
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Control Engineering

MASTER THESIS

RTW target for Linux with CANopen
support

Author: Bc. Lukáš Hamáček

Supervisor: Ing. Libor Waszniowski, Ph.D. Prague, 2009

Prohlášeńı

Prohlašuji, že jsem svou diplomovou práci vypracoval samostatně a použil jsem pouze
podklady (literaturu, projekty, SW atd.) uvedené v přiloženém seznamu.

V Praze, dne 22.5.2009

Lukáš Hamáček

Poděkováńı

T́ımto bych rád poděkoval všem, kteř́ı mi přispěli cennými radami a pomoćı při vypra-
cováńı diplomové práce, zejména mému vedoućımu ing. Liboru Waszniowskému, PhD.
Zvláštńı poděkováńı patř́ı také mé rodině, která mi během celého studia poskytovala
podporu jak materialńı tak duševńı.

Abstract

The goal of this master thesis was to create the support of CANopen communica-
tion protocol in Linux target for the Real Time Workshop tool of Matlab. First of all,
the toolset (target) for Real Time Workshop was prepared to enable code generation,
compilation and execution at the MPC5200 based single-board computer running Linux
operating system. The architecture and particular scripts of this target are described in
the first part of this thesis. The main task of this work was integration of CanFestival,
the open source implementation of the CANopen stack, into the code automatically ge-
nerated from the Simulink model. The CANopen blockset, providing protocol API in the
Simulink model, has been developed for this reason. The CANopen blockset is described
in the second part of this thesis. Moreover, examples of using the target and the blockset
are attached to simplify the quick start of using these tools.

Abstrakt

Ćılem této diplomové práce bylo vytvořit podporu komunikace po protokolu CANopen
v kódu generovaném pomoćı nástroje Real Time Workshop, který je součást́ı programu
Matlab. Dokument popisuje nejprve takzvaný target, což je sada nástroj̊u umožňuj́ıćı
generováńı, překlad a spustěńı kódu na ćılové platformě tvořené poč́ıtačem BOA5200
s operačńım systémem Linux. Hlavńı část diplomové práce se poté zaměřuje na inte-
graci ovladače protokolu CANopen do kódu generovaného z Matlabu. K tomuto účelu
je vytvořena sada Simulinkových blok̊u (CANopen blockset), která zpř́ıstupňuje rozhrańı
ovladače pro použit́ı v modelu Simulinku. Obě části práce jsou doplněny ukázkovými
aplikacemi pro rychlé pochopeńı práce s nástroji.

5

Contents

1 Introduction 9
1.1 Work motivation . 10
1.2 Employed technologies . 10

1.2.1 BOA 5200 computer . 10
1.2.2 Matlab - Simulink . 11
1.2.3 Matlab - Real Time Workshop . 11
1.2.4 CANopen protocol . 11
1.2.5 CanFestival driver . 12

1.3 Solution concept . 12
1.3.1 Embedded target creation . 12
1.3.2 CANopen blockset . 13
1.3.3 Simulation support of CANopen blocks 13

2 Linux ERT Target 15
2.1 Introduction . 16
2.2 Target installation . 17

2.2.1 Installation prerequisites . 17
2.2.2 MinGW environment installation 17
2.2.3 Linux ERT Target installation . 18
2.2.4 BOA machine preparation . 19

2.3 Target architecture . 23
2.3.1 Target configuration scripts . 23
2.3.2 Code generating scripts . 25

2.4 Generated code . 28
2.4.1 Main function . 28
2.4.2 Makefile . 31
2.4.3 Script go and the build process . 33

3 CANopen blockset 34
3.1 Introduction . 35

3.1.1 Simulation capabilities . 35
3.1.2 Blockset parts . 35

3.2 Installation . 37
3.2.1 Object Dictionary editor installation 37
3.2.2 CANopen blockset installation . 37
3.2.3 CANopen support in the target . 37
3.2.4 Updating CanFestival version . 38

3.3 EDS file and Object Dictionary . 39

6

3.3.1 CanFestival OD editor . 39
3.4 CANopen node block . 40

3.4.1 Block parameters . 40
3.4.2 ObjectDictionary class and EDS file parser 43
3.4.3 Block functionality . 43
3.4.4 Simulation capabilities . 44
3.4.5 Block code generation . 44

3.5 Callbacks block . 45
3.5.1 Block parameters . 45
3.5.2 Block functionality . 49
3.5.3 Simulation capabilities . 49
3.5.4 Block code generation . 50

3.6 Callback parameters parser blocks . 51
3.6.1 Parser blocks parameters . 51
3.6.2 Simulation capabilities . 51
3.6.3 Emergency callback parameters parser block 52
3.6.4 Heartbeat error callback parameters parser block 52
3.6.5 Slave boot up callback parameters parser block 53

3.7 SYNC message generator block . 54
3.7.1 Block parameters . 55
3.7.2 Block code generation . 55

3.8 Asynchronous operations block . 56
3.8.1 SDO transfers . 56
3.8.2 Block inputs and outputs . 56
3.8.3 Block parameters . 57
3.8.4 Block code generation . 62
3.8.5 Simulation capabilities . 62

3.9 Function call offset block . 63
3.9.1 Block code generation . 64

3.10 Asynchronous rate transition block . 65
3.10.1 Block code generation . 66

4 Conclusion 67

A Target usage example 70
A.1 Model target configuration . 70
A.2 Model creation . 71
A.3 Code building and execution . 72

B CANopen blockset usage example 74
B.1 Definition of the control problem . 74
B.2 Creation of the node Object Dictionary . 75
B.3 Creation of the Simulink model . 76

B.3.1 CANopen callbacks . 77
B.3.2 Creating the controller . 79

B.4 Generating and compiling the code . 80

7

C Blockset common use cases 82
C.1 Synchronous master node . 82
C.2 Synchronous slave node . 83
C.3 Synchronous CANopen sensor . 84
C.4 Asynchronous CANopen node . 86
C.5 Model with two CANopen nodes . 88

D Abbreviations 90

E Attached CD content 91

8

Chapter 1

Introduction

9

1.1 Work motivation

As an introduction to this work I will write a few words about code generation and I
will try to explain the gain of code generation from a model. I will focus on control sys-
tem applications executed by an embedded computer. Applications in control engineering
have some common features. The application is based on running periodic task or tasks
that contain new output calculation in each step. It means that all the applications have
similar architecture and code generation is reasonable in this case.

The automated code generation technique became very popular because it has a lot of
advantages over the manual programming. Firstly, the code generation enables very fast
application design. While having the required hardware supported by the code generation
tool, the application can be done in a few hours. Moreover, the correct working of the
application kernel is ensured and does not need to be tested anymore.

The other significant advantage is that code generation isolates low level programming
from application design. Professional control system engineer is then able to create em-
bedded controller without having extensive programming skills.

Finally, all the code fragments that appear in the final program are written just once
while developing the code generation tool. It faces to more reliable code which is written
more rigorously as it is expected to be used in many applications.

Very popular application for control systems design is Matlab-Simulink which creates
environment for controller tuning and simulation. Real Time Workshop [Mat] is a part
of Matlab which provides tools for code generation from the Simulink model. Real Time
Workshop defines C-language code representation of each block of Simulink block library
and places it into the proper part of model source while generating the code. Moreover,
main function of the generated application ensures model synchronization and communi-
cation with original Simulink model via TCP connection.

The code generation obviously depends on the target platform defined by computer
type and operating system. Real Time Workshop supports several platforms, however,
processor PowerPC 5200, which is used at the Department of Control Engineering is not
supported. The support for BOA5200 computer (equipped by PowerPC 5200 processor)
[AM] and Linux operating system was prepared by Pavel Jeĺınek in his master thesis
[Jel08].

The BOA computer is equipped by the CAN bus port [CiAa]. The aim of this work
is to create Simulink support for CANopen protocol communication [CiAb] and enable
code generation of real-time application using CANopen communication.

1.2 Employed technologies

The following section describes briefly the hardware, software and protocols used in
this thesis.

1.2.1 BOA 5200 computer

BOA5200 is single-board embedded computer based on the PowerPC 5200 processor.
It is equipped by 128MB of RAM, 32MB of FLASH memory and Ethernet, RS232 and
two CAN peripherals. This computer is running Linux 2.6 having SocketCan [Ber] CAN
driver included in its kernel in our application. The file system image includes SSH server

10

to enable using SSH connection and file transfers from the host computer to BOA. Images
of both Linux kernel and file system have been already prepared in [Jel08].

1.2.2 Matlab - Simulink

Simulink is a part of Matlab software which provides graphical user interface for nume-
rical simulations. It contains basic blocks that provide signal routing, simple mathematical
operations and data display into charts. Simulink is enhanced by blocksets like Control
System Blockset, Aerospace Blockset and many others. These blocksets provide blocks of
more sophisticated functions.

Simulation model is created by connecting particular blocks together. This model is
then simulated in discrete or continuous sample time by Simulink engine.

Simulink provides also the possibility to create new blocks. The user defined block
functionality is written in so called S-function which contains the code that should be
performed at the initialization phase, simulation step, and so on. This S-function is atta-
ched to the S-function block in the Simulink model. The user interface of the block can
be customized by the block mask.

Note The blockset has been developed and tested at the Matlab version 2008a. Howe-
ver, it should work at the newer versions as well.

1.2.3 Matlab - Real Time Workshop

Real Time Workshop is a Matlab tool which is able to generate C language code from
the Simulink model. This code can be compiled with any C compiler and while running
it performs the same operations as the Simulink model during simulation. The generated
code is equipped by feature called External mode. It is possible to connect from the
Simulink model to the running generated application via TCP and the External mode.
The simulation in Simulink can be then performed in the same way as without generated
code with the difference that it is physically running the external program and the data
exchange and control signals are transfered via the External mode.

It is obvious that code generation and compilation is platform dependent. It means
that code generated for PC and Windows will not work at embedded computer running
Linux and vice versa. The tool which customizes the code while generating and prepares
Makefile for its compilation is called target.

1.2.4 CANopen protocol

CANopen protocol [Wik] is designed to enhance CAN bus communication protocol.
It creates in fact the application layer to the CAN protocol according to the OSI model
(Open System for Interconnection). CANopen uses CAN messages to transmit its data
and defines meaning of particular message IDs.

CANopen network consists of particular nodes (devices). Each node is defined by its
Object Dictionary (OD). This dictionary is a data structure which keeps all the informa-
tion about communication, node and device settings as well as the state variables of the
device. It means, for example, that the CANopen thermometer has the current tempe-
rature value stored in its OD. Read CANopen protocol description at [CiAb] for detail

11

information.

1.2.5 CanFestival driver

CanFestival is an open-source driver for CANopen network. This implementation of
CANopen stack has been chosen due to the fact that it supports Linux OS as well as
the SocketCan CAN bus driver used by our Linux kernel. The driver code architecture is
obviously well-considered and I have not noticed any serious limitations in using it. On the
other hand, the driver is still in development and it yields a lot of problems. The author
team has not released any official version of the driver for a long time. It means that the
only way how to obtain the current version is the CVS checkout. However, the code in
the CVS repository is continuously changing and not only by fixing bugs and adding new
features but by changing existing API functions as well. Moreover, the changes and the
code itself are not documented very well. It makes following the current driver version
absolutely impossible.

Approximately in the same time as I started working on this project, my colleague
started customizing the driver to be used at 16-bit micro-controller without operating
system. On the basis of experience with CanFestival described above, we decided to stop
updating the driver from CVS repository and fix a stable version in our repository. It does
not mean that updating CanFestival version used by CANopen blockset is not possible.
It would just need more effort than pure update of repository. Read section 3.2.4 for more
information about updating CanFestival version.

1.3 Solution concept

The master thesis goal is to create CANopen protocol support into Real Time Work-
shop to enable generating applications using CANopen communication from Simulink
model. The application has to be compatible with the BOA5200 computer running Li-
nux.

Solving a few tasks allows reaching the goal. First of all, the target has to be prepa-
red to enable generating, building and executing the code at the BOA computer. Then,
the CANopen blockset has to be created to provide CANopen API to be used in Simu-
link model. CANopen blocks provide high level simulation of data exchange and events
occurrence and generation of code interfacing the CANopen stack.

1.3.1 Embedded target creation

The target customizing the code generated by Real Time Workshop to be used at the
BOA computer have been prepared by Pavel Jeĺınek [Jel08]. The target is supplemented
by a set of tools that provide code compilation in Windows and uploading the program
executable into the BOA machine. MSYS environment running in Windows is used to
execute cross-compiler based on GCC, which compiles generated code and creates Linux
executable. This executable file is transfered by SCP to BOA machine and started via
SSH connection.

The tools described above are already done and working properly. However, the target
for Real Time Workshop is of type GRT (Generic Real-time Target) which uses basic type
Real Time Workshop for code generation. Matlab provides enhanced version of this tool

12

called Real Time Workshop Embedded Coder generating optimized code. The target based
on ERT (Embedded Real-time Target) has to be used to enable generating code by RTW
Embedded Coder. Creation of this target for the desired platform is the first goal of this
thesis. Moreover, the documentation of compiler tools and environments should be joint
with the new target documentation to provide unified user guide. The target creation
and the unified documentation are described in the chapter Linux ERT Target 2 of this
document.

1.3.2 CANopen blockset

The main idea of CANopen [CiAb] support is to integrate CanFestival driver [LOLb]
into the code generated by ERT target and create Simulink blocks that provide API of
particular driver functions. The integration itself means in fact enhancing the generated
Makefile so that the driver libraries are linked together with the generated code while
building the executable file. If the appropriate driver header files are included into the
generated code, driver functions can be used.

To implement the driver API in Simulink it is necessary to create blocks that will ge-
nerate code making the driver to do the required operations. Each block can add its code
into the model Start and Terminate function to perform the necessary settings. The main
function of each block is placed in its Output function which is performed periodically in
the simulation steps or asynchronously after some event occurrence.

Additionally, the driver itself has to be initialized and started. The CANopen node
block (section 3.4) will be created to control the driver. This block will be the main
block of the blockset and it will have to be used just once for each CANopen node in the
model (the blockset will support creation of more nodes as BOA has 2 CAN ports). This
block will read the EDS file defining the node behavior and set the block configuration
according to the file content. Moreover, inputs and outputs of the block will match the
PDO data messages mapping and provide direct access to synchronously transfered data
objects.

Support for synchronization messages generation will be provided by a special block
which will send the message in each simulation step. Asynchronous events like node state
change, emergency message reception, etc. are handled by callback functions in CanFes-
tival driver. Callbacks block will convert these functions to Simulink function call signals
that will activate particular Function call subsystems. Callbacks parameters will be pro-
vided by parameters parser blocks to the model.

The blocks described above provide the ordinary working of the node. Asynchro-
nous operations like SDO messages, Network management, etc. will be supported by an
Asynchronous block (section 3.8). This block will perform a defined set of asynchronous
operations. It will be designed mainly for use in the function call subsystem to handle
events.

1.3.3 Simulation support of CANopen blocks

The main goal of CANopen blockset project is to create a tool for code generation
for model using CANopen communication. However, it is very useful to provide at least
a basic simulation capability to enable controller tuning just in Simulink while designing
the embedded device. There are a few ways how to handle the simulation. They differs
in the level of CANopen network simulation.

13

The most universal way of network simulation is the simulation of CAN bus and the
complete message traffic. This would enable to simulate all the CANopen features in-
cluding Network management, emergency messages and so on. On the other hand, this
simulation support would take a lot of work on something which is not a goal of the
project at all as we do not want to create CANopen network simulator.

The other way is based on simulation inputs and outputs of particular blocks. It
means that if some block reads some value from network communication and provides
it at his output, a simulation input will be created and its value will be used instead of
the received message in case of simulation. Almost all data transfers can be simulated
using this method, however, the nodes do not use any object dictionary to store their
values. It means that the data integrity between nodes in the model is not ensured during
simulation.

The compromise solution is to enhance the previous method by storing object dictio-
nary content of each node into the Matlab workspace. CANopen node and Asynchronous
blocks will work with these data objects. The remote node can be simulated by using
extra CANopen node block, which will create its OD in the workspace and other block
can simulate reading or writing to the remote node OD. Simulation of this type will be
used in the blockset. Read particular sections in block descriptions to learn more about
the simulation.

14

Chapter 2

Linux ERT Target

15

2.1 Introduction

Real Time Workshop embedded coder is a Matlab tool which provides the code ge-
neration of any Simulink model. This is very useful for quick application development.
User can create, for example, some controller model in Simulink and just click Generate
code to get source code of the controller in C language. Obviously, the code has to be
customized for particular hardware and eventually operating system (Target with upper
case T). This customization of generated code is controlled by targets (target with lower
case t). Matlab contains a set of targets. Each target defines some platform (Target)
which it is designed for (PC + Windows, Unix, etc.).

Linux ERT target is based on generic Unix target and is design to control code genera-
tion for Target platform BOA5200 computer [AM] and Linux. This computer is equipped
by two CAN peripherals [CiAa], so the target contains support for CANopen blockset. It
is Simulink blockset which integrates the CANopen [CiAb] driver to the generated code
and enables the user to develop embedded applications using CANopen communication.
However, the blockset is described in a separate documentation. The simple diagram of
Real Time Workshop principle is shown in the figure 2.1.

Linux ERT Target

C source files and Makefile

Linux executable

Code generation

Building

Linux executable
SCP copy

Windows

MSYS

Start via SSH

Ethernet

TCP connection

External mode

BOA5200

Linux

Hardware peripherals

Figure 2.1: Real Time Work Target principle

This document describes everything which is necessary to know for getting started
working with the target. The first chapter 2.2 describes the target installation and ins-
tallation of all supporting tools like compilers on Windows host PC. Additionally, the
BOA software equipment is defined and its preparation is described. The architecture of
the target itself, including particular files description (section 2.3), and generated code
appearance (section 2.4) is explained later in the document. Finally a simple tutorial
(section A) on using the target is attached to make the first steps with target as easy as
possible.

