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Abstract

This thesis deals with veri�cation of message schedules in Pro�net IRT networks. For the veri�cation
two approaches were implemented and described in this thesis.

First approach is to verify the schedule by static check with given set of rules. A test tool with
veri�cation rules was implemented in this thesis and several schedules were veri�ed.

In the second approach a model of Pro�net network was created and parametrized by the schedule.
The model was created in Uppaal software, which performs veri�cation of timed automata systems
according to speci�ed requirements. Network with line topology was modeled and veri�ed that it
behaves according to the given schedule.

Abstrakt

Tato práce se zabývá ov¥°ováním plánu zpráv v sítích Pro�net IRT. Pro ov¥°ování byly v této práci
implementovány a popsány dva p°ístupy.

Prvním z p°ístup· je ove°ení plánu statickou kontrolou jeho parametr· podle zadaných pravidel.
V této práci byl implementován testovací nástroj se zadanými pravidly a s jeho pomocí bylo ov¥°eno
n¥kolik plán·.

V druhém p°ístupu byl vytvo°en model sít¥ Pro�net a byl parametrizován zadaným plánem.
Model byl vytvo°en v programu Uppaal, který podporuje veri�kaci £asovaných stavových automat·
podle zadaných poºadavk·. Byla namodelována sí´ s liniovou topologií a bylo ov¥°eno její chování
podle plánu.
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Chapter 1

Introduction

This thesis deals with veri�cation of message schedules for Pro�net IRT networks. The schedule is
crucial for real time applications and if it is miscalculated it might lead to loss of data in the network.
The scheduling is a very complex task because a lot of constraints are given by physical limits of used
devices and at the same time the schedule should often be optimized to minimize the time needed to
propagate the information through the network.

Many approaches exist in the scheduling of the communication and each of them might provide
di�erent results. The results should be veri�ed if they really meet the criteria given by the real
environment. First idea could be to build a network from real hardware and to observe if it really
behaves according to the schedule. Building a network can be a resource demanding task and the
costs easily overcome the bene�t which is only the veri�cation of the schedule.

The goal of this thesis is to develop software methods to allow veri�cation of message schedules.
Two approaches of the veri�cation are presented. The �rst one is a test tool which performs a static
check of schedules. The requirements on the schedule are speci�ed as the test rules and the tool
evaluates if the schedule meets all the requirements by veri�cation that no rules are violated.

The second approach is to create a model of the network which can be parametrized by a message
schedule. A veri�cation engine can be used to evaluate if the network is capable of following the
message schedule.

The thesis is divided into �ve chapters. The second chapter (Pro�net IRT) brie�y introduces the
reader into Pro�net IRT networks and summarizes the knowledge necessary for understanding the
following chapters. The third chapter (Test tool) presents how a test tool for the schedule veri�cation
was designed and implemented. The internal structure of the tool is described there as well as its
user interfaces. Chapter Uppaal describes modeling of Pro�net network in Uppaal software and how
it was used to verify a message schedule. The last chapter summarizes the results of the thesis and
suggests possible future extensions of implemented methods.
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Chapter 2

Pro�net IRT

Pro�net IRT (Isochronous Real Time) is a communication concept based on Ethernet. It was designed
for a cyclic data exchange in real time applications which demand fast response times. A typical
application is a synchronization of drives in fast processes like milling or printing machines where the
drives of individual axes must perform synchronized movements with high precision.

Due to the demands of applications on fast response times, very little data loss in the network
should occur. However, Ethernet is not a deterministic environment and neither data delivery nor
delivery time is guaranteed. Any message can be delayed at a switch or even dropped as a result
of its overload. Therefore Pro�net IRT de�nes extension of Ethernet for real time networks which
enforces its deterministic behaviour.

All devices in Pro�net networks contain the extended Ethernet switch to communicate with the
rest of the network. The switch provides communication services for the transfer and reception of
data. The services are used by an application running on the device, which can be a controller or an
I/O device.

First of all Pro�net IRT introduces mechanisms to synchronize the clocks of individual switches
to the same rate. When the clocks are synchronized the communication cycle with a certain length
is de�ned. This cycle is divided into two main phases, red and green. The red phase is reserved for
the deterministic real time communication and the green phase is left for other tra�c. From this
division it can be seen that the real time application can co-exist with non-real time tra�c on the
same network.

To avoid random drops of frames in the red phase the communication is scheduled with high
precision. The schedule ensures that no collisions of the frames occur and every frame is delivered to
its receiver at deterministic time.

2.1 Scheduling of communication

The schedule of the communication is calculated in an engineering tool where the network is planned
before the data exchange happens. The scheduling algorithm must be aware of the network topology
and properties of switches. The properties include propagation delays caused by the �nite speed of
their operation and they must be taken into account during the planning phase so the schedule is
created in a way that the switches are able to follow it. These properties are described in GSDML
(General Station Device Markup Language) �les [4]. Together with the topology, the algorithm must
know what messages are to be sent through the network and their length. The messages are identi�ed
by a unique ID which is used by the switches during the forwarding of the frames. The format of the
messages is described in section 2.2.

The output of the scheduler is a list of forwarding rules for individual switches in the network.
Each rule contains ID of the message to which it relates and the ports where the message is received
and transmitted. This combination creates a path of the message through the network. Together
with the path, timing information is provided to tell the switch at which time from the beginning of
the cycle the transmission should happen. This time is called Frame Send O�set (FSO). Frame Send
O�set is de�ned as the time point when the transmission of the �rst byte of Ethernet header should
start at underlying physical layer. Precise de�nition of this time point is given in IRT Engineering
Guideline [5]. The behaviour of the switches with relation to the calculated schedule is described in
section 2.3.

There might be lots of scheduling algorithms with various formats of their output, thus Pro�net
provides de�nitions of data records in document [1]. These data records are loaded into the switches
during the start-up of the network and determine the behaviour of the switches. For the message
schedule veri�cation, data record PDIRData is very interesting because it contains the forwarding
rules and the boundaries of the red phase calculated by the scheduler.

2



2.2 Message format

Messages are sent in standard Ethernet frames with the structure shown in �gure 1.

Figure 1: Pro�net IRT message

Ethernet frame starts with Preamble, Start Frame Delimiter (SFD) and Ethernet header. It is
followed by Frame ID, payload and status of the frame (APDU Status). At the end of the message
there is Ethernet Frame Check Sequence (FCS). Frame ID is encoded in the �rst two octets after
Ethernet header. To increase the throughput of the network switches use the cut through mechanism.
This approach allows forwarding of a frame while it is still being received. In IRT switches the
forwarding is based on Frame ID and once it is received the frame can be forwarded.

To further reduce the propagation delay caused by a switch, Frame ID can be encoded in the �rst
two octets of the destination address in Ethernet header. This approach is called fast forwarding
(FFW) and the format of the message is shown in �gure 2. With this approach the frame can be
forwarded after the �rst two octets of Ethernet header are received.

There is one more option to reduce the propagation delay. Instead of the long Ethernet preamble
(7 octets) the short one can be used (1 octet).

Figure 2: Pro�net IRT message for fast forwarding

2.3 Message forwarding

From the switch point of view the messages can be divided into three categories:

• injected

• forwarded

• consumed

Injected messages are not received on any port, but they are injected to the network by the switch.
Opposite of this case are received messages, they are not forwarded to any port, they are delivered
to the application running on the switch. Forwarded messages are none of the previous, they are
received on a port and forwarded to another one according to PDIRData.

IRT switches can be divided into the two types, absolute and relative. They are described below.

2.3.1 Absolute forwarder

Absolute forwarders have the forwarding information in PDIRData for all three categories. When a
message is received its Frame ID is found in PDIRData and it is forwarded according to it. If the
Frame ID is not found, the message is discarded. Sending of messages is synchronized with local the
clock and they are sent according to their FSO.

Absolute forwarders contain PDIRData for the forwarded frames and thus they can have more
than two ports and complex topologies can be built with them.
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2.3.2 Relative forwarder

Relative forwarders do not contain forwarded frames in their PDIRData and they can have only
two ports. Messages received on one port are forwarded to the other port. No timing information
is available either and FSO is reconstructed from the time when they are received. Sending of the
messages is not synchronized with the local clock and they are sent out at the time relative to their
reception.

The relative forwarders can achieve better performance than absolute forwarders with respect to
the time a message spends in the switch, but they are limited with two ports.
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Chapter 3

Test tool

This chapter describes the design and the implementation of the test tool which veri�es the message
schedule. The message schedule is stored in PDIRData of individual switches and it is tested to
verify that the schedule is valid. As it was described in section 2.1, PDIRData are created from the
message schedule calculated by a scheduling algorithm. The tool tests if the transformation was done
correctly by comparison of PDIRData with the input and output of the scheduler. The schedule itself
is tested if it does not violate equations presented in IRT Engineering Guideline [5]. The equations
were transformed into the test rules and the test tool evaluates them to �nd out if they are violated
or not.

The tool provides a graphical interface where the results can be clearly displayed. They can also
be saved to an XML �le for further processing by another application or they can be printed into a
PDF report.

To perform the tests it is necessary to specify the sources of data and additional information.
The tool provides a form where the necessary inputs are con�gured and the con�guration can be
saved to an XML �le and later loaded back. Formats of the input data can vary with their version
or an application which generated them. Multiple formats of the input �les are supported to enable
usage of the tool to as many users as possible and the tool was designed to support possible future
extensions of new �le formats.

The tool was implemented in C++ programming language. Its implementation was successfully
tested on Windows platforms. However, the implementation uses only libraries which are portable
between most commonly used platforms and it can be easily ported to Linux or Mac platforms without
large changes in the source code.

3.1 Design

The application was required to have both Graphical User Interface (GUI) and Command-line Inter-
face (CLI). It leads to the design where the core functionality of testing was extracted into a testing
library and two applications were implemented as an interface for it. The applications are described
in sections 3.9 and 3.10 and they use public Application Programming Interface (API) to perform
tests or utilize another functionality of the core. The public API, described in section 3.8, can be also
used to integrate the library into another application.

The design of the library is shown in �gure 3. Its API is called from applications and the requests
are passed to the core. The core controls the �ow of the program execution and uses individual
modules to achieve the requested functionality.

Figure 3: Design of the library
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To perform the testing, several inputs must be provided for the library. The inputs are data
records for individual switches, input and output of the scheduler and GSDML �les describing the
switches. Details about individual inputs are given in section 3.2. Every input might be stored in
various �le formats of di�erent versions. For this reason it was decided to represent each input with
a data model in module Models. Individual data models are described in section 3.3.

The data models are created from input �les by parsers in module Parsers. They deal with the
speci�cs of the format where the data are stored, and extract them to create the corresponding data
models. With this approach the data models are independent of the �le format. If a new format of
the input data should be supported in the future, it will be su�cient to implement a new parser which
will �ll the data model and the rest of the library will remain una�ected. The parsers are described
in section 3.4.

The implementation of the test rules and their organization was implemented in module Tester,
described in section 3.5. The tests usually involve checks of values across the inputs, thus a new data
model was designed to perform the testing on. This model is created from data models of individual
inputs based on the con�guration which is also one of the inputs of the application.

The outputs of the library are the results of the tests. They can be returned as a data structure
for immediate processing or as an XML �le. For the conversion of the data structures into XML �les,
module Formatters was designed. Inside this module the results can be formatted into the output
format described in section 3.7. Detailed description of this module can be found in section 3.6.

3.2 Inputs

Description of individual inputs for the test tool is given in this section. There are several �les needed
for the veri�cation of a message schedule, input and output of the scheduler, device descriptions in
GSDML and a �le containing the data records. For storage of the test con�guration a con�guration
�le was designed.

3.2.1 Scheduling Input and Output

These inputs are related to the scheduler of the IRT communication. They contain input and output
data of the scheduler. The only supported scheduling library is Lauther Planning Library [6] and
therefore only its �le formats are supported.

3.2.2 GSDML

GSDML is an XML �le where parameters of individual switches are described. Format and the
structure are described in its speci�cation [4].

