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family who helped me a lot in situations when it was the most needed.

This work was supported from the budget of the Czech Republic, through the Ministry of
Industry and Commerce in the scope of grant No. 2A-1TP1/084,“Integration of building systems,
research and application of intelligent algorithms with influence on energy consumption of
buildings and living houses” and from the University Centre for Energy Efficient Buildings
(UCEEB) through grant CZ.1.05/2.1.00/03.0091.

Prague, June 2013 Jiří Cigler

Declaration

I declare that I worked out the presented thesis independently and I quoted all used sources of
information in accord with Methodical instructions about ethical principles for writing academic
thesis.

v



Abstract

Energy savings in buildings have gained a lot of attention in recent years. Most of the research is
focused on the building construction or alternative energy sources in order to minimize primary
energy consumption of buildings. By contrast, this thesis deals with an advanced process control
technique called model predictive control (MPC) that can take advantage of the knowledge of a
building model and estimations of future disturbances to operate the building in a more energy
efficient way.

MPC for buildings has recently been studied intensively. It has been shown that energy savings
potential of this technique reaches almost 40 % compared to conventional control strategies
depending on the particular building type. Most of the research results are, however, based on
simulation studies subject to number of assumptions. On the contrary, the objectives of this
thesis are i) evaluate MPC energy savings potential on a real building, ii) develop and evaluate an
alternative MPC formulation for buildings that is less sensitive to model mismatch and weather
forecast errors, iii) develop and evaluate an alternative MPC formulation that takes into account
mathematical formulas for thermal sensation of occupants.

First of all, this thesis deals with the implementation of the MPC controller on a pilot
building of Czech Technical University (CTU) in Prague. The development of a grey-box
thermodynamical model for control, the formulation of the underlying optimization problem and
the development of the software platform for optimization problem solving and communication
of the optimal control moves to the building automation system are topics treated in detail.
Moreover, the evaluation of the energy savings potential is provided, showing that for the
investigated building, the savings are between 15 % and 28 %, power peak demand was lowered
by 50 %, while the thermal comfort in the building was kept on a higher level.

Then this thesis presents a tool that was used for the development of the MPC controller
applied for the CTU building. The tool enables tuning and debugging of MPC controllers for
buildings and allows users to explore controller behavior for different scenarios (e.g. weather
conditions, occupancy profiles or comfort regimes).

Afterwards, based on the assessment of the long term operation of the MPC controller applied
to the control of the building of the CTU, the main issues for practical applicability of MPC
are pointed out and an alternative optimal control problem formulation tackling the issues is
proposed showing a better closed-loop performance even in situations when there is a model
mismatch or disturbance prediction errors when comparing the performance to the formulations
presented in the literature.

Finally, this thesis deals with the development of a computationally tractable method for
solving an alternative MPC problem formulation, which incorporates thermal comfort index
predicted mean vote and which leads to a general constrained optimization problem. The
advantage of this formulation is that it implicitly contains user perception of the thermal comfort
in the cost function and thus it is possible to achieve better thermal comfort even with less input
energy.

Keywords

Predictive control; Energy savings; Building control optimization; Thermal comfort
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Abstrakt

Energetické úspory v budovách se v posledních letech staly častým předmětem výzkumu,
který se v této oblasti zaměřuje zejména na možnosti využití lepších konstrukčních materiálů
anebo alternativních a energeticky efektivnějších zdrojů energie s ohledem na to, aby byla
minimalizována primární energie spotřebovaná v budově. Tato disertační práce se ale zabývá
alternativní metodou, jak dosáhnout energetických úspor ve vytápění a chlazení budov. Metoda
je založena na pokročilé technice procesního řízení zvané prediktivní řízení, jejíž předností
je schopnost na základě modelu řízené soustavy a predikcí poruchových veličin ovliňujících
systém (v tomto případě se jedná například o počasí nebo obsazenost budovy) řídit budovu
energeticky efektivnějším způsobem než tomu je u běžných řídicích strategií budov.

V posledních letech výzkum v oblasti prediktivního řízení budov ukázal, že prediktivní re-
gulátor má potenciál až na 40 % úspory energie v porovnání s běžnými strategiemi řízení a to
v závislosti na řadě faktorů. Většina výzkumných výsledků je ovšem založena na simulačních
studiích opírajících se o celou řadu předpokladů. I proto je cílem práce ověřit potenciál energe-
tických úspor díky MPC na reálné budově, dále vyvinout MPC formulaci, jenž sníží citlivost
řízení na chyby v matematickém modelu budovy a nepřesnosti v předpovědi počasí a konečně
vyvinout MPC formulaci, která bude přímo pracovat s vnímáním tepelné pohody v budově.

Nejdříve budou v práci uvedeny detaily o implementaci prediktivního regulátoru na budově
ČVUT v Praze. Zejména se jedná o způsob získání parametrů matematického modelu s předdefi-
novanou strukturou, formulaci optimalizačního problému, který je jádrem každého prediktivního
regulátoru, popis softwarové platformy pro řešení optimalizačního problému a komunikaci
optimálních vstupů do řídicího systému budovy. Na základě analýzy kvality řízení je ukázáno,
že prediktivní regulátor dosahuje 15 % až 28 % úspor v porovnání s dobře naladěným stávajícím
regulátorem. Navíc prediktivní regulátor snižuje špičkový odběr energie na polovinu a udržuje v
budově lepší tepelný komfort.

V další části se práce věnuje nástroji, který umožňuje ladit parametry prediktivního regulátoru
pro budovy. Tento nástroj zejména umožňuje uživateli zkoumat chování regulátoru při různých
podmínkách (například při různém počasí, obsazenosti budovy nebo různých požadavcích na
teploty v místnostech).

Na základě analýzy dlouhodobého chování prediktivního regulátoru na budově ČVUT a
poznatků z literatury k tématu byly stanoveny hlavní problémy, se kterými se při praktickém
nasazení prediktivního regulátoru setkáváme. V práci jsou rozebrány tyto problémy a je navržena
alternativní formulace optimalizačního problému, která do jisté míry problémy řeší a v uzavřené
smyčce vykazuje lepší chování i v situacích, kdy nejsou přesné předpovědi poruchových veličin
nebo existují nepřesnosti v matematickém modelu soustavy.

V neposlední řadě se práce zabývá návrhem výpočetně jednoduché metody pro řešení alterna-
tivní formulace problému prediktivního řízení, která v sobě zahrnuje index tepelného komfortu
PMV a jenž svým zařazením spadá do skupiny obecného nelineárního programování. Výhodou
této formulace je to, že přímo obsahuje matematický předpis pro vnímání tepelného komfortu a
tak lze dosáhnout lepšího komfortu i za cenu menší spotřebované energie.

Klíčová slova

Prediktivní řízení; Energetické úspory; Optimalizace řízení budov; Tepelný komfort
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Abbreviations

Here is a list of abbreviations that will further be used in the thesis.

CTU Czech Technical University in Prague
FEE Faculty of Electrical Engineering
EU European Union
US United States
MPC Model Predictive Control: an advanced method for constrained optimal control,

which originated in the late seventies and early eighties in process industries
SMPC Stochastic Model Predictive Control: a subcategory of MPC techniques dealing

with stochastic models of the controlled system
HVAC Heating Ventilation and Air Conditioning: a technology of indoor and automo-

tive environmental comfort
TABS Thermally Activated Building Systems
BAS Building Automation System: a control system of a building
BEPS Building Energy Performance Simulation tools: simulation programs primarily

used for long term energy calculations for buildings
SCADA Supervisory Control and Data Acquisition: a type of industrial control system
PMV Predicted Mean Vote index: a thermal comfort index that is used in various

international standards for assessment of thermal comfort not only in buildings
LTI Linear Time Invariant
4SID Subspace State Space System Identification
DSPM Deterministic Semi-Physical Modeling
RC Resistance Capacitance
QP Quadratic Programming
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1. Introduction

1.1. Motivation

In recent years, there has been a growing concern to revert or at least diminish the effect
of the climate changes or the climate changes themselves. Moreover, there is a permanent
effort for energy savings in most of the developed countries. In addition, the European Union
(EU) presented targets concerning energy cuts defining goals by 2020 [1]: i) Reduction in
EU greenhouse gas emissions at least 20 % below the 1990 levels, ii) 20 % of EU energy
consumption to come from renewable resources, iii) 20 % reduction in primary energy use
compared to projected levels, to be achieved by improving energy efficiency. Similar goals, in
some cases even more restrictive, have been stated by the US government with minor differences
on the level of each state [2].

As buildings account for about 40 % of total final energy consumption and more than half of
the end energy is consumed in heating, ventilation and air conditioning (HVAC) systems [3],
an efficient building climate control can significantly contribute to the reduction of the power
consumption as well as the greenhouse gas emissions.

It is also important to mention the current state of the building sector to find a way to
achieve energy cuts. For instance in the US, there are about one to two million buildings
newly constructed every year. However, there are approximately 110 million existing buildings
consuming much more energy per se than new buildings constructed according to current
standards. Even if each of the new buildings use net-zero-energy technology, it would take long
time to achieve significant difference on the overall energy bill [4]. A much more productive
approach for achieving the strict energy cuts would be to focus also on the retrofit of the existing
buildings e.g by implementing energy efficient control algorithms into building automation
systems (BAS), which can nowadays control HVAC systems, as well as the blind positioning
and lighting systems [5, 6].

Besides sophisticated rule based control algorithms, there have emerged two main research
trends in the field of advanced HVAC control recently [7]:

• Learning based approaches like neural networks [8, 9]; fuzzy and adaptive fuzzy neural
networks [10, 11], genetic and evolutionary algorithms [12, 13], etc.

• Model based predictive control (MPC) techniques that are based on the principles of the
classical control [14].

In this thesis, we will only focus on the latter techniques.

1.2. Model Predictive Control

MPC is a method for constrained optimal control, which originated in the late seventies and
early eighties in the process industries (oil refineries, chemical plants, etc.) (see e.g. [15, 14,
16, 17]). MPC is not a single strategy, but a class of control methods with the model of the
process explicitly expressed in order to obtain a control signal by minimizing an objective
function subject to some constraints. In building control, one would aim at optimizing the energy
delivered (or cost of the energy) subject to comfort constraints.

1



1. Introduction

Time varying parameters


Occupancy prediction


Weather prediction
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MPC controller  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Fig. 1. Basic principle of MPC for buildings

During each sampling interval, a finite horizon optimal control problem is formulated and
solved over a finite future window. The result is a trajectory of inputs and states into the future,
respecting the dynamics and constraints of the building while optimizing some given criteria. In
terms of building control, this means that at the current control step, a heating/cooling etc. plan
is obtained for the next several hours or days, based on a weather forecast. Predictions of any
other disturbances (e.g. internal gains), time-dependencies of the control costs (e.g. dynamic
electricity prices), or of the constraints (e.g. thermal comfort range) can be readily included in
the optimization.

The first step of the control plan is applied to the building, setting all the heating, cooling and
ventilation elements, then the process moves one step forward and the procedure is repeated
at the next time instant. This receding horizon approach is what introduces feedback into the
system, since the new optimal control problem solved at the beginning of the next time interval
will be a function of the new state at that point in time and hence of any disturbances that have
acted on the building.

Figure 1 summarizes the basic principle of MPC for buildings. Time-varying parameters
(i.e. the energy price, the comfort criteria, as well as predictions of weather and occupancy)
are inputs to the MPC controller. One can see that the modeling and design effort consist
of specifying a dynamic model of the building, as well as constraints of the control problem
and a cost function that encapsulates the desired behavior. At each sampling interval, these
components are combined and converted into an optimization problem depending on the MPC
framework chosen. A generic framework is given by the following finite-horizon optimization

2



1.2. Model Predictive Control

problem:

min
u0 ,... ,uN−1

N−1∑
k=0

lk (xk , uk ) Cost function (1)

subject to

x0 = x Current state (2)

xk+1 = f (xk , uk ,wk ) Dynamics – state update (3)

yk = g(xk , uk ,wk ) Dynamics – system output (4)

(xk , uk ) ∈ Xk × Uk Constraints (5)

where k is the discrete time step, N is the prediction horizon, xk ∈ Rn is the system state, uk ∈
Rm is the control input, yk ∈ Rp is the system output, wk ∈ R

l is the vector of known/estimated
disturbances acting on the system, Xk andUk denote the constraints sets of the state and inputs
respectively and are explained below.

All of the components in the above MPC formulation are detailed below with the discussion
how they affect the system and the resulting optimization problem. Please note that this is not a
comprehensive overview of MPC formulations, but rather a collection of formulations, which
are frequently used or reasonable in the field of building control. For a more comprehensive
overview on MPC formulations, the reader is referred e.g. to [14].

Cost function

The cost function generally serves two purposes:

• Stability. It is common to choose the structure of the cost function such that the optimal cost
forms a Lyapunov function for the closed loop system, and hence will guarantee stability. In
practice, this requirement is generally relaxed for stable systems with slow dynamics, such as
buildings, which leaves the designer free to select the cost strictly on a performance basis.

• Performance target. The cost is generally, but not always, used to specify a preference for
one behavior over another, e.g., minimum energy or maximum comfort.

Generally, the main goal is to minimize energy cost while respecting comfort constraints,
which can be formalized by the following cost function:

lk (xk , uk ) = (yk − yr ,k )TQk (yk − yr ,k ) + Rkuk , (6)

where Qk and Rk are time varying matrices of appropriate size and yr ,k the reference signal
at time k. The trade-off between precision of reference tracking and energy consumption is
expressed by proportion of the matrices Qk and Rk . The reference tracking is expressed as
a quadratic form because it significantly penalizes larger deviations from the reference. The
energy bill is usually an affine function of a total amount of consumed energy. Therefore, the
control cost is weighted linearly.

Current state

The system model is initialized to the measured/estimated current state of the building and all
future (control) predictions begin from this initial state x. Depending on what the state of the
building is describing, it might not be possible to measure all of its components directly and e.g.
Kalman filtering needs to be employed in order to obtain an estimate of the current state.

3



1. Introduction

Dynamics

The controller model (i.e. the mathematical description of the building thermal dynamics) is a
critical piece of the MPC controller. Typically, the linear dynamics is considered

xk+1 = Axk + Buk + Vwk (7)

yk = Cxk + Duk + Wwk . (8)

Here the real matrices A, B,C, D,V,W are so called system matrices and are of appropriate
dimensions. This is the most common model type and the only one that will result in a convex
and easily solvable optimization problem.

Constraints

The ability to specify constraints in the MPC formulation and to have the optimization routine
handle them directly is the key strength of the MPC approach. There can be constraints on the
states or the output, as well as on the input. Linear constraints are the most common type of
constraint, which are used to place upper/lower bounds on system variables

umin ,k ≤ uk ≤ umax ,k , (9)

or generally formulated as
Gkuk ≤ gk . (10)

The constraints can be similarly defined for system states and outputs.

1.3. Organization of the Thesis

This thesis is further structured as follows: Chapter 2 defines the goals to be achieved, Chapter 3
presents state-of-the-art in the area of MPC for buildings. The following Chapter 4 deals with
the author’s results. As this thesis is meant as a unifying text of author’s published papers related
to the topic of this doctoral thesis, the chapter contains four main papers with a brief description
how the particular paper fits into the mosaic of this work. The main body of the text is concluded
by Chapter 5 and a list of cited works.

4



2. Goals of the Thesis

Evaluation of MPC Energy Savings Potential on a Real Building

The objective here is to find a suitable pilot building for performing experiments with MPC
controller, implement MPC controller and interconnect it with the building automation system of
the building. Once the MPC controller is implemented, the objective is to evaluate the controller
performance in terms of energy usage and satisfaction of thermal comfort. The performance is
to be compared to a well-tuned state-of-the art control algorithm.

Development of a MPC Formulation Less Sensitive to Model Mismatch
and Prediction Errors

Typically, the most common MPC formulation does not perform well in closed loop. Hence the
second objective of this thesis is to develop and evaluate an alternative MPC formulation for
buildings that is less sensitive to model mismatch and errors of weather prediction.

Development of a Computationally Tractable PMV Based MPC

Thermal comfort is a complicated quantity. According to the international standards defining
requirements for thermal comfort in buildings, the thermal comfort can be expressed in two
ways:

a) by a temperature range for operative temperature,

b) by a range for PMV index.

On the contrary to the first goal of the thesis, when a temperature range is used for the definition
of the thermal comfort, the objective here is to use PMV index for representation of the thermal
comfort directly in the MPC formulation. As the PMV is a nonlinear function of several
quantities, the goal is to develop a computationally tractable MPC method solving this case.

5



3. State-of-the-Art

In this chapter, we present a literature overview of methods that are based on the formulation
of the building control as an optimization problem. The building physics is formulated in a
mathematical model that is used for the prediction of the future building behavior according
to the selected operation strategy and weather and occupancy forecasts. The aim is mainly to
design a control strategy that minimizes the energy consumption (or operational costs), while
guaranteeing that all comfort requirements are met.

In the following, we will briefly mention related works in a structured way and we will start
with early works dealing with MPC for buildings.

3.1. Early Works

A study presented by Grünenfelder and Tödtli [18] was among the first papers which formulated
the control of the thermal storage as an optimization problem. The control of a simple solar
domestic hot water system considering the weather forecast and two energy rates is discussed
there. Some early papers [19, 20] deal with a least-cost cooling strategy using the building mass
as a thermal storage.

An overview of the active use of thermal building mass is given by Braun [21], where a
variable energy price and the cost of the power peak are considered in the formulation of the
optimization problem.

