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Abstract

Multi-Agent Path Finding (MAPF) is the
problem of planning optimal collision-free
trajectories for a team of mobile robots.
During the execution of the plan, unex-
pected events may occur that prevent the
plan from being performed as intended.
Plan correction on fixed paths can be
viewed as a variant of Job Shop Schedul-
ing (JSS). JSS is a NP-hard combina-
torial optimisation problem that can be
solved by the metaheuristic method Vari-
able Neighbourhood Search (VNS). This
thesis examines the possibilities of repre-
senting MAPF plans as a JSS and pro-
poses modification of the VNS algorithm,
so that it is suitable for solving MAPF.
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Job Shop Scheduling, Variable
Neighbourhood Search
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Ph.D.
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Jugoslávských partyzánů 1580/3, 160 00
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Abstrakt

Cílem multiagentního plánování (MAPF)
je najít pro tým mobilních robotů bez-
kolizní trajektorii. Během realizace plánu
se ale mohou vyskytnout situace, které
způsobí, že plán nemůže být dokončen
tak, jak byl navrhnut. Oprava plánu za
předpokladu fixních tras robotů může být
viděna jako Job Shop Scheduling (JSS).
JSS je NP-těžký problém kombinatorické
optimalizace, který je možné řešit po-
mocí metaheuristické metody Variable Ne-
ighbourhood Search (VNS). Tato práce
se zabývá možnostmi reprezentace MAPF
plánů jako JSS a navrhuje modifikaci VNS
algoritmu tak, aby byl vhodný pro řešení
MAPF.

Klíčová slova: Multiagentní plánování,
Job Shop Scheduling, Variable
Neighbourhood Search

Překlad názvu: Oprava plánu pro team
mobilních agentů
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Chapter 1

Introduction

Multi-Agent Path Finding (MAPF) is the problem of planning optimal
collision-free trajectories for a team of mobile robots (agents) that brings
all robots from their starting position to the given goal position. During
the execution of the plan, unexpected events may occur, such as temporary
malfunction of the robot, which causes the robot to stall. The incurred delay
may cause a collision of some robots. To avoid that, it is necessary to monitor
the robots’ positions during the plan execution. If we detect that some robot
is delayed, we may need to correct the plan so that no collisions occur.

A possible solution is to re-plan the trajectories whenever a delay of an agent
is detected. The problem can be solved optimally using Conflict Based Search
(CBS) [15], which however may be both time and memory consuming. There-
fore, suboptimal solvers, such as Enhanced Conflict Based Search (ECBS) [1],
which guarantee that the returned solution is within a constant factor of the
optimal solution, are often used.

An alternative is to reuse the original collision-free plan and reduce it to a
sequence of positions (path) that an agent must visit to achieve their goal.
The aim of algorithms that use this approach is to turn the paths into trajec-
tories by finding the right time to visit the appropriate cells. This problem
can be viewed as a scheduling problem - a task of assigning time slots to the
so-called operations, while satisfying given precedence constraints.
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1. Introduction .....................................
The general objective of this thesis is to find a way to represent MAPF plans
as a Job Shop Scheduling (JSS) solution and to solve the problem of repairing
the plan using a metaheuristic algorithm Variable Neighbourhood Search
(VNS) [11]. The concrete objectives of this thesis are:

. Find a way to represent the MAPF problems as a JSS model.. Explore possibilities of genetic representation of a job shop schedule and
find the most suitable one for representing MAPF.. Propose a random operator that could be used as a neighbourhood
function in the VNS algorithm.. Experimentally verify the functionality of VNS applied to the MAPF
problem.

The rest of the thesis is structured as follows. Chapter 2 introduces Job Shop
Scheduling, Variable Neighbourhood Search and presents an implementation
of VNS for solving JSS. Chapter 3 further introduces Multi-Agent Path
Finding, shows a modified job shop model suitable for representing MAPF
problems. The third chapter also examines various genetic representations
of JSS and offers modifications that will allow us to use them to represent
MAPF problems. In the end, Chapter 3 presents a variant of VNS that is
suitable for Multi-Agent Path Finding. Chapter 4 experimentally verifies the
functionality and properties of VNS deployed on JSS and MAPF problems.
Finally, the Chapter 5 summarises the results and suggests future work.

2



Chapter 2

Job Shop Scheduling and Variable
Neighbourhood Search

In this chapter, the reader is introduced to the Job Shop Scheduling problem.
Later, commonly used optimality criteria are listed. Finally, the algorithm
Variable Neighbourhood Search that can be used to solve job shop problems
is described.

2.1 Model description

This section defines Job Shop Scheduling and other related terms. All
presented definitions were taken from [3, 5, 10, 14].

Job Shop Scheduling is a combinatorial optimisation problem that belongs
to deterministic machine scheduling problems. These problems arise when
limited resources must be allocated over time to a set of activities. Every
instance of a scheduling problem involves a set of m machines M1, . . . , Mm

forming the machine environment, and set of n jobs J1, . . . , Jn.

In the case of multi-operation model problem, each job consists of µ(j) opera-
tions O1j , . . . , Oµ(j)j . The index i of the operation Oij indicates precedence
of that operation within the job Jj defined by the other index j. It is
required that each operation Oij must be performed on specified machine
Mλ(i,j) (λ(i, j) ∈ 1, . . . , m) for amount of time equal to processing time pij .
All the mentioned parameters are constant and are known a priori.

3



2. Job Shop Scheduling and Variable Neighbourhood Search .................
Job shop model belongs to the multi-operation domain. The operations of
each job Jj are sorted into a sequence that determines the order in which
they must be performed. Each machine can serve one job more than once
and each job may consist of any number of operations.

2.1.1 Feasible solution

For each operation Oij with processing requirement pij we define start time
Rij and completion time Cij , these variables satisfy equation Cij = Rij + pij .
The feasible solution is a solution that complies with the following rules.....A1. There is utmost one operation scheduled on each machine at any given

time. For operations Oij , Okl assigned to the same machine µij = µkl,
the following must stand:

(Rij , Cij) ∩ (Rkl, Ckl) = ∅ (2.1)....A2. No two time intervals allocated to the same job overlap. For operations
Oij , Okj from job Jj :

(Rij , Cij) ∩ (Rkj , Ckj) = ∅ (2.2)....A3. Operations of each job are scheduled in the predetermined order. For
operations Oij , Okj of job Jj , where i < k:

Cij ≤ Rkj (2.3)....A4. The minimum allowed start time is 0. For every operation Oij :

Rij ≥ 0 (2.4)

Note that in some literature such as [10], any solution is also called schedule.
While in other, for example [5], only feasible solution is called schedule. In
this text, I use schedule and solution interchangeably.

2.1.2 Optimality criteria

Aim of Job Shop Scheduling is to find a schedule that minimises the chosen
objective function. For the purpose of evaluating solutions, we define comple-
tion time of a job Jj as Cj = Cµ(j)j . In other words, completion time of the
whole job is equal to the completion time of the last operation that forms
the job.

4



.................................. 2.1. Model description

The following list contains functions used later in this text. Other optimality
criteria can be found in [10].

.The often used criterion is called makespan or length of schedule. This
function is defined as:

Cmax = max
1≤j≤n

C(Jj) (2.5)

This criterion is equal to the time required to process all jobs. Problems
using this cost function are called minmax.

.Other possible criterion is total completion time, defined as:

∑
Cj =

n∑
j=1

C(Jj) (2.6)

Problems using this criterion are called minsum.

Example 2.1. Consider an example of the job shop problem with two machines,
two jobs, and properties given in Table 2.1.

Job Operations Assigned machines Processing times
J1 O1,1 O2,1 O3,1 M2 M1 M2 2 3 4
J2 O1,2 O2,2 - M1 M2 - 3 2 -

Table 2.1: Properties of an example problem.

Figure 2.1 shows four different solutions. A feasible schedule with completion
times C(J1) = 10, C(J2) = 5, makespan Cmax = 10 and total completion time∑

Cj = 15 is shown in Figure 2.1a . Figure 2.1b shows unfeasible solution,
operation O3,1 starts at time 5, while operation O2,1 ends in time 6, since
both operations belong to job J1, this is not a feasible schedule. Figure 2.1c
shows an unfeasible solution with time overlap of operations O1,2 and O2,1
on machine M1. Figure 2.1d shows another unfeasible solution, there is no
time overlap, but a violation of the order occurs in job J1 - operation O3,1
precedes operation O2,1.

5



2. Job Shop Scheduling and Variable Neighbourhood Search .................

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(a) : Feasible solution.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(b) : Unfeasible solution with time overlap.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(c) : Unfeasible solution with time overlap.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(d) : Unfeasible solution with violation of order.

Figure 2.1: Examples of feasible and unfeasible solutions.

2.2 Variable neighbourhood search

The job shop problem is an NP-hard combinatorial problem, which is of-
ten solved using metaheuristic methods. The method that I use is called
VNS and was proposed in [11]. In [14], the authors implemented the Vari-
able Neighbourhood Search method to solve the Job Shop Scheduling problem.

