
Czech Technical University in Prague

Faculty of Electrical Engineering

Master’s Thesis

Methods of multi-agent movement control and
coordination of groups of mobile units in a

real-time strategy games

Author: Serhij Lebedynskyj

Thesis supervisor: Šusta Richard Ing., Ph.D. Prague, 2/2/15

Název práce: Metody Multiagentní řízení pohybu a koordinace skupin mobilních jednotek ve
strategických hrách reálného času

Autor: Serhij Lebedynskyj

Katedra (ústav): Katedra řídicí techniky

Vedoucí bakalářské práce: Šusta Richard Ing., Ph.D.

e-mail vedoucího: susta@fel.cvut.cz

Abstrakt Tato práce nabízí metodu pro reaktivní řízení jednotek v real-time strategické
(RTS) počitačové hře pomocí multi-agentních potenciálových polí. Klasická RTS hra Star-
Craft: Broodwar byla vybrána jako testovací platforma díky jejímu postavení na konkurenční
scéně umělé inteligence (UI). Nabízená umělá inteligence ovládá své jednotky pomocí umístění
různých potenciálových polí na objekty a na místa v herním světě. Snahou této práce je
vylepšit předchozí metody využívajicí potenciálová pole.

Title: Methods of multi-agent movement control and coordination of groups of mobile units in
a real-time strategy games

Author: Serhij Lebedynskyj

Department: Department of control engineering

Supervisor: Šusta Richard Ing., Ph.D.

Supervisor’s e-mail address: susta@fel.cvut.cz

Abstract This thesis proposes an approach to Reactive Control in Real-Time Strategy
(RTS) computer games using Multi-Agent Potential Fields. The classic RTS title StarCraft:
Brooodwar has been chosen as testing platform due to its status in the competitive Artifi-
cial Intelligence (AI) scene. The proposed AI controls its units by placing different types of
potential fields in objects and places around the game world. This work is an attempt to
improve previous methods done with Potential Field in RTS.

i

ii

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Problem Statement . 3
1.3. Thesis Structure . 3

2. Background and Related Work 4
2.1. Real-time strategy games . 4
2.2. StarCraft . 5
2.3. Challenges in RTS Game AI . 5
2.4. Existing work on RTS Game AI . 6

2.4.1. Tactics . 6
2.4.2. Reactive control . 7

3. Platform Setup 11
3.1. StarCraft . 11
3.2. BWAPI . 11

3.2.1. Physical Properties . 12
3.2.2. Unit control methods . 12

3.3. System Requirements . 13

4. Methodology 14
4.1. Potential Fields . 14
4.2. Multi-Agent Potential Fields . 17
4.3. Bayesian function . 17
4.4. Finite State Machine . 18
4.5. Fuzzy logic . 19

4.5.1. Fuzzyfication . 19
4.5.2. Evaluation of fuzzy rules . 20

5. Agent Implementation 21
5.1. Multi-Agent Potential Fields . 21

5.1.1. Identifying object . 21
5.1.2. Identifying fields . 21
5.1.3. Assigning charges to the objects . 22
5.1.4. Assigning granularity of time and space in the environment 33
5.1.5. The agent of the system . 34

iii

Contents

5.1.6. The architecture of the Multi-Agent System 35
5.2. Limitation . 35
5.3. Finite State Machine . 36
5.4. Group Tactic . 38

5.4.1. Target state prediction . 38
5.4.2. Focusing fire . 38
5.4.3. Encirclement and Group logic . 39

5.5. Structure of the implemented AI overview 42

6. Experiments and Results 43
6.1. Experiment overview . 43
6.2. Conducted experiments . 46
6.3. Results of the experiment . 47
6.4. Discussion . 52

7. Conclusion 53
7.1. Further work . 54

Bibliography 54

Appendix I

A. CD content II

iv

List of Figures

3.1. Structure of the JNIBWAPI wrapper . 12

4.1. Basic Potential Fields examples [1] . 15
4.2. Two potential fields with strength values shown 16
4.3. Generic finite state machine diagram . 18
4.4. Fuzzy logic temperature [2] . 19

5.1. Terrain field construction phases . 23
5.2. Example of the Terrain field: (5.2a) Terrain obstacle and (5.2b) its Terrain

Potential Field . 24
5.3. The potential PFstatic generated by a dynamic object, in this case, building . . 25
5.4. Map view in the game . 26
5.5. Potential field example . 26
5.6. The Potential Function PFaggressive generated by enemy unit given the distance

D t . 27
5.7. The Potential Function PFde f ensive generated by enemy unit given the distance

D . 28
5.8. Illustration of collision radiuses . 29
5.9. The Potential Function PFcollision generated by enemy unit given the distance D 30
5.10. Construction of formation abscissa example 31
5.11. The Potential Function PFf ormation generated by enemy unit given the distance

D . 32
5.12. The Potential Function PFencirclement generated by enemy unit given the

distance D . 33
5.13. Illustration of Area Offset . 34
5.14. Negative trail example . 35
5.15. An illustration of the local optimal problem 36
5.16. State diagram for a agent . 37
5.17. Illustration of the membership functions . 40
5.18. Illustration of membership function . 41
5.19. Illustration of membership functions . 41

6.1. Example of the training maps, (6.1a) illustrates the general test training map.
Figure (6.1b) illustrates modified test map 44

6.2. Military units used on training maps . 45
6.3. Vizualization of the experiment results for opponent OAI 49
6.4. Vizualization of the experiment results for opponent OBAI 50

v

List of Figures

6.5. Vizualization of the experiment results for opponent TSCAI 51

vi

List of Tables

6.1. Overview of units properties . 45
6.2. Structure of the experiment . 46
6.3. Summary of the experiments for opponent OAI 48
6.4. Summary of the experiments for opponent OBAI 50
6.5. Summary of the experiments for opponent TSCAI 51

vii

1 Chapter 1.

Introduction

1.1. Motivation
Complex dynamic environments, where neither perfect nor complete information
about the current state or about the dynamics of the environment are available,
pose significant challenges for artificial intelligence (AI). Road traffic, finance, or
weather forecasts are examples of such large, complex, real-life dynamic environ-
ments. The RTS games can be seen as a simplification of a one of a real-life en-
vironment, with simpler dynamics in a finite and smaller world with antagonistic
environment, although still complex enough to study some of the key interesting
problems like decision making (on several layers of abstraction e.g., tactical or
strategic) under uncertainty, different aspects of control or real-time adversarial
planning. Real-time strategy (RTS) is a genre of strategic game. Typical example
of such games are Dune II [3], Command & Conquer [4], Warcraft II [5], Star-
craft [6] and others. The precise definition of an RTS game has been debated for
many years in the game industry. Blizzard’s Rob Pardo has, for instance, defined
an RTS game as: “A strategic game in which the primary mode of play is in a
real-time setting” [7]. The concept of the game is based on a surviving in hostile
environment, while а player has to build and manage facilities, create and con-
trol different types of units on а map with limited visibility range, and therefore,
with uncompleted information. The goal is to defeat (usually it means elimina-
tion) enemy player who has similar start conditions. To do so, one should build
and manage strong economy base (in the terms of the game defined resources),
develop new technologies, train and upgrade army units. Generally such a game
can be divided into the following subsections:

Management of the Economy
∙ Different kinds of resources should be gathered. This process is performed

by a worker type of the game unit. Flow of resources is usually limited by the

1

Motivation

size of deposits site and not by the number of the workers who are assigned
to gather the resources. Therefore, it is important to properly manage these
units in order to build a strong economy that will allow to survive and defeat
the enemies..

Management of the Buildings
∙ The construction of new building is a complex task. There are few types of

buildings: economy, technology, production, and defensive, all of them have
different purpose, and therefore, they should be build on different places.
Moreover, the buildings can be used as artificial barriers against enemy units,
when they are properly placed, e.g., in narrow passages.

Recruitment of the new Units
∙ There are many types of units and different types are suitable for different

tasks. Where one unit can excel others may fail. The decision when and
which type of unit to recruit is therefore very important.

Technology development
∙ Investment into technology has long term benefits but it is usually expensive

and slows down the player, especially at the beginning of the game, in a com-
parison to enemy which could rise large low-tech army and strike before the
technology can outbalance the disadvantage. Due to this aspect of the game,
careful decision making is needed.

Military unit control
∙ The goal is the military victory. To achieve it, the player has to properly con-

trol his/her units and be able to defeat enemy army. The control and coordi-
nation of units are difficult tasks and a level of control determines how effec-
tive troops are. A correct use of unit roles (according to their types), proper
positioning of the units and a fire support determine the result of encounter
semi-equivalent armies (regarding strength of the groups), which could de-
cide the whole game.

To provide challenging and entertaining game experience developers aim to cre-
ate artificial intelligence that could handle all the tasks described above, because
in a single player game, there are only computer players that influence the game
experience. As we can see, RTS games are very complex problem, and therefore,
AI is usually divided to several modules, each focused on the specific part of the
required on-line decision-making process.

2

Problem Statement

1.2. Problem Statement
In this thesis, we focused on the design of AI for movement control and coordina-
tion of the groups of mobile units. We will concentrate on the game called “Star-
craft: Brood war” which, is very well known (released 1998 [6]), really spread
(sold almost ten million copies combined [8]), the game is considered to be per-
fectly balanced, there are huge amount of expert level information sources (e.g.,
replays from tournaments) and due to this qualities there is a large community of
players and actively updated application programming interfaces (APIs) for the
game [9]. Additionally, StarCraft has been already used for studying AI aspects in
real-time decision-making, for example [10, 11, 12].

1.3. Thesis Structure
This master thesis is structured into the following chapters each presenting differ-
ent kinds of contributions for the project.

∙ Chapter 2: Background and related work, that has been done in the field of the thesis.

∙ Chapter 3: Setup of the test bed platform for the solution of the thesis.

∙ Chapter 4: Methodology of the approaches and algorithms used to achieve the goal of
this thesis.

∙ Chapter 5: Detailed description of the methods used in the implementation of the AI.

∙ Chapter 6: Realized experiments and results , and found insights.

∙ Chapter 7: the conclusion of the work.

3

2 Chapter 2.

Background and Related Work
In this chapter, we present an overview on variety of related research areas in-
cluding description of specifics in RTS games, challenges in RTS Game AI, and
existing works on RTS Game AI. The thesis is focused on applications to RTS
games, specifically on works related to the game StarCraft.

2.1. Real-time strategy games
RTS games are games, where the main differences to the traditional games like
Chess are:

∙ Actions and moves can be performed simultaneously by multiple players at
the same time. Additionally, these actions are durative, i.e., actions are not
instantaneous, but take some amount of time to complete. Also, after an
execution of some action, there is a cool-down time. At this time, we cannot
perform this particular action agin.

∙ Real-time constriction means that there is a fixed amount of time to decide
what the next moves can be. In comparison to the Chess, where players can
take several minutes to decide the next step, in StarCraft, the game executes
at the 24 frame per second, which means that player can act as fast as every
42 ms, before the game state changes [13].

∙ Most RTS games are partially observable which means that a players can
have information about the map only for already explored places. This is
referred as the fog-of-war. Additionally, the current information and the state
of enemy units can be accessible only if the enemy units are in the range of
sight of some allied units.

∙ Finally, the complexity of these games, both in terms of the state space size
and the of number of actions available at each decision step, is very large. For
example, the state space of the Chess to be typically estimated around 1050,
heads up no-limit Texas holdem poker around 1080, and Go around 10170. In

4

StarCraft

comparison, the state space of the StarCraft in a typical map is estimated to
101685 [13].

2.2. StarCraft
StarCraft: Brood War is a popular RTS game released in 1998 by the Blizzard
Entertainment. StarCraft has three distinct races that players can command: Pro-
toss, Terran, and Zerg. Each race has unique units and technology graph (tech
tree) which can be expanded to unlock new unit types, structures, and upgrades.
Additionally, each of the race supports different styles of the gameplay. Mastering
a single race requires a great deal of practice, and experts in this domain focus on
playing a single race. One of the most remarkable aspects of StarCraf is that the
three races are extremely well balanced. The races are:

∙ Terrans, the human-like race, that has versatile and flexible units, giving a
balanced option between Protoss and Zergs.