16

2.2 Target installation

The Linux ERT Target is designed to be used in Windows operating system. Howe-
ver, the Target machine BOA5200 [DoCE] is running OS Linux so that the generated
code has to be compiled for Linux and PowerPC processor (BOA5200 is based on the
PowerPC5200). This type of compilation is called cross-compilation. The tool chain for
building programs for BOA target was prepared at the Department of Control Enginee-
ring at CTU [DoCE]. Pavel Jeĺınek has ported this tool chain for working at MinGW
environment as a part of his Master thesis [Jel08]. I have just used the complete parts to
enable compilation and execution of code generated by this target.

In the aim of creation the complete documentation for the target, I will describe parti-
cular steps of installation everything needed for the work with target and BOA computer.

2.2.1 Installation prerequisites

For work with Linux ERT target you have to have PC with Matlab installed. The
blockset has been developed and tested at the Matlab version 2008a. However, it should
work at the newer versions as well. The target was developed and tested in the Matlab of
release 2008a. The Matlab installation has to contain Simulink and Real Time Workshop
Embedded Coder tools. The target distribution should contain installation files of MinGW
environment, compiler tool chain and BOA Linux image. Bellow is the list of all files
necessary to install and use the target. These files should be attached to the target
distribution.

� Tftpd32-3.22-setup.exe

� gcc-powerpc-603e-linux-gnu-addwin.tar

� gcc-powerpc-603e-linux-gnu.tar

� MinGW-5.1.3.exe

� minires-1.01-1-MSYS-1.0.11.tar.bz2

� MSYS-1.0.10.exe

� openssh-4.6p1-MSYS-1.0.11.tar.bz2

� openssl-0.9.8e-3-MSYS-1.0.11.tar.bz2

� zlib-1.2.3-MSYS-1.0.11.tar.bz2

� MPC5200-2007.02.01-redbootROMRAM.srec

� myfs.jffs2

� zImage.elf

2.2.2 MinGW environment installation

MinGW is a collection of freely available and freely distributable Windows specific
header files and import libraries, augmenting the GNU Compiler Collection (GCC) and
its associated tools (GNU binutils) [min]. It is supplemented by MSYS which is a Minimal
SYStem providing a POSIX compatible Bourne shell environment, with a small collection
of UNIX command line tools [min]. These tools together provide the Windows compatible
environment of GNU utilities for application building and necessary file management.

There are steps of MinGW installation and its setup to fit all our needs in the following
text. All the files mentioned bellow should be present nearby this document in software
folder. If their are not, it is no problem to download them from the Internet. Moreover,
you may want to use newer versions of the programs that will have been probably released.

17

Note I recommend to install everything just into C:\ or into folder without space or
diacritic marks in its path at least. This could raise some problems.

1. Run MinGW-5.1.3.exe and install MinGW in its minimal configuration. No lan-
guage support is necessary. Note that this installer will download MinGW from the
Internet during installation.

2. Run MSYS-1.0.10.exe and install MSYS. Proceed the post-install guide started at
the end of the installation.

3. Unpack minires-1.01-1-MSYS-1.0.11.tar.bz2 to the MSYS installation folder (e.g.
C:/MSYS/1.0).

4. Unpack openssh-4.6p1-MSYS-1.0.11.tar.bz2 to the MSYS installation folder.

5. Unpack openssl-0.9.8e-3-MSYS-1.0.11.tar.bz2 to the MSYS installation folder.

6. Unpack zlib-1.2.3-MSYS-1.0.11.tar.bz2 to the MSYS installation folder.

Note Unpacking .tar.bz2 archives in Windows can be done e.g. in Total Commander
[Ghia] while having the proper packer plugin installed [Ghib]. The other way ho to unpack
these archives is to just copy them in the proper location in Windows, run MSYS console
and unpack them by the tar command.

$ tar −xjf soubor . tar . bz2
$ tar −xvf soubor . tar

Cross-compiler installation

The working MinGW and MSYS environment with SSH communication support is
installed now. Steps of installation the cross compiler for PowerPC machine and Linux
will mentioned bellow. The tool chain creation and customization is described in [Jel08]
and [DoCE]. I will describe just using the prepared archives here.

1. Unpack gcc-powerpc-603e-linux-gnu.tar to the MinGW installation folder.

2. Unpack gcc-powerpc-603e-linux-gnu-addwin.tar to the MinGW installation folder.

3. Add the compiler path to the system paths by adding the following line at the end
of the file /etc/profile.

export PATH=$PATH : / mingw/usr/bin

2.2.3 Linux ERT Target installation

Installation of the Linux ERT Target itself is very simple. Just unpack the linux ert -
target.zip somewhere and run linux ert target setup.m script in Matlab. It will add the
target path into Matlab paths. The target should be visible in the Simulation configura-
tion dialog Real Time Worshop pane of the Simulink model after restarting Matlab. This
will install just the target without CANopen blockset which has to be installed separately.
Without having the blockset installed, the CANopen support option must not be enabled.

18

2.2.4 BOA machine preparation

The target is designed to work with BOA5200 computer [AM] based on PowerPC
processor. From the software point of view, there has to be OS Linux with SSH support
and SocketCan [Ber] CAN bus driver installed. The SSH support is secured by adding
DropBear SSH server [Joh] into Linux file system. The SocketCan driver is included in
the Linux kernel. Creation of the Linux kernel and file system is described in [Jel08] and
[DoCE] again. The Linux target should be supplemented by prepared Linux kernel and
file system image and I will only describe the steps of installing these images into the
BOA computer.

The images will be transfered via TFTP service which is much faster than serial bus.
We will set up the network connection and install TFTP server now. First of all, install
the TFTP server by running the file Tftpd32-3.22-setup.exe, start it and set its work
directory to the directory BOA5200 of the target distribution.

We will configure the BOA network connection now. First, connect the BOA computer
to the host PC by RS232 cable. Open Windows Hyperterminal with this configuration:
Baud Rate: 38400, Bits: 8, Parity: No, Stop Bits: 1 and turn the BOA on. Something
should be written at the console. Wait until the information about executing the boot
script appears and press Ctrl+C to avoid the script execution. Now the RedBoot console
should be active.

RedBoot [Hat] is a software started just after computer power up and it is used to
maintain the flash memory and boot the operating system. It is required to have RedBoot
software in version 2007-02-01 or later to run Linux kernel 2.6. You can recognize the
current RedBoot version from console output after BOA power up. If RedBoot version
of your BOA is 2007-02-01 or later, you can skip the RedBoot update section. You will
have to configure your RedBoot to connect to the network. The best way how to do it is
to follow the steps later in this chapter.

Updating RedBoot

The following paragraph summarizes the steps of updating RedBoot according to
[DoCE] or [Jel08]. You should have your BOA running the RedBoot console and the
TFPT server started at our host computer. Note, that the RedBoot console is not case
sensitive, but the image names are! Mind the RedBoot image name case.

1. Type this command to the console

RedBoot> load −v −b 0x100000 MPC5200 −2007.02.01− redbootROMRAM . srec

2. After finishing the transfer save the new RedBoot image to the flash memory and
reset the computer by typing these commands

RedBoot> fis cr RedBoot

RedBoot> reset

Now, the computer should started with the new RedBoot version. Avoid running the
boot script and continue with installing the Linux

19

Installing Linux kernel and file system

To install Linux at the BOA computer it is necessary to store kernel and file system
images into the flash memory and set up the RedBoot to boot Linux after startup. The
following steps describe the file transfer using TFTP and their storage into the memory.

1. Format BOA flash and clear RAM by these commands

RedBoot> fis init

RedBoot> mfill −b 0x100000 −l 0xFF0000 −p 0xFFFFFFFF

2. Transfer the file system image myfs.jffs2 by typing this command.

RedBoot> load −v −r −b 0x100000 myfs . jffs2

3. After successful finish of the transfer save the image into the flash memory.

RedBoot> fis cr JFFS2 −l 0xFF0000

4. Transfer the kernel image zImage.elf by typing this command.

RedBoot> load −v −b 0xFF0000 zImage . elf

5. After successful finish of the transfer save the image to the flash memory.

RedBoot> fis cr Linux

The Linux kernel and file system are stored in the flash memory and Linux can be
started by typing following commands.

RedBoot> fis load Linux

RedBoot> exec

It is possible to write these commands to the RedBoot boot script and enable auto-
matic starting of Linux. This is described in the next paragraph.

Configuring RedBoot

RedBoot configuration can be performed by typing fconfig command in the RedBoot
console. It starts simple configuration dialog. The following listing shows the example
settings. I have added comment lines started by # to explain particular values.

RedBoot> fconfig

enable boot script

Run script at boot : true

old boot script commands

Boot script :
. . fi lo Linux

. . ex

Enter script , terminate with empty line

20

loading Linux image from flash

>> fi lo Linux

executing the image

>> ex

>>
timeout before starting the boot script in RedBoot

Boot script timeout (1000 ms resolution) : 5
dynamic IP address assignment (DHCP) is disabled

Use BOOTP for network configuration : false

IP address of the network router

Gateway IP address : 1 92 . 168 . 123 . 254
IP address of BOA computer , will be used by SSH connection

Local IP address : 1 92 . 168 . 123 . 199
Local IP address mask : 2 55 . 255 . 255 . 0
IP address of the computer running TFTP server

Default server IP address : 1 92 . 168 . 123 . 101
FEC Network hardware address [MAC] : 0x00 : 0 x00 : 0 x00 : 0 x00 : 0 x00 : 0 x03

GDB connection port : 9000
Force console for special debug messages : false

Update RedBoot non−volatile configuration − continue (y/n) ? y

reset the Target

RedBoot> reset

With this configuration BOA will set its IP address permanently and start Linux.
Mind that it is necessary to set the same IP address in the Linux configuration file once
more according to the next paragraph.

Customizing Linux

Some more settings is necessary to perform in the Linux itself to make network connec-
tion and SSH server working. First of all edit /etc/init.d/config-eth0 by vi editor which
is installed in the BOA file system and change the IP address to match the local address
configured in RedBoot.

Then generate the keys for SSH server by typing following set of commands.

$ cd /etc/ssh
$ /usr/local/bin / ./ dropbearkey −t rsa −f dropbear_rsa_host_key

$ /usr/local/bin / ./ dropbearkey −t dss −f dropbear_dss_host_key

You can change the supervisor password by typing the command passwd root.
We will create user profile for executing the generated programs at the BOA machine.

However, setting thread priority in the main function (see section 2.4.1) requires root
authority, so the program will work but all the threads will have the same priority which
is not optimal especially in the multitasking mode. The solution is to execute the program
from the root profile. The following set of commands creates user called rtw and set the
folder /home/rtw to be its home folder.

$ cd /
$ mkdir home

$ cd home

$ mkdir rtw

$ adduser −h /home/rtw rtw

$ chown rtw : rtw rtw

After the next boot up, the network should work correctly and it should be possible
to connect to BOA computer via SSH service as both root and rtw user.

Finally, the CAN ports have to be configured to use 1Mbps bit rate and to be turned
on after the Linux boot up. To do this create script called can in /etc/init.d with the
following content.

21

#!/bin/sh
echo 660000 >/sys/class/net/can0/can_baudrate
echo 660000 >/sys/class/net/can1/can_baudrate
ifconfig can0 up

ifconfig can1 up

To run the script while Linux is booting enable can script execution by typing chmod
a+x /etc/init.d/can and add the following line into /etc/inittab.

: : once : / etc/init . d/can

22

2.3 Target architecture

I will describe particular files of the ERT target in this chapter. What the files do
and when they are called are the main things that is necessary to know to understand
the target architecture. It is usual to name all the target files with the prefix same as the
target name. It means that in our case all the files has the prefix linux ert target.

The diagram of all the target scripts is in the figure 2.2. It shows the process of target
selection and configuration customization by user in the upper part. The code generation
process is shown in the lower part of the figure.

2.3.1 Target configuration scripts

This group of scripts performs the target integration into Matlab environment and
customization of the configuration dialog. It also defines the variables used by code
generator and set them to the default values.

linux ert target.tlc

The basic file of the whole target is linux ert target.tlc which defines the appearance of
the Simulation configuration dialog of the Simulink model while the target is chosen for the
code generation. This file was created by customization of matlabroot/rtw/c/ert/ert.tlc
file which defines the generic ERT target and is set to be an inheritor of it. It means
that it inherits the settings of the generic ERT target and adds the specific features of
the Linux ERT target.

sl customization.m

This file contains the sl customization function which adds TCP/IP communication
support for external mode into the target. It has to be placed somewhere in the Matlab
path and it is invoked by Simulink during the startup.

linux ert target select callback handler.m

Select callback script is called after selecting the target in configuration dialog. This
script set up default values of configuration and disables some of them to be changed by
user. The aim of this is to set up as much as possible of the configuration automatically
and disable the user to set unsupported values.

linux ert target canopen support callback handler.m

This is the callback script after changing the value of Enable CANopen support in
the Real Time Workshop/CANopen support configuration pane. It tries to search the
CanFestival lib and include folders. They are placed in the CANopen blockset folder and
if it is correctly installed (the blockset folder is in the Matlab path), it should be found.
The searching is based on file called cfpointerfile.txt which is placed in the canfestival
blockset subfolder. Its only purpose is the path searching.

The canfestival/include folder contains the header files of CF API that are necessary for
compilation of program using CanFestival. The folder has to be added into include path for
compilation in Makefile if the CANopen blockset support is enabled. The canfestival/lib
folder contains the CanFestival libraries that are necessary for program linking. If the

23

Legend

Default values of Simulation configurations
parameters are set.
Some options are disabled if it is not allowed
to be changed by user.

_select_callback_handler.m
Target selected

CANopen support
enabled

It searches the Matlab path for cfpointerfile.txt
and determine the CanFestival include and lib
folders in CANopen blockset.

_canopen_support_callback_handler.m

Simulation Configuration

Keeps the settings of generated
target and simulation.
Configuration dialog for user
customization.

Disables CF library path Edit box and enables
CF source folder insertion in Setup dialog.

_cfbulid_callback_handler.m

CanFestival build
from source

Adds menu
categories

Fills default configuration

The main file of the ERT target.
Keeps the appearance of
the Configuration dialog.

linux_ert_target.tlc

After selection of the ERT target
adds the TCP/IP external mode
comunication support.

sl_customization.m

Target
selected

Generate code
RTW
options

File containing information from
configuration dialog and RTW
options of the model and its blocks.

model.rtw

CANopen support disabled

Makefile template

linux_ert_target.tmf

Projekt Makefile

model.mk

Singletasking main
function generation script.

_singletasking_main.tlc

Multitasking main
function generation script.

_multitasking_main.tlc

Main function
generation script.

_generate_main.tlc

Singletasking
Solver mode Multitasking

Solver mode

Solver and tasks
information

File containig the
Main function.

ert_main.c

Script generating
Logger modul.

logger.tlc

Logger modul.

logger.c + .h

Periodic thread library.

pthread_period.c + .h

Copied from
ERT folder

Particular sections of this file are called
during the TLC process. Additional
code costumization can be done here.

_make_rtw_hook.m

This file is called during TLC process
and generates projekt make process
batch file.

_wrap_make_cmd_hook.m

Make process batch file.

model.bat

This file generates the go script.

linux_ert_target_go.m

Script go performes
the make process and
program startup.

go

Model code is atomatically
generated into a set
of source files.

*.c + *.h files

Main TLC file Config dialog callbacks RTW configuration Code generating scripts Generated files

Template of source
files banners.

_code_template.cgt

Rewrites paths into
Unix format

adapt_code.m

Figure 2.2: Target architecture with scripts calling diagram

24

Build CanFestival from source option is enabled this libraries are not used and they are
obtained by compilation the CanFestival source code.

linux ert target cfbuild callback handler.m

This callback function is invoked by changing the Build CanFestival from source option
and it only switches between insertion of CanFestival library folder or source code folder.
Moreover, it enables or disables CAN message console logging option as the CanFestival
has to be built from source to turn it on.

2.3.2 Code generating scripts

This group of scripts is used by Real Time Workshop during the code generation.
The code generation has predefined some scripts that are called in specified phases of the
process.

Before describing the target scripts I will mention the model.rtw file (model is generally
the name of the model so that it may be called differently). This file is generated auto-
matically at the beginning of the TLC process and it contains all the information about
model, its blocks and simulation setting necessary for program generation, compilation
and execution.

linux ert target generate main.tlc

This is the TLC script which generates the main function file ert main.c according
to solver mode and sample times settings of the model. This file is registered in the
Real Time Workshop/Templates pane in the Simulation configuration. It is set by li-
nux ert target select callback handler.m script and the user change is disabled.

This script creates the ert main.c source file and calls TLC function for single or
multi-tasking solver mode. Finally, it calls TLC script for generation of the system logger
module.

linux ert target singletasking main.tlc

This script generates the content of the ert main.c file for the singletasking mode. All
the model code is executed from a single thread running at the base sample time. The
single tasking mode differs according to the number of sample times used in the model.

Singletasking-singlerate mode means that just one sample time is used. Singletasking-
multirate mode means that more sample times are used in the model but everything
has to be executed from a single thread. It is handled by the rate scheduler which is
automatically generated into the model.c file and the main function is the same for both
single and multi rate case.

Read in Code generation chapter for more information about the singletasking main
function.

linux ert target multitasking main.tlc

This script generates the content of the ert main.c file for the multitasking mode.
The multitasking mode is only reasonable (and allowed as well) for the model with more
different sample times. The multitasking mode is realized in the way that each of the
sample times has separate thread where its loop is running. The cycles of each loop is

25

controlled by the main loop running at the base sample time (the greatest common divisor
of all sample times).