Predictive control of radiant floor heating was studied by Chen [22], where the author first
identified a model for MPC and then demonstrated on simulation results that the behavior of
MPC is superior to the conventional controllers in terms of response speed, minimum offset and
on-off cycling frequency.

Performance of MPC applied to the control of a radiant floor heating was later assessed by
Cho [23] showing that the savings potential of MPC reaches 10 % during cold winter months
and somewhat higher during mild weather conditions.

The Group around Tödli had been continuously developing MPC solution for Siemens
company, which resulted in three patents [24, 25, 26] and a short conference paper [27]. In all
these patents, a particular model structure is presented for the particular case, which of course
restricts usage of this technique in these cases.

3.2. Energy Peak Reduction

Besides the energy minimization, predictive control can also contribute to energy peak reduc-
tions [28, 29]. Energy peak reduction can significantly lower the costs of the building operation
and the initial cost of mechanical parts if considered in the building design. Grid thrifty control
can also help to keep supplier–consumer balance in a grid.

Current grid load and energy peak reduction was considered in a simulation study of Old-
ewurtel et al. [30] dealing with power supply to several commercial buildings trying to find a
trade-off between minimizing cost on side of building and flattening grid load profile.

Ma et al. [31] treated demand response control where MPC applied on cooling system of a
multi-zone commercial building resulted in pre-cooling effects during the off-peak period and

6



3.3. Control Hierarchy

autonomous cooling discharging from the building thermal mass during the on-peak period.

3.3. Control Hierarchy

The hierarchy of the HVAC system controllers plays also an important role. MPC is generally
suitable as a top-level controller only and the question always is, how to achieve a symbiosis
between low-level control loops and the top-level MPC.

There have been couple of contributions on how to integrate MPC into the control hierarchy
of the BAS [32]. Zhang and Hanby [33] addressed a building system with renewable energy
sources which are generally of low intensity and temporally inconsistent. Supervisory control
system is then responsible for deploying the energy directly into the building, storing for later
use or rejecting to the environment.

The centralized MPC topology for multi-zone buildings is often undesirable and difficult
to implement, as computational demands required to solve the centralized problem grows
exponentially with the number of zones/subsystems. Another drawback of the centralized
strategies is their poor flexibility and reliability, comparing to a decentralized or distributed
control structure. In the case of the decentralized MPC, the large optimization problem is
split into smaller ones (each with its own objective function and constraints) neglecting some
interactions between building zones, while in the case of the distributed control structure,
several MPC controllers minimize a global cost function. By using this technique, the overall
computation time can be significantly reduced and, at the same time, the robustness of the
whole control system can be increased. However, this solution comes at the cost of increased
communication effort and sub-optimal performance.

Moroşan et al. [34] and later in [35] addressed heating of a multi-zone building with a
decentralized and distributed MPC. While the performance of the decentralized one strongly
depends on the level of interactions between subsystems, the distributed one, as each controller
knows about control actions of its neighbors, keeps the same performance as the centralized one.

An alternative approach was presented by Ma, Anderson, and Borrelli [36] where the problem
of distributed MPC is implemented using sequential quadratic program and dual decomposition.

3.4. Stochastic MPC

A stochastic model predictive control (SMPC) approach applied on a room temperature regu-
lation problem is proposed in a pioneering work by Oldewurtel, Jones, and Morari [37]. The
idea is to consider weather forecast (ambient temperature and solar radiation) to be a stochastic
disturbance, therefore a weather prediction error model has to be constructed. Moreover, chance
constraints are introduced into the optimization problem in order to meet hard constraints in
at least 1-α% cases (because if the random distribution is unbounded, then the optimization
problem with any hard constraint is infeasible).

A convex approximation technique outperforming the previous one and solving the same
optimization problem was proposed by Korda and Cigler [38].

Later, Ma, Vichik, and Borrelli [39] presented an approach where the chance constraints
are decoupled using Boole’s inequality and for the resulting optimization problem, the authors
proposed a tailored interior point method to explore the special structure of the resulting SMPC
problem.

7



3. State-of-the-Art

3.5. Building Modeling

MPC inherently requires an appropriate model of the controlled plant, which is then used for the
computation of the optimal control inputs. This model must be sufficiently precise, in order to
yield valid predictions of the relevant variables (e.g. room temperatures), but at the same time,
the model must be as simple as possible for the optimization task to be computationally tractable
and numerically stable.

In the HVAC engineering community, building energy performance simulation (BEPS) tools
(e.g., EnergyPlus, TRNSYS, ESP-r, etc.) are typically used for modeling of the building physics
[40]. These tools contain numerous complex calculations, non-linearities, switches and iterative
procedures that make their usage in online optimization prohibitive as the resulting models
are in an implicit form1. An attempt to use a BEPS model within an optimization routine was
reported by Coffey et al. [41], but generally, researchers seek models with lower complexity and
computational demands. BEPS models can then be used for MPC algorithm evaluation when
co-simulation scheme is used [42].

So-called linear time invariant (LTI) models are much more suitable for the use within an
MPC framework. The usage of LTI models typically leads to a convex optimization problem
that, in general, can be solved well by standard optimization software tools. Obtaining an
appropriate LTI model of the controlled building is, however, a delicate and laborious task even
for experienced and knowledgeable engineers. A brief review of methods that can be used for
building modeling is mentioned by Prívara et al. [43]. Generally, following techniques can be
used to obtain an LTI model:

a) Black-box identification. The model structure and parameters are identified in a statistical-
empirical manner from on-site measurements or from signals generated from BEPS. Fol-
lowing identification methods are available options for buildings: i) Subspace state space
system identification methods (4SID) [44]. ii) MPC relevant identification (MRI) (multi-step
ahead prediction error is minimized) [45]. The black-box approach is conceptually simple,
but technically tricky, and it crucially depends on the availability of appropriate input data
sets that encompass sufficient long sequences of all relevant excitation-response signal pairs.
These are very hard to obtain from a real building during normal operation.

a) Grey-box modeling. This approach describes a building’s thermal dynamics based on a
thermal resistance capacitance (RC) network [46, 47, 48, 49]. It presents an analogue to
an electric circuitry, with temperature gradients and heat fluxes replacing electric potentials
and currents. A plausible model structure (RC network topology) is first specified a priori,
and then the model parameters are identified from measurements or BEPS simulations.
The advantage of this approach is that basic knowledge of possible thermal interactions
(e.g., neighbourship of building zones) can easily be introduced. However, the parameter
identification is far from trivial.

a) White-box modeling. This approach also relies upon a thermal RC network. Here both
the RC network’s topology and its R and C elements (the model parameters) are derived
directly from detailed geometry and construction data (see e.g. work by Sturzenegger et al.
[50]). Compared to grey-box modeling, this approach has an even stronger physical basis.
However, similarly to BEPS studies, it requires availability and processing of a large amount
of building-specific information.

1In this context, we call a model explicit if there are mathematical formulas describing a state evolution, i.e. a set of
differential or difference equations is available. Otherwise the model is called implicit.
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3.6. Thermal Comfort Representation

3.6. Thermal Comfort Representation

Thermal comfort in buildings is usually evaluated using the operative temperature [51], which
is, in the simplest way, defined as the average of the air temperature and the mean radiant
temperature (i.e. usually computed as area weighted mean temperature of the surrounding
surfaces [52]). However, the thermal comfort is a more complicated quantity and, in accordance
with ISO 7730 [51] and ASHRAE 55 [53] international standards, it can be defined in a
more general way as “The condition of mind which expresses satisfaction with the thermal
environment”, pointing out that it is a cognitive process influenced by various quantities, physical
activity, physiological and psychological factors and typically, this process is described by the
thermal comfort index called predicted mean vote (PMV).

The PMV index as a part of MPC cost function was presented by Freire, Oliveira, and Mendes
[54], where the authors show that making use of PMV index, MPC can achieve even higher
energy savings. On the other hand, the non linear character of the PMV index complicates the
usage of this thermal comfort index. Several MPC problem formulations having PMV index in
the cost function are compared by [55]. The comparison is carried out on a real building of a
solar energy research centre.

In addition, there has been developed a direct relationship between PMV index and productiv-
ity rate of the occupants of the office buildings. As the cost of office laborers in the developed
countries is much higher than the operational costs of a building, the fulfilment of thermal
comfort (in terms of PMV) can result in a substantial economic benefit [56, 57].

3.7. Occupancy Predictions

Occupancy predictions can also be readily included into the MPC problem formulation. Inves-
tigation of the energy savings potential when using occupancy information to realize a more
energy efficient building climate control is presented by Oldewurtel, Sturzenegger, and Morari
[58]. The authors showed that this additional information can lead to significant energy savings
(up to 50 % of energy required by HVAC system is saved depending on occupants’ vacancy
intervals).

3.8. Deployment of MPC

There have been several attempts to validate MPC technique by a real operation to prove energy
savings potential.

Supervisory MPC controller was successfully tested by Henze et al. [59] on the control of
an active and passive building thermal storage inventory in a test facility. The controller uses a
three-step procedure consisting of i) short-term weather prediction, ii) optimization of control
strategy over the next planning horizon using a calibrated building model, iii) post-processing
of the optimal strategy to yield a control command for the current time step. The energy
consumption was in this case reduced by about 10 % and costs were reduced by about 17 %.

Different MPC setups applied to a thermal storage of the building cooling system have been
continuously tested in the campus of the University of California, Merced. A controller that
minimizes cooling costs with respect to the time-varying electrical energy price is presented
by Ma et al. [60]. The aim is to take advantage of night-time electricity rates and to lower
the ambient temperature while pre-cooling the chilled water tank. Experimental results of
pre-cooling are later presented in [61], where a more detailed building load model was used and
where where MPC achieved up to 25 % energy savings. Later, the results were summarized in
[47].

9



3. State-of-the-Art

Last but not least, there are the results reported in [46], where the MPC applied to a heating
system of a university building saves 30 % of energy in cross comparison with conventional
control strategies like heating curve, lowers power demand peaks by 50 % and keeps thermal
comfort in the building on a higher level.

3.9. Software Tools Dedicated to MPC for Buildings

In the literature, there have been reported several software tools capable of running MPC for
buildings.

The development of a SCADA (Supervisory Control and Data Acquisition) system allowing
MPC control for buildings is reported by e.g. Figueiredo and Costa [62]. The optimal control
law is computed in MATLAB and the variables are transmitted into BAS via Dynamic Data
Exchange protocol. The authors show the functionality on a real life example.

An alternative way to communicate optimal control moves is reported in [46]. Here, the
optimization task is solved in Scilab environment and transmitted to BAS via a proprietary
protocol.

These tools are dedicated mainly to interconnection of BAS and the computational core
solving MPC optimization problem. On the other hand, there are two analyzation on-line tools
i) http://buildinglab.felk.cvut.cz, ii) http://bactool.ethz.ch/. The former one
is used for a design phase, allowing user to tune the controller performance, while the latter
evaluates the mean behavior of the controlled system over a long time period in the order of
months or a year and indicates whether the particular building is suitable for predictive control.

It is also important to mention the project GenOpt aiming at employing the predictive control
framework directly without the need of a simple model. GenOpt rather uses detailed models
developed in EnergyPlus or in other building performance simulation tools [41].

A similar project is MLE+, allowing users to easily interconnect simulation models developed
in EnergyPlus with Matlab code and test algorithms for building automation systems [63].
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4. Results

This chapter deals with authors’ results related to the thesis. The chapter is not written in a
common way but the core of it lies in the reviewed papers, which are included here with a short
comment on how the particular paper contributes to the thesis. This format is approved by a
directive issued by the Dean of Faculty of Electrical Engineering (FEE) of the Czech Technical
University in Prague (CTU). This directive is called “Directive of the dean for dissertation theses
defence at CTU FEE” and is available at http://www.fel.cvut.cz/cz/vv/doktorandi/
predpisy/SmobhDIS.pdf, unfortunately only in Czech.

In the following, the three most important journal papers are presented accompanied by
a conference paper that has recently been accepted for the conference Clima 2013 (http:
//www.clima2013.org/). This paper, however, presents important results related to the thesis
and therefore it is included here aside the reviewed papers published in journals with impact
factor.
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4. Results

4.1. Experimental Analysis of Model Predictive Control for
an Energy Efficient Building Heating System
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Annotation:
This paper follows the previously published work dealing with the identification of a ther-

modynamical model of the CTU university building and first experience with deployed MPC
[64]. This paper deals mainly with the description of the implementation of the MPC controller
(development of a grey-box model, the formulation of the optimization problem to be solved, the
development of the software platform for the optimization problem solving and the communica-
tion of optimal control moves to the BAS), validation of the MPC controller functionality (in
terms of reasonable predictions the model gives and comfort violations the controller produces
in closed-loop) and the evaluation of the energy savings (based on a cross comparison with well
tuned state-of-the-art control strategy).
Contribution to the thesis:

This paper contributes mainly to the first goal of the thesis, i.e. it describes the implementation
of the MPC controller on a pilot building and at the same time, the evaluation of the controller
performance is presented.

In this paper, it is shown that the energy savings potential for using MPC with weather
predictions for the investigated building heating system are between 15 % and 28 %, depending
on various factors, mainly the insulation level and the outside temperature. Moreover, the power
peak demand is lowered by 50 % and the thermal comfort in the building is kept on a higher
level.
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a b s t r a c t

Low energy buildings have attracted lots of attention in recent years. Most of the research is focused on
the building construction or alternative energy sources. In contrary, this paper presents a general meth-
odology of minimizing energy consumption using current energy sources and minimal retrofitting, but
instead making use of advanced control techniques. We focus on the analysis of energy savings that
can be achieved in a building heating system by applying model predictive control (MPC) and using
weather predictions. The basic formulation of MPC is described with emphasis on the building control
application and tested in a two months experiment performed on a real building in Prague, Czech
Republic.

! 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Buildings account for 20–40% of the total final energy consump-
tion and its amount has been increasing at a rate 0.5–5% per annum
in developed countries [1]. Thanks to developments in the field of
mechanical and civil engineering, building energy demands can be
reduced significantly. Unfortunately, most of the conventional en-
ergy reduction solutions require considerable additional invest-
ments. In contrast, energy savings with minimal additional cost
can be achieved by improvement of building automation system
(BAS). In today’s buildings not only heating, ventilation and air
conditioning (HVAC) systems can be automatically controlled but
also blind positioning and lighting systems can be operated by
the BAS [2,3].

The paper focuses on methods that are based on the formula-
tion of the building control as an optimization problem. The build-
ing physics are formulated in a mathematical model that is used
for the prediction of the future building behavior according to
the selected operation strategy and the weather and occupancy
forecasts. The aim is to design a control strategy, that minimizes
the energy consumption (or operational costs) while guaranteeing

that all comfort requirements are met. An advanced control tech-
nique usually denoted as Model Predictive Control (MPC) is de-
scribed in the paper.

A comprehensive overview of the literature related to predictive
building control can be found on the web site of the OptiControl
project1. The key principle of MPC used for building control is the
efficient use of the thermal mass or thermal storage of a building.
A study presented in [4] was among the first papers which formu-
lated the control of the thermal storage as an optimization problem.
The control of a simple solar domestic hot water system considering
the weather forecast and two energy rates are discussed there. Some
early papers [5,6] deal with a least-cost cooling strategy using the
building mass as a thermal storage. An overview of the active use
of thermal building mass is given in [7], where a variable energy
price and the cost of the peak power are considered in the formula-
tion of the optimization problem. The controller that minimizes
cooling costs with respect to the time-varying electrical energy price
is presented also in [8]. The aim is to take advantage of night-time
electricity rates and to lower the ambient temperature while preco-
oling the chilled water tank. Experimental results of precooling are
presented in [9] where a more detailed building load model was
used. Predictive control of heating using the thermal mass is dis-
cussed in, e.g. [10,11]. Energy savings making use of MPC in relation
to different thermal comfort criteria is discussed in [12].

0306-2619/$ - see front matter ! 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.apenergy.2011.03.009

⇑ Corresponding author. Address: Department of Cybernetics, Faculty of Applied
Sciences, University of West Bohemia in Pilsen, Univerzitní 8, 306 14 Pilsen, Czech
Republic. Tel.: +420 724 030 150.

E-mail addresses: jan.siroky@rcware.eu (J. Široký), oldewurtel@control.
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Besides the energy minimization, predictive control can also
contribute to energy peak reductions [13,14]. Energy peak reduc-
tion can significantly lower the costs of the building operation
and initial cost of mechanical parts if considered in the building de-
sign. Current grid load and energy peak reduction was considered
in [15]. Predictive control used for the sizing of heating systems for
discontinuously occupied buildings is discussed in [16], where the
model is decoupled into four simple RC models which enable mod-
eling of the contribution of outdoor air temperature, solar radia-
tion, and internal gains separately.

As mentioned, MPC is not the only technique that can be used
for optimal building control. There were numerous attempts to uti-
lize advanced control techniques that are well-known in industrial
process control also for building control [17]. We briefly mention
some of recently published alternative solutions to optimal build-
ing control. The general dynamic programming problem for the
control of a borehole thermal energy storage system is solved in
[18]. The aim was to guarantee the delivery of heat or cold all-
year-around while minimizing the operational costs. A reinforce-
ment learning technique used for a building thermal storage con-
trol is outlined in [19,20]. The real building experiment provided
only 8.3% cost savings because the thermal storage has been only
partially utilized by the learning control strategy. In [21], a set of
fuzzy rules was used to cut down the time needed for tuning the
supervisory controller. Genetic algorithms and simulated anneal-
ing were used for optimal control of cooling in [22]. The objective
was to design economically optimal the use of natural ventilation,
fan-driven ventilation, and mechanical air conditioning with re-
spect to indoor temperature requirements. The unmanageable
number of possible control sequences is reduced by consideration
of practical issues based on physical insight.