∙ Protoss, the highly evolved humanoid race, it provides units with a long and
expensive manufacturing process, but they are strong and resistant. These
conditions make players follow a strategy of quality over quantity.

∙ Zergs, the insectoid race, it provides units that are cheap and weak. They can
be produced fast and encourage players to overwhelm their opponents with
sheer numbers.

In order to win a StarCraft game, players must firstly gather resources (minerals and
Vespene gas). Players need to allocate that resources for creating more buildings
(which reinforce the economy, and allows players to create units or unlock stronger
units), research new technologies (in order to use new unit abilities or improve the
units), and train military units. Units must be distributed to accomplish different
tasks such as reconnaissance, defense, and attack. While performing all of those
tasks, a player also needs to strategically understand the geometry of the map in
order to decide where to place new buildings or where to set defensive outposts.
Finally, when a player conducts offensive maneuver, each of the units in order to
fight a battle has to take a proper position, which requires a quick and reactive
control of each unit.

2.3. Challenges in RTS Game AI
There are several challenges in AI for RTS games [14]:

∙ Resource management
∙ Decision making under uncertainty
∙ Spatial and temporal reasoning
∙ Cooperation and collaboration(between multiple AIs)

5

Existing work on RTS Game AI

∙ Opponent modeling and learning
∙ Adversarial real-time planning

Systems that play RTS games need to address most, if not all, the aforementioned
problems together. Therefore, it is hard to classify existing work on RTS AI as
particular approaches that address the different problems above. For that reason,
we divide the approaches according to several levels of abstraction.

∙ Strategy corresponds to the high-level decision-making process. This is the
highest level of abstraction for the game comprehension. Finding an efficient
strategy or counter-strategy against a given opponent is the key problem in
RTS games.

∙ Tactics are the implementations of the current strategies. It implies army and
building positioning , movements, timing and etc. Tactics concern a group
of units.

∙ Reactive control is the implementation of the tactics. This consists of mov-
ing, targeting, firing, fleeing, hit-and-run techniques (also known as “kiting”)
during battle. Reactive control focuses on a specific (single) unit.

∙ Terrain analysis consists of the analysis of regions and composing the map:
choke-points, minerals and gas emplacement, low and high walkable grounds,
islands, etc.

∙ Intelligence gathering corresponds to information collected about the oppo-
nent. Because of the fog-of-war, players must regularly send scouts to local-
ize and spy enemy bases.

2.4. Existing work on RTS Game AI
In this thesis, we focus on area of Tactics and Reactive control (in the terms of
abstraction defined above); hence, state of art in this section is also focused on that
aspects of AI.

2.4.1. Tactics
The tactical reasoning involves reasoning about different abilities in a group and
about the terrain and positions of the different groups of units in order to gain a
military advantage in battles. We divide the work about tactical reasoning into
two main parts: terrain analysis and decision-making. The terrain analysis pro-
vides the AI with structured information about the map in order to help making
decisions. This analysis is usually performed off-line, in order to save CPU time
during the game. In the most of the state of arts approaches, StarCraft bots use the
BWTA library1. This library is based on the work of Prekins et al. [15] who applied

1https://code.google.com/p/bwta/

6

https://code.google.com/p/bwta/

Existing work on RTS Game AI

Voronoi decomposition and the necessary pruning of leaves (then pruning) to de-
tect regions and relevant choke points in RTS maps. Concerning tactical decision-
making, many different approaches have been explored in the field of AI for RTS
games such as machine learning or game tree search. Sharma et al. [16] com-
bined case Based Reasoning (CBR) and reinforcement learning to enable reuse of
tactical plan components. Cadena and Garrido [17] used fuzzy CBR for strate-
gic and tactical planning. Finally, Miles [18] proposed an idea of the Influence
Map Trees (IMTrees), the tree where each leaf node is an influence map and each
intermediate node is a combination operation (sum, multiplication). Miles used
evolutionary algorithms to learn IMTrees for each strategic decision in the game
involving spatial reasoning by combining a set of basic influence maps. Game tree
search techniques have been explored for tactical decision-making. Churchill and
Bruno [19] presented the Alpha-Beta Considering Durations (ABCD) algorithm,
a game tree search algorithm for tactical battles in the RTS games. To make game
tree search applicable at this level, abstract game state representations are used in
order to reduce the complexity.

2.4.2. Reactive control
The reactive control aims at maximize the effectivity of units, including simultane-
ous control of units of different types in complex battles on heterogeneous terrain.
Since the core of this thesis falls right in this thread, we discuss it more detaily.

Finite State Machines

Although Finite State Machines (FSM) have been around for a long time, they are
still quite common and useful in modern games. The fact, they are relatively easy
to understand, implement, and to debug which are the main aspects that contribute
to their frequent usage in the game development. An example of the application
of the FSM in games is presented by Wenfeng Hu et al. work [20]. Downsides
are a large number of states (for the treatment of all possible situations), purely
FSM solutions are hard to maintain and modify. Besides, FSM solutions are also
often inflexible and predictable. Hierarchical FSM (HFSM) solves some of these
problems and evolves into behavior trees (BT, hybrids HFSM) [21]. However,
adaptivity of the behavior by parameters learning is not the main focus of these
models.

Searching tree or graph data structures

Heuristic search has been very successful in abstract game domains such as Chess
and Go. A general approach is to construct game space (weighted graph) from
units and available actions and then execute some kind of heuristic search, e.g.,
min-max, alpha-beta search or other. A similar approach has been applied by

7

Existing work on RTS Game AI

Churchill and Bruno [19]. They present a variant of the alpha-beta search capa-
ble of dealing with simultaneous moves and durative actions. The method yields
a promising results. On the other hand, the algorithm has very high computa-
tional and memory requirements. The high complexity of the game space and
hard time restriction on computations runtime significantly limits the useability of
this method in full-scale game AI. In the work mentioned above, experiments were
limited to small scale combat scenarios (8 vs. 8 units).
Another example of a similar approach, that is worth mentioning, is the Monte
Carlo search. Wang Zhe et al. [22] present Monte-Carlo Planing AI. This work
solves some problem associated with the computational cost of the previous meth-
ods, unfortunately, it is very sensitive to accurate game simulation which is used
to evaluate moves.

Flock and Swarm intelligence

This kind of intelligence is an emergent behavior that some natural systems exhibit,
such as ant colonies, flock of birds, swarms of bees, etc. There are efforts to ap-
ply these mechanisms to RTS games. Ivan Gonzalez and Leonardo Garrido [12]
proposed reactive control technique based on swarm behavior, which subsumes
spatial distribution and navigation. The method is scalable and robust. However,
this approach is intended for homogenous group of units, which might not be ful-
filled in RTS games due to large variety of unit types.

Potential fields and influence maps

Numerous studies concerning potential fields are related to spatial navigation, ob-
stacle avoidance, and units navigation, see [23, 24]. The idea behind this tech-
nique is the imitation of conservative natural force fields, which can be derived as
the gradient of a potential function. A value of this function is proportional to the
force created by the potential field at a given point in the space. If we have planar
space represented as a grid, which is our case, we can create 2D array, where (i,
j) coordinates correspond to the actual position (x,y) of the object and the value
of the element in the array corresponds to potential function value in that point.
This array is called influence map. Johan Hagelbäck [10] presented a Multi-Agent
Potential Fields based bot that is able to successfully integrate reactive control,
navigation, and exploration. Danielsiek et al. [25] used influence maps combined
with the flocking technique to achieve an intelligent squad movement and ability
to flank enemy squad. Despite their success, drawbacks of potential field-based
techniques are:

∙ Local optima problem. Unit controlled by the potential field usually does not
have any path finding. Hence, units can stuck inside a U-shaped obstacle.
This problem is described in detail in Section 4.1.

∙ Performance issues. To calculate how multiple fields affect all positions in

8

Existing work on RTS Game AI

the game map, is computationally demanding (for run-time calculation) or a
lot of memory is required (if the potential field is pre-calculated and stored).

∙ Parameters tuning. In potential field based solution there are typically mul-
tiple fields. Each field is aimed on different aspect of the control, such as
collision avoidance, navigation etc. The contributions of each potential field
are not the same, therefore the fields have to be weighted. To achieve de-
sired behavior of the agent, particular weights have to be tuned. This can be
done by tuning weights manually or by auto learning technique. Approaches
for automatic learning by tuning of weights have been explored, for example
using reinforcement learning [26] or genetic algorithm tuning [27].

Potential flow

The potential flow is a concept originated from fluid dynamics and it is defined
as inviscid, irrigational flow of ideal fluid. A two-dimensional flow is represented
by a complex, harmonic function. The advantages over a regular potential field
are that the harmonic function is a solution of the Laplace equation, and there-
fore, it does not have local minima. The property of the potential flow satisfies
the principle of superposition, which means that various potential flows can be
added together to generate a new complicated potential flows. In the work of Tung
Nguyen et al. [28], the potential flow is used for unit positioning during a combat.
The experimental results show a promising potential and they are clearly superior
to commonly used method.

Bayesian modeling

Gabriel Synnaeve and Pierre Bessiere [11] presented Bayesian programs, which
can be considered as a formalism that to describe entirely any kind of Bayesian
model. Bayesian model is a type of statistical model that represents a set of random
variables and their conditional dependencies via likelihood functions and prior
probability functions. This approach subsumes finite state machine and potential
fields, allowing for an integration of tactical goals directly in a reactive control
level.

Reinforcement learning

Reinforcement learning is an unsupervised machine learning technique, which
puts an agent into an unknown environment, giving it a set of possible actions with
the aim to maximize a reward. Wender and Watson [29] evaluated Q-learning and
Sarsa algorithms [30] for decentralized reactive control. The downside of this ap-
proach is a relatively long learning time. There are efforts to accelerate the learning
process, for example Jaide and Munoz-Avila [31] used learning through just one
Q-function for each unit type in order to reduce the search space.

9

Existing work on RTS Game AI

Cognitive control

Finally, a reactive control research has been performed in the field of cognitive
science, where Wintermute et al. [32] have explored AI human-like behavior in
RTS games. The middleware constructed based on cognitive architecture supports
grouping, attention, coordinated path finding, and FSM control of low-level units
behaviors. Since the aim of the approach is not to outperform other AIs but rather
to make the behavior of this AI more similar to human gameplay it is possible to say
the goal has been achieved. This approach emulates the adaptation, anticipation,
and estimation capabilities demonstrated by human players.

10

3 Chapter 3.

Platform Setup
This chapter describes the software and the hardware used as the platform for im-
plementation of the objective of the thesis.

3.1. StarCraft
As it was mentioned earlier, the RTS game StarCraft: Brood War is used as test
platform for this thesis. Since StarCraft is not open-source (can be purchased
here1), the free open-source framework called Brood War Application Program-
ming Interface (BWAPI) has been used to communicate with the game.

3.2. BWAPI
BWAPI is written in C++, but several different wrappers for the other programming
languages are created including Java, Python, PHP, Ruby and others. I have chosen
the Java language and hence Java wrapper JNIBWAPI. JNIBWAPI uses Java Native
Interface [33] to communicate between Java and BWAPI’s C++ code. JNIBWAPI
itself works as a BWAPI AI Client, with the C++ code acting as a binding between
the BWAPI and Java processes. By implementing the BWAPIEventListener inter-
face, a Java class can receive callbacks identical to a BWAPI AI Module. The JNI
interface provides several advantages over the previous socket-based ProxyBot in-
terface. First, the interface uses the BWAPI shared memory bridge which lessens
the communication bottleneck between C++ and Java and prevents cheating using
a direct memory access. Second, the BWAPI utility functions (e.g., canBuild-
Here) can be now be called from Java. Finally, the use of JNI should result in
easier project maintainability and extensibility.

