
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Cybernetics

Bachelor’s Thesis

Control of Robot for Inserting
Detectors for the Large Hadron
Collider

Jakub Janoušek
Cybernetics and Robotics

May 2021
Supervisor: Vladimír Smutný

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483444Personal ID number:Janoušek JakubStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Control of Robot for Inserting Detectors for the Large Hadron Collider

Bachelor’s thesis title in Czech:

Řízení robotu pro zakládání křemíkových detektorů urychlovače LHC

Guidelines:
1. Research the requirements for controlling of the robot being designed for insertion of detector assemblies.
2. Propose the HW and SW solution for control of the robot drives.
3. Implement basic functionality of the robot control.
4. Perform experiments with the robot.
5. Evaluate results, propose improvements.

Bibliography / sources:
[1] Large Hadron Collider Atlas Detector, Inner Tracker Upgrade,
https://cds.cern.ch/record/2302625/files/ATL-ITK-SLIDE-2018-073.pdf, Hong Kong 2018.
[2] Franklin Gene F., J. David Powell, Abbas Emami-Naeini: Feedback Control of Dynamic Systems, Pearson Education
Limited 2019.
[3] Paul Acarnley: Stepping Motors a guide to theory and practice, 4th edition, 2002.

Name and workplace of bachelor’s thesis supervisor:

Ing. Vladimír Smutný, Ph.D., Robotic Perception, CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 21.05.2021Date of bachelor’s thesis assignment: 06.01.2021

Assignment valid until: 30.09.2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Vladimír Smutný, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgement / Declaration

I would like to thank my supervisor
Vladimír Smutný for all his advice, pa-
tience and support during the prepara-
tion of this thesis. I would also like
to thank the entire CTU team which
I can be part of for the support, es-
pecially Martin Janda for precious ad-
vices and suggestions during the devel-
opment. Advice and mentoring provid-
ed by Václav Vacek was also greatly ap-
preciated.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

Prague, May 21, 2021

. .

v

Abstrakt / Abstract

Experiment ATLAS, který je součástí
urychlovače LHC v CERNu akutálně
prochází přípravou na další fázi provozu
LHC s vyšíí energií svazků. Kvůli této
vyšší energii je nutné nahradit stá-
vající vnitřní detektor Inner Detector
novějším detektorem Inner Tracker.
Bylo nutné navrhnout robota, který
bude instalovat senzory do tohoto no-
vého vnitřního detektoru. Vývoj tohoto
robota má na starosti tým z ČVUT.

Cílem této práce je navrhnout a
implementovat HW a SW řešení pro
tohoto robota. Pro jednotlivé krokové
motory na robotu byly vyvinuty jejich
controllery, které jsou propojeny do
komunikační sítě RS-485 společně s
centrální řídící jednotkou. Pro komu-
nikaci přes tuto síť mezi jednotlivými
řídicí a centrální řídicí jednotkou byl
navržen komunikační protokol. Celé
řízení robota společně se synchronizací
všech krokových motorů má na sta-
rosti navržená centrální řídící jednotka.
Celý řídící systém robota byl úspěšně
postaven, otestován a je plně funkční.

Klíčová slova: ATLAS, řídící systém,
robot, krokový motor

Překlad titulu: Řízení robotu pro za-
kládání křemíkových detektorů urychlo-
vače LHC

The ATLAS experiment at the Large
Hadron Collider in CERN is currently
being upgraded for the high-luminosity
phase of the LHC, which require replace-
ment of the Inner Detector with a new
Inner Tracker. A robotic assembly is de-
signed by a CTU team to install sensors
into the Inner Tracker.

The goal of this thesis is to design
and implement HW and SW solution
to the control of this robot. The con-
trollers for all the stepper motors were
developed. They are connected via a
RS-485 network together with a central
control unit. A communication proto-
col was implemented for the connection
of the stepper motor controllers and the
central control unit. The central control
unit is responsible for the synchroniza-
tion of the stepper motors and control
of the whole system. The control sys-
tem was successfully built, tested and it
is fully functional.

Keywords: ATLAS, control system,
robot, stepper motor

vi

/ Contents

1 Introduction .1
2 Problem Statement2
2.1 Description of the degrees of

freedom .4
2.1.1 Rotation around the

z-axis .5
2.1.2 Radial movement6
2.1.3 Tilting of the staves6
2.1.4 Z-indexing7
2.1.5 Stave insertion8

2.2 Motors of the robot9
3 Proposed Solution 10
3.1 Hardware . 10

3.1.1 Communication net-
work . 10

3.1.2 Central control unit. 11
3.1.3 Stepper motor con-

troller . 12
3.2 Software . 14

3.2.1 Communication proto-
col . 14

3.2.2 Stepper motor con-
troller . 17

3.2.3 Central control unit. 19
4 Implementation 21
4.1 User Manual 21

4.1.1 Connecting the Rasp-
berry Pi to run the
control software 21

4.1.2 Preparing an external
computer to run the
control software 22

4.1.3 Using the control soft-
ware . 23

4.2 Technical manual 25
4.2.1 Stepper Motor Con-

troller . 25
4.2.2 Central Control Unit 27

4.3 Testing the system 28
4.4 Future considered improve-

ments . 30
5 Conclusion . 32

References . 33

vii

Tables / Figures

2.1. Details of the motors used
for the robot drives9

3.1. Types of the messages 17
4.1. Names of degrees of freedom

inside the control script 24
4.2. List of debugging commands

for the controller 26
4.3. List of functions provided for

the control of the stepper
motor controller 27

4.4. List of functions provided for
the control of the robot 28

2.1. Cross section of the outer
cylinder .2

2.2. Model of a stave.3
2.3. Model of the robot3
2.4. Model of the main arm of the

robot .4
2.5. Schematic description of the

robot in side view5
2.6. Example of the robot move-

ment around the z-axis5
2.7. Example of the radial move-

ment .6
2.8. Example of the tilting of the

arm .7
2.9. Example of the z–indexing.8

2.10. Example of the stave insertion . .8
3.1. Schematic diagram of RS-485

Network. 11
3.2. Circuit diagram of RS-485

circuit . 12
3.3. Schematic diagram of con-

troller with TMC2130 driver . . 13
3.4. Schematic diagram of the

controller with an external
stepper motor driver. 14

3.5. Structure of the command
packet . 15

3.6. Structure of the response
packet . 16

3.7. Flowchart of the main loop
of the controller 18

3.8. Flowchart of the central con-
trol unit software 20

4.5. Photos of the first stave in-
sertion sequence 29

4.6. Photos of the second stave
insertion sequence 30

viii

Chapter 1
Introduction

The use of robotics in manufacturing processes is becoming increasingly necessary.
Many manufacturing processes require high precision and reliability, which is almost
impossible without the use of robotics. The robots also allow handling heavier objects
than would normally be possible with such precision. There are many types of robots
based on its intended purpose. Many of the manufacturing processes contain similar
tasks, so there are standard robotics solutions to choose from. The robots can also
be specifically designed for uncommon tasks, such as mounting components in tight or
otherwise hardly accessible places.

ATLAS is one of the four major detectors at the Large Hadron Collider (LHC) at
CERN. The LHC collides two beams of protons together at very high energy, which can
produce variety of different particles, from which some can be previously unknown. The
particle collisions occur in the center of the ATLAS detector. The goal of the ATLAS
detector is to measure very broad range of signals coming from the collisions to ensure
that any new particle, regardless of its form or nature, will be detected. The ATLAS
detector consists of multiple layers, where each layer has its own purpose.[1]

The LHC is currently being upgraded to provide even higher energies of the collisions.
This requires an upgrade of the ATLAS Inner Tracker, which is the most inner part
of the whole detector. This upgrade requires installation of new sensors, which will be
done via a robotic assembly designed by the team from the Department of Designing
and Machine Components of the Faculty of Mechanical Engineering at CTU. The team
members are Jan Brajer, Daniel Hadraba, Martin Janda, Jakub Janoušek and František
Lopot.