VNS is designed to avoid getting trapped in local optimums with poor value
by systematically changing the subregions of the search space.

For solution x, we define a neighbourhood function or a neighbourhood struc-
ture N(x) as a function that returns a set of solutions {x′|N(x) = x′}. This
set is called the neighbourhood of solution x, solutions of the neighbourhood
are in proximity of the solution x.

6



..........................2.3. Representation of job shop scheduling

Using a shake function, we transfer the search to a different part of the
search space, by randomly choosing a solution x′ from the neighbourhood
of the current best solution x. We then apply a local search to obtain a
local optimum x′′ of a solutions in close proximity of solution x′. When
comparing the local optimum to the best so far found solution, in case the
local optimum is better, we accept it as a new best solution. There can be
more neighbourhood structures used for shake function, in that case, the
neighbourhood structures are used sequentially, and every time a new best
solution is found the sequence starts over again from the first neighbourhood
function. This process is repeated until stopping condition is met. The
pseudocode for this method, adopted from [13], is shown in Algorithm 1.

Algorithm 1 General Variable Neighbourhood Search
1: Initialize:

Choose cost function f , select the set of neighbourhood
structures Nk, for k = 1, . . . , kmax, that will be used in the
search; find an initial solution x; choose a stopping
condition;

2: while Stopping condition not met do
3: k ← 1
4: while k ≤ kmax do
5: x′ ← shake(x, k) ▷ x′ ∈ Nk(x)
6: x′′ ← localSearch(x′)
7: if f(x′′) < f(x) then
8: x← x′′

9: k ← 1
10: else
11: k ← k + 1
12: end if
13: end while
14: end while

2.3 Representation of job shop scheduling

In the modified version of VNS for solving the Job Shop Scheduling prob-
lem [14], operation-based representation is used. This representation, was
presented in [6] and uses a sequence of symbols called chromosome, symbols
are being referred to as genes. Each gene stands for one operation, and
the symbol corresponds to the job to which it belongs. A gene on its own
does not carry information about concrete operation, but because there is a
predetermined order of operations for every job, genes may be interpreted
and assigned to a particular operation according to the order of occurrence
in the given chromosome.

7



2. Job Shop Scheduling and Variable Neighbourhood Search .................
For the JSS problem with n jobs Jj , j ∈ 1, . . . , n each consisting of µ(j)
operations, there will by

∑n
j=1 µ(j) genes in total. Each permutation of the

sequence yields a feasible solution. This representation is ambiguous, so the
solution may be represented by more than one chromosome.

Example 2.2. To illustrate the translation of a chromosome into a sequence of
operations, consider a JSS problem with two jobs J1, J2. The job J1 consists
of two operations O1,1, O2,1, while the job J2 consists of the operations
O1,2, O2,2, O3,2 and the chromosome is [1, 2, 2, 1, 2]. The translation starts
with the leftmost gene and it is necessary to keep track of how many operations
of each job have we encountered. The first gene corresponds to the job J1 and
because it is the first operation of J1, we have encountered, and so this gene is
translated to O1,1. Similarly, the next gene is translated to the operation O1,2.
The third gene belongs to the job J2 and is the second operation of this job,
we have encountered, therefore this gene is translated into the operation O2,2.
In a similar matter, the fourth and fifth genes are translated to operations
O2,1 and O3,2. The resulting sequence is [O1,1, O1,2, O2,2, O2,1, O3,2].

When decoding a schedule from the chromosome, genes are first translated
from the chromosome to an ordered list of operations. Then the operations
are scheduled one by one. Each operation is allocated to the earliest possible
time, so that it meets the requirements of a feasible schedule. The process
is repeated until all operations are scheduled and the schedule is complete.
A schedule generated by the procedure can be guaranteed to be an active
schedule, which is a schedule where we cannot start any operation earlier
without delaying the start of another one.

job Operations Assigned machines Processing times
J1 O1,1 O2,1 O3,1 M3 M1 M2 3 2 3
J2 O1,2 O2,2 - M2 M1 - 2 2 -
J3 O1,3 O2,3 - M2 M3 - 3 2 -
J4 O1,4 O2,4 O3,4 M1 M1 M3 4 2 3

Table 2.2: Properties of example problem.

Example 2.3. Consider a JSS problem from [4], with 4 jobs and 3 machines
and properties shown in Table 2.2. Suppose chromosome [1, 2, 2, 3, 4, 3, 4, 4, 1, 1],
which can be translated into ordered sequence of operations:

[O11, O12, O22, O13, O14, O23, O24, O34, O21, O31]

Operations are allocated to the schedule in the order determined from the
sequence, the leftmost operation (O11) has the highest priority, while the
rightmost has the lowest priority. The decoded schedule is shown in Fig-
ure 2.2. Note that due to the ambiguity of the operation-based representation
chromosomes [2, 2, 1, 3, 4, 3, 4, 4, 1, 1], [2, 2, 3, 4, 4, 1, 1, 1, 3, 4] and others would
also be decoded as the same schedule.

8



..........................2.3. Representation of job shop scheduling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2.2: Decoded schedule.

2.3.1 Modified VNS

Modified version of variable neighbourhood search used for solving job shop
scheduling was proposed in [14]. For a local search, the authors used a
version of first descent heuristics - a random solution is explored within a
neighbourhood of the current solution, if the explored solution is better, the
algorithm moves to that solution. In the concrete implementation, used
in [14], authors employ two neighbourhood functions: exchange (denoted as
NLS

1 (x)) and insert (denoted as NLS
2 (x)).

The process of applying the exchange neighbourhood function follows: It
randomly selects two indexes from the chromosome and swaps genes on
those indexes. For example, suppose that we apply exchange on chromo-
some [1, 2, 2, 1, 3, 4], randomly picked indexes are 1 and 5, then the resulting
chromosome would be [3, 2, 2, 1, 1, 4].

In the concrete implementation function insert selects two indexes is and
id, then removes gene at index is from sequence and inserts it in at index id.
Consider applying insert on chromosome [1, 2, 2, 1, 3, 4], with indexes is = 5,
id = 2, this would result to [1, 3, 2, 2, 1, 4].

Pseudocode of local search is provided in Algorithm 2. During the local
search, random solutions from the first neighbourhood NLS

1 (x′) are repeatedly
explored as long as improved solutions are obtained, each time x′ moves to
the improved solution. If there is no improvement, the algorithm selects a
solution from the next neighbourhood NLS

2 (x′), if the solution is better, then
the procedure starts over again. If the solution is not better, then the local
search procedure ends.

9



2. Job Shop Scheduling and Variable Neighbourhood Search .................
Algorithm 2 Local Search
Input: Solution x′

1: l← 1
2: lmax ← 2
3: while l ≤ lmax do
4: if l = 1 then
5: x′′ ← exchange(x′) ▷ x′′ ∈ N1(x′)
6: else if l = 2 then
7: x′′ ← insert(x′) ▷ x′′ ∈ N2(x′)
8: end if
9: if f(x′′) < f(x′) then

10: x′ ← x′′

11: l← 1
12: else
13: l← l + 1
14: end if
15: end while

As a shake function, the authors used different combinations of exchange
and insert functions. One of the implementations is a function made from
the sequence: exchange, insert, exchange, as shown in Figure 2.3.

Figure 2.3: Diagram of perturb function.

10



Chapter 3

Multi-Agent Path Finding and plan repair

3.1 Problem definition

The definition of Multi-Agent Path Finding was adopted from [8, 16].

Multi-Agent Path Finding problem with n agents A1, . . . , An is specified by
a triple (G, s, g), where G = (V, E) is an undirected graph,

s : [A1, . . . , An]→ V (3.1)
g : [A1, . . . , An]→ V (3.2)

The function s maps an agent to the start vertex and g maps an agent to the
goal vertex. Time is discretised into time steps, and in every time step, each
agent is situated in one of the graph vertices and performs a single action.
An action is a function a : V → V that maps a vertex where an agent is
currently located to the vertex, where the agent will be in the next time step.
Two types of actions are distinguished, move and wait. A move action means
that the agent moves from its current vertex v to an adjacent vertex v′ in
the graph, that is (v, v′) ∈ E. A wait action means that the agent stays in
its current vertex for another time step. Both move and wait have uniform
time cost. A sequence of actions πj = (a1, . . . , ak) that brings the agent Aj

from its start vertex to its goal vertex is called the single-agent plan of the
agent Aj . A joint plan is a set Π = (π1, . . . , πn) describing the single-agent
plans of all agents A1, . . . , An. Based on the used model of multi-agent path
finding, when an agent reaches their goal, it can either disappear from the

11



3. Multi-Agent Path Finding and plan repair ........................
graph (disappear-at-target behaviour) or stay in the goal vertex until the end
of a simulation (stay-at-target behaviour). This text primarily focuses on the
stay-at-target behaviour, but the concepts presented further in the text can
adjusted to match the disappear-at-target behaviour.