1 https://eu.battle.net/shop/en/?id=110000124

11

https://eu.battle.net/shop/en/?id=110000124

BWAPI

Figure 3.1.: Structure of the JNIBWAPI wrapper

3.2.1. Physical Properties
A StarCraft map is a two-dimensional, tile-based map. The size of a StarCraft map can vary
between 64×64 up to 256×256 build tiles. There are three different types of coordinates for
a StarCraft map also included in JNIBWAPI:

∙ Pixel Tiles, which are measured in 1×1 pixels and have the highest resolution.

∙ Walk Tiles, which are measured in 8×8 pixels and can be used for units, when walking
around on a map (walkability data is available at this resolution).

∙ Build Tiles, which are measured in 32×32 pixels and are useful for build management
(buildability data is available at this resolution).

3.2.2. Unit control methods
In order to be able to control and give individual units orders, JNIBWAPI includes
the following applicable methods:

move()

Takes a target position as input, which refers to the place where a specific unit is
ordered to move.

rightClick()

The rightClick() method works like the right click in the GUI. The method is equiv-
alent to move() method in a way, but it has a lower CPU execution time, hence the
rightClick() method is used in this thesis. There is also an overloaded rightClick()
version which takes unit as the input. This is equivalent to in game attack order if
the unit is hostile.

12

System Requirements

attackUnit()

Takes a target enemy unit as the input and moves toward it until it is within max
shooting distance, then it starts to attack.

stop()

Order the unit to abort any activity.

3.3. System Requirements
Below are listed all programs and utilities required for running our develop AI for
the StarCraft RTS game.

∙ StarCraft:Brood War version 1.16.12

∙ ChaosLauncher version 0.5.4.43, additionally ChaosLauncher plugins: BWAPI Injector
(1.16.1.) RELEASE and W-MODE 1.02

∙ BWAPI version 3.7.44

∙ JNIBWAPI version 1.05

∙ 32 bit JRE (Java Runtime Environment) version 7u76 or higher6

∙ Eclipse IDE for Java developers7

∙ Microsoft Windows 7-BWAPI uses dll injection and it is therefore unlikely to work in
Wine or Mac8

2 http://eu.blizzard.com/en-gb/games/sc/
3 http://winner.cspsx.de/Starcraft/
4 https://code.google.com/p/bwapi/
5 https://github.com/JNIBWAPI/JNIBWAPI
6 http://www.oracle.com/technetwork/java/javase/downloads/

jre7-downloads-1880261.html
7 https://www.eclipse.org/downloads/
8 http://eis.ucsc.edu/StarCraftBWAPI

13

http://eu.blizzard.com/en-gb/games/sc/
http://winner.cspsx.de/Starcraft/
https://code.google.com/p/bwapi/
https://github.com/JNIBWAPI/JNIBWAPI
http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-1880261.html
http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-1880261.html
https://www.eclipse.org/downloads/
http://eis.ucsc.edu/StarCraftBWAPI

4 Chapter 4.

Methodology
This chapter describes the techniques and algorithms used to achieve the objec-
tive of this thesis (the design of AI for movement control and coordination of a
groups of mobile units), including Potential Fields, Multi-Agent Potential Fields
and Bayesian function.

4.1. Potential Fields
A concept of Potential fields (PF) originates from robotics. It was firstly intro-
duced by Khatib [34] for a real-time obstacle avoidance ,in planning and control
of manipulators and mobile robots. The principle of the concept is based on plac-
ing, attracting or repelling charges at important locations in a virtual world. An
attracting charge is placed at the position to be reached, and repelling charges are
placed at the positions of obstacles. They can be thought off as magnetic charges
working on a charged particle. The force (attractive or repulsive) from a PF de-
creases with the distance from the center of the position of the charge. It can
decrease in different ways: linearly, exponentially or discretely. The different vari-
ations represent different desired behaviors. The Figure 4.1 shows an example of
basic PF application.

14

Potential Fields

(a) A attractive Potential Field (b) A repelling Potential Field

(c) The two behaviors, seeking and avoiding, can be combined by combining the two potential
fields, the agent then can follow the force induced by the new filed to reach the goal while
avoiding the obstacle

Figure 4.1.: Basic Potential Fields examples [1]

Each charge generates a field of a specific size. The different fields are weighted
and summed together to form an aggregated field. The total field can be used
for navigation by letting the robot move to the most attracting position in its near
surroundings [35]. The potential field can be represented as the Influence map.
The idea is to put a charge at an interesting position in the game world and let the
charge generate a field that gradually fades to zero. The charge can be attracting
(positive) or repelling (negative). An example of how this could look like is shown
in Figure 4.2. In this thesis, potential fields are always represented as the Influence
map.

15

Potential Fields

Figure 4.2.: Two potential fields with strength values shown

In the movement control method based on PF, the agent looks only one step ahead
to check the 8 surrounding tiles. Then, it uses the tile with the highest attractive
value, proceed to move to it. If the highest returned value is the tile where the agent
is currently placed, the agent will stand idle. This status of agent can mean that
the agent has reached its target position or that the agent has been stuck in a local
optima. This issue is the typical problem of this approach. There are several pro-
posed solutions. Thuraul et al. [36] has described a solution which lets the agents
generate a negative trail on a specified number of previous visited tiles, which is
similar to a pheromone trail in the ant colony optimization algorithm, e.g., [37].
The trail will depreciate the evaluation of the visited positions, and therefore it
pushes the agent away from the local optima. Notice, that if highly evaluated po-
sition is the global optima, the agent is forced to return. This is explained more in
Section 5.2.
There is obviously the question of granularity. The value from each PF can be
assigned to each pixel or let several pixels represent one cell in a grid. This is ac-
tually a good way to tune computational power needed [10]. One does not have to
represent such a grid explicitly. It is possible to use some function that is depen-
dent on the position (for example use the distance between the agent and the fields)
to calculate values of the PF and create a result vector. This approach is often used
in the Multi-Agent Potential Fields method. If multiple units are using the same
fields, e.g., if the fields are set by a centralized intelligence, representing them in
a grid is reasonable. The grid might be calculated beforehand and each unit might
only need to check the values of the spaces closest to them. If each unit has its own
PFs, calculating them this way would be impractical, as it could means that each
unit could have to represent the whole grid and then decide what to do. Using the
Multi-Agent Potential Fields method seems to be the best choice. Therefore it is
detaily described in the next section.

16

Multi-Agent Potential Fields

4.2. Multi-Agent Potential Fields
Multi-Agent Potential Fields (MAPF) for RTS games were firstly introduced by
Hagelback and Johansson [38], where a methodology for how to design a MAPF-
based solution for an RTS game is described as follows:

1. The identification of objects. The purpose of this phase is to identify all
objects that will effect or have some kind of impact on the agents. These
objects can be either static (which means they will always remain unchanged),
or dynamic, meaning that they can move around, change shape or change their
type of impact (repulsive to attractive or vice versa) on the agents.

2. The identification of the driving forces (fields) of the game. The purpose
of this phase is to identify the different force fields, which will be placed on
tactical positions in the game world, to push the agents towards their overall
goal. These fields can be repulsive forces generated by e.g. static terrain
objects, attractive forces generated by for example the goal object (such as
nearest enemy spotted unit or base).

3. The process of assigning charges to the objects. The purpose of this phase
is to specify the formulas for calculating each specific potential field value.
High potential field values will attract the agents, while low potential field
values will repulse the agents.

4. The granularity of time and space in the environment. The purpose of this
phase is to decide on the resolution of time and space. Resolution of space
is a measure for the tile size in the grid of potential fields. The resolution of
time is a measure for how far the agents can get in a game frame. In other
words, how far ahead agent should look.

5. The agents of the system. The purpose of this phase is to identify the objects
that should become agents controlled by the AI, and decide which actions
these agents should perform in different states, based on the total potential
field values in the surrounding tiles.

6. The architecture of the Multi-Agent System. The purpose of the last phase
is to decide what the high level strategies should be. The different types of
agents should have different roles (not covered by a basic unit agent).

4.3. Bayesian function
For the evaluation of multiple PFs in Multi-Agent System there is a need for one
overall PF for each agent, which will be used by the agent when choosing its next
actions. The contributions of each potential field are not the same, therefore the
fields are weighted. To achieve desired behavior, weights have to be tuned. In
our case we tune weights manually. For simplicity, all PFs are calculated in nor-
malized form and then multiplied by weights. Hence, all fields are calculated in

17

Finite State Machine

the same range of values, specifically in the range ⟨0,1⟩. This approach gives us
possibility to calculate normalized overall PF without weights and tune individual
contributions later. Additionally, we can see these PFs as probabilities in a joint
distribution. The joint distribution constructed based on this principle is called
inverse programming [39]. The sensory variables (stored as a PF) are considered
independent knowing the actions, contrary to standard naive Bayesian fusion, in
which the sensory variables are considered independent knowing the phenomenon,

P(Posx,y, PF1, PF2, . . . ,PFn) = P(Posx,y) ·
n

∏
i=1

P(Posx,y|PFi) (4.1)

where Posx,y is the position in terms of the game grid on the coordinates (x,y), PFi
is the contribution from the given PF, P(Posx,y|PFi) is the conditional probability.
For example, P

(
Posx,y|PFdmg

)
corresponds to a probability of the damage values

on Posx,y and P(Posx,y) is a prior probability (used uniform over all positions,
P(Posx,y) =

1
m , where m is the number of evaluated positions for the given agent).

This joint distribution is used as the overall PF in the Multi-Agent System. One of
the preferred features of this approach is that every PF has a possibility to set an
evaluation of the given position to zero. This practically means that this position
is forbidden to an agent regardless other fields values. For example, an agent is
restricted to go to highly rated position when there is an obstacle on the same
position.

4.4. Finite State Machine
A Finite State Machine(FSM) is an abstract machine that can exist in one of several
different and predefined states. A finite state machine also can define a set of con-
ditions that determine when the state should change. The actual state determines
how the state machine behaves. This allows us to switch between agent roles based
on unit state (the current Hit Points, reload timer, etc.) and unit type. The diagram
in the Figure 4.3 illustrates how a simple finite state machine can be modeled.

Si

S1 S3

S2

t1

t2 t5
t4

t3

Figure 4.3.: Generic finite state machine diagram

18

Fuzzy logic

In Figure 4.3, each potential state is illustrated as a orange disc. There are four pos-
sible states Si, S1, S2, S3. Naturally, every finite state machine also needs to move
from one state to another state. In this case, the transition functions are illustrated
as t1, t2, t3, t4, t5. The finite state machine starts at the initial state Si. It remains
in this state until the t1 transition function provides a stimulus. Once the stimulus
is provided, the state switches to S1. The process repeats itself analogously for all
states.

4.5. Fuzzy logic
In 1965, Lotfi Zadeh, a professor at the University of California Berkeley, wrote
his original paper about fuzzy set theory. In 1994, an interview of Zadeh con-
ducted by Jack Woehr of Dr. Dobbs Journal, Woehr paraphrases Zadeh when he
says “fuzzy logic is a means of presenting problems to computers in a way akin
to the way humans solve them”. Zadeh later goes on to say that "the essence of
fuzzy logic is that everything is a matter of degree." Fuzzy logic is used in a wide
variety of real-world control applications such as controlling trains, air condition-
ing and heating systems, and robots, among other applications. Video games also
offer many opportunities for fuzzy control [40]. The fuzzy control or inference
process comprises three basic steps: fuzzyfication, evaluation of fuzzy rules and
defuzzyfication. In this, thesis only fuzzy output is used; hence we consider that
the defuzzyfication is not needed to be explained.

