
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Control Engineering

Master’s Thesis

Self-assembly: modelling,
simulation, and planning

Bc. Lukáš Bertl
Cybernetics and Robotics: Systems and Control
bertlluk@fel.cvut.cz

May 2019
Supervisor: RNDr. Miroslav Kulich, Ph.D.

Acknowledgement / Declaration

I would like to express my gratitude to
my supervisor RNDr. Miroslav Kulich,
Ph.D. for a great mentorship, patience,
and dedicated involvement in every step
throughout the process of solving this
project.

I would like to thank my girlfriend
and my parents for their unlimited
mental support and endless patience
throughout my whole studies.

I hereby declare that I have completed
this thesis with the topic ”Self-assembly:
modelling, simulation, and planning” in-
dependently and that I have listed all
sources of information used within it in
accordance with the methodical instruc-
tions for observing the ethical principles
in the preparation of university theses.

In Prague, May 21, 2019

. .
Lukáš Bertl

iii

Abstrakt /

Samoskládání je proces, při kterém
se kolekce neuspořádaných částic samo-
volně orientuje do uspořádaného vzoru
nebo funkční struktury bez působení
vnější síly, pouze za pomoci lokálních
interakcí mezi samotnými částicemi.
Tato teze se zaměřuje na teorii dlaždi-
cových samoskládacích systémů a jejich
syntézu.

Nejdříve je představena oblast vý-
zkumu věnující se dlaždičovým sa-
moskládacím systémům, a poté jsou
důkladně popsány základní typy dlaždi-
cových skládacích systémů, kterými jsou
abstract Tile Assembly Model (aTAM),
kinetic Tile Assembly Model (kTAM),
a 2-Handed Assembly Model (2HAM).
Poté jsou představeny novější modely
a modely se specifickým použitím.
Dále je zahrnut stručný popis původu
teorie dlaždicového samoskládání spo-
lečně s krátkým popisem nedávného
výzkumu. Dále jsou představeny dva
obecné otevřené problémy dlaždicového
samoskládání s hlavním zaměřením na
problém Pattern Self-Assembly Tile
Set Synthesis (PATS), což je NP-těžká
kombinatorická optimalizační úloha.
Nakonec je ukázán algoritmus Partition
Search with Heuristics (PS-H), který se
používá k řešení problému PATS.

Následovně jsou demonstrovány dvě
aplikace, které byly vyvinuty pro pod-
poru výzkumu abstraktních dlaždi-
cových skládacích modelů a syntézy
množin dlaždic pro samoskládání zada-
ných vzorů. První aplikace je schopná
simulovat aTAM a 2HAM systémy ve
2D prostoru. Druhá aplikace je řešič
PATS problému, který využívá algo-
ritmu PS-H. Pro obě aplikace jsou
popsány hlavní vlastnosti a návrhová
rozhodnutí, která řídila jejich vývoj.

Nakonec jsou předloženy výsledky
několika experimentů. Jedna skupina

experimentů byla zaměřena na ově-
ření výpočetní náročnosti vyvinutých
algoritmů pro simulátor. Druhá sada
experimentů zkoumala vliv jednotlivých
vlastností vzorů na vlastnosti dlaž-
dicových systémů, které byly získány
syntézou ze vzorů pomocí vyvinutého
řešiče PATS problému. Bylo prokázáno,
že algoritmus simulující aTAM systém
má lineární časovou výpočetní nároč-
nost, zatímco algoritmus simulující
2HAM systém má exponenciální časo-
vou výpočetní náročnost, která navíc
silně závisí na simulovaném systému.
Aplikace pro řešení syntézy množiny
dlaždic ze vzorů je schopna najít re-
lativně malé řešení i pro velké zadané
vzory, a to v přiměřeném čase.

Klíčová slova: Samoskládání dlaždic,
Algoritmické samoskládání, Dlaždicový
skládací model, Skládání vzoru, Syntéza
množiny dlaždic, Wangovi dlaždice

Překlad titulu: Samoskládání: mode-
lování, simulace a plánování

iv

Abstract /

Self-assembly is the process in which
a collection of disordered units organ-
ise themselves into ordered patterns or
functional structures without any exter-
nal direction, solely using local interac-
tions among the components. This the-
sis focuses on the theory of tile-based
self-assembly systems and their synthe-
sis.

First, an introduction to the study
field of tile-based self-assembly sys-
tems are given, followed by a thorough
description of common types of tile
assembly systems such as abstract Tile
Assembly Model (aTAM), kinetic Tile
Assembly Model (kTAM), and 2-Handed
Assembly Model (2HAM). After that,
various recently developed models and
models with specific applications are
listed. A brief summary of the origins
of the tile-based self-assembly is also
included together with a short review
of recent results. Two general open
problems are presented with the main
focus on the Pattern Self-Assembly Tile
Set Synthesis (PATS) problem, which
is NP-hard combinatorial optimisation
problem. Partition Search with Heuris-
tics (PS-H) algorithm is presented as it
is used for solving the PATS problem.

Next, two applications which were de-
veloped to study the abstract tile assem-
bly models and the synthesis of tile sets
for pattern self-assembly are introduced.
The first application is a simulator ca-
pable of simulating aTAM and 2HAM
systems in 2D. The second application
is a solver of the PATS problem based
around the PS-H algorithm. Main fea-
tures and design decisions are described
for both applications.

Finally, results from several ex-
periments are presented. One set of
experiments were focused on verifi-
cation of computation complexity of

algorithms developed for the simula-
tor, and the other set of experiments
studied the influences of the properties
of the pattern on the tile assembly
system synthesised by our implemen-
tation of PATS problem solver. It was
shown that the algorithm for simulating
aTAM systems have linear computation
time complexity, whereas the algorithm
simulating 2HAM systems have expo-
nential computation time complexity,
which strongly varies based on the
simulated system. The synthesiser
application is capable of finding a rela-
tively small solution even for quite large
input patterns in reasonable amounts of
time.

Keywords: Tile-based self-assembly,
Algorithmic self-assembly, Tile assem-
bly model, Pattern assembly, Tile set
synthesis, Wang tiles

v

Contents /

1 Introduction .1
1.1 Motivation .1
1.2 Thesis outline .2

2 Theory .3
2.1 Self-Assembly of Tiles4

2.1.1 Origin of Tile Assem-
bly Model4

2.1.2 A brief overview of re-
cent results5

2.1.3 Preliminaries and no-
tation .6

2.2 Models of Tile Assembly
Systems. 10
2.2.1 Abstract Tile Assem-

bly Model 10
2.2.2 Kinetic Tile Assembly

Model. 14
2.2.3 Two-Handed Assembly

Model. 17
2.2.4 Staged Self-Assembly

Model. 21
2.2.5 Overview of Other

Model Variants. 22
2.3 Tile Set Synthesis Problems . . . 23

2.3.1 The Shape Assembly
Problem 23

2.3.2 The Patterned Self-
Assembly Problem 24

3 Implementation 30
3.1 MuTATOR – The Tile As-

sembly Simulator 30
3.1.1 Features 31
3.1.2 Application architec-

ture . 33
3.2 MuTAGEN – Tile Assembly

Synthesizer . 36
3.2.1 Features 36
3.2.2 Application architec-

ture . 38
4 Experiments . 40
4.1 MuTATOR Experiments 40

4.1.1 Simulating aTAM 40
4.1.2 Simulating 2HAM 43

4.2 MuTAGEN Experiments 45
4.2.1 Synthesising TAS 45

4.2.2 Comparison of synthe-
sised and analytic so-
lutions . 47

4.2.3 Influence of seed posi-
tion on the solution 48

5 Conclusions . 50
5.1 Ideas for future enhancements . 50

References . 52
A Specification . 61
B Glossary of Abbreviations 63
C Contents of the CD 64
D Code listings . 65
D.1 MuTATOR and MuTAGEN

Common Data Structures 65
D.2 MuTATOR Algorithm Im-

plementations 66
D.3 MuTAGEN Algorithm Im-

plementations 70
E User Manuals . 76
E.1 MuTATOR User Manual 76
E.2 MuTAGEN User Manual 81

vi

Tables / Figures

3.1. Comparison of supported
models by simulators. 31

4.1. Specification of testing ma-
chine . 40

4.2. Basic statistics of computa-
tion time dependence on the
number of simulated steps
(aTAM) . 41

4.3. Properties of synthesised so-
lutions to larger patterns 47

4.4. Comparison of assembly sys-
tems properties of analytic
and synthetic solutions 48

4.5. Results of symmetric pat-
terns synthesis 49

2.1. Graphic representation of a
tile .7

2.2. Tile set of aTAM n-bit binary
counter. 12

2.3. Assembly sequence of aTAM
3-bit binary counter 13

2.4. Example of 2HAM system
assembly sequence. 20

2.5. Example of a Staged Self-
Assembly mixing graph 21

3.1. Example of MuTATOR win-
dow layout . 32

3.2. Example of a tile mesh visu-
alisation in MuTATOR 34

3.3. Dataflow diagram of MuTA-
TOR . 35

3.4. MuTAGEN workflow. 37
3.5. Class inheritance diagram of

partition classes in MuTA-
GEN . 39

4.1. Computation time depen-
dence on the number of sim-
ulated steps (aTAM) 41

4.2. Comparison of computation
time for systems with differ-
ent number of tiles (aTAM) . . . 42

4.3. Computation time of various
models (2HAM) 43

4.4. Number of supertiles in sim-
ulation sequence of various
models (2HAM) 44

4.5. Computation time depen-
dence on the number of su-
pertiles in the system (2HAM) . 44

4.6. Random k-coloured patterns
used for testing of synthesis
properties . 45

4.7. Comparison of synthesis time
of random patterns. 46

4.8. Number of tiles/glues in syn-
thesised systems from ran-
dom patterns 46

4.9. Image patterns used for test-
ing TAS synthesis 47

vii

4.10. Image patterns used for com-
paring analytic and synthetic
solutions . 48

4.11. Examples of symmetric pat-
terns used for testing the in-
fluence of seed position on
synthesised TAS 49

C.1. Contents of the CD 64

viii

Listings / Algorithms

3.1. A tile JSON representation 33
D.2. Implementation of Tile class

data structure 65
D.3. Implementation of TileCon-

figuration class data structure . 66
D.4. Implementation of finding

the set of attachable tiles
with their positions in aTAM
simulation . 67

D.5. Implementation of finding
the next state of 2HAM sim-
ulation . 69

D.6. Implementation of the PS-
H algorithm in MuTAGEN
(1/2) . 71

D.7. Implementation of the PS-
H algorithm in MuTAGEN
(2/2) . 73

D.8. Function for consolidation
and reduction of glue types
in TAS . 74

2.1. aTAM Assembly Sequence 11
2.2. kTAM Assembly Sequence. 16
2.3. 2HAM Assembly Sequence 19
2.4. PATS: Partition Search with

Heuristics (PS-H) 27

ix

Chapter 1
Introduction

Self-Assembly is the ultimate dream of every lazy engineer. Imagine that the only
work needed to be done to assemble the desired structure or mechanism is to bring
all the components into one place, mix them, and the forces of nature construct the
structure without any other outside help. The attractiveness of this manufacturing
vision motivated countless chemists, physicists, and engineers over the past several
decades to develop systems which are able to self-assemble at various scales from the
nanoscale to the macroscale. The research field of the self-assembly has grown wide,
and it is full of exciting ideas.

The self-assembly is a common phenomenon in nature which is constantly ongoing
around us and inside of our bodies. Self-assembly is occurring in many organic and in-
organic systems as it, for example, guides the growth of crystals, or it helps to construct
organic cells. And yet, the laws of physics governing its functioning has not been fully
understood to this day. The self-assembly is heavily utilised in the study of nanomateri-
als, and it is used to construct structures at the nanoscale, where the classical top-down
manufacturing process is hard to implement. However, as the bottom-up manufactur-
ing techniques mature such as 3D additive printing, the power of self-assembly could
also be harnessed in the manufacturing of the macroscale structures.

In the following text, the primary motivation of this thesis is presented, and the
outline of the thesis is described then.

1.1 Motivation
This thesis contributes to the EXPRO project which is a joint research project of the
Intelligent and Mobile Robotics Group (IMR) based in the Czech Institute of Infor-
matics, Robotics and Cybernetic (CIIRC) and the group based in the Faculty of Civil
Engineering, Czech Technical University in Prague. The goal of the EXPRO project is
to research how to apply the theory of self-assembly to the manufacturing process of
macroscale mechanical metamaterials.