The increased popularity of MPC usage for building control in
recent years is indisputable, however, most of the results are based
on the simulations or short time experiments. In this paper, we
provide a detailed description of an MPC implementation on a real
building and we analyze results from two months of operation. The
paper is organized as follows. The predictive control strategy is
presented in Section 2. Section 3 is devoted to modeling with stress
on statistical modeling. A detailed case-study is discussed in Sec-
tion 4. The Section 5 concludes the paper.

2. Model predictive control

The Building Automation System (BAS) aims at controlling heat-
ing, cooling, ventilation, blind positioning, and electric lighting, of a
building such that the temperature, CO2 and luminance levels in
rooms or building zones stay within the desired comfort ranges.
One typically divides the control hierarchy into two levels: the
low-level controller which typically operates at the room-level
and is used to track a specified setpoint, and a high-level controller
which is done for the whole building and determines the setpoints
for the low-level controllers. The article focuses on the usage of
Model Predictive Control (MPC), which is used as high-level
controller.

2.1. MPC strategy

MPC is a method for constrained control which originated in the
late seventies and early eighties in the process industries (oil refin-
eries, chemical plants, etc.) (see, e.g. [23–26]). MPC is not a single
strategy, but a class of control methods with the model of the pro-
cess explicitly expressed in order to obtain a control signal by min-
imizing an objective function subject to some constraints. In
building control one would aim at optimizing the energy use or
cost subject to comfort constraints.

During each sampling interval, a finite-horizon optimal control
problem is formulated and solved over a finite future window. The
result is a trajectory of inputs and states into the future satisfying
the dynamics and constraints of the building while optimizing
some given criteria. In terms of building control, this means that
at the current point in time, a heating/cooling, etc. plan is formu-
lated for the next several hours to days, based on predictions of
the upcoming weather conditions. Predictions of any other distur-
bances (e.g., internal gains), time-dependencies of the control
costs (e.g., dynamic electricity prices), or of the constraints
(e.g., thermal comfort range) can be readily included in the
optimization.

The first step of the control plan is applied to the building, set-
ting all the heating, cooling and ventilation elements, then the pro-
cess moves one step forward and the procedure is repeated at the
next time instant. This receding horizon approach is what intro-
duces feedback into the system, since the new optimal control
problem solved at the beginning of the next time interval will be
a function of the new state at that point in time and hence of
any disturbances that have acted on the building.

Fig. 1 summarizes the basic MPC control scheme. As time-vary-
ing design parameters, the energy price, the comfort criteria, as
well as predictions of the weather and occupancy are input to
the MPC controller. One can see that the modeling and design ef-
fort consist of specifying a dynamic model of the building, as well
as constraints of the control problem and a cost function that
encapsulates the desired behavior. In each sampling interval, these
components are combined and converted into an optimization
problem depending on the MPC framework chosen. A generic
framework is given by the following finite-horizon optimization
problem:

Problem 1.

min
u0 ;...;uN!1

XN!1

k¼0

lkðxk;ukÞ Cost function ð1Þ

s:t:
x0 ¼ x Current state ð2Þ
xkþ1 ¼ f ðxk;ukÞ Dynamics ð3Þ
ðxk;ukÞ 2 Xk &Uk Constraints ð4Þ

where xk 2 Rn is the state, uk 2 Rm is the control input, k is the time
step, Xk and Uk denote the constraints sets of the state and inputs
respectively and are explained below. We now detail each of the
four components in the above MPC formulation and discuss how
they affect the system and the resulting optimization problem.
Please note that this is not a comprehensive overview of MPC for-
mulations, but rather a collection of formulations, which are fre-
quently used or reasonable in the field of building control. For a
more comprehensive overview on MPC formulations, the reader is
referred, e.g. to [27].

2.1.1. Cost function
The cost function generally serves two purposes:

' Stability. It is common to choose the structure of the cost func-
tion such that the optimal cost forms a Lyapunov function for
the closed loop system, and hence will guarantee stability. In
practice, this requirement is generally relaxed for stable sys-
tems with slow dynamics, such as buildings, which leaves the
designer free to select the cost strictly on a performance basis.
' Performance target. The cost is generally, but not always, used

to specify a preference for one behavior over another, e.g., min-
imum energy or maximum comfort.
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Generally, the main goal is to minimize energy cost while
respecting comfort constraints, which can be formalized by the fol-
lowing cost function:

lkðxk;ukÞ ¼ ðyk ! yr;kÞ
T Qkðyk ! yr;kÞ þ Rkuk; ð5Þ

where Qk and Rk are time-varying matrices of appropriate size and
yr,k the reference signal at time k. The trade-off between precision of
reference tracking and energy consumption is expressed by propor-
tion of the matrices Qk and Rk. The reference tracking is expressed as
a quadratic form because it significantly penalizes larger deviations
from the reference. The energy bill is usually an affine function of a
total amount of consumed energy. Therefore, the control cost is
weighted linearly. The function Eq. (5) is not the only cost function
applicable to building control. There could be, for example, peak en-
ergy demand penalization included in the energy bill that can be ex-
pressed by L1 norm of control inputs in the cost function. Detailed
description of the cost function used in the Prague building is given
in Section 4.3, for alternative formulations see [28].

2.1.2. Current state
The system model is initialized to the measured/estimated cur-

rent state of the building and all future (control) predictions begin
from this initial state x. Depending on what the state of the build-
ing is describing, it might not be possible to measure everything di-
rectly. In this case, a Kalman filter can be used to estimate the
current state of the building and the estimate is used as initial
state.

2.1.3. Dynamics
The controller model, i.e. the mathematical description of the

building dynamics is a critical piece of the MPC controller. For
the work presented in this paper we restrict ourselves to linear
dynamics

xkþ1 ¼ Axk þ Buk: ð6Þ

This is the most common model type and the only one that will re-
sult in a convex and easily solvable optimization problem.

2.1.4. Constraints
The ability to specify constraints in the MPC formulation and to

have the optimization routine handle them directly is the key
strength of the MPC approach. There can be constraints on the
states or the output, as well as on the input. When explaining dif-
ferent forms of constraints in the following we will do it for input
constraints only, but everything applies for state and output con-
straints alike. Linear constraints are the most common type of con-
straint, which are used to place upper/lower bounds on system
variables

umin;k 6 uk 6 umax;k; ð7Þ

or generally formulated as

Gkuk 6 gk: ð8Þ

The constraints can be constant, given by physical or logical limita-
tions. For instance, valve cannot be open more that 100% or temper-
ature of heating water cannot exceed some predefined level. The
constraints can be also time-varying, e.g. to account for different
comfort constraints during day-time and night-time. In general
case, the constraints can be a function of state variables or inputs
as discussed in Section 4.3. This class of constraints can also be used
to approximate any convex constraint to an arbitrary degree of
accuracy. Linear constraints also result in the simplest optimization
problems. Furthermore, one might want to constrain the rate of
change, which is done by imposing a constraint of the form

juk ! uk!1j 6 Dumax : ð9Þ

3. Modeling

Modeling of the building requires insight both into control engi-
neering as well as into HVAC engineering. Moreover, it is also the
most time demanding part of designing the MPC setup.

Two approaches to building modeling are outlined in this sec-
tion. Both of them come from so-called RC modeling. The aim is
to provide insight into these techniques with emphasis on their
applicability for MPC. Largely used computer aided modeling tools
(e.g. TRNSYS, EnergyPlus, ESP-r, etc.) are not considered here, as
they result in complex models which cannot be readily used for
control purposes.

When large measurement data sets are available, a purely sta-
tistical approach for creation of a building model is preferred. A
large number of System Identification methods exists (a survey is
listed in, e.g. [29]), however, only a few of them have the capability
of identification of multiple-input multiple-output (MIMO) sys-
tems, which are considered in case of building control. For identi-
fication of linear MIMO models, subspace identification methods
are often used [29–31] and have been suggested for identification
of building models as in [32].

Alternatively to the statistical approach, especially if there is a
lack of data or some knowledge of building physics is present,
the RC modeling can be used.

3.1. RC modeling

The principle of the thermal dynamics modeling can easily be
described by a small example as given in Fig. 2. The room can be
thought of as a network of first-order systems, where the nodes

MPC controller Weather Occupancy

Building

Current state

Time varying design parameters

Fig. 1. Basic principle of model predictive control for buildings.
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are the system states and these represent the room temperature or
the temperatures in the walls, floor or ceiling. Then the heat trans-
fer rate is given by

dQ
dt
¼ Kie ( ð#e ! #iÞ

) dQ
d#i|{z}

Ci

( d#i

dt
¼ Kie ( ð#e ! #iÞ; ð10Þ

where t denotes the time, #i and #e are the temperatures in nodes i
and e, respectively, Q is thermal energy, and Ci denotes the thermal
capacitance of node i. The total heat transmission coefficient Kie is
computed as

1
Kie
¼ 1

Ki
þ 1

Ke
; ð11Þ

where the heat transmission coefficients Ki and Ke depend on the
materials of i and e as well as on the cross sectional area of the heat
transmission. For each node, i.e. state, such a differential equation
as in Eq. (10) is formulated. The actuators are direct inputs to the
node, which means that their input is added. The modeling of illu-
mination and CO2 concentration is omitted here for brevity, for
more details on RC modeling see [28].

The model parameters (e.g. Kie or Ci in Eq. (10)) can be deter-
mined in two ways: by reading from construction plans or by sta-
tistical estimation, which is described in the next sections.

3.1.1. Construction plan
Thermal capacities, resistances and other unknown parameters

are determined from the construction plan according to the mate-
rials used and their tabular values. Simulations of the acquired
model are then required to validate the model accuracy. If the
model does not correspond to the measured data, parameter
adjustment is necessary.

3.1.2. Statistical estimation
In this approach it is assumed that measurements are corrupted

by noise, therefore, the model is extended by a stochastic compo-
nent. The resulting stochastic differential or difference equations
are used for estimation with Maximum Likelihood (ML) or Maxi-
mum a Posteriori (MAP) methods to get the desired parameters
from a measured data set. Also in this case tabular values of the
parameters can be used as initial guess, however, they do not need
to be specified as accurately as in the previous case, because they
will be updated. Software tools for dealing with statistical estima-
tion are described for example in [33–35], some of them provide

functionality to certify the resulting model validity using statistical
hypothesis tests.

Following the statistical based estimation procedure is a special
case of the ML method and can provide a fast way how to identify a
discrete-time model of the continuous-time system
_xðtÞ ¼ AxðtÞ þ BuðtÞ þwðtÞ from input/output data where the full
state is known (i.e. the state of the system corresponds to the sys-
tem outputs); A 2 Rn&n, B 2 Rn&m, u(t) 2 Rm is considered to be the
control input while wðtÞ 2 Rn )Nð0;RÞ is the process noise. The
system model can be identified using following statistical
procedure:

The first step is discretization of the continuous model as de-
scribed above with sampling period Ts. Discrete-time model will
be then the result from the identification procedure.

Ad ¼ eATs ¼ I þ ATs þ
A2T2

s

2
þ . . . * I þ ATs

Bd ¼
Z Ts

0
eAsdsB *

Z Ts

0
IdsB ¼ TsB:

The presented discretization (in this case the simplest one –
zero-order hold) preserves the structure of the system matrices A
and B, so that an element of the discrete-time matrices (say, adi;j

)
corresponds to the element of the continuous-time matrices at
the same position (ai,j). Therefore, we can then readily estimate
the unknown parameters of the discrete-time model, as will be de-
scribed below.

The data matrices for identification have the following
structure:

XkþN
k ¼ ðxk; xkþ1; . . . ; xkþNÞ

UkþN
k ¼ ðuk; ukþ1; . . . ;ukþNÞ

EkþN
k ¼ ðek; ekþ1; . . . ; ekþNÞ;

where ek is white zero mean Gaussian noise with an approximate
covariance T2

s R. The estimation of the parameters hi within the sys-
tem matrices (see Eq. (13)) then can be formulated into the least-
squares framework as follows:

XN
1 ¼ AdXN!1

0 þ BdUN!1
0 þ EN!1

0 ¼ ½Ad Bd,
XN!1

0

UN!1
0

" #
þ EN!1

0

vec XN
1 ¼

XN!1
0

UN!1
0

" #
- In&n

 !T

vec ½Ad Bd, þ vec EN!1
0 ;

where (vec ') is vectorization of a matrix and (' - ') is a Kronecker
product of two matrices. In this equation structure, we can add ex-
tra lines into the regressors matrix as well as the left-hand side vec-
tor for the structure of the matrices A and B to be preserved. Then,
the unknown parameters are estimated using weighted least-
squares with higher weights on the rows with constraints of the
matrices structure.

4. Case study

The presented MPC scheme of Problem 1 was applied to the
building heating system of the Czech Technical University (CTU)
in Prague, see Fig. 3. MPC was applied there from January 2010
and was operational until the end of heating season in mid-March
2010.

4.1. Description of the building

As can be seen from Fig. 3, the CTU building is composed of four
five-floor blocks, three eight-floors blocks and four-level interme-
diary parts among the respective blocks. All the blocks have the

Fig. 2. RC modeling is based on the description of heat transmission between nodes
that are representing temperatures. The figure captures example with two rooms
where, #R1 and #R2 are the temperatures in the room R1 and R2, respectively, #0 is
the outside temperature, #SW is the temperature of the supply water used for floor
heating, CR1 denotes the thermal capacity of the room R1. Resistances are
representing the thermal resistances between the nodes.
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same construction and way of use. This provides us with the
unique opportunity to compare different control techniques
under the same weather conditions, since we can use different con-
trollers in different blocks at the same time. The south part of the
building was insulated two years ago and therefore we can
evaluate effectiveness of MPC depending on the insulation level
as well.

The CTU building uses a Crittall [36] type ceiling radiant heating
and cooling system. In this system, the heating (or cooling) beams
are embedded into the concrete ceiling that enables the utilization
of the thermal capacity of the building. The heating system scheme
of one building block is depicted in Fig. 4. The required tempera-
ture of supply water is achieved by mixing hot water from a heat
exchanger with return water in a three point valve. The three point
valve is operated by a low-level controller that maintains the sup-
ply water temperature at the setpoint determined by the high-le-
vel controller. In case of the CTU building, a PID controller was
used as a low-level controller. For each heating circuit, there is
one reference room temperature measurement. A detailed descrip-
tion of the heating system is given in [37].

4.2. Modeling of the building block

We consider a building with two heating circuits and two refer-
ence rooms, each related to one circuit as depicted above. The dif-
ferential equations describing the system are as follows:

! _#n ¼
1

CrRw
ð#n ! #oÞ þ

1
CrRr

ð#n ! #sÞ þ
1

CrRrwr
ð#n ! #rwnÞ

! _#s ¼
1

CrRw
ð#s ! #oÞ þ

1
CrRr

ð#s ! #nÞ þ
1

CrRrwr
ð#s ! #rwsÞ

! _#rwn ¼
1

CrwRrwr
ð#rwn ! #nÞ þ

1
CrwRrw

ð#rwn ! #swnÞ

! _#rws ¼
1

CrwRrwr
ð#rws ! #sÞ þ

1
CrwRrw

ð#rws ! #swsÞ ð12Þ

The meaning of the variables and coefficients is explained in Table
1.

Considering the system state as xT = [#s#rws#n#rwn]T and the in-
put vector as uT = [#o#sws#swn]T, the state-space model can be for-
mulated in the following way:

_x¼

! 1
Cr Rw
! 1

Cr Rr
! 1

Cr Rrwr

1
Cr Rrwr

1
Cr Rr

0
1

CrwRrwr
! 1

CrwRrw
! 1

CrwRrwr
0 0

1
Cr Rr

0 ! 1
Cr Rw
! 1

Cr Rr
! 1

Cr Rrwr

1
Cr Rrwr

0 0 1
CrwRrwr

! 1
CrwRrwr

! 1
Cr Rrw

2

6664

3

7775x

þ

1
Cr Rw

0 0
0 1

CrwRz 0
1

Cr Rw
0 0

0 0 1
CrwRz

2

6664

3

7775u:

ð13Þ

Finally, the parameters of this predefined system structure are esti-
mated according to the procedure described in Section 3.1 whereas,
in this case, the discrete-time system matrices have the following
structure:

Fig. 3. The building of CTU in Prague.

Fig. 4. Simplified scheme of the ceiling radiant heating system.

Table 1
Notation of the variables and coefficients used in the equations describing a building
block.

Notation Description

Rw Outside wall heat resistance
Rrwr Return water-to-room transition resistance
Rr Room-to-room transition resistance
Rrw Return water resistance
Crw Thermal capacity of return water
Cr Thermal capacity of room
#o Outside temperature (from weather forecast)
#n Reference room temperature – north side
#s Reference room temperature – south side
#rwn Return water temperature – north side
#rws Return water temperature – south side
#swn Supply water temperature – north side
#sws Supply water temperature – south side
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Ad ¼

h1 h2 h3 0

h4 h5 0 0

h3 0 h1 h2

0 0 h4 h5

2

66664

3

77775
; Bd ¼

h6 0 0

0 h7 0

h6 0 0

0 0 h7

2

66664

3

77775

Validation of the identified model was carried out by compari-
son of open loop simulation with verification data set collected
during Christmas 2009 (see Fig. 5). The merit of the proposed iden-
tification method can be especially seen in well identified trends of
heating-up and cooling down.

4.3. Description of the controller

4.3.1. Control objectives
There are several requirements to be fulfilled:

4.3.1.1. Comfort requirements. The reference trajectory yr,k, room
temperature in our case, is known a priori, as a schedule. The major
advantage of MPC is the ability of computing the outputs and cor-
responding input signals in advance, that is, it is possible to avoid
sudden changes in the control signal and undesired effects of de-
lays in the system response.