Read in Code generation chapter for more information about the multitasking main
function.

logger.tlc

The logger module of the generated code performs runtime logging of the program
events. It supports two types of logging - console output and log file output. Both types
can be disabled or set onto three different levels according to the amount of logged mes-
sages. This is set in the Real Time Workshop/Runtime logging pane in the configuration
dialog. This file generates the source and header files of the logger module.

linux ert target.tmf

This file is the template of the Makefile used for building the generated program.
The result of this is the Makefile model.mk, where model is the name of the model.
The template is based on the generic template for Unix ERT target which can be found
in matlabroot/rtw/c/ert/ert unix.tmf. The template is only changed to enable linking
CanFestival driver into the program. Linking of the driver is subject to the Real Time
Workshop/CANopen support settings in the Simulation configuration.

If the CANopen support is disabled, the Makefile does not need any parts of the driver
for linking. If it is enabled and it is not required to build the driver from its source code,
it adds include folder to the include paths and lib folder to the libraries for linking. These
folders are set in the configuration dialog. If building the driver from source is required
(configure) and make commands are applied at the inserted source folder. Then the
libraries obtained by actual compilation are used for the final linking.

linux ert target make rtw hook.m

File with this name is called during the code generation process if it exist in the tar-
get path. It contains sections that are called in a different moments of the generation.
It performs several tasks. It rewrites CanFestival folders paths into old DOS format by
rtw alt pathname Matlab function. This command removes spaces and diacritical marks
from the given paths.

The copying of several source files and libraries is performed after the TLC process.
The source and header files of periodic thread library are copied into generated code
folder. If the CANopen support is enabled and build CanFestival is not required three
library files of CanFestival driver are copied there as well.

Finally there are executed to scripts in the exit section. The script adapt code.m custo-
mizes generated Makefile for running in MSYS environment and the script linux ert target -
go.m generates the go script.

adapt code.m

This script customizes already generated Makefile model.mk for running in the MSYS
environment. It rewrites all backslashes \ with slashes /. All the paths are rewritten
into the Unix format this way. However, there are some backslashes in the Makefile used

26

as line continuation mark that have to be kept. It is secured in the way that all these
backslashes are represented by BACKSLASH keyword in the Makefile template. After
rewriting the paths this keyword is replaced by regular \ mark.

linux ert target go.m

This script creates the go script and place it into the working directory. This script is
the only user interface of program compilation and execution. Its content differs according
to the settings in Real Time Workshop/Target configuration pane. There is set in this
dialog whether the project should be just compiled, compiled and copied onto the Target
machine or executed at the Target machine as well. Information about the Target machine
IP address is used as well. Moreover if CANopen support is enabled the script inserts
into the go script commands for copying the canfestival dynamic library onto the Target
computer.

linux ert target wrap make cmd hook.m

The model.bat file is generated by Real Time Workshop. This file contains the exe-
cution command of make program. This is done automatically, but if there is the li-
nux ert target wrap make cmd hook.m script in the target path, it is called instead and
the model.bat content can be customized.

linux ert target code template.cgt

This file contains template for source file banner of all the generated .h and .c files.
It is used by Real Time Workshop while generating the files.

27

2.4 Generated code

This chapter describes the code generated by Real Time Workshop using Linux ERT
target. The folder model linux ert rtw is created in the working folder and all the genera-
ted files are placed into it. Generally, there are several types of generated files. First of all
the file ert main.c with main function contains the code used for model synchronization.
Additionally the files containing the code of all the blocks used in the model are generated.
The interface between the step synchronization in the main function and calculations of
the model blocks is created in the file model.c. This is an interface between Linux ERT
target specific code (main function) and general block code generated by RTW automa-
tically as well.

Finally the Makefile (model.mk) and make execution batch file (model.bat) are gene-
rated. In the working directory, the go script is created to enable the user to run building
and execution of the code by a single command.

2.4.1 Main function

The main function is completely generated by the target and is customized according
to the solver mode and sample times setting of the Simulink model. The target support all
the solver modes (singletasking - singlerate, singletasking - multirate and mutlitasking).
However, the base part of the main file is always the same.

The base part of the main file contains three functions. The main function which
performs the basic setting of the simulation and creates two threads running the main loop
and rt OneStep functions. The main loop thread is set to have the highest priority and it
produces the base sample time steps. The main loop controls the execution of step function
using a semaphore. There may be more step function threads in case of multitasking mode.

Main loop

Each simulation independently of the solver mode has just one base sample time. This
base sample time is the greatest common divisor of all used sample times of the model.
The main loop function is started in a thread with the highest priority and it is liable for
generating the base step intervals with as high precision as possible.

The timing is realized by periodic thread implemented in pthread periodic library crea-
ted by Pavel Ṕı̌sa at the Department of Control Engineering at CTU [Ṕı̌s05]. This library
has a very simple API for creation periodic timer and waiting for the timer expiration.
It is secured by the period timer that the main loop cycle is executed just in the base
sample time frequency. The most important code of the main loop is shown in the figure
2.3.

The step cycle waits for unblocking the step semaphore. This semaphore is unblocked
in each main loop cycle. From the step cycle the mode step function placed in the auto-
matically generated model.c file is called. This function contains the code of simulation
step calculations.

* setting the priority is just pseudo code here *\
set_thread_priority (MAX_PRIORITY) ;

* start = actual time , period = base sample time *\
pthread_make_periodic_np (pthread_self () , &start , &period) ;

28

whi le (! finished) {
* waiting f o r timer expiration *\
pthread_wait_np () ;
* checking the overrun *\
sem_getvalue(&step_semaphore , &step_sem_value) ;
i f (step_sem_value) {

rtmSetErrorStatus (test2_M , ”Overrun”) ;
break ;

}
* performing the step *\
sem_post(&step_semaphore) ;
sem_post(&step_semaphore) ;
* external mode communication *\
rtExtModeCheckEndTrigger () ;

}

Figure 2.3: Main loop cycle

Overrun checking

It is obvious from the simulation synchronization principle that if the execution of the
model code called from the rt OneStep function took more time than is the sample time,
the real time feature of the simulation would be violated, an overrun would occur. It is
not possible to guarantee that the code would be fast enough and so it is necessary to
check the overrun occurrence at least.

Main loop thread

Set thread priority to MAX

Create periodic timer

While loop

Wait for timer

Check for overrun
If sem > 0 then
Overrun Error!

Release semaphore

Release semaphore

rt_OneStep thread

Set thread priority to MAX -1

While loop

Take semaphore

Take semaphore

Call model_step()

Release semaphore

Release semaphore

Final step

model_step()

Model simulation
Step code

ert_main.c model.c

sem=1

sem=2

sem=1

sem=0

Figure 2.5: Overrun checking

required to be singletasking is called singletasking - multirate. The main function is the
same as in the classic singletasking mode and the rate scheduling of the particular sample
times is performed in the model.c file. The diagram is shown in the figure 2.6. Note that
double using of semaphores (described in Overrun checking paragraph) is abandoned in
this figure to simplify the diagram.

Multitasking case

Usually if more than one sample times are used in the model, the multitasking solver
mode is chose. The advantage over the singletasking - multirate case is that each sample
time operations are running in the separate thread. The threads are generated into the
ert main.c file. Each contains the loop which is synchronized by a semaphore.

The rate scheduling is controlled by the main loop with calling scheduler functions
from model.c. The main loop is running at the highest (base) sample time. It calls the
model SetEventsForThisBaseStep(eventFlags) function in each cycle. It fills the array of
logical variables evenFlags so that it contains an information whether particular sample
time cycle is scheduled into this base time cycle or not. This decision have been made in
the last base sample cycle by calling the rate scheduler inside the model.c file.

While having the information whether to run particular sample time steps or not, ap-
propriate semaphores are released. Base sample time (always numbered as 0) is performed
in each main loop cycle. The diagram of function calls in multitasking model is shown
in the figure 2.7. Note that double using of semaphores (described in Overrun checking
paragraph) is abandoned in this figure to simplify the diagram.

30

Main loop thread

Set thread priority to MAX

Create periodic timer

While loop

Wait for timer

rt_OneStep thread

Set thread priority to MAX -1

While loop
Take semaphore

Call model_step()

Final step

Release semaphore

model_step()

ert_main.c model.c

Check overrun

Release semaphore

Get EventFlags
for the base step

model_step1()

Model simulation
Second highest
frequency code

model_step2()

Model simulation
Third highest

frequency code

Rate scheduler

model_step0()

Model simulation
Highest frequency

code

If EventFlags[1] == 1

Schedule rates

Call model_step0()

If EventFlags[2] == 1

Figure 2.6: Singletasking - multirate model synchronization

Thread priority assignment

Separation of the model code into threads according to sample times was described
in the previous paragraphs. The scheduling of these threads is managed by operating
system, Linux in this case. The scheduling priority can be set to particular threads. Then
the preemptive scheduler is able to interrupt running thread in case that some thread with
higher priority is ready to run. The highest priority at all is set to the thread running
the main loop 2.4.1. The second highest priority is then set to the thread running the
base sample time step (rt OneStep). Although both loops runs at the same frequency, the
main loop controls the synchronization and needs to have the highest priority to check
the eventual overrun.

Priorities of rt OneStepX threads are set to match the step sample time order in the
multitasking case. It means that threads running faster sample times are set to have
higher priority. But still the highest priority is always set to the main loop.

2.4.2 Makefile

The Makefile model.mk (model is the model name) is created by filling the template
linux ert target.tmf. Parameters stored in the RTW options configured in Simulation

31

Main loop thread

Set thread priority to MAX

Create periodic timer

While loop

Wait for timer

EventFlag[1] == 1

Release sem1

rt_OneStep0 thread

Set thread priority to MAX -1

While loop
Take semaphore0

Call model_step0()

Final step

Release semaphore0

Release semaphore1

model_step0()

Model simulation
Highest frequency

code

ert_main.c model.c

Check overrun1

EventFlag[2] == 1

Release sem2

Check overrun2

Check overrun0

Release semaphore0

Get EventFlags

rt_OneStep1 thread

Set thread priority to MAX -2

While loop
Take semaphore1

Call model_step1()

Get EventFlags
for the base step

rt_OneStep2 thread

Set thread priority to MAX -3

While loop
Take semaphore2

Call model_step2()

model_step1()

Model simulation
Second highest
frequency code

Release semaphore2

model_step2()

Model simulation
Third highest

frequency code

Rate scheduler

Figure 2.7: Multitasking model diagram

configuration dialog are filled into prepared variables of the Makefile. CANopen support
variables were added to the general RTW options. These variables are used in the Makefile
to control the compilation of code using CanFestival API and the compilation of the driver
itself. CANopen support variables and their usage in the Makefile is shown in the table
2.1.

Real Time Workshop forwards CanFestival paths and Matlab paths from the configu-
ration to the Makefile. The problem is that Windows uses backslash as folder separator
and Linux and MSYS too the classic slash. All the paths forwarded to the Makefile has to
be rewritten to the Unix format. MSYS is able to work with Windows address beginning
with the disk identifier, the only thing which is necessary to be changed in the paths
are the slashes. It means that if Matlab path C:\MATLAB\R2008a is rewritten into
C:/MATLAB/R2008a, it works in MSYS environment.

The Matlab path is customized by linux ert target wrap make cmd hook.m script. The
CanFestival address are rewritten in the linux ert target make rtw hook.m script in the
section called just before TLC process.

32

RTW variable Values Influence on the Makefile

CANOPEN SUPPORT
0
1

No CanFestival parts are compiled or linked
CanFestival headers and libraries are used

CANFESTIVAL BUILD
0
1

CF libraries are copied from library path
CF source path compiled and libraries used

CANFESTIVAL INCLUDE Path Folder with CF header files

CANFESTIVAL LIB Path Folder with precompiled CF libraries

CANFESTIVAL SOURCE Path CF source folder prepared to make command

CANFESTIVAL CONSOLE
0
1

No CanFestival driver console output
CAN messages logging (–debug=MSG option)

Table 2.1: CANopen variables in the Makefile

2.4.3 Script go and the build process

This script is generated into the working directory. It contains commands for building
the generated program, copying to the Target machine and starting it. The setting of the
Target IP address and other connection information can be customized in the Real Time
Workshop/Target pane of the Simulation configuration.

33

Chapter 3

CANopen blockset

34

3.1 Introduction

The CANopen blockset provides Simulink API of the CANopen communication proto-
col [CiAb]. It is designed mainly for generating the code by Linux Embedded Real Time
Target which is customized for Linux OS and BOA5200 computer [AM]. The blockset
integrates CanFestival driver [LOLb] into the code generated by the target. Particular
blocks provide particular API functions of the driver to be used in Simulink model. It
implements entire CanFestival API which enables to create CANopen node with common
features.

Note The blockset has been developed and tested at the Matlab version 2008a. It
should work at the newer versions as well.

3.1.1 Simulation capabilities

The blockset has the simulation support as well, but it is designed only to enable
running the simulation during the embedded controller tuning in Simulink. It does not
simulate CANopen network and its communication at all. The simulation support is rea-
lized mainly by the simulation inputs and outputs of the blocks that are used to obtain
data from the model instead of the CANopen network during the simulation.

Moreover, CANopen node and CANopen asynchronous blocks works with Object dic-
tionary object stored in Matlab workspace and use it for data exchange. This feature
enables to simulate asynchronous data transfers via SDO messages. Finally, simulation
of CANopen event callbacks including parameters parsing is supported as well. On the
other hand, Network management, Heartbeat service or Network synchronization are not
simulated at all. Read simulation capabilities of particular blocks to learn more about
this topic.

While simulating the model in Simulink some simulation blocks are always added.
While generating the code all model blocks are generated including these used just for
the simulation. You can use Environment controller switch to avoid generating parts of
the model connected to simulation ports. See blockset usage tutorial in section B.3.2 for
example of doing this.

3.1.2 Blockset parts

Particular blocks of the blockset are defined in model file linux ert target blockset.mdl.
This model is a library and is set to be part of Simulink Library Browser by the code in
file slblocks.m. It secures that the blockset will be visible in the browser and its blocks
will be usable in Simulink models. Read [Mat] to understand the following text about
blockset parts well.

Block mask

The block user interface enabling the parameters settings is realized by the block
mask. The mask defines the appearance of the block and forwards the parameters to
the block S-function. If some more complex code is necessary to process the parameters
or customize the block appearance, callbacks on parameter change are stored outside
the model in mask callbacks folder. This folder is added into Matlab path by blockset
installation script. This simplifies the code maintenance and enables code re-usage.

35

Block S-function

Each block has just one S-Function which is written in C language. The S-functions
are then compiled into MEX file with the extension .mexw32. The S-function is a set of
callback functions in fact. There are functions performing block ports and sample time
settings, writing code into .rtw file while generating code and performing the simulation
in Simulink environment as well.

Block TLC script

Each block has the TLC (Target Language Compiler) script called by the same name
as its S-function. TLC scripts are stored in subfolder tlc c and are reliable for the code
generation. Similarly to the S-function, the TLC script is based on callback functions
that are called by the Real Time Workshop while generating code. The code for gene-
rating source files and their content is placed in the proper callback functions. There
are more TLC scripts than is the number of blocks, however just the main ones are cal-
led automatically by RTW and the other are used as libraries and called from the main
scripts.

Block help

The block help is realized by HTML script with the same name as the S-function.
The help files are linked to the block mask so that the help is accessible directly by block
help button. The help is based on parameters description which is the same as Block
parameters sections in this document. Images used in help pages are stored in help img
subfolder.

CanFestival driver

The blockset is based on CanFestival driver for the CANopen network. It is possible
either build the CanFestival from source while generating code or using prepared libraries.
The libraries are stored in the canfestival/lib subfolder of the blockset and are used while
Build CanFestival from source option in model configuration is disabled. In the same way
CanFestival header files are handled. They are prepared in folder canfestival/include and
in case of building CanFestival, the headers from the source folder are used instead.

ObjectDictionary class

An instance of the ObjectDictionary class is created by each CANopen node block used
in the model. It is stored in the workspace and keeps the node Object dictionary. The OD
content is read from the EDS file and parsed by the EDS parser which is a part of the class
called from the class constructor. This Matlab class is defined in the ObjectDictionary.m
file in the blockset folder.

36

3.2 Installation

This chapter describes installation of the CANopen blockset and all the other programs
necessary to work with the blockset. As the blockset is designed to be used with the Linux
ERT Target, it is supposed to have this target already installed according to its help. The
target distribution contains all the necessary tools for working with the Target computer
[AM] and generating code for this platform.

3.2.1 Object Dictionary editor installation

For creating the CANopen node in Simulink model it is essential to have the EDS
file and source files of the Object Dictionary prepared (see section 3.3). Creation of the
EDS file and generation of the source files has to be performed by the Object Dictionary
Editor distributed with the CanFestival driver sources. It is also available in the blockset
distribution in the subfolder canfestival/objdictgen.

The editor needs to have Python, WxPython and Gnosis Utils installed for running.
The following installation files should be available in the blockset distribution or you can
download the current versions from the appropriate web sites.

� python-2.6.1.msi

� wxPython2.8-win32-unicode-2.8.9.2-py26.exe

� Gnosis Utils-1.2.2.win32.exe

While having the installation file prepared you can install the Python environment by
running them one after another. Then the Object Dictionary Editor can be started by
running objdictedit command in Matlab command line. Existing .od file can be passed
as a function parameter. Read section 3.3 for more information about working with the
editor and EDS files.

3.2.2 CANopen blockset installation

The installation of the blockset itself is very simple. It has to be just unpacked
somewhere and the canopen blockset setup.m script has to be performed from the Matlab
command line. The script just adds the blockset folder and subfolders to the Matlab
search path.