A metamaterial is a material with properties that are not found in the naturally oc-
curring materials [1–2]. Metamaterials usually consist of carefully engineered structures
of materials with often periodically repeating building blocks. Metamaterials have a
wide variety of potential applications in optics, acoustics and thermodynamics. The
mechanical metamaterial is a more recent concept which modifies how the metamaterial
structure responses to the motion, deformations, stresses and mechanical energy.

Mechanical metamaterials can also behave like machines; for example, the metama-
terial can act as a hinge or lever. The main advantage of a mechanical metamaterial
machine is that it consists of a single block of material, and its functionality is encoded
within its unique structure. Therefore, the machine itself can be more durable, the
manufacture of such a machine can use less material as the machine is designed for a
particular application, and the machine does not need to be further assembled.

1

1. Introduction .
The EXPRO project vision is to design mechanical metamaterials which could be

used in the construction of buildings. These macroscale metamaterials would be as-
sembled from the set of modules which act as building bricks of the metamaterial.
The metamaterial modules can be mass produced either using 3D printing or using a
conventional method as injection moulding based on the used structural material. How-
ever, the conventional methods for combining the vast number of module units into the
desired configuration are not very efficient. Therefore, the self-assembly construction
method is researched in the project. This approach combines the best aspects from
each field, the mechanical metamaterial used for building construction can help lower
amounts of used material while its mechanical properties can be better, and the problem
of creating a large metamaterial structure is solved by constructing the metamaterial
from module units via self-assembly.

This thesis is primarily focused on the simulation of tile-based self-assembly systems
and on the procedure of synthesising a ”bill of materials” needed for self-assembly of a
given pattern of modules or tiles.

1.2 Thesis outline
The text of the thesis is structured into four main chapters besides this one. Chapter 2
contains an introduction to the theory of tile-based self-assembly systems (Section 2.1).
Then the chapter presents various models of tile assembly systems where the three
most common models are thoroughly described (Section 2.2). The end of the theory
chapter focuses on two open problems regarding the synthesis of tile assembly systems
(Section 2.3).

After that, Chapter 3 introduces two applications developed for the purposes of this
thesis and describes their implementation details. The first application is a simulator
of abstract tile assembly systems (Section 3.1). The second presented application is a
generator of tile assembly systems which self-assemble given pattern (Section 3.2).

Chapter 4 contains demonstrations of properties of the two developed applications.
Finally, Chapter 5 contains a summary of results and ideas for future work.

2

Chapter 2
Theory

Self-assembly is the process by which a set of simple and relatively small components
spontaneously assembles by themselves into a larger and more complex formation. This
process is taking place without any external controlling force, and it is driven only by
interactions between the individual elements. Furthermore, the self-assembly process
has the power of significant parallelism; therefore, thousands of copies of one structure
can be produced simultaneously in a single test tube.

The self-assembly occurs in many natural processes such as the process of crystal
formation in snowflakes, assembly of the cell membrane from lipids, self-assembly of
bacteriophage virus proteins into a capsid which is used by the virus to attack other
bacteria, or the formation of double helical DNA through hydrogen bonding of the
individual strands [3–4]. Even the molecular self-assembly of nanoscale structures plays
a role in the growth of the β-keratin structures which give geckos the ability to climb
walls and adhere to ceilings and rock overhangs [5]. From the short list of examples,
it can be seen that the self-assembly processes occur mainly in biological systems, but
the theory which arises from the study of self-assembling systems is also utilised in the
engineering field of nanotechnology and nanomanufacturing.

The conventional top-down approach of manufacturing objects from individual
molecules renders very difficult and often impossible due to the need of performing
the fabrication tasks in nanoscale precision. Therefore, the bottom-up approach of the
self-assembly arose as a viable and convenient manufacturing alternative to construct
designed complex structures from nanomaterials. The material, which is often used
to study self-assembly, is the DNA molecule. Because DNA can store information,
and also its physical properties, as well as methods to synthesise it, are already
well-understood [6], it is the ideal material for self-assembly.

As shown by the Adleman [7], the DNA can be used to perform computations. This
shows yet another advantage of self-assembly, which is the ability to perform computa-
tions. It is a field of study of its own with the goal of encoding an input of computation
problem to DNA strands such that interactions between the strands produce an en-
coded result. With the rising demand for systematically assembling even more complex
structures, for example, to build an initial base for other artificial nanostructures, the
computation approach for self-assembling structures is used more in recent years.

In order to design self-assembling systems capable of automatic construction of intri-
cate nanostructures, theoretical models have been developed. One of the most popular
models is the Tile Assembly Model developed by Winfree, and it was formalised in his
PhD thesis [8], which mainly focuses on self-assembly of DNA tiles.

The theory of the Tile Assembly Model is presented in the rest of this chapter. The
origins of the model are introduced in Section 2.1 together with the short overview of the
recent results of self-assembly research and with preliminaries and notation definitions
used in this thesis. Section 2.2 introduces several models of Tile Assembly Systems.
Finally, two main problems studied in tile self-assembly systems are explained in Sec-
tion 2.3.

3

2. Theory .

2.1 Self-Assembly of Tiles
In the following Section 2.1.1, a brief background to the development of tile-based self-
assembly theory is presented. Section 2.1.2 contains a summary of the recent results of
the research. Finally, Section 2.1.3 defines the fundamental theory of the Tile Assembly
Model using mathematical formalism, which also serves as an overview of the notation
used in this thesis.

2.1.1 Origin of Tile Assembly Model
The Tile Assembly Model developed by Winfree [8] was based on breakthroughs in
synthesising DNA molecules [9] and on a generalisation of the theory of Wang tiles [10].
One of the aims in nanofabrication is building two-dimensional nanostructure templates
for attaching other functional objects. Such templates can be assembled from molecular
units consisting of DNA molecules called DNA tiles which have on its four sides a sticky
end [11–13]. A Wang tile is a unit square with four colours marking its sides. A set
of tiles is formed by selecting a finite and fixed number of different Wang tiles. Tiles
in the chosen set cannot be rotated or reflected, and they are placed on a plane only
in such a way that both sides of every two touching tiles have a matching colour. The
main question about a set of Wang tiles is whether the set could cover the whole plane
at least in one configuration while following the mentioned rules. The model tile used
in Tile Assembly Models is a generalisation of the Wang tile enhanced by properties
of the DNA tile. The model tile has different kinds of glues on its edges similarly as
the Wang tile has different colours. A glue will only adhere to the same glue type, and
each glue type can have various bonding strength.

Even though the similarity between Wang tile and self-assembly tile in Winfree’s
Tile Assembly Models can seem substantial, these two theories solve completely dif-
ferent questions. Whilst Wang tiling focuses on finding such a set of tiles that is able
to cover an infinite tile plane entirely and whether the produced tiling have periodic
pattern, the self-assembly of tiles focuses on designing such tile sets which are capa-
ble of autonomously orient themselves into desired structures, shapes or patterns with
minimizing the tile set itself, minimizing the construction errors and minimizing time
required for assembly. Another difference is that the process of self-assembly in the Tile
Assembly Model progressing in discrete time steps when the assembly grows one tile at
a time instead of instantaneous coverage of the whole plane as in Wang tiling.

Winfree developed two basic Tile Assembly Models: the abstract Tile Assembly Model
(aTAM) and the kinetic Tile Assembly Model (kTAM), which are both further discussed
in Sections 2.2.1 and 2.2.2, respectively. The aTAM, as the name suggests, provides
an abstract high-level view on the theory on self-assembly, which ignores the laws of
physics of possible real-world implementation; also, it ignores the possibility of errors.
That is why aTAM is a great framework for studying mathematical properties and the
possible limits of the self-assembly systems. On the other hand, the kTAM models the
behaviour of the physical and chemical kinematics, and therefore, it allows to study how
errors form while assembly process taking place. Also, the kTAM is used to develop
mechanisms for detecting these errors, mechanisms for preventing the error from even
occurring or design tile sets in such a way that the tiles can correct the errors during
self-assembly.

It was proved that aTAM is Turing complete [8]. This fact means that the self-
assembly can be algorithmically directed and so the study of aTAM systems fall into
a general field of algorithmic self-assembly where it affects other areas of Theoretical
Computer Science or Mathematics. There are several designs of aTAM tile sets that

4

. 2.1 Self-Assembly of Tiles

algorithmically self-assembles complex structures such are binary counters or fractal
patterns known as the Sierpinski triangle or the Sierpinski carpet [8, 14–16].

All this contributed to turning the self-assembly into a quite broad and vibrant field of
research which ranges from biology, over nanotechnology and mathematics to computer
science and even robotics. A brief overview of the recent results is given in the following
section.

2.1.2 A brief overview of recent results

An incomplete overview of the recent research results from the field of self-assembly is
provided in this section. The reader is encouraged to refer to surveys [6, 17] for further
details about development in the field because the articles mentioned in this section
are only from research that came after these reviews. Both articles serve as excellent
surveys into the area of algorithmic tile-based self-assembly. The reader also can refer
to review [18] for more information about self-assembly techniques used in nanomaterial
fabrication.

The research of self-assembly includes multiple disciplines. In nanofabrication re-
search, self-assembly was used to construct optical nanomaterials [19–20], fabrication
of nanostructures based on protein self-assembly [21–22], or self-assembly of nanoscale
metamaterials [23].

Self-assembly techniques were used for achieving a formation of miniature robot
swarms into various shapes. One approach of testing self-assembly with robots is
to use robots floating in water [24–25]; other experiments were performed using kilo-
bots [26–27].

Another direction of research aims to find limits in theoretical models of algorithmic
self-assembly. The aTAM model of self-assembly was proven to be intrinsically univer-
sal with the right system temperature [28–29], which led to attempts of proving this
property also for other models [30–31]. Various tile assembly models, such is aTAM or
kTAM, are discussed in detail in Section 2.2.

There were experiments with algorithms for self-assembly of shapes at system tem-
perature τ = 1 [32], or for assembling shapes in the staged self-assembly model [33–34].
Algorithm for finding minimal tile sets for self-assembling square with minimal system
temperature was developed in [35].

An optimisation method for designing tile sets for avoiding errors was developed
in [36] while preserving method called proofreading, which helps with the correctness of
the assembly in the kTAM model.

Additionally, there were attempts to proving that the problem of self-assembling a
desired multi-coloured pattern is NP-hard or NP-complete depending on the number
of colours in the pattern in [37] and [38], respectively. This problem is called the PATS
Problem, and it is further described in Section 2.3.2).

The mathematical model of the tile-based self-assembly system is defined in the next
section, which also serves as an overview of the mathematical notation, which is used
in this thesis.

5

2. Theory .
2.1.3 Preliminaries and notation

In this section, a set of definitions is provided, which is then used to describe Tile Self-
Assembly System (TAS) models. All the following TAS models can be generalised to a
3-dimensional space, but for the sake of simplicity and without loss of generality, the
models will be described in 2-dimensional discrete space. The used notation is derived
from those of [39–41].

Informally, each unit of an assembly is called tile which is a square with glues of
various types on its every side (edge). The tile ”floats” on a two-dimensional plane,
and when two tiles collide, they bond together if their abutting sides have compatible
glues with sufficient strength. The formal definitions are presented in the following
text.
Definition 2.1. Define the set of all unit vectors in Z2 as

U2 = {(0, 1), (1, 0), (0, −1), (−1, 0)} .