3.1.1 Objective functions

For the purpose of evaluating joint plan, generally one of the two following
objective functions is used:

. For a joint plan Π = (π1, . . . , πn), makespan is the number of time steps
until all agents reach their goal vertex. Formally:

M(Π) = max
1≤j≤n

|πj | (3.3)

. For a joint plan Π = (π1, . . . , πn), sum of costs is the sum of time steps
of each agent, in which each reaches its goal vertex:

SOC(Π) =
n∑

j=1
|πj | (3.4)

3.1.2 Conflicts

In this text, I assume two types of conflicts: vertex conflict and swapping
conflict. Vertex conflict occurs when two or more agents occupy the same
vertex at the same time. Two agents have swapping conflict if they swap
their location over the same edge at the same time.

3.2 Plan as a job shop schedule

In the physical or simulated world, we consider working with a maps as a
rectangular grid formed by the same-size squares called cells. Each can be
either accessible (denoted as a white square) or inaccessible (denoted as a
black square). The vertex can be interpreted as the centre of the cell and the

12



.............................. 3.2. Plan as a job shop schedule

edge as a line between two adjacent accessible cells connecting the centres of
cells. The time needed to traverse an edge is uniform and takes a unit time
step. If we consider that the agent moves at a constant speed from one centre
of the cell to another, then it spends half of the time step in both cells. An
example of a map translated into a graph is shown in Figure 3.1.

0 1 2

0

1

2

Figure 3.1: Map represented as a graph.

An agent’s plan can be described as a sequence of time intervals assigned to
a cell that expresses the time spent in that cell.

agent plan

A1
cells (0,1) (1,1) (2,1) (2,1) (2,2)

actions right right wait down -

Table 3.1: Plan of the problem from Example 3.1.

Example 3.1. Consider an example with a plan for one agent described by a
sequence of actions shown in Table 3.1 and also by the time intervals shown
in Figure 3.2. The path of the agent’s plan is shown in Figure 3.3. The agent
starts in the centre of the cell (0, 1) and immediately moves towards the cell
(1, 1). Then, in time 0.5, the agent enters cell (1, 1) crosses the centre of that
cell and continues towards the cell (2, 1). In time 1.5, agent enters the cell
(2, 1) and reaches the centre of cell in time 2 where it waits until time 3 and
then the agent goes towards the cell (2, 2). The agent arrives in the centre of
the cell (2, 2) in time 4 and stays there until the end of the simulation.

0 1 2 3 4
t

(0,1) (1,1) (2,2)(2,1)

Figure 3.2: Time intervals from Example 3.1.

13



3. Multi-Agent Path Finding and plan repair ........................
0 1 2

0

1

2

1

Figure 3.3: Agent’s plan from Example 3.1.

A plan as a sequence of actions can be derived from time intervals by looking
at the timeline at discrete times 0, 1, 2, . . .. An agent occupying the same
cell in two following time steps can be translated to a wait action. If the
following cells differ, then the resulting action is move. The concrete move ac-
tion (left, right, up, down) is determined by the relative position of those cells.

From representation as time intervals with cells assigned to them, we can
easily represent agents’ plans as a job shop schedule. Machines may be
interpreted as cells and jobs as agents, and operation is assigned to the
machine’s corresponding cell. For interpreting operations, I will first define
the occupancy time interval Ωij of operation Oij as the whole time agent
spends in a cell determined by function λ(i, j), which assigns operation to a
machine. Therefore, it satisfies:

Ωij =
{

(Ri,j , Ri+1,j), if µ(j) < i

(Ri,j ,∞), if µ(j) = i
(3.5)

For a model with disappear-at-target behaviour, the last operations of each
job Oµ(j)j could be defined as interval Ωµ(j)j = (Rµ(j)j , Cµ(j)j). Note that
the only restriction for processing requirement pij of operation Oij is that
pij ≤ |Ωij |. The choice of meaningful processing requirements will be provided
in the following section.
Example 3.2. Consider the same plan as in Example 3.1. The problem has
one job J1 corresponding to the only agent, and the machines are named
after cell coordinates. In this example, the occupancy time intervals are:
Ω1,1 = (0, 0.5), Ω2,1 = (0.5, 1.5), Ω3,1 = (1.5, 3.5), Ω4,1 = (3.5,∞), these
time intervals can be easily translated to a sequence of actions by applying
the same procedure described above. The resulting plan is shown in Table 3.1.
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0 1 2 3 4
t

(0,1)

(1,1)

(2,1)

(2,2)

Figure 3.4: Schedule of the plan shown in Table 3.1.

3.3 Plan repair

In the plan repair problem, we consider having a feasible solution that cannot
be executed, for various reasons, as planned. In this text, I assume that
the solution cannot be executed because some agents were delayed in their
start position. Each agent Aj has assigned delay dj ∈ N to it. The modified
plan with delayed agents may lead to an unfeasible solution with collisions,
therefore it is necessary to correct the plan.

I assume reuse and benefit from having a plan that, without delays, would
be feasible and ideally optimal. The plan is reduced into a path, which is a
sequence of cells that each agent visits to reach their goal. Contrary to the
term plan, a plan contains information about the order in which an agent
must visit the nodes, but does not contain timing. The goal is to add a timing
to the path that would result in a feasible solution that minimises the cost
function.

We can consider assigning the timing to each item of a path as a scheduling
problem. Processing time pij of each operation Oij is used to separate the
occupancy time interval into fixed and optional disjoint subintervals, where
(Rij , Cij) is fixed subinterval and Ωij \ (Rij , Cij) is optional subinterval. The
size of fixed interval |Cij − Rij | = pij is known prior to scheduling and is
a property of the problem and the size of optional interval |Ωij | − pij is
determined by scheduling procedure and is a property of the solution.

15
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Proposed processing requirements are as follows: first operation O1j of each
job Jj has a processing time equal to waiting in the centre of the start cell
for dj time steps plus going from the centre to the border of start cell, i.e.
p1j = dj + 0.5, processing requirement of last operation Oµ(j)j is equal to
travelling from the border of the goal cell to its centre, i.e. pµ(j)j = 0.5, other
operations Oij , 1 < i < µ(j), have processing requirements pij = 1, that
correspond to going from the border of the current cell to its centre and then
going to the border that links current cell and the next cell.

Example 3.3. Consider the plan from Example 3.1 delayed by two time steps.
This example would have properties shown in Table 3.2.

agent plan processing times
A1 (0,1) (1,1) (2,1) (2,2) 2.5 1 1 0.5

Table 3.2: Properties of the example problem.

3.4 Representations and decoding

This section presents different representations and decoding of the job shop
schedule for the plan repair problem.

3.4.1 Naive approach

The naive approach uses operation-based representation and the same de-
coding as described in the previous chapter. However, this approach fails to
represent some possible solutions, as shown in Example 3.4.
Example 3.4. Consider an example with two agents and their paths shown
in Figure 3.5. The plan represented as a sequence of actions is shown in
Table 3.3. The solution as a job shop schedule is shown in Figure 3.6. This
schedule corresponds to one of two optimal plans, therefore we certainly want
to be able to represent this schedule with used representation and decoding.
However, note that the second operation of agent A2 could be placed in front
of the fourth operation of agent A1, for example to interval (0.5, 1.5), without
violating the rules of a feasible solution. This implies that this schedule is
not active, however, operation-based decoding, as stated in [6], decodes only
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0 1 2

0

1

2

1

2

Figure 3.5: Paths of agents in Example 3.4.

active schedules. This means that we cannot represent this solution with the
original operation-based approach. To address this problem, a new modified
job shop model is introduced in the next part.

agent plan

A1
cells (0,0) (0,1) (1,1) (2,1) (2,0) (2,0) (2,0) (2,0)

actions down right right up - - - -

A2
cells (2,2) (2,2) (2,2) (2,2) (2,1) (1,1) (0,1) (0,2)

actions wait wait wait up left left down -

Table 3.3: Plan of agents from Example 3.4.

0 1 2 3 4 5 6 7 8
t

(2,2)

(2,1)

(2,0)

(0,2)

(1,1)

(0,1)

(0,0)

Figure 3.6: Schedule of plan in Example 3.4.
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3.4.2 Modified job shop model

The proposed modified model works with the same parameters as the classical
job shop model but adds constraints for a feasible solution. Additional
constraints are:....A5. First operation O1j of every job Jj must start at time 0.....A6. Each machine can be occupied up to one operation at every moment. For

operations Oij , Okl assigned to the same machine, i.e. λ(i, j) = λ(k, l),
must stand:

Ωij ∩ Ωkl = ∅ (3.6)....A7. Two jobs must not exchange/swap machines they occupy. For operations
Oi,j , Ok+1,l that are assigned to the same machine Mλ(i,j) = Mλ(k+1,l),
and operations Oi+1,j , Ok,l assigned to the machine Mλ(i+1,j) = Mλ(k,l):

Ωi,j ∩ Ωk,l = ∅ =⇒ Ωi+1,j ∩ Ωk+1,l ̸= ∅ (3.7)

The first additional constraint ensures that all agents are present in their
start cells at time 0. The second constraint ensures that there is no vertex
conflict in any cell, i.e., in any given moment and any given cell, there is
utmost one agent occupying the cell. The last constraint ensures that there
is no swapping conflict.