3.2.3 CANopen support in the target

The blockset can be used only with the Linux ERT Target. To enable the blockset
usage in the target the CANopen support option has to be checked in the model confi-
guration in the Real Time Workshop/CANopen support pane. If the blockset is properly
installed the paths of CanFestival libraries and includes will be automatically filled in
after checking this option.

The menu offers compiling CanFestival from the source as well. However, the path of
the source folder is not filled automatically. The CanFestival sources should be distribu-
ted together with the target as well or it can be obtained from the CanFestival web sides
[LOLb] (see section 3.2.4 for more information). If the building is required, the target
writes commands for CanFestival compilation into the Makefile. It performs the configure

37

script on the source folder first. The following parameters are used to set up the desired
target platform.

. / configure −−timers=unix −−can=socket −−cc=powerpc−603e−linux−gnu−gcc −−arch=ppc −−os=←↩
linux −−target=unix

Moreover, if the CAN message console logging option is enabled the –debug=MSG
parameter is added. Then the make command is applied to the CanFestival source folder
and the libraries are copied into the generated code folder to be used by linker. If you are
starting work with the driver, visit [DoCE] to learn the very basics in using it.

3.2.4 Updating CanFestival version

The current version of CanFestival can be obtained from project CVS repository (visit
[LOLb] for the information about the repository). Now, you can set Build CanFestival
from source option in the configuration parameters of your model and fill the new Can-
Festival folder. The target is prepared to configure and build the CF source, however,
there are some problems that have to solved before starting the code generation.

Firstly, the drivers/can socket/can socket.c file of CF source includes some headers of
SocketCan driver distribution. This headers are placed in the include/linux folder of our
local CanFestival source. Copy this folder into the new CF source include folder and you
will not have to install SocketCan driver.

In the time you decide to update the CanFestival, the driver API will have been pro-
bably changed. It means that you will have to change the particular TLC scripts of the
blockset to generate the API function calls according to the current prototypes. Visit
[LOLa] doxygen sites for the information about the current driver API.

Finally, you will have to rebuild your Object dictionary created in the old version of
objdictedit as it will not be probably compatible. You have to load your .od file into the
new objdictedit and build the dictionary by the menu command once more.

After performing the steps described above, the blockset should work with the new
CanFestival version correctly. However, according to my experience with using the driver,
I do not believe it very much. While integrating the driver I had to solve some problems
and fix some bugs. I could not wait until the bugs were fixed by the authors in the repo-
sitory because some changes in driver API would be made as well.

The most significant bug or may be chaos is in the endianity solution. It has been
changed many times, so it is not possible to follow changes until these days very well.
Macros called UNS16 LE and UNS32 LE are applied to OD entries to switch the value
bytes into little endian form. However, this causes that CANopen message IDs of little
endian are compared with masks of big endian at machine using big endian notation and
so the IDs are not recognized. Practically, it means that some messages defined to be
sent are not sent and received messages are not processed. If you noticed such problems,
have a look at the endianity solution and messages proceeding in the current version.

38

3.3 EDS file and Object Dictionary

The CANopen network is based on particular nodes. Each node has its own Object
Dictionary (OD) [CiAb] which keeps all the configuration variables of the node and the
attached device as well as the data defining the state of the device. Some entries (indices)
of the OD have meaning defined by the CANopen standard, some are device specific. The
OD fully defines the behavior of the node in the network.

The content of the Object Dictionary can be saved in a text EDS file (Electronic Data
Sheet). Many universal CANopen devices supports loading its configuration from such
EDS file. The main block of the blockset does it as well. The custom EDS file can be
created by CanFestival OD editor.

3.3.1 CanFestival OD editor

CanFestival OD editor is a Python script called objdictedit.py which can be found in
CanFestival source folder in objdictgen subfolder. It can be started by running objdictedit
command in Matlab command line. Existing .od file name can be passed as a function
parameter. Python and WxPython have to be installed according to section 3.2 to run
it properly. The editor has graphical user interface for creating or customizing Object
Dictionary. The OD can be then exported into EDS file and C language source and header
files that contain the C structure representation of the OD and have to be linked with
the generated code.

The Node name is specified in the OD editor. This name is used as a node identifier
in the model in case of using more than one nodes. The name has to be the same as the
name of EDS file and .c and .h source files. These files are then placed in the model folder
and the name is set to all the CANopen blocks that should work with this dictionary.
The example of using OD files with OD (node) name myOD is shown in the figure 3.1.

In case of using more than one CANopen node block in the model, EDS, .c and .h
files with the unique name has to be created for each node.

Simulink model

Model folder

OD editor (objdictedit.py)
Node name = myOD

myOD.h

myOD.c

Build
dictionary

Export
To EDS

file

CANopen node block
OD name = myOD

myOD.eds

Read
configuration

Linux ERT target

Code
generation

Model sources

Model executable

Building

Figure 3.1: Principle of creating and using OD in the CANopen node

39

3.4 CANopen node block

The CANopen node block is the main block of the CANopen blockset. It keeps the
Object Dictionary content of the node and it has to be used just once for each node
created in the model. The dependency of each other block on the main block and OD
name match is checked. This block uses its Object Dictionary name parameter as a base
name of EDS file. It reads the EDS file and fills the block mask according to its content
(see section 3.4.2). Finally, it adds the OD .c and .h files to the model source to be linked
with generated code (see section 3.3).

The block is defined in linux ert target blockset.mdl file and support files are mentioned
in the table 3.1.

S-function source canopen.c
S-function mex canopen.mexw32
Help file canopen help.html

TLC scripts
canopen.tlc (main)
cf canopen.tlc

Mask callbacks

canopen mask edsFile.m
canopen mask generateSYNC.m
canopen mask initialisation.m
canopen mask loadMapping.m
canopen mask modelSYNC.m

Table 3.1: Block files

3.4.1 Block parameters

The following text describes particular parameters of the block mask. It is the help of
using the block in the model. The parameters are configured in the block mask which is
shown in the figure 3.2.

Node ID

Node ID is the ID of the local CANopen node (1 - 127).

CAN board number

BOA5200 computer is equipped with two CAN ports. By setting CAN board para-
meter you choose which of these ports to use.

CAN bit rate

Bit rate of used CAN bus can be set into predefined values only.

Object Dictionary name

Name of the CanFestival OD of this node. It is either the name of .eds, .c, .h Can-
Festival files and the OD structure identifier defined there. The EDS file and the Object
Dictionary definition .c and .h files can be edited and generated by CanFestival Objdic-
tedit and have to be placed in the model directory. The name of the dictionary included

40

Figure 3.2: Mask of the CANopen node block

in these files has to be the same as the name of these files. The reason is that all the
OD variables use the name as prefix. For example: the CanFestival OD name is myNode.
Then insert myNode in the edit array and place OD files myNode.eds, myNode.c and
myNode.h into the model directory.

While more than one CANopen node blocks are used in the model this identifier
determines which model block belongs to each CANopen node.

Load I/O mapping from EDS file

If checked the cells of input and output mapping are filled automatically according to
the RPDOs a TPDOS mapping read from EDS file.

Input/output mapping

Input mapping defines which entries of Object Dictionary are connected to block
inputs. Output mapping defines which entries of Object Dictionary are connected to
block outputs.

The only accessible entries are the Manufacturer specific variables defined in EDS.
These entries are generated by OD editor (see section 3.3.1) as variables into the C code.
The entries are accessed just through these variables in IO mapping. The variables have
the name which they are represented by in the code.

41

Input/output mapping is an array of inputs/outputs of the block in the following form.

{{OD_index , OD_subindex or −1, Entry_data_type , 'Entry name ' } , . . . }

Example

{{8193 , −1, 7 , ' cpd v e l o c i t y ' } , {8195 , −1, 5 , ' cpd contro lword ' }}

This array is filled automatically by OD entries mapped into RPDO (output mapping)
and TPDO (input mapping). The array can be modified by user. To return to the default
values check the Load I/O mapping from EDS file option. According to the input/output
mapping the number of block inputs and outputs is set. Each input is supplied by simu-
lation output and each output is supplied by simulation input. In case of simulation these
inputs/outputs are used for obtaining values instead of PDO communication. Simulation
support has to be enabled to create simulation I/O.

Sample time

The sample time and offset of the block I/O refresh in seconds. It is set in the form
of Sample time = [sampleTime offset]. In the case that just a single number is set, it is
considered to be a sample time and the offset is set to 0.

Mind that it has nothing in common with the CANopen SYNC messages. This is just
synchronization of the block inputs and outputs (block Update and Output functions).

Simulation support

The block is mainly useful for generating code, but it is also able to perform simulation
of synchronous communication. If Simulation support is checked simulation output is
created to each data input and simulation input to each data output. While simulating
values from simulation inputs are copied to data outputs and from inputs are the values
copied to corresponding simulation outputs.

Heartbeat producer period

Heartbeat service setting is load from EDS file and it is displayed by the GUI just for
the information, but cannot be changed here. Heartbeat producer period is the interval
(milliseconds) in which the heartbeat message is sent by the local node. If it is set to
zero, no messages are produced. This setting is load from the Object Dictionary index
1017 hex.

Heartbeat consumer nodes and timeouts

This information is load from the EDS file at the index 1016 hex of the Object Dictio-
nary. It defines the nodes (heartbeat producers) that should be monitored and the periods
of heartbeat messages they are sending. It is displayed as a cell array of pairs node ID and
period in milliseconds. If the array is empty no heartbeat consumer is established. This
settings cannot be changed using this GUI. If some node does not send the message in the
given interval, the Heartbeat error callback is called. Therefor the CANopen callbacks
block should be used to handle this error while using Heartbeat service.

42

3.4.2 ObjectDictionary class and EDS file parser

While having the Object Dictionary name inserted in the CANopen block mask, the
appropriate EDS file is loaded. It is given to the ObjectDictionary class constructor which
uses EDS parser do read the EDS file. The resulted OD object is placed into the objDict
structure in the field with the same name as the OD name. This structure is stored in
the Matlab workspace and all used CANopen blocks have their ODs in it. The OD object
keeps all the indices of the given EDS file, their default values and data types (both
CanFestival and Matlab representation).

3.4.3 Block functionality

The CANopen node block generates the code controlling the CANopen driver (Can-
Festival) and the local CANopen node as it is the main block of the blockset. It means
that it starts the driver at the simulation startup and stops it at the simulation termina-
tion. After the startup the local node state is set to Initialisation and according to the
CANopen standard [CiAb] it switches to the Pre-operational state automatically. Howe-
ver, it is necessary to switch the state to Operational manually to start the CANopen
node function. There is shown the diagram of the block functionality in the figure 3.3.

Output and Update functions of the model are performed in each simulation step. This
block copies particular entries of the Object Dictionary to its output ports in the Output
function and updates its OD by new inputs in the Update function. Read appropriate
paragraph in the Block parameters section for more information about mapping input
and output block ports on the OD entries.

model_start()

● Initialize and start CANopen driver
● Set local state to Initialisation
 (it will be set to preOperational automatically)

model_terminate()

● Set local state to Stopped
● Stop CANopen driver

model_output()

● Copy OD entries
 to the block output ports

model_update()

● Copy block input ports
 to the OD entries

Block
sample
time

Simulation start

Simulation finish

Figure 3.3: CANopen node block functionality in the model functions

43

BlockTypeSetup()

● Adds post EMCY callback
 params structure into model
 header file

BlockInstanceSetup()

● Creates %<Identifier>.c file
● Creates %<Identifier>.h file
● Calls function generating
 Files content

generateCanopenFiles()

● Generates functions for
 Initialization, starting and
 Stopping the CANopen
 Driver and local node

Start()
Terminate()
Output()
Update()

● Writes bodies of these
 Functions into model
 functions

%<Identifier>.h

● Header file of CANopen
 Node functions

%<Identifier>.c

● Source file of CANopen
 Node functions

model.c

● Model initialisation and
 Step functions

canopen.tlc

Called by RTW
During TLC process

cf_canopen.tlc

Generated files

Figure 3.4: TLC function call diagram in CANopen block code generation

3.4.4 Simulation capabilities

If the simulation directly in Simulink is required, the Simulation support option in
the block mask has to be checked. While having this option checked simulation inputs
and outputs of the block are created. The ObjectDictionary object is created in Matlab
workspace. This object is stored in objDict structure in the field of the same name
as is the OD name parameter. It means that if the OD name is e.g. controller, the
proper ObjectDictionary is stored in the field objDict.controller in the workspace. In
each simulation step, entries of this OD are updated by block input values and the block
outputs are read from the OD object as well. It means in fact that the Object Dictionary
realizes the block state. This data object in the workspace is used for data exchange by
CANopen asynchronous blocks during the simulation.

3.4.5 Block code generation

While generating the code, TLC functions of canopen.tlc file are called by Real Time
Workshop [Mat] as it is demonstrated in the figure 3.4. Except writing into default model
functions, the pair of .h and .c files is created. These files have name given by block
identifier which is build from block name in Simulink (e.g. files CANopennode1.c and
CANopennode1.h are created for the block called CANopen node 1). This code module
is added to the model sources and is linked with the model code. It contains the function
performing the CanFestival driver initialization, CANopen node startup and termination
and are called from model.c in the proper time of model execution.

44

3.5 Callbacks block

This blocks creates the API of CANopen event callbacks implemented in CanFestival
driver. It allows the user to handle asynchronous events like Emergency message reception,
synchronization or Heartbeat error. Read section 3.5.1 for more information.

Each callback function is performed in separate thread with priority lower than the
priority of periodic model threads. It means that long duration of callbacks execution
cannot break the model synchronization.

This block implements SS OPTION ASYNCHRONOUS option in its S-function. It
says to Simulink that subsystems connected to the block output port are asynchronously
executed. Using Asynchronous rate transition block (see section 3.10) at each input and
output of these subsystems is required and checked by Simulink engine.

The block is defined in linux ert target blockset.mdl file and support files are mentioned
in the table 3.2.

S-function source canopen callbacks.c
S-function mex canopen callbacks.mexw32
Help file canopen callbacks help.html

TLC scripts
canopen callbacks.tlc (main)
callbacks.tlc

Mask callback callbacks mask initialisation.m

Table 3.2: Block files

3.5.1 Block parameters

This section describes the parameters of Callbacks block and possibilities of usage as
well. The mask of the block with parameter settings dialog is shown in the figure 3.5.

Figure 3.5: CANopen callbacks block mask

Object dictionary name

The Object dictionary name is used to say the block which OD it should work with
if more than one CANopen node blocks are used in the model. The OD name has to be
the same as the OD name of the appropriate CANopen main block.

45

Callbacks connected to function call ports

You can define the callbacks of CANopen node that are to be used as function call
ports of the block. The callbacks and corresponding function calls can be used for ac-
tivation of another block for example Asynchronous operations block or even the main
CANopen node block. It is defined by the cell of the list of callback names (and sometimes
configuration parameters) to be used by the port. The syntax of the cell is:

{{ ' cal lback1 name ' } , { ' cal lback2 name ' , { ' params ' }} , . . . }

Example

{{ 'SYNC ' } , { 'EMCY' } , { 'OD ' ,{ ' 1800 ' , ' 1 ' }} , { ' I n i t i a l i s a t i o n ' }}

The function call output port of the block is created (always the first output port) and
its width is set to be the same as the number of defined callbacks. If using more than one
callbacks the Demux Simulink block has to be connected on the output port and split the
signals into appropriate number of outputs. The number of Demux outputs has to be set
by user manually and fit the number of defined callbacks. Finally, on the Demux ports
any Function call subsystems can be connected.

Additionally some callbacks are supplemented by a parameter or parameters. For
example EMCY callback has 3 parameters defining the received EMCY message: node
ID, Error code and Error register content. These parameters are stored into the global
memory while executing the callback and can be accessed by appropriate parser block.
For example EMCY callback parameters can be decoded by EMCY parser block. This
parser block should be placed in the function call subsystem connected to the appropriate
callback. All the supported callbacks are described in the following text.

SYNC messages callback

This callback is called after SYNC message reception or transmission. No parameter
is set to the callbacks parameters port.

{ 'SYNC ' }

EMCY messages callback

This callback is called after emergency message reception. This callback has three pa-
rameters defining the received EMCY message: node ID (UINT8), Error code (UINT16),
Error register (UINT8). Use EMCY parser block to get these parameters from the me-
mory.

{ 'EMCY' }

46

Figure 3.6: Working with callbacks and their parameters

TPDO messages callback

This callback is called after PDO transmission. No parameter is set to the callbacks
parameters port.

{ 'TPDO ' }

Initialisation state callback

This callback is called after entering the Initialisation state by local node. No para-
meter is set to the callbacks parameters port.

{ ' I n i t i a l i s a t i o n ' }

PreOperational state callback

This callback is called after entering the PreOperational state by local node. No
parameter is set to the callbacks parameters port.

{ ' PreOperat ional ' }

Operational state callback

This callback is called after entering the Operational state by local node. No parameter
is set to the callbacks parameters port.

47

{ ' Operat iona l ' }

Stopped state callback

This callback is called after entering the Stopped state by local node. No parameter
is set to the callbacks parameters port.

{ ' Stopped ' }

Slave boot up callback

This callback is called after reception of Slave boot up message (COBID = 0x700 +
NodeID). This callback has one parameter defining the node ID (UINT8). Use SlaveBoo-
tup parser block to get the value from the memory.

{ ' s laveBootup ' }

Heartbeat error callback

This callback is called after detection of CANopen heartbeat error. This callback has
one parameter defining the node ID (UINT8). Use Heartbeat error parser block to get
the value from the memory.

The heartbeat service has to be defined in EDS file used for node configuration. This
setting can be done in Object Dictonary editor (see section 3.3.1). If the node is set to be
a heartbeat producer, the heartbeat request is sent to the network with the given period.
If some node does not aswer it in the defined timeout, the heartbeat error callback is
called at the producer node.