These vectors can be referred as their cardinal directions North, East, South, West or
as N, E, S and E, respectively.
Definition 2.2. A grid graph is an undirected graph G = (V, E) in which V ⊆ Z2 is set
of all vertices and E is set of all edges. Edge is defined by an unordered pair of vertices
{~a,~b} ∈ E, ~a, ~b ∈ V . In the grid graph, edges exists only between the vertices with the
property ~a−~b ∈ U2. All graphs in this thesis are assumed as undirected if not specified
otherwise.
Definition 2.3. Let D = {N(x, y), E(x, y), S(x, y), W (x, y)} be the set of four func-
tions Z2 → Z2 corresponding to shift of position (x, y) in terms of cardinal directions
{N, E, S, W} ∈ U2 so that position will be shifted by a unit vector in a direction d ∈ U2.
Let the shift in north direction be N(x, y) = (x, y + 1), the shift in east direction
E(x, y) = (x+ 1, y), the shift in south direction S(x, y) = (x, y− 1) and last the shift
in west direction W (x, y) = (x−1, y) and inverted functions have the same meaning as
opposite cardinal direction, therefore S(x, y) = N−1(x, y) and W (x, y) = E−1(x, y).
Definition 2.4. Additionally, a notation D(x, y) can be used to represent a set of
positions in the four-neighbourhood of position (x, y) in a grid graph G.
Definition 2.5. Let Σ be the set of glue types and s : Σ×Σ→ N a glue strength function
such that s(σ1, σ2) = s(σ2, σ1) for all glue types σ1, σ2 ∈ Σ. The strength function
s returns a non-negative number which represents a bonding strength of the glue if it
bonds with another glue. Only those glue strength functions such that s(σ1, σ2) = 0 if
σ1 6= σ2 are considered in this thesis, which means that only two glues with the same
glue type can generate non-zero bonding strength. Each glue type can be identified
using a label. The type of the glue type label can differ in implementation, but for
simplicity, integer numbers are used as glue label in this thesis.
Definition 2.6. Null glue is a special glue type that has constant zero glue strength
function. This means that it cannot bond with no other glue. i.e., s(null, σ) = 0 for all
σ ∈ Σ. The null glue can be used to represent a missing glue or a glue with no bonding
action.
Definition 2.7. Tile type t ∈ Σ4 is defined as quadruple of glue types

t = (σN (t), σE(t), σS(t), σW (t))

for each side of a unit square, where σd(t) is a notation for the glue type of the tile
t facing the cardinal direction d ∈ U2. The finite set of tile types is denoted as T .
Each tile type can have a tile label which can be used to carry or show some useful

6

. 2.1 Self-Assembly of Tiles

information in a tile assembly, i.e. a value of a bit in binary counter or colour of the
tile in a pattern.

The illustration of a tile used in this thesis can be seen in Figure 2.1. The tile
representation consists of several parts. The square represents a body of a tile, and it
can have arbitrary colour. The colour of tile body, as well as text on place of Label,
can be used to carry a piece of information about the purpose, type or category of a
tile but they have no impact on the behaviour of the tile in the self-assembly process.
Small black lines on sides of the tile body represent tile glues, where the number next
to each line denotes the glue type, and the number of lines on one side denotes the
strength of the glue bond. In Figure 2.1, the depicted tile has a glue of type 1 with
bonding strength 2 on its north side, then a glue of type 2 with strength 1 on its east
side, a glue of type 3 with strength 2 on its west side and a null glue on its south side.
The grey number in the right-bottom corner of the tile body is an identification number
(ID) of the tile in a given tile set, and it is used only as a reference to one particular
tile type in the tile set. The grey vector in the left-top corner of the tile body shows a
position of the tile in the space of an assembly.

Figure 2.1. Graphical representation of a tile.

A tile with null glues on all its sides cannot contribute to the assembly process, hence
it is not explicitly used in any tile assembly system, but it can be used to represent an
empty space in the assembly configuration (Definition 2.8); therefore, it is referred as
empty tile.
Definition 2.8. An assembly A (also called configuration in some literature) is a partial
mapping from Z2 to T ∈ Σ4 defined on at least one input. A tile t that lies on the
position ~a = (x, y) in an assembly A can be denoted as A(~a) or A(x, y). The points
~x ∈ Z2 at which A is undefined are interpreted to be an empty space. Therefore,
the domain of assembly dom A is the set of points with defined non-empty tiles. The
number of points with tiles can be written as |dom A| or |A|, and the assembly is called
finite if |A| is finite. Also, an assembly can be denoted as T -assembly when it is needed
to specify which tile set T is used to build the assembly. The assembly can be visualised
as grid graph G = (V, E), where vertices V ∈ Z2 are points that map to tiles and edges
E map to tile glues.
Definition 2.9. Additionally, an assembly A1 is called sub-assembly of assembly A2,
which is written as A1 v A2, if dom A1 ⊆ dom A2 and A1(~x) = A2(~x) for all points
with tiles ~x ∈ dom A1.
Definition 2.10. The Tile Assembly System also referred to as TAS T = (T, S, s, τ)
consists of a finite set of tile types used in the system T , a seed structure S, a glue
strength function s and a system temperature τ ∈ N. The seed S is used as the initial
state of the system which can be used to direct the behaviour of the self-assembly
system, and it can be optional or not used for some of the TAS models. The temperature

7

2. Theory .
τ sets a minimal bond strength for the system so each glue bond that according to glue
strength function s does not have the strength greater than or equal to τ will not be
bonded. Furthermore, it can be noted that even though the number of different tile
types is fixed and finite, the number of tiles (copies) of each type can be infinite in an
assembly.
Definition 2.11. An assembly is called τ -stable if it cannot be broken up into smaller
sub-assemblies without breaking glue bonds of total strength at least τ , for some τ ∈ N.
Alternatively, the addition of a tile to the assembly is τ -stable if the tile adheres to the
assembly with bond strength equal to or greater than τ .

The rule for extending an assembly in the self-assembly process can vary according
to used model, but the following formalisation of the process can be used to show the
basic concepts of the established models such as aTAM, kTAM or 2HAM which are
described in Sections 2.2.1, 2.2.2 and 2.2.3, respectively.

The self-assembly process is described as perpetual extending an assembly by a tile
from fixed TAS until there is at least one tile that can be τ -stably added to the assembly
which is formally described by the rule in the next Definition 2.12.
Definition 2.12. For two assemblies A, A′ for which applies A v A′ and a fixed TAS
T = (T, S, s, τ), it can be said that A′ extends A which is written using relation
as A →T A′ if there exists a position ~p = (x, y) ∈ Z2 and a tile t ∈ T such that
A′ = A ∪ {(~p, t)}, where the union is disjoint and∑

D

s(σD(t), σD−1(A(D(x, y))) ≥ τ,

where D ranges over those positions given by direction functions in D for which the
assembly A has defined tiles. This formula can be rewritten if we define the set of
defined tiles in four-neighbourhood of position (x, y) as N (x, y) = {n ∈ A(~x) : ~x =
D(x, y), n 6= empty tile, ∀D ∈ D}. Now, the formula can be written as∑

nd∈N (x, y), d∈D

s(σd(t), σd−1(nd)) ≥ τ,

where nd ∈ N (x, y) denotes neighbouring tile which lies next to position (x, y) in
cardinal direction d, σd denotes a glue type on tile side in cardinal direction d, and d−1

denotes a complementary cardinal direction to direction d.
Using the rewritten formula, it is easier to see that the extending tile t ∈ T can be

adjoined to an assembly A on position (x, y) only if t shares a common boundary with
tiles that bind it into place (neighbouring tiles N (x, y)), which are already present in
the assembly A. Also, corresponding glues of the extending tile t and its adjacent tiles
have to generate total strength greater than or equal to system temperature τ . If this
rule holds, a new assembly A′ is created.
Definition 2.13. An assembly sequence ~A is used to describe the steps in self-assembly
process of the system T using the relation of extending an assembly

Ai →T Ai+1 →T Ai+2 →T · · · ,

Definition 2.14. Let →∗T be the reflexive transitive closure of →T . A TAS T pro-
duces an assembly A if A is an extension of the seed assembly S, that is if S →∗T A.
Prod T denotes the set of all assemblies produced by the TAS T . This way, the pair
(Prod T , →∗T) forms a partially ordered set.
Definition 2.15. A TAS T is deterministic (also called directed, confluent or produces
a unique assembly in other literature) if the relation →T is directed, i.e., if for all

8

. 2.1 Self-Assembly of Tiles

A, A′ ∈ Prod T , there exists A′′ ∈ Prod T such that A →T A′ and A′ →T A′′.
Alternatively, a TAS T is deterministic if for any assembly A ∈ Prod T and for every
position (x, y) ∈ Z2 there exists at most one t ∈ T such that A can be extended with t
at position (x, y). Also, a TAS T is deterministic precisely when Prod T is a lattice.
Definition 2.16. The maximal elements in Prod T are such assemblies A that can not
be further extended, that is, there do not exist assemblies A′ such that A →T A′. These
maximal elements are called terminal assemblies, and the set of terminal assemblies of
TAS T is denoted as Term T .
Definition 2.17. If all assembly sequences ~A in self-assembly process of TAS T , which
can be written as

S →T A1 →T A2 →T · · · →T P,

terminate with Term T = {P} for some assembly P, it is said that T uniquely produces
P.

In general, even a deterministic TAS T may have a vast number of different assembly
sequences leading to the production to its terminal assembly Term T . This number of
possible sequences seems to make it very difficult to prove that a TAS T is directed.
Fortunately, a property of assembly sequence called local determinism has been defined
by Soloveichik and Winfree [42]. Soloveichik and Winfree also have proven the fact that,
if TAS T has any locally deterministic assembly sequence, then the T is deterministic.
Definition 2.18. An assembly sequence ~A is locally deterministic if

(i) each tile adjoined in ~A binds to the existing assembly with bond strength exactly
equal to τ ;

(ii) if a tile at position ~p of type t0 ∈ T is deleted from result of ~A and its neighbour-
ing tiles which would be adjacent to tile t0 are deleted from result of ~A, then no
tile of type t 6= t0, t ∈ T can be attached to the configuration at location ~p; and

(iii) the result of ~A is terminal assembly AT ∈ Term T .

Definition 2.19. A set of points X ⊆ Z2 weakly self-assembles if there exists a TAS
T = (T, S, s, τ) and a set of tiles B ⊆ T such that all positions of tiles from set B in
terminal assembly AT match all the positions X, which can be written as A−1

T (B) = X,
for every terminal assembly AT ∈ Term T . Therefore, weak self-assembly can be
imagined as the creation or ”painting” of a pattern of tiles from B with some unique
feature (i.e. colour or label) on a possibly larger ”canvas” of other tiles.
Definition 2.20. A set of points X ⊆ Z2 strictly self-assembles if there is a TAS T
for which every assembly A ∈ Term T satisfies dom A = X. Therefore, strict self-
assembly means that tiles are only placed in positions defined by the shape of X. Note
that if X strictly self-assembles, then also X weakly self-assembles.

9

2. Theory .

2.2 Models of Tile Assembly Systems

Since the first Tile Assembly Model was introduced by Winfree [8], there were developed
many different models, but all are somewhat related to the abstract Tile Assembly
Model, maybe more known as its acronym aTAM. Several basic tile assembly models
are introduced and defined in the following text. First presented model is the aTAM in
Section 2.2.1, followed by the description of the kinetic Tile Assembly Model commonly
referred to as kTAM in Section 2.2.2. Then, a description of the newer Two-Handed
Assembly Model or 2HAM is in Section 2.2.3. The Staged Self-Assembly model derived
from 2HAM is depicted herein in Section 2.2.4. Lastly, a short overview of model
variants which were derived from the basic models is offered in Section 2.2.5. The
formal definitions of models using definitions from Section 2.1.3.

2.2.1 Abstract Tile Assembly Model

The discrete mathematical model called the abstract Tile Assembly Model (aTAM) was
derived from the Wang tiling [10] as is mentioned in Section 2.1.1. The aTAM system
T consists of a finite set of tiles T , seed structure S, glue strength function s and system
temperature τ as defined in Section 2.1.3. Same as Wang tiling, the aTAM covers a
2D plane with tiles, but unlike Wang tiling, aTAM does this in an assembly sequence
consisting of steps, one tile at a time. Note that the aTAM can be easily generalised for
the 3D space, but it is defined only in two dimensions here for simplicity. The aTAM
assembly is built from abstract non-rotatable tiles with glues as stated in Definition 2.7.

The abstract assembly model inherently and purposely ignores laws of physics of
possible physical implementations. This abstraction of the model means that a tile
cannot be wrongly attached to different tile with incompatible glues; this situation is
studied using the kinetic model described in Section 2.2.2. Therefore, the purpose of
the aTAM is solely theoretical. The aTAM can be used for the initial design of the tile
sets so the possibility of the set to self-assemble into the desired structure can be tested.
Another aTAM application is in testing the theoretical boundaries of algorithmic self-
assembly and its computation power. It was proven that aTAM is Turing complete [8]
and intrinsically universal for system temperature τ = 2 [28]. That means that the
aTAM system can perform arbitrary computation and for temperature τ = 2 it can even
simulate any other aTAM system with a single fixed set of tiles, where the mimicked
system is encoded into seed structure.