3.2.3 PDIR

This source of data contains necessary data records which are sent by the controller to switches during
the application relation (AR) establishment. They are the major point of the interest of this tool
because they determine the real behaviour of switches. Necessary data records are following:

• PDIRData [802C]

• PDSyncData [802D]

• PDPortDataAdjust [802F]

The number in brackets is the number assigned to the data record in Pro�net speci�cation [2]. This
number is used in write request during the AR establishment. PDIRData and PDSyncData are
required by the protocol for each switch. PDPortDataAdjust are not mandatory and are used only
for advanced features of individual ports.

Two �le formats are supported, �rst one is a packet capture �le (pcap) which contains capture of
the AR establishment from the real network. The other one is an XML �le containing these data.
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Pcap

The packet capture can be obtained from already existing network. Libpcap was chosen as the
supported �le format, it is de�ned in [12]. This format is supported by WinPcap library, which is
used later for parsing the �le.

XML

The pcap �le can be obtained from already existing networks, thus it is not very suitable for debugging
or optimization of the scheduling algorithm. For this reason it was decided to support more �exible
format which will bypass the need of a real network. An XML �le format was introduced and an
example is in the listing 1. Element domain contains attribute startup with allowed values legacy or
advanced based on the startup mode used by all switches in the network. This element contains one
or more elements device, one for each device in the network. Elements record contain data record
mentioned above, formatted in hex strings as described in APDU (Application Protocol Data Unit)
abstract syntax in Pro�net speci�cation [2].

<irtcheck >

<pdir>

<domain startup="legacy">

<device name="device1">

<record number="802C">0123456789 ABCDEF </record >

<record number="802D">0123456789 ABCDEF </record >

<record number="802F">0123456789 ABCDEF </record >

<record number="802F">0123456789 ABCDEF </record >

</device >

</domain >

</pdir>

</irtcheck >

Listing 1: PDIRdata XML format

3.2.4 Con�guration

This �le was designed to store the con�guration of a single test case. An example of the �le is shown
in listing 2.

<irtcheck >

<configuration >

<sources >

<file parser="lauther -in" path=".xml" type="schedule -in"/>

<file path=".xml" type="schedule -out"/>

<directory path="/" type="gsdml"/>

<inline type="pdir"/>

</sources >

<domain controller="PN -IO" startup="legacy">

<device gsdml=".xml" ip -address="192.168.0.1" name="device1.

name" type="DEVICE_A"/>

<device gsdml=".xml" ip -address="192.168.0.2" name="device2.

name" type="DEVICE_A"/>

</domain >

</configuration >

</irtcheck >

Listing 2: Con�guration XML format

Element sources contains information about the source �les used for the testing. It can contain
three types of child nodes. Node �le holds the information about a single source �le, node directory
can be used for speci�cation of a directory which contains several GSDML �les. The last type
which can be used is inline source for input of data records together with the con�guration �le. In
this case the data records are speci�ed in the con�guration �le and formatted as it is described in
paragraph 3.2.3.
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For every source it is necessary to specify path to the �le, its type and parser to be used. Attribute
type says what kind of input is speci�ed, available options are schedule-in, schedule-out, gsdml, pdir.
Allowed values for attribute parser are dependent on the type. Available combinations are in table 1.
It is also possible to use option auto as the name of the parser, in that case the library will try to
�gure out the correct parser.

Input Available parsers

Scheduling Input lauther-in-v2, lauther-in-v4
Scheduling Output lauther-out

PDIR pcap, xml
GSDML gsdml

Table 1: List of available parsers for individual input �les.

Element domain holds the information about the global parameters and individual devices. The
tested startup mode and the name of the controller are speci�ed there. For every device in the
network is created a node device, in its attributes there are con�gured device name, IP address and
assignment to the Device Access Point (DAP) in GSDML.

3.3 Models

The data models are representations of the inputs inside the application. For every input a cor-
responding data model was created. One additional data model, Domain model, was designed to
perform the tests on.

3.3.1 Con�guration

This model is a representation of the con�guration �le described in 3.2.4. Its class diagram is shown
in �gure 4.

-schedulingInputSource : Source
-schedulingOutputSource : Source
-pdirDataSource : Source
-gsdmlSources : vector<Source>
-startupMode : StartupMode
-controllerName : string
-devices : vector<Device>

Configuration

-path : string
-parser : string

Source

-name : string
-gsdmlName : string
-gsdmlType : string
-ipAddress : string

Device

Figure 4: Model of the con�guration �le

The con�guration �le is represented by class Con�guration. It contains single sources of scheduling
input and output and the source of data records. There might be multiple GSDML �les used and
therefore they are stored in a vector. Attribute startupMode holds the tested startup mode and it
is represented by enumeration StartupMode which can have values Advanced or Legacy. Name of
the controller is stored in attribute controllerName as a string. Attribute devices contains objects of
class Device to represent devices in the network.

Class Device contains name of the switch from scheduling input and output in attribute name.
This name is mapped to Device Access Point (DAP) inside GSDML �le by attributes gsdmlName
and gsdmlType, where gsdmlName is �le name of GSDML and gsdmlType is DAP identi�er.

Class Source represents a single source �le. It holds path to the �le in attribute path and name
of the parser in attribute parser.
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3.3.2 Scheduling Input

This model represents the input for the IRT scheduler. The overall structure is shown in �gure 5.
In total it holds topology of the network with parameters of the switches and a list of the messages
which are sent through the network together with their sender and receiver.

-links : vector<Link>
-switches : vector<Switch>

Topology

-name : string
-forwardingMode : ForwardingMode
-additionalLsduGap : int
-ports : vector<Port>

SwitchType

-name : string
-switchType : SwitchType
-bridgeDelay : int

Switch

-globals : Globals
-topology : Topology
-messages : vector<Message>
-switchTypes : vector<SwitchType>

SchedulingInput

-rxDelay : int
-txDelay : int
-number : int

Port

-frameId : int
-length : int
-sender : Switch
-receiver : Switch

Message

-cableDelay : int
-source : EndPoint
-destination : EndPoint

Link

-maxTxRxTime : int
-startTime : int
-minInterLsduGap : int
-additionalLinkDelay : int

Globals

-switch_ : Switch
-port : int

EndPoint

Figure 5: Model of the input for the scheduler

The scheduling input is represented by class SchedulingInput. It holds global parameters for the
scheduling algorithm, topology of the network, list of messages to be sent and list of switch types.

Global parameters are stored in class Globals. Attribute maxTxRxTime is the time when all
the messages must be completely received. Time when the �rst message can be sent is in attribute
startTime. Minimum gap between the frames on a single port is in attribute minInterLsduGap. The
gap is measured from the end of the frame to the start of the preamble of the consecutive frame.
Attribute additionalLinkDelay represents a time reserve which has to be added to the planned FSO
(Frame Send O�set) to cover the possible inaccuracy of clocks of two neighbouring switches.

The topology is represented by class Topology and contains list of switches and links between them.
A link is characterized by two endpoints and the delay which it introduces to the communication. An
endpoint is a combination of switch and port number where the link is connected.

Individual switches are represented by class Switch which holds a unique name of the switch,
switch type and its bridge delay. Bridge delay characterizes a delay which is necessary for the switch
to create a forwarding decision for a single frame. The real Pro�net networks are often built from
many devices of the same kind. The common properties of the switches were extracted to a separate
class describing the switch type.

The switch types are characterized by class SwitchType. It stores forwarding mode represented
by an enumeration which can have two values Absolute and Relative. Attribute additionalLsduGap
characterizes an additional gap which has to be added tominInterLsduGap from the global parameters
to obtain the true gap required by the switch.

The ports are represented by class Port. They contain delays introduced by receiving or trans-
mitting parts. The ports are identi�ed by ascending numbers starting from number one.

Messages, which have to be scheduled, are represented by class Message. It stores length of the
data which will be carried by the message, its sender and receiver. Messages are identi�ed by their
frame ID which is unique and is generated by engineering tool in ranges speci�ed by the Pro�net
speci�cation.

9



3.3.3 Scheduling Output

This model represents the output of the IRT scheduler. Structure of the model is shown in �gure 6.

-message : Message
-txPorts : vector<int>
-time : int

TxMsg

-name : string
-rxPorts : vector<RxPort>
-txMessages : vector<TxMsg>
-beginEndGroups : vector<BeginEndGroup>

Switch

-results : Results
-messages : vector<Message>
-switches : vector<Switch>

SchedulingOutput

-number : int
-lineRxDelay : int
-rxMessages : vector<RxMsg>

RxPort

-message : Message
-local : bool
-time : int
-validFrom : int
-txPorts : vector<int>

RxMsg

-maxPortActivity : int

Results

-number : int
-start : int
-end : int
-phases : vector<int>

PeriodGroup

-frameId : int
-length : int

Message

-number : int
-rxPeriodGroups : vector<PeriodGroup>
-txPeriodGroups : vector<PeriodGroup>

BeginEndGroup

Figure 6: Model of the output of the scheduler

The scheduling output is represented by class SchedulingOutput. It stores calculated time schedule
of the messages and boundaries of the red period for every port.

The schedule for one switch is represented by class Switch. It contains the name of the switch
which is the same as the name of the corresponding switch in the scheduling input. The forwarding
rules are stored separately for each port where the frame should be received in attribute rxPorts.
Locally generated frames are stored in attribute txMessages. Switch also contains boundaries of the
red period in attribute beginEndGroups.

The boundaries of the red period are represented by class BeginEndGroup. It is present for every
port of the switch and therefore it is identi�ed by the port number. The red period may di�er for the
receiving and transmitting part of the port, but for both cases it is represented by class PeriodGroup.
It stores the beginning and end of the period and a list of phases for which it is valid.

Each port, where a frame is received, is represented by class RxPort which contains a list of
received frames represented by class RxMsg. Class RxMsg contains the forwarding information for
the switch. It contains a list of ports, where the message should be sent, in attribute txPorts. This list
may be empty if the message is consumed, in this case attribute local should be set to true. Attribute
time represents the time when the message should be transmitted on the port.

Locally generated frames are represented by class TxMsg. The meaning of the attributes is the
same as in the case of class RxMsg.

3.3.4 Pro�net Data Units

This model contains representation of selected data records required for the testing. The data units
are modeled according to the speci�cation [1], the structure and naming of the classes and attributes
follows the speci�cation as well. Totally four data units were modeled, ArblockReq, PDIRData,
PDSyncData and PDPortDataAdjust.

Record PDIRData was fully implemented in the extent that is de�ned in the Pro�net speci�cation
and its structure is show in �gure 7. Names of the attributes correspond to the names in the speci-
�cation. Remaining data records were implemented only partially, because some of their attributes
were not necessary for the application.
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-maxPortTxDelay : unsigned int
-maxPortRxDelay : unsigned int
-maxLineRxDelay : unsigned int
-yellowTime : unsigned int

MaxTxRxDelay

-numberOfAssignments : unsigned int
-txRxAssignments : vector<TxRxAssignment>
-numberOfPhases : unsigned int
-phaseAssignments : vector<PhaseAssignment>

PortAssignment

-startOfRedFrameID : unsigned short
-endOfRedFrameID : unsigned short

RedGuard

-redOrangePeriodBegin : unsigned int
-orangePeriodBegin : unsigned int
-greenPeriodBegin : unsigned int

BeginEndAssignment

-txBeginEndAssignment : BeginEndAssignment
-rxBeginEndAssignment : BeginEndAssignment

TxRxAssignment

-blockHeader : BlockHeader
-redGuard : RedGuard
-numberOfPorts : unsigned int
-portAssignments : vector<PortAssignment>

PdirBeginEndData

-frameSendOffset : unsigned int
-dataLength : unsigned short
-reductionRatio : unsigned short
-phase : unsigned short
-frameID : unsigned short
-etherType : unsigned short
-rxPort : unsigned char
-frameDetails : unsigned char
-numberOfTxPortGroups : unsigned char
-txPortGroups : vector<unsigned char>

FrameData

-blockHeader : BlockHeader
-slotNumber : unsigned short
-subslotNumber : unsigned short
-pdirGlobalData : PdirGlobalData
-pdirFrameData : PdirFrameData
-pdirBeginEndData : PdirBeginEndData

PdirData

-blockHeader : BlockHeader
-maxBridgeDelay : unsigned int
-numberOfPorts : unsigned int
-maxTxRxDelays : vector<MaxTxRxDelay>

PdirGlobalData

-txPhaseAssignment : unsigned short
-rxPhaseAssignment : unsigned short

PhaseAssignment

-blockHeader : BlockHeader
-frameDataProperties : unsigned int
-frameData : vector<FrameData>

PdirFrameData

-blockType : BlockType
-blockLength : unsigned short
-blockVersionHigh : unsigned char
-blockVersionLow : unsigned char

BlockHeader

Figure 7: Model of data record PDIRData

3.3.5 PDIR Data Library

This model is a collection of Pro�net Data Units for every switch in the network as described above.
The structure of the model is shown in �gure 8.