3.4.3 The modified operation based representation

In order to solve problems of the naive approach and to satisfy additional
constraints listed in the previous section, I proposed a new approach that
modifies the decoding and content of the operation based chromosome.

To satisfy the Constraint A5, the first operation O1j of each job Jj is sched-
uled at the very beginning of the decoding procedure. Scheduling of these
operations is not a property of a solution, and therefore they are not repre-
sented in the chromosome.
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Example 3.5. Consider a simple example with only one agent and a path
consisting of three cells, which are represented by operations O1,1, O2,1, O3,1.
Then the chromosome will be [1, 1], which can be translated into a sequence
of operations [O2,1, O3,1].

Note that in order to determine the occupancy time interval Ωij = (Ri,j , Ri+1,j)
of operation Oij , both operations Oij and Oi+1,j must be already allocated
to the schedule so that start times Ri,j and Ri+1,j are known.

Operations are again allocated one by one. Consider that we want to allocate
operation Oij . To satisfy the Constraint A6, we must ensure that for every two
different operations Oij , Oab assigned to the same machine Mλ(i,j) = Mλ(a,b)
their occupancy time intervals Ωij and Ωab are disjoint. At the time of
allocating operation Oij the occupancy time interval is never known, because
neither Oij or Oi+1,j is yet allocated. On the other hand, the occupancy time
interval Ωab may or may not be known, depending whether operation Oa+1,b

has been already scheduled. From this information we can derive a rule for
allocating an operation that helps to satisfy Constraint A6. The rule is that,
when scheduling the operation Oij it must stand that:

Ri,j ≥ Ra+1,b (3.8)

where operation Oa,b is any different operation that belongs to machine
Mλ(a,b) = Mλ(i,j). Equivalently:

Ri,j ≥ Rk+1,l (3.9)

where operation Okl has the greatest completion time and belongs to the
same machine, that is, λ(i, j) = λ(k, l). There is an exception in the case
that Ok,l is the last operation of the job Jl (µ(l) = k), by this rule it is not
possible to allocate Oij without violating the Constraint A6. From the point
of view of path planning, it corresponds to the situation where we want the
agent Aj to visit the cell adequate to the machine Mλ(i,j) = Mλ(µ(l),l) at
the time, when agent Al has already executed all its actions and now waits
in its goal cell. This situation cannot happen without causing a vertex conflict.

The mentioned rule is used in the proposed schedule procedure described in
Algorithm 3.
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Algorithm 3 Schedule function
Input: Operation Oij

1: Okl ← operation with the greatest completion time Ckl on the ma-
chine Mλ(i,j).

2: if µ(l) = k then
3: Terminate decoding.
4: else if Ok,l does not exist then
5: Rij = Ci−1,j

6: Allocate Oij to interval (Rij , Rij + pij).
7: Return true.
8: else if Ok+1,l has been already allocated then
9: Rij = max(Ci−1,j , Rk+1,l)

10: Allocate Oij to interval (Rij , Rij + pij).
11: Return true.
12: else
13: Return false.
14: end if

Schedule function takes operation Oij as an input. First, operation Okl that
has the greatest completion time and belongs to the same machine as opera-
tion Oij , i.e. λ(i, j) = λ(k, l), is determined (Line 1). It is checked whether
the operation Okl is the last operation of the job Jl, that is, µ(l) = k (Line
2). If it is true, by allocating additional operations we cannot make a feasible
solution from this partial schedule, therefore the decoding procedure is termi-
nated (Line 3). It is also checked whether operation Ok+1,l has been allocated
(Line 8). If it has, we can allocate operation Oij to the earliest possible time
interval that does not violate constrains, i.e. Rij = max(Ci−1,j , Rk+1,l). If
the operation Ok+1,l has not been scheduled, the function returns false. If the
operation Okl does not exist, then the operation Oij can be scheduled to the
earliest time interval (Ri−1,j , Ri−1,j + pij) that satisfies precedence constraint
of operations within the job Jj . (Line 4-7).

The proposed decoding procedure is described by pseudo-code in Algorithm 4.
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Algorithm 4 Modified decoding
Input: chromosome

1: Initialize:
Translate chromosome to operations sequence

2: for all first operations of job O do
3: schedule(O)
4: end for
5: k ← 1
6: while stopping condition is not met do
7: O ← operations[k]
8: success ← schedule(O)
9: if success then

10: remove O from operations
11: k ← 1
12: else
13: k ← k + 1
14: end if
15: end while

The decoding procedure starts with translating the chromosome into a se-
quence of operations. The first operation O1j of each job Jj is then scheduled.
A counter is used to address the operation we currently want to allocate. The
operation determined by the list of operations and the counter is attempted
to schedule. If successful, that operation is removed from the list, and the
counter is set to point to the first operation of the operation list. If scheduling
of the current operation is not successful, the counter is set so that it points
to the next operation in the list. This process is repeated until the stopping
condition is met.

There are three possible ways to meet the stopping conditions:..1. The list of operations is empty...2. Operation Oij is attempted to schedule on machine Mλ(i,j) = Mλ(k,l) but
there is already scheduled operation Okl and this operation is the last of
job Jl, i.e. k = µ(l)...3. After the last successful allocation of an operation, each item in the
operation sequence has been attempted to schedule unsuccessfully.

If the first condition is met, decoding produced a feasible solution, in case of
the other two, the produced partial schedule is unfeasible. The first stopping
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3. Multi-Agent Path Finding and plan repair ........................
condition is used Examples 3.6 and 3.7. The second stopping condition is
applied in Example 3.9 The last stopping condition indicates a swapping
conflict, an example of this situation is shown in Example 3.8.

To better illustrate the decoding procedure, consider the four Examples 3.6,
3.7, 3.8 and 3.9. We assume that the machines corresponding to each cell are
named after the coordinates of these cells.

0 1 2

0

1

2 1

2

(a) : Paths of two agents.

0 1 2

0

1

2

1

2

(b) : Paths of two agents.
0 1 2

0

1

2

1

2

(c) : Paths of two agents.

0 1 2

0

1

2

1

2

(d) : Paths of two agents.

Figure 3.7: Four path scenarios used in examples.

Example 3.6. Consider two agents, their paths shown in Figure 3.7a and a
chromosome [1, 1, 2, 2]. First, the chromosome is translated into a sequence
of operations [O2,1, O3,1, O2,2, O3,2]. Operations O1,1, O1,2 are scheduled au-
tomatically, then O2,1 will be attempted to schedule to cell (1, 1), because in
this cell there are no other operations allocated yet, this operation can be al-
located to interval (R2,1, C2,1) = (0.5, 1.5) and is removed from the sequence.
From sequence [O3,1, O2,2, O3,2] operation O3,1 is selected, it belongs to cell
(1, 0). This cell has no operations scheduled there, so it can be allocated to
time interval (R3,1, C3,1) = (1.5, 2). Next up is operation O2,2, it belongs to
machine (1, 1). The last scheduled operation on this machine is O2,1, in order
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to find whether O2,2 can be allocated, we have to look at operation O2+1,1
which is already scheduled and the start time is R3,1 = 1.5, therefore it can
be scheduled to interval (R2,2, C2,2) = (1.5, 2.5). The remaining operation
is O3,2 that is scheduled to (R2,2, C2,2) = (2.5, 3). After scheduling, the last
operation sequence is empty, so the decoding can stop, and the schedule is
feasible. The final plan is shown in Table 3.4.

agent plan

A1
cells (1,2) (1,1) (0,1) (0,1)

actions up up - -

A2
cells (0,1) (0,1) (1,1) (2,1)

actions wait left left -

Table 3.4: Plan of example problem.

Example 3.7. Consider two agents, their paths shown in Figure 3.7b and
chromosome [1, 1, 2, 2, 1, 2]. The chromosome is translated into the sequence
of operations [O2,1, O3,1, O2,2, O3,2, O4,1, O4,2]. After allocating the first oper-
ations of each job, in the first three iterations operations O2,1, O3,1, O2,2 are
scheduled successfully and are removed from the sequence. When scheduling
operation O3,2, the last operation scheduled on machine (1, 1) is O3,1, so we
must look ahead at operation O4,1 which is not yet scheduled, therefore k is
increased to k ← 2. Next up is the operation O4,1, which belongs to machine
(1, 0), this machine has not been visited, so the operation can be scheduled
right after the preceding operation O3,1. The operation is removed from the
sequence and k is restored to 1. The sequence is now [O3,2, O4,2] and both
these operations can be successfully scheduled and the resulting solution is
feasible. The resulting plan is shown in Table 3.5.

agent plan

A1
cells (0,0) (0,1) (1,1) (1,0) (1,0)

actions down right up - -

A2
cells (0,2) (0,2) (0,1) (1,1) (1,2)

actions wait up right down -

Table 3.5: Plan of example problem.