The process of assembly sequence ~A (Definition 2.13) of the aTAM system T is
formally described in Algorithm 2.1, where i denotes the step in the assembly sequence.
The assembly sequence starts with a seed structure S which describes the initial state
(assembly configuration) of the aTAM and therefore it encodes the behaviour of the
system, i.e., S = A0 (line 1).

The subsequent progression to the next step in the assembly sequence consists of two
actions. The first action is the selection of a tile from the set of tiles. The selection
consists of checking each tile from the system set of tiles t ∈ T whether it can be τ -
stably attached at least at one undefined position in assembly Ai, where Ai corresponds
to the i-th system configuration in the assembly sequence. All such tiles are formed
into the set of all tiles with positions that can extend the assembly Ai denoted as T i

E .
The set is T i

E is constructed with the help of the set P , where P is the set all positions
which are undefined in Ai and located in the four-neighbourhood of Ai. One possible
way how to get the set P is shown on lines 3–7 in the algorithm. The T i

E is then filled

10

. 2.2 Models of Tile Assembly Systems

Procedure: aTAM-Assembly-Sequence

Inputs: Number of steps n,
Tile Assembly System T = (T, S, s, τ),

where T is the set of tiles, S is seed structure, s is the glue strength
function, and τ is the temperature.

Outputs: Assembly in n-th step Pn

1 A0 := S; i := 0
2 repeat
3 P := ∅
4 for each defined position ~p in Ai do
5 for each position ~n in D(~p) do
6 if ~n is undefined in Ai then
7 P := P ∪ ~n
8 T i

E := ∅
9 for each tile t in T do

10 for each position ~p in P do
11 if (Ai ∪ (~p, t)) is τ -stable then
12 T i

E := T i
E ∪ (~p, t)

13 if T i
E = ∅ then

14 Pn := Ai

14 return Pn

15 (te, ~pe) := uniform random(T i
E)

16 Ai+1 := Ai ∪ (~pe, te)
17 i := i+ 1
18 until i > n
19 Pn := Ai

20 return Pn

Algorithm 2.1. A pseudo-code description of the assembly process of the aTAM system,
where x = uniform_random(X) is a function which returns a random element x from given

set X and where all elements are equally likely to be chosen.

with pairs (~p, t), where ~p ∈ P is position and t ∈ T is tile, such that t can τ -stably
extend Ai on ~p (lines 8–12).

In the second action, the random pair of position and tile (~pe, te) ∈ T i
E is chosen

with equal probability and added to the assembly, which creates the assembly Ai+1
(lines 15–17). From this point, the process is repeated from the creation of a new set
of all possible extending tiles T i+1

E and its positions for the newly extended assembly.
The assembly process terminates when there are no tiles that could be attached to the
assembly, i.e., T i

E = ∅ (lines 13, 14).
A simple example of self-assembly of the binary counter is presented in the following

text.
Example 2.1. aTAM: Binary counter
In Figure 2.2, a visualisation of the aTAM tile set is depicted. The tile set can be used
to self-assembly a n-bit binary counter for system temperature τ = 2, where n depends
on the configuration of the seed structure. Note that there exist more different sets that
can count in binary in various ways. Also, note that the graphical representation of a
tile tends to have a grey ID number in its right-bottom corner, which can be used as a
reference to this tile type in the discussed tile set, as it is described in Definition 2.7.

11

2. Theory .

Figure 2.2. Visualisation of a possible tile set for self-assembling a n-bit binary counter in
the aTAM system with temperature τ = 2.

The notation tID ∈ T is used to reference the tile with specified ID in the subscript,
e.g. the tile with ID = 4 labelled S is referenced as t4.

In Figure 2.2, tiles with the blue background are those which are used to generate
the seed structure in the self-assembly of the n-bit counter. The tile t4 with label S
is the main seed tile, which lies in the origin of assembly configuration space. Tiles
t1, t3 with label 0-B are used to assemble the bottom border of the assembly; hence
the B in their label and they also carry the zero value of the binary counter, hence the
0. The tile t2 labelled R is used as the right border of the counting assembly, and it is
not carrying any useful information. Finally, the tiles with label 0 (t5, t8) or 1 (t6, t7)
represent a value of a bit on its position.

As was mentioned above, the number of bits n of this binary counter depends on the
configuration of the seed structure for this tile set. More precisely, the number of bits n
is defined by the width of the bottom border of the assembly which is constructed from
the tile t1 and sequence of n− 1 tiles t3 which are then connected to the origin seed tile
t4. Therefore, the bottom border of the seed structure for the 3-bit counter consists
of tiles (t1 t3 t3 t4), in this order as it can be seen in Figure 2.3a. It can be seen
that the tile t1 disables another tile to be attached to its west side and thus delimiting
the number of bits in the counter. Note that, delimiting the number of values of the
binary counter can be done similarly by defining the number of bits by encapsulating
the right border in the seed structure with additional tile type same as tile t2 but
without its north glue. The definition of the maximal value of the counter was omitted
in this example in order to keep the number of tiles in the set low as possible. On the
contrary, note that a ∞-bit binary counter could be self-assembled if the tile t1 were
removed from the tile set.

The assembly sequence of the 3-bit binary counter is illustrated in Figure 2.3. The
initial assembly A0 starts its sequence from the seed structure A0 = S, which can be
seen in Figure 2.3a. The green squares in the assembly visualisation indicate positions
where a tile t ∈ T could τ -stably extend the assembly. So, in the next step of assembly
sequence A1, the tile t7 was added on position (−1, 1) relative to the origin seed tile
with label S on position (0, 0). It can be noticed that the right border assembled from
tiles of the type t2 can be extended in every step because the tile t2 has on both north
and south sides the same glue type 10 with strength 2 = τ and the right border was
not terminated similarly to the bottom border as mention before. Therefore, the tile t2
can self-assembly long chain of same-type tiles. On the other hand, tiles that represent

12

. 2.2 Models of Tile Assembly Systems

a) S = A0 b) A1 c) A2

d) A3 e) A5 f) A6

g) A7 h) A21 i) A27

Figure 2.3. Assembly sequence of 3-bit binary counter aTAM system T = (T, S, s, τ = 2),
where the green squares indicate a possible position where the assembly could be τ -stably

extended by a tile from T and subscript i in Ai denotes the step of the assembly.

13

2. Theory .
bit values (t5, t6, t7, t8) can attach only on those positions where they can adhere to
both east and south neighbours simultaneously, because all their glues have strength
1, therefore in the system with temperature τ = 2 the tiles need to cooperate to create
sufficient bond strength. This is also behind the mechanism of limiting the counter
to 3-bits because the bottom border is not defined on position (−4, 0), the tiles with
strength 1 cannot bond further left due to lack of glue strength which would support
them from the south side, as can be shown in Figures 2.3f–i.

The right border continues with self-assembly in steps 2–4 of the assembly sequence,
which is captured in Figures 2.3c–d. The tile representing bit values extended the
assembly in steps 5–7 as shown in Figures 2.3e–g. One of the intermediate steps is
shown in Figure 2.3h. From this progress, it can be seen that the assembly of the
aTAM system is random in the sense that in each step of the assembly sequence a tile
is added on random position which can τ -stably extend the assembly, but if the tile
set is adequately designed, tiles eventually end up in the correct positions. The final
configuration of the binary counter is given in Figure 2.3i, where it is easy to see the
pattern of binary numbers in each row of the assembly.

2.2.2 Kinetic Tile Assembly Model

The kinetic Tile Assembly Model (kTAM) is a more realistic counterpart of the aTAM.
As was already mentioned in Section 2.1.1, kTAM was developed together with aTAM
by Winfree [8] for modelling of DNA self-assembly. The kTAM has the same general
rules as the aTAM, the assembly is constructed from the same model of tiles and in
sequence from given seed structure, but unlike aTAM, kTAM allows errors to occur
in the assembly process. The allowance of the errors in the assembly means that tiles
can adhere to incompatible glues, or tile can be randomly detached from the assembly.
Thanks to this uncertainty in tile bonding kTAM functions as quite a realistic model
which was used to predict results of laboratory experiments accurately, for example [43,
14]. The accuracy of kTAM helped in the development of error prevention and correc-
tion techniques, which minimised the rate of errors seen in laboratory experiments.

The formal description of the kTAM uses a notion of a monomer tile. Its name
is derived from the designation for a molecule from which polymers are built. The
monomer tile in the context of the kTAM denotes every tile from the system tile set
which can be added to the assembly frontier (i.e. on every unoccupied position around
the assembly), regardless of whether the glue type of the tile in the assembly and
monomer tile match.
Definition 2.21. The rate of a particular monomer tile attaches to an assembly at a
particular position is called association rate or forward rate denoted as rf measured in
Hz and defined as

rf = kf [DX] = kfe
−Gmc ,

where kf is the forward rate constant which sets the units of the time axis and it has
no impact on the behaviour of the system, [DX] denotes the effective concentration of
the monomer tiles which aggregates entropic factors of the monomer and Gmc > 0 is
the non-dimensional entropic cost of associating to an assembly which depends on the
monomer tile concentration. If the effective concentration of the monomer tile [DX] is
constant, then [DX] = e−Gmc .
Definition 2.22. The rate of breaking glue bonds of a tile in an assembly is called
dissociation rate or reverse rate denoted as rr, b measured in Hz and defined as

rr, b = kfe
−bGse ,

14

. 2.2 Models of Tile Assembly Systems

where Gse > 0 is the non-dimensional free energy cost of breaking a single bond and b
is the number of ”single-strength” matching bonds which the tile has attached.

The ratio of the concentration of monomer tiles to the strength of their individual
glue bonds provides an analogue for the temperature τ aTAM parameter, which is
written as

τ
.= Gmc

Gse
.

Therefore, the lower the ratio of Gmc/Gse, the assembly process faster but more error-
prone, similarly as temperature τ affects the aTAM system. The number of matching
glue bonds that a tile has with an assembly b is used to decide whether a tile will be
attached to or detached from the assembly. If b is less then τ , then the tile is more
likely to be detached from the assembly.

This setting creates an opportunity for various types of errors to occur. The kTAM
assembly errors can be divided into three general categories: growth errors, facet errors
and nucleation errors. First two categories are somewhat similar. The growth error or
sometimes called the mismatch error describes a situation when a tile adheres to an
assembly, but one or more glues of the tile do not match with glues of tiles in the as-
sembly, hence those glues mismatches. However, before the mismatched tile dissociates
with the assembly, another tile with correct glues is attached to the mismatched tile
and the assembly, which effectively locks the mismatched tile to the assembly. The facet
error is very similar to the growth error except that the erroneous tile has all correct
glues, but it does not have enough bond strength in them. The erroneous tile is then
locked in place in the same manner as in growth error. The last category nucleation
error describes a situation when two or more monomer tiles attaches together but not
to the assembly. Therefore, they create another seed structure in the system without
designed purpose and start construction of the unwanted assembly.

The assembly process of the kTAM system is described in Algorithm 2.2. The kTAM
system T is specified by 6 parameters T = (T, S, s, Gmc, Gse, kf), where T is the set
of all tiles that can occur in the assembly, S is the seed structure placed over the
origin of the assembly plane, s is the glue strength function, Gmc is the entropic cost of
fixing the location of a monomer tile, Gse is the entropic free energy cost of breaking a
strength-1 bond and kf is the forward rate constant.

At the start of the process, the assembly configuration equal to the seed A0 = S,
step and time are set to zero, i.e., i = 0 and t = 0 (line 1). After the initialisation,
the self-assembly process consists of the infinite repetition of two possible actions with
their probability based on the assembly in the current step Ai and on parameters
of the system Gmc, Gse, and kf . The first possible action is called as ”on” action,
which represents an attachment of a tile to the assembly, where all tiles from T are
equally likely to be attached to the assembly to any equally possible position around the
assembly. The second action is referred to as ”off” action, which signals a detachment
of a tile from the assembly, where all tiles from the assembly have an equal probability
of dissociation.