It contains a list of switches, where each switch holds a complete set of data records. A switch is
identi�ed by attribute id. It can contain device name or IP address, the way of identi�cation depends
on the source of the data. In case of XML �le it is the device name, in case of pcap �le it is the IP
address.

-id : string
-pdSyncData : PdSyncData
-pdirData : PdirData
-arBlockReq : ArBlockReq
-pdPortDataAdjusts : vector<PdPortDataAdjust>

Switch

-switches : vector<Switch>

PdirDataLibrary

Figure 8: Model of the data records library

3.3.6 GSDML Library

Collection of the GSDML �les speci�ed in the con�guration is represented by model GSDML Library.
Its structure is in �gure 9.

11



-id : string
-fragmentationType : FragmentationType
-startupModes : vector<StartupMode>
-minYellowTime : int
-maxBridgeDelay : int
-maxFrameStartTime : int
-maxBridgeDelayFfw : int
-minFso : int
-minRtc3Gap : int
-yellowSafetyMargin : int
-tPllMax : int
-applicationClasses : vector<ApplicationClass>
-ports : vector<Port>

Switch

-maxPortRxDelay : int
-maxPortTxDelay : int
-shortPreamble100MBitSupported : bool

Port

-gsdmlFiles : vector<Gsdml>

GsdmlLibrary

-fileName : string
-switches : vector<Switch>

Gsdml

Figure 9: Model of the GSDML �les

A single �le is represented by class Gsdml and it is identi�ed by its �le name. The �le can
contain one or more Device Access Points (DAP) which are represented by class Switch. Port speci�c
attributes are stored in class Port.

Names of the attributes and their meaning are the same as in their de�nition in GSDML speci�-
cation [4].

3.3.7 Domain Model

This model brings together previously mentioned data models of input �les. It creates a suitable data
structure for the testing. Class diagram of this model is shown in �gure 10.

-links : vector<Link>
-switches : vector<Switch>

Topology

-schedulingInput : Switch
-schedulingOutput : Switch
-gsdml : Switch
-pdirData : PdirData
-pdSyncData : PdSyncData
-arBlockReq : ArBlockReq
-ports : vector<Port>

Switch

-schedulingInput : Port
-rxPort : RxPort
-gsdml : Port
-maxTxRxDelay : MaxTxRxDelay
-portAssignment : PortAssignment
-pdPortDataAdjust : PdPortDataAdjust
-beginEndGroup : BeginEndGroup

Port

-schedulingInputMessage : Message
-schedulingOutputMessage : Message
-path : vector<Hop>

Message

-source : EndPoint
-destination : EndPoint
-schedulingInputLink : Link

Link

-startupMode : StartupMode

InitialSettings
-link : Link
-frameData : FrameData
-time : int

Hop

-port : Port
-switch_ : Switch

EndPoint

-topology : Topology
-controller : Switch
-devices : vector<Switch>
-messages : vector<Message>
-schedulingInput : SchedulingInput>
-schedulingOutput : SchedulingOutput
-gsdmlLibrary : GsdmlLibrary
-pdirDataLibrary : PdirDataLibrary
-initialSettings : InitialSettings

Domain

Figure 10: Model of the whole network

The network is represented by class Domain. It contains topology of the network, controller and
devices. It also contains original data models of input �les.

The topology is represented in the same way as it is represented in the data model of the scheduling
input.

Class Switch represents a controller or a device. The class contains corresponding switch objects
from other data models as well as their data records. The di�erence between a controller and a device
is that for the controller the data records and GSDML �le are not present in the inputs.

For some test cases it was necessary to know the path of the message. The path is reconstructed
from the scheduling output and it is represented by a list of hops for each message. A hop is
combination of the link where message travels, and the time when the transmission starts.
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3.4 Parsers

Module Parsers presents the interconnection between the input �les and data models. Every instance
of data model described in section 3.3 is created by a parser from the input �le. One exception is the
Domain model which is not created from a �le but from other models.

For access to the data in XML or pcap �les, third party libraries were used. These libraries parse
the �le and provide its content in data structures. Library libxml2 [7] was used to work with XML
�les and library WinPcap [8] was used with pcap �les. The libraries have a C API, which is not very
convenient to use in C++, therefore it was decided to implement wrappers with minimal API needed
for the tool. This approach is illustrated in �gure 11. When a parser of data model needs to access
a �le, the wrappers XmlParser or PcapParser are used to do so.

The design where the libraries are directly used only by the wrappers, gives an advantage in case
that the library has to be changed to another one for any reason. In the code of the tool it will result
only in reimplementation of the wrapper. Other classes will remain intact.

Figure 11: Wrappers for third party libraries

3.4.1 PcapParser

PcapParser provides access to data in a pcap �le. It parses the �le and calls a user speci�ed callback
function for every frame in the �le. The content of the frame is not interpreted and it is passed to
the callback function in terms of raw byte sequence. Interpretation of the frame is the responsibility
of the user of the parser.

3.4.2 XmlParser

XmlParser allows access to the contents of an XML �le and its validation against XML schema [14].
It parses the input �le and creates an internal tree structure of XML elements. The root element of
the tree is returned to the user as an object of class Node.

Class Node provides access to its data and children data via evaluation of XPath expressions [13].
Result of XPath evaluation can be returned as another object Node or an array of them.

3.4.3 Parsing of data models from �les

For every data model an abstract class was de�ned. This class de�nes the only one method Parse()
which returns the desired model. The implementation of this method is left for derived classes which
in this method implement conversion from a speci�c �le format to the data model.

This approach is useful in case that there exists more than one �le format to describe the data to
�ll the data model with. For every format a parser is created but further in the code the data can be
handled in the same way thanks to the interface class.

3.4.4 Integration of parsers into the library

Individual parsers of data models are not accessed directly from the library. For every data model
there exists a proxy class which takes path to the �le and name of the parser from the con�guration
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�le. Based on the name it creates an instance of the correct parser and uses it to create the model. If
the name of the parser is speci�ed as �auto�, it tries to estimate the correct parser to be used. This
estimate is based on the extension of the source �le and validation by xsd, it can be extended by
any other suitable approach. In �gure 12 an example of integration into the library is given. When
PDIR data model is needed the PdirParser is called with the �le name and the name of the parser.
It decides whether to use parser from pcap or XML �le based on the �le extension. This parser is
then used to obtain the data model.

Figure 12: Integration of parsers into the library

3.4.5 Parsing of the domain model

Parsing of the domain model was implemented in class DomainParser. The input can be path to
the con�guration �le or its data model. When the processing is complete, an instance of the domain
model is returned.

In case that a path to the �le was provided it is parsed to obtain the con�guration model. Based
on the information inside the other input �les are parsed and their data models are obtained.

From the data models of input �les the domain model is created. The topology is based on
the scheduling input and paths of the messages are created from the scheduling output. During
the parsing it is necessary to �nd corresponding switches in di�erent models. It is done using the
information from the class Device of the con�guration model.

Class Device of the con�guration model has attributes name, gsdml, type and ipAddress. Mapping
of these attributes to corresponding attributes in other models is in table 2.

Con�guration Corresponding

name
SchedulingInput::Switch::name
SchedulingOutput::Switch::name
(PdirDataLibrary::Switch::id)

gsdml GsdmlLibrary::Gsdml::�leName
type GsdmlLibrary::Switch::id

ipAddress PdirDataLibrary::Switch::id

Table 2: Mapping of attributes from device con�guration to other models

3.5 Tester

This section describes Tester module which is the most important part of the tool. Individual tests,
which are organized in test suites, are implemented in this module. The tests were implemented as
independent classes which know nothing about the data models. They are parametrized by the test
suite which extracts the necessary values from the domain model.

The design of this module allows adding of new tests by implementing a new class and integrating
it into the existing suite. It is also possible to add a new suite and use subset of all tests to achieve
testing of speci�c parts of the IRT schedule.
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3.5.1 Class Test

For the implementation of individual test rules abstract class Test was designed. It extracts common
behaviour of all tests and provides a standard environment to implement individual tests.

Constructor

The constructor has two arguments

• startupMode

• warning

Argument startupMode is the tested startup mode from the con�guration �le. It is optional with
default value Advanced.

A test can generate three types of results, passed, error and warning. If the test rule is not ful�lled,
an error or warning is generated. If the argument warning is set to true, the test generates warning.
It is also optional to specify this argument, default behaviour is to generate error when the rule is
violated.

Warnings were implemented because a violation of some test rules is not critical for the operation
of the network.

Attributes

• startupMode

• warning

• args

All the attributes are protected and accessible only to derived classes. Attributes startupMode and
warning are stored arguments from the constructor. Attribute args contains textual representation
of test arguments. It is a map with string keys and values. Every key-value pair represents one
test argument. Name of the argument is in the key and value contains textual representation of the
argument value. This attribute should be �lled in the constructor of the derived class.

Abstract functions

• ID()

• Check()

• PassMessage()

• FailMessage()

• Explanation()

These functions must be implemented by derived classes and their implementation de�nes the test.
This approach allows a more declarative way of the test implementation.

Function Id() returns a unique name of the test. For more readable code organization it was
decided that classes implementing the test will have the same name as is the ID of the test. Therefore
this function actually returns the name of the derived class.

The test rule is implemented by function Check(). It returns true if the rule was ful�lled or false
if it was violated.

Functions PassMessage() and FailMessage() return textual representation of the test result.
If function Check() returns true, PassMessage() is used. In opposite case the text returned by
function FailMessage() is used.

Explanation of the test rule is returned by function Explanation(). It is independent of the test
result.
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Functions

The only public function of this class is function Run(). It uses abstract functions above and
attributes to evaluate the test rule and construct data structure TestResult that is described in
section 3.5.4.

3.5.2 Example test implementation

Here an example of implementation of a test is given. The test checks if a port uses a short preamble
in advanced startup mode and it generates warning.

The class is named ShortPreamble and its constructor is in listing 3.

ShortPreamble :: ShortPreamble(bool shortPreambleUsed , StartupMode

startupMode)

:Test(startupMode , true), shortPreambleUsed(shortPreambleUsed)

{

args["[PDIRData ]. ShortPreambleUsed"] = shortPreambleUsed ? "True" :

"False";

}

Listing 3: Constructor

It has two arguments startupMode and shortPreambleUsed. At the �rst place the base constructor
is called with given startup mode and true for the warning argument.

Passed argument shortPreambleUsed is stored in the attribute of the same name. The body of
the constructor converts it to the textual representation and saves it into the attribute args of the
base class.

The test rule is implemented in function Check() in listing 4.

bool ShortPreamble :: Check () {

if (startupMode == Advanced) {

return shortPreambleUsed;

}

return true;

}

Listing 4: Test rule implementation

In listing 5 the implementation of the remaining abstract functions is shown. Function Id()
returns the name of the class in compliance with the convention introduced in section 3.5.1. Other
functions return messages characterizing the test.

string ShortPreamble ::Id() {

return "ShortPreamble";

}

string ShortPreamble :: FailMessage () {

return "Short preamble is not used.";

}

string ShortPreamble :: PassMessage () {

return "Short preamble is used in advanced mode. In legacy mode

this test has no meaning.";

}

string ShortPreamble :: Explanation () {

return "Every port of the device should use short preamble in

advanced startup mode. Short preamble is not supported in legacy

startup mode.";

}

Listing 5: An example implementation of the functions in a test
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3.5.3 Test suite

The test suite is the entry point to the module of Tester. Schema of the suite is in �gure 13. It works
with the domain model and extracts attributes from it to run the tests. Results of individual tests
are grouped together using GroupResults, described in section 3.5.4, to increase their readability. For
example tests performed on a switch are grouped together. Inside such a group another group for
each port may exist and so on. As soon as all tests are done the Suite returns SuiteResult.