4.5.1. Fuzzyfication
An input to a fuzzy system can originate in the form of the crisp numbers. These
numbers are real quantifying the input variables. The membership functions map
input variables to a degree of membership, in a fuzzy set, between 0 and 1. If the
degree of membership in a given set is 1, then we can say the input for that set is
absolutely true. If the degree is 0, then we can say for that set the input is absolutely
false. If the degree is between 0 and 1, it is true to a certain extent—that is, to a
degree. An example of membership function used for fuzzyfication is shown in
Figure 4.4.

Figure 4.4.: Fuzzy logic temperature [2]

19

Fuzzy logic

4.5.2. Evaluation of fuzzy rules
Once we expressed all the inputs to the system in terms of fuzzy set membership,
we can combine them using fuzzy rules to determine the degree to which each
rule is true. In other words, we can find the strength of each rule or the degree of
membership in an output or action. Axioms for evaluation of fuzzy variables are
given as:

Truth((A) OR (B)) = max(Truth(A) , Truth(B)) (4.2)

Truth((A) AND (B)) = min(Truth(A) , Truth(B)) (4.3)

Truth(NOT (A)) = 1−Truth(A) (4.4)

Here, again, Truth(A) means the degree of membership of A in some fuzzy set.
This will be a real number between 0 and 1. The same applies for Truth(B) as well.

20

5 Chapter 5.

Agent Implementation
This chapter provides a description of the design and implementation of the pro-
posed Multi-Agent Potential Field based solution using the 6 phases of the original
methodology proposed [38] that has been extended for an additional agent logic
and group logic.

5.1. Multi-Agent Potential Fields
5.1.1. Identifying object

There are various objects in StarCraft. Basic identification and classification can
be divided into two categories, namely the static objects and dynamic objects.
Static objects includes terrain obstacles, like map edges, mountains, walls and
static neutral units, like minerals and vespene geyser fields. Dynamic object cat-
egory includes player’s units, buildings and neutral units. Note that buildings are
dynamic objects despite of their static character. The reason is that buildings can
be destroyed or some of them can be even moved.

5.1.2. Identifying fields
In this thesis, I have identified 7 different potential fields used in Multi-Agent Po-
tential Field agent based on. PFs are described as follows:

1. Terrain field. This PF is generated by repelling static terrain. Purpose of this
field is that agents can avoid getting too close to positions where they may get
stuck or been pushed into a corner. Due to the fact that objects related to this
field are time invariant, this field is pre-computed and stored in the memory.

2. Static field. This PF is an extension of the Terrain field. In this field, the
repulsion forces from static neutral units and buildings, are subsumed with
the terrain field. As mentioned above, buildings and static neutral units like
minerals, etc. are slowly varying objects, hence this field is updated less
frequently.

21

Multi-Agent Potential Fields

3. Aggressive field. This field is generated by enemy units. It is an attractive
field that makes agents go towards the enemy units and place themselves in
an appropriate distance, where they can fight with the enemies. Additionally,
when an agent is a range unit (a unit with an abilities to make ranged attacks),
small repelling field is placed on enemy units to avoid placing themselves
unnecessary close to enemies.

4. Defensive field. This field is similar to the Aggressive field. It is also gener-
ated by enemy units. The difference is that repelling field is generated instead
of attractive field. It makes agent to run away from enemies.

5. Collision field. All dynamic objects described above generate this kind of
field that is repeling. The purpose is that agents can avoid colliding with each
other as well as avoiding other units including enemies and neutral units.

6. Formation field. This field is used to attract the squad units to stay together
and to minimize the risk of letting the AI’s own units getting caught alone
by an enemy. At the same time, this field works as a navigation field that
leads agents to a goal of the squad. Finally, this gives us the opportunity to
shape the formation in which the unit arrives to the enemy, which works as a
pre-placement for units in squads.

7. Encirclement field. Basically, it is a kind of field that has the same struc-
ture as the Aggressive field. It has attractive and repelling component. The
main difference is that the attraction radius of the field is significantly larger.
Namely it has the size of the sight range of the enemy units. It enables us to
surround a group of enemies without seeing our group by the enemy.

5.1.3. Assigning charges to the objects
Each object has a set of charges which generates a potential field around the object.
Below, a more detailed description of the different fields is presented. All fields
generated by objects are weighted and overall PF is created using (4.1). It is used
by agents during the selections of the action.

Terrain field

The terrain obstacles generate a repelling field to support collision avoidance. The
maximal charges are assigned to every terrain object. To assure the avoidance of
edges is as smooth as possible, the potential field is smoothed by linear smoothing
filter [41, 42]. This method removes noise (edges) by convolution of the original
field with a mask that represents a low-pass filter. This convolution brings us the
value of each pixel into closer harmony with the values of its neighbors. Basically,
the smoothing filter sets each pixel to the average value of itself and its nearby
neighbors. Finally, the field with charges and the smoothed field are compared.
The highest value of each cell is selected as a value for the cell in the final Terrain
field. Note, that inverse logic is used in the construction of the Terrain field. Instead

22

Multi-Agent Potential Fields

of assigning minimal charges (zero) to obstacles and filling the rest of the field with
the maximal charges (one), we use inverted charges and as a evaluation function
we use the following function (5.1).

P(Posx,y|PFterrain) = 1−PFterrain(D) (5.1)

Illustration of the construction steps are shown in Figure 5.1,

0 1 2 3 4 5 6
0

0.5

1

Terrain field construction

D [px]

P
F

 v
al

ue
 [−

]

Charges assigned to the field
Smoothed field

0 1 2 3 4 5 6
0

0.5

1

D [px]

P
F

 v
al

ue
 [−

]

Final terrain field

0 1 2 3 4 5 6
0

0.5

1

D [px]

P
F

 v
al

ue
 [−

]

Final terrain field values

Figure 5.1.: Terrain field construction phases

where D is a distance from an obstacle measured in pixels.
The representation of the in-game terrain obstacles as the Terrain field is shown in
Figure 5.2.

23

Multi-Agent Potential Fields

(a)

0

20

40

60

80

100

0

50

100

150

0

0.2

0.4

0.6

0.8

1

X

Terrain field example

Y

X

Y

Terrain field example

(b)

Figure 5.2.: Example of the Terrain field: (5.2a) Terrain obstacle and (5.2b) its Terrain Potential
Field

Static field

Dynamic objects that change in time slowly (most of them can not change its po-
sition, but they only can disappear or be destroyed) like building and static neutral
units, also generate a repelling field for collision avoidance. The Static field an
example is depicted in Figure 5.3) at the distance D (in pixels) from the center of
a object is calculated as:

PFstatic(D) =


1

0.8
0.5

i f D <= OS
i f (D+2 ·8)<= OS
i f (D+4 ·8)<= OS

, (5.2)

where OS is an object size, defined as the distance from the object center to the
boundary of the object shape.

24

Multi-Agent Potential Fields

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Static field construction

D [px]

P
ot

en
tia

l F
ie

ld
 v

al
ue

 [−
]

(a)

0
5

10
15

20
25

30
35

40
45

0

5

10

15

20

25

30

35

40

45
0

0.2

0.4

0.6

0.8

1

X

Static-field-example-

Y

Y
X

Static-field-example

P
ot

en
tia

l-F
ie

ld
-v

al
u

e-
[-

]

(b)

Figure 5.3.: The potential PFstatic generated by a dynamic object, in this case, building

As in the Terrain field, the evaluation function is calculated as the inverted Static
field value:

P(Posx,y|PFstatic) = 1−PFstatic(D). (5.3)

Note:
The Terrain and the Static fields are globally used PFs. Therefore, these fields are
not MAPFs and they are different from all other PFs that are presented in this thesis.
These fields are pre-computed and stored in a memory. As it was mentioned above,
the Terrain field is pre-computed during initialization of the game and stored as an
two-dimensional field. The Static field is computed in a case that there is a change
in the state of static objects. For example the Static field update is performed if
the number of objects, related to the field, is changed. Every agent can access to
these fields and find required data related to its position. Example of these fields

25

Multi-Agent Potential Fields

subsumed into one Potential Field is shown in Figure 5.5. Notice, the map edges
are considered as terrain obstacles.

Figure 5.4.: Map view in the game

Terrain and Static fields example

X Y

P
ot

en
tia

l F
ie

ld
 v

al
u

e
[-

] Static and Terrain fields example

Y

X

Figure 5.5.: Potential field example

Aggressive field

All enemy units generate a symmetric surrounding field. The highest potential of
the field is in the ring around the unit with a radius of the agent Maximum Shooting
Distance (MSD). The Aggressive field (depicted in Figure 5.6) at the distance D
(in pixels) from the center of the enemy unit is calculated as:

PFaggressive =


(

1− D
MDmax

)2(
D

MDmax

)4
i f D = MSD
i f D < MSD

, (5.4)

where MDmax is the maximal possible distance in the given map, which corre-
sponds to the length of its size diagonal line.

26

Multi-Agent Potential Fields

MSD
0

0.2

0.4

0.6

0.8

1
Aggressive field

D [px]

P
ot

en
tia

l F
ie

ld
 v

al
ue

 [−
]

Aggressive field example

P
ot

en
tia

l F
ie

ld
 v

al
u

e
[-

]

Х

Y

Figure 5.6.: The Potential Function PFaggressive generated by enemy unit given the distance D t

Evaluation function is calculated as:

P(Posx,y|PFaggressive) = PFaggressive(D). (5.5)

Defensive field

All enemy units generate a symmetric surrounding field in the shape of a ring
around the object (enemy unit) with the radius R. Generated repelling field should
ensure, that agents keep a safe distance from enemy units. The radius R is calcu-
lated as

R = max(eMSD,MSD)+6 ·8, (5.6)

where eMSD is MSD of the enemy units. This field can be used for damage avoid-
ance (therefore eMSD is incorporated in R) or kiting (therefore MSD is incorpo-
rated in R). Kiting is a reactive control tactic, which is further described in Sec-
tion 5.1.5.

27

Multi-Agent Potential Fields

Defensive field (depicted in Figure 5.7) at the distance D (in pixels) from the center
of the enemy unit is calculated as:

PFde f ensive =

{
0(

1− D
R

)2
i f D > R
i f D 5 R

. (5.7)

R

0

0.2

0.4

0.6

0.8

1

Defensive field

D [px]

P
ot

en
tia

l F
ie

ld
 v

al
ue

 [−
]

Defensive field

P
ot

en
tia

l F
ie

ld
 v

al
u

e
[-

]

X
Y

Figure 5.7.: The Potential Function PFde f ensive generated by enemy unit given the distance D

Evaluation function is calculated as the inverted Defensive field value:

P
(
Posx,y|PFde f ensive

)
= 1−PFde f ensive(D). (5.8)

Collision field

All dynamic objects generate a repelling field for obstacle avoidance. Three ra-
diuses are assigned to all dynamic objects. The size of the radius is based on
the dimension of the object (unit dimension is provided through JNIBWAPI). The

28

Multi-Agent Potential Fields

value of the repelling field is determined by the distance between the agent and
dynamic object. An illustration is shown in Figure 5.8.