The computation of the rate of the ”on” action kon is demonstrated in lines 3–5 and
it can be written as

kon = m · kf · e−Gmc ,

where m is the number of frontier positions of an assembly (all unoccupied positions
around the perimeter of the assembly). Therefore, the rate of the ”on” action is pro-
portional to the circumference of the assembly in the current step.

15

2. Theory .
procedure: kTAM-Assembly-Sequence

Inputs: Number of steps n,
Tile Assembly System T = (T, S, s, Gmc, Gse, kf),

where T is the set of tiles, S is seed structure, s is the glue strength
function, Gmc is the entropic cost of fixing the location of a monomer tile,
Gse is the free energy cost of breaking a strength-1 glue bond, and kf is
the forward rate constant.

Outputs: Assembly in n-th step Pn

1 A0 := S; i := 0; t := 0
2 repeat
3 F := frontier positions(Ai)
4 m := |F |
5 kon = mkfe

−Gmc

6 P := {Ai(~p) : ∀~p ∈ {Z2 \ (0, 0)}}
7 koff, b := 0
8 for each position ~p in P do
9 b~p := total strength(Ai(~p))

10 koff, b~p
= koff, b~p

+ kfe
−b~pGse

11 koff :=
∑

b koff, b

12 kany := kon + koff

13 ∆t ∼ Pr(∆t) = kanye
kany∆t

14 wait ∆t seconds
15 t := t+ ∆t
16 x := Pr(action is ”on”) ∼ B(1, kon/kany)
17 if x is true then
18 te := uniform random(T)
19 ~pe := uniform random(F)
20 Ai+1 := Ai ∪ (te, ~pe)
21 else
22 P ′ := outer edge positions(Ai)
23 ~pd := uniform random(P ′)
24 Ai+1 := Ai \ {~pd}
25 i := i+ 1
26 until i > n
27 Pn := Ai

28 return Pn

Algorithm 2.2. Pseudo-code description of the assembly process of the kTAM system,
where function frontier_positions(A) returns the set of all frontier positions of
the assembly A (unoccupied positions around the perimeter of the assembly), function
outer_edge_positions(A) returns the set of all positions of an outer edge of the assembly
A and function total_strength(t) returns the combined glue strength provided to the
tile t by the assembly Ai. Furthermore, x = uniform_random(X) is a function which
returns a random element x from given set X and where all elements are equally likely
to be chosen, Pr is probability and B(n, p) denotes Binomial distribution, where n is the

number of trials and p is the probability of success.

16

. 2.2 Models of Tile Assembly Systems

The rate of the ”off” action koff is based on the total bond strength of each tile in
the assembly, which is illustrated by iterative computation on lines 6–11 or it can be
expressed with sums as

koff =
∑

b

koff, b, koff, b =
∑

~p∈{Ai\(0, 0)} s.t. b~p=b

kf · e−b~pGse ,

where b denotes the number of strength-1 glue bonds, therefore b~p is the number of
matching strength-1 glue bonds of the tile placed at position ~p ∈ P , and P is a set of
any defined position in the current step assembly Ai except the seed tile at the origin
of the assembly plane. Additionally, koff, b is the rate of the ”off” action for tiles with
total bond strength equal to b. Note that if the tile has matching strength-2 glue bond
with its neighbouring tile, it is counted as two strength-1 bonds in b.

From these action rates, the net rate of any action occurring kany is obtained as
kany = kon + koff (line 12). Now, the time to the next action ∆t can be calculated
according to the Boltzmann distribution as

Pr(∆t) = kany · ekany ·∆t.

Given the time ∆t has passed, and the next action is about to take place (lines
13, 14), the probability of choosing the ”on” action is kon/kany. Whether the ”on”
action will be executed can be determined by generating a number x from the Binomial
distribution B(n, p) as

x = Pr(action is ”on”) ∼ B
(

1, kon

kany

)
,

where n is the number of trials and p is the probability of success (line 16). If the
generated number x equals to 1 (true), the ”on” action occurs (lines 17–20), otherwise
the ”off” action follows (lines 21–24). In the next step i+1, all rates must be recalculated
to determine the action.

2.2.3 Two-Handed Assembly Model
The Two-Handed Assembly Model (2HAM) is a generalisation of the aTAM where every
two producible assemblies are allowed to combine in parallel [44–47]. The 2HAM is not
limited to only one seeded assembly but models every possible assembly which can
be created from the given tile set. This behaviour of the system models spontaneous
nucleation of tiles in a solution where an infinite number of tiles floats and merge one
to another. Note that 2HAM has many different names in the literature; for example,
it is referred to as hierarchical self-assembly, polyominoes, or recursive aTAM.

One of the interesting properties of the 2HAM system is that it is not intrinsically
universal [48] as there is always some system with temperature τ + 1 which cannot be
simulated by a system with temperature τ . However, it was shown in [48] that 2HAM
is intrinsically universal if the higher temperature class systems are ignored. Therefore,
there exists a universal tile set in a system with temperature τ , which can be used
to simulate every other system in the class of systems with equal to or lower than
temperature τ .

The 2HAM system is defined as ordered triplet T = (T, s, τ), where parameter T is
the set of tiles acting in the system, s is the glue strength function, and τ is the system
temperature. The 2HAM uses so-called supertiles to describe its assembly sequence.
A supertile α is positioning of ordinary tiles on the integer lattice Z2. Technically,

17

2. Theory .
the supertile has the same definition as an assembly in Definition 2.8. Therefore, the
supertile describes an assembly consisting of one or more tiles and thus provides a
handle for a more straightforward description of the model.

One slight difference between the usage of an assembly and a supertile is that the
absolute position of singleton tiles is not considered significant in supertile, because
two supertiles which differ only in the translation are considered equivalent. Therefore,
only the relative configuration of tiles is sufficient to define the whole class of similar
supertiles.
Definition 2.23. It is said that, two supertiles α and β are similar or α is a translation
of β, which is denoted by α ' β if

α ' β ⇐⇒ ∃~u ∈ Z2 : α+ ~u = β.

Hence the term supertile can be used to refer to the set of all translations of one
particular assembly ᾱ = {β|α ' β}.

The assembly process of 2HAM starts without a seed structure, which means that
each unit tile t ∈ T serves as a seed on its own and it is a supertile of size 1. Then,
in every step of the assembly process, every union of two supertiles existing in the
current assembly sequence step is tested whether it can τ -stably form a new supertile
by translating one of the supertile, so they are not overlapping. If two supertiles do
not overlap, it is said that they are disjoint. The definition of τ -stable connection of
two supertiles is slightly different from the general definition for singleton tiles, and the
definition is presented with other 2HAM terms in the following definitions.
Definition 2.24. Two supertiles α and β are called disjoint if dom α ∩ dom β = ∅.
Definition 2.25. The combination of two supertiles α and β is called a union denoted
by α ∪ β, if

(α ∪ β)(~p) =
{
α(~p) if α(~p) is defined
β(~p) if β(~p) is defined , ∀~p ∈ Z2.

Additionally, it is said that the union is disjoint if both α and β are disjoint.
Definition 2.26. The supertile is τ -stable if every cut of its grid graph G = (V, E)
has weight at least τ , where vertices V of the grid graph are tiles with positions and
edges E are the matching glues between the adjacent tiles with weight equal to the
strength of the glue according to glue strength function s. That is another way of saying
that τ -stable supertile cannot be broken into two sub-assemblies without breaking glue
bonds of total strength greater than or equal to temperature τ . It can be noted that
this definition enables for a mismatched tile to be added to an assembly if it receives
enough bonding strength from other tiles with correct bonds. Therefore, the union of
two supertiles (α ∪ β) is τ -stable if there exists a translation vector ~u ∈ Z2 such that
α + ~u and β are disjoint and share a common interface with glue bond strength equal
to or greater than τ .

An outline of the 2HAM system assembly sequence is presented in the following text,
together with an example of a simple system assembly.

In the Algorithm 2.3, it can be seen that the assembly process of the 2HAM system
is initialised by promoting all singleton tiles from set T to supertiles and storing them
in the set C0 (line 1). Then, all pairs of supertiles that can be τ -stably united are
searched until there is no new supertile found. The search procedure consists of several
steps.

First, every unique pair of supertiles (α, β) = (β, α) is found (line 4). Then, set of
all translation vectors U ⊆ Z2 which place supertile α to be disjoint with supertile β
while at least one tile from α is in the four-neighbourhood of at least one tile from β

18

. 2.2 Models of Tile Assembly Systems

procedure: 2HAM-Assembly-Sequence

Inputs: Number of steps n,
Tile Assembly System T = (T, s, τ),

where T is the set of tiles, s is the glue strength function, and τ is the
system temperature.

Outputs: Set of supertiles in n-th step Pn

1 C0 := {((0, 0), t) : ∀t ∈ T}; i := 0
2 repeat
3 C ′ := ∅
4 for each pair of supertiles (α, β) ∈ Ci do
5 U := disjoint translations(α, β)
6 for each translation vector ~u in U do
7 γ := (α+ ~u) ∪ β
8 if (γ is τ -stable) and (γ 6' ε, ∀ε ∈ (Ci ∪ C ′)) then
9 C ′ := C ′ ∪ {γ}

10 if C ′ = ∅ then
11 Pn := Ci

12 return Pn

13 Ci+1 := Ci ∪ C ′
14 i := i+ 1
15 until i > n
16 Pn := Ci

17 return Pn

Algorithm 2.3. A pseudo-code description of the assembly process of the 2HAM system T ,
where the function disjoint_translations(α, β) returns a set of all unique translation
vectors U such that translated supertile (α + ~u), ~u ∈ U and supertile β are disjoint and

share a common interface.

are found, i.e., α and β shares a common interface (line 5). All such translation vectors
can be obtained by placing each tile on the outer edge of supertile α to every position
in the frontier around the supertile β and save the difference between origins of both
supertiles. Note that it does not matter whether the supertile α is translated around
the supertile β or the other way around.

Next, new supertile γ = (α+~u)∪β, ~u ∈ U is formed (line 7). Finally, if the supertile
γ is τ -stable and does not already exist in the system, it is added to the set of newly
found supertiles C ′ in the current step (lines 8, 9). If there are no two supertiles that
could be τ -stably united in the system, i.e, C ′ = ∅, the assembly sequence terminates
(lines 10, 11), otherwise all new supertiles from C ′ are added to the set of producible
supertiles from the former steps Ci of the assembly sequence, which creates the set of
producible supertiles in the following step Ci+1 (line 12). From this point, the search
process is repeated using the newly found supertiles in the next step i+ 1.

19

2. Theory .

a) Supertiles in C0 = T b) New supertiles in C1

c) New supertiles in C2

d) New supertile in C3

e) Terminal supertile in C4

Figure 2.4. Assembly sequence of example 2HAM system T = (T, s, τ = 2), where Ci

is the set of all supertiles produced by the system from the start to the i-th step of the
assembly.

Example 2.2. 2HAM: Assembly sequence
In Figure 2.4, an example of an assembly sequence of 2HAM system T = (T, s, τ = 2)
is shown. The tile set C0 = T is illustrated in Figure 2.4a. In the first step, all
possible τ -stable pairs of supertiles are formed, which can be seen in Figure 2.4b. Now,
the pairing process is repeated using all supertiles in the system, including supertiles
found in the last step. The newly found supertiles in steps 2, 3 and 4 of the assembly
sequence are presented in Figures 2.4c, d, and e, respectively. The assembly sequence
of this particular system terminates in step 4 with an assembly which spells out the
alphabet in a ”zig-zag” fashion.

20

. 2.2 Models of Tile Assembly Systems

2.2.4 Staged Self-Assembly Model
This section presents the basic idea behind another self-assembly model variant called
the Staged Self-Assembly developed by Demaine [45, 30]. The Staged Self-Assembly
model is a further generalisation of the 2-Handed Assembly Model. In other models,
the set of tiles which are used to assemble the system is considered constant, and the
whole self-assembly process happens in one configuration space or bin. The Staged Self-
Assembly enables to self-assemble more than one system in different bins in parallel,
filter their produced assemblies and use them to create new self-assembly system in
the next stage. In every bin, the system assembly is modelled as the 2HAM system.
This hierarchy of different mixing bins allows dramatically smaller tile sets to assemble
unique target shapes in return for the higher complexity of handling the mixture of the
bins. Additionally, this setting allows that each bin can have a different temperature τ
in different stages of assembly.