The schedule defines two minimal levels of the room tempera-
ture – during the day, the desired temperature is 22 "C while at
night and during weekends there is a setback to 19 "C. One solution
how to deal with minimal temperature requirement is to use refer-
ence tracking with dynamic cost which is difficult to tune and does
not provide possibility for extension to more than two minimal
temperature levels [16]. Another solution is to use it as a con-
straint. This can lead to infeasible problem in some situations.
Moreover, there is a tolerance in proposed comfort criterion and
therefore it can be useful to slightly violate comfort requirements
if it results in considerable energy reduction. Thus, we proposed
an alternative MPC problem formulation – the displacement below
the reference trajectory is penalized in the criterion. Note, that the
2-norm was used for the weighting of the tracking error – for more
accurate performance.

4.3.1.2. Minimization of energy consumption. As the return
water circulates in the heating system (see Fig. 4), the energy
consumed by the heating-up of the building is linearly dependent
on the positive difference between heating #sw and return
water #rw temperatures entering/exiting the three port valve in
Fig. 4.

Thus, the 1-norm of weighted inputs is to be minimized.

4.3.2. MPC problem formulation
At first, the given system from Section 4.2 is partitioned as

follows:

xkþ1 ¼ Axk þ Buk

yk ¼ Cxk þ Duk

zk ¼ Vxk þWuk;

where yk stands for outputs with reference signal (e.g. #in,k), whilst
zk represents the input-output differences – in our case
zk = #sw,k ! #rw,k.

The requirements (see Section 4.3.1) for the weighting of the
particular variables can be carried out by adding the slack variables
ak and bk which are of same dimension as yk and zk, respectively.
The resulting optimization problem can be written as follows:

J ¼ min
ak ;bk ;uk

XN!1

k¼0

aT
k Qak þ Rbk

yr;k ! yk ! ak 6 0; ak P 0
zk ! bk 6 0; bk P 0

umin 6 uk 6 umax

juk ! uk!1j 6 Dumax

ð14Þ

yk ¼ CAkx0 þ
Pk!1

i¼0
CAk!i!1Bui þ Duk

zk ¼ VAkx0 þ
Pk!1

i¼0
VAk!i!1Bui þWuk:

Q and R stand for the weighting matrices of appropriate dimensions.
The weighting matrices are constant because there is a flat rate for
energy and the minimal room temperature defined by yr,k has to be
maintained over whole the day with the same importance. Each
building block requires different amount of energy for maintaining
the same comfort therefore the proportion of the weighting matri-
ces Q and R had to be tuned-up for each block separately. The phys-
ical limits of the heating system are expressed by constants umin,
umax and Dumax . The lower limit for heating water temperature umin

was set to 20 "C, the upper limit for heating water temperature umax

was set to 55 "C and the maximum rate of change of the input signal
Dumax that prevents the heating system from heat shocks was set to
20 "C/20 min. The temperature of supply water is controlled by the
three point valve. Therefore, the lower limit umin is not, in fact, a
constant value but it is given as minimum of return water temper-
ature and hot water from the heat exchanger. However, this can be
neglected because just lower comfort limit is maintained and deliv-
ery of warmer supply water than predicted do not result in comfort
criteria violation.

Eq. (14) can be readily rewritten into a quadratic programming
(QP) problem and solved using a standard QP solver.

The prediction horizon N was chosen to be two days (the system
was sampled with a sampling period of 20 min, i.e. N = 144) which
is a trade-off between accuracy of the weather prediction and a
sufficient length of the prediction horizon.
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Fig. 5. Validation of model response against verification data set.
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4.4. Technical setup description

The building was operated by RcWare2 BAS system. The RcWare
system provides data from several weather forecasting servers. In
case of the CTU building, weather forecast from National Oceanic
and Atmospheric Administration3 was used. The MPC was imple-
mented in Scilab4. The optimization problem was solved by means
of Scilab internal linear quadratic programming solver. The compu-
tation time was in average 21 s on a PC with Intel Core2 DUO CPU
2.5 GHz. Setpoints for supply water temperature were periodically
computed by the following sequence

1. Retrieve the current state #swn, #sws, #rwn, #rws, #n, #s from BAS
2. Generate reference room temperature yr,k, k 2 0, . . . ,N ! 1

according to BAS setting
3. Download weather forecast #o,k, k 2 0, . . . ,N ! 1
4. Execute MPC scripts in Scilab
5. Apply new setpoints for #swn, #sws into BAS

Because of network communication and interaction between
different environments, it was necessary to handle potential fail-
ures. In such cases, BAS switched to a backup strategy based on a
heating curve and sent a SMS to the operator.

4.5. Investigations setup

Evaluation of the energy savings achieved by different control
strategies is a complicated task. The weather conditions change
all the time, as well as the number and behavior of the building
occupants. Single comparisons of results are affected by these dis-
turbances, therefore two independent comparisons of the real
building experiment will be presented.

The first comparison denoted as cross comparison uses almost
similar building blocks B1 and B2

5. The cross comparison had two
phases, each lasted for a week. In the first week, block B1 was con-
trolled by the heating curve and block B2 by MPC. The other week,
the control strategies were switched. The advantage of the cross
comparison is compensation of the majority of disturbances because
both building blocks are exposed to the same weather conditions.

The second comparison is based on the utilization of so-called
heating degree days (HDD) for the normalization of the building
energy consumption. HDD is a quantitative index designed to re-
flect the demand for energy needed to heat a building. There are
several methods of HDD computation. In this paper, the outside

temperature is subtracted from the required room temperature
and this number is summed over the analyzed time period

HDD ¼
XTend

k¼Tbegin

yr;k ! #o;k; ð15Þ

where Tbegin, Tend denote the beginning and the end of the measured
period, respectively. The method is not precise, especially when
outside weather conditions differ a lot. In order to minimize the
negative effect of different weather conditions time periods with
similar average outside temperature were selected for the
comparison.

Because the heating water flow is constant, the sum of differ-
ence between the supply water temperature and the return water
temperature can be used as energy consumption measure (denoted
as ECM)

ECM ¼
XTend

k¼Tbegin

ð#sws;k ! #rws;kÞ þ ð#swn;k ! #rwn;kÞ: ð16Þ

4.6. Results from real implementation

The Crittall heating system utilizes the building mass as a ther-
mal storage. When the building was operated by a heating curve,
the concrete construction was preheated during the night and
the heating system was switched off in the morning. The strategy
realized by MPC was different; the MPC preheated the concrete
mainly at night but it did not switch off the heating during the
day. The beneficial side effect of MPC strategy was a significant en-
ergy peak reduction as can be seen at Fig. 6. The aim of the energy
peak reduction was not explicitly expressed in the problem formu-
lation, it was just a result of the optimization process.

The cross comparison results are summarized in Table 2.
According to this comparison, MPC saved approximately 16% of en-
ergy in both weeks.

The results from HDD based comparison are in Table 3. It can be
seen, that the non-insulated block B3 required nearly twice as
much energy as the insulated blocks B1 and B2. The relative savings
were more significant at insulated building blocks B1 (28.74%) and
B2 (26.83%). Nevertheless, at the block B3the relative savings were
more than 17% even if there was a significant increase of the room
temperature. The absolute MPC savings were larger at the non-
insulated block B3.

The average outside temperature during the cross comparison
was !2.3 "C, while during the comparison based on HDD was
3.4 "C. In case of lower outside temperatures, the energy has to
be continuously supplied to the building and the active usage of
building heat accumulation is limited. This could be the reason
why saving estimation based on the cross comparison is lower
than savings estimation based on HDD.
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Fig. 6. Heating curve and MPC energy requirements profile.

2 http://www.rcware.eu.
3 http://www.noaa.gov.
4 http://www.scilab.org.
5 Block B1 uses slightly more energy than block B2, it can be seen in Table 3. This

fact was considered in the cross comparison.
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5. Conclusion

It was shown that the energy savings potential for using MPC
with weather predictions for the investigated building heating sys-
tem were between 15% and 28% depending on various factors,
mainly insulation level and outside temperature. This is consistent
with results achieved in large scale simulations done in scope of
the Opticontrol project ([28] chapter 8). The real building applica-
tion results are very encouraging, nevertheless, two issues have to
be mentioned. First, each building is unique and the MPC saving
potential is dependent on many factors as HVAC system, building
construction or weather conditions to name a few. Second, the
complete cost benefit analysis should not include just energy sav-
ings but also the cost of the MPC implementation, i.e. foremost the
modeling effort, that presents the most time consuming part and
MPC integration into a BAS. In contrast to the current building con-
trol techniques, MPC is based on a non trivial mathematical back-
ground that complicates its usage in practice. But its contribution
to reduction of a building operation cost is so significant that it is
expected that it will become a common solution for so-called intel-
ligent buildings in a few years.
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a  b  s  t  r  a  c  t

Model  predictive  control  (MPC)  for buildings  has  undergone  an  intensive  research  in the  past  years.  The
key principle  of MPC is  a trade-off  between  energy  savings  and  user  welfare  making  use  of predictions
of  disturbances  acting  on the  system  (ambient  temperature,  solar  radiation,  occupancy,  etc.). Several
studies  and  experimental  setups  have  shown  the  energy  savings  potential  of MPC  up to  30  % compared
to  the  conventional  control  strategies.  Besides  modeling  of the  buildings,  the  bottleneck  of  MPC wide-
spreading  is  the  understanding  of  the  MPC  paradigm  from  the  HVAC  engineers  and  managers.  Therefore
the  objective  is  to develop  a tool  that  would  make  MPC  strategy  for  buildings  more  understandable  for
wide public.  The  application  enable  users  to  explore  the  controllers  behavior,  tune  controllers  with  aid
of displaying  and comparing  simulation  results,  validate  mathematical  models  of the  particular  building,
etc.

© 2012  Elsevier  B.V.  All  rights  reserved.

1. Introduction

1.1. Motivation for energy efficient building climate control

Recently, there has been a growing concern to achieve energy
savings. As the building sector accounts for about 40 % of total
final energy consumption [1] and more than half is consumed in
HVAC (heating, ventilation and air conditioning) systems, an energy
efficient building climate control can significantly contribute to
reduction of the power demands and lower thus the greenhouse
gas emissions.

It is well known that building energy demands can be reduced
significantly thanks to developments in the field of mechanical and
civil engineering. However, considerable investments are usually
required in order to achieve the energy cuts. In contrast, energy
savings with minimal additional cost can be achieved by improve-
ment of the algorithms of building automation system (BAS). The
effort to implement advanced control algorithms in buildings has
been shown by the activity of the leading academic and industrial
teams in the area of HVAC control [2–6].

∗ Corresponding author: Tel. +420 22435 7687.
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1.2. State-of-the-art in advanced control of HVAC systems

In recent years, there have arisen two  main research trends in
the field of advanced HVAC control

(i) learning based approaches coming from the area of artificial
intelligence (mainly fuzzy techniques [6,7], genetic and evolu-
tionary algorithms [8,9], etc.)

(ii) Model based predictive control (MPC) techniques that stand on
the principles of the classical control and optimization tech-
niques [10].

In this paper, we restrict ourselves only to MPC  techniques.
The aim of MPC  is to design control inputs that minimize the

energy consumption while guaranteeing comfort requirements.
From a wide variety of MPC  properties and results, a few instances
can be listed. The MPC  controller:

(i) takes disturbance predictions (occupancy, weather etc.) into
account, thus it adjusts control actions appropriately [11,12],

(ii) can utilize the thermal mass of a building in a better way  com-
pared to the conventional control strategies (e.g PID, weather
compensated or rule based control) [13,14],

(iii) can be formulated with aid of thermal comfort indices instead
of indoor operative temperature [15–17],

(iv) is able to deal with variable energy price that can be easily
included into the formulation of the optimization problem
[18,19],
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(v) can handle minimization of the energy peaks and thus shift
energy loads within certain time frame [3,20,21] (beneficial
because of both the possibility of tariff selection and lowering
operational costs),

(vi) can take into account stochastic properties of random dis-
turbance variables (e.g. weather forecast, occupancy profiles);
convex approximation of a stochastic model predictive control
problem for buildings is given in [12], etc.

(vii) can be formulated in a distributed manner and thus the com-
putational load can be split among several solvers [22,23].

The conclusions are usually drawn from numerical simulations
on detailed building models, e.g. EnergyPlus, Trnsys, etc. [24], how-
ever, there have also been reported some experimental setups of
MPC  which have shown the energy savings potential up to 30 %
compared to conventional control strategies [3,11,25].

1.3. Understanding of MPC  paradigm

Control engineering is quite an elusive discipline particularly
when explained to people who have another profession. It is often
difficult task to explain principles of feedback control, to create
an insight into controller actions and to define the whole field of
controller responsibilities.

The problem of understanding the feedback control starts to be
even bigger when advanced control strategies are applied. In order
to make not only the people working in HVAC branch but also man-
agers to understand the whole process of control, it is needed to
some way expound them the MPC  strategy. Unless they check the
idea themselves, they will not be willing to implement the strat-
egy in practice even though the advanced MPC  was  proven to be
capable of significant energy savings.

1.4. Goal of the work

Hence the ultimate goal of the work is to develop a tool
that would make MPC  strategy for buildings more understand-
able for wide public; the web application called BuildingLAB
(http://buildinglab.felk.cvut.cz/, potential users can use username
eab and password eab). Besides introduction to MPC framework,
this tool will enable users to explore the controller behavior,
tune controllers by means of displaying and comparing simulation
results, validate mathematical models of the particular building,
etc.

1.5. Related work

In literature, there have been reported several software tools
capable of running MPC  for buildings.

Development of a SCADA (supervisory control and data acqui-
sition) system allowing MPC  control for buildings is reported e.g.
in [26]. The optimal control law is computed in MATLAB and the
variables are transmitted into BAS via dynamic data exchange pro-
tocol. Moreover, the authors show the functionality on a real life
example.

An alternative way to communicate optimal control moves is
reported in [11]. Here, the optimization task is solved in Scilab
environment and transmitted to BAS via a proprietary protocol.

It is also important to mention the project GenOpt aiming at
employing a (predictive) control framework directly without the
need of a simple linear model, rather it uses a detailed models
developed in EnergyPlus or other building performance simulation
tools [27].

These tools are dedicated mainly to interconnection of BAS and
the computational core solving MPC  optimization problem. Hence,

the purpose of these tools is different from the purpose of Build-
ingLAB that is rather illustrative and educative.

Finally, there has recently appeared a tool called BACTool
(http://bactool.ethz.ch/), which evaluate a mean behavior of the
controlled system over a long time in order of months or a year and
indicates whether the particular building is suitable for predictive
control.

On the contrary to BACTool, the MPC  simulations run in Build-
ingLAB are short term, covering the length of the prediction
horizon. The short term predictions enable to analyze controller
behavior in a detail in different scenarios (heating up after a week-
end, day-night transition) with different weather data. Building
operators and managers can see if the strategy computed by the
predictive controller is reasonable and in accordance with their
experience and common sense.

1.6. Organization of the paper

This paper is further structured as follows. The following Section
2 introduces to the typical MPC  formulation for buildings. Section
3 deals with usage and design of BuildingLAB, which allows the
user to simulate the MPC  control strategy. Next in the Section 4,
mathematical models of the building of the Czech Techical Uni-
versity (CTU) in Prague will be used for the demonstration of the
application functionality. Section 5 concludes the paper.

2. Model predictive control for buildings

MPC  is a method of advanced control originated in late seventies
and early eighties in the process industries (oil refineries, chemi-
cal plants, etc.) [28]. MPC  is not a single strategy, but a vast class of
control methods with the model of the process explicitly expressed
trying to obtain control signal by minimizing objective function
subject to some constraints. The minimization is performed in an
iterative manner on some finite optimization horizon to acquire
N step ahead prediction of control signal that leads to minimum
criterion subject to all constraints. This, however, carries lots of
drawbacks such as no feedback, no robustness, no guarantee of sta-
bility, etc. Many of these drawbacks can be overcome by applying
so-called receding horizon, i.e. at each iteration only the first step
of the control strategy is implemented and the control signal is
calculated again, thus, in fact, the prediction horizon keeps being
shifted forward. Currently it is a well established control concept
with guaranteed stability and recursive feasibility [10].

The technique heavily relies on the availability of a simple
controlled plant model, which makes the process of plant model
identification of a great importance. Building modeling is a delicate
task as each building is unique and requires its own mathematical
description. Therefore the building modeling have received much
attention recently [29–32].

Mathematical formulation of the optimization problem of build-
ing HVAC MPC  control can be:

min
u

N−1∑

k=0

(∣∣Rkuk

∣∣
s
+ |Qk(yk − zk)|t

)

subjectto :
Fkxk + Gkuk ≤ hk

xk+1 = Axk + Buk + Vvk

yk = Cxk + Duk + Wvk

x0 = xinit

rk ≤ zk ≤ rk

4. Results
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where k is the discrete time, N is the prediction horizon length, x ∈
Rn, u ∈ Rm, v ∈ Rr and y ∈ Rp are vectors of the system states, inputs,
disturbance inputs and system outputs respectively. Then A, B, C,
D, V and W are system matrices of appropriate dimensions describ-
ing thermal dynamics of the controlled building. z ∈ Rp contains so
called slack variables1 on system outputs (usually zone tempera-
ture) meaning that the system output should be kept within the
comfort range defined by lower and upper bounds r and r respec-
tively (if the system output lies in the range interior then there is no
penalization, otherwise the violation is appropriately penalized).
Initial state x0 = xinit is a parameter of the optimization problem.
Normally, the state is obtained either by full state measurement or
by means of Kalman filtering.