The goal of this thesis is to design and implement HW and SW to control this robot.

1

Chapter 2
Problem Statement

The ATLAS experiment at the Large Hadron Collider in CERN is preparing for a major
upgrade of the accelerator for the high luminosity phase (HL-LHC). The increased
luminosity results in higher radiation damage to the detectors and is well beyond that
for which was ATLAS designed and it requires replacement of the Inner Detector with
an all-silicon Inner Tracker (ITk). The goal of ITk is to track particles created during
the particle collisions inside of ATLAS detector.

ITk is composed of two layers, inner Pixel Detector and Strip Detector, which is built
around the Pixel Detector. Cross section of the outer cylinder that accommodates the
strip barrel is shown in Fig. 2.1. The Strip Detector is then composed of four barrel
layers and divided to two symmetrical sections around the collision point where z = 0,
each 1400 mm long and both containing total of 196 staves on all four barrel layers.

Figure 2.1. Cross section of the outer cylinder that accommodates the strip barrel (light
blue) and end-cap structures.[2]

The stave is one of the basic mechanical building blocks of the barrel and consists
of a core to provide mechanical rigidity and support for the electrical modules and
houses common services, such as electrical or cooling. Each stave is populated with
28 silicon-strip modules, which are responsible for tracking of the particles. There is a
End of Structure Card, which provides data connection and power of all the modules
on the stave to the rest of the detector electronics. Model of the stave is on the Fig.
2.2 The staves are mounted on each barrel all around the z-axis, which leads through
the center of the detector and is coincident with the beam path.[2]

2

. .

Figure 2.2. Model of the stave.[3]

The size and technical complexity of the staves requires that they cannot be installed
by hand, instead an automated mechanism has to be developed in order to install them
correctly. Design of this mechanism, Stave Insertion Tooling, is done by the CTU and
goal of this thesis is to design the HW and SW control of the robot. Mechanical model
of the robot is shown in Fig. 2.3.

The robot will be used only for a single task, which is the installation of the staves.
The usage will be time-limited, and the robot will not be reused for anything else, so
the design does not focus on long term operation and reliability. Instead, the design
focus is the cost effectiveness and customizability. The robot will be working only in
laboratory conditions and it will not encounter any radiation.

a) b)
Figure 2.3. Model of the robot, on the left is the whole mechanical assembly, on the right

the robot is installed inside the barrel and ready for stave insertion.

3

2. Problem Statement .
The model of the main arm of the robot is on Fig. 2.4. It is part of the model shown

on Fig. 2.3. The direction of the stave insertion is represented by the green arrow. The
central control unit for the control of the whole robot is mounted on the arm in the
front section. The main arm has three degrees of freedom (DoF), which will be later
described in the section 2.1.

Central Control Unit

Main arm rib for the stave tilting

Rail for stave insertion

Motor for z-indexing

Direction of the stave
insertion

Figure 2.4. Model of the main arm of the robot

2.1 Description of the degrees of freedom

The schematic description of the robot in side view is shown in Fig. 2.5. Each joint on
the figure is numbered, where the first digit corresponds to the degree of freedom and
the number after dot is unique to the joint within the axis. There is also an arrow next
to each of the joints which indicate its movement.

The robot has to be able to install all of the 196 staves in both sections, so it has to
be able to rotate around the whole z-axis and move to all of the four barrels. All of the
stave positions on each barrel are tilted and the the amount is different for each of the
strip barrel layer. Then the stave has to be inserted into its final position. First, the
box with the stave inside is extended outwards to the beginning of the strip barrel and
this movement is called z-indexing. Then, the stave is inserted into the final position
inside on the strip barrel.

The whole robot is installed inside a large composite barrel and can be connected
to it only on certain points inside of the barrel. This is the reason for the legs shown
on the Fig. 2.3. There are at most 6 legs present, from which some of them must be
removed as some of the staves are placed behind them, and also for the accessibility of
the stave and the box.

4

. 2.1 Description of the degrees of freedom

1.1 1.2

2.1 2.2

Main arm

Box with stave inside Stave in final position4

5

Beginning of the strip
barrel

3.1 3.2 3.3
3.4

z-axis

Figure 2.5. Side view diagram of the Stave Insertion Tooling mechanical layout. Robot
links are in dark grey, robot joints are in light grey and their movement is illustrated by

their respective arrows. Each motor has its own number corresponding to its axis.

2.1.1 Rotation around the z-axis
The rotation around the z-axis is done by two parallel joints 1.1 and 1.2. Both joints
are realized as stepper motors connected to its own harmonic gearbox with a ratio of
1:100. The example of the robot movement of this DoF is on Fig. 2.6.

a) b)

Figure 2.6. Example of the robot movement around the z-axis. On the figure a) is the
robot in its default position. On the figure b) is the robot rotated -90 degrees to the home

position.

5

2. Problem Statement .
A electromagnetic brake is connected to each motor and is engaged in its default

(unpowered) state. This is to prevent any movement of the robot in case of a sudden
unexpected loss of power or an emergency stop. This DoF is the only one with the
danger of unwanted movement while powered off, due to the arm not being balanced
around the axis of rotation and using a gearbox, not a lead screw. Any unwanted
movement in this axis would be fatal if it would happen during the stave insertion, as
the stave would be only partially inserted and the movement could seriously damage
the stave. Also, there is potential risk of damaging the robot itself and anyone near it.

The reason for multiple parallel joints is increased rigidity of the system. Only one
motor present to move in the rotational DoF would mean higher possible deformation
of the robot, which is unacceptable because the stave has to be installed precisely. The
force would be also much higher in case of one motor only, as the mechanical force
would not be shared between all of the motors and a sturdier and heavier construction
would be required.

2.1.2 Radial movement
The radial movement needed to reach all four of the barrels and has two parallel joints
2.1 and 2.2. Both joints are translational and the linear motion is done with a lead
screw with 4 mm per revolution. There are limit switches on both ends of the motion
range to provide a reference point for the software. The example of the robot movement
of this DoF is on Fig. 2.7.

a) b)
Figure 2.7. Example of the robot movement in the radial direction. On the figure a) is the

robot in its default position. On the figure b) is the robot arm fully extended.

2.1.3 Tilting of the staves
The tilt of the stave has to match final position of the stave and the amount is different
for each of the strip barrel layer, which is at maximum 14◦. The stave is tilted together
with its transport box, which is clamped to the top of the arm. There are four parallel
joints synchronized together denoted in the schema as 3.1 to 3.4. The top part of the
arm with the box and stave attached is connected to the main part by four sliders which
are part of the joints. Then these sliders have each connected a motor with a lead screw
with 0.635 mm per revolution. Both home and end switches are present at the limits
of the movement. The example of the robot movement of this DoF is on Fig. 2.8.

6

. 2.1 Description of the degrees of freedom

a)

b)
Figure 2.8. Example of the tilting of the arm. On the figure a) is the robot in its default

position. On the figure b) is the robot arm fully tilted.

2.1.4 Z-indexing
The whole robot with the box has to move around in the entire space of the barrel and
there are supports of the robot between the box and the final stave position, so there
is space between the box and beginning of the strip barrel. The robot must move the
box with the stave right next to the beginning of the strip barrel, as it could not extend
the stave beyond the box and this movement is called z-indexing. The movement is
done by the joint 4 and it is a motor with a lead screw with 2 mm per revolution. This
movement can be only done after the rotation, radial movement and tilting is done.
The example of the robot movement of this DoF is on Fig. 2.9.