It was proved that the Staged Self-Assembly along with the Step-Wise Self-Assembly
model are both Turing universal at temperature τ = 1 [49]. The mentioned Step-Wise
Self-Assembly model is an older analogue of the Staged model with only one bin and
additional constraints for the assembly growth similar to the aTAM [50].

A Staged Assembly System (SAS) is defined as 4-tuple of parameters T =
({Ti, j , {τi, j}, Mr, b, s), where Mr, b is the directed mixing graph of r number of
stages with b number of bins, {Ti, j} is specification of sets of tiles in i ∈ 〈1; r〉 stages
and j ∈ 〈1; b〉 bins, {τi, j} are values of temperature for corresponding bins, and s is
the glue strength function. Intuitively, the mixing graph specifies how each collection
of bins should be mixed together when transitioning from one stage to the next. An
example of mixing graph with three stages and two bins can be seen in Figure 2.5,
where nodes mi, j denote j-th bin in i-th stage of the assembly and m∗ denotes the final
mixing node (bin). In the example, the first stage consist of two parallel assemblies
in bins m1, 1 and m1, 2 which are then mixed together in the second stage bin m2, 1.
In the third stage, the produced assemblies from the second stage are putted into
two separate bins m3, 1 and m3, 2, where the assembly is mixed with additional tiles.
Finally, produced assemblies from the third stage are mixed in the final mixing bin
m∗, where the desired assembly is constructed.

m1, 1

m2, 1

m1, 2

m3, 1

m2, 2

m3, 2

m∗

Figure 2.5. Example of a mixing graph used in the Staged Self-Assembly which has three
stages and two bins.

In the assembly process, the individual bin systems are denoted as (Ri, j , τi, j), where
Ri, j is the tile set used in the specific bin which corresponds with the node of the mixing
graph mi, j . Tile sets used in bins for the first stage are defined as R1, j = T1,j , tile sets
for subsequent stages are defined as

Ri, j =

 ⋃
k:(mi−1, k, mi, j)∈Mr, b

Term (Ri−1, k, τi−1, k)

 ∪ Ti, j , for i ≥ 2,

21

2. Theory .
where Term (R, τ) is the set of terminal assemblies of the bin system (R, τ) (Defini-
tion 2.16). The final tile set, where all products from the previous stages in the assembly
sequence melt together, is defined as

R∗ =

 ⋃
k:(mr, k, m∗)∈Mr, b

Term (Rr, k, τr, k)

 .

Therefore, the j-th bin in i-th stage is created by mixing terminal assemblies of one
or more bins from previous stage together according to the mixing graph and possibly
introducing new tiles from set Ti, j to the system. The desired assembly is then produced
in the last mixing bin.

2.2.5 Overview of Other Model Variants
Basic models presented above provide an excellent foundation for theoretical and ex-
perimental research, which in turn helped to understand the powers and limits of the
models further. However, these theoretical models have restrictions that do not al-
low for complete generality of the models in some areas of research. Therefore, many
different models were developed or derived from the basic ones to capture particular
aspects of self-assembly and study the behaviour of such systems, which can lead to
the development of new self-assembly techniques. In this section, an incomplete list of
such novel models is presented with brief high-level descriptions of ideas behind them.

One possible extension of the aTAM is to enable to set different probabilities for
tiles in the system, and this is called a probabilistic assembly or concentration program-
ming. By changing the concentration of a particular tile type in the system, the tile
is more likely to be attached to the assembly more frequently. The Probabilistic Tile
Assembly Model (PTAM) was developed in [51], and the idea of the tile concentration
programming originated in [52].

Another class of models studied systems where the tiles used in the system are
different. For example, the tile can have a different shape. Systems with triangular and
hexagonal tiles were studied in [53]. Another variant of tiles which has glues attached
on flexible arms was introduced in [54]. Similarly, it can be allowed for a tile to rotate
during the self-assembly. The set of single rotatable tile can simulate any other aTAM
system was presented in [55].

All mentioned models were more or less static in the sense that once a tile was
attached to the assembly, it stayed there to the end of the assembly sequence. The
following several models explore more dynamic behaviour of the system, and so they
enable a tile to detach an assembly, changing global parameters of the system or chang-
ing properties of a single tile type. One way to alter the global parameter of the system
is the temperature programming [44, 56]. As the name suggests, it enables to change
system temperature during the assembly process, and it was shown that it is quite
a powerful method to self-assemble arbitrary shapes. Another approach is to enable
repulsive glues or negative glues, which changes the interaction between tiles in the
system since the repulsive tile interaction is introduced. Systems with repulsive glues
were studied in [57], and the restricted glue Tile Assembly Model (rgTAM) was defined
in [58]. At last, another way of changing the behaviour of the system during the assem-
bly is to let tiles to pass signals one to another and then, they change their glues based
on the received signals. There are two similar models developed, the Signal passing Tile
Assembly Model (SPTAM) introduced in [59–60], and the Active Tile Assembly Model
(ATAM) presented in [61–62].

22

. 2.3 Tile Set Synthesis Problems

2.3 Tile Set Synthesis Problems
In the following text, two optimisation problems of the tile self-assembly are described.
The optimisation of a tile assembly system can have different goals according to the
model or the usage of the system. General minimisation criterion is the number of tiles
in the system tile set. Another optimisation is a minimisation of the number of unique
glues within the system. Note that the minimal number of glues in the system does
not necessarily minimise the number of tiles needed for the desired assembly. Even
though the smaller number of glues, the smaller the number of possible combinations
which could form a tile, it does not generally result in the smaller tile set. Lastly, it
is possible to optimise the time required for a tile assembly system to self-assemble by
setting concentrations of each tile in the system tile set.

The problem of finding a minimal tile set to self-assemble arbitrary finite shape is
presented in the following Section 2.3.1, and the problem of generating a minimal tile
set to self-assembly given pattern is defined in Section 2.3.2. Please note, that the
problem of shape self-assembly is not the main focus of this thesis as it is the pattern
self-assembly and so the following description of the problem is rather brief, and it is
included herein only for the sake of completeness.

2.3.1 The Shape Assembly Problem

The problem of synthesising minimal tile set for self-assembly of a given shape is called
The Minimum Tile Set Problem in the literature, and it has been well studied for
various tile assembly models. First, the formal description of the problem is shown,
followed by a short list of published solutions.

Problem formulation

The Minimum Tile Set Problem is defined by Adleman [40] as finding the tile system
with a minimum number of tile-types that can uniquely self-assembly into a given
shape. The term shape is used to denote a connected grid-graph A = (V, E), where
positions of the graph vertices V ∈ Z2 are used to define the shape. It is said that an
assembly A strictly self-assembles a shape A if A strictly self-assembles V according to
Definition 2.20. Note that two shapes are considered equal if they can be made identical
by translation.
Definition 2.27. Minimum Tile Set Problem: Given a shape A and a temperature τ ,
find TAS T = (T, S, s, τ) such that |T | is minimal and T uniquely produces P which
strictly self-assembles A.

Note that the problem does not specify the particular model of TAS T used for the
solution, and an algorithm solving the problem for one TAS model does not transfer
well to other models due to their different properties. Therefore, this problem is solved
for each model separately.

Overview of the solutions

The techniques of designing tile sets for strict self-assembly of shape for the aTAM and
the kTAM were developed in [12, 40, 52, 42, 58, 35, 63–65]. The synthesising techniques
for 2HAM systems are exhibited in [47, 46]. The Staged Self-Assembly model has proven
itself to be very powerful in assembling shapes, which was shown in [45, 30, 33].

23

2. Theory .
2.3.2 The Patterned Self-Assembly Problem

The problem of designing a tile set that can self-assemble a given pattern is explored
in this section. First, a description of the problem, together with a formal definition is
declared. After that, a brief overview of related research, along with a short description
of developed solutions is presented. In the end, one of the algorithms for solving the
problem is further explained.

Problem formulation

The Pattern self-Assembly Tile set Synthesis problem also referred to as PATS problem
was first defined by Ma and Lombardi [66]. The goal is to find a way to systematically
generate a tile set which can self-assemble into a rectangle with the desired 2D pattern.
A pattern can be imagined as a digital picture, where each coloured pixel has its des-
ignated position within the image. Consequently, the goal of a tile with a particular
colour (or another distinct feature) is to attach itself exactly on those positions where
pixels with the corresponding colour lie. The straightforward solution is to generate
a unique tile type for every point (pixel position) in the pattern, but this approach is
wasteful, and it would make sense only if there were no two points with the same colour
in the pattern because then it would be the only solution. However, patterns with a
practical purpose often have an only small number of colours relative to the number
of points in the pattern. Therefore, methods for optimising the size of the tile set are
needed. Furthermore, note that solutions of the PATS problem are primarily designed
for usage within the aTAM or kTAM models.

It is needed to define several additional terms before the formal definition of PATS
problem can be given.
Definition 2.28. Dimensions of a pattern are described by two natural numbers m, n ∈
N, where m is the number of points in every row of the pattern (width), and n is the
number of points in every column of the pattern (height).
Definition 2.29. Let a mapping from [m] × [n] → [k] be a k-colouring or k-coloured
pattern for fixed dimensions m, n, where [m], [n] ⊂ N denote sets {1, 2, . . . , m} and
{1, . . . , n}, respectively, and therefore [m] × [n] ⊂ Z2 is the set of all points in the
pattern, and [k] is the set of k-number of colours used in the pattern.
Definition 2.30. Pattern self-Assembly Tile set Synthesis (PATS) problem: Given a
k-coloured pattern c : [m]× [n]→ [k], find a tile assembly system T = (T, S, s, 2) with
the following properties

(i) The tiles in T have only glues with bonding strength 1.
(ii) The domain of the seed S is (〈0, m〉 × {0})∪ ({0}× 〈0, n〉) and all the terminal

assemblies have the domain 〈0, m〉 × 〈0, n〉.
(iii) There exists a colouring d : T → [k] such that for each terminal assembly
A ∈ Term T it is d(A(x, y) = c(x, y) for all (x, y) ∈ [m]× [n].

Especially interesting are the minimal solutions for the PATS problem in terms of
|T |. Therefore, a very reasonable assumption is that every tile of the synthesised system
t ∈ T must participate in self-assembling at least one terminal configuration of the
system Term T , because otherwise the tile t could be removed from the tile set T and
the system behaviour would not change.

Note that the PATS problem is explicitly defined for a TAS T with temperature
τ = 2. The constrained temperature τ together with the first property of the PATS
solving TAS T (Definition 2.30(i)) forces the tiles to cooperate during the self-assembly
process. As mentioned before, this means that a tile can attach to the assembly only

24

. 2.3 Tile Set Synthesis Problems

on such position where at least two tiles are already placed in the four-neighbourhood,
because every tile in T can have only glues with maximum strength 1. This support
must be provided by the seed structure S in order for the first tile to attach itself
to the assembly. In the PATS solutions, the seed is usually a ”L-shaped” structure
which is described by the second property of T (Definition 2.30(ii)). The seed consists
of m+ n+ 1 unique tiles with strength-2 glues such that the seed could uniquely self-
assemble itself. Note that it does not matter whether the seed is defined as fully formed
at the beginning of the assembly process or if it is defined as single tile in the origin of
the assembly space, as it will self-assemble.

If both (i) and (ii) properties of the T are taken into account, it can be derived that
every tile can be joined to the assembly on position ~p ∈ [m]× [n] only if tiles positioned
to the south S(~p) and the west W (~p) of the position are both already placed in the
assembly. Therefore, the assembly is extended from the south-west corner to the north-
east corner of the pattern during the self-assembly sequence. Note, that the positions
of cooperating neighbours are defined by the domain of the seed S in (ii), for example,
if the cooperating tiles should be on the north side and the west side of every attaching
tile then the seed S should have the domain (〈1, m + 1〉 × {m + 1}) ∪ ({0} × 〈0, n〉),
i.e., the seed would have an ”Γ-shape”.