Example 3.8. Consider two agents, their paths shown in Figure 3.7c and a
chromosome [1, 2, 1, 2, 1, 2]. The chromosome is translated to the sequence
[O2,1, O2,2, O3,1, O3,2, O4,1, O4,2]. Operations O1,1, O1,2, O2,1, O2,2 are all al-
located successfully. Then the operation O3,1 is scheduled unsuccessfully
because it belongs to machine (1, 1). The last scheduled operation on this
machine is the operation O2,2 and the following operation O3,2 has not been
scheduled. Similarly the operation O3,2 cannot be scheduled because O3,1
has not been allocated yet. The same applies to operations O4,1, O4,2. In the
end, the sequence of operations is [O3,1, O3,2, O4,1, O4,2] and k is equal to 4.
All remaining operations in the sequence were scheduled unsuccessfully, and
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therefore decoding terminates as a failure. The plan corresponding to the
partial schedule is shown in Figure 3.6.

agent plan

A1
cells (0,0) (0,1)

actions down -

A2
cells (1,2) (1,1)

actions up -

Table 3.6: Plan of example problem.

Example 3.9. Consider two agents, their paths shown in Figure 3.7d and a
chromosome [2, 1, 1]. The chromosome is translated to sequence [O2,2, O2,1, O3,1].
After scheduling the start operations of both jobs, operation O2,2 is scheduled
successfully on machine (1, 1). Next up is the operation O2,1, which belongs
to machine (1, 1), last scheduled operation on this machine is the operation
O2,2, however, this operation is the last operation of the job J2, therefore,
the decoding ends as a failure.

Figures 3.7a, 3.7b and 3.7c show three typical situations, where two agents
share some part of their path. In the first situation, agents share only one cell
in their path. In the second situation, agents share two or more consecutive
cells in their paths and they visit these cells in the same order; contrarily, in
the third situation they visit the cells in the reverse order.

Only two possible collision-less outcomes exist, either the agent A1 or the
agent A2 must visit each cell of the shared section of their paths earlier than
the other one. This approach performs well in the first two situations, that
is, to change the order in which they visit the shared section of their paths,
it is enough to change only the order of operations corresponding to the
first cell of that section. However, this approach performs very poorly in the
third situation. This is because in order to produce a feasible schedule that
changes the order of the two agents, it is necessary to change the order of all
operations corresponding to the cells present in the shared section of their
paths. Naturally, this problem increases as the shared section grows larger.

3.4.4 The modified preference list-based representation

The main flaw of the approach described in Subsection 3.4.2 was that it often
produced schedules that correspond to MAPF plans with swapping conflicts.
Therefore, the motivation for proposing another approach was to design an
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operator that would not produce solutions containing swapping conflicts and
thereby reduce the search space. The strategy is to propose an operator that
can generate schedules in a more informed way.

Preference list-based representation

The proposed representation is inspired and based on preference list-based
representation originally proposed in [7]. The chromosome of preference list-
based representation is formed by a list of operation sequences, each sequence
corresponds to one machine and determines in what order it is preferred to
schedule the operations on that specific machine [6].
Example 3.10. Consider the schedule in Figure 2.2. This schedule
could be decoded from sequences [O2,2, O1,4, O2,1], [O1,2, O1,3, O2,4, O3,1] and
[O1,1, O2,3, O3,4] representing preference lists of machines M1, M2, M3.

When decoding a chromosome, we first take a set of all operations that are,
based on the precedence constraints of each job, next to be scheduled. From
this set, we select the operations with the highest relative preference, i.e., the
operation that is present in the preference list right after the last operation
scheduled on the corresponding machine, and allocate those operations. If
there are no operations that satisfy these rules, the operations with the second
highest preference are selected. This may continue until there is an operation
that can be scheduled. The whole process is repeated until all operations are
allocated.

Recognizing unfeasible chromosomes

In order to make the chromosome more intuitive and predictable, I added a
rule to decoding that the preference list not only defines the preference of
operations, but completely determines the order of operations on the corre-
sponding machine. This decoding creates unambiguity, that is, a solution
decoded from one chromosome can be represented only by the same chromo-
some. The disadvantage of this rule is that some chromosomes cannot be
decoded into any schedule.

Definition 3.11. Let us define a function preference number as:

ρ : N× N→ N (3.10)

that assigns an order of operation Oi,j in which it appears in the preference
list corresponding to machine Mλ(i,j).
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If we assume that preference list completely determines the order of operations
on the corresponding machines, then the preference number ρ(i, j) of the
operation Oi,j determines in what order the operation appears in machine
Mλ(i,j).

Example 3.12. Consider a problem with one machine, three jobs J1, J2, J3,
three operations O1,1, O1,2, O1,3 and a preference list [O1,3, O1,1, O1,2]. The
preference number ρ(i, j) expresses an order in which Oij occurs in the
preference list, therefore ρ(1, 1) = 2, ρ(1, 2) = 3, ρ(1, 3) = 1.

An advantage of preference list-based representation (assuming preference
lists completely determine the order of operations) is that it is possible to
identify some chromosomes that would be decoded as an unfeasible solution.
The following list contains necessary conditions:....B1. The first operation O1j of the job Jj must be the first item in the

preference list of the corresponding machine Mλ(i,j), i.e., ρ(1, j) = 1.....B2. The last operation Oµ(j)j of the job Jj must be the last item in the
preference list of the corresponding machine Mλ(i,j), i.e., ρ(µ(j), j) is
equal to the length of the preference list.....B3. For operations Oij and Okj of the job Jj on the same machine, where
Oij precedes Okj (i < k), preference number ρ(i, j) must be less that
preference number ρ(k, j).....B4. For operations Oij , Okl assigned to the same machine Mλ(i,j), and opera-
tions Oi+1,j , Ok+1,l assigned to the same machine, it must stand:

ρ(i, j) < ρ(k, l) ⇐⇒ ρ(i + 1, j) < ρ(k + 1, l) (3.11)....B5. For operations Oij , Okl assigned to the same machine Mλ(i,j), and opera-
tions Oi+1,j , Ok−1,l assigned to the same machine, it must stand:

ρ(i, j) < ρ(k, l) ⇐⇒ ρ(i + 1, j) < ρ(k − 1, l) (3.12)

Constraint B1 corresponds to the condition that each agent starts in a unique
starting position. Constraint B2 corresponds to the condition that each agent
stays in its goal position until the end of the simulation, this constraint can
be omitted for the MAPF models with disappear-at-target behaviour. Con-
straint B3 applies in order to preserve the precedence constraint of operations
within a job.
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Consider agents Aj and Al sharing two cells that occur consecutively on both
paths. And they traverse from one cell to another in the same direction. The
violation of Constraint B4 would mean that the agent Aj visits the first cell
earlier than the agent Al, but visits the second cell after Al does.

Violation of Constraint B5 corresponds to two agents swapping their locations
over the same edge, leading to either a swapping conflict or a vertex conflict
(depends on whether the swap takes place in one time step or more).

Figures 3.8 and 3.9 show a useful visual representation, using which it is
possible to detect violations of Constraints B1-B5. For each job Jj (agent
Aj), we can show preference lists of machines Mλ(1,j), . . . , Mλ(µ(j),j). This
sequence corresponds to the path of the agent Aj . The sequence of machines
is shown in the horizontal axis, while the vertical one shows an order of
operations on those machines determined by the adequate preference list.
Operations at the bottom are the most preferable. To visually verify that
Conditions B4 and B5 are satisfied, we can connect all successive operations
Oi,j and Oi+1,j of each job Jj by an arrow pointing from Oi,j towards Oi+1,j

and determine if any of the two arrows cross each other or not. Ff they do,
either Condition B4 and B5 is not satisfied. If we label each operation as
Oij , it is even possible to verify Constraints B1-B3. To completely check a
chromosome, we must examine the path of each agent.

Figure 3.8: Preference list lined up in order of agent’s A1 path.

Example 3.13. Consider the sequence of machines corresponding to the path
of the agent A1 shown in Figure 3.8. We can see that the preference number
of the operation O2,1 is equal to 1, while the other operation O3,2 on the same
machine Mλ(2,1) has preference number equal to 2, therefore ρ(2, 1) < ρ(3, 2).
The operation O3,1, following the operation O2,1, belongs to the machine
Mλ(3,1), which also contains operation O4,2, which follows the operation O3,2
and has preference number equal to 1, therefore ρ(3, 1) > ρ(4, 2). The two
given inequalities do not satisfy Condition B4.
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Figure 3.9: Preference list lined up in order of agent’s A1 path.

Example 3.14. Consider the sequence of machines corresponding to the path
of the agent A1 shown in Figure 3.9. We can see that the preference number
of the operation O2,1 is equal to 1, while the other operation O4,2 on the same
machine Mλ(2,1) has preference number equal to 2, therefore ρ(2, 1) < ρ(4, 2).
The operation O3,1, following the operation O2,1, belongs to the machine
Mλ(3,1), which also contains operation O3,2, which precedes the operation
O3,2 and has preference number equal to 1, therefore ρ(3, 1) > ρ(3, 2). The
two given inequalities do not satisfy Condition B5.

Cycle conflict

Definition 3.15. The dependency operation of a machine M is the operation
Ok+1,l, where Ok,l is the last scheduled operation on the machine M = Mλ(k,l).