7

2. Problem Statement .

a)

b)
Figure 2.9. Example of the z–indexing movement. On the figure a) is the robot in its

default position. On the figure b) is then the z–indexing fully extended.

2.1.5 Stave insertion
After the box with the stave inside is extended to in contact with the strip barrel, the
stave has to be inserted into the guide rails on the strip barrel. There is retractable
pin on the top of the arm of the robot, which locks into a slot on the end of the stave
through a cut out on the bottom side of the box. The pin is then linearly driven by a
lead screw with 0.635 mm per revolution connected to a motor. This enables the stave
to be inserted to its final position in the guide rails on the strip barrel. The example
of the robot movement of this DoF is on Fig. 2.10.

Drive pin of the
stave

Direction of the
insertion

a)

Drive pin of the
stave

Direction of the
insertion

b)
Figure 2.10. Example of the z–indexing movement. On the figure a) is the robot in its
default position and fully tilted. On the figure b) is then the z–indexing fully extended.

8

. 2.2 Motors of the robot

2.2 Motors of the robot
Stepper motors were chosen for all of the degrees of freedom (DoF). They are more cost
effective than servo motors and there is lower complexity of their control as they don’t
require closed loop control system for their operation. There are in total 10 stepper
motors total driving all of the five DoF. Only the two motors of the joints 1.1 and 1.2
responsible for the rotation around the z-axis are used to generate rotational motion.
Rest of the motors in the remaining four DoF have integrated lead screw to form a
linear motion.

Parameters of all motors used can be seen in the table 2.1.

Table 2.1. Details of the motors used for the robot drives.

DoF Type Step angle (◦) Holding torque (Nm)
1. Rotation 34HE31-6004S 1.8 4.8
2. Radial movement 23HP30-2804S 1.8 1.85
3. Tilting 11LS13-0754E 1.8 0.08
4. Z-indexing 17LS19-1684E 1.8 0.44
5. Stave insertion 11HS20-0674S 1.8 0.12

9

Chapter 3
Proposed Solution

Hardware and software solution is proposed in this chapter for the control of the robot,
which is described in chapter 2. The control system was designed as a distributed
system with one central control unit and each motor is driven by a separate controller.
The section 3.1 describes the used communication network, central control unit and the
controllers. Then the section 3.2 describes the control software of the central control
unit, the firmware of the controllers and the communication protocol used.

3.1 Hardware
A lightweight and small computer Raspberry Pi 4 was chosen as the central control
unit, as it has the capability of running Linux operating system and many other useful
features. The controllers are based on Arduino Nano Every with the microcontroller
ATMega4809, as it enables rapid prototyping of the overall design and is easily pro-
grammable. Each controller has a stepper motor driver connected to it and the used
type of the driver depends on the used motor. The central control unit and the con-
trollers are together connected by RS-485, which is an industrial standard and provides
reliable connection even in an electromagnetically noisy environment and over large
distances.

3.1.1 Communication network
The robot needs to be able to operate in industrial environment with higher electro-
magnetic interference. There is also the possibility of ground potential differences due
to the operation of the stepper motors. The communication standard also needs to
support multiple connected devices.

There are multiple possible network types. The first possible options would be the
I2C and SPI interfaces, because they are present both in the Raspberry Pi and the
ATMega4809. The usage of either of these networks would mean no additional hardware
required, which would reduce the cost and complexity of the system. The SPI is already
used for other communication with the stepper motor drivers and thus it cannot be
used for this purpose. The I2C is capable of connecting multiple devices and there is
a possibility for multi-master communication, but it is only intended for short range
communication within the circuit board. The total length of the network is around 10
m and with possible higher electromagnetic interference, so the I2C is not usable.

The communication standard TIA/EIA-485 (also known as RS-485) was selected as
it is designed for operation in such conditions with high reliability. It is a simple and
cost-efficient solution compared to other possible industrial standards such as CAN bus.
The RS-485 is a serial communication standard supporting multidrop communication
networks using differential signaling over twisted pair cable.

The recommended topology is the bus topology, as other types of topologies can
introduce unwanted signal reflections. The ends of the cable should have a termination
resistor connected across the two wires to eliminate signal reflections. The value of each

10

. 3.1 Hardware

resistor should be equal to the characteristic impedance of the cable. The terminations
of the cable should also include pull-up and pull-down resistors to drive the data line
to a known state in case no device is currently transmitting. [4]

The schematic diagram of the RS-485 network on the robot is shown on Fig. 3.1.
The bus topology is used and the termination points are in the rotational joints. Then
the bus continues to the radial movement and then finally to the main arm of the robot,
where the z-indexing, tilting and stave insertion is connected. The used twisted pair
cable is the UTP CAT.5e.

RPi

Radial movement
2.1

Termination

R
S-

48
5

R
S-

48
5

Stave Insertion
5

RS-485

Rotation
1.1

RS-485

Z-indexing
4

RS-485

Tilting
3.1

RS-485

Tilting
3.2

RS-485

Tilting
3.3

RS-485

Tilting
3.4

R
S-

48
5

R
S-

48
5

Radial movement
2.2

Rotation
1.1

RS-485
Termination

Figure 3.1. Schematic diagram of RS-485 Network

3.1.2 Central control unit

The central control unit is a Raspberry Pi 4 computer, which is equipped with Broadcom
BCM2711 1.5 GHz ARM Cortex-A72 quad-core processor accompanied with 4 GB RAM
and 128 GB SD card storage. The operating system is Raspberry Pi OS, which is based
on Debian. Other relevant features are four USB ports, Wi-Fi, MIPI CSI connector
for camera connection and 40-pin GPIO with I2C capability. It is connected to the
RS-485 network via a USB to RS-485 converter, which provide the necessary logic level
translation and timing. [5]

The computer is mounted on the robot arm, which is the reason for it’s lightweight
and small size requirement. There is also a camera directly connected to the Raspberry
Pi mounted on the arm intended for the fine-tuning of the robot arm position to ensure
precise insertion of the stave and this feature will be added in the future improvements
of the robot.

11

3. Proposed Solution .
3.1.3 Stepper motor controller

Stepper motor controller is based on the Arduino Nano Every, which is built around a
ATMega4809[6] chip. It is responsible for the communication with the central control
unit, controlling the position and velocity of the motor and monitoring the limiting
switches on the joints.

The connection of the controller to the RS-485 network is done by MAX485 chip.
The MAX485 serves as transceiver for the RS-485 communication and translates data
from the RS-485 to UART. It is a half-duplex device, meaning that the the controller
must switch the mode of the transceiver to either receiving or transmitting. [7]

Schematic diagram of the circuit for the RS-485 communication is on Fig. 3.2. The
termination resistor together with the pull-up and pull-down resistors are present. This
is only the case for the two controllers on the ends of the cable. On the rest of the
controllers these resistors are not present.

The left side of the chip is the UART side, with Rx and Tx signals for transmitting
and receiving the data. There is also the signal XDIR connected to the pins RE and DE
of the MAX485 chip, which controls the direction of the communication. The MAX485
is transmitting when the XDIR signal is high and the DE (Drive Output Enable) pin
is high. Otherwise, the MAX485 is receiving when the XDIR signal is low, as the RE
(Receive Output Enable) pin is low.

There are pull-up resistors on both the Rx and Tx pins to ensure valid logic levels
coming in the ATMega4809 and the MAX485. There is also a pull-down resistor on the
XDIR signal to prevent any collision in case the XDIR pin is unconnected. In case of
a collision high currents could flow across the cables, which could potentially damage
the MAX485 chips.