Another reasonable assumption is to only consider the locally deterministic tile as-
sembly systems according to Definition 2.18 as the set of solutions of the PATS problem
because otherwise, the system cannot reliably terminate the self-assembly process with
the configuration of the given pattern. Since the properties of the PATS solution system
are quite specific and also the system must be deterministic, an alternative definition
of system determinism if formed in the following definition.
Definition 2.31. A solution TAS T = (T, S, s, τ) of the PATS problem is deterministic
precisely when for each ordered pair of glue types (σ1, σ2) ∈ Σ2 there is at most one
tile t ∈ T such that (σS(t) = σ1) ∧ (σW (t) = σ2).

The definition of deterministic T dramatically reduces the computation work needed
for verification of solutions to the PATS problem.

Overview of the solutions

As mentioned above, the PATS problem was first defined as a combinatorial optimisa-
tion problem in [66], where the authors also proposed two greedy algorithms for finding
solutions, called PATS_Bond and PATS_Tile, which encapsulates an algorithm for min-
imising the number of glues in the system or the number of tiles, respectively. Then,
Göös and Orponen [39] continued, and they developed an exhaustive algorithm called
PS-BB which stands for partition-search branch-and-bound. The PS-BB algorithm uses
a partition framework to search for the solution in the space of partitions. Because of
the exhaustive nature of the PS-BB algorithm combined with the NP-hardness of the
PATS problem [67–68], the PS-BB algorithm renders feasible only for small patterns
in size of approximately 7 × 7 tiles (points). Since the PS-BB algorithm searches for
the minimal solution and frequently a small but not necessarily minimal solution is
sufficient; therefore, a greedy heuristic version of the PS-BB algorithm was developed
by Lempiäinen et at. called PS-H (Partition-Search with Heuristics) [69]. The PS-
H algorithm uses a series of heuristics to guide the minimisation in the search space.
Additionally, there were attempts to solve the PATS problem using the Answer Set
Programming framework (ASP) in [70].

25

2. Theory .
Partition search with heuristics (PS-H)

In this section, the PS-H algorithm developed in [69] is further described. As mentioned
above, both PS-BB and PS-H algorithms are built on searching in the space of partitions
of sets. A partition of a set X (also partition or partitioning) is a set of non-empty
subsets of X such that every element x ∈ X is in exactly one of these subsets, i.e., X
is a disjoint union of the subsets. A subset of the partition can also be referred to as
a class. Additionally, a partition of a pattern is assumed to be the partition of the set
[m] × [n], where m, n are the dimensions of the pattern, and X denotes the set of all
partitions of the set [m]× [n] in this section.
Definition 2.32. For two partitions P, P ′ ∈ X define relation ”v” as

P v P ′ ⇐⇒ ∀p′ ∈ P ′ : ∃p ∈ P : p′ ⊆ p

and for P v P ′ is said that P ′ is a refinement of P , and conversely, P is coarser then
P ′. It can be seen that P v P ′ implies |P | ≤ |P ′|, which means that number of classes
of coarser partitioning P is less than or equal to the number of classes of the more
refined partitioning P ′. The pair (X, v) together forms a partially ordered set and in
fact a lattice, which is the search space of the PS-BB and PS-H algorithms.

Quite naturally, a k-coloured pattern c induces a partitioning of the pattern P (c) =
{c−1({i}) | i ∈ [k]}, hence |P (c)| ≡ k. Likewise, let P (T) denote a partition of an
assembly A ∈ Term T which is uniquely and deterministically produced by the TAS
T , and it is defined as

P (T) = {A−1({t}) | t ∈ A([m]× [n])}.

Thus by using the partitioning framework and the properties (i) and (ii) in Defini-
tion 2.31, a equivalence |P (T)| ≡ |T | can be stated. Additionally, the property (iii) of
T in Definition 2.31 can be rephrased using the partitions as

P (c) v P (T)⇒ |P (c)| ≤ |P (T)|,

which can be read as the terminal assembly partition P (T) is refinement of the pattern
partition P (c), and therefore the minimal number of tiles in the system |T | is the number
of colours k in the pattern c.
Definition 2.33. A partition P ∈ X is constructible if P = P (T) for some deterministic
TAS T according to Definition 2.31, and T satisfies the properties (i) and (ii) of
Definition 2.30.

Now, it can be stated that an optimal solution of the PATS problem corresponds to
a partition P ∈ X such that P is constructible, P (c) v P and |P | is minimal.
Definition 2.34. A Most General Tile Assignment (MGTA) is a mapping function f :
P → Σ4, where P is a given partition of the set [m]× [n], such that

(i) f is consistent: when position in [m] × [n] is assigned with tile type according
to f , any two adjacent positions must have matching glues along their abutting
side.

(ii) f is minimally constrained: any function g : P → Σ4 satisfying (i) satisfies also

σD1(f(p1)) = σD2(f(p2)) ⇒ σD1(g(p1)) = σD2(g(p2)),

for all partition classes p1, p2 ⊂ P and directions D1, D2 ∈ D.

Since all the important definitions are now given the partition search can be further
described in detail.

26

. 2.3 Tile Set Synthesis Problems

function: PS-H

Inputs: k-coloured pattern c, where
k is the number of colours in the pattern,
m is the width of the pattern,
n is the height of the pattern.

Outputs: Tile Assembly System T = (T, S, s, τ = 2),
where T is the set of tiles, S is the seed structure, s is the glue strength
function, and τ is the system temperature.

1 P := {{p} | p ∈ [m]× [n]}
2 f := MGTA(P)
3 H := {{p, q} | p, q ∈ P, p 6= q, ∃k ∈ P (c) : p, q ⊆ k}
4 repeat
5 K := H
6 K := {{p, q} ∈ K | G(p, q) ≥ G(u, v), ∀{u, v} ∈ K}
7 K := {{p, q} ∈ K | max {|p|, |q|} ≥ max {|u|, |v|}, ∀{u, v} ∈ K}
8 K := {{p, q} ∈ K | min {|p|, |q|} ≥ min {|u|, |v|}, ∀{u, v} ∈ K}
9 {a, b} := uniform random(K)

10 P ′, f ′ := P [a, b]
11 while P ′ is not constructible do
12 U := {{u, v} | (σS(u) = σS(v)) ∧ (σW (u) = σW (v)), . . .

. . . u 6= v, u, v ∈ P ′}
13 {u, v} := first(U)
14 P ′, f ′ := P ′[u, v]
15 if P ′ v P (c) then
16 if |P ′| < |P | then
17 P := P ′; f := f ′

18 H := H \ {{a, b}}
19 until H = ∅
20 T := {{f(p)} | ∀p ⊆ P}
21 S := generate seed(P, f)
22 return T = (T, S, s, 2)

Algorithm 2.4. A pseudo-code description of the PS-H algorithm for solving PATS prob-
lem, where x = uniform_random(X) is function which returns a random element x from
a given set X and where all elements are equally likely to be chosen, and x = first(X) is

function which returns the first element x from a given set X.

The PS-H algorithm is described in Algorithm 2.4. The algorithm starts with the
initial partition P which is the most refined partition of the set [m]×[n] ∈ Z2, i.e., every
point in the discrete rectangle is in its own class p ∈ P , where m, n are the dimensions
of the input k-coloured pattern c (line 1). Then, the Most General Tile Assignment
function f is created using the initial partition P which provides a mapping between
the partition P and a collection of tile types (line 2), and it is defined as follows.

So, the algorithm starts by setting a unique tile on each point in the pattern such
that their glues match with the adjacent tiles, and this is stored as a partitioning P and
tile map function f which maps the classes in P to tile types. The goal of the rest of the
algorithm is to merge tile types in order to get the optimal (minimal) solution. It only
makes sense to merge such tile types that have the same colour in the desired pattern
c, because otherwise, it would be impossible to assemble the pattern. Therefore, the

27

2. Theory .
next step is to form the set of all unordered pairs of positions where both elements
of the pair have the same colour in the desired pattern, and this set is denoted as H
on line 3 in the algorithm. Each pair of partition classes in H represents a candidate
partitioning which is created by merging two elements in the pair to a single class and
thus reducing the tile assembly system by one tile type. If the candidate partition is
constructible, it is one of the valid solutions of the problem. The algorithm merges the
pairs of tile types to search the solution-space guided by a series of heuristics until it
exhausts the set H.

The process of selecting a class pair for merging starts by filtering the set H with
heuristics into the set K (lines 5–8). The goal of the heuristics is to pick such pairs
that have the highest probability of forming a valid constructible solution. The first
heuristic on line 6 selects such pairs of tile types that have the most common glues,
which is denoted by the function G : P × P → {0, 1, 2, 3, 4} defined as

G(p, q) =
∑
D∈D

g (σD(f(p)), σD(f(q)),

where the function g is defined as

g(σ1, σ2) =
{

1, for σ1 = σ2
0, otherwise , σ1, σ2 ∈ Σ,

p, q are classes in partition P and the function f maps partition classes to tile types.
The following two heuristics on lines 7 and 8 picks the pairs of classes with the most
positions in the partitioned set.

From the filtered set K, a random pair of partition classes is then selected which is
then merged, and the newly formed partition P ′ is tested after that (lines 9, 10). The
merging of two classes a, b in a partition P is denoted by P [a, b]. This merger must also
be reflected in the tile mapping function f , where at least two glue types are merged
into one, this is indicated with f ′ on lines 10 and 14. Given a partition P ∈ X and a
tile map function f : P → Σ4, a new tile map f ′ is obtained from f by merging glues
a and b as

σD(f ′(p)) =
{
a, if σD(f(p)) = b
σD(f(p)), otherwise , ∀(p, D) ∈ P ×D.

After that, the merged partition P ′ is tested whether it is constructible with the
following outcomes.

. If P ′ is constructible, then it is tested whether it is a refinement of the target pattern
P (c):

. If P ′ 6v P (c), then it is abandoned as it cannot provides a solution to the problem.. If P ′ v P (c) and |P ′| ≤ |P | it is set as the current best solution together with tile
mapping function (lines 15–17).

. If P ′ is not constructible, then there must exists two partition classes p1, p2 ∈ P ′, p1 6=
p2 such that tile mapping function f ′ gives σS(f ′(p1)) = σS(f ′(p2)) and σW (f(p1)) =
σW (f(p2)). Therefore, those two classes are merged, and the newly formed partition
is tested again (lines 11–14).

Lastly, no matter what the outcome of merging operation was, the pair of classes
a, b is removed from the set H (line 18) and the heuristic selection of pair and merging
classes afterwards is repeated until the set H is not empty (line 19).

28

. 2.3 Tile Set Synthesis Problems

In the end, the tile set T is generated from the best-found partition P and tile
mapping function f (line 20), followed by the generation of the seed structure, which
is denoted by function generate_seed(P, f) on line 21 in the algorithm and thus
completing the solution TAS T .

The description of the implementation of the PS-H algorithm using C++ program-
ming language is presented in Section 3.2.

29

Chapter 3
Implementation

In this chapter, an implementation description of the original software for Tile Assembly
System simulation and synthesis is presented. The implementation of the simulator is
described in the following Section 3.1, and the implementation of tile assembly system
synthesiser is outlined in Section 3.2.

3.1 MuTATOR – The Tile Assembly Simulator
MuTATOR software is introduced in this section. The acronym stands for the Meta-
Material Tile self-Assembly sysTem simulatOR, where the mention of meta-materials
comes from one of the main goals of the EXPRO project to which this thesis con-
tributes. One of the aims of the project is the research of self-assembly of a macro-scale
structure which forms meta-material. The meaning of the rest of the name acronym is
straightforward; MuTATOR is an application for simulation of tile assembly systems.

For comparison purposes, a brief overview of the previous work in the field of tile-
based self-assembly simulators follows. There exist at least another three simulator
implementations (known to the author) – Xgrow, ISU TAS and PyTAS.

The first, Xgrow [71] was developed by the DNA and Natural Algorithms Group,
led by Winfree, at the California Institute of Technology. Xgrow is the oldest of the
three simulators as the first version was released in 2003. Xgrow is written in the C
programming language for the X Windows environment, hence the ”X” in its name.
Xgrow can simulate aTAM, and kTAM systems in 2D and it provides a wide variety of
control parameters which enable modification of the tile self-assembly system simula-
tion. Furthermore, Xgrow even allows altering the simulation parameters dynamically
during the assembly growth. Xgrow provides powerful high-level insights into the work-
ing mechanisms of tile assembly systems and allows researchers to study the outcomes
of the interplay of various parameter settings. Besides its age, Xgrow does not provide
much debugging or inspection tools, which was the primary motivation for developing
a newer simulator.