Figure 5.8.: Illustration of collision radiuses

Radiuses are calculated as follows:

HardR(Red) = 2 ·max
(
UDle f t ,UDup

)
, (5.9)

MediumR(Orange) = 3 ·max
(
UDle f t ,UDup

)
, (5.10)

SoftR(Green) = 5 ·max
(
UDle f t ,UDup

)
, (5.11)

where UDle f t is an acronym for Unit Dimension, measured from the center to the
edge of the unit (in our case it is the left and the upper edge).
The potential field PFcollision (depicted in Figure 5.9) at the distance D (in pixels)
from the center of the object is calculated as:

PFcollision =


0

0.4−0.4 D−MediumR
SoftR−MeduimR

0.9−0.5 D−HardR
MeduimR−HardR

1−0.1 D
HardR

i f D > SoftR
i f D ∈ ⟨SoftR, MeduimR)

i f D ∈ ⟨MeduimR, HardR)

i f D ≤ HardR
(5.12)

29

Multi-Agent Potential Fields

Hard RMeduim R Soft R

0

0.2

0.4

0.6

0.8

1

Collision field

D [px]

P
ot

en
tia

l F
ie

ld
 v

al
ue

 [−
]

0

5

10

15

20

25

0

2

4

6

8

10

12

14

16

0

0.2

0.4

0.6

0.8

1

X

Collision-field-example

Y

P
ot

en
tia

l-F
ie

ld
-v

al
ue

-[−
]

Collision-field-example

P
ot

en
tia

l-F
ie

ld
-v

al
u

e-
[-

]

Y

X

Figure 5.9.: The Potential Function PFcollision generated by enemy unit given the distance D

Evaluation function is calculated as:

P(Posx,y|PFcollision) = 1−PFcollision(D). (5.13)

Formation field

A group of agents generates an attractive field. This field addresses several issues
at once. The field acts as a navigation, as a synchronizator of agent movements, and
it also specifies the shape of the spatial deployment of the group. The construction
of the field is based on the group average position, group size, and on the current
group objective (objective position is assigned by a higher logic to the group). A
construction of this field is illustrated in Figure 5.10. A link between average group
position and objective position is created. For this line a perpendicular abscissa is
constructed. The highest potential is precisely on this abscissa. Note, the position
of the abscissa is shifted closer to the objective; hence, agents are driven forward
to the objective position.

30

Multi-Agent Potential Fields

Figure 5.10.: Construction of formation abscissa example

The potential field PFcollision (depicted in Figure 5.11) at the distance D (in pixels)
from the abscissa is calculated as:

PFf ormation =

(
1− D

MDmax

)4

, (5.14)

where MDmax is the maximal possible distance on the given map, which corre-
sponds to the length of its size diagonal line. Notice, the distance D can be gath-
ered in two ways. D is the distance from the abscissa, if a projection of the agent
position lies on the abscissa. Otherwise D is the distance from an average group
position. This condition guarantees that agents stay close to the average group
position.

31

Multi-Agent Potential Fields

0 2 4 6 8 10 12 14 16 18

0

0.2

0.4

0.6

0.8

1

Formation field

D [px]

P
ot

en
tia

l F
ie

ld
 v

al
ue

 [−
]

Formation field example

P
ot

en
tia

l F
ie

ld
 v

al
u

e
[-

]

Х

Y

Figure 5.11.: The Potential Function PFf ormation generated by enemy unit given the distance D

Evaluation function is calculated as:

P
(
Posx,y|PFf ormation

)
= PFf ormation(D). (5.15)

Encirclement field

All of the enemy units generate a symmetric surrounding field. The highest poten-
tial is in the ring around the unit with the radius of the agent Maximum Sight Range
(MSR). The Encirclement Potential Field (depicted in Figure 5.12) at the distance
D (in pixels) from the center of the last known enemy position is calculated as:

PFencirclement =


(

1− D
MDmax

)2(
D

MDmax

)4
i f D = MSR
i f D < MSR

(5.16)

32

Multi-Agent Potential Fields

MSR
0

0.2

0.4

0.6

0.8

1
Encirclement field

D [px]

P
ot

en
tia

l F
ie

ld
 v

al
ue

 [−
]

Encirclement field example

X

Y

P
ot

en
tia

l F
ie

ld
 v

al
u

e
[-

]

Figure 5.12.: The Potential Function PFencirclement generated by enemy unit given the
distance D

Evaluation function is calculated as:

P(Posx,y|PFencirclement) = PFencirclement(D). (5.17)

5.1.4. Assigning granularity of time and space in the environment

When designing the agent, we had to decide what resolution we will use for the
potential field and size of the area around the agent that will be checked. Training
map used in this thesis has a size 64×64 build tiles (2048×2048 pixels), which
is the smallest map size in StarCraft. After initial evaluation I decided to use 8×8
pixel for each tile in the potential field. This resolution is accurate enough for an
agent to be able to move smoothly. In addition, as it is mentioned in Section 3.2.1,
this resolution is also provided directly by JNIBWAPI.

33

Multi-Agent Potential Fields

Regarding the time granularity, an agent can check its own position plus additional
area, which is determined by the size of the Area Offset (illustrated in Figure 5.13).

Agent
position

+1

+2

+3

Figure 5.13.: Illustration of Area Offset

The minimal Area Offset would be +1. In this case, the agent checks only 8 nearest
fields. The extension of the Area Offset results in a significant increase of com-
putational time and memory usage. On the other hand, the use of +1 offset is
somehow short-sighted. Thus, in our implementation, the Area Offset equals to
+4 which has been found as a good trade-off. To reduce the computational time to
compute the potential fields, evaluation are called after each fifth game frame.

5.1.5. The agent of the system
The agent system is based on Finite State Machine as described in Section 5.3.
For the agent’s state: Move or Flee, the agent actions are based on PFs. When
deciding actions for agent, the potentials in surrounding tiles (given by the Area
Offset as described above) are compared. The agent moves to the center of the tile
with the highest potential, or it is idle in a case that the current tile is the highest.
If an enemy unit is within a fire range, the agent enters the Fire state.
In the Fire state, the behavior of the agent is conditioned by unit cool-down on
attack. When cool-down is zero, the agent chooses the enemy unit to attack and
attack it. Otherwise agent behavior is chosen based on the type of the enemy. If the
type is appropriate for using the Kitting strategy, then the agent state is switched
to Flee state. Otherwise agent is idling.
The Kiting strategy is based on the movement of the units around to make the
enemy chase them and thus not be able to attack as much, or not at all. This is
often used by ranged units against melee units in a combination with the move-
shoot reactive control [43].

34

Limitation

Some of the units, like Lurkers, Siege Tanks etc., have a completely different con-
trol form and roles. The general agent can be extended according to the unit type,
so that each type of unit could use their special abilities. In this thesis, only general
agent has been described and implemented.

5.1.6. The architecture of the Multi-Agent System
The overall high level tactic and strategy is beyond scope of this thesis. However,
there is the Group Tactic module which performs some tasks belonging to this
area of control. The implemented tasks are: Target state prediction, Focusing fire,
Encirclement group of enemies, and Group Logic responsible for determining the
types of the actions, that units in a group should perform (e.g., attack, retreat,
surround the enemy etc.). The Group Tactic is explained in Section 5.4.

5.2. Limitation
One of the shortcomings of the PFs approach is the local optima problem, see
Section 4.1. The proposed solution to the local optima problem is to generate a
negative trail on a specified number of the previous visited tiles. The trail depre-
ciates the evaluation of visited positions, and therefore, it pushes the agent away
from the local optima. In this work, this trail is implemented with the following
features. The 15 last positions are saved for each agent (positions are in walkabil-
ity resolution). Then, instead of adding any fixed value to the overall PF by the
trail, values in the Collision Potential Field are reduced by 20 percentage points
on positions that are contained in the agent trail. Agent can react only on its own
trail. An illustration of this trail is shown in Figure 5.14.

Figure 5.14.: Negative trail example

However, this solution does not eliminate the problem. If agent faces some po-
tential field inconsistencies or noisy values, then this negative trail can push them
trough. On the other hand, if there is a larger obstacle, agent may still stuck in a
local optima. Typical example is illustrated in Figure 5.15.

35

Finite State Machine

−50
0

50
−50

0
50

0

0.5

1

X

Navigation field

Y

P
ot

en
tia

l F
ie

ld
 v

al
ue

 [−
]

Objective

(a) Navigation field

−50 0 50
−50

0

50
0

0.5

1

Collision field

X
Y

P
ot

en
tia

l F
ie

ld
 v

al
ue

 [−
]

(b) Collision field

−50 −40 −30 −20 −10 0 10 20 30 40 50

−50

0

50
0

50

100

150

X

Overall field

Y

P
ot

en
tia

l F
ie

ld
 v

al
ue

 [−
]

Agent

Objective

(c) Overall potential field

Figure 5.15.: An illustration of the local optimal problem

To fully eliminate this problem, some kind of path finding should be incorporated
or completely abandon potential field concept and construct the agent based on a
different approach.

5.3. Finite State Machine
To assign different agent behavior, I propose utilized the Finite State Machine
(FSM) to extend Multi-Agent Potential Fields method. The structure of the FSM
is shown in Figure 5.16.

36

Finite State Machine

FIRE

Enemy in MSD
MOVE

FLEEReload

No enemy around

Figure 5.16.: State diagram for a agent

FSM states and state transitions are as follows:
∙ Move state: This is the default state. The agent uses the aforementioned

described Potential fields to avoid collisions, reach the goal or seek enemy
units. Firstly, the agent checks the bounded area in its MAPF (calculated as
an overall Potential field (4.1) from the individual fields described in Sec-
tion 5.1.2) as it is described in Section 5.1.4. Finally, the agent moves to the
center of the tile with the highest potential, or it is idling if the current tile is
the highest one.

∙ Flee state: This state is structurally the same as the Move state. The differ-
ence is in the overall PF construction. It is constructed from the defensive
PF instead of the aggressive one (explained in detail in Section 5.1.3) In ad-
dition, the Formation field is not taken into account. The agent in this state
is trying to avoid enemies as much as possible.

∙ Fire state: The agent in this state attacks an enemy its range. To increase
efficiency, the attack coordination and damage prediction are used. Attacks
are focused on enemies with a low Hit Points. Additionally no-overkill (pro-
viding more damage than necessary) mechanism is implemented.

∙ Move→Fire: If there is an enemy unit within the circle with the radius Max-
imum Shooting Distance (MSD) and centered on the agent.

∙ Move→Flee: If the agent is assigned the role of scout.
∙ Fire→Move: If there is no enemy unit within the circle with the radius MSD

and centered at the agent.
∙ Fire→Flee: If the agent has a non-zero attack cool-down and the agent unit

MSD is noticeably greater that the enemy unit eMSD (eMSD < 0.8MSD).
∙ Flee→Move: If there is no enemy unit within the circle with the radius MSD

and centered at the agent.
∙ Flee→Fire: If the agent has a zero attack cool-down and there is an enemy

unit within the circle with the radius MSD and centered at the agent.

37

Group Tactic

5.4. Group Tactic
Assigning unit to a group determines the formation of that group, common action
(like attack, encirclement or retreat) and others. Since there is no high strategy
level that can assign unit to the groups, units are assigned to one group.

5.4.1. Target state prediction
The need to save information about enemy units is given by the effort to give the
agent addition abilities and maximize the efficiency of the focused fire. As it was
mentioned in the description of the Encirclement field in Section 5.1.3, the purpose
is to encircle an enemy group and gain favorable position for attack. The situation
is complicated by the fact that the radius of the generated field is higher that the line
of sight, and therefore, our agents can not see enemy units. Here, the target state
prediction take place. The last seen position of the enemy is saved and a group
operates with the assumption that this position is valid. Based on this position, the
group can try to encircle the enemies.
Another type of stored information is heath status. The agents in the Fire state,
which picked an enemy unit to attack, updates this enemy health status. The update
is done as a damage prediction:

HPpredicted = HPcurrent − (Earmor −Adamage), (5.18)

where HP is the Hit Points indicator at the given time, Earmor is the armor value
of specific unit type + bonus armor given from opponent upgrades, Adamage is the
damage amount + bonus damage given from the AI upgrades. It is worth men-
tioning that the damage amount is not constant but is chosen randomly between
the minimum and maximum damage. The exact formula for damage calculation
is damage = mindmg + p(maxdmg −mindmg), where p ∈

〈
0, 1

〉
. Notice, the

HPcurrent in equation (5.18) is the actual unit Hit Points status or the previously
predicted Hit Point status (if some agent has already picked unit as its target). The
motivation behind this is that the agents do not waste attack on enemy units that
are going to be killed in the next frame (another agents will attack them).