Figure 13: Structure of the suite

Every suite is derived from base class Suite which de�nes function Run() which has to be imple-
mented. This function returns SuiteResult and implements organization and evaluation of the tests.
List of all implemented tests and their organization is in appendix A.

3.5.4 Results

Test results are represented by a tree structure shown in �gure 14. The root of the tree is class
SuiteResult. Its branches are formed by GroupResults and TestResults are leafs.

-string : id
-description : string
-groupResults : vector<GroupResult>
-testResults : vector<TestResult>

SuiteResult

-name : string
-description : string
-groupresults : vector<GroupResult>
-testResults : vector<TestResult>

GroupResult

-id : string
-passed : bool
-warning : bool
-message : string
-explanation : string
-arguments : map<string, string>

TestResult

Figure 14: Structure of test results

SuiteResult contains ID of the suite which generated the result. Inside the suite result there can
be multiple group results and test results.

Class GroupResult is very similar to SuiteResult but it does not have a counterpart in control
structures as tests and suites. Therefore it does not contain any ID, but only a name which does not
have to be unique.

TestResult is a representation of the result of a test. It contains ID of the test and messages
generated by the test. Attributes passed and warning indicate whether the result is passed, error or
warning. Table 3 shows interpretation of all possible combinations of attributes passed and warning.

17



passed warning result

true any passed
false false error
false true warning

Table 3: Interpretation of TestResult attributes

3.6 Formatters

In this section the formatters from the data structures to XML strings are described. Totally two
formatters were implemented. One for the con�guration model and one for the data structure of the
results. For the generation of an XML string, boost library [9] was used. It has a module property
tree which can be used for building of trees and it also supports its serialization into XML format.

3.6.1 Formatting of the results

Formatting of the results was implemented in class ResultsXmlFormatter. The input for this class is
an instance of SuiteResult described in section 3.5.4 and the output is an XML string with format
described in section 3.7.

Structure of the formatting is shown in �gure 15. For each class of the results a separate function
was implemented. The suite is formatted in function FormatSuite(). Every group inside the suite
is formatted using function FormatGroup(). This function can recursively call itself for formatting
the subgroups, or it calls function FormatTest().

Figure 15: Results formatter

3.6.2 Formatting of the con�guration

Con�guration is formatted in class Con�gurationXmlFormatter. It takes the con�guration model
described in section 3.3.1 and formats it into XML string described in section 3.2.4.

For the formatting of every class of the con�guration model a separate function was implemented.
Figure 16 shows the principle of the formatting. The con�guration is processed by function For-
matCon�guration() which uses functions FormatSource() and FormatDevice() to format the
contents of the class.
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Figure 16: Con�guration formatter

3.7 Output

To be able to work with the results in another application, an XML �le was designed to store the
results. Format of the �le follows the data structure from section 3.5.4. Example of the �le is in
listing 6.

<irtcheck >

<results >

<suite description="..." id="IrtCheckSuite">

<tests errors="1" passed="0" warnings="0">

<group errors="1" name="Globals" passed="0" warnings="0">

<test id="SendClock" message="Sendclock value is invalid."

result="error">

<explanation >Startup mode must be Advanced if SendClock

is less than 250000. </explanation >

<arguments >

<argument id="[Config ]. Startup" value="Legacy"/>

<argument id="[SchedulingInput ]. SendClock (=2*[

SchedulingInput ]. MaxTxRxTime)" value="10000"/>

</arguments >

</test>

<test>

<!-- another test -->

</test>

<group>

<!-- nested group inside Globals -->

</group>

</group>

</tests>

</suite>

</results >

</irtcheck >

Listing 6: Output XML with results

The suite result in element suite contains its ID and description. The test results are under
element tests which contains overall number of passed tests, warning and errors.

The group element has its name, description and number of tests inside the group according to
their results. Inside the group, there can be another subgroup or individual test results.

Each test result contains its ID, result and a short message. There is also an explanation how the
test was evaluated, and a list of arguments with which it was run.

19



3.8 API

This section describes the public interface which can be used to integrate the library into other
applications. The library was designed to be used in an as simple as possible way. Therefore no
initialization and clean-up are needed after the work with the library is done.

static string IrtCheck(const string& configurationFile , const string&

outputFile);

Listing 7: Main method of the public API

The listing 7 shows the main method of the API. As inputs it takes path to the con�guration �le
and path where the results should be saved. The method returns a short string message summarizing
the results.

The method implementation �rst parses the con�guration �le and creates a domain model based
on the information provided inside. The model is then used to perform the tests by the Tester module
and the results are formatted in Formatter. The formatted results are then saved to a �le. From the
data structure returned by the Tester a short summary is created and returned to the caller of the
API function.

static SuiteResult Check(const string& configurationFile);

static SuiteResult Check(const Configuration& configuration);

Listing 8: Methods to run tests and to return the resulting data structure

Methods in listing 8 take the path to the con�guration �le or the data model and perform the
tests. The results are returned back in the data structure.

The program �ow is the same as in the previous case but the results are returned in a raw-data
structure.

static string FormatToXml(const SuiteResult& suiteResult);

static string FormatToXml(const Configuration& configuration);

Listing 9: Methods format data structures into XML strings

To save the data structures returned by other API methods into XML, methods in listing 9 can
be used. They use module Formatters to serialize the input data structures into the XML string.

static Configuration GetConfiguration(const string& path);

Listing 10: Method to get data model of the con�guration �le

To obtain a data model of the con�guration a method in listing 10 can be used. This data model
can be modi�ed in the application and saved or used to run tests by other API methods.

3.9 Command Line Interface

The command line interface can be used for performing tests in a very fast way. The interface was
designed to pass data through XML �les, which also allows to integrate the library into another
application through this interface.

Usage

irtcheck -c CONFIG_FILE -o OUTPUT_FILE -r REPORT_FILE

Options

• -c, [�con�g]. Path to the con�guration �le.

• -o, [�output]. Path to the �le where the results are saved.

• -r, [�report]. Path to the �le where the PDF report is generated.

Options -o and -r can be omitted, in that case the tool will show a short summary of test results in
the command line.

The PDF report is generated from data structures returned by module Tester using library wx-
PdfDocument [11]. An example of a report is given in appendix B.
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3.10 Graphical User Interface

The graphical user interface (GUI) was designed to enable easy usage of the testing library. It provides
an interface for work with con�guration �les in Con�guration dialog and to view the test results in
form Results view. The user interface was implemented using wxWidgets library [10].

3.10.1 Con�guration dialog

The con�guration dialog provides an interface to work with con�guration �les described in sec-
tion 3.2.4. Window of the dialog is shown in �gure 17.

Figure 17: Con�guration dialog

New con�guration �les can be created here and saved, later they can be loaded and modi�ed. The
dialog is separated into four categories. In category Sources the user can specify the input �les and
their parsers.

In category Domain it is possible to select tested startup mode from options legacy and advanced.
Name of the controller is selected by the user from a dropdown menu which is �lled by the available
switches utilized in the scheduling input �le.

Category Device Types creates mapping from device names to their Device Access Points in
GSDML. The user is again given a set of possible choices in a dropdown menu which is �lled from
the speci�ed GSDML �les in category Sources.

IP addresses of the devices are assigned in category IP addresses. This category is visible only in
case that the data records are parsed from a pcap �le. This �le is parsed and possible IP addresses
are available to the user in a dropdown menu. Otherwise the knowledge of the IP addresses is not
necessary.

The con�guration dialog uses model-view-controller architecture to implement the necessary func-
tionality. The visible part view catches events from the user and noti�es the controller about it. The
controller makes the required changes in the underlying model and if necessary, it noti�es the view
back to update its information from the model.
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3.10.2 Results view

The form in �gure 18 shows results of the performed tests. The look of the window is data driven by
a tree data structure returned from the library, described in section 3.5.4.

The results view is separated into tabs whereas each of them shows a di�erent part of the tree.
The failed tests and warnings are the point of the most interest, thus they are shown in the �rst
two tabs. They are followed by the results of the individual groups under the suite result. In the
�gure those groups are in tabs named Globals, Controller, Devices and Links. After the results the
con�guration, used to perform the tests, can be view. This view is the same as in the case of the
con�guration dialog but it cannot be modi�ed.

Figure 18: Results view

Group and test results are show in frames which can be expanded to take a look on result details.
The groups contain the number of passed tests, errors and warnings in the header. Di�erent types of
results are distinguished by their colour, red is for errors, yellow for warnings and green for passed
tests. Underlying results are shown after the group is expanded by clicking on the header. These
results are indented to visualize the tree structure, every level in the tree has its own indentation
level.

Test results have the name of the test in their header which can be also expanded to view the
detailed description of the test. In the section with details arguments of the test, explanation and a
short message about the result are given. The tests are coloured in the same way as in the case of
groups.

The results can be saved to an XML �le described in listing 6 from menu Results. A PDF report
with the results can be generated also from the menu. An example of the PDF is given in appendix B.

3.11 Veri�cation of message schedules

The implemented tool was used to verify message schedules of several Pro�net IRT networks. The
network topologies were chosen in a way that they cover the most frequent con�gurations used in
industrial applications. The message schedule was created by the TIA Portal engineering tool and
the necessary data were exported to XML �les. One real network was veri�ed to show that the tool

22



is capable of getting tested data records from pcap �le with capture of the communication between
controller and devices.

The tested network con�gurations were following:

• Line topology of three absolute forwarders. Data records of this con�guration were captured
from a real network in the laboratory.

• Tree topology with mixture of absolute and relative forwarders.

• Tree topology with fast forwarding and short preambles.

• Tree topology with fast forwarding, short preambles and dynamic frame packing.

The schedules were veri�ed without an error. That was the expected result because the engineering
tool used for the con�guration is widely used in industrial applications. Message schedules generated
by it could be considered proven by numerous successful network installations. However, as indicated
by other manufacturers, having the possibility to check a message schedule together with the param-
eters that are sent to the individual devices in the topology may help reduce the development and
bug �xing time signi�cantly.
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Chapter 4

Uppaal

Veri�cation of message schedules does not have to be approached by a static check of parameters as it
was described in the previous chapter. A network can be modeled and parametrized by data records
for devices and its behaviour can be observed in simulation.

This chapter describes how an IRT network was modeled and veri�ed in tool Uppaal. For under-
standing how the network looks a brief introduction to Uppaal is given in section 4.1. In the following
sections modeling of a single switch and network is described. Requirements on network behaviour
were speci�ed and the results of the veri�cation are presented in section 4.4. On top of the network
an isochronous application was modeled and veri�ed in section 4.6.

4.1 Introduction to Uppaal

Uppaal is software for modeling, validation and veri�cation of real time systems. They are modeled
as timed state machines which can be interconnected into a network with synchronization channels.
Formal de�nitions and deeper knowledge how Uppaal works is given in its tutorial [3] or in help pages
of the tool.

A system in Uppaal is modeled as network of timed state machines. Communication between
them can be done through synchronization channels or global variables. Once the system is modeled,
requirements on its behaviour can be speci�ed in requirements speci�cation language de�ned by
Uppaal, which is a subset of timed computation tree logic (TCTL). Veri�cation engine takes system
and its requirement speci�cation and automatically evaluates if the requirements are met.

4.1.1 State machines

Figure 19 shows an example state machine which was implemented for the demonstration in this
section. It is an example of a Timer on the right side and it's Tester on the left. Timer waits for a
speci�ed time given by Tester and then noti�es Tester back when it expires.