F, G and h are the matrices and the vector defining a polytopic
constraint on the system states and inputs (e.g. minimum or max-
imum input energy, etc.)

Finally, s and t specify the norm of the particular part of the
cost function (it can be either one norm, two norm or infinity
norm) and Q ≥ 0, R ≥ 0 are positive semidefinite weighting matri-
ces of appropriate dimensions which express trade-off between
reference tracking and energy consumption.

The proposed optimization problem is solved every control
time-step in so called receding horizon fashion when the first
control move is applied to the system only. In this application,
open-loop optimal sequence will be presented to the user since
it captures main controller properties.

3. Technical details about BuildingLAB

The application basically allows users to work with some MPC
simulation – to set it up, launch it and explore its output. It can espe-
cially be used to iteratively run the same simulation, tune selected
parameters and track results evolution.

3.1. Overall architecture

The cornerstone of the system is a web interface written in
Django framework, expressing the simulation backend in a non-
expert accessible way. Next noticeable part of the system is the
task queue, making the application asynchronous. Task queue as
well as disturbance profiles are backed by PostgreSQL relational
database.

The optimal control problems solved by the system are typically
quite time consuming with a need of a special software for solving
optimization tasks (MATLAB environment with aid of YALMIP [33]
in our case). This led to an establishment of a mechanism which
in fact delivers the power of MATLAB to the user’s web  browser
and in addition allows the user to run more tasks simultaneously.
Tasks are temporarily stored in FIFO queue and are taken by one of
computation cores as the core is free. User can then immediately
continue by setting up the next task even though the first one has
not yet ended.

All participants of the system (workers, web browsers) com-
municate with the application through HTTP, using only one web
server (for the configuration, see Fig. 1). The web application
connects to the database running on the same machine via the pro-
prietary protocol of the database. Finally, software packages that
are used by the application are mentioned in Table 1.

1 The slack variable is artificially introduced variable, which serves for penalizing
given variable, which is attached to, only when it escapes given interval. In our case,
the  slack variables are attached to system outputs.

Fig. 1. Software architecture.

3.2. Templates and working copies

The system is built on the concept of templates and working
copies. An administrator creates a set of templates and associates
them to particular users who can then use them. The ordinary user
can then take a look at the templates which have been associ-
ated to him or her, choose one, set its parameters and launch it.
To use a template means that the user creates a working copy of
the template. This copy becomes his or her private working place,
where he or she can set various parameters, run the simulation
using these parameters and finally explore the results produced by
the simulation. The workflow is depicted in Fig. 2.

3.3. Simulation assignment presentations

The simulation assignment can be expressed to the user in sev-
eral ways. Currently there are two:

3.3.1. Manager view
This one shows only user description, initial conditions and

overall weights, see Fig. 3. It is meant for people without an expert
knowledge of the building, just to see how the trade-off between
comfort and cost influences system behavior. Overall weight from
the slider is inserted into a mapping in order to create cost function
weights – matrices Q and R. The mapping is automatically created
at the time the simulation is inserted into the application. Other

Table 1
Software packages used in the project.

Package name Version Note

Python 2.7.2 Main programming language of the
web-application

Django 1.3.1 High-level Python web framework
PostgreSQL 9.1.7 Database engine
Numpy 1.4.1 Python library; here used for data series

cut-out, resampling, etc.
Apache HTTP server 2.2 web server software
MATLAB 7.13 Numerical computing environment
YALMIP 1.28 MATLAB toolbox for rapid prototyping of

optimization problems
SnakeYAML 1.9 Java library for parsing YAML files
Java virtual machine 1.6.0-17 Virtual machine executing Java byte code;

part of MATLAB
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Fig. 2. Simplified application workflow.

settings, like reference trajectories, constraints, disturbance pro-
files, etc., are hidden, but are still present and serve as a predefined
simulation settings.

3.3.2. Engineer view
This interface is more complex and allows user to change

description, initial conditions, constraints, cost function items and
disturbance profiles. This is a place for sophisticated experiments
with the simulation. This view is depicted in Fig. 4.

3.4. Running the simulation

When all parameters are set to the desired values, the user can
launch the computation. This action does not directly call some
numerical routines. Instead, it enqueues the simulation into the
queue, common for all users, where it waits for some free-for-use
computation core. A log record is available for monitoring the sim-
ulation state. As long as the simulation is enqueued, the user can
start setting up another simulation.

3.5. Displaying results

When the simulation finishes, results can be viewed. Results are
presented in a form of charts, where related series are displayed
in the same figure. The user can view only particular data series,
and moreover, the user can compare two or more series, which

are not related. The result view can show results of more than one
simulation at the same time and allows to do these comparisons
over more simulations.

4. Case study

Application functionality is demonstrated on mathematical
models of the building of Czech Technical University (CTU) in
Prague (see Fig. 5(a)). This building is a pilot application for var-
ious MPC  experiments and MPC  controllers with various settings
(in terms of cost function forms, weights, constraints, etc.) have
been in operation since 2009. First experiments with the building
are reported in [25] and performance of the first MPC  controller was
evaluated in the following work [11]. A brief building description
follows.

4.1. Description of the building

The CTU building is composed of four five-floor blocks, three
eight-floors blocks and four-level intermediary parts among the
respective blocks. All the blocks have the same construction and
way of use. Each block can be divided into south and north part,
each having its own  heating circuit. The building uses Crittall [34]
type ceiling radiant heating and cooling system. In this system, the
heating (or cooling) beams are embedded into the concrete ceil-
ing. A simplified scheme of the ceiling radiant heating system is
illustrated in Fig. 5(b). The source of heat is a vapor-liquid heat
exchanger, which supplies the heating water to the water con-
tainer. A mixing occurs here, and the water is supplied to the
respective heating circuits. An accurate temperature control of the
heating water for respective circuits is achieved by a three-port
valve with a servo drive. The heating water is then supplied to the
respective ceiling beams. There is one measurement point in a ref-
erence room for every circuit. The set-point of the control valve is
therefore the control variable for the ceiling radiant heating system
in each circuit.

Mathematical models of each building block were obtained
using a gray-box technique from the on-site measurements. The
procedure is based on a reformulation of the estimation problem
to a least-squares problem and it is described in detail in [11].

4.2. Description of the experiment

As an example of the application abilities, a small example fol-
lows. The example is based on the simple manager view (see Fig. 3)

Fig. 3. The manager view.

4. Results
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Fig. 4. The engineer view.

for one building block where a user can specify preferences whether
the objective is:

(i) mainly to save energy and ignore the complains of the occu-
pants that they have to wear scarves, the ratio is 1:99;

(ii) both comfort and economy is an objective, the ratio is 50:50;

(iii) mainly to keep thermal comfort (represented by dollars on the
picture), the ratio between comfort and economy is 99:1

The ratio can be simply set using the slider in the manager view
(note that when moving the slider, the underneath pictures are
magnified accordingly to get better insight what is going on).

Fig. 5. Building of Czech Technical University in Prague, Dejvice (a) A photo from the central park in Prague, Dejvice (b) Simplified scheme of the ceiling radiant heating
system.
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Fig. 6. Comparison of simulation results, obtained using three different weight settings (a) Ambient temperature profile (b) South zone temperatures for all controller settings
(blue  99:1, red 50:50, green 1:99, staircase signals delimit comfort range) (c) South supply water temperatures for all controller settings (blue 99:1, red 50:50, green 1:99)
(d)  Heating and comfort costs: weighting ratio 1:99 (green – heating cost, red – comfort violation cost) (e) Heating and comfort costs: weighting ratio 50:50 (green – heating
cost,  red – comfort violation cost) (f) Heating and comfort costs: weighting ratio 99:1 (green – heating cost, red – comfort violation cost). (For interpretation of the references
to  colour in this figure legend, the reader is referred to the web version of this article.)

4. Results
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User can then select an initial state from the set of predefined
ones – in this example we consider a cooled down building (this
can happen for instance at the end of a weekend).

Having all simulations executed and computed, their solution
can be compared using series comparator. It allows users to compare
whatever signals from whatever simulations.

Weather profile that is used for all of the simulations is depicted
in Fig. 6(a) – winter conditions were considered.

The following Fig. 6(b) shows a comparison of zone tempera-
tures in the south part of the building block as well as the reference
trajectories. It can be clearly seen that the higher stress on the dol-
lars the better satisfaction of the thermal comfort. Especially in the
case 1:99, the satisfaction of the thermal comfort is insufficient and
such a setting could not be used in practice.

Similar trends can be observed also from Fig. 6 (c) where sup-
ply water temperature is depicted for all simulation settings. Note
especially, that the strategy 99:1 results in an input sequence that
heats up the building over the first 9 h (in order to rapidly increase
the zone temperature) but then a cooling peak takes place for
almost 2 h. This behavior is not economically beneficial – to deliver
heat and then again cool – but it results in a better satisfaction of
the upper thermal comfort limit. Last three Fig. 6(d–f) show heating
and comfort costs for the particular controller settings. The first pic-
ture is related to the 1:99 setting and the heating cost dominates.
The opposite situation happens for the setting 99:1.

This small example has shown a comparison of three settings
of the manager view that is predefined by the administrator and
results in a satisfactory performance at least for the setting 50:50.
More complex experiments with controller settings can be done in
the engineer view where the user can set more options and thus
shape the system response ad libitum.

5. Conclusions

BuildingLAB allows user to familiarize with the MPC  framework
applied on buildings. Two interfaces (easy-to-use manager view
and a more complicated engineering view) for defining a simulation
assignment help users to see background of MPC  for buildings.

Application functionality was demonstrated on a simple exam-
ple in the Section 4. Moreover, it allows practitioners with an
expert knowledge about building dynamics to assess a quality of
the underlying mathematical models of the building by looking at
the resulting system responses in some typical weather conditions.

The application is available at the web page of BuildingLAB i.e.
http://buildinglab.felk.cvut.cz/. Some features are available only
after logging into the application, therefore for the potential users
we have prepared username eab with password eab. The applica-
tion will be updated regularly when new features are added.

The application is maintained by CTU and licensed under the
terms of MIT  License. Full text of the license is included in the
program release that is located on the title page of the application.
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a  b  s  t  r  a  c  t

Recently,  there  has  been  an intensive  research  in  the  area  of  Model  Predictive  Control  (MPC)  for  buildings.
The  key  principle  of  MPC  is  a trade-off  between  energy  savings  and  user  welfare  making  use of  predictions
of disturbances  acting  on  the  system  (ambient  temperature,  solar  radiation,  occupancy,  etc.).  Usually,
according  to  international  standards,  the thermal  comfort  is represented  by  a static  range  for  the  operative
temperature.  By  contrast,  this paper  is  devoted  to  the  optimization  of  the  Predicted  Mean  Vote  (PMV)
index  which,  opposed  to  the static  temperature  range,  describes  user  comfort  directly.  PMV  index  is,
however,  a  nonlinear  function  of  various  quantities,  which  limits  the  applicability  and  scalability  of  the
control  problem  formulation.  At  first,  PMV-based  formulation  is  stated,  the  main  differences  between
typical  MPC  problem  formulation  and  PMV  based  formulation  are  outlined,  a  computationally  tractable
approximation  of  the  nonlinear  optimal  control  problem  is  presented  and  its accuracy  is  validated.  Finally,
control performance  is  compared  both  to a  conventional  and  predictive  control  strategies  and  it turns
out that  the  proposed  optimal  control  problem  formulation  shifts  the savings  potential  of  typical  MPC  by
additional  10–15%  while  keeping  the comfort  within  levels  defined  by  standards.

© 2012  Elsevier  B.V. All rights  reserved.

1. Introduction

1.1. Motivation

In recent years, there has been a growing concern to achieve
energy savings. This has been demonstrated by the governments
of many developed countries. For instance, the European Union
(EU) presented targets concerning energy cuts defining goals until
2020 [1]:  (i) Reduction in EU greenhouse gas emissions at least 20%
below the 1990 levels, (ii) 20% of EU energy consumption to come
from renewable resources, (iii) 20% reduction in primary energy use
compared to projected levels to be achieved by improving energy
efficiency. The similar goals, in some cases even more restrictive,
have been stated by the U.S. government with minor differences on
the level of each state [2].

As the buildings account for about 40% of total final energy con-
sumption [3] and more than half is consumed in HVAC (heating,
ventilation and air conditioning) systems, an efficient building cli-
mate control can significantly contribute to reduction of the power
demands and lower thus the greenhouse gas emissions.

In addition, for instance in the U.S., there are about one to two
million buildings being newly constructed every year. However,

∗ Corresponding author. Tel.: +420 22435 7687.
E-mail address: jiri.cigler@fel.cvut.cz (J. Cigler).

there are approximately 110 million existing buildings consuming
much more energy per se than new buildings constructed according
to current standards. Even when each of the new buildings would
use net-zero-energy technology, it will take a long time to achieve
significant difference on the overall energy bill [4].  Therefore, a
much more productive approach for achieving the strict energy
cuts would be to focus on the retrofitting of the existing build-
ings or by improvements of Building Automation Systems (BAS)
and their algorithms that can be achieved with minimal additional
cost. In this paper, we restrict ourselves only to improvements in
BAS algorithms. The effort to implement advanced control algo-
rithms in buildings has been shown by the activity of the leading
academic and industrial teams in the area of HVAC control [5–9].

1.2. State-of-the-art in advanced control of HVAC systems

Recently, there have emerged two main research trends in the
field of advanced HVAC control (i) learning based approaches like
artificial intelligence; neural networks; fuzzy and adaptive fuzzy
neural networks; etc. (ii) Model based Predictive Control (MPC)
techniques that stand on the principles of the classical control.

The approaches from the former group are used in HVAC sys-
tems for their capability in dealing with nonlinearities as well as
their capabilities to handle Multi-Input Multi-Output (MIMO) sys-
tems. These approaches can be for instance used to cut down the
time needed for tuning the supervisory controller [10], to control

0378-7788/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.enbuild.2012.05.022
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cooling system with several types of cooling strategies [11] or to
optimize occupants’ thermal comfort making use of ventilation
control [9].

The latter technique can handle MIMO  systems from its very
nature and usually relies on the physically based mathematical
model of the HVAC system and building dynamics. The aim of
MPC  is to design control inputs that minimize the energy con-
sumption while guaranteeing that comfort requirements are met.
A comprehensive and up-to-date overview of the literature related
to the predictive control of buildings can be found on the web-
site of the OptiControl project (www.opticontrol.ethz.ch). From the
wide variety of results, a few instances can be listed. The controller
(i) takes disturbance predictions (occupancy, weather, etc.) into
account, thus it adjusts control actions appropriately [12,13],  (ii)
can utilize the thermal mass of a building in a better way compared
to the conventional control strategies (e.g. PID, weather compen-
sated or rule based control) [14,15], (iii) is able to deal with variable
energy price that can be easily included into the formulation of
the optimization problem [16,17], (iv) can handle minimization of
the energy peaks and thus shift energy loads within certain time
frame [6,18–20] (beneficial because of both the possibility of tariff
selection and lowering operational costs), (v) can take into account
stochastic properties of random disturbance variables (e.g. weather
forecast, occupancy profiles); convex approximation of a stochastic
Model Predictive Control problem for buildings is given in [21], (vi)
can be realized using sampling algorithms [22] – typically for build-
ings, the shape of an input sequence does not differ a lot through
the year (repeating day–night cycle) therefore the optimization can
be carried out using appropriate signal selection from a bank of
predefined signals, (vii) can be formulated in a distributed manner
and thus the computational load can be split among several solvers
[23–25]. There have also been reported some experimental setups
of MPC  which have shown the energy savings potential [6,12,26,27]
(15–30% compared to conventional control strategies).

1.3. Representation of thermal comfort in MPC  formulation

As already stated, the focus of MPC  is not only on the minimiza-
tion of costs or consumed energy, but it also aims at the fulfillment
of comfort requirements, which have, so far, been defined by an
operative or air temperature band that is derived from more general
thermal comfort indices (according to the international standards
[28–30]). From the analysis of MPC  performance, it turns out that
the control strategy always tries to track the lower/upper boundary
of the reference trajectory, which may, however, deteriorate the
comfort quality from a longer perspective or, on the other hand,
keep a distance from the boundaries of the thermal comfort index.
The first aim posed in this study is to quantify the level of deteriora-
tion/reserves, in sense of the thermal comfort index, caused by the
tracking of the temperature band boundaries. To do so, the most
widely used thermal comfort index Predicted Mean Vote (PMV) is
selected [31].

PMV  was developed by Fanger in the early seventies and
includes parameters that influence thermal comfort. Among oth-
ers, these are air velocity, relative humidity, metabolic rate, etc.
Furthermore the Fanger’s model has been accepted as a general
standard since the eighties [29,30].

In addition, there has been developed direct relationship
between PMV  index and productivity rate of the occupants of the
office buildings. As the cost of office laborers in the developed coun-
tries is much higher than the operational costs of a building, the
fulfilment of thermal comfort can result in a substantial economic
benefit [32,33].

In this study, PMV  index will be explicitly implemented into
MPC  cost function which, however, results in a nonlinear optimiza-
tion problem. Thus, the second aim of this work is to develop a

sufficiently precise approximation strategy that solves the given
nonlinear problem effectively. Performance of the controllers will
be studied on a two  zone office building which is for this purpose
modeled using TRNSYS environment [34].