5.4.2. Focusing fire
The enemy units can be marked as focused. When the agent is in the state Fire and
it is choosing the target to attack, the focused unit has a higher priority and it is
chosen as the next target for the agent. The agent also looks for a focused unit in
its neighborhood (150% of Maximum Shooting Distance of the unit). When the
agent finds focused enemy unit and the agent is not under attack, it tries to attack
the focused unit. The amount of the unit damage in StarCraft is not depended
on health of the unit, and therefore, nearly dead enemy deals the same amount

38

Group Tactic

of damage as healthy one. Focusing the fire is vital to eliminate enemy units as
quickly as possible.

5.4.3. Encirclement and Group logic
To gain advantage before entering fight, a group can decide to encircle an enemy
group. The encirclement gives a better position for agents and partly prevents
escape of the enemy units. On the other hand, encirclement is not guaranteed and
can lead to the very opposite situation, where agents are spread and forced to fight
individually. To evaluate the situation and decide, proper response, the Group
logic is used. Decision-making of the group is based on the Fuzzy logic. The
inputs of the group controller are: Combat outcomes predictor output, Placement
function output and Damage taken by the group. Fuzzyfication (finding the degree
of membership of the input in predefined fuzzy sets) of these inputs is described
below.

Combat outcomes predictor output

Evaluation of the enemy threat and prediction of the combat outcome is a sub-
stantial part of decision-making process. There are various combat simulators and
predictors like [44] where possibilities of each unit are taken into account and a re-
sult is based on the state space search. However, in this thesis, the straight-forward
evaluation function is used as a simplified estimation. Using a unit hit points,
attack values and cool-down periods, Kovalsky and Bruno [19] proposed the fol-
lowing evaluation function for the combat games. Based on the life-time damage
a unit can inflict:

LT D = ∑
u∈UA

H p(u) · Dmg(u)
Cldwn(u)

− ∑
u∈UE

H p(u) · Dmg(u)
Cldwn(u)

, (5.19)

where UA and UB are the units controlled by the player A and player B, H p(u) are
the Hit Points of the unit u, Dmg(u) is the damage of the unit u, and Cldwn(u) is
the maximal cool-down of the unit u attack rate.
Results of the estimation LT D is used as the input for the fuzzyfication. The mem-
bership functions map input variables to the degree of the membership, in the fuzzy
set, between 0 and 1. The membership functions related to the combat outcome
prediction are:

fEnemysuperiority =


1

LT D
−200

0

LT D ≤−200
−200 < LT D < 0

LT D ≥ 0
, (5.20)

39

Group Tactic

fBalance =


0

LT D+200
200

1− LT D
200

0

LT D ≤−200
−200 < LT D < 0
0 < LT D < 200

LT D ≥ 200

, (5.21)

fAlliessuperiority =


0

LT D
200
1

LT D ≤ 0
0 < LT D < 200

LT D ≥ 200
. (5.22)

−400 −200 0 200 400

0

0.2

0.4

0.6

0.8

1

Combat outcomes predictor output [−]D
eg

re
e

of
 m

em
be

rs
hi

p
fu

ct
io

n
[−

] Fuzzy sets

Enemy superiority
Balance
Allies superiority

Figure 5.17.: Illustration of the membership functions

Placement function output

As an indicator of the proper unit placement, the Encirclement potential field value
is used. Agents in the group save the value of the Encirclement potential field on its
current position. The values of the current placement are divided by the maximal
possible value to determine whether units are deployed optimally.

PR =
∑u∈UA

P(Posx,y (u) |PFencirclement)

N ·max(PFencirclement)
, (5.23)

where N is number of agents in group.
The membership functions related to unit placement is:

fPlacement =


0

PR
1

PR ≤ 0
0 < PR < 1

PR ≥ 1
. (5.24)

40

Group Tactic

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Encirclement potential field values ratio D
eg

re
e

of
 m

em
be

rs
hi

p
fu

ct
io

n
[−

] Placement function output

Figure 5.18.: Illustration of membership function

Damage taken by the group

The encirclement operation is risky and the enemy may engage our agents before
they get into the desired position. The damage of membership function taken by
the group trough time is an indicator that is utilized to decision making. The taken
damage is measured as a percentage of the total Hit Points of the group. The
membership function related to taken damage is:

fDamage =


0

1− ∑u∈UA
H p(u)

∑u∈UA
H pB(u)

1

PR ≤ 0%
0% < PR < 20%

PR ≥ 20%
, (5.25)

where H pB(u) are the Hit Points of the unit u before encounter.

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Damage taken [%]D
eg

re
e

of
 m

em
be

rs
hi

p
fu

ct
io

n
[−

] Amount of damage taken by the group

Figure 5.19.: Illustration of membership functions

Decision making

The output actions can be attack, retreat or wait. The degree of the membership
for each output action is evaluated by these rules:

41

Structure of the implemented AI overview

Attak =
(

fAlliessuperiority AND fPlacement
)

OR fDamage, (5.26)
Retreat = fEnemysuperiority AND fDamage, (5.27)

Wait = NOT fDamage. (5.28)

The highest degree of this rules determines the next action of the group.

5.5. Structure of the implemented AI overview
The Overview of the structure of the Java project, where the proposed AI is im-
plemented, is described as follows:

AIClient (120 LC) - Client used to create connection to BWAPI and StarCraft,
∙ JNIBWAPI - Java wrapper of the BWAPI,
∙ OverMind (80 LC) - The main method of the AI, which contains all data

about the game and all managers (currently only Unit Manager is functional),

– UnitManager (440 LC) - Unit Manager controls all units in the game,

* ScoutGroup (1000 LC) - group of units focused on explotarion and
reconnaissance,

* Group (750 LC) - group of the units focused on combat,

· Agent (900 LC) - MAPF based agent,
· Target (80 LC) - Enemy unit data are saved in this object,

where LC corresponds to app. number of code lines in specific class. For more
detailed view see the CD provided with the thesis.

42

6 Chapter 6.

Experiments and Results
Explanation, description and results of all main experiments conducted in this the-
sis are presented in this chapter.

6.1. Experiment overview
In order to evaluate quality and efficiency of the designed AI, I conducted several
experiments. The experiments are designed as training maps. All of the training
maps are created with the StarCraft Campaign Editor, which is included in an
installation of the StarCraft. The experiments are set on maps 64× 64 build tile
size, with 1v1 player settings. To prevent unbalanced experiments, the maps are
used with identical strength of the players; hence, the number of units of the same
type on both side are equal. As it was mentioned earlier in Section 2.2, the kind
of the race in StarCraft has a huge impact on the gameplay style, and therefore,
there are different requirements of the Reactive Control for different races. For
these experiments, I decided to use the units from the Zerg race. The reason is that
Zerg unit types contain large variety of ranged and melee units. The agent should
manage to control these two basic types, whose control is significantly different.
A basic training map decomposition is illustrated in Figure 6.1. Both starting lo-
cations are placed into opposite corners and facing each other. The identical unit
groups are placed on those locations. An objective for these groups is to reach
the enemy base (on start location) and destroy it. Groups move towards theirs
objective and inevitably encountered with the group of the opponent.

43

Experiment overview

(a)

(b)

Figure 6.1.: Example of the training maps, (6.1a) illustrates the general test training map. Fig-
ure (6.1b) illustrates modified test map

Notice, the training map does not contain any complicated terrain or any other
obstacles that could prevent correct unit navigation.
Descriptions of all units used in the training maps are presented here. The types
of the units used on training maps are shown in Figure 6.2.

44

Experiment overview

(a) Hydralisk (b) Zergling (c) Ultralisk

Figure 6.2.: Military units used on training maps

Table 6.1 shows some information about the unit characteristics used in the training
maps. The Range is the Maxim Shooting Distance (MSD) and the Cooldown is the
weapon cool down. The attack value is the maximum amount of the damage that a
unit weapon can deal per attack. Values such as the Range and Sight are quantified
by a walkable distance in the number of tiles. The Cooldown is quantified by the
number of the game frames.

Table 6.1.: Overview of units properties
Type Hit Points Armor Attack Range Cooldown Sight

Hydralisk Medium
Ground

Unit

80 0 10 4 15 6

Zergling Small
Ground

Unit

35 0 5 1 8 5

Ultralisk Large
Ground

Unit

400 1 20 10 15 7

Some attributes may differ, if units have got upgrades. In this thesis, there are no
upgrades used on the training maps. The values of the cooldown listed here are
the base values, as StarCraft randomizes the cooldown. It takes the base cooldown
and adds a value between (-1) and (+2)1

To evaluate various aspects of the proposed AI strategy we need to inspect several
key attributes of the test scenario. The general test scenario presented above may
vary in these attributes:

∙ Unit types used in the scenario (homogenous group vs. mixed types, ranged
units vs. melee units, etc.)

∙ Size of the group (the bigger the group is, the more unwieldy it becomes).
∙ Group tactics (there can be three basic scenarios of the fight: battle an open

field, where both groups attack each other, attack on defensive formation or
defensive role of the group).

1https://code.google.com/p/bwapi/wiki/StarcraftGuide

45

https://code.google.com/p/bwapi/wiki/StarcraftGuide

Conducted experiments

∙ Opponent AI (Original AI included in StarCraft or other bots).
Regarding these criteria, experiments are divided as follows. With respect to the
type of units, experiments are divided to a range group (composed of Hydralisks),
melee group (composed of Ultralisks and Zerglings) and mixture of all units types.
According to the size of the groups, experiments are divided to small scale combat
(5 vs. 5 unit), medium scale combat (20 vs. 20) and large scale combat (50 vs.
50).
After some initial tests, I decided to reduce group tactics into two parts: 1) attack
on contra attacking enemy; 2) and attack on defensive enemy (encirclement tactics
described in Section 5.4.3). The main reason for this is that the AI proposed in
this thesis does not support a defensive behavior. Encounter with enemies leads
to a counter attack and the situation is then basically the same as in the attacking
scenario. Additionally, encirclement tactic makes no sense when a group of units
is too small. Therefore, experiments with this tactic are conducted only for the
medium and large scale combat scenarios. This setup gives us experiments for
each opponent AI. the structure of this setup is illustrated in Table 6.2. Each cell
in the table represents a scenario for which a series of tests has been conducted.

Table 6.2.: Structure of the experiment
Size

Small Medium Large

Type
Melee

5 vs. 5 (5
Zerglings per

group)

20 vs. 20 (18
Zerglings + 2
Ultralisks per

group)

50 vs. 50 (40
Zerglings + 10
Ultralisks per

group)

Range
5 vs. 5 (5

Hydralisks per
group)

20 vs. 20 (20
Hydralisks per

group)

50 vs. 50 (50
Hydralisks per

group)

Mix

5 vs. 5 (3
Zerglings + 2
Hydralisks per

group)

20 vs. 20 (10
Zerglings + 2
Ultralisks + 8
Hydralisks per

group)

50 vs. 50 (30
Zerglings + 5

Ultralisks + 15
Hydralisks per

group)

The series of the test for each scenario consists of 50 trials. The following data are
record as the results of particular evaluation trial: the mission status (win or lose),
the number of the enemy units left, and the number of own units left.

6.2. Conducted experiments
The opponents considered in the performed experiments are the Original built-in
AI (OAI), TSCmoo AI (TSCAI) and OpprimoBot AI (OBAI). The opponent selec-

46

Results of the experiment

tion was difficult from the following reasons. There is a few bots focused on Zerg
race. In addition, situation is complicated by the fact that these bots are designed
to play full game with normal starting conditions. In our testing scenarios, there
are groups of units locked in small area, hence combat is forced. Other aspects
of the game are missing. This circumstance may lead to unexpected behavior of
the bot. Therefore, only opponents that are able to behave normally are chosen.
Note, that to be able perform combat scenario test, the perfect visibility is enabled
(provided by the BWAPI) for both AIs. The opponents are described below. Ad-
ditionally, the test scenarios for non OAI are reduced to the Small and Medium
scale combat scenarios and due to the fact that I have no control over opponents
AI, the tactic for the group is set to the direct attack. The reason for the combat
scale reduction is that an agent proposed in this thesis is not able to work properly
in a large formation. Hence, it results to a poor performance in the Large combat
scenarios against OAI. More detailed explanation is discussed in 6.4.