Idle

Expired
Reset

Ticking
t <= expiration

t = 0

expired!
reset?
t = 0,
expiration = g_expiration

t == expiration

t < expiration
reset?

Idle

expired?
randomValue : TimerRange
reset!
g_expiration = randomValue

Figure 19: Example of Uppaal state machines

Tester state machine can reset the Timer state machine by triggering synchronization signal
reset. State machine triggering the synchronization uses notation with exclamation mark after the
name of the synchronization channel. Synchronized state machine uses notation with question mark
to wait for the synchronization.

When Timer is reset a random value, for which the timer will wait, is chosen by select state-
ment randomValue:TimerRange. Range of the timer is declared in global parameters of the system.
The value is saved to the global variable g_expiration by update statement g_expiration = ran-

domValue and read by Timer when it receives the synchronization signal. The synchronization is
an atomic operation which cannot be interrupted and both state machines make the transition syn-
chronously. This implies that the writing and reading of the global variable is also atomic operation
and no data races can occur even though the variable could be used by other synchronization chan-
nels. This principle with writing and reading to global variable during synchronization can be seen
as passing of parameter with the synchronization.
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When Timer receives synchronization reset it goes to state Ticking, saves value of the timer
from parameter to internal variable expiration and resets internal clock t to zero. State Ticking
has a de�ned invariant t <= expiration. This condition must be invariantly ful�lled whenever the
state machine is in this state. If the condition is violated and the state machine did not leave the
state, an error is reported during the simulation. In state Ticking, Timer can receive another reset
synchronization if the clock value is less than the expiration time. This is expressed as a guard t <

expiration. The guard is a condition under which the transition can be done.
When the internal clock reaches the time of the expiration a transition to state Expired can be

made. The guard t == expiration forces Timer to make a transition from state Ticking to Expired
because this time is the last moment when Timer can stay in state Ticking because of invariant t <=
expiration. If a transition was not done after this time, it would lead to the violation of the invariant.

States Expired and Reset are called �committed� and marked with C. In the committed states the
time is not allowed to pass and they must be left immediately.

4.1.2 Veri�cation

Uppaal provides Requirement Speci�cation Language for the veri�cation of systems. In this language
certain criteria can be written by using expressions in table 4. Using these expressions it can be
speci�ed how a modeled system should behave during its operation.

The veri�cation engine explores the complete state space of the system and evaluates if the require-
ments are met or not. For the example from the previous section there is not speci�ed when Tester
state machine triggers synchronization reset. During the veri�cation, Uppaal explores all possible
times when such an event can happen and veri�es speci�ed rules for all possibilities.

The veri�cation engine is also capable of generation of diagnostic traces proving or disproving
certain veri�cation rule. The diagnostic trace represents a sequence of timed transitions of the system
during the veri�cation. This trace can be used for diagnostic purposes or as a proof that a requirement
is met or not.

Expression Interpretation Description

E<> p Possibly There exists a path where p eventually holds
A[] p Invariantly For all paths p always holds
E[] p Potentially always There exists a path where p always holds
A<> p Eventually For all paths p will eventually hold
p �> q Leads To Whenever p holds q will eventually hold

Table 4: Uppaal requirement speci�cation language

4.2 IRT Switch

This section describes how an IRT switch was modeled. As it was described in chapter 2, an IRT
switch provides services, for the communication with other devices, to the application running on a
device. It sends or receives data and delivers them to the application.

The goal of the thesis is a veri�cation of messages schedules in red period of the communication
cycle, thus only the behaviour of a switch in this period was implemented. The behaviour in the
green period was neglected and not implemented.

It was decided to implement relative and absolute forwarder. The implementation does not take
into account fast forwarding and dynamic frame packing, but the state machines can be extended
with this functionality if it is necessary in the future.

The state machines simulating behaviour of one switch are the same for every switch in the
network, the di�erence is in their parameters. The parametrization of state machines was done by
de�ning several structures and their instantiation in global declarations of Uppaal. These structures
are described in section 4.2.1.

After the description of the data structures the state machines implementing the switch are de-
scribed in details. They are based on the protocol state machines described in the Pro�net stan-
dard [2]. Only such protocol machines necessary for the veri�cation of the message schedules were
implemented and their state tables were reduced to eliminate the interactions with not implemented
state machines. Such an approach is suitable for the purpose of this thesis. However, if a complete
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veri�cation of the network behaviour was to be done it would be necessary to implement complete
state machines with all the interactions as well.

4.2.1 Switch parameters

Switch parameters are de�ned by structure Switch in table 5. This structure contains attribute
bridgeDelay which represents the maximum time needed by the switch to forward a frame. Flag
relative indicates whether the switch is a relative or absolute forwarder.

Attribute name Description

bridgeDelay Bridge delay of the switch
relative Flag if the switch is relative

Table 5: Structure Switch

Ports are parametrized by data structure Port in table 6. It contains parameters for transmitting
and receiving parts. The delays introduced to the communication by port operation are described
by attributes rxDelay and txDelay. Boundaries of the red period are described by attributes redO-
rangePeriodBegin and greenPeriodBegin, where redOrangePeriodBegin is the beginning of the red
period and greenPeriodBegin is its end.

Part Attribute name Description

Receiving part
rxDelay Physical delay

rxRedOrangePeriodBegin Beginning of red period
rxGreenPeriodBegin End of red period

Transmitting part
txDelay Physical delay

rxRedOrangePeriodBegin Beginning of red period
rxGreenPeriodBegin End of red period

Table 6: Structure Port

Forwarding rules for switches are de�ned by structure FrameData in table 7. For every forwarded
frame it contains a port where the frame is received and a port where it is transmitted. If attribute
rxPort is zero it means that the switch is the sender of the message. If the attribute txPort is zero,
the switch is the recipient of the message.

The data structure also contains the time when the transmission should happen. In a relative
forwarder this data structure exists only for injected and received frames. It does not exist for
forwarded frames.

Attribute name Description

id Frame ID
fso Time when the frame is sent at txPort

rxPort Port where the frame is received
txPort Port where the frame is forwarded

Table 7: Structure FrameData

Two global constants are de�ned for the whole network. They are listed in table 8. JITTER is
the maximal allowed di�erence between clocks between two neighbouring switches. This parameter
is used to verify that the network behaves as it is expected under the worst possible cases of clock
desynchronization. Constant SEND_CLOCK is the length of the simulated communication cycle.

Name Description

JITTER Maximal allowed di�erence between clocks of neighbouring switches.
SEND_CLOCK Length of communication cycle

Table 8: Global constants of the network
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4.2.2 Frame de�nition

Frames sent through the network are de�ned by the data structure shown in table 9. It exists for
every message and contains its frame ID and data length. Attributes sender and receiver are not
used in control of the switch state machines. They are used during the veri�cation of the message
schedule to compare the con�gured sender/receiver from this structure with the true ones from the
simulations.

Attribute name Description

id Frame ID
dataLength Length of frame payload in bytes

sender Sender of the frame
receiver Receiver of the frame

Table 9: Structure Frame

4.2.3 Overview of state machines

A switch consists of several state machines which control the frame �ow through the switch. The
structure of the state machines forming the switch is in �gure 20.

Figure 20: Interconnection of state machines

The receiving part of every port is modeled by state machines Demux and Bridge Delay. Demux
guards reception in the red period and Bridge Delay simulates the time necessary to make a forwarding
decision.

The transmitting part of the port is controlled by state machines Queue Handler and Mux. Mux
has the similar functionality as Demux, it ensures that frames are transmitted only in the red period.
It also prevents the switch from attempts to send more than one frame at a time. Queue Handler
controls timely correct sending of the frames according to their frame data.

State machine Red Relay provides the forwarding between individual ports. It can also notify
application of the switch that a frame was received if the switch is the recipient of the message.

Frames, which have to be sent by the switch, are scheduled for communication from the application.
State machine Scheduler accepts the data and puts the frame to the queue of a port where it has to
be sent.

For the veri�cation purposes an observer state machine was designed to monitor the state of the
communication.

4.2.4 Demux

Demux controls reception of frames from a link. It uses three channels to synchronize with other
state machines. M_UNITDATA_ind synchronizes Demux with Link, described later in section 4.3.1.
The synchronization is triggered when the �rst byte of MAC address reaches Demux. By channel
DMUX_RED_RELAY_ind Demux indicated to Bridge Delay that a frame was received. It is
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triggered when frame ID is received and a forwarding decision can be done based on it. The frame
can be discarded by discard event which is used to notify observer Message, described in section 4.3.2.

FrameIdReceived

WaitingForFrameId
demuxClock <= frameIdTime(switchId)

Idle

t[switchId] <= greenPeriodBegin()
DMUX_RED_RELAY_ind[switchId][portId]!
g_frameId = frameId

t[switchId] > greenPeriodBegin()
discard[frameId]!

demuxClock == frameIdTime(switchId)

M_UNITDATA_ind[switchId][portId]?
demuxClock = 0,
frameId = g_frameId

Figure 21: Demux state machine

Crucial for the acceptance of a frame is the reception time of frame ID. In state WaitingFor-
FrameId, Demux waits for time when it is received.

The frame ID reception time is calculated by function frameIdTime(). In case of normal for-
warding, this time can be calculated by equation 1.

TIDreception = (LEthernet + LframeID) ∗ 80 [ns] (1)

TIDreception is the time when frame ID is received from the moment when �rst byte of destination
address of Ethernet header reached Demux. LEthernet is the length of Ethernet header without 802.1Q
tag which is 14 bytes. LframeID is length of frame ID �eld which is 2 bytes.

After this time the decision is made. If the frame ID was received inside the red period the frame
is passed to Bridge Delay for further processing. End of the red period is equal to the beginning of
green period and is returned by function greenPeriodBegin().

4.2.5 Bridge Delay

The Bridge Delay state machine simulates the time which is needed by a switch to make the for-
warding decision. The state machine is shown in �gure 22. The state machine is noti�ed by channel
DMUX_RED_RELAY_ind from Demux. When the decision time passes it noti�es Red Relay by
event bridgeDelay_ind.

The decision time is calculated by function decisionTime(). For absolute forwarder it is calcu-
lated by equation 2.

Tdecision = TmaxBridgeDelay − TIDreception [ns] (2)

TmaxBridgeDelay describes the maximum time needed by the switch to forward a frame. This time
is measured from the beginning of reception by Demux to the beginning of transmission by Mux.
Parameter TIDreception was de�ned in equation 1.

Relative forwarders do not know the FSO of forwarded frames and it must be calculated from
the known parameters. This calculation is described in IRT Engineering Guideline [5] and in the
simulation it is implemented in this state machine by function decisionTime(). After the decision
time passes the frame is forwarded by other state machines to the other port than it was received
without any additional delay.

The calculation is done by the function in equation 3.

Tdecision = TmaxBridgeDelay − TIDreception + TlineRxDelay − TlineDelay [ns] (3)

In this equation TmaxBridgeDelay and TIDreception were de�ned above. TlineRxDelay is the con-
�gured delay of the link where the frame was received, and TlineDelay is its real value used in the
simulation.
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Delaying
bridgeDelayClock <= decisionTime()

Idle

bridgeDelayClock == decisionTime()
bridgeDelay_ind[switchId][portId]!

g_frameId = frameId
DMUX_RED_RELAY_ind[switchId][portId]?
frameId = g_frameId,
bridgeDelayClock = 0

Figure 22: Bridge Delay state machine

4.2.6 Red Relay

Red Relay controls bridging of frames between ports of the switch. The forwarding rules are stored
in data structures FrameData, described in table 7. It is noti�ed from Bridge Delay by channel
bridgeDelay_ind when the time necessary for forwarding decision passes. Based on the forwarding
decision the frame is discarded, put to the queue of a port by channel QueueHandler_req or it can be
delivered to the application by channel RED_RELAY_Data_ind. In case that the frame is delivered
to the application, the observer is noti�ed by channel delivered. The state machine of Red Relay is
shown in �gure 23.