This work is inspired by two pioneering works in which the
authors explicitly included PMV  index into optimization problem
[35,36]. To the author’s best knowledge, there are no other works
dealing with PMV  optimization within MPC  framework. The results
of the authors are extended by:

• Development of an approximation strategy based on lin-
earization of nonlinear terms in PMV  formulation. Such an
approximation is very close to the general formulation, how-
ever, it makes the problem computationally tractable even for
long prediction horizons. Note that in the cited studies, predic-
tion horizon N = 10 used to be a computational burden which is
not sufficient for buildings as they have slow dynamics.

• The assessment of the comfort quality for various control strate-
gies as well as considering more decision variables in the
optimization problem (i.e. mean radiant temperature is taken
into account as it is one of the main factors affecting the thermal
comfort [37,38]).

Note also that PMV  index is intensively studied in the other areas
of the advanced building control. Takagi–Sugeno fuzzy forward
controller tracking PMV  set-point is presented in [9] to control air
handling unit of a building. Moreover, PID-fuzzy controller is pre-
sented and compared with a classic ON–OFF controller in [39]. Both
controllers have the objective to track the comfort range defined by
PMV  index and it is shown that the PID-fuzzy controller leads to the
lower energy costs while keeping the comfort within desired range.

1.4. Organization of the paper

The paper is further organized as follows. Section 2 introduces
the thermal comfort measures. Section 3 describes the setup that
was used for validation of the proposed algorithms. Section 4
presents the investigated control strategies while Section 5 pro-
poses approximations for handling nonlinearities in optimization
problem. Section 6 has two  objectives (i) to show that a short pre-
diction horizon is inapplicable for thermal comfort regulation –
thus the need for a computationally tractable solution will be val-
idated, (ii) to assess energy consumption and comfort quality for
various control setups. Finally, Section 7 draws conclusions and
states possibilities for future work.

2. Thermal comfort

Thermal comfort in buildings is usually evaluated using the
operative temperature [29], which is, in the simplest way, defined
as the average of the air temperature and the mean radiant temper-
ature (i.e. usually computed as area weighted mean temperature of
the surrounding surfaces [40]). However, the thermal comfort is a
more complicated quantity and, in accordance with ISO 7730 [29]
and ASHRAE 55 [30] international standards, it can be defined in a
more general way as “The condition of mind which expresses satisfac-
tion with the thermal environment”, pointing out that it is a cognitive
process influenced by various quantities, physical activity, physio-
logical and psychological factors.

There have been a lot of studies on the calculation of the ther-
mal  comfort conditions and the most widely used thermal comfort
index is PMV  that is described by a set of Eqs. (6)–(10) which
includes parameters that influence thermal comfort of a human
being. The PMV  index predicts the mean value of the votes of
a large group of people based on the heat balance of a human
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Table  1
Quantities defining the thermal comfort (notation adopted from [29]).

Symbol Quantity Typical values Units Values considered further in the study

M Metabolic rate 46–232 W/m2 70 W/m2 = 1.2 met, i.e sedentary activity (office, dwelling, etc.)
W Effective mechanical power ≥0 W/m2 0 W/m2

Icl Clothing insulation 0–0.31 m2 K/W 0.155 m2 K/W = 1 clo for heating season, otherwise 0.75 clo
fcl Clothing surface area factor 0–1 – Depends on Icl (see (10))
ta Air temperature 10–30 ◦C Decision variable
tr Mean radiant temperature 10–40 ◦C Decision variable
var Relative air velocity 0–1 m/s  0.1 m/s, i.e. typical for offices
pa Water vapor partial pressure 0–2700 Pa Relative humidity assumed to be fixed at  ̊ = 50%
hc Convective heat transfer coefficient 0–12.1 W/m2 K Depends on the air and cloth temperatures according to (9)
tcl Clothing surface temperature 10–30 ◦C Depends on multiple quantities, see (8)

Table 2
Design criteria for office spaces during heating and cooling seasons.

ISO 7730 Operative temperature range [◦C] PMV  range [–] PPD [%]

Cooling season Heating season

Class A 24.5 ± 1 22 ± 1 0 ± 0.2 <6
Class  B 24.5 ± 1.5 22 ± 1.5 0 ± 0.5 <10
Class  C 24.5 ± 2.5 22 ± 2.5 0 ± 0.7 <15

body. The quantities arising in the equations are listed in Table 1.
Note that most of the quantities/parameters can be obtained in a
rather straightforward way, e.g. air temperature, velocity as well
as humidity can be obtained by direct measurement, while cloth-
ing parameters and human activity can be estimated from the prior
knowledge about the workload of the occupants. Mean radiant tem-
perature is a more complicated quantity that depends not only on
temperature of surrounding surfaces but also on solar radiation
intensity [41,42]. In this paper, the motivation is to obtain a convex
optimal control problem therefore the mean radiant temperature
will assumed to be equal to area weighted average of the surfaces,
i.e. linear combination of system states.

Thermal balance is achieved when the heat losses to the envi-
ronment are equal to the heat produced by the human body. Hence,
PMV  consists of all heat transfers related to the human body. In Eq.
(6) for PMV  index, the symbol L stands for the thermal load of the
body (in W/m2) which can be further decomposed (according to the
rows in (7))  to (i) difference between internal and external work,
(ii) heat loss caused by the evaporation from the skin, (iii) respira-
tion heat losses, (iv) radiation and convection from the body to the
environment.

The PMV  index is defined on a 7-level thermal sensation scale:
0 neutral, ±1 slightly warm/cool, ±2 warm/cool, ±3 hot/cold. Then
the objective of indoor climate control in the office buildings is to
keep PMV  index or operative temperature within ranges defined in
Table 2 [29].

Then quantitative measure of the thermal comfort of a group of
people is defined by Predicted Percentage Dissatisfied (PPD) index

PPD = 100 − 95 exp(−0.034 · PMV4 − 0.22 · PMV2). (1)

Note that even if PMV  index is zero, there is 5% of dissatisfied occu-
pants.

3. Simulation setup

In this section, the simulation environment that is used for
validation of the studied algorithms is presented. The environ-
ment is schematically sketched in Fig. 1. In the core, there is a
detailed TRNSYS model sharing the same disturbance profiles
(occupancy and weather) as the MPC  part which is composed of an
optimization block that uses linear time-invariant (LTI) model for
performing the numerical optimization. Time varying parameters
(e.g. variable energy price or reference trajectories, etc.) are

Fig. 1. Simulation environment.

required by the MPC  block. Detailed description of the individual
blocks is given below.

3.1. Building simulator

The studied building, schematically outlined in Fig. 2, was con-
structed in TRNSYS environment using Type56 [34]. It is a medium
weight office building with two zones separated by a concrete wall.

Fig. 2. A scheme of the modeled building.
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Both zones have the same dimensions (5 m × 5 m × 3 m)  and the
south oriented walls of the zones include a window (3.75 m2). Such
a system structure was chosen because it also involves transitional
properties between zones.

The HVAC system used in the building is of a thermo-active
building system (TABS) type. Technically, it consists of a water-
carrying tube systems integrated into the ceiling distributing
supply water which then enables thermal exchange with the con-
crete core of the modeled building. Both zones are equipped with
a separate heating circuit where the mass flow rate of the supply
water is held constant and then, the supply water temperature is
the only manipulated variable in a particular heating circuit. Inter-
nal gains are considered to have a standard profile of working days
(typical for office buildings) while outside environmental condi-
tions (involving ambient temperature, outside air relative humidity
and solar characteristic) are simulated using TRNSYS Type15 with
the year weather profile corresponding to Prague, Czech Repub-
lic.

Given the fact that a medium-weight building is studied, the
timebase Tb = 1/4 h for Type56 was chosen. Note that the accuracy
of the simulation results strongly depends on the ratio between the
timebase and TRNSYS simulation time-step, which must be an inte-
ger multiple of the timebase. The objective is usually to have the
longest possible time-step (in order to decrease simulation time)
but it is important to keep in mind that a longer time-step may  dete-
riorate simulation accuracy. Therefore the time-step was  selected
equal to the timebase to guarantee proper convergence of TRNSYS
internal algorithms.

For the purposes of model identification and subsequent predic-
tive control, the link between TRNSYS and Matlab was established
based on TRNSYS Type155. All temperatures, solar radiation and
internal gains depicted in Fig. 2 are assumed to be perfectly mea-
sured as they are passed through the communication link or
precomputed in case of the disturbances. The meaning of the quan-
tities is explained in Table 3.

3.2. Model for control

A model in the TRNSYS environment captures internal workings
in a building very well, however, the model is in an implicit form
that is not suitable for numerical optimization within MPC  frame-
work. Therefore simpler LTI models are usually identified in order
to carry out MPC  routines.

Table 3
Notation of the quantities in the system.

Notation Description

To Ambient temperature
Tsw1 Supply water temperature, zone 1
Tsw2 Supply water temperature, zone 2
Q̇sol Total solar radiation
Q̇ig1 Internal gains, zone 1
Q̇ig2 Internal gains, zone 2

Tc1 Ceiling core temperature, zone 1
Ts1 Core temperature measured on south side, zone 1
Tw1 Core temperature measured on west side, zone 1
Tn1 Core temperature measured on north side, zone 1
Tz1 Zone temperature, zone 1
Tc2 Ceiling core temperature, zone 2
Ts2 Core temperature measured on south side, zone 2
Te2 Core temperature measured on east side, zone 2
Tn2 Core temperature measured on north side, zone 2
Tz2 Zone temperature, zone 2
Twall1 Core temperature measured on common wall, zone 1
Twall2 Core temperature measured on common wall, zone 2

The LTI model of the system was  identified using grey box
technique1 adopted from [12, Section 3.1.2]. Pseudorandom binary
sequence was used as the excitation input signal and the resulting
model has the structure

x(k + 1) = Ax(k) + Bu(k) + Ww(k), (2)

where k is the discrete time, x ∈ Rn, u ∈ Rm, w ∈ Rv

and A, B, W are the matrices of appropriate dimen-
sions. The vector of system states is composed as x =
[Tc1, Twall1, Ts1, Tw1, Tn1, Tz1, Tc2, Twall2, Ts2, Te2, Tn2, Tz2]T , inputs
u = [Tsw1, Tsw2]T and disturbances w = [To, Q̇sol, Q̇ig1, Q̇ig2]T . The
sampling period of the model is twice as long as the time-step
of TRNSYS simulation, i.e. Ts = 1/2 h. Note that ta is equivalent
to the zone temperature Tz while tr is the area weighted mean
temperature of the walls (the rest of system state).

4. Control strategies

Having a LTI model and a building simulator at hand, we can
(i) formulate a control strategy which directly optimizes thermal
comfort index violations, (ii) draw conclusions about the amount
of required energy and comfort violations (in terms of PMV  index)
of conventional, predictive and proposed control strategies. To do
so, controllers will be validated for three different office building
comfort requirements defined by ISO 7730, i.e. Classes A–C (see
Table 2). Some of the quantities influencing the thermal comfort
will be assumed to be constant, for values see Table 1.

4.1. Conventional control strategy

From conventional strategies, the weather compensated control
has been selected, because it is commonly used in the buildings of
our interest [7,12].  It is a feedforward control strategy where the
temperature of the supply water Tsw is set according to the ambient
temperature To and desired zone operative temperature Tz,desired by
means of predetermined heating/cooling curves fwc, that is

Tsw = fwc(To, Tz,desired). (3)

4.2. Typical MPC formulation for buildings

There exists a wide variety of MPC  problem formulations for
buildings (refer to the citations in Section 1). In this study, a typi-
cal formulation is used and the following optimization problem is
solved in a receding horizon fashion:

min
uN−1

0 ,zN−1
0

N−1∑

k=0

2∑

i=1

∣∣(Tsw,i(k) − Tc,i(k))R
∣∣2

2︸ ︷︷  ︸
Energy minimization

+
∣∣(Tz,i(k) − zi(k))Q

∣∣2

2︸  ︷︷  ︸
Reference tracking

subject to: linear dynamics (2),
x(0) = x0,

Tsw,min ≤ Tsw,i(k) ≤ Tsw,max,

Tz,min(k) ≤ zi(k) ≤ Tz,max(k).

(4)

Here N is prediction horizon, Q, R ≥ 0 are weighting matrices
of appropriate size for tuning the algorithm while Tz,min(k) and
Tz,max(k) are time varying limits defined by the particular class of
ISO 7730 standard when occupants are present, otherwise the night
setback is considered (lower limit at 18◦C). The term zi refers to the

1 The prior knowledge of the system structure can be included into identification
algorithm, which at the end results in a better model for control compared to pure
black box techniques [12].
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slack variable on the zone temperature and expresses that the cost
increases only if there is a violation of the reference band.

Decision variables are collectively denoted as uN−1
0 , zN−1

0 where
e.g. uN−1

0 = [u(0), u(1), . . . , u(N − 1)].
The energy minimization term is commensurate with the con-

sumed energy as the constant mass flow rate is considered. Despite
that fact, square of the energy term is minimized as the minimiza-
tion of one norm leads to oscillatory behavior and deteriorates the
overall closed loop behavior [43]. YALMIP optimization toolbox [44]
with quadprog routine from Optimization toolbox for Matlab were
used to define and solve the optimization problem.

Note that to isolate the impact of the particular control strategy,
perfect knowledge of the disturbances is assumed on the prediction
horizon as well as full system state measurement x0. Concerning the
accuracy of the disturbance predictions, our assumption is mean-
ingful at least for comparing two predictive control strategies. Then
in practice, the quantitative results of a predictive controller can-
not achieve the theoretical numbers (so called performance bound)
as the controller performance depends on the quality of the distur-
bance predictions. This issue was studied in [45] where the authors
studied impact of the imperfect predictions on the performance of
MPC  controller for various types of buildings.

4.3. PMV  index in MPC  cost function

The last approach is to include optimization of the thermal com-
fort index PMV  directly into the cost function, i.e. to minimize PMV
or to keep PMV  in a certain range and to penalize only violations,
which leads to the following formulation with the aid of slack vari-
ables pi:

min
uN−1

0 ,pN−1
0

N−1∑

k=0

2∑

i=1

∣∣(Tsw,i(k) − Tc,i(k))R
∣∣2

2︸  ︷︷  ︸
Energy minimization

+
∣∣(PMVi(k) − pi(k))Q

∣∣2

2︸  ︷︷  ︸
PMV minimization

,

subject to: linear dynamics (2),
x(0) = x0,

Tsw,min ≤ Tsw,i(k) ≤ Tsw,max,

PMVmin(k) ≤ pi(k) ≤ PMVmax(k),

PMV Eqs. (6)–(10).

(5)

PMVmin(k) and PMVmax(k) are time varying bounds defined by the
particular class of ISO 7730 norm when occupants are present, oth-
erwise the night setback is employed (lower limit of PMV  is set to
−1). The same assumptions as for the typical MPC  formulation hold
here.

5. Approximation of PMV  computation

The optimization problem (5) is non-convex in the cost function
as well as nonlinear in the constraints. It is caused mainly by: (i) the
term representing water vapour partial pressure which depends on
the air temperature according to Clausius–Clapeyron equation as

pa =  ̊ · 6.1094 exp
( 17.625ta

ta + 243.04

)
,

where  ̊ is the relative humidity, (ii) occurrence of the if–else con-
ditions in the computation of convective heat transfer coefficient
(9), (iii) radiant heat transfer between zone surfaces and human
body. In the following, all the aforementioned terms will be treated
such that the approximated optimization problem will be compu-
tationally tractable and, at the same time, the approximation will
be sufficiently accurate.

PMV  = (0.303 · exp(−0.036 · M)  + 0.028) · L, (6)

Fig. 3. Affine approximation of the nonlinear term for the computation of water
vapor partial pressure.

L = (M − W)  − 3.05 · 10−3 · (5733 − 6.99 · (M − W)  − pa)

− 0.42 · ((M − W)  − 58.15) − 1.7 · 10−5 · M · (5867 − pa)

− 0.0014 · M · (34 − ta) − 3.96 · 10−8 · fcl · ((tcl + 273.16)4

− (tr + 273.16)4) − fcl · hc · (tcl − ta), (7)

tcl = 35.7 − 0.028 · (M − W)  − Icl · (3.96 · 10−8 · fcl · ((tcl + 273.16)4

− (tr + 273.16)4) + fcl · hc · (tcl − ta)), (8)

hc =

{
2.38 · |tcl − ta|0.25 if 2.38 · |tcl − ta|0.25 ≥ 12.1 · √var

12.1 · √var if 2.38 · |tcl − ta|0.25 < 12.1 · √var

, (9)

fcl =

{
1.00 + 1.290 · Icl if Icl ≤ 0.078

1.05 + 0.645 · Icl if Icl > 0.078
. (10)

5.1. PMV convexification

5.1.1. Water vapor partial pressure
Analyzing the function dependence between zone air temper-

ature ta and water vapor partial pressure pa for given relative
humidity, almost affine dependence can be seen even though the
phenomena is described by a complicated exponential function.
The dependence is depicted in Fig. 3 and for particular value of
relative humidity  ̊ can be read as

pa = kpa · ta + qpa,

where kpa and qpa are appropriate constants.

5.1.2. Convective heat transfer coefficient
Computation of convective heat transfer coefficient is driven by

formula (9).  For small difference between cloth and zone tempera-
tures, the constant value can be considered (in our case |tcl − ta| ≤ 6),
but if the difference is higher, the nonlinear term should be used.
The dependence on |tcl − ta|0.25 will be however neglected and the
consequences will be discussed later on.

5.1.3. Radiation between surfaces
Radiation between surfaces is the last factor causing a non-

convexity of the original problem. If the two above mentioned
approximations are implemented, the optimization problem
becomes polynomial in decision variables. Such type of a problem
can be solved globally by recently developed moment method [46].