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

VDD VDD
VDD

VDD

VDD

VDD

VDD

VDD

VDD

Title

Size Document Number Rev

Date: Sheet of

<Doc> <RevCode>

<Title>

A3

1 1Thursday, May 13, 2021

Title

Size Document Number Rev

Date: Sheet of

<Doc> <RevCode>

<Title>

A3

1 1Thursday, May 13, 2021

Title

Size Document Number Rev

Date: Sheet of

<Doc> <RevCode>

<Title>

A3

1 1Thursday, May 13, 2021

C3
100n/50V

Y1
16MHz

R6
120

C12

22p

R8
1M

C6
100n/50V

C8
100n

U5

MAX485

RO
1

DI
4

GND
5

VCC
8

RE
2

DE
3 A

6

B
7

C9
100n

U6
TMC2130-TA

AIN_IREF
30

CLK
2

CPI
37

CSN_CFG3
3

DCEN_CFG4
24

DCIN_CFG5
25

DIR
9

DRV_ENN_CFG6
29

SCK_CFG2
4

SDI_CFG1
5

SDO_CFG0
7

SPI_MODE
12

STEP
8

TST_MODE
1

BRA
44

BRB
17

VCC
34

VCC_IO
10

VCP
38

VS
21

VS_1
40

VSA
39

5VOUT
33

CPO
35

DCO
23

OA1
46

OA2
42

OB1
15

OB2
19

DIAG0
26

DIAG1
27

NC
6

NC_1
11

NC_2
14

NC_3
16

NC_4
18

NC_5
20

NC_6
22

NC_7
28

NC_8
31

NC_9
36

NC_10
41

NC_11
43

NC_12
45

NC_13
47

GNDA
32

GNDP
13

GNDP_1
48

EPAD
EPAD

R5
20k

C5
22n/50V

R3
10k

C1
100n

R1
10k

R2
10k

C4
1u/50V

C11

22p

C7
100n

R4
20k

R7
10k

J1

RS-485

1
2

D1

C2
100n/50V

U7
ATMEGA48A-AU

(PCINT19/OC2B/INT1) PD3
1(PCINT20/XCK/T0) PD4
2

GND
3

VCC
4

GND
5

VCC
6

(PCINT6/XTAL1/TOSC1) PB6
7

(PCINT7/XTAL2/TOSC2) PB7
8

(PCINT21/OC0B/T1) PD5
9(PCINT22/OC0A/AIN0) PD6
10(PCINT23/AIN1) PD7
11

(PCINT0/CLKO/ICP1) PB0
12(PCINT1/OC1A) PB1
13(PCINT2/SS/OC1B) PB2
14(PCINT3/OC2A/MOSI) PB3
15(PCINT4/MISO) PB4
16PB5 (SCK/PCINT5)
17

AVCC
18

ADC6
19

AREF
20

GND
21

ADC7
22

PC0 (ADC0/PCINT8)
23PC1 (ADC1/PCINT9)
24PC2 (ADC2/PCINT10)
25PC3 (ADC3/PCINT11)
26PC4 (ADC4/SDA/PCINT12)
27PC5 (ADC5/SCL/PCINT13)
28

PC6 (*RESET/PCINT14)
29

PD0 (RXD/PCINT16)
30PD1 (TXD/PCINT17)
31PD2 (INT0/PCINT18)
32

L1

10uH

C10
100n

XDIR

TX
RX

TX

XDIR

RX

A
B

VM

VM

VM

Figure 3.2. Circuit diagram of the MAX485. On the left side of the MAX485 there are
signals going to the ATMega4809, on the right side is the power and the connection to the

RS-485 network.

There are two variants of the controller depending on the size of the motors. The
smaller stepper motors with amps per phase up to 1.2 A are driven by the TMC2130
stepper motor drivers. The TMC2130 is highly customizable and allows its parameters

12

. 3.1 Hardware

to be set via a SPI interface. The driver allows for up to 256 microsteps per motor step
and its function StealthChop allows for smooth motion without vibrations.

Stepper motor drivers chosen for the robot are controlled by a STEP/DIR interface.
The logic state of the DIR signal is telling the controller in which to turn the stepper
motor. Then the change of logic level on the STEP signal tells the driver to move
the stepper motor one step forward in the direction specified by the DIR signal. If
the driver has enabled microstepping, then the step command only moves the stepper
motor fraction of the motor step, depending on the microstepping setting.

The driver can be sensitive only to some changes of the logic level on the STEP
signal, usually it is the rising edge. This is the case for the controller variant with the
external stepper driver. The TMC2130 can detect both the rising and falling edge,
which is beneficial for higher possible speed of the stepper motor with the same base
clock frequency.

The diagram of the controller with the TMC2130 is shown on Fig. 3.3. The whole
controller is powered via a 12 V power line. The 12 V power line is used by the TMC2130
to power the stepper motor and it is also converted to 5V to power the ATMega4809 and
the MAX485 via an internal DC converter of the Arduino Nano Every. The TMC2130
also needs the 5V power for its internal logic, so it is connected to the 5V output from
the Arduino Nano Every.

There are two communication interfaces used on the ATMega4809, which is the
UART and the SPI. The UART is used for communication between the ATMega4809
and the MAX485. The SPI interface is then used for the communication with the
TMC2130 for its setup and to read the status of the driver. There are also two signals
for the STEP/DIR instructions to the stepper motor driver.

The controller has two connections for limit switches. The limit switches are mechan-
ical microswitches with a simple RC filter for switch debouncing. A bimetal thermostat
is also connected to prevent the motors from overheating.

Arduino Nano Every

MAX485

UART

Controller

TMC2130

Stepper
Motor

SPI

12V

5V

5V

Limit
Switches

RS-
485

Step
Dir

Figure 3.3. Schematic diagram of the controller with TMC2130 stepper motor driver.

13

3. Proposed Solution .
The diagram of the controller with a external stepper motor driver is shown on the

Fig. 3.4. The basic structure is the same as the controller with the TMC2130. The
only difference is that the external stepper motor drivers cannot be controlled via the
SPI interface, only interface with them are the STEP/DIR signals.

This solution can be used together with more powerful stepper motor drivers required
for the motors responsible for the rotational and radial movements of the robot. The
driver used for the rotation around the z-axis is the M880A, which allows up to 5.6 A
RMS of current. The driver used for the radial movement is the M542, which allows
up to 3 A RMS of current. Both of these drivers support microstepping up to 128
microsteps per motor step. The microstepping value chosen for both of the motors is
16, where this microstepping resolution significantly decreased vibrations of the motor.

Arduino Nano Every

MAX485

UART

Controller

12V

5V

Limit
Switches

RS-
485

Step
Dir

External Driver

Stepper
Motor

24V

Figure 3.4. Schematic diagram of the controller with an external stepper motor driver.

3.2 Software
The robot control is based on two main parts, the central control unit and the con-
trollers. Each controller is responsible only for the motion of a single motor, but three
of the DoF have two or even four parallel motors driving them. The controllers don’t
know the overall status of the system and the status of other controllers, so there is need
for a central authority to keep everything synchronized. The system is based on the
master-slave communication control to prevent any collisions on the bus. The master
is the central control unit and the slaves are the individual controllers.

3.2.1 Communication protocol
The communication protocol is based on data packets that are sent over the physical
layer, the RS-485. Every packet has a fixed length of 7 bytes. Every device connected
to the communication network see every transmitted packet. The device needs to know
what packet is relevant for it, so every device in the network is given unique address in
form of one byte.