{ ' hear tbeatError ' }

OD entry callback

This callback is called after change of data in the defined OD entry. It can be set to
any existing OD entry. No parameter is set to the callbacks parameters port.

The callback has to be predefined in CanFestival Objdictedit by checking the Have
callback option of the appropriate OD entry!

{ 'OD ' , { ' index ' , ' subindex ' }}

Simulation support

The block is mainly useful for generating code, but it is also able to perform simulation
of CANopen events activating the callbacks. If Simulation support is checked simulation
input is created. This input has as many signals as defined callbacks number. If one of
the boolean signals is set, particular callback is activated.

48

3.5.2 Block functionality

The Callback block does not perform any periodic tasks. It does not have output and
update functions in the generated code. Its only function is to register required callbacks at
the program startup. This registration saves pointers to generated callback functions into
CanFestival structure. If some callback is activated by the driver, code of the connected
subsystem is called by the callback function (figure 3.7). Callback parameters are stored
into the global memory structure and can be accessed by the appropriate parser block
(section 3.6). Read section 3.5.1 for exact information about particular callback types.

model_start()

● Register callbacks function pointers
 In CanFestival

post_emcy_callback()

● Create EMCY param structure
● Calls connected subsystem

sync_callback()

● Calls connected subsystem

subsystem1_output()

model.c CANopencallbacks.c

subsystem2_output()

● Subsystem 2 output code

CanFestival driver
Event
occured

Callback
called

emcy_parser_output()
● Read EMCY param structure

Figure 3.7: Example of block code function while having Emergency and Sync callbacks
employed

3.5.3 Simulation capabilities

Simulation capabilities of these block are very simple. While the Simulation support
option is enabled, a single input port is created. Its width is the same as the number of
defined callbacks. Each input signal is a trigger of particular callback function call. It is
logical input that activates particular function call when enabled.

The callback parameters can be employed in the simulation by enabling the simulation
support of particular parameters parser blocks (see section 3.6). Then the simulation
inputs of that blocks are created and the parameter values can be passed via signals.

49

3.5.4 Block code generation

This block uses two TLC scripts - canopen callbacks.tlc and callbacks.tlc. The scripts
creates the pair of header and source files called by the block identifier which is based
on the block label in the model. It means that each block has its own source files. The
callback functions are generated into these files and the code for callbacks registration is
placed into the model start function. The diagram of TLC functions calls is shown in the
figure 3.8.

Start()

● Register callbacks into
 CanFestival

BlockInstanceSetup()

● Adds %<Identifier>.h file
 To common includes

parseRTWcallbacks()

● Parses callbacks parameter
 cell

Outputs()

● Generates callback
 Functions and function calls
 To subsystems

%<Identifier>.h

● Header file of callbacks
 functions

%<Identifier>.c

● Source file of callbacks
 functions

canopen_callbacks.tlc

Called by RTW
During TLC process callbacks.tlc

Generated files
registerRTWcallbacks()

● Generates registration code

registerODcallbacks()

● Generates registration code

generateRTWcallbacks()

● Generate callbacks functions

generateODcallbacks()

● Generate callbacks functions

Figure 3.8: Diagram of block code generation

50

3.6 Callback parameters parser blocks

A group of blocks that parses callback parameters provided by Callbacks block (see
section 3.5) was created to enable working with parameters of CANopen driver callbacks.
These blocks are designed to be placed in function call subsystem activated from the
callback block. The Callbacks block stores the callback parameters into the global memory
while processing a callback having parameters (EMCY, Slave boot up and Heartbeat
error). The parser block can read these parameters from the global memory and set
them to its output ports. If there is more than one CANopen node defined in the model,
each can have its own callbacks and parsers block. They are determined by their Object
dictionary name parameter. The dependency of the parsers on the Callbacks block is
checked.

For more information about the callbacks and the events that activate the callbacks
read Callbacks block section 3.5 and CanFestival driver documentation [LOLb].

3.6.1 Parser blocks parameters

All the parser blocks has the same two mask parameters. Its the reason for describing
the parameters generally for all the block together.

Object dictionary name

The Object dictionary name is used to say the block which OD it should work with
if more than one CANopen node blocks are used in the model. The OD name has to be
the same as the OD name of the appropriate CANopen main and callbacks blocks.

Simulation support

While the Simulation support option is checked three input ports are created. Each
of these ports corresponds to one of the outputs. In case of Simulink simulation values of
the simulation inputs are copied to the output ports in each block step.

3.6.2 Simulation capabilities

While having the Simulation support mask option enable in some parser block, simula-
tion input ports are created. Each of these inputs corresponds to some block output port
and callback parameter as well. In case of Simulink simulation, values from the simulation
inputs are copied to the outputs in the block Output function. Together with callback
event simulation by Callbacks block the event execution can be completely simulated in
the Simulink.

51

3.6.3 Emergency callback parameters parser block

This block parses the Emergency message parameters. It can be used only in the
co-operation with the CANopen callbacks block (with the same Object Dictionary name)
having the EMCY callback employed. The parser block is designed to be placed in function
call subsystem connected to the appropriate callback of the Callbacks block.

The block has three outputs according to the number of EMCY callback parameters.
These outputs provide values of last received EMCY message processed by the CANopen
callbacks block. This Callbacks block writes message parameters to the global memory
and activates the EMCY callback function call.

The block is defined in linux ert target blockset.mdl file and support files are mentioned
in the table 3.3.

S-function source emcy parser.c
S-function mex emcy parser.mexw32
Help file emcy parser help.html
TLC scripts emcy parser.tlc

Table 3.3: Block files

3.6.4 Heartbeat error callback parameters parser block

This block parses the Heartbeat error event parameters. It can be used only in the
co-operation with the CANopen callbacks block (with the same Object Dictionary name)
having the Heartbeat error callback employed (see section 3.5.1).

The parser block is designed to be placed in function call subsystem connected to the
appropriate callback of the Callbacks block. The block has a single output according to
the number of Heartbeat error callback parameters. This output provides the value of the
last Heartbeat error event processed by the CANopen callbacks block. The parameter
is the node ID of the node which produced the error. The Callbacks block writes the
parameter to the global memory and activates the Heartbeat error callback function call.

The block is defined in linux ert target blockset.mdl file and support files are mentioned
in the table 3.4.

S-function source heartbeat error parser.c
S-function mex heartbeat error parser.mexw32
Help file heartbeat error parser help.html
TLC scripts heartbeat error parser.tlc

Table 3.4: Block files

52

3.6.5 Slave boot up callback parameters parser block

This block parses the Slave boot up message parameters. It can be used only in the
co-operation with the CANopen callbacks block (with the same Object Dictionary name)
having the Slave boot up callback employed. The parser block is designed to be placed
in function call subsystem connected to the appropriate callback of the Callbacks block.
The block has a single output according to the number of Slave boot up message callback
parameters. This output provides the value of the last Slave boot up message processed by
the CANopen callbacks block. The parameter is the node ID of the node which produced
the message. The Callbacks block writes message parameter to the global memory and
activates the Slave boot up callback function call.

The block is defined in linux ert target blockset.mdl file and support files are mentioned
in the table 3.5.

S-function source slave boot up parser.c
S-function mex slave boot up parser.mexw32
Help file slave boot up parser help.html
TLC scripts slave boot up parser.tlc

Table 3.5: Block files

53

3.7 SYNC message generator block

This block can be used for generating SYNC messages in the CANopen network.
The SYNC generation can be performed by the CanFestival driver automatically if it
is correctly set in the Object Dictionary. However, the automatical SYNC generation
has one big disadvantage that it is not synchronized with the model sample time. It
means that the time offset between the network synchronization and the model step is
not known. This is solved in the way that the automated SYNC generation is disabled
and it is performed by SYNC generator block if it is used in the model. If the SYNC
generator block for the given Object Dictionary is not placed in the model, the SYNC
generation is performed automatically by the CanFestival driver according to the OD
settings. It means of course that if neither the SYNC generator is used nor the SYNC
generation is defined in OD, no SYNC generation is performed and the node is considered
to be the SYNC slave.

This block calls the driver command for sending SYNC message in its Output function
if the node state is Operational. It secures the synchronization of the model with the
CANopen network communication. SYNC message ID is usually 80 hex, however, it is
possible to change it by the block parameter. The message ID is stored into the Object
Dictionary at the model startup. The block functionality diagram is shown in the figure
3.9.

model_start()

● Disable automated SYNC generation
● Write SYNC ID into the local Object Dictionary

model_output()

● If local state = Operational
 then send SYNC

Block
sample
time

Simulation start

Figure 3.9: Function diagram of SYNC message generator block

As described above, generating SYNC messages by the separate block is very useful,
however it is necessary to think about the Simulink work in this case. Functions of
particular blocks are performed in each simulation step. If a group of blocks has the same
sample time, all the blocks are performed one after another in the same step function
and the order of blocks is established just by the coincidence. It means that some very
small time delay can occur, which could be unwanted in case of SYNC messages that
synchronize all the network. Calling the block code as soon as possible after the timer
tick is ensured by implementing SS OPTION PLACE ASAP in the S-function as well.

The block is defined in linux ert target blockset.mdl file and support files are mentioned
in the table 3.6.

54

S-function source sync generator.c
S-function mex sync generator.mexw32
Help file sync generator help.html
TLC scripts sync generator.tlc

Table 3.6: Block files

3.7.1 Block parameters

The following text describes the parameters of the SYNC generator block.

Object dictionary name

The Object dictionary name is used to say the block which OD it should work with.
The OD name has to be the same as the OD name of the appropriate CANopen main
block.

Sample time

Block sample time and offset can be set in the same way as in each Simulink block.It
is set in the standard Simulink format [sampleTime offset]. If it is just a single number,
the offset is considered to be 0.

SYNC message ID

The ID of the generated SYNC message. The default value is 0x80 (80 hex, 128 dec).
It is not recommended to change it in the CANopen network, because it is defined by
CANopen standard. The ID number has to be set in the C language form (0x prefix for
hex numbers).

3.7.2 Block code generation

This block has a single TLC script sync generator.tlc which generates its code during
the TLC process. It does not generate any files. It just writes the code for SYNC message
ID setup into the model start function and the code for SYNC message sending into the
model output function.

55

3.8 Asynchronous operations block

This block realizes a group of asynchronous transmissions defined by the parameter.
It performs all the transmissions in the given order in its Output function. The block is
useful for network management or asynchronous communication. It is designed mainly to
be placed in the function call subsystem and called in some CANopen event callback (see
section 3.5). In this case the block sample time has to be set to -1 (inherited). However,
it is possible to set the periodic sample time and run the block periodically straight in the
model. As an example of the common usage we can mention this block connected to the
Pre-operational callback and performing setting the node state to Operational or may be
sending Start-Node command to other nodes as well.

The block is defined in linux ert target blockset.mdl file and support files are mentioned
in the table 3.7.

S-function source cf asyn.c
S-function mex cf asyn.mexw32
Help file cf asyn help.html
TLC scripts cf asyn.tlc

Table 3.7: Block files

3.8.1 SDO transfers

Most of the operations that are supported by this block do not need to wait for the
end of the message transfer. It means that they are local operations that are performed
immediately or CANopen transfers that are not confirmed and so do not wait for the
answer. The only confirmed service of the CANopen protocol is SDO (Service Data
Object). This service provides confirmed reading or writing to the remote object dictionary
and are used mainly for the node setup and not for the regular data transfer.

This service is supported by operations readNetworkDict and writeNetworkDict in this
block. The answer to the message is handled by the CanFestival driver and a callback
function is called at the end of the transfer. It is necessary to wait for this callback
and read the transfer result. If the answer is not delivered in time, the timeout error is
announced so no infinite blockage can occur. You can avoid waiting for the answer by
setting appropriate parameter (see section 3.8.3). However, while reading the network
dictionary, it will always wait for the result as the required value is there.

The principle of this block work while some SDO transfers are used is shown in the
figure 3.10. If no SDO transfers are used, the checkSDO function is not necessary and all
the code is performed in a single function and in a single iteration.

3.8.2 Block inputs and outputs

The block has one input port and two output ports. The input port is a vector of width
given by the highest value X of the inputX mark used in the operation definition cell. If
the highest input used is 5, the width of input port is set to 6 (0..5). The data output is
created in the same way according to the highest outputX value used. The second output
port is the error output. Its width is the same as the number of defined operation. Each
signal of the port keeps the error code of the particular operation. The order is the same

56

CANopenasynchronous()

CANopenasynchronous_perform()

● Perform defined operations

subsystem_output() or
model_output()

● Call CANopenasynchronous()

model.c

CANopensynchronous.c

_CheckSDOAndContinue()

● Check SDO transfer result

While finished! || ~error
 Call perform function
 Wait for SDO result
end

CanFestival driver

● SDO answer received SDO answer
callback

SDO
transfer
finished

Perform
Operations
Block
Until SDO

Figure 3.10: Asynchronous block function diagram

as the order of defined sequence. The error code 0 means that the operations terminated
correctly. See operations description bellow to get information about particular error
codes.

Using block input/output as operation parameter

You can use inputX mark as an operation parameter (X is the number of signal in
the input port vector < 0, N >). This will read the value of particular field in input port
vector and use it as the function parameter. In the same way outputX can be used in
operations of reading OD to copy the value to the output port instead of some internal
variable.

3.8.3 Block parameters

Block mask parameters are described in the following section.

Object dictionary name

The Object dictionary name is used to say the block which OD it should work with
if more than one CANopen node blocks are used in the model. The OD name has to be
the same as the OD name of the appropriate CANopen main block.

Do not wait for SDO transfer result

In case of SDO transfer, the block waits for the answer before continuation. This can
be over outweighed by checking the Do not wait for SDO transfer result check box. Mind
that in case of readNetworkDict the program always wait for the answer (value)!

57

Continue the transfer sequence in case of error

You can check the Continue the transfer sequence in case of error for ignoring the
operation failure and performing the sequence to the end.

Sample time

The sample time and offset of the block I/O refresh in seconds. It is set in the form
of [sampleTime offset]. In the case that just a single number is set, it is considered to be
a sample time and the offset is set to 0.

The sample time setting can be used to run the block periodically, however, the block
is designed mainly to perform the asynchronous operations in CANopen event callback.
In this case the sample time should be set to inherited (-1) and the block should be placed
in Function call subsystem.

Simulation support

In contrast to other blocks the Simulation support option does not create any simula-
tion inputs of the block. It enables or disables using Matlab workspace objects for data
exchange during simulation. This feature makes the simulation slow. It is recommended
to disable this option while simulation of asynchronous operations is not required.

Operation parameters cell

The cell contains cells of particular operations of the order which they should be
performed in. The cell of one operation then contains a string of operation type and a cell
of particular parameters. The operation type name corresponds to the function name of
particular CanFestival function. Each operation type has different number of parameters.
All the parameters are set as strings even if it is a number. Numbers are written in the
same form as in C language (e.g. 100, 0x10). Various data sources and destination can
be used by the operations. First of all, it can be the pair of index and subindex in case of
accessing the Object dictionary. Then, it can be a block input or output represented by
inputX or outputX string. Finally, it can be a constant number or almost anything which
is the user sure to be defined in the generated code. For example it can be a variable
defined in the Manufacturer specific section of Object dictionary.

{{op1_Name , {op1_Parameter1 , op1_Parameter2 }} ,
{op2_Name , {op2_Parameter1 , op2_Parameter2 , op2_Parameter3 }}}

Example

{{ ' sendPDOevent ' } ,
{ ' writeNetworkDict ' , { ' 3 ' , ' 0x1802 ' , ' 1 ' , ' input2 ' , 'UNS8 ' }} ,
{ 'masterSendNMTstateChange ' , { ' 3 ' , 'NMT\ S t a r t \ Node ' }} ,
{ ' wr i t eLoca lD i c t ' , { ' 0x1802 ' , ' 1 ' , ' 255 ' , 'UNS32 ' }} ,
{ ' writeNetworkDict ' , { ' 4 ' , ' 0x1803 ' , ' 1 ' , ' 255 ' , 'REAL64 ' }}}

58

Supported operations

The following text describes the asynchronous operations of CANopen protocol which are
supported by this block.

Variable copy

This just copies the value, variable or block input into the target variable or block
output. While using variable name it has to be defined in the CanFestival node source
file generated by Objdictedit. The variable set may be used before PDO event operation
to start the transmission of PDOs which are transmitted just after its value change.

This is a simplified version of read/writeLocalDict operation which works only for the
variables defined in the node source. This operation always finishes with error code 0.

Example

{ 'VarCopy ' , { ' var8192\ 0 ' , ' var8193\ 1 ' }}

copies the value of variable var8192 0 to variable var8193 1, or

{ 'VarCopy ' , { ' 0x15 ' , ' output2 ' }}

copies the constant 0x15 to the block output 2, or

{ 'VarCopy ' , { ' input3 ' , ' var8192\ 0 ' }}

copies the value of the input signal 3 into variable var8192 0.

PDO event

This operation invokes PDO transmission of PDOs that are to be sent after data
change. Only PDOs that satisfy this condition are transmitted. This operation always
finishes with error code 0.

Example

{ ' sendPDOevent ' }

Set local node state

This operation sets local CANopen node state. The states can be Initialisation, Stop-
ped, Operational or Pre-operational. Mind that the names are case sensitive!! This ope-
ration always finishes with error code 0.
See the CANopen protocol documentation for more information.

59

Example

{ ' s e t S t a t e ' , { ' Operat iona l ' }}

Set remote node state

This operation sets the state of remote CANopen node with given ID. The states can
be NMT Reset Node, NMT Reset Communication, NMT Stop Node, NMT Start Node or
NMT Enter PreOperational. Mind that the names are case sensitive!! This operation
always finishes with error code 0.

