
s ta t e2) const ;

virtual Eigen : : VectorXd s ta t e_d i s tance (const Eigen
: : RowVectorXd& state1 , const Eigen : : RowVectorXd&
s ta t e2) const ;

virtual std : : vector<bool> check_fea s ib l e (Eigen : :
RowVectorXd s t a t e) ;

virtual std : : vector<bool> check_fea s ib l e (Eigen : :
MatrixXd s t a t e s) ;

virtual bool c h e c k _ c o l l i s i o n (const Eigen : :

62

....................................... B.2. Model

RowVectorXd& state1 , const Eigen : : RowVectorXd&
s ta t e2) const ;

Eigen : : RowVectorXd generate_random_sample () ;

int se lect_random_trajectory (Eigen : : RowVectorXd
s ta r t , Eigen : : MatrixXd & t r a j e c t o r y , std : : vector
<double> & inp) ;

double get_sampling_period () const ;

int s t e e r (const Eigen : : RowVectorXd& sta r t , const
Eigen : : RowVectorXd& goal , Eigen : : MatrixXd &
t r a j e c t o r y , std : : vector<double> & inp) ;

void compute_tra j ec tor i e s () ;
YAML: : Node generate_yaml () const ;

protected :
virtual Eigen : : RowVectorXd apply_input (const Eigen

: : RowVectorXd & state , const Eigen : : RowVectorXd
& input) const = 0 ;

private :
s td : : vector<std : : vector<double>> inputs ;
s td : : vector<std : : vector<double>> inputs_product ;
s td : : vector<double> upper_state_l imits ;
s td : : vector<double> lower_state_l imi t s ;
s td : : vector<double> state_sampl ing ;
int n_states ;
s td : : s t r i n g precomputation_method ;
std : : s t r i n g data_dir ;
double s t ee r_t_l imi t ;
s td : : vector<double> distance_weights ;
s td : : vector<bool> solution_dependent_on_states ;
double s t e e r_d i s t_thre sho ld ;
bool load ;
double sampling_period ;
std : : vector<std : : vector<Eigen : : MatrixXd>>

t r a j e c t o r i e s ;
s td : : vector<Eigen : : RowVectorXd> i n i t i a l _ v a l u e s ;
s td : : vector<Eigen : : MatrixXd> mapping ;

void l o a d _ t r a j e c t o r i e s () ;

stat ic std : : vector<std : : vector<double>>

63

B. Motion planning library header files
get_cartes ian_vector_product (const std : : vector<
std : : vector<double>>& inp) ;

void so lve_ivp (const Eigen : : RowVectorXd & iv , const
Eigen : : RowVectorXd & inp , std : : vector<double> &
time_vec , Eigen : : MatrixXd & s o l u t i o n) ;

} ;

#endif

B.3 TreeNode

#include <cstd io >
#include <c s t d l i b >
#include <cmath>
#include <vector>
#include <st r ing >
#include <chrono>
#include <ctime>
#include <Eigen/Dense>
#include <yaml−cpp/yaml . h>

#ifndef RRTMVP_PLANNER_TREENODE_H
#define RRTMVP_PLANNER_TREENODE_H

class TreeNode {
public :

TreeNode () = default ;
TreeNode (TreeNode ∗ new_parent ,

Eigen : : VectorXd cost_to_parent ,
Eigen : : RowVectorXd main_agent_state ,
double time_to_parent ,
Eigen : : MatrixXd trajectory_from_parent ,
const std : : vector<double>& input) ;

TreeNode (const TreeNode&) = default ;
TreeNode (TreeNode&&) = default ;
TreeNode& operator=(const TreeNode&) & = default ;
TreeNode& operator=(TreeNode&&) & = default ;
Eigen : : VectorXd get_cost_to_root () const ;
double get_time_to_root () const ;
TreeNode ∗ get_parent () const { return parent ; } ;

64

......................................B.3. TreeNode

double get_time_to_parent () const { return
time_to_parent ; }

Eigen : : VectorXd get_cost_to_parent () const { return
cost_to_parent ; }

Eigen : : RowVectorXd get_main_agent_state () const {
return main_agent_state ; }

void rewire_node (TreeNode ∗new_parent ,
const Eigen : : VectorXd&

cost_to_new_parent ,
double time_to_new_parent ,
const Eigen : : MatrixXd

trajectory_from_new_parent ,
const std : : vector<double>& input) ;

const Eigen : : MatrixXd &get_trajectory_from_parent ()
const ;

YAML: : Node generate_yaml () const ;

private :
TreeNode ∗ parent ;
Eigen : : RowVectorXd main_agent_state ;

Eigen : : VectorXd cost_to_parent ;
double time_to_parent ;
Eigen : : MatrixXd trajectory_from_parent ;

std : : vector<double> input ;
} ;

#endif

65

	Introduction
	Motivation
	Problem definition
	Thesis structure

	Motion planning algorithms
	Random sampling algorithms
	Rapidly-exploring random tree original and improved version
	Minimum-violation planning
	Minimum-violation planning with rapidly-exploring random tree

	Planning algorithm design and implementation
	RRT*-MVP algorithm adaptation
	Practical considerations, data and requirements
	Global planning system
	The local planning system

	Developed library
	TreeNode
	Model
	RRTGraph

	Subscale platform
	Platform base
	Hardware architecture
	Software architecture

	Algorithm results on testing scenarios and real-world data
	Benchmark tests
	Local planner
	Global planner

	Processing data from platform

	Conclusion
	Bibliography
	Motion planning library header files
	RRTGraph
	Model
	TreeNode