14

. 3.2 Software

The device needs to know if the message it receives is correctly delivered and that no
error during transmission occurred. The error detection is done via a checksum, which
is at the end of every packet. The checksum c is calculated as

c = 255−
((∑

b
)

mod 256
)

, (1)

where b are the bytes of the message without the checksum. If there is an error during
the transmission, such as wrong bit, the checksum will be different and the message is
not used.

Communication between the master and the slaves is always initiated from the mas-
ter. The master sends a command packet to the slave. The structure of the command
packet is on Fig. 3.5. The byte 0 is the address of the slave. The byte 1 is the com-
mand type, which tells the slave how to interpret the data and if there is a response
expected. The bytes 2-5 are for data transmitted to the slave and the data are stored
in a big–endian manner. Then the last byte 6 is the checksum.

0 1 2 3 4 5 6

Address

Command
Type

Data

Checksum

Figure 3.5. Structure of the command packet

The master can request information back from the slave. In this case the message
structure of the packet is the same, and the structure of the response packet is on Fig.
3.6. The packet has similar structure to the command packet, the difference is in the
byte 1. There is no need for the message type as it is a immediate response from the
slave back to the master, so the byte can be used for different purpose. The byte 1 in
the response contains the status of the controller, where the bits represent logic state
of the most important information.

The bit 0 should always be true and it represents the validity of the status. Then
the bit 1 carries the information if the stepper motor is running. The bits 2 to 4 are
for the state of the switches, where logic 1 represents the switch being active, such as
the axis is in home position or the stepper motor is overheating. Last bits 5 to 7 are
currently not used and are reserved for future use.

15

3. Proposed Solution .

0 1 2 3 4 5 6

Address

Status

Data

Checksum

0 1 2 3 4 5 6 7

Valid

Running

Home
Switch

End
Switch

Temperature
Switch

Reserved

Figure 3.6. Structure of the response packet

Types of command messages are shown in table 3.1. The first type of message is the
CMD STOP to stop the movement if any issue would occur. The data in the case of
this message type are not used and it is filled with zeros.

CMD MOVE is command telling the stepper motor to go certain number of steps in
a given direction. The number of steps for the stepper motor to go is stored in the data
section of the packet in form of a signed 32bit integer. The sign of the integer is used
for the direction of the motor rotation.

The commands CMD SET SPEED, CMD SET ACCEL and the CMD SET DECEL
are used to set the parameters of the movement of the stepper motor, the maximal
speed, acceleration and deceleration of the motor respectively. The values are stored in
the data bytes of the packet as a unsigned 32bit integer.

The command CMD SET CURR is used to set the current going to the stepper motor
from the driver, and it is only valid for the controllers equipped with the TMC2130
stepper motor driver. The current setting is the number of milliamps and it is stored
as a 32bit unsigned integer.

CMD SET BRAKE is there to enable or disable the brake on the rotational DoF
and it is valid only for the two controllers driving this DoF. The value is 1 for the brake
to be enabled and 0 for the brake to be disabled. It is again stored as a unsigned 32bit
integer to define all for bytes of the data part of the packet.

Last message type is the CMD GET CURR POS, which is used to get the current
position of the stepper motor as well as the status of the controller. The message does
not send any data to to the controller and the four data bytes are filled with zeros.

The only currently returned message from the controller is the response to the
CMD GET CURR POS. The four data bytes contain current position of the motor
as a signed 32bit integer.

16

. 3.2 Software

Table 3.1. Types of the command messages used.

Name Number Description
CMD STOP 0 Total stop signal for the controller
CMD MOVE 1 Move n steps
CMD SET SPEED 2 Set maximal speed
CMD SET ACCEL 3 Set acceleration
CMD SET DECEL 4 Set deceleration
CMD SET CURR 5 Set current of the motor
CMD SET BRAKE 6 Set the state of the brake on the motor
CMD GET CURR POS 7 Request current position of the motor

3.2.2 Stepper motor controller

The task of the stepper motor controller is to drive the stepper motor based on the in-
structions from the central control unit. It has to process the incoming packets, control
the stepper motor and react to external switches. The software for the ATMega4809 is
written in the C++ language.

The basic structure of the program is illustrated on the Fig. 3.7. The controller at
the beginning initializes all the necessary values and then goes to the main loop, where
it stays until power-down of the whole system. The main loop first checks if any of the
switches (home switch, end switch and thermostat) is not active, which would mean
stopping the stepper motor. Then the program checks for new messages, and if there
is any, it tries to process it.

The processing of the message starts with checking if the message is valid and in-
tended for the particular controller. If it is correct, the loop then does actions based
on the type of the message. If the type of the message is a stop command, the motor is
immediately stopped and the status of the controller is updated. In case the message
is to set any parameter of the stepper motor, such as speed, acceleration or current,
the current parameters are updated, but they will be used only for any future move
commands. The command to set the brake will engage or disengage the brake on the
motors, but only if the controller is defined as driving the rotational DoF, as they are
the only ones with brakes. The request of current position will prepare and send the
response packet as it is described in section 3.2.1. The move command will run the
function to start the control of the stepper motor.

17

3. Proposed Solution .

Initialization

Yes

No

Any of the
switches
active?

Stop the
stepper motor

No

Yes

Received
message?

No YesValid message? Yes

No

Stop command? Stop the
stepper motor

Yes

No

Motor setting
command?

Apply settings
for next run

Yes

No

Set brake? Set brake

Yes

No

Move command? Start motor control
sequence

No

YesRequested
position?

Prepare and send
message with

position

Any of the
switches
active?

Received
message?

Valid message?

Any of the
switches
active?

Received
message?

Valid message?

Motor setting
command?

Stop command?

Figure 3.7. Flowchart of the main loop of the controller.

The controller must generate precisely timed pulses on the STEP signal to drive
the motor with requested speed and also it is important to eliminate vibrations of the
motor. The control of the stepper motor has to be running independently of the main
loop, so a timer of the ATMega4809 was used together with its interrupts. The function
at the beginning initializes the timer and calculates necessary parameters of movement
of the stepper motor motion, such as how much steps it will take for the stepper motor

18

. 3.2 Software

to accelerate, how much steps it will be running at the maximal speed and when to
start decelerating. The timer is then used to precisely time the impulses of the motor
and each impulse the parameters of the timer are updated so the overall motion will
match the desired acceleration and deceleration curve. The calculation of parameters
for the timer are adapted from the Linear speed control of stepper motor Application
Note[8].

3.2.3 Central control unit
The task of the central control unit is to control the whole robot based on the instruc-
tions from the user. The control software is written as a python script, where the the
user interface is designed as a console application. The software is controlled via the
input arguments, which are provided from the user at the its start. The software exe-
cutes the command and then exits and next command is done with the next software
run. The software is divided into two main parts, where each part is in single python
script.

3.2.3.1 Control of a single stepper motor

The first part stepper controller.py is responsible for the control of a single stepper
motor controller. It contains a class Stepper which provides all the functions to set
the stepper motor controller parameters such as acceleration, speed of current, it can
command it to move and request its position and status. The class internally handles
the creation, transmission and reception of the messages needed to control the stepper
motor.

The structure of the messages is described in the section 3.2.1. the transmission and
reception of the messages is repeated to minimize the chance of unsuccessful delivery.
The transmission and reception is tried five times before reporting an error. The at-
tempt to receive the message can be unsuccessful due to a timeout or an internal error
of the bus. The repeated timeout would mean that the device is not responding and it
is important to notify the overlying software.

3.2.3.2 Control of the whole robot

The second part of the software robot control.py is responsible for the synchronized
operation of the stepper motors, formed into a single DoF. The script can be run from
the command line in order to control the robot. It is also prepared as a module for
future use by another software.