4. Results
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Fig. 4. Approximation error caused by the linearization of the formula for computation of PMV  index. PMV is a value computed according to (6) while PMVapp using the
approximations described in Section 5. Cloth temperature tcl is a side product of these computations. Typical values for mean radiant temperature and zone air temperature
are  considered.

The original problem can be then restated into a form of semidefi-
nite programming. This method is however suitable only for small
classes of polynomial optimization problems and thus cannot be
used for MPC-like problems, where the complexity quickly grows
with the prediction horizon (in our case, the problem became
intractable even for prediction horizon N = 2). From that reason,
the radiant part was linearized around operating point at each MPC
time-step which resulted in a Quadratic Programming problem at
the end.

5.2. Convex approximation of PMV-based MPC  problem

Putting all the aforementioned approximations together, the
optimization problem (11) is yielded. The optimization problem
becomes convex and a general nonlinear solver is not required
anymore.

min
uN−1

0 ,pN−1
0

N−1∑

k=0

2∑

i=1

∣∣(Tsw,i(k) − Tc,i(k))R
∣∣2

2︸  ︷︷  ︸
Energy minimization

+
∣∣(PMVi(k) − pi(k))Q

∣∣2

2︸  ︷︷  ︸
PMV minimization

,

(11)

subject to:linear  dynamics (2),
x(0) = x0, Current state
Tsw,min ≤ Tsw,i(k) ≤ Tsw,max, Min–Max constraints
PMVmin(k) ≤ pi(k) ≤ PMVmax(k),
pa,i(k) = kpa · ta,i(k) + qpa Approximation of pa

PMVi(k) = (0.303 · exp(−0.036 · M)  + 0.028) · Li(k),
Li(k) = (M − W)  − 3.05 · 10−3 · (5733 − 6.99 · (M − W)  − pa,i(k))

−0.42 · ((M − W)  − 58.15) − 1.7 · 10−5 · M · (5867 − pa,i(k))
−0.0014 · M · (34 − ta,i(k)) − tx,i(k),

tx,i(k) = 3.96 · 10−8 · fcl · (t′
cl,i(k) − t

′
r,i(k)) + fcl · hc · (tcl,i(k) − ta,i(k)),

t′
cl,i(k) = tcl,i,0 + 273.16 + 4 · (tcl,i,0 + 273.16)3 · (tcl,i(k) − tcl,i,0)

Linearization of t4
cl

t
′
r,i(k) = tr,i,0 + 273.16 + 4 · (tr,i,0 + 273.16)3 · (tr,i(k) − tr,i,0)

Linearization of t
4
r

tcl,i(k) = 35.7 − 0.028 · (M − W)  − Icltx,i(k),
hc = 12.1 · √var Approximation of hc

fcl =
{

1.00 + 1.290 · Icl if Icl ≤ 0.078
1.05 + 0.645 · Icl if Icl > 0.078

.

Note that the terms with explicit specification of discrete time
dependence are decision variables or variables that depends on

uN−1
0 or pN−1

0 affinely (except of PMVmin and PMVmax that are time
varying constraints). Furthermore, the terms with subscript •0
denote current value of the particular quantity (i.e. define the oper-
ation point in which the functions are linearized) while the terms
with superscript •′ stand for the linearized quantity derived from a
more complicated quantity.

5.3. Evaluation of the approximation accuracy

Approximation errors in PMV  and tcl calculations caused by
all simplifications are depicted in Fig. 4. The picture shows the
dependence of the error on two decision variables that directly
influence PMV  and tcl (the rest of variables have indirect impact)
and it can be seen that the quality of approximation is sufficient.
The bigger approximation error happens only in situations when
there is a big difference between mean radiant temperature and
zone air temperature because in such a case, the more compli-
cated term for convective heat transfer coefficient comes to play
(i.e. hc = 2.38 · |tcl − ta|0.25). This is, however, not very usual thermal
condition.

6. Analysis of control performance

This section has two  main objectives. Firstly, it shows that a
short prediction horizon is inapplicable for a thermal comfort regu-
lation. This is done using a simple comparison of two  MPC  runs with
different prediction horizons. Secondly, the assessment of energy
consumption and comfort quality is addressed for various control
setups.

6.1. Importance of prediction horizon length

So far, PMV-based MPC  formulations have used very short pre-
diction horizon [35,36] and general nonlinear solvers had to be
employed in order to obtain optimal control moves. To show the
importance of the proposed approximation technique, a small
experiment devoted to a comparison of the computational time
needed to solve the respective optimization problem has been
performed and the results for different prediction horizons are
summarized in Table 4. The computational time needed to solve
the general nonlinear problem (5) – in our case solved using
fmincon function from the Optimization toolbox for Matlab –
quickly grows with the prediction horizon and would grow with the
problem dimension, hence the scalability of the nonlinear problem
is not guaranteed at all.

4.3. Optimization of Predicted Mean Vote Index Within Model Predictive Control Framework:
Computationally Tractable Solution
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Fig. 5. Time-series for PMV-based MPC  formulations for different setting of prediction horizon length.

In addition, the sufficiently long prediction horizon is unavoid-
able as the buildings possess slow dynamics and for some control
actions it takes long time until they become evident on the system
response (in terms of both response of the building envelope and
adaptation of people).

A comparison of time-series is presented in Fig. 5 where two
prediction horizons are considered for formulation (5). It is evident
that the formulation with the shorter horizon (N = 2/Ts = 4) starts
heating-up the zone too late and two  hours are not sufficient for
the controller to satisfy thermal comfort at the beginning of the

Fig. 6. Time-series for all control strategies, thermal comfort class B, signals for the first zone only.

Table  4
Computational times needed to solve the optimization problems.a

Prediction horizon Typical MPC
formulation (4)

PMV formulation
(5)

PMV formulation
(11)

N = 8 0.38 s 3.07 s 1.24 s
N  = 16 1.07 s 61.06 s 3.22 s
N  = 24 1.18 s 324.72 s 8.08 s
N  = 32 2.05 s 969.63 s 15.26 s

a Recorded on Debian Linux 6.0.3 machine with two  processor cores, @2.60 GHz.
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Fig. 7. Consumed energy and comfort violations in terms of the average of PMV  range violation.

working hours. With the longer prediction horizon (N = 12/Ts = 24)
the controller can react sufficiently in advance and thus satisfy
thermal comfort in almost all time instants.

6.2. Control performance

Yearly simulations for all thermal comfort classes and con-
trollers were compared and the summary is shown in Figs. 6–8.
In the following discussion, the control strategies will be referred
to as

• P1: weather compensated control according to (3)
• P2: typical MPC  formulation, i.e. problem (4)

• P3: MPC  formulation with PMV  index approximation explicitly
specified in the cost function, i.e. Eq. (11).

For both of the predictive control strategies, the prediction hori-
zon set N = 12/Ts = 24. In addition, the predictive strategies were
tuned such that there was  high stress on the comfort satisfaction,
i.e. Q was  selected much higher than R.

Time-series for the particular control strategies and ISO 7730
Class B are depicted in Fig. 6. Because of the similarity of the signals
for the first and the second zone, only the signals for the first zone
are depicted. Data for one week are shown only.

Supply water temperatures are shown in the upper part of the
figure and one can see that P1 and P2 are characterized by a similar

4.3. Optimization of Predicted Mean Vote Index Within Model Predictive Control Framework:
Computationally Tractable Solution
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Fig. 8. Energy consumption comparison.

behavior while P3 results in lower values. Similarity between P1
and P2 is caused by the fact that weather compensated controller
was tuned based on the prior knowledge about typical MPC  control
actions. In all cases the controllers preheat the building in advance
in order to satisfy the thermal comfort during the daytime, and
moreover, P2 and P3 are capable to compensate to abrupt changes
in solar radiation (the second part of the figure). Note that PMV  in
the lower part of the figure is computed using (6)–(10).

In case P3, even the temperatures of walls and air are lower,
which can be seen in the third part of the figure. Although the tem-
peratures in case P3 are lower than in P2, the thermal conditions
fulfill the thermal comfort requirements defined by the standard.
This is the place where the formulation of P3 can bring further
energy savings as the solution to problem P2 keeps a distance from
the PMV boundaries.

Further conclusions can be observed from Fig. 7 (consumed
energy vs. cumulative PMV  comfort range violations). We  can see
that there are no thermal comfort violations in case P2, whilst in
cases P1 and P3 certain violations occur which are in case P3 in the
5% tolerance range defined by the norm [29].

As far as energy consumption is concerned, the control strategy
P3 performs by 10–15% better than the rest of control strategies
(see Fig. 8 where cumulative as well as month-by-month energy
consumption for particular comfort class are presented). P1 and P2
recorded comparable results in terms of energy consumption but
small amount of comfort violations in case of P1 have to be taken

into account. Comparable results should not be surprising although
lot of authors claims that MPC  strategies have a huge saving poten-
tial compared to conventional control strategy (see discussion in
Section 1 and citations therein). This phenomenon has been ini-
tially observed by [47] where the authors compare three control
strategies (manual, MPC, manual operation with knowledge how
MPC operates building) and draw conclusions that knowledge of
MPC  control actions can contribute to energy savings, thus the
total energy consumption of manual operation approaches the MPC
results. In [48], the idea was extended by introducing a comple-
mentary statistical technique that allows for the extraction of the
of logistic decision models from the optimal control results. In addi-
tion, it has been shown that MPC  strategy can be sufficiently precise
approximated by a set of rules guaranteeing control performance
comparable to MPC  as well as a closed loop stability [49]. In addi-
tion, the set of rules is more comprehensible for the operators of
the building compared to the complicated optimization problem
setup.

7. Conclusions and future works

7.1. Conclusions

In this paper, a computationally tractable approach for solv-
ing PMV-based predictive control optimization problem was
proposed. In order to prove the applicability and scalability to

4. Results
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bigger problems, accuracy and significant speed-up compared to
the general nonlinear solution were shown. Moreover, further
possibilities for energy cuts were outline. As PMV  index directly
describes user thermal comfort, the “allowed” temperatures are
not so conservative as in common MPC  formulation for buildings.
By optimizing the thermal comfort index PMV  directly, predictive
control approach can save further 10–15% energy compared to
the typical MPC  formulation while keeping the comfort within the
range defined by standards. We  also showed that the conventional
control strategy can perform in a very similar way as typical MPC.

Inclusion of PMV  into the cost function and constraints, how-
ever, brings about some issues:

• The prior knowledge of the activity of the occupants, clothing, etc.
is assumed. That is one of the reasons why the temperature range
in the standards is more conservative than PMV  range. However,
air and mean radiant temperature belong among the dominant
factors influencing the comfort index. The rest of the quantities
in the PMV  formula does not have such a huge impact and thus
an expert estimate is sufficient.

• The resulting optimization problem is nonlinear and therefore,
for large setups, difficult to solve (see Table 4). It was demon-
strated on the office building example that sufficiently long
prediction horizon is crucial in order to satisfy thermal com-
fort requirements and thus an approximative solution for the
general nonlinear optimization problem was proposed. Accuracy
and computational efficiency has been studied and successfully
validated.

7.2. Future works

Next research will focus on application of the proposed tech-
nique on a real building and evaluation of energy saving potential
based on a long time operation.

Moreover, assumptions about the constant value of relative
humidity do not hold generally and the PMV  based MPC  formu-
lation needs to be extended by another optimization variable.
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Abstract
Model Predictive Control (MPC) for buildings has gained a lot of attention recently. It
has been shown that MPC can achieve significant energy savings in the range between
15-30% compared to a conventional control strategy, e.g., to a rule-based controller.
However, there exist several reports showing that the performance of MPC can be
inferior to that of a well-tuned conventional controller. Possible reasons are at hand: i)
minimization is typically not performed over energy but instead over some input quantity
that has a different meaning ii) a model mismatch and inaccuracies in weather predictions
can cause wrong predictions of future behavior which can result in undesirable behavior
of the control signal (e.g. oscillations) and, as a consequence, in increase in energy
consumption. This behavior has been observed when applying one of the widely used
economic MPC formulation to the building of Czech Technical University in Prague.
These oscillations are not an issue for buildings only, but also for every economic MPC
that minimizes the absolute value of the control action. In this paper, we discuss all the
these aspects of the implementation of MPC on a real building, show and analyze data
from MPC operation on the university building and finally propose and validate an MPC
formulation that alleviates the sensitivity to model mismatch and inaccuracies in weather
predictions.
Keywords – Energy Savings; Model Predictive Control; Optimization

1. Motivation
It is a well known fact that in developed countries the energy consumption in
buildings accounts for around 40 % of the total final energy and more than half of
this amount is consumed in HVAC (Heating, Ventilation and Air Conditioning)
systems [1]. Therefore, improvements in algorithms for Building Automation
Systems (BAS) can significantly contribute to desired energy savings.

In recent years, there have appeared a lot of simulation or real case studies
evaluating advanced control algorithms applied to BAS showing savings po-
tential of these strategies ranging up to 40 %. One of the intensively studied
control techniques for BAS is the Model Predictive Control (MPC) [2, 3, 4, 5].
The objective of the MPC algorithm is to optimally select control inputs in such
a way that the energy consumption is minimized and, at the same time, com-
fort requirements are met. In the following, we assume basic familiarity with
the MPC control technique (i.e., the notions of objective function, constraints,
decision and slack variables, etc.; for details please refers to, e.g., [6]).

4. Results

44



Recently, there has been presented a wide variety of papers dealing with
MPC applied to control of BAS with the following properties: i) The MPC
controller takes disturbance predictions (occupancy, weather etc.) into account,
adjusting control actions appropriately [2, 3]. ii) The thermal mass of the build-
ing can be utilized in a better way compared to conventional control strategies [7].
iii) Thermal comfort indices can be easily included into the formulation of MPC
problem and therefore the performance of MPC can result in a better subjective
thermal comfort [8, 9, 10]. iv) Variable energy prices can easily be included
into the formulation of the optimization problem [11, 12]. v) Minimization of
the energy peaks can be handled by MPC and thus energy loads can be shifted
within certain time frame [3, 13, 14] (beneficial because of both the possibility
of tariff selection and lowering operational costs). In the above-mentioned pa-
pers, the conclusions are usually drawn from numerical simulations on detailed
building models, e.g., EnergyPlus, Trnsys, etc.; however, experimental setups of
MPC have also been reported, showing energy savings potential of up to 30 %
compared to conventional control strategies [3, 15, 16].

The objective of this paper is, however, slightly different from the objective
of the aforementioned ones. Based on the experience from four heating-seasons
of MPC deployment on a real pilot building [15], we point out main challenges
that mar the idealistic world of MPC encountered in most academic studies.
In addition, we propose a new MPC formulation that tries to circumvent these
problems.

2. Problem Description
From the analysis of a long-term behavior, we can point out the following three
main issues that need to be tackled in order to obtain a robust and reliable control
strategy:

Oscillatory behavior: The objective of MPC for buildings is to minimize
energy consumption and thus reduce the energy bill. As the energy cost is
an affine function of energy consumption1, the MPC problem cost function is
typically of the form

J =
Nu�1

Â
k=0

|Rkuk|1 +
Ny�1

Â
k=0

|Qk(yk � yr
k)|22, (1)

where k is the discrete time, Nu and Ny are the control and prediction horizon
respectively, u 2 Rm and y 2 Rp are the vectors of system inputs and outputs
respectively, yr is the vector of the reference trajectories for the output signals
and finally, Rk and Qk are (possibly time-varying) weighting matrices. In this
cost function, 1-norm (i.e., the sum of absolute values) of the input energy
is to be minimized. However, 1-norm MPC, which can be cast as a Linear
Program (LP), always activates some of the constraints as the solution lies on
one of the vertices of the constraint polytope and hence such an optimization
problem results in a bang-bang-type deadbeat or idle control that is undesirable

1The constant term in the affine function represents especially maintenance costs
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for buildings [17, 18]. In addition, MPC works in a receding horizon fashion
when at every time-step, a finite-horizon optimal control problem (FHOCP) is
solved and only the first control move is applied to the system. In the following
time step, the next FHOCP is solved with updated measurements, disturbance
predictions and comfort requirements. A small change in these parameters
may cause an abrupt change in the optimal solution. Sensitivity of the optimal
solution to the LP to a parameter change is case-dependent and difficult to
assess a priory. Although in general, this sensitivity is higher for 1-norm control
problems (leading to LPs) than for problems with a quadratic cost function
leading to quadratic programs (QPs). Note that the quadratic norm for the
comfort only does not significantly change the 1-norm-like behavior especially
when there are few comfort violations (the slack variables are not active and the
1-norm-like behavior dominates). On the contrary, weighting of energy using a
quadratic norm leads to a smooth input profile; the problem, of course, is that
the energy bill is not proportional to the square of energy.

Robustness to model inaccuracy and disturbance prediction errors: Build-
ings are complex systems, each is unique and therefore a detailed modeling of
every building where MPC shall be applied is economically unjustifiable. Hence
one has to expect that the model will always be inaccurate. Disturbance predic-
tions are also subject to (sometimes significant) errors. These facts increase the
importance of the two aforementioned issues.

Fig. 1 shows an example of the undesirable behavior recorded during ten
days of a normal operation of MPC on our pilot building. Besides disturbances
and room temperature that is to be kept at a certain comfort level, we can observe
progress of supply water temperature, which is the only manipulated variable
that is being computed by MPC. We can observe undesirable oscillatory behavior
causing higher energy consumption towards the end of the data series. This
behavior happens when a standard 1-norm-like MPC formulation considered in
the majority of academic papers is used.

Recursive feasibility: In the literature, various MPC problem formulations for
buildings have been proposed (a review will be given in Section 3.). Some of
the problem formulations, however, do not guarantee recursive feasibility and
therefore cannot be used as a long-term, reliable control strategy.