Example

{ 'masterSendNMTstateChange ' , { ' 3 ' , 'NMT\ S t a r t \ Node ' }}

Write to local dictionary

This operation writes value into local Object Dictionary. The parameters of the ope-
ration are these: index, subindex, value, value data type. If the given OD entry has no
subindices set the subindex parameter into ’-1’. This operation always finishes with error
code 0. The data types are specified using these strings:
INTEGER8, INTEGER16, INTEGER24, INTEGER32, INTEGER40, INTEGER48, IN-
TEGER56, INTEGER64
UNS8, UNS16, UNS32, UNS24, UNS40, UNS48, UNS56, UNS64
REAL32, REAL64

Example

{ ' wr i t eLoca lD i c t ' , { ' 0x1802 ' , ' 1 ' , ' 255 ' , 'UNS32 ' }}
{ ' wr i t eLoca lD i c t ' , { ' 0x1802 ' , ' 1 ' , ' input0 ' , 'UNS32 ' }}

Read entry of the local dictionary

This operation reads an entry of the local Object Dictionary. The parameters of the
operation are these: index, subindex, target variable, value data type. If the given OD
entry has no subindices set the subindex parameter into ’-1’. This operation always fi-
nishes with error code 0. The data types are specified using these strings:
INTEGER8, INTEGER16, INTEGER24, INTEGER32, INTEGER40, INTEGER48, IN-
TEGER56, INTEGER64
UNS8, UNS16, UNS32, UNS24, UNS40, UNS48, UNS56, UNS64
REAL32, REAL64

Example

60

{ ' readLoca lDict ' , { ' 0x1802 ' , ' 1 ' , ' var1 ' , 'UNS32 ' }}
{ ' readLoca lDict ' , { ' 0x1803 ' , ' 0 ' , ' output1 ' , 'UNS32 ' }}

Write entry of the network dictionary

This operation writes value into Object Dictionary of remote node. The parameters
of the operation are these: node ID, index, subindex, value, value data type. If the given
OD entry has no subindices set the subindex parameter into ’-1’. The data types are
specified using these strings:
INTEGER8, INTEGER16, INTEGER24, INTEGER32, INTEGER40, INTEGER48, IN-
TEGER56, INTEGER64
UNS8, UNS16, UNS32, UNS24, UNS40, UNS48, UNS56, UNS64
REAL32, REAL64

The SDO transfer uses confirmation. If the Do not wait for SDO transfer result check
box is unchecked the operation waits for the remote node confirmation of the SDO and
checks the errors. In case of error the SDO abort code is written to the error output port
of the block. See CANopen specification for more information about SDO error codes.

Example

{ ' writeNetworkDict ' , { ' 4 ' , ' 0x1803 ' , ' 1 ' , ' 255 ' , 'REAL64 ' }}

Read entry of the remote node dictionary

This operation reads an entry of the remote node Object Dictionary. The parameters
of the operation are these: nodeID, index, subindex, target variable, value data type. If
the given OD entry has no subindices set the subindex parameter into ’-1’. The data
types are specified using these strings:
INTEGER8, INTEGER16, INTEGER24, INTEGER32, INTEGER40, INTEGER48, IN-
TEGER56, INTEGER64
UNS8, UNS16, UNS32, UNS24, UNS40, UNS48, UNS56, UNS64
REAL32, REAL64

After sending the SDO read command to the remote node, the program has to wait for
the SDO answer with the requested value. The Do not wait for SDO transfer result check
box has no influence on the wait time in the case of reading! In case of error the SDO
abort code is written to the error output port of the block. See CANopen specification
for more information about SDO error codes.

Example

{ ' readNetworkDict ' , { ' 2 ' , ' 0x1802 ' , ' 1 ' , ' var1 ' , 'UNS32 ' }}
{ ' readNetworkDict ' , { ' 4 ' , ' 0x1803 ' , ' 0 ' , ' output1 ' , 'UNS32 ' }}

61

Sleep

Generates the sleep command which makes the current thread wait for the given
amount of seconds. Mind that the thread may be the sample time loop thread in case
that the block is not called in the Function call subsystem activated by Callbacks block.
This operation always finishes with error code 0.

Example

{ ' s l e e p ' , { ' 5 ' }}

USleep

Generates the usleep command which makes the current thread wait for the given
amount of microseconds. Mind that the thread may be the sample time loop thread in
case that the block is not called in the Function call subsystem activated by Callbacks
block. This operation always finishes with error code 0.

Example

{ ' us l e ep ' , { ' 100 ' }}

3.8.4 Block code generation

The block code is generated by the cf asyn.tlc script. All the blocks of this type
have the common header file called cf asyn.h. Each block has its own source file called
by the same name as its name in Simulink model. See the figure 3.11 for the graphical
representation.

3.8.5 Simulation capabilities

The block supports Simulink simulation of data transfer operations (readLocalDict,
writeLocalDict, readNetworkDict, writeNetworkDict). The other operations defined in the
cell are ignored in simulation mode. Local dictionary operations reads or writes values
to the ObjectDictionary object stored in the objDict.(odName) structure in the Matlab
workspace. This object is created and used by the CANopen block so that the data
exchange is ensured.

In case of network dictionary operations (SDO transfers), the block tries to find the
Object Dictionary of the node with the given ID in the objDict structure. If the proper
object exists (CANopen node block of this OD is used in the model), it reads or writes
the data in the same way as in the local node case.

This feature makes the simulation process very slow. It is recommended to disable
Simulation support option in the parameters if asynchronous operation simulation is not
required.

62

BlockTypeSetup()

● Generates the common
 header file

BlockInstanceSetup()

● Generates source file
 of the concrete block

Outputs()

● Calls the block function

cf_asyn.h

● Common header file of all
 Asyn. blocks

%<Identifier>.c

● Source file of block code

cf_asyn.tlc

Called by RTW
During TLC process

Generated files

getPortNumber()

● Parses I/O data ports
 Identifiers of the param. cell

Figure 3.11: Block code generation process

3.9 Function call offset block

This block is not a part of CANopen blockset at all. It does not need CANopen
support enabled in the model and it can be used with general function call blocks of
Simulink. It is designed to be called from within the function call subsystem. It then
waits for the given time and activates its own function call port. The timing is realized
by periodic thread [Ṕı̌s05] and is performed in a separate thread to avoid model blocking
(figure 3.12). This block has a single parameter which is a value of required offset in
seconds.

Functioncalloffset_wait_thread()

● Set timer to Offset time
● Wait for timer
● Activate function call port
● Exit thread

subsystem_output() or
model_output()

● Create Functioncalloffset_wait_thread()

model.c

Functioncalloffset_wait_thread.c

Start thread
function

Figure 3.12: Function call offset code functionality

The block is defined in linux ert target blockset.mdl file and support files are mentioned
in the table 3.8.

S-function source fc offset.c
S-function mex fc offset.mexw32
Help file fc offset help.html
TLC scripts fc offset.tlc

Table 3.8: Block files

63

3.9.1 Block code generation

While generating the model code fc offset.tlc script is called (figure 3.13). It creates
common header file of all blocks of this type and one source file for each of them.

BlockTypeSetup()

● Generates the common
 header file

BlockInstanceSetup()

● Writes instance declarations
 into common header file

Outputs()

● Calls generateWaitThread()
● Writes thread create
 command into model output

fc_offset.h

● Common header file of all
 FC offset blocks

Functioncalloffset.c

● Source file of block code

fc_offset.tlc

Called by RTW
During TLC process

Generated files

generateWaitThread()

● Generates thread function
 with waiting code

Figure 3.13: Function call offset code generation

64

3.10 Asynchronous rate transition block

This block is not a part of CANopen blockset at all. It does not need CANopen support
enabled in the model and it can be used with general function call blocks of Simulink.
This block has to be used while connecting synchronous and asynchronous section of the
model by a data signal. It creates a critical section and ensures data integrity.

In case of simulation it just copies input data into the state vector in its Update
function and sets the data onto the output port in its Output function. It means that it
needs two sample hits to get the value from input to output. Its sample time should be
set to the sample time of appropriate synchronous section of the model. While generating
code it locks these data transfers by mutex.

The block supports all data types and any port width. The output port type and
width is set automatically according to the input signal.

model_initialisation()

● Set state vector of the block to zeros.

block_output()

● Lock mutex
● Copy state vector to
 output port

● Unlock mutex

block_update()

● Lock mutex
● Copy input port to the
 state vector

● Unlock mutex

Block step

Figure 3.14: Asynchronous rate transition block functionality

The block is defined in linux ert target blockset.mdl file and support files are mentioned
in the table 3.9.

S-function source async rate transition.c
S-function mex async rate transition.mexw32
Help file async rate transition help.html
TLC scripts async rate transition.tlc

Table 3.9: Block files

65

3.10.1 Block code generation

While generating the model code async rate transition.tlc script is called (figure 3.15).
It writes definitions into common model header file and Output and Update code into the
proper place according to block usage in the model.

BlockTypeSetup()

● Writes common includes

BlockInstanceSetup()

● Defines block mutex objects

Outputs()
Update()
InitializeConditions()

● Generates block functions

model.h

● Common model header file

model.c

● Model source file with step
 functions

rate_transition.tlc

Called by RTW
During TLC process

Generated files

Figure 3.15: Asynchronous rate transition block code generation

66

Chapter 4

Conclusion

I will summarize the work and describe achieved results at the end of the thesis. The
main goal of the thesis was creation of the CANopen protocol support for code generated
from Simulink by Real Time Workshop.

The generated code has to be customized to be used at embedded hardware. The
desired platform (computer BOA 5200 and Linux operating system) is supported by
Linux GRT target prepared in [Jel08]. I decided to redesign the GRT (Generic Real
Time Target) to the ERT type of target. The ERT (Embedded Real Time Target) target
uses enhanced optimization features of Real Time Workshop Embedded Coder for code
generation. Moreover, the new Linux ERT Target is designed to generate multi-tasking
application and work with CANopen driver. The target controls the code generation and
prepares scripts for code compilation. The compilation itself is performed by a tool chain
created in [Jel08].

Linux ERT target features

� Supports BOA5200 computer running Linux operating system

� Generates single-tasking (single-rate and multi-rate) and multi-tasking applications

� Precise simulation steps timing using periodic threads

� Task threads priorities assignment according to task sample times

� Simulation step overrun checking

� Optional CANopen support, CANopen driver does not have to be linked

� Adapts Windows paths to be used in MSYS environment (supports paths including
spaces as well)

The CANopen blockset is based on integration of CanFestival driver into the code
generated by Real Time Workshop. The libraries of the driver are linked together with
the generated code by Linux ERT Target if the CANopen support is enabled.

Particular blocks of the blockset provide particular API functions of the driver to
the Simulink environment. The blockset supports both synchronous and asynchronous
communication and enables asynchronous events handling. Moreover, the simulation
support of the main functions has been created as well. The aim of this was not to create
CANopen network simulator for Simulink, but just enable basic functionality simulation

67

while tuning embedded controller in Simulink.
The simulation is provided partially by simulation inputs and outputs of the blocks

and partially by using Object Dictionary objects saved in Matlab workspace. Such object
is created by each CANopen node block in the model and data transfers are simulated by
writing into OD of the other node. Remote SDO transfers can be simulated as well if the
remote node is created in the model. To be honest, using workspace during simulation
makes it very time-consuming. The simulation support of each block can be switched
off and it is reasonable to use it only if it is necessary. While tuning the controller the
simulation of the CANopen node block should be sufficient. The following list describes
all the capabilities of the blockset.

CANopen blockset features

� Integrates CanFestival driver into the code generated by Linux ERT Target

� Loading node configuration from EDS file

� Possibility to create more then one node in a single model

� Optional program and CAN messages logging

� Supported features of CANopen protocol:

– PDO transfers (also in simulation mode)

– SDO transfers (also in simulation mode)

– NMT for remote nodes control

– SYNC generator

– Callbacks on driver events: EMCY, SYNC, Heartbeat error, OD entry change,
PDO transfer, Slave boot up, Node state change (also in simulation mode)

– Event parameters reading (also in simulation mode)

– Heartbeat service support

– Asynchronous rate transition block for secured data exchange between syn-
chronous and asynchronous parts of the model

– Function call offset block

Finally, I will point out the things that can be enhanced in the future. The BOA
computer is running Linux kernel without real-time patch applied. Moreover, the Linux
kernel uses 4 milliseconds as the system timer resolution. It means that using sample time
lower than 4ms is not possible at all. On the other hand, applications running sample time
of multiples of 4ms should work properly. I have performed some experiments and I have
not noticed any problems while running model on sample time of any multiple of 4ms.
However, the reliability cannot be guaranteed as it is not a real-time system and good
results were achieved just due to the high performance of the processor which is not fully
employed by the simple simulation. Generally, this system is not very suitable for running
applications requiring sample time of a few milliseconds. However, the experiences from
another MPC5200 based computer used at the Department of Control Engineering show
that Linux kernel with real-time patch can ensure reliable behavior in all situations. This
is promising direction for the system improvement.

68

Bibliography

[AM] Analogue and Micro. Boa5200 specification. http://www.analogue-
micro.com/powerpc/BOA5200.pdf.

[Ber] BerliOS. Socketcan driver. http://developer.berlios.de/projects/socketcan/.

[CiAa] CiA. Can bus. http://www.can-cia.org/index.php?id=170.

[CiAb] CiA. Canopen network. http://www.can-cia.org/index.php?id=171.

[DoCE] CTU FEE Department of Control Engineering. Boa wiki.
http://rtime.felk.cvut.cz/hw/index.php/Boa5200 HOWTO.

[Ghia] Ghisler. Total commander. http://download.totalcommander.cz/.

[Ghib] Ghisler. Total commander packer plugin.
http://www.totalcmd.net/plugring/targzbz2.html.

[Hat] Red Hat. Redboot guide. http://ecos.sourceware.org/docs-latest/redboot/redboot-
guide.html.

[Jel08] Pavel Jeĺınek. Podpora simulace s hardware ve smyčce
http://dce.felk.cvut.cz/dolezilkova/diplomky/2008/dp 2008 jelinek pavel/
dp 2008 jelinek pavel.pdf. Master’s thesis, Faculty of Electrical Engineering,
Czech Technical University, 2008.

[Joh] Matt Johnston. Dropbear ssh. http://matt.ucc.asn.au/dropbear/dropbear.html.

[LOLa] LOLITech. Canfestival api documentation. http://www.canfestival.org/api/.

[LOLb] LOLITech. Canfestival driver. http://www.canfestival.org/.

[Mat] Mathworks. Real time workshop embedded coder documentation.
http://www.mathworks.com/access/helpdesk/help/toolbox/ecoder/index.html.

[min] Mingw web. http://www.mingw.org.

[Ṕı̌s05] Pavel Ṕı̌sa. Periodic threads. http://dce.felk.cvut.cz/por/hlavni uloha/motor.html,
2005.

[Wag] Wago. Wago 750-348. http://www.wago.com/wagoweb/documentation/index e.htm.

[Wik] Wikipedia. Canopen. http://en.wikipedia.org/wiki/CANopen.

69

http://www.analogue-micro.com/powerpc/BOA5200.pdf
http://www.analogue-micro.com/powerpc/BOA5200.pdf
http://developer.berlios.de/projects/socketcan/
http://www.can-cia.org/index.php?id=170
http://www.can-cia.org/index.php?id=171
http://rtime.felk.cvut.cz/hw/index.php/Boa5200_HOWTO
http://download.totalcommander.cz/
http://www.totalcmd.net/plugring/targzbz2.html
http://ecos.sourceware.org/docs-latest/redboot/redboot-guide.html
http://ecos.sourceware.org/docs-latest/redboot/redboot-guide.html
http://dce.felk.cvut.cz/dolezilkova/diplomky/2008/dp_2008_jelinek_pavel/dp_2008_jelinek_pavel.pdf
http://dce.felk.cvut.cz/dolezilkova/diplomky/2008/dp_2008_jelinek_pavel/dp_2008_jelinek_pavel.pdf
http://matt.ucc.asn.au/dropbear/dropbear.html
http://www.canfestival.org/api/
http://www.canfestival.org/
http://www.mathworks.com/access/helpdesk/help/toolbox/ecoder/index.html
http://www.mingw.org/
http://dce.felk.cvut.cz/por/hlavni_uloha/motor.html
http://www.wago.com/wagoweb/documentation/index_e.htm
http://en.wikipedia.org/wiki/CANopen

Appendix A

Target usage example

This chapter describes step by step the process of generating model code using Linux
ERT Target and its execution on the BOA machine. In the aim of creating as simple
example as possible, we will use very simple model without CANopen support. However
the model will use two different sample times to try the multitasking program (see section
2.4.1).

Before starting the model creation and code generation it is necessary to have the
Linux ERT target installed as well as the MinGW environment (see section 2.2). The
BOA machine has to be configured according to section 2.2.4 and turned on.

A.1 Model target configuration

First of all create a folder called lets say ert example and new Simulink model (called
ert model.mdl) inside it. Click Simulation/Configuration parameters in the model menu.
In Real Time Workshop section click Browse and choose linux ert target.tlc from the given
list (see figure A.1). The target contains callback after its choice. The default settings
is loaded in this callback function so that some simulation parameters are set automa-
tically. Nevertheless we will have a look at the settings important for the code generation.

Click on the Solver pane in the configuration dialog. The fundamental step size is set
here. It is the sample period of the main loop (see section 2.4.1). If it is set to the value
auto it is calculated automatically as a greatest common divisor of all sample times used
in the model. The other important option is the Tasking mode. It is recommended to
keep the auto value as well. Then the singletasking mode is chosen if just one sample
time is used or multitasking for more sample times.