The main part of the script is the class Robot with a subclass Axis. The Axis subclass
is based on the Stepper class, where each instance of the class is connected to a single
stepper motor controller. These instances are grouped together in single instance of the
Axis class, which then provides functions to manipulate with all the controllers at the
same time.

The class Robot is then used to represent the whole robot. It contains multiple
instances of the Axis subclass, where each instance corresponds to a single DoF. It also
has functions to move each axis by a given distance in degrees or millimeters and to
toggle the pin during the stave insertion.

The flowchart of the control process of the robot is on Fig. 3.8. the basic flow of
the software is on the left side. First, the user parameters are processed. The user
selects an DoF which he wants to control, specifies its settings and can also request its
movement. Then the program checks if a correct USB to RS-485 converter is connected
and establishes a connection with it. The program then sends the settings to each
controller belonging to the selected DoF and then the movement is executed if requested.

19

3. Proposed Solution .
The movement control function is the most critical function of the control software.

The flowchart of the movement control function is on the right of the Fig. 3.8. The
function needs to ensure synchronization of all of the stepper motors belonging to the
same DoF. This is done by continuous checking of the state of all the stepper motors.

At first, the function checks the state of all the controllers to ensure they are ready
and connected to the network. If the check is successful, the movement request is sent to
all of the controllers. When the stepper motors are running, the function continuously
checks the status and position of each of the controllers. The status is evaluated and
if there is error the movement of all of the stepper motors is stopped. The checking
stops and the function finishes successfully only after all of the motors reach the desired
position.

Start

Process user
arguments

Move No

Yes

All controllers
respond and

ready?

Start the movement

YesAny errors
while running? Stop all movements

Return

No

Any errors or
stop request?

Yes

No Movement
finished?

Return with error

Set parameters to the
controllers of the

selected DoF

Move

End

Establish the
connection to the
USB to RS-485

converter

Figure 3.8. Flowchart of the central control unit software. On the left is the high level
structure of the whole software. On the right is the subroutine of the stepper motor run

control.

20

Chapter 4
Implementation

4.1 User Manual
The user manual is presented in this section. It describes two possible ways of controlling
the robot. The first method of the robot control is to connect to the Raspberry Pi,
which is part of the robot. The second method is to connect an external computer to
the RS-485 network and run the control software from there, using a provided USB to
RS-485 converter. Both of the methods described use the same scripts described in the
section 3.2.3.

4.1.1 Connecting the Raspberry Pi to run the control software
This section of the user manual describes how to connect to the Raspberry Pi in order
to control the robot. The Raspberry Pi creates its own Wi-Fi named SITWifi and
the password is StaveInsertionTooling. After connecting to the Wi-Fi, you can remote
control it via VNC.

To setup the connection in VNC, go to File → New Connection and then fill in IP
address of the raspberry pi 192.168.4.1 and give it recognizable name. This can be seen
on Fig. 4.1.

Figure 4.1. VNC connection setup screen.

21

4. Implementation .
After setting up the parameters the Raspberry Pi’s VNC server should appear in

the list. In order to connect to it, the username and password of the account inside
the Raspberry Pi will be required as shown in Fig. 4.2. The username is pi, and the
password is StaveInsertion. After this you will get into the Desktop screen with full
access.

Figure 4.2. Authentication screen.

4.1.2 Preparing an external computer to run the control software
This section of the user manual describes how to prepare an external computer to run
the control software. The two scripts for the robot control, stepper controller.py and
robot control.py, require python 3.6 or newer to be installed together with libraries
serial and colorama. The communication with the robot is done via a USB to RS485
converter, which require a driver to be installed.

Latest version of python can be downloaded from https://www.python.org/
downloads/. Make sure you are using stable version 3.6 or higher. During installation,
make sure you check the option to add Python to PATH. This enables python to be run
directly as a command from command line, which will be needed for the control of the
robot. There are two libraries, serial and colorama, required which are not included in
the default python installation. The library serial is for the control of the serial line
and the colorama is used for coloring of the command line interface to provide better
readability. Both of the libraries can be installed with a pip command. To install the
pyserial use the command:

pip install pyserial

Similarly, the command to install colorama is:

pip install colorama

The USB to RS485 converter internally uses CH340 chip for the USB communica-
tion and its driver is not always automatically installed on every Windows version.
This driver can be found for example here: https://cdn.sparkfun.com/assets/
learn_tutorials/8/4/4/CH341SER.EXE.

The scripts stepper controller.py and robot control.py can be located in any suit-
able directory, but togehter. Both of them must be in the same directory, as the
robot control.py internally uses the stepper controller.py for its function.

22

https://www.python.org/downloads/
https://www.python.org/downloads/
https://cdn.sparkfun.com/assets/learn_tutorials/8/4/4/CH341SER.EXE
https://cdn.sparkfun.com/assets/learn_tutorials/8/4/4/CH341SER.EXE

. 4.1 User Manual

4.1.3 Using the control software
The instructions on how to run the control software are described in this section. First,
it is described how to run the script. Then the usage of the script is described.

The robot is controlled by the script python robot control.py. First open a command
line inside of the directory with the scripts and connect the USB dongle to the PC.
Type python robot control.py to run the script. The result should look like on the Fig.
4.3.

Figure 4.3. Program output after running the python robot control.py without any argu-
ments.

The script has built-in help, where is description of every command to control the
robot. The help is shown by command

python robot_control.py -h

and the result is shown on Fig. 4.4.

Figure 4.4. Output of the help command of the script.

Each DoF has defined name inside of the control script so the user can choose which
one to control. Names of the degrees of freedom inside the software are written in table
4.1

23

4. Implementation .
Table 4.1. Names of degrees of freedom inside the control script.

DoF Name in software
1. Rotation arm rot
2. Radial movement mov in r
3. Tilting box tilt
4. Z-indexing z index
5. Stave insertion stave insert

Only one DoF can be controlled at the same time for safety reasons. Basic command
for the movement in the DoF is

python robot_control.py 〈DoF name〉 〈options〉

where 〈DoF name〉 should be replaced by its name and the 〈options〉 are optional
commands. The optional commands are:

. -m or --move 〈distance〉

. Moves the DoF by number of degrees or millimeters, and the direction of the
movement is given by the sign of the number.

. Positive direction is always towards the home position of the DoF, negative towards
end switch. The only exception is arm rotation, where the positive movement is
counterclockwise.

. -s or --speed 〈value〉

. Set speed by which the DoF should move during the command execution. Recom-
mended speeds are:

. Arm rotation: 6000

. Movement in R: 12000

. Box Tilt 2000

. Z-indexing: 2000

. Stave Insertion: 2000

. Speed for Z Indexing and Stave Insertion can be modified to lower or higher speeds
as necessary but should not exceed 4000.

. -a or --accel 〈value〉

. Sets the acceleration of the DoF, higher number means higher acceleration. Values
over 20000 can cause missed steps of the motors and should be avoided.

. -d or --decel 〈value〉

. Sets the deceleration of the DoF, higher number means higher deceleration. Values
over 20000 can cause missed steps of the motors and should be avoided.

. -ad 〈value〉

. Sets both acceleration and deceleration at the same time to the given value. Values
over 20000 can cause missed steps of the motors and should be avoided.

. -c or --current 〈value〉

24

. 4.2 Technical manual

. Sets the input value as current for the motors in milliamps, higher current means
higher force of the motor when holding position and when moving, but cloud result
in overheating. Values over 1000mA are not recommended.

. -ho or --homing

. Allows the DoF to be moved to default position and any possible misalignments to
be removed. Homing is only effective when moving towards the home position, that
is in the positive direction. After each motor hits the home switch, the movement
is stopped, and the command has to be repeated until all of the motors are not
able to move.