Small and high comfort violation: In practice, it is acceptable that BAS
can cause small violation of comfort but major and/or persistent violations
are unacceptable. Freezing occupants are not willing to hear anything about
“inaccurate model” or “infeasible optimization problem”.

During normal building operation, a reasonable tradeoff between energy
consumption and comfort can be found using cost function weighting factors.
However, during some special events, these settings can be inappropriate. An
example of such event is the Christmas holiday that allows for a long-term
setback in the case of university building. At the end of the setback there is a
need for enormous amount of energy that has to be delivered into the building
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Fig. 1: Oscillations of supply water temperature recorded during MPC operation

in order to return to a “normal operation” of the building. Unfortunately, in the
case of our pilot building, the optimal solution that was exercised caused major
comfort violations during the first day after the Christmas holiday. Hence, there
is a need for definition of comfort requirements that have to fulfilled at any cost.

The paper is further structured as follows: i) Section 3. analyzes state-of-the
art, what FHOCP formulations are typically used for buildings. These formu-
lations are assessed from the point of view of recursive feasibility, sensitivity
to oscillations, etc. ii) Section 4. proposes a new FHOCP formulation that ad-
dresses the aforementioned issues. iii) Section 5. presents a case study where the
proposed FHOCP is validated. iv) Finally, Section 6. outlines other directions
for designing practically robust FHOCP.

3. Existing Model Predictive Control Formulations for Buildings
In this section, we present some of the typical optimal control problem formu-
lations for buildings. We restrict ourselves to deterministic, non-hybrid and
centralized MPC formulations because such formulations are the most widely
used ones in practice. More advanced variants of MPC (e.g. stochastic or dis-
tributed) are far more complex to analyze and are left for future investigations.

We assume that the models of the buildings are linear time invariant (LTI)
with heat fluxes as inputs and zone temperatures as outputs. The models have
the following form:

xk+1 = Axk +Buk +V vk, yk = Cxk +Duk +Wvk, (2)
where vk 2 Rs is the vector of disturbances, yk 2 Rp is the vector of system
outputs and , xk 2Rn is the vector of system states. Real matrices A,B,C,D,V,W
are so called system matrices and are of appropriate dimensions.
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We will start from the formulations that have appeared in the literature. Pros
and cons for each of the formulation will be given. Each formulation eliminates
some drawbacks of the previous one. In the next section, we then present a
new formulation that we deem to be so far the most suitable formulation for
buildings (both from the point of view of the quantities being optimized and a
practical viewpoint).

Minimization of delivered energy and satisfaction of the constraints: This
formulation was reported by [19, 20, 5, 21]. The cost function contains a single
term standing for the minimization of the delivered energy while the thermal
comfort is guaranteed by means of hard constraints on the system outputs, i.e.
zone temperatures.

min
u

Nu�1

Â
k=0

|Rkuk|1 (MPC1)

subject to: linear dynamics Eq. (2), x0 = xinit ,

Gkuk  h, rk  yk  rk.
The matrices Gk,hk define time varying polytopic constraints on system inputs
and states, while rk and rk stand for the time varying reference trajectory for
the system outputs. Initial state xinit is a parameter of the optimization and is
provided by means of Kalman filter or full state measurement at each time-step.

Although the presented control strategy was advertised as a “new control
strategy suitable for MPC for buildings” [20], from our experience, this optimal
control problem formulation as is cannot be used in the practice. The most
obvious drawback is the lack of recursive feasibility: if the initial state implies
any comfort violation, then the optimization problem will be infeasible and the
controller cannot work anymore. Feasibility issues are usually handled with the
aid of the so-called slack variables on system states and system outputs. Hard
constraints are imposed only on the system inputs.

Trade-off between energy consumption and set-point tracking error: An
alternative simple MPC formulation that tackles feasibility issues was presented
in [4, 9, 22, 23, 24, 14] and has following form2:

min
Nu�1

Â
k=0

|Rkuk|1 +
Ny�1

Â
k=0

|Qk(yk � rk)|22 (MPC2)

subject to: linear dynamics Eq. (2), x0 = xinit , Gkuk  h,
Here, r is the set-point which is to be tracked. Although this formulation has the
form that is typically used in process industry [6], it is not suitable for buildings.
According to standards defining indoor thermal comfort, operative temperature3

should lie within certain temperature range. Forcing the temperature to follow

2Some authors use without any reasoning quadratic norm for penalization of input energy instead
of one norm

3Operative temperature is defined as the average of the air temperature and the mean radiant
temperature (i.e. usually computed as area weighted mean temperature of the surrounding surfaces)
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a single set-point curtails the freedom of the controller and may result in a
higher energy consumption. In addition, typical effects of MPC regulation like a
night-time pre-cooling or pre-heating are suppressed. A similar formulation with
the aid of slack variables can add the desired freedom to the MPC controller.

Trade-off between energy consumption and comfort range violations: Slack
variables are additional decision variables that are weighted only in situations
when some quantity, which the slack variable is imposed on, reaches certain
bound. They are useful especially in situations when the objective is to keep
system outputs within a certain range and the slacks penalize the violation of
the range. The following formulation was presented in [15, 16, 25, 2, 26].

min
Nu�1

Â
k=0

|Rkuk|1 +
Ny�1

Â
k=0

|Qk(yk � zk)|22 (MPC3)

subject to: linear dynamics Eq. (2), x0 = xinit ,

Gkuk  h, rk  zk  rk
In this optimal control problem setup zk 2 Rp is the slack variable on the
zone temperature. The advantages of such a formulation has already been
discussed; however, the use of the 1-norm to weight the system inputs is a major
disadvantage. As it is well known, the solution of a linear program lies on a
vertex of the polytopic constraint set. If the constraints are not very tight, a bang-
bang control profile is obtained. This behavior is undesirable in closed loop
operation in the presence of model mismatch because then the control actions
can lead to a highly oscillatory behavior (see Fig. 1). Unpleasant oscillations can
be suppressed by introducing hard constraints on the maximum rate of change of
the input signals. But what if, accidentally, there is a strong need to heat up the
building and to use the maximum capacity of the heating system immediately?
This problem as well as other aforementioned issues are handled in the optimal
control problem formulation given in the following section.

4. Practical Aspects Motivated Formulation
In this section, we introduce a new MPC formulation that is motivated by practi-
cal aspects. The aims of this formulation are (i) suppress oscillation appearing
in receding horizon due to minimization of the 1-norm of the input signal,
(ii) minimize sensitivity of the controller to the model mismatch and imper-
fect disturbance predictions while making use of minimal additional energy,
(iii) guarantee recursive feasibility, (iv) respect thermal comfort limits defined
by standard norms e.g. ISO 7730 and guarantee that significant comfort range
violations do not occur, (v) does not increase the numerical complexity of the
problem significantly.

The proposed formulation has the following form:

min
Nu�1

Â
k=0

(|Rkuk|1 +d smooth(k))+
Ny�1

Â
k=0

�
|Qk(yk � zk)|22 + |Qc

k(yk � zc
k)|22

�

(MPC4)
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subject to: linear dynamics Eq. (2), x0 = xinit , ulast = {u�1,u�2, . . .}
Gkuk  h, rk  zk  rk, rc

k  zc
k  rc

k
Here, zk 2 Rp and zc

k 2 Rp are slack variables and together with rk,rk define
comfort constraints that can be violated from time-to-time, while rc

k,r
c
k define

comfort constraints that cannot be violated at any cost. These comfort constraints
give the MPC controller sufficient freedom to operate the building in an energy-
efficient way.

It is expected that system inputs and outputs are scaled to a similar range of
values and that max(Rk,dk,Qk) ⌧ Qc

k.
Recursive feasibility of this formulation is guaranteed as there are no hard

constraints imposed on system states nor system outputs.
Finally, the objective of the smoothing term is to suppress oscillations in

receding horizon as well as on prediction horizon. Here it is important that
there is the term ulast holding information about past system inputs that were
computed by MPC. Based on these values, we can easily smooth the receding
horizon progress of the input signal. We propose following variants of smoothing
terms:

• MPC4a: smooth(k) = |Zuk|22, i.e. the problem is regularized in such a way
that not only the one norm of the input signal is minimized, but also quadratic
norm is minimized. Here, Z is an appropriate weighting matrix.
• MPC4b: smooth(k) = |uk �uk�1 � pk|22 and one additional constraint is
introduced Du pk Du for k = 1 . . .Nu. Here Du,Du are minimum/maximum
values allowed for the input change not to be penalized, p is a slack variable
and thus the square of the inner term regularizes the optimization task.
• MPC4c: smooth(k) = |uk�2 �2uk�1 +uk|22, i.e. minimization of curvature
of the input signal. Here, it is required to know two of the past inputs.

In the following section, we will compare the three proposed smoothing
terms to the presented MPC formulations without any smoothing term.

5. Case Study: Validation of the Proposed MPC Formulation
For validation of the proposed MPC formulation, we will use a TRNSYS
simulation environment. Schematically, the simulation setup is depicted in
Fig. 2a. In the core, there is a detailed TRNSYS model sharing the same
disturbance profiles (occupancy and weather for Prague, Czech Republic) as
the MPC part which is composed of an optimization block that uses linear time-
invariant (LTI) model for performing the numerical optimization. Time-varying
parameters (e.g. variable energy price or reference trajectories etc.) are required
by the MPC block. The setup is designed in such a way that the problems with
model mismatch causing oscillations may appear. Disturbance prediction errors
are not considered here.

The building under investigation, schematically outlined in Fig. 2b, was
constructed in TRNSYS environment using Type56. It is a medium weight
office building with two zones separated by a concrete wall and with thermo-
active building systems (TABS) controlled separately. Both zones have the same
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Fig. 2: Simulation setup

Table 1: Performance comparison of MPC formulations. In relative comparisons,
the results are always compared to the MPC3.

Delivered energy [kWh/month] Comfort violations [Kh/month]

Aboslute Relative Absolute Relative

MPC1 – – – –
MPC2 5555 -111 % 0 -100 %
MPC3 2631 0 % 3.22 0 %
MPC4a 1946 26 % 3.43 6 %
MPC4b 2355 10 % 4.61 43 %
MPC4c 1885 28 % 4.45 38 %

dimensions (5⇥ 5⇥ 3m) and the south oriented walls of the zones include a
window (3.75m2). A detailed description of the building is given in [27].

The LTI model Eq. (2) of the system was identified using grey box technique
adopted from [15, Section 3.1.2] and verification of its accuracy is given in [27].

The performance of the presented MPC formulations were validated on
one month simulations within the simulation environment. For evaluation of
thermal comfort, ISO 7730 class B was used. The results of all formulations are
summarized in Table 1 and Fig. 3.

As already noted, MPC1 does not guarantee recursive feasibility. This was
confirmed by a simulation that crashed at simulation time Ts = 16 h. The state
of the LTI model ended up out of the allowed range, and hence the optimization
problem became infeasible.

The objective of MPC2 is to track a set point – in our case, the average of
the lower and upper comfort limits. This fact caused a significant increase in
energy consumption. In addition, oscillations described above were observed
(due to space limitation, simulation results for MPC2 are not reported in Fig. 3).

Formulation MPC3 is taken as a baseline for all comparisons in the Table 1.
From Fig. 3, it can be seen that the oscillations occurring on the CTU building
appears also here and especially over the weekend (1/7 and 1/8) when there is
a long setback. In such a situation, solution is either to heat at the maximum
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possible level or to do nothing. Such behavior naturally increases the long-term
energy consumption.
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Fig. 3: Comparison of timeseries

On the contrary, MPC4 in all variants achieves better results in terms of
energy consumption with comparable amount of comfort violations. MPC4b
reaches a slightly higher consumption than the other formulations with smooth-
ing terms. In this case, the amplitude of the oscillations is suppressed, not the
oscillations as such.

6. Conclusions and Remarks
In this paper, we analyzed existing MPC problem formulations for buildings.
We mentioned pros and cons for each of them and based on this analysis and
past experience we proposed a new MPC formulation that (i) is not oscillatory
(in both open- and closed-loop operation) due to smoothing terms introduced in
the cost function, (ii) is sufficiently robust to disturbance predictions and model
inaccuracies, (iii) guarantees recursive feasibility of the optimization problem,
(iv) respects user-defined comfort limits in such a way that it is high probable
that high comfort violations do not occur, (v) does not increase significantly
the energy consumption, (vi) does not increase the numerical complexity of
the problem significantly – the problem stays in the same class of convex
optimization problems, (vii) is able to capture small and high comfort violations,
thereby ensuring that high comfort violations do not occur at any cost. A
disadvantage of the proposed algorithm is the increased number of tuning
parameters. Typically, there are two weighting coefficients (the matrices Q and
R); the proposed formulation has three. Tuning of the third, smoothing, variable
is essential for achieving the benefits described above; an improperly tuned
smoothing term can either lead to too oscillatory or too smooth (and hence
energy-inefficient) behavior.

Finally, the proposed MPC problem formulations were validated within a
TRNSYS simulation environment, showing that the introduced smoothing terms
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can significantly contribute to the robustness of the MPC for buildings.
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5. Conclusions

5.1. Summary and Contribution

Model predictive control for buildings is a very large research area and therefore in this thesis,
we focused on three main goals only. Solving of the goals contributed to the state-of-the-art both
from a theoretical and practical point of view. We briefly remind the main contributions of this
thesis.

• The main practical achievement of this thesis is the implementation of MPC on a pilot building
of the CTU in Prague. Assessing the energy savings potential, it was shown that the potential
for using MPC with weather predictions for the investigated building heating system were
between 15 % and 28 % depending on various factors, mainly insulation level and outside
temperature. Moreover, the peak energy demand was lowered by 50 %.

For tuning and testing of MPC controller applied for CTU building, we also developed a tool
called BuildingLab. The tool is not limited for CTU building only, but can be used for any
building described by a linear time invariant model.

We did not implemented MPC only on the CTU building, but there are two other buildings
that we have been dealing with.

– The first one is a new office building in Munich, Germany. Performance of MPC was
compared in simulations to the performance of a well-tuned rule-based controller very
similar to the one currently deployed in the real building. MPC yielded similar energy
usage (to within 5 %) as the reference controller at a comparable amount of thermal
comfort violations. This result was mainly because of the building’s relatively light
construction (that provided little scope for predictive thermal storage management) and
the high quality of the original control [69].

– The other one is a new office building in Hasselt, Belgium. The building itself is a
light façade but in the core, both the floors and the ceilings are equipped with so-called
double layer Thermally Activated Building Systems (TABS), where water piping circuits
are integrated into the concrete core itself. Our proposed two-level control algorithm
reduces energy consumption by 15 − 30 % in average (depending on the methodology
used for the comparison) and simultaneously significantly reduces comfort violations,
when compared with the previously applied non-predictive control strategy [70].

• The long term operation of MPC did not always go well. Therefore over the time, we had a
chance to analyze MPC behavior and point out the main issues. Subsequently, we proposed
an alternative MPC problem formulation that tackles these issues and results in a better
performance in situations when there is some model mismatch, disturbance prediction errors,
etc.

• Finally, we proposed a tractable method for solving PMV based MPC problem for buildings,
which translates the original general constrained optimization problem into QP that can be
solved in polynomial time. The accuracy of this approximation was analyzed, showing only a
small difference between the real value and approximation that can be neglected for control
purposes. The application of this control scheme requires, however, sensors that are not
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available in buildings we control, therefore this methods has not been tested on a real building
yet.

The two above mentioned alternative MPC formulations are the main theoretical achievements
of this thesis.

We showed that MPC application results are very encouraging, nevertheless, for commercial
transferring of the technology, one has to keep two issues in mind. First, each building is unique
and the MPC saving potential depends on many factors like HVAC system, building construction
or weather conditions to name a few. Second, the complete cost benefit analysis should not
include just energy savings but also the cost of the MPC implementation, i.e. the modeling effort
in particular, that presents the most time consuming part and MPC integration into a BAS. These
aspects are discussed in detail in the author’s recent paper [69].

5.2. Future Research

The most recent work has been focused on the selection of the most suitable MPC formulation
for buildings. This part can even be more extended by performing a sensitivity analysis of the
resulting optimization task. Basically, two methods are at hand.

The first one is based on the techniques for sensitivity analysis in optimization, i.e. Lagrange
coefficients associated with constraints can be analyzed. Then a high value of a Lagrange
coefficient indicates a possible high increase of the overall cost and thus it should be related to
the sensitivity of the particular equality/inequality constraint to e.g. model mismatch, prediction
error and so on. Lagrange coefficients can be obtained for all typical initial states, reference
trajectories and disturbances (either by means of a sampling of the state-space or by multi-
parametric programming) and further compared. In addition, it can be extended and the structure
of the dual problem can be studied in detail.

Moreover, with the computational power now available, we can run exhaustive large-scale
Monte-Carlo MPC simulations with various MPC formulations, under various operating con-
ditions and with models of various complexity for simulations setup where there is a model
mismatch and/or a disturbance prediction error.
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[34] P. D. Moroşan, R. Bourdais, D. Dumur, and J. Buisson. “Building temperature
regulation using a distributed model predictive control”. In: Energy and Build-
ings 42.9 (2010), pp. 1445–1452. issn: 0378-7788. doi: 10.1016/j.enbuild.
2010.03.014.
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[66] J. Cigler, S. Prívara, Z. Váňa, E. Žáčeková, and L. Ferkl. “Optimization of
Predicted Mean Vote index within Model Predictive Control framework: Com-
putationally tractable solution”. In: Energy and Buildings 52 (2012), pp. 39–49.
issn: 0378-7788. doi: 10.1016/j.enbuild.2012.05.022.
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