The other important setting is the External mode configuration in Real Time Work-
shop/Interface pane (figure A.2). The external mode provides the TCP connection bet-
ween Simulink and the model running on the Target machine and transfers the simulation
signals to the Simulink window during the simulation progress. The MEX-file arguments
have following meaning: 192.168.123.199 is the IP address of the BOA module, 1 enables
the communication state messages and 17725 is the communication port of TCP connec-
tion.

Previous paragraph described the external mode settings which is in fact the com-
munication settings on the side of host computer. There is the configuration of BOA
module side communication in Real Time Workshop/Target pane. This dialog contains

70

Figure A.1: Model configuration to use Linux ERT Target

information like name and password of the user which should be used for login to the BOA
computer (use root according to the section 2.2.4 to avoid authority problems), BOA IP
address and model executive options. This options have to contain parameters -w -port
17725 to enable external mode and set its port to 17725.

The last option defines what operations should be done with the generated code. It
can be just generated and compiled or copied to the BOA Target or finally executed there
too. We will set it to the compile copy execute option.

The next configuration pane is called CANopen support. The support of CANopen
blockset is configured here. However we do not want to use it and so we will keep the
support disabled.

The last pane is Runtime logging. You can set the console and file event logging level
here.

The target configuration is finished now. Press Apply to store the values and switch
to the model window.

A.2 Model creation

While having the configuration done we have to create the Simulink model itself to
have something to be generated. As we want to have a simple model but using two sample
times, we will create two discrete sinus wave generators. Output values of these generators
will be cut by saturation blocks and displayed by scopes.

To do this open Simulink Library and drag two Sine Wave blocks from Sources section
to the model. Set the sample time of the first Sine wave to 0.2. Then set the sample time
of the second Sine wave to [0.5 0.1] (0.1 is the time offset of the block).

Now drag two Saturation blocks from the Discontinuous section and two Scope blocks
from the Sinks section to the model and connect everything according to the figure A.4.

71

Figure A.2: External mode settings

The settings of these blocks can be left as it is.

Now switch back to the Configuration dialog and press Generate code in the Real Time
Workshop pane. The code generation will start and after it finishes, model linux ert target
folder will be created in the working directory. This folder contains generated files and
Makefile prepared to be build (see section 2.4).

A.3 Code building and execution

While having the code generated run the MSYS console and open the model folder
in it. The go script (see section 2.4.3) is created there. This script contains commands
for build and execution of the code according to Real Time Workshop/Target pane of the
configuration dialog. We have chosen compile copy execute option. It means that the go
script will first compile the code and obtain model executable. Then it will be copied to
the BOA machine and finally executed.

Note It is possible to use real Windows paths in MSYS but with slash instead of backs-
lash as folder separator (e.g. C:/work/ert example).

Run the go script. If the building finishes successfully the ert model executable file
will be created. The connection with the BOA machine is established, the executable is
send and started at the Target computer. If no error either in building or communication
occurs, the program should be running now. Switch to the model, set Simulation/External
to enable external mode and click Connect To Target. While the connection is established
the Start real-time code button should become enabled. Click it and start the simulation.
You can open the scopes and check the process. To finish the simulation click the Stop
button. Then the code running at the Target terminates and has to be started again to

72

Figure A.3: Target settings

S i n e W a v e 1

S i n e W a v e

S c o p e 1

S c o p e

S a t u r a t i o n 1

S a t u r a t i o n

Figure A.4: Example model

run the simulation once more. It can be started by go script or manually after connecting
to the BOA via SSH by the following commands.

$ ssh root@192 . 1 6 8 . 1 23 . 1 99
$. / model −tf inf −w −port 17725

This is end of the example. Mind that after making any change of the model, the code
has to be regenerated and the go script has to be performed as well to build the program
and start at the BOA.

73

Appendix B

CANopen blockset usage example

This tutorial describes step by step the creation of a simple controller with CANopen
communication. This example is called controller and all the files used in this tutorial
should be available in the blockset distribution.

Note The CANopen blockset and this example as well are based on model using Linux
ERT Target. It is essential to be familiar with using it before starting using the blockset.
Performing the target tutorial first will help you.

Generated controller

BOA5200

Linux

Wago

Beam
angle

Ball
position

Ball & Beam

CANopen

Figure B.1: Control example

B.1 Definition of the control problem

Imagine that you have Ball and Beam model and you want to control the ball position
at the beam (figure B.1). The output of the system is the ball position measured as
voltage and you can control the beam angle by changing the motor input voltage. It
means that the model is the SISO (Single-Input Single-Output) system described by the
following discrete transfer function with sample time Ts = 0.05s.

G =
0.000304z2 + 0.00096z + 0.00018

z3 − 2.364z2 + 1.731z − 0.3665

This system will be controlled by filtered PD controller with following transfer function
and the same sample time as the system.

C =
5.76z − 5.452

z − 0.7408

74

We will use BOA5200 computer [AM] to implement the controller. The interface
between model analogue input and output and the computer CAN peripheral will be
realized by Wago distributed IO in version 750 with CANopen support [Wag]. We have
Wago 750-348 main module and Wago 750-459 (4 analogue inputs) and Wago 750-559 (4
analogue outputs). However, we will use just one input and one output as the model is
SISO. This device uses one PDO message to transfer all 4 inputs and one for all 4 outputs.
This is the PDO number 2 which has message ID 280hex + NodeID in the direction from
Wago to controller and ID 300hex + NodeID in the opposite direction. We will set the
Wago node ID to 2.

After defining the task we can start with the controller design. It is necessary to have
the Linux ERT Target and CANopen blockset correctly installed (see section 3.2).

B.2 Creation of the node Object Dictionary

First of all, we have to create CANopen node object dictionary in OD editor (objdicte-
dit.py) and generate the necessary files (see section 3.3.1). Open the OD editor and create
a new project. Fill the setup dialog according to the figure B.2. This says that the node
will be master in the CANopen network, the Object Dictionary will be called controller
and the node will use Heartbeat service to secure the network functionality. Click OK
after having this filled.

Figure B.2: Creating new Object Dictionary

We will set up the Heartbeat service now. Open Edit/DS-301 profile, move index
0x1016 (Consumer Heartbeat Time) to the right pane and click OK. Open Communication
Parameters in the main window. Indices 0x1016 and 0x1017 should be available there. Set
the value of 0x1017 (Producer Heartbeat Time) to 1000ms (0x03E8). This will produce the
Heartbeat message every second. Additionally, set the value of index 0x1016 (Producer
Heartbeat Time) to 0x00020064. This says that if the answer from the node ID 2 (Wago)
was not received in 100ms (0x64), the Heartbeat error should be announced. We will
handle this error by the appropriate callback in the model.

We will use one SDO message to configure the Wago behavior and we have to register
it in the OD now. Click SDO parameters and add a SDO client. Set its subindices 1
(Transmit SDO) and 2 (Receive SDO) to 0x602 and 0x582.

75

Next, we will create internal node variables in Manufacturer specific section. First,
create two variables beam angle and ball position that will represent the input and output
of the model. However, PDOs defined in Wago contains values of all 4 analogue inputs
and outputs so that we have to create variables that will be mapped onto the rest of the
message. Create 3 more variables for the 3 inputs and 3 more variables for 3 outputs.
Set the data type of all the created variables to UNSIGNED16. The variable definition
should look like in the figure B.3.

Figure B.3: Costume variables definition in Object dictionary

Finally, we have to define receive and transmit PDO messages and their mapping on
the variables. Add one Receive PDO in the Receive PDO parameters section. Then, set
its ID to 0x282 and the Transmission type to 0x01 (synchronized by SYNC messages).
Now, click on the Receive PDO mapping section, add one mapping object and add 4
subindices by right-clicking the single entry. Choose variables created as inputs in the
mapping objects value column. First object should be the variable representing the ball
position as the first input of the Wago module (figure B.4). Create Transmit PDO in the
same way as the Receive PDO and use 0x302 message ID. Use output variables in the
mapping with the beam angle variable at the first position.

The Object Dictionary is completely defined now. Save it as controller.od and click
File/Export to EDS file and File/Build Dictionary. This will produce controller.eds,
controller.c and controller.h files. You can close the OD editor now and continue by
creating the Simulink model.

B.3 Creation of the Simulink model

Create a new model in Simulink and save it with the name model.mdl (model name
has to be different from OD name). Place controller.eds, controller.c and controller.h files
created in the previous section into the model folder.

First of all, we will set the target in Simulation/Configuration parameters menu.
Choose Linux ERT target (linux ert target.tlc file) in the Real Time Workshop menu.
Then, check Enable CANopen blockset support option in the CANopen support pane. Li-
brary and include folders should be determined automatically, if the target is installed
correctly. Finally, enable and set the external mode parameters in Target and Interface

76

Figure B.4: Receive PDO mapping onto internal variables

pane according to your BOA and network settings. See Linux ERT Target documentation
for more information about this.

We will create the model itself now. Open the Simulink Library Browser and drag
the CANopen node block from Linux ERT Target blockset/CANopen blockset section into
the model. Open Block parameters dialog and set it according to the figure B.5. If you
insert the OD name (controller) and click Load I/O mapping from EDS file the mapping
is loaded automatically in the way that each variable mapped into some PDO is used as
input or output of the block. However, we need only one input and one output variable
so that you can delete the 3 more entries in both cells. The block sample time will be
0.05s as the rest of the model and the network communication as well. Finally, enable the
Simulation support to create the simulation input and output. This will enable testing
the controller just in the Simulink without using hardware.

After having the main block configured, we can employ other CANopen blocks. Firstly,
drag the SYNC generator block to the model and set its OD name to controller and sample
time to [0.05 0.04]. This will produce SYNC messages in the CANopen network with the
period of 0.05s delayed 0.04s after the model update. It means in fact that the model
update will be performed 0.01s after the SYNC message so that the data transfers are
surely finished.

B.3.1 CANopen callbacks

We need to handle some asynchronous events of the CANopen network. To do this we
will use CANopen callbacks block. Drag it to the model and set it to provide three types
of callbacks - Boot up of the Wago device, Heartbeat error occurrence and stopping the
local node at the end of the simulation (figure B.6).

According to the settings the Callbacks block has one output port of the width 3.
It means that the port has to be split by Demux block into 3 separate signals first.
The output port is the function call port that should be used to trigger Function call
subsystem. The callback parameters are stored in the global memory by the block and
can be processed by appropriate parsers. Drag 3 Function-Call subsystem blocks into the
model and connect their triggers to the 3 output signals of the Callbacks blocks. Then
open each subsystem and create there the code handling particular event.

77

Figure B.5: CANopen node block parameters

First function call subsystem will be connected to the first Callback block output
signal that is Slave boot up event. This callback has a single parameter - ID of the node
which booted up. To get this parameter we have to place Slave boot up parser block into
the subsystem and display its input value.

We will perform Wago device initialization and start both nodes after reception of
the boot up message from Wago. CANopen asynchronous block is designed to do such
operations. Drag this block to the subsystem and open the parameters dialog. The OD
name is controller again and the Operations parameter cell should contain the following
text.

{{ ' writeNetworkDict ' , { ' 2 ' , ' 0x1801 ' , ' 2 ' , ' 1 ' , 'UNS8 ' }} , { 'masterSendNMTStateChange ' , ←↩
{ ' 2 ' , 'NMT\ S t a r t \ Node ' }} , { ' s e t S t a t e ' , { ' Operat iona l ' }}}

The first operation sends SDO message to the Wago and enables PDO transmission
after SYNC message reception. The second operation sets Wago into Operational state
and the last sets local node to Operational state as well. It is a good idea to check SDO
transfer failure. To do this split error output of the block into 3 signals and display
the value of the first one by the Display block. The subsystem content is shown in the
figure B.7. Moreover, it is necessary to insert Asynchronous rate transition block between
the subsystem outputs and displays to ensure data integrity between synchronous and
asynchronous part of the model. Set the sample time of rate transitions to 0.05 as is the
synchronous model sample time.

78

Figure B.6: Callbacks block parameters

The second callback is activated after Heartbeat error. To handle it place Heartbeat
error parser block into the appropriate function call subsystem and set its OD name to
controller again. Display its output at the Display block. It will show the ID of the node
which produced the heartbeat error (did not answer on the server request). Do not forget
about the Asynchronous rate transition block.

The last subsystem will perform what should be done after stopping the local node at
the end of the simulation. We will stop Wago by the CANopen asynchronous block and
the masterSendNMTStateChange operation.

B.3.2 Creating the controller

We have already implemented all the required functionality of the CANopen node.
Now, we will create the controller which will communicate using this node. The Wago
analogue output produces signal of voltage in range < 0V ; 10V >. This is, however,
transmitted in PDO messages in data type 16-bit unsigned integer. This data type is
used for CANopen node block ports as well. Moreover, controlling the ball rolling at the
beam requires using negative voltage (this would have to be solved electronically). We
have to create converter from double value in range < −5V ; 5V > to unsigned value in
range < 0; 65535 > (16-bit) and the same in the opposite direction. These converters are
shown in the figure B.8.

We can use LTI system block from Control System Toolbox of Simulink to implement
the controller. Drag this block to the model and set its parameter to the controller discrete
transfer function.

tf ([5 . 7 6 −5 .452] , [1 −0 .7408] , 0 .05)

To enable testing the controller in Simulink we will create Ball and Beam mathematical
model in the same way as the controller with the following transfer function.

tf ([0 . 0 00304 0.00096 0 . 0 0 0 1 8] , [1 −2.364 1 .731 −0 .3665] , 0 .05)

79

O u t 1

2

O u t 2

1

S l a v e b o o t u p p a r s e r

S l a v e b o o t u p
p a r s e r

" c o n t r o l l e r "
N o d e I D

C A N o p e n a s y n c h r o n o u s

C A N o p e n a s y n c h r o n o u s
" c o n t r o l l e r "

d a t a i n p u t

d a t a o u t p u t

e r r o r o u t p u t

f u n c t i o n

f ()

Figure B.7: Function call subsystem triggered by Slave boot up callback

U i n t 1 6

1

S a t u r a t i o n G a i n 1

1 / 1 0

G a i n

2 ^ 1 6

D a t a T y p e C o n v e r s i o n

u i n t 1 6

B i a s

u + 5

D o u b l e

1

D o u b l e

1

G a i n 1

1 0

G a i n

2 ^ - 1 6

D a t a T y p e C o n v e r s i o n

d o u b l e

B i a s

u - 5

U i n t 1 6

1

Figure B.8: Signal converter subsystems

Note We do not want to generate code of these blocks used just for the simulation.
To avoid generating the simulation loop use Environment controller blocks to switch the
CANopen block simulation input and output between simulation loop (simulation case)
and Ground (code generation case).

Finally, we can connect the controller with the data types converters in the closed
control loop using input and output of the CANopen node block. In the same way the
simulation model will be connected to the simulation I/O. As a reference signal we can
use e.g. Step function. The complete model is in the figure B.9 and the colors marks
sections with the same sample time (right-click the model and enable Format/Sample
Time Colors). Now, you can press the Start simulation button and see the simulation
results in the scope window.

B.4 Generating and compiling the code

To generate the model code click Generate code button in the simulation parameters
(or press Ctrl+B). This will generate the necessary files as well as the go script which
performs the code compilation and copying into the BOA computer. This is described

80

T y p e c o n v e r t e r 4

U i n t 1 6 D o u b l e

T y p e c o n v e r t e r 3

D o u b l eU i n t 1 6

T y p e c o n v e r t e r 2

U i n t 1 6D o u b l e

T y p e c o n v e r t e r 1

D o u b l eU i n t 1 6

S y s t e m o u t p u t

S t o p p e d s t a t e
c a l l b a c k

f u n c t i o n ()

S l a v e b o o t u p p r o d u c e r
n o d e I D

0

S l a v e b o o t u p
c a l l b a c k

f u n c t i o n () O u t 2

O u t 1

S Y N C g e n e r a t o r

S Y N C g e n e r a t o r
" c o n t r o l l e r "

S a m p l e t i m e = [0 . 0 5 0 . 0 4]

S D O e r r o r c o d e

0

R e f e r e n c e

H e a r t b e a t e r r o r p r o d u c e r
n o d e I D

0

H e a r t b e a t e r r o r
c a l l b a c k

f u n c t i o n ()

I n 1 O u t 1

G r o u n d 2

G r o u n d 1 E n v i r o n m e n t
C o n t r o l l e r 1

S i m

R T W
O u t

E n v i r o n m e n t
C o n t r o l l e r

S i m

R T W
O u t

C o n t r o l l e r

7 6 - 5 . 4 5 2] , [1 - 0 . 7 4 0 8] , 0

C A N o p e n n o d e

C A N o p e n n o d e
" c o n t r o l l e r "

I D = 1

b e a m _ a n g l e s i m _ b e a m _ a n g l e

s i m _ b a l l _ p o s i t i o n b a l l _ p o s i t i o n

C A N o p e n c a l l b a c k s

C A N o p e n c a l l b a c k s
" c o n t r o l l e r "

s l a v e B o o t u p , h e a r t b e a t E r r o r , S t o p p e d ,
c a l l b a c k s

B a l l a n d B e a m M o d e l

0 0 0 9 6 0 . 0 0 0 1 8] , [1 - 2 . 3 6 4 1

A R T 3

A s y n c h r o n o u s
R a t e T r a n s i t i o n

A R T 2

A s y n c h r o n o u s
R a t e T r a n s i t i o n

A R T 1

A s y n c h r o n o u s
R a t e T r a n s i t i o n

c o n t r o l l e r a c t i o n

o u t p u t

e r r o r r e f e r e n c e

Figure B.9: Final CANopen node model

in the Linux ERT Target documentation. While having the generated program running
at the target BOA computer, you can switch to external simulation mode and start the
simulation as usual. It will perform the model control process in the real hardware instead
of the simulation LTI model as before.