TxPortAssigned

FrameDelivered

FrameAccepted

Received

Forwarding

isLocal()
RED_RELAY_Data_ind[switchId]!
g_frameId = frameId

!isLocal()
QueueHandler_req[switchId][txPort]!
g_frameId = frameId

txPort = assignedTxPort()

delivered[frameId]!
g_switchId = switchId

rxPort != expectedRxPort() ||
t[switchId] > frameDataFso()
discard[frameId]!
g_switchId = switchIdrxPort == expectedRxPort() &&

t[switchId] <= frameDataFso()

!relative() &&
frameDataExist()

relative()

!relative() &&
!frameDataExist()
discard[frameId]!
g_switchId = switchId

portId : PortId
bridgeDelay_ind[switchId][portId]?
frameId = g_frameId,
rxPort = portId

Figure 23: Red Relay state machine

For every frame received by an absolute forwarder, corresponding frame data must exist. The
existence of the frame data is evaluated by function frameDataExist(). Moreover reception port
and time is checked against the frame data. The expected reception port from the frame data is
obtained by function expectedRxPort() and compared with the real reception port. If the frame
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was received on a di�erent port than it is speci�ed in the frame data, it is discarded. If the frame
was received too late to be forwarded without violation of its FSO it is also discarded.

For a relative forwarder only the frame data of the consumed frames are available. Other frames
are automatically forwarded to the other port than they were received at.

4.2.7 Queue Handler

Queue Handler controls correct transmission of forwarded frames on a port. The implementation of
the queue is di�erent for the absolute and the relative forwarder. In the absolute forwarder the queue
is ascendingly ordered according to the frame send o�sets (FSO) of the frames in the queue. For the
relative forwarder the queue is implemented as a pipe and frames are sent to Mux whenever the Mux
is able to send a frame.

Three channels are used for synchronization with other machines. QueueHandler_req puts a
frame into the queue. QueueNotEmpty is triggered at the time when the frame has to be sent. Mux
informs Queue Handler by channel MuxFree_ind when transmission of the next frame can be done.
In �gure 24 implementation of the queue for an absolute forwarder is shown.

Idle
t[switchId] <= fso()

MuxFree_ind[switchId][portId]?QueueHandler_req[switchId][portId]?
enqueue(g_frameId)

!queueEmpty() &&
t[switchId] == fso()
QueueNotEmpty[switchId][portId]!
g_frameId = dequeue()

Figure 24: Queue Handler state machine for absolute forwarder

The frames are put into the internal queue representation by function enqueue(). The queue is
ascendingly ordered according to the frame send o�sets (FSO) of the frames. FSO of the �rst frame
is obtained by function fso(). Function dequeue() removes the �rst frame from the queue.

Implementation of the queue for a relative forwarder is depicted in �gure 25. The frames are sent
immediately when they are put to the queue or right after the Mux state machine of the port �nished
transmission of the previous frame.

queueEmpty()

!queueEmpty()
QueueNotEmpty[switchId][portId]!
g_frameId = dequeue()

muxOccupied()

muxFree()
QueueNotEmpty[switchId][portId]!

g_frameId = dequeue()

MuxFree_ind[switchId][portId]?

QueueHandler_req[switchId][portId]?
enqueue(g_frameId)

Figure 25: Queue handler state machine for relative forwarder

4.2.8 Mux

State machine Mux controls the transmission of the frames on a port. It is noti�ed from Queue
Handler by channel QueueNotEmpty when the frame transmission should start. The beginning of
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the transmission is signaled via channel M_UNITDATA_req to the Link state machine. After the
transmission is �nished a corresponding Queue Handler state machine of the port is noti�ed by
channel MuxFree_ind. This signal is relevant only for relative forwarders, absolute forwarders ignore
this signal and send the frames at their frame send o�set. The Mux state machine is in �gure 26.

TransmissionRequest

TransmissionBegin Transmitting
muxClock <= duration() + interFrameGap()

Idle

t[switchId] <= greenPeriodBegin() - duration()
muxOccupied()

t[switchId] > greenPeriodBegin() - duration()
discard[frameId]!

g_switchId = switchId

QueueNotEmpty[switchId][portId]?
frameId = g_frameId

muxClock == duration() + interFrameGap()

MuxFree_ind[switchId][portId]!

muxFree()

M_UNITDATA_req[switchId][portId]!
g_frameId = frameId,
muxClock = 0

Figure 26: Mux state machine

When the transmission of a frame is requested by Queue Handler it is decided whether the frame
can �t into the red period. If not, the frame is discarded. For the time when the frame is being
transmitted the state machine is blocked in state Transmitting. In this state Mux cannot receive
requests from Queue Handler and blocks transmission of other frames. The time, when the port is
blocked for another transmission, is calculated by equation 4.

Tblocked = Tduration + Tgap [ns] (4)

In this equation Tduration is the duration of the frame transmission and Tgap is the minimal gap
between two consecutive frames. Parameter Tduration is calculated by equation 5.

Tduration = (Lethernet + LframeID + Ldata + LAPDUstatus + Ltrailer) ∗ 80 [ns] (5)

Parameters Lethernet and LframeID were de�ned in equation 1. Ldata is the length of the frame
payload de�ned in the data structure of the frame. LAPDUstatus is the status �eld of the payload and
it is 4 bytes long. Ltrailer is the length of Ethernet trailer, which is 4 bytes long.

Parameter Tgap from equation 4 is calculated by equation 6.

Tgap = TminGap + (Lpremable + LSFD) ∗ 80 [ns] (6)

In this equation TminGap is the minimal gap between IRT frames and value 1120 ns is used.
Parameters Lpreamble and LSFD are the length of Ethernet preamble and start frame delimiter which
in case of a long preamble give 8 bytes in total.

4.2.9 Scheduler

Scheduler controls timely correct transmission of locally generated frames. The message is scheduled
for the transmission when its data are ready. It is signaled by channel PPM_Set_Data_req from
application and the observer is noti�ed by channel scheduled. When the frame should be sent, it is
put into Queue Handler by channel QueueHandler_req. Diagram of the state machine is shown in
�gure 27.
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DelayedStart
t[switchId] <= delayedStart()

Init FrameScheduled

FrameQueued

WaitingForFso
t[switchId] <= fso()

t[switchId] == delayedStart()
sync_event[switchId]!
t[switchId] = 0

s_timeDiff : TimeDiff
timeDiff = s_timeDiff

QueueHandler_req[switchId][txPort()]!
g_frameId = frameId

scheduled[frameId]!
g_switchId = switchId

PPM_Set_Data_req[switchId]?
frameId = g_frameId,
enqueue(g_frameId)

t[switchId] == fso() &&
!queueEmpty()
frameId = dequeue()

Figure 27: Scheduler state machine

The clocks of switches are not synchronized absolutely. A small di�erence is allowed to occur
between two neighbouring switches. This di�erence is randomly chosen at the beginning of the
simulation by Scheduler state machine and the clocks of individual switches are desynchronized by
this value. Veri�cation engine takes all possible combinations of clock di�erence between switches
and veri�es that the requirements hold under all conditions.

When a new communication cycle begins the application is noti�ed by synchronization channel
sync_event. This synchronization is later used in an isochronous application which uses it to control
the operation with inputs and outputs.

4.3 Network

The network was modeled using the switches described in the previous section. The switches are
interconnected by full duplex cables which are modeled as pairs of links, one for each direction. The
links introduce a delay to the communication caused by the �nite speed of signal transmission.

The links are de�ned by structures with attributes in table 10.

Attribute name Description

sourceSwitch
Source endpoint

sourcePort
destinationSwitch

Destination endpoint
destinationPort
lineRxDelay Con�gured line delay
linkDelay Real line delay

Table 10: Structure Link

4.3.1 Link

This state machine models a link between ports of switches. When the frame transmission begins
Link is noti�ed by channel M_UNITDATA_req from Mux. The cable introduces a delay to the
communication which is calculated by equation 7.

Tlink = Ttx + Tcable + Trx [ns] (7)

Tlink is the total delay introduced by the link. Ttx is the delay of the transmitting port, Tcable is
the delay of the cable and Trx is the delay of the receiving port. After the time Tlink passes, Demux
of the receiving switch is noti�ed by channel M_UNITDATA_ind. Diagram of this state machine is
in �gure 28.
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Delay
linkClock <= txDelay() +
linkDelay() +
rxDelay()

Idle

M_UNITDATA_req[sourceSwitchId][sourcePortId]?
linkClock = 0,
frameId = g_frameId

linkClock == txDelay() +
linkDelay() +
rxDelay()
M_UNITDATA_ind[destinationSwitchId][destinationPortId]!
linkClock = 0,
g_frameId = frameId

Figure 28: Link state machine

4.3.2 Veri�cation rules for message schedule

The veri�cation of the message schedule was done for one communication cycle. An observer state
machine Message, which is shown in �gure 29, was designed to monitor the state of the communication.
It represents a single message sent through the network. The Scheduler noti�es the observer by
channel scheduled at the time when the message is scheduled for the communication. The message
can be delivered to its receiver which is indicated by Red Relay via channel delivered or it can be
discarded which is signaled through channel discard. When a transition happens in the state machine
it internally stores the parameter of the synchronization event for the veri�cation purposes. The
parameter of all the events is identi�cation of the switch which triggered the synchronization.

Waiting

Delivered

Discarded

Scheduled

scheduled[frameId]?
sender = g_switchId

delivered[frameId]?
receiver = g_switchId

discard[frameId]?
discarder = g_switchId

Figure 29: Observer of the network behaviour

To make the network working it was necessary to simulate the application on all switches. It was
done by implementing a state machine which consumes the data from Red Relay and provides data
for Scheduler. Its diagram is shown in �gure 30.

Init

RED_RELAY_Data_ind[switchId]?

length == 0

length > 0
PPM_Set_Data_req[switchId]!
g_frameId = dequeue()

sync_event[switchId]?
initialize()

Figure 30: Application state machine

At the beginning of the cycle it puts all generated frames to Scheduler by channel PPM_Set_Data_req.
The frames are generated from the forwarding rules of the switch.

After all the frames are put to the Scheduler the application waits for the messages to be received.
It is noti�ed about this event from Red Relay by channel RED_RELAY_Data_ind.

To verify that the network behaves according to the message schedule, several rules were de�ned
and they are described below.
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Delivery

This rule was designed to verify that all messages are delivered under all possible conditions. The
Uppaal representation is in listing 11. It checks that all observing state machines Message get into
state Delivered and therefore all the messages are delivered.

A<> forall(frameId : FrameId)

Message(frameId ). Delivered

Listing 11: Delivery of message

Sender

This rule veri�es that messages are sent by correct switches. When a message is scheduled for the
communication its state machine gets into state Scheduled and ID of the sending switch is stored
in variable sender. This ID is checked against the con�gured ID stored in data structure Frame in
table table 9. Uppaal representation of this rule is in listing 12.

A<> forall(frameId : FrameId)

Message(frameId ). sender == getSender(frameId)

Listing 12: Sender of the message

Receiver

Veri�cation that a message was received by a correct switch is done in similar way as in the case
of veri�cation of message sender. The ID of the receiving switch is stored in variable receiver of
the state machine Message. It is checked against the con�gured receiver in Frame structure. The
implementation of this rule is in listing 13.

A<> forall(frameId : FrameId)

Message(frameId ). receiver == getReceiver(frameId)

Listing 13: Receiver of the message

Timing

This rule checks if messages are sent according to their calculated frame send o�set. When a frame
is started being transmitted state machine Mux is in state TransmissionBegin. The time when Mux
is in this state is compared with the time in the frame data. In listing 14 there is the implementation
of this rule for an absolute forwarder.

A[] forall(switchId : AbsoluteForwarderId) forall(portId : PortId)

MUX(switchId , portId ). TransmissionBegin

imply

t[switchId ]== getFrameData(switchId ,MUX(switchId ,portId ). frameId ).fso

Listing 14: Timing of messages for absolute forwarder

The implementation of this rule is di�erent for a relative forwarder, because the forwarding rules
exist only for the locally generated and received frames. For a relative forwarder only the timing of
the frames, where the forwarding rule exists, is veri�ed. The implementation is in listing 15.