OpprimoBot
The OpprimoBot 2 (previously named BTHAI) is a bot that is based on the work of
Dr. Johan Hagelbäck. The version of the bot that is used in this thesis is ver. 15.4
. The agents are based on the MAPFs approach. The bot was originally focused
on the Terran race. In the latest version, all races are supported.

TSCmoo
TSCmoo bot3 is a participant in the Student StarCraft AI Tournament(SSCAIT)
2015 [45]. There is a little knowledge about this bot. It probably uses a case based
reasoning, influence maps, and others techniques. In the SSCAIT 2015 in “Mixed
division” this bot has the win ratio app. 77% (to the date 4.5.2015).

6.3. Results of the experiment
In this section, a summary of the experiments is presented. For a more detailed
view on experiments results see the CD provided with the thesis, where all mea-
surements are recorded. Additionally, all replays from all conducted tests pre-
sented in this thesis are saved and stored on this CD. Abbreviations used in these
tables are described as follows: AUL corresponds to the number of allied units left
on the end of the test and EUL corresponds to the number of enemy units left in
the end of the test (in the both cases, the numbers are presented in a form of the
mean and standard deviation.).

2http://aiguy.org/OpprimoBot.html
3https://github.com/tscmoo

47

http://aiguy.org/OpprimoBot.html
https://github.com/tscmoo

Results of the experiment

Table 6.3.: Summary of the experiments for opponent OAI

win rate [%] AUL [-] EUL [-]
Range 96 2.16±0.841 0.08±0.444
Melee 28 0.52±0.973 1.26±0.964
Mix 90 1.68±0.74 0.1±0.303

Overall 71.3 1.453±1,096 0.48±0.841
(a) Summary of the experiment results for Small scale combat sce-

nario (Attack tactics)

win rate [%] AUL [-] EUL [-]
Range 40 1.56±2.242 2.3±2.296
Melee 44 0.88±1.624 2.04±2.407
Mix 82 4.7±2.771 0.38±0.878

Overall 55.33 2.38±2.799 1.573±2.149
(b) Summary of the experiment results for Medium scale combat

scenario (Attack tactics)

win rate [%] AUL [-] EUL [-]
Range 88 6.6±3.344 0.48±1.445
Melee 26 0.96±1.958 2.12±2.352
Mix 72 2.82±2.43 0.98±1.789

Overall 62 3.46±3.524 1.1933±2.01
(c) Summary of the experiment results for Medium scale combat

scenario (Encirclement tactics)

win rate [%] AUL [-] EUL [-]
Range 0 0.02±0.143 13.4±3.642
Melee 92 3.5±2.196 0.18±0.628
Mix 24 1.74±3.567 6.3±4.726

Overall 38.66 1.753±2.794 6.626±6.419
(d) Summary of the experiment results for Large scale combat sce-

nario (Attack tactics)

win rate [%] AUL [-] EUL [-]
Range 20 1.7±3.699 5.38±3.978
Melee 82 5.66±3.863 0.74±1.816
Mix 28 1.72±3.037 4.02±3.809

Overall 43.33 3.026±3.991 3.38±3.857
(e) Summary of the experiment results for Large scale combat sce-

nario (Encirclement tactics)

48

Results of the experiment

AUL EUL
−0.5

0

0.5

1

1.5

2

2.5

3

N
um

be
r

of
 u

ni
ts

 le
ft

Small scale combat−OAI

Wins

Losses

Win Rate

(a) Vizualization of the experiment results for Small scale combat scenario (Attack tactics)

AUL EUL
−1

0

1

2

3

4

5

6

7

N
um

be
r

of
 u

ni
ts

 le
ft

Medium scale combat−OAI

Attack tactics
Encirclement tactics

Wins
Losses

Win Rate − Attack tactics

Wins

Losses

Win Rate − Encirclement tactics

(b) Vizualization of the experiment results for Medium scale combat scenario (Attack tactics)

AUL EUL
−2

0

2

4

6

8

10

12

14

N
um

be
r

of
 u

ni
ts

 le
ft

Large scale combat−OAI

Attack tactics
Encirclement tactics Wins

Losses

Win Rate − Attack tactics

Wins

Losses

Win Rate − Encirclement tactics

(c) Vizualization of the experiment results for Large scale combat scenario (Attack tactics)

Figure 6.3.: Vizualization of the experiment results for opponent OAI49

Results of the experiment

Table 6.4.: Summary of the experiments for opponent OBAI

win rate [%] AUL [-] EUL [-]
Range 50 0.82±0.962 0.72±0.833
Melee 30 0.62±1.054 1.36±1.173
Mix 82 1.88±1.136 0.3±0.677

Overall 54 1.10±1.182 0.793±1.011
(a) Summary of the experiment results for Small scale combat sce-

nario (Attack tactics)

win rate [%] AUL [-] EUL [-]
Range 34 1.96±3.504 3.64±3.173
Melee 100 15.22±4.652 0±0
Mix 80 7.66±5.374 1.06±2.235

Overall 71.333 8.28±7.095 1.566±2.697
(b) Summary of the experiment results for Medium scale combat sce-

nario (Attack tactics)

AUL EUL
−0.5

0

0.5

1

1.5

2

2.5

N
um

be
r

of
 u

ni
ts

 le
ft

Small scale combat−OBAI

Wins

Losses

Win Rate

(a) Vizualization of the experiment results for Small scale combat
scenario (Attack tactics)

AUL EUL
−2

0

2

4

6

8

10

12

14

16

N
um

be
r

of
 u

ni
ts

 le
ft

Medium scale combat−OBAI

Wins

Losses

Win Rate

(b) Vizualization of the experiment results for Medium scale com-
bat scenario (Attack tactics)

Figure 6.4.: Vizualization of the experiment results for opponent OBAI

50

Results of the experiment

Table 6.5.: Summary of the experiments for opponent TSCAI

win rate [%] AUL [-] EUL [-]
Range 74 1.38±0.923 0.46±0.862
Melee 28 0.46±0.862 1.32±1.077
Mix 32 0.36±0.562 0.84±0.68

Overall 44.666 0.733±0.917 0.873±0.95
(a) Summary of the experiment results for Small scale combat sce-

nario (Attack tactics)

win rate [%] AUL [-] EUL [-]
Range 16 0.42±1.031 3.94±2.385
Melee 2 0.02±0.141 6.92±3.433
Mix 12 0.16±0.509 3.66±2.19

Overall 10 0.2±0.685 4.84±3.085
(b) Summary of the experiment results for Medium scale combat

scenario (Attack tactics)

AUL EUL
−0.5

0

0.5

1

1.5

2

N
um

be
r

of
 u

ni
ts

 le
ft

Small scale combat−TSCAI

Wins

Losses

Win Rate

(a) Vizualization of the experiment results for Small scale combat
scenario (Attack tactics)

AUL EUL
−1

0

1

2

3

4

5

6

7

8

N
um

be
r

of
 u

ni
ts

 le
ft

Medium scale combat−TSCAI

Wins

Losses

Win Rate

(b) Vizualization of the experiment results for Medium scale com-
bat scenario (Attack tactics)

Figure 6.5.: Vizualization of the experiment results for opponent TSCAI

51

Discussion

The overall win rate (all scenarios combined) against OAI is 54.12%, against OBAI
it is 62.66% and against TSCAI it is 27.33%.

6.4. Discussion
Results form the experiments against OAI are considered as the base performance
indicator. The results indicates, that there is a gradual decline of the performance
as the number of units in a group grows. This effect is partially caused by a lo-
cal optima problem of the MAPF approach. An agent has often blocked path by
another unit from its group, the agent is thus forced to look for alternative paths
to reach its objective and avoid collision. This leads to a time consuming pro-
cedure since each agent moves in order to find its place in the group formation.
With the increasing number of agents in the group, the collision probability grows
and agents are often stuck in the local optima points on the used PF. When this
situation takes place in a combat encounter, the agent can not find its way to the
enemy, and therefore, it does not participate in the combat. Hence, the group size
is effectively lower than it is has been original created. This affects particularly
melee units types. A proper unit placement like encirclement can significantly im-
prove the performance as it is shown in the results. However, this tactics is not
appropriate in all situations and additional higher logic is required. In this thesis,
the presented logic can evaluate failed attempt for the encirclement and retreat or
attack. Unfortunately, in the test scenarios, where players forces are equivalent, it
is usually too late and unsuccessful attempt leads to defeat in the scenario.
Experiments against TSCAI show the lack of adaptability of the formation ap-
proach. Agents are focused on nearest enemy unit and move toward it as a whole
group in the formation. This mechanic can be exploited. TSCAI split formation
into main formation and bait units. The bait units lure the group to attack them
and the main group attacks from a more preferable position (e.g., on flank) a mo-
ment later. Since the level of the control proposed in this thesis is focused on the
Reactive Control, groups have their objectives assigned manually. Hence, some
kind of threat evaluation and objective adjustment should be present in the higher
logic.
An important part of the MAPF solution of the agent are the weights. As it was
mentioned before, the weights tuning is preformed manually. Manual tuning takes
a lot of time and there is not guarantee that the weights are tuned optimally (all the
used settings of PFs including weights are stored on CD attached to this thesis).
Incorrect weights could be a reason that the PF did not perform optimally.

52

7 Chapter 7.

Conclusion
In this thesis, we proposed a complex Reactive Control AI based on a Multi-Agent
Potential Field approach for the RTS game StarCraft. The goal was to design
method of multi-agent movement control and coordination of groups of mobile
units. The solution is based on existing concepts of the Potential fields that has
been extended to Finite State Machine, Fuzzy logic based decision-making, and
Bayesian function based evaluation function. This techniques are subsumed into
the proposed solution to adjust behavior of the the multi-agent system. Multi-
Agent Potential Fields system presented in Section 5.1 is capable to control the
unit agents in a group to navigate around in simple environments, to avoid collision
with static and dynamic objects, to create group formations, and to successfully
fight the enemy units.
In the end, the experiments yielded rather disappointing results in terms of prac-
tical performance. The average win rate against the OAI is is 54.12%, , against
the OBAI it is 62.66% and against the TSCAI it is 27.33%. On the other hand, the
use of the proposed tactics leads to improvment of performance, namely it rises
from 55.33% to 62% win rate in the Medium scale scenarios and the increase from
38.66% to 43.33% win rate in the Medium scale scenarios.
There were several limitation observed. The question is whether this problem lies
in the design (the fundamental limitations of the PF approach e.g., local optima
problem) or the implementation of the Multi-Agent Potential Fields (e.g., incorrect
weights of PFs). After several revisions of the weights, the test results did not
show any significantly improved performances. This empower the suspicion that
the fault does indeed lie in the fundamental implementation of the Potential Fields.
However, the work that has been done in this thesis provides a good basis for future
work for designing MAPF based AI for full scale RTS games.

53

Further work

7.1. Further work
Tunning weights manually turned out to be an endless task. Since there is no clear
way how to evaluate performance difference as a reaction to weights change. For
further work it would be useful to extend current MAPF system by some auto-
tunning procedure like evolutionary algorithm.
It would also be useful to add pathfinding for agents, clusters of agents or the group
depending on the computation time demand. Extension of the proposed solution
to the Potential Flow approach would also be an interesting possibility. This would
allow our multi-agent system to keep its structure and completely eliminate local
optima problem.
StarCraft has been proven to be an excellent test platform, but the methods are
applicable for almost all of RTS game. It would be interesting to see application
of this approach attempted in different RTS games.

54

Bibliography
[1] H. Safadi, “Local Path Planning Using Virtual Potential Field,” Apr. 2007. [Online].