81

Appendix C

Blockset common use cases

The following section briefly describes a set of simple demo models distributed together
with the blockset. The demos show the blockset used for creating the common CANopen
node types. Each demo contains the Simulink model prepared for code generation and
necessary Object Dictionary files (.od, .eds, .c and .h files). The Object Dictionary is
created in OD editor (see section 3.3.1) and it can be modified by running the Matlab
command objdictedit(’odName.od’).

It is necessary to customize the target settings in configuration parameters before
starting the code generation of the demo model. There are some options in the Real
Time Workshop pane that have to be filled according to your computer, BOA machine
and network configuration. You have to set up the path of CanFestival driver libraries in
CANopen support pane. It should be filled automatically, so disabling and enabling the
support option should update the paths of library and include folders. Then, the BOA
machine IP address has to be filled in Target and Interface/External mode panes.

C.1 Synchronous master node

This example shows how to create simple CANopen node with SYNC generator and
a single input and output transfered by PDOs synchronized by SYNC. This model is
executed synchronously with SYNC, but it inserts a unit delay into the system as it uses
the received data for output calculation just in the next step (after the next SYNC). See
figure C.1 for the task principle.

SYNC RPDO TPDO

CANopen blockSYNC
gen.

SYNC RPDO TPDO

SYNC
gen.

output = 2*input
k k+1

Ts

offset

CAN

CPU

Figure C.1: Gantt diagram of example functionality

82

Object dictionary name used by all blocks is sync master od. It is the name of .eds,
.c, .h files as well. These files were prepared in the OD editor. The only definition which
is necessary to be done in the editor is the registration of a single RPDO and a single
TPDO. The transmission type of these messages is 1 (transfered after SYNC). A single
input variable of type 8-bit unsigned integer is mapped into the RPDO and a single out-
put variable of the same type is mapped into the TPDO.

SYNC generator’s sample time is set to 1s. It means that it generates SYNC message
once per second. The main block uses the same sample time delayed by offset 0.1s. It
makes the block to be execute just 0.1s after SYNC which means that synchronous PDOs
will have been surely transfered before the block execution.

Callbacks block registers the PreOperational callback. It activates the function call
subsystem after the local node boot up. The Asynchronous block is placed in this sub-
system and switches the local node into the Operational mode. See figure C.2 for the
Simulink realization of this task using CANopen blockset.

S Y N C g e n e r a t o r

S Y N C g e n e r a t o r
" s y n c _ m a s t e r _ o d "
S a m p l e t i m e = 1

P r e O p e r a t i o n a l
c a l l b a c k

f u n c t i o n ()

G a i n

2

D a t a T y p e C o n v e r s i o n 1

C o n v e r t

D a t a T y p e C o n v e r s i o n

C o n v e r t

C A N o p e n n o d e

C A N o p e n n o d e
" s y n c _ m a s t e r _ o d "

I D = 1
o u t p u t i n p u t

C A N o p e n c a l l b a c k s

C A N o p e n c a l l b a c k s
" s y n c _ m a s t e r _ o d "

p r e O p e r a t i o n a l ,
c a l l b a c k s

Figure C.2: Model of CANopen node used as SYNC master

C.2 Synchronous slave node

This example shows how to create simple CANopen node having single input and
output transfered by PDOs synchronized by SYNC. However, the SYNC messages are
generated by another node in the network. The local node is a SYNC slave. This model
does not use any periodic sample time as it is synchronized by SYNC. However, the
constant sample time should be set in configuration parameters Solver pane to control
the program loop. This model inserts a unit delay into the system as it uses the received
data for output calculation just in the next step (after the next SYNC). See figure C.3
for the task principle.

Object dictionary name used by all blocks is sync slave od. It is the name of .eds, .c,
.h files as well. These files were prepared in the OD editor. The only definition which

83

SYNC RPDO TPDO

CANopen block

SYNC RPDO TPDO

output = 2*input

k k+1

Ts

offset

CAN

CPU Offset block

SYNC
callback

Figure C.3: Gantt diagram of example functionality

is necessary to be done in the editor is the registration of a single RPDO and a single
TPDO. The transmission type of these messages is 1 (transfered after SYNC). A single
input variable of type 8-bit unsigned integer is mapped into the RPDO and a single output
variable of the same type is mapped into the TPDO.

Callbacks block registers the PreOperational and SYNC callbacks. The first callback
activates the function call subsystem after the local node boot up. The Asynchronous
block is placed in this subsystem and switches the local node into the Operational mode.
The second output of the Callbacks block activates the other function call subsystem after
reception of SYNC message. The main block and the node calculations are performed in
this subsystem. The CANopen block’s sample time is set to -1 (inherited) as it activated
by the callback. See figure C.4 for the Simulink realization of this task using CANopen
blockset including the SYNC callback and offset subsystems content in figure C.5.

S Y N C o f f s e t

f u n c t i o n ()

O u t 1

S Y N C c a l l b a c k

f u n c t i o n ()
P r e O p e r a t i o n a l

c a l l b a c k

f u n c t i o n ()

C A N o p e n c a l l b a c k s

C A N o p e n c a l l b a c k s
" s y n c _ s l a v e _ o d "

p r e O p e r a t i o n a l , S Y N C ,
c a l l b a c k s

Figure C.4: Model of CANopen node as SYNC slave

C.3 Synchronous CANopen sensor

This example shows how to create CANopen node representing some sensor. This
device measures (generates in the example) some value and sends it in the PDO just after
reception of SYNC message. This model does not use any periodic sample time as it is

84

O u t 1

1

F u n c t i o n c a l l o f f s e t

F u n c t i o n c a l l
o f f s e t

f u n c t i o n

f ()

G a i n

2

D a t a T y p e C o n v e r s i o n 1

C o n v e r t

D a t a T y p e C o n v e r s i o n

C o n v e r t

C A N o p e n n o d e

C A N o p e n n o d e
" s y n c _ s l a v e _ o d "

I D = 1
o u t p u t i n p u t

f u n c t i o n

f ()

Figure C.5: Function call offset (left) which delays the node execution (right)

synchronized by SYNC. However, the constant sample time should be set in configuration
parameters Solver pane to control the program loop. The main block does not perform
any periodic functionality in this use case. It just loads the EDS file and controls the
CANopen driver. Its sample time is set to -1 to inherit the fundamental sample time of
the model. See figure C.6 for the task principle.

SYNC TPDO SYNC

k k+1

Ts

CAN

CPU
Value

measurement

SYNC
callback

Writing
to OD

Asynchronous
PDO transmission

latency

Figure C.6: Gantt diagram of example functionality

Object dictionary name used by all blocks is sync sensor od. It is the name of .eds, .c,
.h files as well. These files were prepared in the OD editor. The only definition which is
necessary to be done in the editor is the registration of a single TPDO. Its transmission
type is 255 (transfered after change). After the SYNC reception, the measurement is
performed first and the PDO is sent just after the new value is stored into Object Dictio-
nary. Mind, that it is necessary to ensure fast enough value calculation between reception
of SYNC and sending the PDO to preserve the synchronous behavior. A single output
variable of type 8-bit unsigned integer is mapped into the TPDO.

Note After writing the value into OD, the sendPDOevent operation has to be used in
Asynchronous block to send all asynchronous TPDOs. It is used in this example as well.

Callbacks block registers the PreOperational and SYNC callbacks. The first callback
activates the function call subsystem after the local node boot up. The Asynchronous
block is placed in this subsystem and switches the local node into the Operational mode.

85

The second output of the Callbacks block activates the other function call subsystem after
reception of SYNC message. The counter simulating the real value measurement is placed
there. Its value is then stored into the OD and the PDO is sent. See figure C.7 for the
Simulink realization of this task using CANopen blockset. There is the SYNC callback
subsystem content in the figure C.8.

S Y N C c a l l b a c k

f u n c t i o n ()

P r e O p e r a t i o n a l
c a l l b a c k

f u n c t i o n ()

C A N o p e n n o d e

C A N o p e n n o d e
" s y n c _ s e n s o r_ o d "

I D = 1

C A N o p e n c a l l b a c k s

C A N o p e n c a l l b a c k s
" s y n c _ s e n s o r _ o d "

p r e O p e r a t i o n a l , S Y N C ,
c a l l b a c k s

Figure C.7: Model of CANopen sensor

M e a s u r e m e n t
s i m u l a t i o n

l i m

D a t a T y p e C o n v e r s i o n

C o n v e r t

C A N o p e n a s y n c h r o n o u s 1

C A N o p e n a s y n c h r o n o u s
" s y n c _ s e n s o r _ o d "

d a t a i n p u t

d a t a o u t p u t

e r r o r o u t p u t

f u n c t i o n

f ()

Figure C.8: Subsystem executed by SYNC callback

C.4 Asynchronous CANopen node

This example shows how to create CANopen node which works in asynchronous mode.
It just waits for the change of its OD entry by received PDO. Then, it reads the value,
performs some operation over it and store it into another OD entry. Just after the
calculation, the PDO is transmitted. This model does not use any periodic sample time.
The execution is supposed to be aperiodic. However, the constant sample time should be
set in configuration parameters Solver pane to control the program loop. The main block
does not perform any functionality in this use case. It just loads the EDS file and controls
the CANopen driver. See figure C.9 for the principle of this example. The basic model of
this example is almost the same as in the previous case (see figure C.7). The only change
is that the second callback is not triggered by SYNC but by the OD entry change.

Object dictionary name used by all blocks is async change od. It is the name of .eds,
.c, .h files as well. These files were prepared in the OD editor. The only definition which
is necessary to be done in the editor is the registration of a single RPDO and a single

86

RPDO TPDOCAN

CPU
output =
2*input

OD change
callback

Writing
to OD

Asynchronous
PDO transmission

latency

Reading
to OD

Figure C.9: Gantt diagram of example functionality

TPDO. The transmission type of these messages is 255 (transfered after value change).
A single input variable of type 8-bit unsigned integer is mapped into the RPDO and a
single output variable of the same type is mapped into the TPDO.

Callbacks block registers the PreOperational and OD change callbacks. The first call-
back activates the function call subsystem after the local node boot up. The Asynchronous
block is placed in this subsystem and switches the local node into the Operational mode.
The second output of the Callbacks block activates the other function call subsystem
after change of OD index 2000 hex (the RPDO is mapped there). This entry is read in
the callback subsystem, multiplied by 2 and stored into the OD entry with index 2001
hex (TPDO mapped variable). The TPDO is transfered after the data change (see the
subsystem content in the figure C.10).

G a i n

2

D a t a T y p e C o n v e r s i o n 1

C o n v e r t

D a t a T y p e C o n v e r s i o n

C o n v e r t

C A N o p e n a s y n c h r o n o u s 1

C A N o p e n a s y n c h r o n o u s
" a s y n c _ c h a n g e _ o d "

d a t a i n p u t

d a t a o u t p u t

e r r o r o u t p u t

C A N o p e n a s y n c h r o n o u s

C A N o p e n a s y n c h r o n o u s
" a s y n c _ c h a n g e _ o d "

d a t a i n p u t

d a t a o u t p u t

e r r o r o u t p u t

f u n c t i o n

f ()

Figure C.10: OD change callback subsystem

87

C.5 Model with two CANopen nodes

This example (see figure C.11) shows how to create two CANopen nodes in a single
model. It can be used for working with two separate CANopen networks at once. Each
of them is connected to one of CAN ports provided by BOA computer. This example
simulates the following situation. At the first network (CAN port 0) the SYNC master
node synchronously receiving and transferring PDOs is created. The node is exactly the
same as in sync master example (see section C.1). Data of received RPDO are multiplied
by a constant and transmitted in the next SYNC period by TPDO. This simulates the
fast periodic control loop. Moreover, the device is connected to some supervisor station by
another CANopen network. The second node using the appropriate CAN port is created
to operate with this network. Its only function is to wait for asynchronous RPDO and
use its value as a multiplication constant in the control loop. Mind that both nodes
are working in the separate networks so that they can have the same node IDs and use
messages having the same IDs as well.

S Y N C g e n e r a t o r

S Y N C g e n e r a t o r
" s y n c _ m a s t e r _ o d "
S a m p l e t i m e = 1

P r o d u c t

P r e O p e r a t i o n a l
c a l l b a c k 1

f u n c t i o n ()

P r e O p e r a t i o n a l
c a l l b a c k

f u n c t i o n ()

O D c h a n g e
c a l l b a c k

f u n c t i o n ()

O u t 1

D a t a T y p e C o n v e r s i o n 2

C o n v e r t

D a t a T y p e C o n v e r s i o n 1

C o n v e r t

D a t a T y p e C o n v e r s i o n

C o n v e r t

C A N o p e n n o d e 1

C A N o p e n n o d e
" a s y n c _ c h a n g e _ o d "

I D = 1

C A N o p e n n o d e

C A N o p e n n o d e
" s y n c _ m a s t e r _ o d "

I D = 1
o u t p u t i n p u t

C A N o p e n c a l l b a c k s 1

C A N o p e n c a l l b a c k s
" a s y n c _ c h a n g e _ o d "

P r e O p e r a t i o n a l , O D 0 x 2 0 0 0 _ 0 ,
c a l l b a c k s

C A N o p e n c a l l b a c k s

C A N o p e n c a l l b a c k s
" s y n c _ m a s t e r _ o d "

p r e O p e r a t i o n a l ,
c a l l b a c k s

A s y n c h r o n o u s R a t e T r a n s i t i o n

A s y n c h r o n o u s
R a t e T r a n s i t i o n

Figure C.11: Model with two CANopen nodes

Each node has its own Object dictionary (.eds, .c, and .h files as well). The OD
name parameter of each block is used to recognize which OD the block works with.
The first node OD is called sync master od and it is exactly the same as in sync master
example. The second node OD is called async change od and it is almost the same as
in the async change example (see section C.4). In contrast to that example, it does not
use any TPDO and its RPDO mapped variable is called async input instead of input
to avoid variable name conflict with the other OD while building. The blocks used in
both nodes are the same as in the mentioned examples. Moreover, at the connection

88

link between asynchronous and synchronous part of the model, the Asynchronous Rate
Transition block has to be used.

89

Appendix D

Abbreviations

HIL Hardware In the Loop
HW HardWare
IO Input Output
ISR Interrupt Service Routine
JFFS2 Journale File System version 2
MinGW Minimalist GNU for Windows
MSYS Minimal System
OS Operating System
RedBoot Red Hat Embedded Debug and Bootstrap
RT Real Time
RTW Real Time Workshop
SCP SeCure Copy
SSH Secure SHell
STF System Target File (TLC)
TFTP Trivial File Transfer Protocol
TLC Target Language Compiler
CAN Controller Area Network
EDS Electronic Data Sheet
PDO Process Data Object
SDO Service Data Object
NMT Network Management
OD Object Dictionary

Figure D.1: Abbreviations

90

Appendix E

Attached CD content

CD

Canfestival

boa5200

canopen_blockset

Demos

canfestival

include

lib

objdictgen

doc

help_img

mask_callbacks

private

tlc_c

src

controller

ert_example

documentation

canopen_blockset

linux_ert_target

dp_hamacek

linux_ert_target

linux_grt_target

software

dp_2008_hamacek_lukas.pdf

doc

linux_ert_target

CanFestival driver sources in current version

Memory images necessary for BOA machine preparation

CANopen blockset installation folder

CanFestival parts used ny blockset

CanFestival header files

CanFestival libraries

Object Dictionary editor

Blockset documentation

Images used in block help

Scripts called from block mask

Support script of blockset

Not used

TLC scripts for blocks code generation

Demo application

CANopen blockset example

Linux ERT target example

Documentation LaTex sources

CANopen blockset documentation

Linux ERT Target blockset documentation

Master thesis LaTex sources

Linux ERT Target installation folder

Linux ERT Target documentation

Linux ERT Target scripts

Linux GRT Target installation folder

PC Software necessary for blockset and BOA usage

Master thesis

91

	Introduction
	Work motivation
	Employed technologies
	BOA 5200 computer
	Matlab - Simulink
	Matlab - Real Time Workshop
	CANopen protocol
	CanFestival driver

	Solution concept
	Embedded target creation
	CANopen blockset
	Simulation support of CANopen blocks

	Linux ERT Target
	Introduction
	Target installation
	Installation prerequisites
	MinGW environment installation
	Linux ERT Target installation
	BOA machine preparation

	Target architecture
	Target configuration scripts
	Code generating scripts

	Generated code
	Main function
	Makefile
	Script go and the build process

	CANopen blockset
	Introduction
	Simulation capabilities
	Blockset parts

	Installation
	Object Dictionary editor installation
	CANopen blockset installation
	CANopen support in the target
	Updating CanFestival version

	EDS file and Object Dictionary
	CanFestival OD editor

	CANopen node block
	Block parameters
	ObjectDictionary class and EDS file parser
	Block functionality
	Simulation capabilities
	Block code generation

	Callbacks block
	Block parameters
	Block functionality
	Simulation capabilities
	Block code generation

	Callback parameters parser blocks
	Parser blocks parameters
	Simulation capabilities
	Emergency callback parameters parser block
	Heartbeat error callback parameters parser block
	Slave boot up callback parameters parser block

	SYNC message generator block
	Block parameters
	Block code generation

	Asynchronous operations block
	SDO transfers
	Block inputs and outputs
	Block parameters
	Block code generation
	Simulation capabilities

	Function call offset block
	Block code generation

	Asynchronous rate transition block
	Block code generation

	Conclusion
	Target usage example
	Model target configuration
	Model creation
	Code building and execution

	CANopen blockset usage example
	Definition of the control problem
	Creation of the node Object Dictionary
	Creation of the Simulink model
	CANopen callbacks
	Creating the controller

	Generating and compiling the code

	Blockset common use cases
	Synchronous master node
	Synchronous slave node
	Synchronous CANopen sensor
	Asynchronous CANopen node
	Model with two CANopen nodes

	Abbreviations
	Attached CD content