A[] forall(switchId : RelativeForwarderId) forall(portId : PortId)

MUX(switchId , portId ). TransmissionBegin

and

getFrameDataExist(switchId , MUX(switchId , portId ). frameId)

imply

t[switchId ]== getFrameData(switchId ,MUX(switchId ,portId ). frameId ).fso

Listing 15: Timing of messages for relative forwarder
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Path

Besides the timing of the messages it is also necessary to verify that the frames are forwarded through
the con�gured path. The implementation is in listing 16. It is done in a similar way as the timing
veri�cation is done. Port ID of Mux is checked against the con�gured forwarding rules.

A[] forall(switchId : AbsoluteForwarderId) forall(portId : PortId)

MUX(switchId , portId ). TransmissionBegin

imply

portId == getFrameData(switchId , MUX(switchId , portId ). frameId ). txPort

Listing 16: Path of messages for absolute forwarder

In case of a relative forwarder the veri�cation is done only when the forwarding rule exists for the
frame. Implementation for relative forwarder is in listing 17.

A[] forall(switchId : RelativeForwarderId) forall(portId : PortId)

MUX(switchId , portId ). TransmissionBegin

and

getFrameDataExist(switchId , MUX(switchId , portId ). frameId)

imply

portId == getFrameData(switchId , MUX(switchId , portId ). frameId ). txPort

Listing 17: Path of messages for relative forwarder

4.4 Results of network veri�cation

Implemented state machines were used to simulate an IRT network of 5 switches with line topology.
Topology of the network is shown in �gure 31.

Figure 31: Topology of the network

The network consists of one controller and four devices. Controller and devices 3 and 4 are
absolute forwarders, whereas devices 2 and 3 are relative forwarders.

The message schedule was created in a way that controller sends four messages, one for each
device. Every device sends one message back to the controller. This can be understood as writing of
outputs to devices and reading of inputs from devices. Detailed description of the schedule is given
in appendix C.

By evaluating of the requirements described in section 4.3.2 it was found that the network behaves
accordingly to the calculated message schedule. When the requirements are met, it can be concluded
that the message schedule is feasible for the network. The messages are forwarded along the planned
paths and without violating the planned timing. No messages are dropped either and all are delivered
to their receivers.

If there was a mistake in the con�guration the model would behave di�erently from the schedule
and some messages could be dropped. In that case the schedule would not be feasible and a mistake
in the scheduling algorithm would be discovered.

During the veri�cation a disadvantage of this approach occurred. Even for small networks with
ten devices veri�cation takes a lot of time. A more important problem is the memory consumption
which exceeded the capacity of the computer used, and the veri�cation could not be done. This
disadvantage could be overcome by optimizing of the state machines and reducing their possible
states.
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4.5 Isochronous application

In section 4.3 a dummy application was used to verify the message schedule. A natural next step is to
model a more complicated application on top of the network which ensures delivery of the messages
between switches.

It was decided to model the isochronous application described in Pro�net speci�cation [1]. It is
divided into controller and device applications. The controller sends outputs to devices and devices
send their inputs to the controller. Exact time when the inputs are scanned and written to the process
is de�ned. This time is the same for all devices in the network and is related to the communication
cycle.

Time constraints of the application are shown in �gure 32 as taken from standard [1]. Time when
the inputs are scanned is described by parameter T_IO_Input. Time when the data are available
for communication is described by T_IO_InputValid. These parameters describe the time before the
end of the communication cycle, the data are sent in the next cycle.

Outputs are described by parameter T_IO_OutputValid and T_IO_Output. The �rst one is the
time when the data are available from the communication. Time T_IO_Output is the time when
the outputs are written to the controlled process.

Figure 32: Isochronous application

As it was written the isochronous application is divided into controller and device application.
Interconnection of individual state machines is shown in �gure 33. The device application is modeled
by state machines Isom In, Isom Out and Device, which are described in Pro�net speci�cation [1].
They synchronize the application with the communication and control the time when the application
interacts with the process. The controller application utilizes the similar mechanism to synchronize
the application with the communication, however in this thesis the device applications were focused.
The implemented controller application sends and receives I/O data and does not precisely synchronize
with the communication. The individual state machines are described in sections below.
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Figure 33: Isochronous application structure

4.5.1 De�nition of isochronous application

The isochronous application is de�ned by data structures as in the case of the network de�nition.
The data structures representing the inputs and outputs were de�ned as well as the time constraints
when the data are scanned or written to the process.

The data structure describing an input of one device is in table 11. It contains ID of the input
and frame ID of the message which carries the data through the network.

Attribute name Description

id Id of the input
carrier Frame ID of the frame which carries the input data

Table 11: Structure Input

Outputs are described by the data structure in table 12. The attributes are the same as in the
case of the input. One more attribute is de�ned and it is the device which shall receive the output.

Attribute name Description

id Id of the output
carrier Frame ID of the frame which carries the output data
device Device where the output data should be set

Table 12: Structure Output

Several time constraints are de�ned to synchronize data handling in devices. They are listed in
table 13.

For the synchronization of the outputs with the communication cycle there are de�ned constants
T_IO_OutputValid and T_IO_Output. Constant T_IO_OutputValid is the time from the begin-
ning of the communication cycle when the output data must be received by a device. T_IO_Output
is the time measured from the beginning of the communication cycle when the output data are written
to the process.

Constant T_IO_Input is the time when the input data are scanned from the process. Constant
T_IO_InputValid is the time when the input data are available for the communication. Both times
are measured before the end of the communication cycle.

Name Description

T_IO_OutputValid Time when the outputs are available from communication
T_IO_Output Time when the outputs are set

T_IO_InputValid Time when the inputs are available for communication
T_IO_Input Time when the inputs are scanned

Table 13: Global constants of isochronous application
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4.5.2 Extending switch to multiple cycles

The network was veri�ed in one communication cycle, because of that it was necessary to extend
the switch functionalities to multiple cycles. The only state machine which needed modi�cation was
Scheduler which generates sync_event for the application. Its extension is shown in �gure 34. When
the time of the switch reaches the length of the cycle, it is reset to zero and sync_event is triggered
to notify the application about the beginning of the next communication cycle.

CycleEnd

DelayedStart
t[switchId] <= delayedStart()

Init FrameScheduled

FrameQueued

WaitingForFso
t[switchId] <= fso()

sync_event[switchId]!

t[switchId] = 0

t[switchId] == SEND_CLOCK

t[switchId] == delayedStart()
sync_event[switchId]!
t[switchId] = 0

s_timeDiff : TimeDiff
timeDiff = s_timeDiff

QueueHandler_req[switchId][txPort()]!
g_frameId = frameId

scheduled[frameId]!
g_switchId = switchId

PPM_Set_Data_req[switchId]?
frameId = g_frameId,
enqueue(g_frameId)

t[switchId] == fso() &&
!queueEmpty()
frameId = dequeue()

Figure 34: Extended Scheduler state machine

4.5.3 Controller

The controller sends outputs and receives inputs from the network devices. At the beginning of the
communication cycle it schedules all the outputs for the communication by channel PPM_Set_Data_req.
Then it waits to receive the input data from devices. The reception of data is indicated by channel
RED_RELAY_Data_ind from Red Relay. The input data are stored to be able to check if all inputs
were received at the end of the communication cycle. The diagram of the state machine is in �gure 35.

CycleEnd Init

initialize()

sync_event[0]?

RED_RELAY_Data_ind[0]?
inputReceived(g_frameId)

length == 0

length > 0
PPM_Set_Data_req[0]!
g_frameId = dequeue()

sync_event[0]?
initialize()

Figure 35: Controller state machine

38



4.5.4 Isom In

Isom In controls the time when the inputs of the device are scanned. When time T_IO_Input is
reached the inputs are scanned by channel SYNCH_IN. Scanned input data are sent to the controller
in next communication cycle by channel PPM_Set_Data_req. Diagram of the state machine is in
�gure 36.

SendData

Wait_Ti_valid

Ti_valid_clock <= SEND_CLOCK - tiValid()

Wait_Ti

Ti_clock <= SEND_CLOCK - ti()

Wait_Sync

PPM_Set_Data_req[deviceId]!
g_frameId = getData()

sync_event[deviceId]?
Ti_clock = 0,
Ti_valid_clock = 0

Ti_valid_clock == SEND_CLOCK - tiValid()

Ti_clock == SEND_CLOCK - ti()
SYNCH_IN[deviceId]!

Figure 36: Isom In state machine

The state machine is synchronized with the beginning of the communication cycle by channel
sync_event. Immediately after the start of a new cycle the data from the previous cycle are scheduled
for the communication. Input data for the next cycle are scanned at time T_IO_Input. At this time
the application reads the inputs from the process and transfers them to the communication memory.
The transfer must be done before time T_IO_InputValid passes. After this time the data must ready
for communication in the next cycle.

4.5.5 Isom Out

Isom Out controls the time when outputs are set on the device. It receives output data from the switch
by channel RED_RELAY_Data_ind. For this state machine it is important that it receives message
with output data before time T_IO_OutputValid passes. When the time reaches T_IO_Output
received data are written to the process by channel SYNCH_OUT. Diagram of this state machine is
in �gure 37.

The state machine is synchronized with the communication cycle by channel sync_event. When
a new cycle begins Isom Out waits for the reception of new output fata. If the data are not received
before time T_IO_OutputValid passes, the state machine increments its internal counter of cycles
without received data. This counter is decremented when the data are received in the future. When
the counter reaches a certain limit a �ag indicating that the maximum number of cycles without
output data was reached. When the data are received before time T_IO_OutputValid, they are
transferred from the communication memory to the application. The transfer must be completed
before time T_IO_Output passes because at this time the outputs are set to the process.
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Wait_To
To_clock <= to()

Wait_To_valid
To_valid_clock <= toValid()

Wait_New_outp
To_valid_clock <= toValid()

Wait_Sync

To_valid_clock == toValid()
incrementWrongUpd()

To_valid_clock == toValid()

RED_RELAY_Data_ind[deviceId]?

To_clock == to()
SYNCH_OUT[deviceId]!
g_frameId = frameId

RED_RELAY_Data_ind[deviceId]?
incrementWrongUpd()

RED_RELAY_Data_ind[deviceId]?
incrementWrongUpd()

wrong_output_upd == 1
RED_RELAY_Data_ind[deviceId]?

wrong_output_upd = 0,
takeBackAlarm(),
frameId = g_frameId

wrong_output_upd != 1
RED_RELAY_Data_ind[deviceId]?

decrementWrongUpd(),
frameId = g_frameId

sync_event[deviceId]?
To_valid_clock = 0,
To_clock = 0

Figure 37: Isom Out state machine

4.5.6 Device

The Device state machine represents an IO device which can scan inputs and write outputs to the
controlled process. It is noti�ed from Isom In by channel SYNCH_IN when the scan of inputs should
be done. Writing of the outputs is controlled from Isom Out state machine by channel SYNCH_OUT.
When the output data are written to the process the state machine is in state OutputsWritten, this
state is used for veri�cation purposes to checks if the data were written at correct time. State machine
Device is shown in �gure 38.

CycleEnd

OutputsWritten

InputsScanned

Init

outputReceived = -1

sync_event[deviceId]?

SYNCH_IN[deviceId]?

SYNCH_OUT[deviceId]?
setOutputReceived(g_frameId)

Figure 38: Device state machine
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4.5.7 Veri�cation of isochronous application

Inputs received

This rule checks that all de�ned inputs reach the controller before the end of the communication
cycle. Implementation of the rule is in listing 18. Controller stores received inputs in an internal
array which can be queried for presence of an input by function hasReceived().

A[] Controller.CycleEnd

imply

forall(inputId : InputId) Controller.hasReceived(inputId)

Listing 18: Inputs received

Outputs received

Veri�cation that the outputs were written by correct devices is done by rule in listing 19. It checks
that the output data received by the device match the de�ned output in the corresponding structure.