Dependency operation was used in Algorithm 4, which allowed to schedule
the operation Oi,j only if the operation Ok+1,l, where Ok,l is the last oper-
ation on the machine Mλ(i,j) = Mλ(k,l), was already scheduled. Using the
new definition, operation Oi,j could be scheduled, only if the dependency
operation of machine Mλ(i,j) had been already scheduled.

Cycle conflict is a situation where four or more agents mutually exchange its
position in one time step. Because modern solvers, such as CBS or ECBS
can generate plans with cycle conflicts, I will assume that the cycle conflict is
allowed. As mentioned in Algorithm 3 the process of applying the schedule
function on the operation Oij is that we determine the dependency operation
of the machine Mλ(i,j) and the operation Oij may be scheduled as soon as the
dependency operation is scheduled. However, in the situation of cycle conflict,
there will be operations situated in the cycle, which cannot be scheduled
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this way. Therefore, it is necessary to use a different procedure, which will
be described later in Algorithm 6. Example 3.16 shows a motivation for
modification of decoding procedure.

0 1 2 3
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12

3 4

Figure 3.10: Paths of four agents in Example 3.16.

Example 3.16. Consider the chromosome described in Table 3.7. Agent A1
is delayed by one time step, and agent A3 is delayed by two time steps. This
problem can be solved only by allowing the cycle conflict. After scheduling
the first operation of each job, the dependency operation of the machine (2, 2)
is the operation O2,4, dependency operation of the machine (1, 2) is O2,3,
the dependency operation of the machine (1, 1) is O2,2 and the dependency
of the machine (2, 1) is O2,1. As we can see, neither dependency operation
is scheduled, so we cannot schedule any other operation in the usual way.
However, if we identify a cycle and determine the minimal start time Tmin =
2.5, that would not violate the constraints of the feasible schedule, we can
schedule one of the operation Oij located in the cycle to the time interval
(Tmin, Tmin + pij) and then continue with regular scheduling. The paths of
the agents are shown in Figure 3.10 and a part of the schedule is shown in
Figure 3.11.

machine operation order machine operation order
(0, 1) [O3,1] (1, 1) [O2,1, O1,2]
(2, 0) [O3,4] (2, 1) [O1,1, O2,4]
(1, 3) [O3,2] (1, 2) [O1,3, O2,2]
(3, 2) [O3,3] (2, 2) [O1,4, O3,2]

Table 3.7: Preference lists from Example 3.16.
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(2,2)

Figure 3.11: Part of the schedule in Example 3.16.

The purpose of Algorithm 5 is to recognise a cycle and determine the minimum
start time.

Algorithm 5 Cycle detection
Input: Oinput

1: Oij ← Oinput
2: Tmin ← 0
3: k ← 0
4: do
5: Odep ← dependency operation of Mλ(i,j)
6: Onext ← nextOperation(Mλ(i,j))
7: Olast ← lastOperation(Mλ(i,j))
8: if Onext = Oij and Odep exists and is not scheduled then
9: Oij ← Odep

10: Tmin ← max(Tmin, Clast)
11: k ← k + 1
12: else
13: return (false, -1)
14: end if
15: while Oij ̸= Oinput
16: return (k ≥ 4, Tmin)

Function nextOperation takes a machine as input and returns the next oper-
ation that should be scheduled according to the corresponding preference list;
in other words, it returns the operation Oij , which has the lowest preference
number ρ(i, j) of all unscheduled operations belonging to the machine Mλ(i,j).
The function lastOperation takes a machine as input and returns the last
scheduled operation on that machine.
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The input of Algorithm 5 is the operation Oij that is the next operation
that should be scheduled according to the precedence constraints of the
job Jj . Algorithm 5 gradually checks whether the operation Oij is next to
be scheduled according to the preference list, and whether the dependency
operation of machine Mλ(i,j) is not scheduled. The operation Oij is either the
input operation or the dependency operation of some machine, therefore it is
implicitly checked that the operation Oij is also next operation that should
be scheduled based on the precedence constraints of the job Jj . If all the
conditions are satisfied, Oij is redefined to be the dependency operation of
the machine that contains the current operation Oij . In the case where the
chromosome contains a cycle, the process is successfully repeated until the
input operation is reached again. To separate the swap and cycle conflict, it
is checked that the cycle consists of at least four operations.

Decoding

As stated earlier, we assume that the preference lists completely determine
the order in which operations appear on the adequate machine. The decoding
Algorithm 6 uses functions schedule as defined in Algorithm 3 and function
forceSchedule, which schedules the input operation Oij to time interval
(T, T + pij), where T is the second input argument.

Algorithm 6 attempts to schedule the operations of one job one by one. It is
checked whether the operation satisfies the constraints of the corresponding
preference list (Line 7) and attempted to schedule (Line 9). If the operation
is scheduled successfully, we move on to the next operation of the job (Lines
8-12); otherwise, it is checked whether the reason for unsuccessful applying
the schedule function was not caused by the fact that this operation is located
in a cycle conflict (Line 14), if it is, we schedule the operation into calculated
time interval (Line 16) and the attention moves to the next operation of the
job (Lines 15-18). In the event that the operation cannot be scheduled, we
move on to another job. Chromosomes that do not produce any schedule are
detected by recognising that the decoding cannot add any other operation
(Lines 23-25).
Example 3.17. Consider a problem with two agents; their paths are shown in
Figure 3.12. The preference list corresponding to machine (1, 1) is [O2,2, O2,1]
and to machine (2, 1) is [O5,2, O3,1], other preference lists contain only one
operation. We start by scheduling operations of the job J1, we can schedule
operation O1,1 but the operation O2,1 cannot be scheduled because it is not
its turn according to the preference list of Mλ(2,1), the operation O2,2 has to
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Algorithm 6 Decoding procedure

1: do
2: counters ← {0, . . . , 0}
3: scheduleChanged ← false
4: for j ∈ {1, . . . , n} do
5: i← counters[j]
6: Okl ← nextOperation(Mλ(i,j))
7: if Oij ̸= Okl then continue
8: else
9: success ← schedule(Oij)

10: if success then
11: scheduleChanged ← true
12: counters[j] ← counters[j] + 1
13: else
14: cycleDetected, Tmin ← detectCycle(Oij)
15: if cycleDetected then
16: forceSchedule(Oij , Tmin)
17: scheduleChanged ← true
18: counters[j] ← counters[j] + 1
19: end if
20: end if
21: end if
22: end for
23: if scheduleChanged = false then
24: terminate decoding ▷ decoding not successful
25: end if
26: while counters ̸= {µ(1), . . . , µ(n)}

be allocated first, therefore we switch from scheduling the job J1 to scheduling
operations of job J2, because all operations of the job J2 occur first in each
preference list all, they can all be scheduled on by one. We can then return
to scheduling the job J1 and allocate the remaining operations.
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Figure 3.12: Paths of two agents from Example 3.17.
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3.5 The final approach

With the modified preference list-based representation, we are now capable
of representing any feasible MAPF plan. To construct the functional VNS
method, two more things are left to acquire: an initial feasible solution
and neighbourhood structures that can be used for shake and local search
functions. This section presents a way to obtain a feasible initial solution
from a collision-free plan and offers a random operator that can be used as a
neighbourhood structure.

3.5.1 The initial solution

In order to apply VNS, it is first necessary to obtain an initial feasible solution.
Apparently the most convenient way is to reuse the original collision-free plan
that does not contain any unnecessary delays. Let us assume that we have
the original plan as a sequence of time steps, where each time step contains
information about the current position of each agent in the appropriate time
step. First, create a list of jobs J1, . . . , Jn corresponding to the team of agents
A1, . . . , An. The original plan can then be translated into a chromosome by
iterating over each time step. For each agent, we apply these two steps:..1. If the machine corresponding to the current position is not in the list of

machines, then add it to the list...2. If the current time step is not equal to 0 and the position of the agent in
the previous time step is not equal to the current position of the agent.
Then append a new operation (assigned to the current machine) to the
list of operations of the job corresponding to the agent.

After the chromosome is obtained, it is necessary to add processing require-
ments to each operation. The last operation Oµ(j),j of each job Jj has
processing time pµ(j),j = 0.5, the first operation O1,j of each job has process-
ing time p1,j = 0.5 + dj , where dj denotes the initial delay of agent Aj . All
the other operations have a processing requirement equal to 1. Afterwards,
the decoding procedure can be applied, which produces the initial feasible
schedule.
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3.5.2 The proposed operator

The idea of the proposed operator is to randomly select one agent and change
its preference number on the machines it visits while satisfying all necessary
Constraints B1-B5. The operator starts from the first cell of the agent’s path
and iterates over all visited cells in the predetermined order.

To satisfy Constraints B1 and B2, when scheduling operation Oij , which is
the first operation of the job Jj , i.e., i = 1, then this operation must have
ρ(i, j) = 1, if it is the last operation, i.e., i = µ(j), then ρ(i, j) has to be equal
to the length of the corresponding preference list. If in the current machine
there is a operation O1l that is the first operation of the job Jl, then ρ(1, l) is
the lower constraint. If there is a operation Oµ(l),l that is the last of the job
Jl, then ρ(µ(l), l) serves as the upper constraint.