. -p or --pin

. Retracts the pin interfacing stave inside the box. Available only while connected
via Raspberry Pi.

4.2 Technical manual
The technical details about the robot are described in this section. This section should
be useful for maintaining the control software. First the section mentions the stepper
motor controller, its code structure and implementation details. Then the Central
control unit details are described.

4.2.1 Stepper Motor Controller
The code of the Stepper motor controller is divided into four files. The main section of
the code is the rs485 stepper.ino. It contains the main loop described in the section
3.2.2, the setup function to initialize all the necessary variables, functions to send and
receive the messages and functions to control the stepper motor. There is also the
interrupt service routine (ISR) for the timer directly controlling the stepper motor.

The next files are the rs485 messages.h and rs485 messages.c together forming
the rs485 messages library. This library is responsible for handling the messages on
the lowest level. The last file is the defines.h containing the constants and other
definitions used in the controller software.

4.2.1.1 Description of rs485-stepper.ino

At the beginning of the file there are two optional defined constants, R MOV and ROT.
They define what type of motion the controller does. The R MOV constant should be
defined if the controller is used for the radial DoF, the ROT should be used for the
rotational DoF and none should be defined for the rest of the degrees of freedom.

If none of the two constants are defined, the software is set to use the TMC2130
stepper motor driver. If the ROT or the R MOV is defined, the software is not trying
to set up the TMC2130 and it is expected that an external stepper motor controller
is connected. The ROT and R MOV are the same except that the ROT is controlling the
electromagnetic brakes on the stepper motors.

The control of the TMC2130 is described in its datasheet [9] and the library used
for the communication with the driver is TMCStepper [10]. This library uses the SPI
interface of the ATMgega4809. The settings of the TMC2130 are in the setup function,
which is called at the power-up of the controller. The driver is set to 2x microstepping
with the dedge mode on, which means that the driver recognizes both the rising and

25

4. Implementation .
the falling edge as a step trigger. This is chosen in order to speed up the stepper motor
as the timer will need to run at half the frequency normally required.

Then the StealtChop is turned on in order to minimize vibrations from the stepper
motor. Other important setting of the TMC2130 is the interpolation of the steps, which
helps to reduce the vibrations by interpolating the steps of the stepper motors so a lower
microstepping can be used with minimal impact on the smoothness of the motion.

To start the stepper motor the function speed cntr Move is used, which calculates
values needed for acceleration, deceleration and speed of the motor and then starts the
timer which then controls the STEP signal. The timer selected for this task is TCB2
and it is set to periodic interrupt mode. In each interrupt the ISR is called and a new
time for the timer to wait is calculated to match the desired speed profile of the stepper
motor. The calculations are discussed in the application note Linear speed control of
stepper motor [8].

There are two active UART interfaces. The Serial is used for the programming of
the controller as well as the debug output on the USB port of the Arduino. The Serial1
is used for communication with the RS-485 network through the MAX485 chip. Both
of these UART interfaces use baud rate of 115200. The mode of the MAX485 must be
controlled to set whether the chip should be transmitting or receiving. This is done via
the XDIR pin, which is defined to be on all the controllers the pin 2 of the Arduino
Nano Every. The XDIR pin is an output pin which is normally set to low to receive,
and only when transmitting it should be set to high.

The main loop is in the function loop. It first checks the status of the switches,
which value is stored in their respective flags, flagHomeSwitch, flagEndSwitch and
flagOverTemp. Each switch is checked via its own ISR to ensure independency on the
main loop for safety purposes. These ISRs set the flags checked in the main loop.

In each loop the incoming bytes from the RS-485 are processed and if there is a new
valid message, the function will react depending on its type. The processing of the
messages is described in 3.2.

The controller has a debugging output on the USB of the Arduino. Various infor-
mation about the current state of the controller are sent, including current state of the
motor. The state is if the stepper motor is stopped, accelerating, decelerating or run-
ning with a constant speed. The current position of the stepper motor is also displayed
in steps done from the start of the controller. Last information is the RS-485 address
of the controller.

The controller can also be controlled via this debugging interface even without a
connection to the RS-485 network. The move command has format of 〈number of steps〉
〈direction〉, where the number of steps is an absolute number of steps to move and the
direction is d if the direction is forward and b if the direction is backward. Other
commands consist of one letter each, and their list can be seen in table 4.2

Table 4.2. List of debugging commands for the controller.

Command Description
e Stop the movement of the stepper motor
x Enable the electromagnetic brake
y Disable the electromagnetic brake

4.2.1.2 Description of the rs485-messages library

26

. 4.2 Technical manual

The library defines the messages used to communicate with the central control unit
in the rs485 messages.h. There is a type cmd type containing all the types of the
messages. It is a enumerated type, which translates the names of the message type to
a number, starting from zero. There is also a definition of the message structure in the
struct message, as described in section 3.2.1.

The functions to convert an incoming series of bytes into a message and vice versa are
in the file rs485 messages.c. The function fill message buf takes the message type
and converts it into a series of bytes ready to be sent over the RS-485. The function
parse message buf takes a series of bytes and tries to convert them to a meaningful
message. If the message is not valid or not intended for the particular controller it
reports this information to the caller.

4.2.2 Central Control Unit
The control scripts of the central control unit are intended both as a standalone scripts
to allow the user to control the robot via a command line and a library for future control
software. The main class is the Robot, which uses the classes Axis and Stepper.

4.2.2.1 class Stepper

The class Stepper is intended to control one individual stepper motor controller. Each
stepper motor controller should be represented as one instance of this class. To initialize
this instance, the class must be provided with necessary information.

The class needs to get the instance of a serial class from the Serial library in order
to be able to communicate via the RS-485 interface. It also needs the address of the
controller to which it is supposed to communicate and a address of the master, by
default 50 in hexadecimal.

The class then provides the functions to control the stepper motor controller. The
list of these functions and their description is in table 4.3

Table 4.3. List of functions provided for the control of the stepper motor controller.

Function Parameter Description
stop None Stop the movement of the stepper motor
abs move target pos Moves the motor to a absolute position of steps
move n of steps Moves the motor relative to its current position
set speed speed Sets the maximal speed of the stepper motor
set accel accel Sets the acceleration of the stepper motor
set decel decel Sets the deceleration of the stepper motor
set current current Sets the current of the stepper motor in milliamps
set brake value Sets the brake on or off (true or false)
get curr pos None Gets current position and status of the controller

4.2.2.2 class Axis

The class Axis groups together the controllers responsible for the movement of a single
DoF by grouping together instances of the class Stepper belonging to the controllers.
It provides the same functions as the class Stepper, which can be seen in table 4.3, but
it ensures synchronization between all the controllers. The class needs to get at the
initialization the the instance of a serial class from the Serial library in order to be able
to communicate via the RS-485 interface and list of addresses of the controllers of the
individual joints.

27

4. Implementation .
4.2.2.3 class Robot

The class Robot provides the control of the whole robot. It searches for the correct USB
to RS-485 converter with a matching PID to the converter used in the robot. Then
it opens the serial port belonging to this converter with a baud rate of 115200 and a
timeout of 0.05s.

The class contains instances of the Axis classes belonging to all five of the DoF.
These instances are then used to control the robot. Apart from accessing the instances
to control the robot, there are functions to move each DoF with calculated steps to
real distances of the degrees of freedom. The functions provided by this class are in the
table 4.4.

Table 4.4. List of functions provided for the control of the robot.