A[] forall(deviceId : DeviceId)

Device(deviceId ). CycleEnd

imply

Device(deviceId ). outputReceived == getOutputByDevice(deviceId ).id

Listing 19: Outputs received

Output timing

This rule veri�es that the outputs are written to the process at time T_IO_Output. Implementation
is in listing 20. When outputs are written the Device state machine is in state OutputsWritten and
the time must be equal to T_IO_Output.

A[] forall(deviceId : DeviceId)

Device(deviceId ). OutputsWritten

imply

t[deviceId] == T_IO_Output

Listing 20: Output timing

Input timing

This rule checks whether the input data are scanned from the process at time T_IO_Input before the
end of the communication cycle. When the inputs are scanned the Device state machine is in state
InputsScanned and the time must be equal to T_IO_Input before end of the cycle. Implementation
is in listing 21.

A[] forall(deviceId : DeviceId)

Device(deviceId ). InputsScanned

imply

t[deviceId] == SEND_CLOCK - T_IO_Input

Listing 21: Input timing

4.6 Results of isochronous application veri�cation

On top of the network described in section 4.4, an isochronous application was built. The application
was implemented by the state machines described in section above. The application uses the message
schedule veri�ed in section 4.4 to transport the inputs and output from the controller to the devices.

The requirements on the behaviour speci�ed in section 4.5 were evaluated by the veri�cation
engine and they have been ful�lled. The inputs are scanned at the correct time by every device and
they are delivered to the controller. The outputs are delivered to every device and written to the
process.
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Chapter 5

Conclusion

The goal of this thesis was to develop methods for message schedule veri�cation in Pro�net IRT
networks.

Two approaches of the veri�cation were implemented in this thesis. First one was the approach
with a static check of the schedule parameters according to the given set of rules. I have implemented
a test tool with the rules and the graphical user interface for displaying the results. Using the tool, I
have tested and successfully veri�ed several schedules.

The work on the �rst approach was partially done within a project one semester before the actual
diploma thesis project started. The design and the implementation of approximately two thirds of the
work were done during that semester. During the thesis itself I have performed extensive tests with
various topologies and discovered a few errors in the rule de�nitions as well as in the implementation.

In the second part of the thesis I have created a model of a network in software Uppaal. It was
created from the state machines described in Pro�net speci�cation and parametrized by the message
schedule for the line topology. I have speci�ed the requirements on the behaviour and using the
veri�cation engine I veri�ed that the network behaves according to the message schedule. During the
veri�cation, a di�erence of clocks of neighbouring switches was taken into account and the schedule
was veri�ed under conditions simulating the behaviour of real switches.

On top of the veri�ed network model I have created an isochronous application to demonstrate
that the network is capable of delivering data for a time critical application.

The work on the second approach was done completely within the diploma thesis project. The
implementation of the state machines of the IRT switch as well as of the isochronous application was
possible to be �nished in time mainly because of my previous experience with the �rst approach.

In comparison of both approaches every possible situation that can happen in the network should
be taken into account during the creation of the set of rules for the test tool. If any situation is not
covered in the rules the test tool will not be able to discover possible malfunction of the network. The
veri�cation in Uppaal models the network behaviour, based on the speci�cation of Pro�net, which is
parametrized by a schedule. The rules implemented in the test tool are encoded in the structure of
the state machines and does not have to be speci�ed explicitly.

During the veri�cation of message schedules in Uppaal a signi�cant disadvantage of this approach
arose. The veri�cation engine has to explore a complete state space of the modeled system and it
can take a signi�cant time to verify a schedule for large networks. On the other hand this approach
is capable of exploring the behaviour under non ideal circumstances like di�erent values of the local
clocks.

The model of isochronous application can be extended in the future with a model of a device
backplane bus. This would simulate the transfer of data from the communication part of the device
to the physical outputs. By this approach it could be possible to verify feasibility of an isochronous
application con�guration for a certain class of devices with a common backplane bus.

As it was mentioned the veri�cation of large networks can take a lot of resources (time and
memory). A reduction of the state space of individual state machines could be done to speed up the
veri�cation.
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Appendix A List of implemented tests

In this appendix is given a list of implemented tests in the test tool. Their structure is in �gure 39.

Figure 39: Structure of implemented tests

SendClock

Startup mode must be Advanced if SendClock is less than 250000.

MinInterLsduGap

MinInterLsduGap must be equal to the maximum of MinRTC3_Gap of all devices in the domain.

MaxTxRxTime

Frame transmission must end before MaxTxRxTime. EndOfFrameTransmission is computed as Time
+ ( SA[6] + DA[6] + EtherType[2] + FCS[4] ) * 80.

MaxBridgeDelay

Max bridge delay must be consistent among Scheduling Input, GSDML and PDIRdata.

NumberOfPorts

Number of ports must be consistent among scheduling input, GSDML and PDIR data.
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MulticastMacAddress

If startup mode is advanced Multicast MAC address must be set to RTC3 multicast address or FFW
multicat MAC address.

StartupModeSettings

Device must support tested startup mode.

MaxPortRxDelay

Max port rx delay must be consistent among scheduling input, GSDML and PDIR data.

MaxPortTxDelay

Max port tx delay must be consistent among scheduling input, GSDML and PDIR data.

OrangePeriod

TX/RXOrangePeriodBegin must be equal to TX/RXGreenPeriodBegin. ReservedIntervalBegin/End
must be set to zero.

ShortPreambleSupported

If PreambleLength is set to Short in PDPortDataAdjust it must be supported in GSDML.

RedOrangePeriodBeginForAdvanced

Tx/RxRedOrangePeriodBegin must be zero for advanced startup mode.

MinFsoDi�erence

Di�erence of two consecutive frames must be larger or equal to MinFSODi�erence. MinFSODi�erence
= AdditionalLsduGap + MinRTC3_Gap + (PreambleLength + SFD + DataLength) * 80.

TxNotReservedPeriod

TX Period beginnings must be set to zero in phases without reserved interval.

RxNotReservedPeriod

RX Period beginnings must be set to zero in phases without reserved interval.

NumberOfAssignments

Number of assignments must be the same in PDIRBeginEndData, SchedulingOutput Tx and Rx
groups.

TxPeriodGroupEnd

TxOrangePeriodBegin, TxGreenPeriodBegin and end of TxPeriodGroup from Scheduling output must
be the same.

RxPeriodGroupEnd

RxOrangePeriodBegin, RxGreenPeriodBegin and end of RxPeriodGroup from Scheduling output
must be the same.

NumberOfPhases

Number of phases must be one of 1, 2, 4, 8 or 16.
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RedGuard

All FrameIDs must be within RedGuard.

MinFSO

Frame send o�set must be larger or equal to MinFSO.

StartTime

Frame send o�set must be larger or equal to StartTime.

FSO

Frame send o�set must be equal to the time from scheduling output.

RedOrangePeriodBegin

Start of frame transmission must be larger or equal to TxRedOrangePeriodBegin.

GreenPeriodBegin

Frame transmission must end before GreenPeriodBegin. EndOfFrameTransmission is computed as
FSO + ( SA[6] + DA[6] + EtherType[2] + FCS[4] ) * 80.

NeighbourPeriods

Local TxGreenPeriodBegin must be smaller or equal to Adjacent RxGreenPeriodBegin.

RxGreenPeriodBegin

Frame ID must be received before beginning of green period.

Rtc3Domain

Two adjacent ports must belong to the same domain.

MauType

MAUType must be the same or missing for both adjacent ports.

PreambleLength

PreambleLengths must be the same or missing for both adjacent ports.

PackingDensity

Preamble lengths along the math of the message should be set to Short.
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Appendix B Example of PDF report

This appendix gives example how PDF report generated by the test tool looks. Results of two tests
are shown in �gure 40.

1�1 ��� �����	
��

Startup mode must be Advanced if SendClock is less than 250000.

Result

[passed] Sendclock value is valid.

Arguments

[Config].Startup = Legacy

[SchedulingInput].SendClock ( = 2*[SchedulingInput].MaxTxRxTime) = 1000000

1.2 [P] MinInterLsduGap

MinInterLsduGap must be equal to the maximum of MinRTC3_Gap of all devices in the domain.

Result

[passed] MinInterLsduGap is valid.

Arguments

[Scheduling Input].MinInterLsduGap = 1120

max([GSDML].MinRTC3_Gap) = 1120

P
�� �

Figure 40: Example of PDF report
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Appendix C Network veri�cation

This appendix describes the setup of the network which was veri�ed in chapter 4. The network
consists of �ve switches in the line topology, it is shown in �gure 41.

Figure 41: Topology of the network

Each switch has assigned ID from table 14.

Switch name Switch ID
Controller 0
Device 1 3
Device 2 4
Device 3 1
Device 4 2

Table 14: Switch parameters

The parameters of the switches are listed in table 15.

Switch ID relative bridgeDelay
0 false 2920
1 false 2920
2 false 2920
3 true 2188
4 true 2188

Table 15: Switch parameters

The parameters of individual ports are in table 16.

Switch ID
0 1 2 3 4

Port 1

rx
delay 333 374 374 198 198

redOrangePeriodBegin 0 0 0 0 0
greenPeriodBegin 0 22535 20349 30363 25995

tx
delay 1217 280 280 6 6

redOrangePeriodBegin 0 0 0 0 0
greenPeriodBegin 0 25462 20768 31760 29248

Port 2

rx
delay 333 374 374 198 198

redOrangePeriodBegin 0 0 0 0 0
greenPeriodBegin 30019 20342 0 26640 24128

tx
delay 1217 280 280 6 6

redOrangePeriodBegin 0 0 0 0 0
greenPeriodBegin 30760 20775 0 28603 24235

Table 16: Port parameters

In table 17 there are listed the forwarding rules for individual switches.
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frameId fso rxPort txPort

Switch ID

0

256 25640 0 2
258 18760 0 2
260 11880 0 2
262 5000 0 2
257 9379 2 0
259 16259 2 0
261 23139 2 0
263 30019 2 0

1

261 13462 0 1
260 22535 1 0
262 15655 1 2
263 20342 2 1

2
263 15648 0 1
262 20349 1 0

3
257 5000 0 1
256 29363 1 0

4
259 9368 0 1
258 24995 1 0

Table 17: Forwarding rules

Table 18 contains de�nition of individual messages. The columns Sender and Receiver contain
IDs of the switches which send or receive the message.

Frame ID Data length Sender Receiver
256 40 0 3
257 40 3 0
258 40 0 4
259 40 4 0
260 40 0 1
261 40 1 0
262 40 0 2
263 40 2 0

Table 18: Frame de�nitions

The links are de�ned in table 19. They are de�ned by switch ID and port ID of the source and
destination of the link.

Link ID sourceSwitch sourcePort destinationSwitch destinationPort lineRxDelay linkDelay
0 0 2 3 1 120 120
1 3 1 0 2 120 120
2 3 2 4 1 120 120
3 4 1 3 2 120 120
4 4 2 1 1 120 120
5 1 1 4 2 120 120
6 1 2 2 1 120 120
7 2 1 1 2 120 120

Table 19: Link de�nitions

Table 20 contains the constant of the network.

Constant Values
JITTER 1000

SEND_CLOCK 1000000

Table 20: Constants
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Appendix D Veri�cation of isochronous application

This appendix describes the setup of the isochronous application which was veri�ed in chapter 4. The
same network as in the case of veri�cation of IRT network was used. Table 21 contains a list of the
inputs. For every input a message carrying it is de�ned.

Input ID Carrier

0 258
1 259
2 261
3 263

Table 21: De�nition of inputs

Table table 22 contains a list of the outputs with messages carrying them. Every output has
assigned a device where it should be received.

Output ID Carrier Device

0 256 3
1 258 4
2 260 1
3 262 2

Table 22: De�nition of outputs

Table 23 contains a list of constants which were used for the veri�cation.

Constant Value

T_IO_OutputValid 70000
T_IO_Output 80000

T_IO_InputValid 100000
T_IO_Input 110000

Table 23: De�nition of outputs
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Appendix E Content of attached CD

In table 24 there are listed folders on the attached CD and the description of their content.

Directory Description

pdf This thesis in PDF format
uppaal Uppaal projects with Pro�net IRT network and the isochronous

application.

Table 24: Content of attached CD
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