When determining the preference number ρ(i, j) for the operation Oij on
preference list that contains another operation of the same job Okj , where
Oij precedes Okj , i.e., i > k, then ρ(i, j) acts as a upper constraint. Note
that if i < k we do not take ρ(i, j) as a lower constraint, because of this
we may temporarily reorder the preference list so that it does not satisfy
the constraint, however, by consistently applying the rule for i < k for all
operations of job Jj , then we end up with the correct preference list. This
process is applied to satisfy Constraint B3.

In order to satisfy Constraint B4, when selecting the preference number for
operation Oi,j , we must take a look at the other operations Ok,l on the same
machine, if there is a operation Ok−1,l where Mλ(k−1,l) = Mλ(i−1,l), then the
preference number ρ(k, l) serves as a lower limit (when ρ(k−1, l) < ρ(i−1, l))
or as a upper limit (when ρ(k − 1, l) > ρ(i− 1, l)).

In order to satisfy Constraint B5, when selecting the preference number for
operation Oi,j , we must take a look at the other operations Ok,l on the same
machine, if there is a operation Ok+1,l where Mλ(k+1,l) = Mλ(i−1,l), then the
preference number ρ(k, l) serves as a lower limit (when ρ(k +1, l) < ρ(i−1, l))
or as a upper limit (when ρ(k + 1, l) > ρ(i− 1, l)).
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Based on the type of constraint and the direction in which agents travel the
section of their path, it can happen that the constraints exclude each other
and there is no ρ(i, j) that would satisfy these constraints, in that case we
have to perform backtracking, that is, the process of iterating over a selected
job in descending order until we reach a situation where it is possible to
change the order so that we can avoid again breaking the constraints.

Algorithm 7 Proposed operator
1: j ← randomly select integer from {1, . . . , n}
2: for i ∈ {2, . . . , µ(j)} do
3: P ← preference list corresponding to machine Mλ(i,j)
4: X ← permissible preference numbers
5: if X is empty then
6: i← backtrack()
7: else
8: ρ← randomly select from X
9: P ← reorder(Oij , ρ)

10: end if
11: end for

First, a random job Jj (corresponding to the agent Aj) is chosen (Line 1), it
is then iterated over the operations of the job, starting from the operation
O2,j . The appropriate preference list for the first operations does not have to
be modified, because the first operation should always have the preference
number ρ(i, j) = 1. For each operation, we determine a list of preference
numbers for the operation Oij that would meet the constraints described at
the beginning of this subsection (Line 4). If the constraints allow us to select
a new preference number ρ(i, j), we randomly select from those permissible
preference numbers and reorder operations on the machine according to the
new preference number (Lines 8-9); otherwise, it is backtracked until we reach
the point where it is possible to choose a different order in the preference list,
which would not cause conflict of constraints.

Example 3.18. Consider applying the proposed operator to a problem with
at least three agents. In this example, it is not necessary to label concrete
operations, it is enough to differentiate jobs (agents) by colours and label
the first and last operations of each job by S and G. In the first step
of the operator procedure, the blue agent is chosen. The original path of
the blue agent is shown in Figure 3.13. The operator then iterates over the
machines corresponding to the blue agent’s path and reorders the operations in
preference lists. One of the possible outcomes of the application of the operator
is shown in Figure 3.14. A green background indicates a set of preference
numbers from which the algorithm chooses the new preference number. The
grey background indicates forbidden preference numbers. To determine what
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3. Multi-Agent Path Finding and plan repair ........................
preference numbers are forbidden in the preference list corresponding to the
machine Mk, the preference list of the machine Mk−1 must be known. In this
example, the operator made two decisions, first in the cell, corresponding to
the machine M2, and then in the cell, corresponding to the machine M4.

Figure 3.13: The original path of the blue agent.

Figure 3.14: The path of the blue agent after applying the operator.

The following examples illustrate five different situations that lead to the
necessity of applying the backtrack function:

Example 3.19. Assume the situation shown in Figure 3.15. The operator
tries to change the order in which the agents finish. When the algorithm
reaches the third operation of the job J1 (corresponding to the agent A1), it
should exchange the operations O3,1 and O3,2 on machine (2, 1) in order to
preserve the relations set in the previous machine (1, 1) by Constraint B4.
However, this is not possible because if the operations were exchanged, the last
operation of the agent A1 would not be the last operation of the preference
list. Therefore, a violation of Constraint B2 would occur.
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(a) : Paths of both agents.

(0,1) (1,1) (2,1)
(b) : Path of the agent A1.

Figure 3.15: Situation addressed in Example 3.19.

Example 3.20. Consider the situation shown in Figure 3.16. When the
algorithm reaches the third operation of the job J1, to preserve the relations
set in the previous machine (1, 1) by Constraint B4, it should exchange
the operations O3,1 and O3,2 on machine (2, 1). However, again that is not
possible, because if the operations were exchanged, there would be a violation
of Constraint B2.
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(a) : Paths of both agents.

(0,1) (1,1) (2,1) (2,0)

(b) : Path of the agent A1.

Figure 3.16: Situation addressed in Example 3.20.

Example 3.21. Assume the situation shown in Figure 3.17. When the al-
gorithm reaches the third operation of the job J1, it should exchange the
operations O3,1 and O1,2 on machine (2, 1) to preserve the relations set in the
previous machine (1, 1) by Constraint B5. However, this is not possible, be-
cause if the operations were exchanged, the first operation of the job J2 would
not be the first in the preference list, which is a violation of Constraint B2.
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(a) : Paths of both agents.
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(b) : Path of the agent A1.

Figure 3.17: Situation addressed in Example 3.21.

Example 3.22. Consider the situation shown in Figure 3.18. In order to
satisfy Conditions B4 and B5, preference number ρ(3, 1) should be both lower
and higher than the preference number ρ(3, 2), which is certainly not possible
to satisfy.
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(a) : Paths of both agents.

(1,2) (1,1) (1,0) (2,0)

(b) : Path of the agent A1.

Figure 3.18: Situation addressed in Example 3.22.

Example 3.23. Consider the situation shown in Figure 3.18. When the
algorithm reaches the fifth operation of the agent A1, it should place the
operation O5,1 below the operation O5,2 to satisfy Constraint B4, but it
should also place the operation above the operation O2,1 to preserve the
precedence of operations (Constraint B3). These conditions contradict each
other; therefore, it is necessary to backtrack.
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Figure 3.19: Situation addressed in Example 3.23.

3.5.3 Shake and local search

After the proposal of the random operator, it is now possible to form shake
and local search functions that are the basis of the general VNS algorithm.
Implementation of VNS proposed in [14] used functions insert and exchange
for the local search. Shake functions were constructed as a permutations with
repetitions of insert and exchange neighbourhood structures.

Because I proposed only one neighbourhood function, the design of modified
VNS will be very simple. The proposed operator will be used in local search
and the shake function is going to be formed by application of N proposed
operators in a row. Appropriate value of N will be examined later by
experiments.
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Chapter 4

Experimental results

In this chapter, I present some experimental results. There were two sets of
experiments carried out. The experiments aimed to experimentally verify
the functionality of the VNS algorithm on JSS and MAPF problems. All
experiments were performed on a computer with a Intel(R) Core(TM) i5-
4210U CPU with 4GB RAM and all algorithms were implemented in C++.

4.1 Job Shop Scheduling

This section examines the functionality and properties of the VNS method
used for JSS proposed in [14]. Unfortunately, the authors did not mention
the number of iterations used nor the computational time of their experi-
ments. Therefore, it is not possible to completely verify the correctness of
my implementation.

Experiments were carried out on six problems from the JSPLIB dataset [17].
The parameters of the tested problems are shown in Table 4.1.

problem abz07 abz08 abz09 la29 orb03 orb08
#machines 20 20 20 20 10 10

#jobs 15 15 15 10 10 10

Table 4.1: Size of tested problems.
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As a cost function, makespan M was selected. The quality of solution was
evaluated using relative error RE, defined as:

RE = M −Mopt
Mopt

(4.1)

where Mopt indicates the optimal makespan, in case the optimum is known, or
the lower bound of the optimum, in cases where the optimum of the problem
is not known. Each problem was solved by VNS ten times, and I recorded
the average relative error (denoted ARE) and the least relative error of all
runs (denoted LRE). Each time VNS was run with a total of 106 iterations
and relative errors after 102, 103, 104, 105 and 106 iterations were recorded.
Table 4.2 shows the measured ARE and LRE, the reference ARE from [14]
and the computation time.

The number of iterations was limited to 106 because larger numbers of
iterations were very time-consuming. From the results, it is clear that
the computational time grows approximately linearly with the number of
iterations. Taking into account the quality of the solution found, the reference
experiments from [14] showed better results. However, we can see that the
improvement of the solutions, found by VNS, from 105 to 106 iterations is not
negligible. Therefore, we can deduce that the quality of the solution could
improve with an increase above 106 iterations and given enough time, the
measured results could match the reference values.