Available: http://www.cs.mcgill.ca/~hsafad/robotics/

[2] “Fuzzy logic,” Apr. 2015, page Version ID: 655200038. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=Fuzzy_logic&oldid=655200038

[3] “Dune II ,” Feb. 2015, page Version ID: 645892103. [Online]. Available: http:
//en.wikipedia.org/w/index.php?title=Dune_II&oldid=645892103

[4] “Command & Conquer,” Jan. 2015, page Version ID: 12190757. [Online]. Available:
http://cs.wikipedia.org/w/index.php?title=Command_%26_Conquer&oldid=12190757

[5] “Warcraft,” Mar. 2015, page Version ID: 12318926. [Online]. Available: http:
//cs.wikipedia.org/w/index.php?title=Warcraft&oldid=12318926

[6] “StarCraft: Brood War wiki,” Feb. 2015, page Version ID: 645433201. [Online].
Available: http://en.wikipedia.org/w/index.php?title=StarCraft:_Brood_War&oldid=
645433201

[7] D. Adams, “The State of the RTS,” IGN PC. com. DisponÃvel em, 2006. [Online].
Available: http://www.ign.com/articles/2006/04/08/the-state-of-the-rts

[8] “Can Blizzard top itself with ’StarCraft II?’ - Technology & science - Games - On
the Level | NBC News.” [Online]. Available: http://www.nbcnews.com/id/18925251/#.
VPs5OOGS9m8

[9] “bwapi/bwapi.” [Online]. Available: https://github.com/bwapi/bwapi

[10] J. Hagelback, “Multi-agent potential field based architectures for real-time strategy game
bots,” Blekinge Tekniska hÃ¶gskola, 2012.

[11] G. Synnaeve and P. Bessiere, “A Bayesian model for RTS units control applied to Star-
Craft,” in 2011 IEEE Conference on Computational Intelligence and Games (CIG), Aug.
2011, pp. 190–196.

[12] I. Gonzalez and L. Garrido, “Spatial Distribution through Swarm Behavior on a Military
Group in the Starcraft Video Game,” in 2011 10th Mexican International Conference on
Artificial Intelligence (MICAI), Nov. 2011, pp. 77–82.

55

http://www.cs.mcgill.ca/~hsafad/robotics/
http://en.wikipedia.org/w/index.php?title=Fuzzy_logic&oldid=655200038
http://en.wikipedia.org/w/index.php?title=Dune_II&oldid=645892103
http://en.wikipedia.org/w/index.php?title=Dune_II&oldid=645892103
http://cs.wikipedia.org/w/index.php?title=Command_%26_Conquer&oldid=12190757
http://cs.wikipedia.org/w/index.php?title=Warcraft&oldid=12318926
http://cs.wikipedia.org/w/index.php?title=Warcraft&oldid=12318926
http://en.wikipedia.org/w/index.php?title=StarCraft:_Brood_War&oldid=645433201
http://en.wikipedia.org/w/index.php?title=StarCraft:_Brood_War&oldid=645433201
http://www.ign.com/articles/2006/04/08/the-state-of-the-rts
http://www.nbcnews.com/id/18925251/#.VPs5OOGS9m8
http://www.nbcnews.com/id/18925251/#.VPs5OOGS9m8
https://github.com/bwapi/bwapi

Bibliography

[13] S. Ontanon, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and M. Preuss, “A Survey
of Real-Time Strategy Game AI Research and Competition in StarCraft,” IEEE Transac-
tions on Computational Intelligence and AI in Games, vol. 5, no. 4, pp. 293–311, Dec.
2013.

[14] M. Buro, “Real-time strategy games: A new AI research challenge,” in International Joint
Conferences on Artificial Intelligence, 2003, pp. 1534–1535.

[15] L. Perkins, “Terrain Analysis in Real-Time Strategy Games: An Integrated Approach to
Choke Point Detection and Region Decomposition.” AIIDE, vol. 10, pp. 168–173, 2010.

[16] M. Sharma, M. P. Holmes, J. C. SantamarÃa, A. Irani, C. L. Isbell Jr, and A. Ram, “Trans-
fer Learning in Real-Time Strategy Games Using Hybrid CBR/RL.” in IJCAI, vol. 7,
2007, pp. 1041–1046.

[17] P. Cadena and L. Garrido, “Fuzzy case-based reasoning for managing strategic and tac-
tical reasoning in starcraft,” in Advances in Artificial Intelligence. Springer, 2011, pp.
113–124.

[18] C. Miles and S. J. Louis, “Co-evolving real-time strategy game playing influence map
trees with genetic algorithms,” in Proceedings of the International Congress on Evolu-
tionary Computation, Portland, Oregon, 2006, pp. 0–999.

[19] D. Churchill, A. Saffidine, and M. Buro, “Fast Heuristic Search for RTS Game Combat
Scenarios.” in AIIDE, 2012.

[20] W. Hu, Q. Zhang, and Y. Mao, “Component-based hierarchical state machine #x2014;
A reusable and flexible game AI technology,” in Information Technology and Artificial
Intelligence Conference (ITAIC), 2011 6th IEEE Joint International, vol. 2, Aug. 2011,
pp. 319–324.

[21] D. Isla, “Handling complexity in the Halo 2 AI,” in Game Developers Conference, vol. 12,
2005.

[22] W. Zhe, N. Q. Kien, T. Ruck, and R. Frank, “Using Monte-Carlo Planning for Micro-
Management in StarCraft,” in Proc. of the 4th Annual Asian GAME-ON Conference on
Simulation and AI in Computer Games (GAMEON ASIA), 2012, pp. 33–35.

[23] M. Massari, G. Giardini, and F. Bernelli-Zazzera, “Autonomous navigation system for
planetary exploration rover based on artificial potential fields,” in Proceedings of Dy-
namics and Control of Systems and Structures in Space (DCSSS) 6th Conference, 2004.

[24] F. W. Heckel, G. M. Youngblood, and D. H. Hale, “Influence points for tactical infor-
mation in navigation meshes,” in Proceedings of the 4th International Conference on
Foundations of Digital Games. ACM, 2009, pp. 79–85.

56

Bibliography

[25] H. Danielsiek, R. StÃŒer, A. Thom, N. Beume, B. Naujoks, and M. Preuss, “Intelligent
moving of groups in real-time strategy games,” in Computational Intelligence and Games,
2008. CIG’08. IEEE Symposium On. IEEE, 2008, pp. 71–78.

[26] L. Liu and L. Li, “Regional cooperative multi-agent q-learning based on potential field,”
in Natural Computation, 2008. ICNC’08. Fourth International Conference on, vol. 6.
IEEE, 2008, pp. 535–539.

[27] E. A. Rathe and J. B. Svendsen, “Micromanagement in Starcraft using potential fields
tuned with a multi-objective genetic algorithm,” 2012.

[28] T. Nguyen, K. Nguyen, and R. Thawonmas, “Potential flow for unit positioning during
combat in StarCraft,” in 2013 IEEE 2nd Global Conference on Consumer Electronics
(GCCE), 2013, pp. 10–11.

[29] S. Wender and I. Watson, “Applying reinforcement learning to small scale combat in the
real-time strategy game starcraft: broodwar,” in Computational Intelligence and Games
(CIG), 2012 IEEE Conference on. IEEE, 2012, pp. 402–408.

[30] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning. MIT Press, 1998.

[31] U. Jaidee and H. Munoz-Avila, “Classq-l: A q-learning algorithm for adversarial real-
time strategy games,” in Eighth Artificial Intelligence and Interactive Digital Entertain-
ment Conference, 2012.

[32] S. Wintermute, J. Xu, and J. E. Laird, “Sorts: A human-level approach to real-time strat-
egy ai,” Ann Arbor, vol. 1001, no. 48, pp. 109–2121, 2007.

[33] “Java Native Interface,” Apr. 2015, page Version ID: 656862187. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Java_Native_Interface&oldid=656862187

[34] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” The in-
ternational journal of robotics research, vol. 5, no. 1, pp. 90–98, 1986.

[35] J. Hagelback, “Potential-field based navigation in starcraft,” in Computational Intelli-
gence and Games (CIG), 2012 IEEE Conference on. IEEE, 2012, pp. 388–393.

[36] C. Thurau, C. Bauckhage, and G. Sagerer, “Learning human-like movement behavior for
computer games,” in Proc. Int. Conf. on the Simulation of Adaptive Behavior, 2004, pp.
315–323.

[37] M. Dorigo, Ant Colony Optimization and Swarm Intelligence: 5th International Work-
shop, ANTS 2006, Brussels, Belgium, September 4-7, 2006, Proceedings. Springer
Science & Business Media, 2006, vol. 4150.

[38] J. Hagelback and S. J. Johansson, “Using multi-agent potential fields in real-time strategy
games,” in Proceedings of the 7th international joint conference on Autonomous agents
and multiagent systems-Volume 2. International Foundation for Autonomous Agents
and Multiagent Systems, 2008, pp. 631–638.

57

https://en.wikipedia.org/w/index.php?title=Java_Native_Interface&oldid=656862187

[39] R. Le Hy, A. Arrigoni, P. BessiÃšre, and O. Lebeltel, “Teaching bayesian behaviours to
video game characters,” Robotics and Autonomous Systems, vol. 47, no. 2, pp. 177–185,
2004.

[40] D. M. Bourg and G. Seemann, AI for game developers. " O’Reilly Media, Inc.", 2004.

[41] A. Savitzky and M. J. E. Golay, “Smoothing and Differentiation of Data by Simplified
Least Squares Procedures.” Analytical Chemistry, vol. 36, no. 8, pp. 1627–1639, 1964.
[Online]. Available: http://dx.doi.org/10.1021/ac60214a047

[42] S. Yoshizawa, A. Belyaev, and H.-P. Seidel, “Smoothing by Example: Mesh Denoising by
Averaging with Similarity-Based Weights,” in IEEE International Conference on Shape
Modeling and Applications, 2006. SMI 2006, Jun. 2006, pp. 9–9.

[43] “Kiting.” [Online]. Available: http://wiki.teamliquid.net/starcraft2/Kiting

[44] M. Stanescu, S. P. Hernandez, G. Erickson, R. Greiner, and M. Buro, “Predicting Army
Combat Outcomes in StarCraft.” in AIIDE, 2013.

[45] “[SSCAIT] Student StarCraft AI Tournament 2015.” [Online]. Available: http:
//www.sscaitournament.com/index.php?action=scores

http://dx.doi.org/10.1021/ac60214a047
http://wiki.teamliquid.net/starcraft2/Kiting
http://www.sscaitournament.com/index.php?action=scores
http://www.sscaitournament.com/index.php?action=scores

A Appendix A.

CD content
∙ DP_Experiments - Contains test maps, results of the tests and replays of the all conducted

tests.

∙ JNIBWAPI - Eclipse Java project. Contains AI implementation. The manual to this
project in also included as the Manual.doc text file.

– Methods_of_multi-agent_movement_control_and_coordination_of_groups_of_mobile_units_in_a_real-
time-strategy_games.pdf - Master thesis.

II

	Introduction
	Motivation
	Problem Statement
	Thesis Structure

	Background and Related Work
	Real-time strategy games
	StarCraft
	Challenges in RTS Game AI
	Existing work on RTS Game AI
	Tactics
	Reactive control

	Platform Setup
	StarCraft
	BWAPI
	Physical Properties
	Unit control methods

	System Requirements

	Methodology
	Potential Fields
	Multi-Agent Potential Fields
	Bayesian function
	Finite State Machine
	Fuzzy logic
	Fuzzyfication
	Evaluation of fuzzy rules

	Agent Implementation
	Multi-Agent Potential Fields
	Identifying object
	Identifying fields
	Assigning charges to the objects
	Assigning granularity of time and space in the environment
	The agent of the system
	The architecture of the Multi-Agent System

	Limitation
	Finite State Machine
	Group Tactic
	Target state prediction
	Focusing fire
	Encirclement and Group logic

	Structure of the implemented AI overview

	Experiments and Results
	Experiment overview
	Conducted experiments
	Results of the experiment
	Discussion

	Conclusion
	Further work

	Bibliography
	Appendix
	CD content