Function Parameter Description
rot arm angle Rotates the robot arm by the angle in degrees
mov in r distance Moves the arm in the radial direction in

millimeters
tilt box angle Tilts the box with the stave by the angle in

degrees
index z distance Moves the arm in the direction of the z-indexing

in millimeters
insert stave distance Inserts the stave in millimeters

The script robot control containing the Robot class can also be used to control the
robot from a command line in a standalone manner. This usage is described in the
section 4.1

4.3 Testing the system
The system described in the chapter 3 was successfully built and made fully operational.
The robot movement was tested in all five degrees of freedom individually and then a
test of the full stave insertion procedure was conducted. During these tests photos and
videos were taken to document the tests and the functionality of the robot. The robot
control was also tested remotely by the future operators of the robot and the stave
developers using the created User Manual. Further tests are planned after the delivery
of the robot to the stave developers in Oxford with realistic mock-ups of the stave and
its transportation box.

The photos from two full insertion sequences are shown in this section to show the
movement of the real robot from two different angles. The first sequence is on Fig. 4.5
and the second sequence is on Fig. 4.6.

28

. 4.3 Testing the system

a) Home position b) After rotation

c) After radial movement d) After tilting

e) After z-indexing

Figure 4.5. Photos of the first stave insertion sequence.

29

4. Implementation .

a) Home position b) After rotation

c) After radial movement d) After tilting

e) After z-indexing f) After stave insertion

Figure 4.6. Photos of the second stave insertion sequence.

4.4 Future considered improvements

The proposed hardware and software solution of the robot control was proved to be
successful and the whole robot is operational. However, during the development and
later testing of the robot we identified a number of possible improvements to both the
hardware and software of the robot.

In some rare cases, there is a possibility for the motor skipping steps. The controllers
currently operate on the assumption that no steps are lost during the whole movement,
as the motors should be stronger than any force stopping them. The addition of ro-
tational encoders to the motors would fix this issue by providing the controllers with
positional feedback and any potential skipped steps would be noticed. The reliability

30

. 4.4 Future considered improvements

of the whole system would increase, but at the cost of additional sensors and change of
the design of the controllers.

The communication protocol developed for connection between the controllers and
the central control unit currently requires no response from the controllers for any
command message setting parameters of the controller. Adding a response packet to
acknowledge the successful reception of a received message would increase the reliability
of the system and there would be no need to repeatedly send the commands to the
controller.

Currently the central control unit is continuously checking the status of the controllers
while the motors are running. If there is any error, the stop command is transmitted to
all the motors to prevent any damage. The issue could occur if a controller would stop
receiving the commands from the central control unit. This could be solved by having
a internal timer checking if there was a received message from the central control unit
and stopping the movement if a timeout would occur.

The final adjustments of the robot position are planned to be done via a image
recognition software and using the camera connected to the Raspberry Pi. This feature
is planned to be developed by a team colleague and will further improve the precision
and reliability of the whole system.

The control of the robot via a command line is meant to be for a basic control of the
whole robot. This software is planned to be used as a library for a more sophisticated
control software, where the user will be able to select the stave to be inserted and the
whole operation will be fully automatic. The image recognition is a planned feature of
this future software.

31

Chapter 5
Conclusion

This thesis presented the hardware and software solution to the control of the robot
for inserting detectors in the ATLAS Inner Tracker. The solution was successfully
implemented, tested and it is fully functional.

The description of the mechanical design of the robot and the requirements for the
control system were described in the chapter 2. The robot has five degrees of freedom
with total of ten stepper motors and multiple motors are used to drive a single DoF.

The stepper motor controllers were developed for all stepper motors and they are con-
nected to a RS-485 network together with a central control unit based on a Raspberry
Pi. There are two variants of the stepper motor controllers based on the used driver and
the size of the stepper motors. The central control unit is responsible for synchronous
operation of the stepper motor controllers. The communication protocol was developed
for the connection between the central control unit and the stepper motor controllers.

The control software of the robot can be used as a library allowing future extensions
of the robot control, or it can be directly used to control the robot by the user. The user
can move the robot in each degree of freedom and set the parameters of the stepper
motors, such as maximal speed, acceleration or current. The User Manual and the
Technical Manual were created and they are described in the chapter 4.

The full functionality of the robot was tested and a number of test sequences of the
detector insertion were conducted. The robot was remotely tested by the developers
of the detectors and further tests will take place in their laboratory in Oxford. The
tests proved that the robot is fully operational and some improvements were proposed
to improve the reliability. The user interface is planned to be improved in the near
future as this is only a first prototype of the robot. The future control software will
allow the user to select the desired position via a GUI and all the movements will be
fully automatic.

32

References

[1] Sven Wonsak, and ATLAS Collaboration. The ATLAS ITk Strip Detector System
for the Phase-II LHC Upgrade. 2020. CERN.
http://cds.cern.ch/record/2706027.

[2] CERN. Technical Design Report for the ATLAS Inner Tracker Strip Detector .
2017.
https://cds.cern.ch/record/2257755.

[3] Science, and Technology Facilities Council. ATLAS Inner Tracker Upgrade (ITk).
https://www.ppd.stfc.ac.uk/Pages/ATLAS-SLHC-Upgrade.aspx. 2020. Accessed:
2021-05-08.

[4] Analog Devices. RS-485/RS-422 Circuit Implementation Guide.
https://www.analog.com/media/en/technical-documentation/application-notes/
AN-960.pdf.

[5] Raspberry Pi Foundation. Raspberry Pi Documentation.
https://www.raspberrypi.org/documentation/. 2021.

[6] Hen Marais, and Microchip Technology. ATmega4808/4809 Data Sheet.
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega4808-09-DataSheet-
DS40002173C.pdf.

[7] Maxim Integrated. MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487
Low-Power, Slew-Rate-LimitedRS-485/RS-422 Transceivers.
https://datasheets.maximintegrated.com/en/ds/MAX1487-MAX491.pdf.

[8] Microchip Technology. AVR446: Linear speed control of stepper motor . 2016.
https://www.microchip.com/wwwAppNotes/AppNotes.aspx?appnote=en591185.

[9] Trinamic. TMC2130 Datasheet.
https://www.trinamic.com/products/integrated-circuits/details/tmc2130/ .
2020. Rev. 1.12.

[10] Teemu Mäntykallio. TMCStepper .
https://github.com/teemuatlut/TMCStepper. 2021.

33

http://cds.cern.ch/record/2706027
https://cds.cern.ch/record/2257755
https://www.ppd.stfc.ac.uk/Pages/ATLAS-SLHC-Upgrade.aspx
https://www.analog.com/media/en/technical-documentation/application-notes/AN-960.pdf
https://www.analog.com/media/en/technical-documentation/application-notes/AN-960.pdf
https://www.raspberrypi.org/documentation/
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega4808-09-DataSheet-DS40002173C.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega4808-09-DataSheet-DS40002173C.pdf
https://datasheets.maximintegrated.com/en/ds/MAX1487-MAX491.pdf
https://www.microchip.com/wwwAppNotes/AppNotes.aspx?appnote=en591185
https://www.trinamic.com/products/integrated-circuits/details/tmc2130/
https://github.com/teemuatlut/TMCStepper

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Problem Statement
	Description of the degrees of freedom
	Rotation around the z-axis
	Radial movement
	Tilting of the staves
	Z-indexing
	Stave insertion

	Motors of the robot

	Proposed Solution
	Hardware
	Communication network
	Central control unit
	Stepper motor controller

	Software
	Communication protocol
	Stepper motor controller
	Central control unit

	Implementation
	User Manual
	Connecting the Raspberry Pi to run the control software
	Preparing an external computer to run the control software
	Using the control software

	Technical manual
	Stepper Motor Controller
	Central Control Unit

	Testing the system
	Future considered improvements

	Conclusion
	References