4.2 Multi-Agent Path Finding

To verify the functionality of the experiments related to MAPF, maps from
MAPF Benchmark Sets [16] were used.

From the two proposed representations of Multi-Agent Path Finding as the
JSS problem, the one based on the preference list-based representation was
selected, as it performed significantly better during testing in the early stage
of development. The first experiment aimed to identify the appropriate shake
function. The second experiment tested the quality of solutions found by
VNS depending on the number of iterations. The third experiment examined
the evolution of cost with increasing the number of iterations of VNS.

On each map, ten instances, that is, the start and goal positions of all agents,
were randomly generated. Then each instance was solved using ECBS with
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the requirement that the makespan of the obtained plan will be equal at most
to 105% of the makespan of the optimal solution. For this purpose, I used
Keisuke Okumura’s [12] implementation of ECBS.

Model problem that we aim to solve is a situation in which some of the
agents are delayed at their start position. To examine the effect of the total
delay, that is, a sum of delays of all agents, experiments with the following
parameters were carried out:

.There were a total of 100 agents.

.K random integers, which represent delays in time steps, are selected
from range {1, . . . , 10} and assigned to randomly selected agents (each
agent can be selected more than once).

. For all K ∈ {0, 10, . . . , 390, 400}, delays are assigned to the appropriate
agents. And VNS with the sum of costs as the objective function is run.

In each run, I recorded the achieved sum of costs and the computation time.

4.2.1 Appropriate shake function

Structure of the proposed VNS was outlined in Subsection 3.5.3. It was stated
that shake function consists of N sequential applications of the proposed
random operator described in Algorithm 7, and it is necessary to determine
the value of N . I tested two variants of the shake function. The first variant
tested (Shake-1) was simply Algorithm 7. The second variant of the shake
function (Shake-2) applied Algorithm 7 twice in a row. This experiment was
carried out on the map random-64-64-20, the quality of the solution was
examined by measuring the sum of costs.
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Figure 4.1: Shake-1 and Shake-2 comparison on map room-64-64-16.

Measured data were fitted using a polynomial, the results of the experiment
are shown in Figures 4.2, 4.3 and 4.4. As you can see, Shake-1 yielded slightly
better results, so the next experiments were carried out using this VNS setup.

4.2.2 Variable Neighbourhood Search functionality

The functionality of Variable Neighbourhood Search was tested on three
maps: random-64-64-20, room-64-64-16 and warehouse-10-20-10-2-1.
For reference solutions I used plans generated by an algorithm based on
Action Dependency Graph (ADG) [9] implemented by Josef Weis [18]. This
algorithm constructs a graph that contains the action-precedence relations
and ensures that actions, which may cause a collision, are executed in the same
order as they were planned in the original solution. ECBS plans trajectories
that may contain cycle conflicts, the proposed algorithm can deal with cycle
conflicts. However, ADG cannot repair such plans, therefore the success rate
of ADG on each tested map is shown in Table 4.3.

map success rate (%)
room-64-64-16 70

random-64-64-16 100
warehouse-10-20-10-2-1 100

Table 4.3: Success rate of ADG on different maps.

VNS algorithm was run with a total of 10000 iterations, and the SoC of each
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run was recorded at 0, 1000, 10000 iterations. The solution at 0 iterations
is equivalent to the initial feasible solution described in Subsection 3.5.1.
The measured data for both VNS and ADG were fitted using a polynomial
and the results are shown in Figures 4.2, 4.3 and 4.4, the figures show the
absolute SoC values and the improvement relative to the solution found by
ADG defined as:

RI = fADG − fVNS
fADG

(4.2)

where f denotes the objective function, in this case the sum of costs. The
time that each run of VNS took seemed to be independent of the total delay;
therefore, I calculated the average time of each experiment. The average
times are shown in Table 4.4.
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Figure 4.2: Quality of solutions found by VNS and ADG on map room-64-64-16.
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Figure 4.4: Quality of solutions found by VNS and ADG on map
warehouse-10-20-10-2-1.

maps room random warehouse
iterations time (ms) time (ms) time (ms)

10000 5096.34 3043.92 6186.36
1000 836.56 390.34 825.19

0 78.07 36.25 70.34

Table 4.4: Measured CPU time of running VNS on maps room-64-64-20,
random-64-64-16 and warehouse-10-20-10-2-1.

From the results, it is clear that VNS worked best compared to ADG on the
map room-64-64-16 both from the perspective of success rate and relative
improvement of a solution. On the other two maps VNS could still find
consistently better solutions, but the relative improvement did not reach the
improvement measured on the first mentioned map.

To evaluate the usability of the VNS algorithm, the computation time should
be taken into account. The instances plans on maps random-64-64-20
and warehouse-10-20-10-2-1 were all calculated using ECBS in less than a
second. However, the time required to solve problems on map room-64-64-16
ranged from 3 seconds up to 300 seconds, and in one case, of the ten tested,
ECBS did not find a sufficient solution in the entire dedicated 300 seconds.
From this point of view, the computation times of VNS on this map seem
to be reasonable and VNS can be considered to be used on maps similar to
room-64-64-16.
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............................... 4.2. Multi-Agent Path Finding

4.2.3 Evolution of solution’s quality

The last experiment serves to demonstrate the evolution of the solution
quality with increasing iterations. The experiment was carried out on the
map room-64-64-16 in a randomly generated instance, the agents were
randomly delayed and the total delay was 989 time steps. In total, 50000
iterations of VNS were run and the best solution was recorded in each iteration.
The result of the experiment is shown in Figure 4.5, the graph shows the
evolution of SoC and the improvement relative to the initial solution. It
is clear that most of the improvement was made during the beginning of
the search - cca 94% of the total improvement was made in the first 10000
iterations.
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Figure 4.5: Evolution of solution with increasing iterations.
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4. Experimental results..................................

problem opt iter. ARE (%) LRE (%) ref. ARE (%) time (ms)

abz07 656

102 20.79 14.63

2.01

17
103 17.46 13.26 174
104 12.27 9.29 1714
105 8.23 6.55 16678
106 5.64 3.35 167565

abz08 665

102 24.96 22.70

1.99

16
103 17.46 13.26 159
104 14.75 12.18 1623
105 11.24 7.96 16700
106 7.36 6.16 166636

abz09 679

102 24.84 21.79

2.17

11
103 19.26 15.61 109
104 14.74 12.37 1067
105 10.73 8.54 10606
106 7.18 5.59 110435

la29 1152

102 22.11 17.88

1.80

13
103 15.97 12.76 131
104 11.60 9.20 1305
105 9.57 7.20 12910
106 6.93 3.29 123204

orb03 1005

102 22.82 18.90

2.60

4.02
103 15.91 10.84 41
104 10.00 4.47 397
105 7.66 4.47 3970
106 6.01 1.69 39186

orb08 899

102 20.51 15.46

1.63

8
103 13.17 8.67 78
104 7.75 2.55 781
105 3.73 1.55 7792
106 2.59 0.00 77658

Table 4.2: Results of experiments on six problems from JSPLIB.
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Chapter 5

Conclusion and future work

5.1 Conclusion

In this thesis, I presented a procedure for translating a job shop schedule to
MAPF plan and vice versa. Additional rules to the basic job shop model
were added to recognise an unfeasible MAPF plan from a job shop schedule.
Two modified representations of JSS were proposed and their pros and cons
were presented. A simple variant of VNS was formed using the proposed
neighbourhood function. The functionality of the proposed variant of the
VNS algorithm was experimentally tested on MAPF Benchmark Sets [16] and
was compared to algorithm that uses Action Dependency Graph. Experiments
showed that the proposed algorithm consistently performed better than ADG.

5.2 Future work

I see room for improvement in the optimisation method used - the proposed
variant of VNS has a very simple structure and uses the same function for
both the local search and the shake function. Improvement could be obtained
by creating new neighbourhood functions, for example, one that would make
smaller changes to the plan that the proposed operator.
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5. Conclusion and future work ..............................
Alternatively, completely different optimisation method could be used - VNS
does not use information that are available, such as the initial delay of agents,
time that agent must spend waiting for other agents to pass, etc.. Using
a method such as GRASP [2] and the information mentioned, it may be
possible to explore the search space more efficiently and therefore reduce the
time needed to find a sufficient solution.

The proposed variant of VNS was compared to ADG, which generates only
robust MAPF plans. It would be interesting to explore the possibilities of
representing robust plans as job shop schedules and then compare these two
approaches.
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Appendix A

Acronyms

ADG Action Dependency Graph

CBS Conflict Based Search

ECBS Enhanced Conflict Based Search

JSS Job Shop Scheduling

MAPF Multi-Agent Path Finding

VNS Variable Neighbourhood Search
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Appendix C

Attached files

Folder Description
thesis Contains this thesis.
JSS Implementation of VNS for JSS.
MAPF3 Implementation of VNS for MAPF.
common C++ codes shared between folders

JSS and MAPF3.
EXPERIMENTS Contains measured data and scripts

for data visualisation.
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