The Iowa State University Tile Assembly Simulator (ISU TAS) was developed by
Patitz [72–73] at the Iowa State University Laboratory for Molecular Programming. Its
first version was released in 2009, and the development stopped at the first half of 2018.
ISU TAS is written in C++ programming language, and it provides both 2D and 3D
simulation of aTAM, kTAM and 2HAM systems. ISU TAS also includes a graphical
tile set editor which provides an easy and convenient way of designing a tile assembly
system. The simulator enables detailed configurations of the simulated environment,
including the specification of concentrations of tile types. Although the ISU TAS is
an open source application, it is relatively mature software package consisting of many
modules, and thus it renders any modifications more difficult than the development of
new simulator precisely suited for requirements of the project.

The last simulator discussed here is the PyTAS (Python-based Tile Assembly Sim-
ulator) which is being developed by a team headed by Patitz [74], and currently, it is

30

. 3.1 MuTATOR – The Tile Assembly Simulator

available in an early-beta release from early 2018. Patitz stated [74] that the motiva-
tion behind the development of the new Python-based simulator is that Python scripts
can more easily be updated, and the simulator can run on multiple platforms while
Python provides highly optimised 3D rendering engine. PyTAS can simulate only the
aTAM but in both 2D and 3D. Besides, PyTAS delivers a similar look and functions
as ISU TAS. Even though the PyTAS could be more easily modified then ISU TAS,
its existence was not known in the time when the development of the new simulator
started; hence, it would be impossible to use it.

Simulator aTAM kTAM 2HAM
Xgrow 2D 2D ×
ISU TAS 2D&3D 2D&3D 2D&3D?
PyTAS 2D&3D × ×
MuTATOR 2D × 2D

Table 3.1. Comparison of supported models of tile-based self-assembly systems by simula-
tors.

Another reason for the development of the new simulator is that the simulator can
be fitted to requirements of the EXPRO research project. The research studies ways
how to assemble 3D-printed cubes with highly complex inside structure. By assembly
of different types of those cubes into a designed pattern, the assembled material gains
various mechanical properties due to the structure of the pattern. Thus, such assembly
constitutes a material called meta-material (or mechanical metamaterial). The 3D-
printed cubes are the smallest units, building blocks, of the meta-material structure;
therefore, they are naturally represented as tiles in the tile assembly system due to their
similar roles. The development of the new simulator allows for total control over the
implementation of assembly models, and so it further helps with the research.

In the following text, a specification guiding the design of the simulator is demon-
strated along with examples of simulator usage in Section 3.1.1. A detailed description
of the program architecture is presented after that in Section 3.1.2.

3.1.1 Features
Currently, MuTATOR can simulate the self-assembly process of aTAM and 2HAM
systems in 2D. However, it was developed with a possible extension to 3D in mind.
MuTATOR is written using the C++14 modern specification of C++ programming
language [75–76]. The graphical user interface (GUI) was built on the GTKmm
library which provides C++ application programming interface (API) of the GTK
project [77–78] which is part of the GNOME project. The GTK framework offers a
rich variety of graphical widgets which have native Linux-based-system look and feel.
Therefore, the application has familiar features and intuitive controls for the user.
In addition, the application utilises the spdlog library [79] for logging of the program
output. The example of MuTATOR graphical interface can be seen in Figure 3.1.

The primary task of the simulator is the validation of designed or synthesised tile
assembly systems. Moreover, the simulator enables that a simulation can be reversed,
which can be used for investigation of the assembly. Therefore, the interface of the
simulator offers several modes of simulation such as step-by-step simulation, animated
simulation and maximum-speed simulation. Because the theoretical models of self-
assembly systems are discrete, the simulation progresses in a sequence of steps. Thus,
the step-by-step simulation is the standard way of simulating the aTAM system, where

31

3. Implementation .

Figure 3.1. Example of MuTATOR window layout. The window is divided into two parts,
the top part contains all program and simulation controls, and the bottom part is used for

assembly state visualisation.

the user controls the simulation step by incrementing it or decrementing it via desig-
nated buttons. The animated simulation mode increments the system step in a periodic
manner, where the user can specify the length of the time period. Lastly, the maximum-
speed simulation mode enables the user to enter a specific step, and the simulator will
calculate all preceding steps without any delays, so the only speed-limiting factor is the
computation power of the machine.

The main difference between the animated and the maximum-speed mode is that
the maximum-speed mode does not redraw the simulated assembly after each added or
removed tile, which saves a decent amount of computations. Therefore, the maximum-
speed mode acts as a convenient way to validate tile assembly systems. For example, the
user expects that their aTAM system will terminate in step 100, so the user starts the
maximum-speed mode by entering the termination step. Then, the simulator rapidly
gives feedback to the user that the simulation terminated, say, on step 42. The user
can manually back-track the assembly process to investigate the cause of the system
early termination afterwards.

The Tile Assembly System for simulation is specified in a file using JSON nota-
tion [80–81]. The data in JSON format provides good readability of the data for a
human while the data are also easily modifiable. For JSON related operations, the
simulator uses a small library developed by the author in previous projects. The struc-
ture of the TAS file is based on the theoretical models of TAS discussed in Chapter 2.
Therefore, the TAS file has to contain a specification of the system temperature and
the set of tiles acting in the assembly. Additionally, the seed structure must be specified
for the aTAM simulation. MuTATOR allows only positive integer system temperature.

The set of system tiles is specified as a vector of elements in the JSON, where each
tile element has an optional field for its four glues and one additional optional field
which encapsulates arbitrary user-specified data. One possible example of tile in JSON

32

. 3.1 MuTATOR – The Tile Assembly Simulator

{
"north": {"id":0, "strength":1},
"east": {"id":1, "strength":1},
"south": {"id":1, "strength":1},
"west": {"id":0, "strength":1},
"additional_info": {"fill-color":"White"}

}

Listing 3.1. Example of a tile represented in JSON format.

representation is in Listing 3.1. The additional field in JSON tile representation is
primarily used to set visual representation of the tile such as its colour or label. The
glue element consists of the positive integer ID number, which determines the type
of the glue and the positive integer bond strength. The glue strength function is not
explicitly stated as in Definition 2.10 because it is determined from the implementation
of glues implicitly and it behaves as in Definition 2.5, i.e., the bond strength between
two glues is generated if and only if both glues have the same type (ID), otherwise the
bond has zero strength. Furthermore, the seed structure for the aTAM is specified as
a pair of position and tile elements, and the set of tiles used in seed structure is then
added to the rest of specified tiles, and therefore the seed tiles can be reused (and often
they are) in the assembly.

Moreover, MuTATOR offers two other options to load a TAS for simulation besides
loading a file. Given the string nature of JSON data representation, the TAS in JSON
serialised string can be directly given to the simulator as program argument via the
command line, or it can be sent using the standard input. Reading the TAS represen-
tation from the standard input enables pipelining several commands in the command
line. Thus, redirecting the TAS generated by other application to the simulator where
it can be validated, and then, if the TAS produces the desired assembly, it can be saved.
This feature has proven itself useful in the debugging process of the TAS synthesiser
discussed in Section 3.2.

One of the requirements of the project was to include an option to display the internal
structure of the 3D-printed cubes from which the meta-material is built. The cut
through the body of the cube is called a mesh in this thesis. The mesh of each 3D-
printed cube type is used as the graphical representation of the tile with a special flag
in the simulator, which results in an assembly visualisation as can be seen in Figure 3.2.

3.1.2 Application architecture

The Object-Oriented Programming (OOP) paradigm is heavily utilised in the design
of MuTATOR. Therefore, most of the application source code is assigned to classes,
which abstracts corresponding concepts or objects. The simulator classes can be di-
vided into two general groups. One group of classes defines the GUI of the application,
and it handles runtime commands from the user. The other group incorporates various
simulator models and provides a common interface for them. These two groups some-
what represent a frontend and a backend of the application, respectively. The frontend
enables the user to interact with the application, and it calls functions provided by
the API of the backend. The backend is independent of the frontend and provides all
needed computations; however, without the frontend, the results of the computations
cannot be presented to the user. Therefore, the general goal of application architecture
is to have independent backend and frontend, and the number of needed connections
between the frontend and backend should be kept as low as possible.

33

3. Implementation .

Figure 3.2. Example of meta-material mesh visualisation in assembly simulation.

Note that there are many more classes used in the implementation of the simulator
especially in the backend, but they are not explicitly mentioned in this section because
they do not carry a significant functionality, and they serve primarily as data structures.
Those classes implement representations of theoretical concepts which are defined in
the previous chapter, for example, representation of glue, tile, tile assembly system or
assembly.

Connections between classes in the application are indicated in Figure 3.3. In
MuTATOR, the main class which connects the backend with the frontend is called
Application. Note that the vast majority of classes presented here are nested within
the mutator namespace, but the namespace is not explicitly stated for the sake of sim-
plicity in this thesis1. The Application class is derived from the same-named class
from the Gtkmm library, and so it provides an interface for signals or callbacks. The
signals are used to propagate asynchronous commands from the user in frontend to the
simulator in the backend, and thus the application interacts with the user.

The ApplicationWindow class lies in the centre of the application frontend, and it
provides the look of the GUI window with which the user interacts (Figure 3.1). The
layout of the window was designed using the Glade tool, which is an application from
the GNOME project. Glade is a ”what you see is what you get” (WYSIWYG) rapid
development tool for easy design of user interfaces for an application using the GTK
framework. Using Glade, the whole layout of the application is defined in one XML file,
and thus the GUI definitions do not occupy space in the source files. This approach, in
turn, improves the clarity of the source code, while it also allows for easy modifications
of the layout. The ApplicationWindow then defines the reactions for the possible user
inputs (actions), such are clicks on buttons or changes in entry boxes, and if needed it
sends signals to the backend through the Application class.

1 A namespace is a C++ language feature which helps to ensure that no identifier (name) collision occurs
in the source code, i.e., classes a::Foo and b::Foo are considered different. Therefore, the technically
correct name of the class is mutator::Application.

34

. 3.1 MuTATOR – The Tile Assembly Simulator

Frontend

Backend

Application

Simulator

AtamSimulator TwoHamSimulator

ApplicationWindow Canvas TileRenderer

Figure 3.3. Dataflow diagram of the essential classes in MuTATOR application, where
the dotted line between Canvas and Simulator means that the Canvas does not own the
simulator instance, and thus it can only read the status of the simulator, and the bracket

indicates which classes are derived from the Simulator class.

Possibly the most visible frontend feature is the Canvas class. The Canvas class is
used for drawing the state of the simulation, and also it provides functions for view
modifications so that the user can pan and zoom the view by the mouse or by corre-
sponding key-strokes or buttons. The Canvas class is the only other class apart from
the Application class, which has a direct connection to the application backend. In
more detail, the Canvas class gets a pointer directly to the current state of the sim-
ulated assembly upon the simulator creation so it can display the assembly state as
the system evolves in the simulation. Note that this is a read-only connection, which
enables the Canvas to retrieve the state of the simulation asynchronously to the simu-
lator. The Canvas uses the TileRenderer class for drawing the individual tiles in the
assembly. The TileRenderer class fully defines the graphical representation of the tile,
and it can provide various methods for altering the tile look in the simulator. Besides,
the TileRenderer class provides an interface for an alternative renderer which can be
added in the future (possibly for 3D rendering).

As can be seen in Figure 3.3, the backend of the application is essentially the
Simulator class. The Simulator class is an abstract class that means that it defines a
necessary interface which must be implemented by its deriving classes, as hinted in the
figure. This interface is used by the other classes in the application to communicate
with the simulator. Therefore, it unites the control of all implemented models of the
simulation, such as aTAM and 2HAM in case of MuTATOR. Also, it provides common
simulator framework and thus an easy way for adding a new simulation model.

In order to enable the option to reverse the simulation to the user and allow the user
to examine previous steps in the simulation, each class implementing the Simulator
interface must keep a history of calculated steps. Keeping the simulation history brings
several advantages. It avoids the recalculation of previously calculated steps, so if the
user wants to watch the progress of assembly again from the beginning, the simulator
repeats the saved sequence of steps. The history is especially crucial in aTAM simulation
due to its stochastic nature. Because aTAM selects a random tile from the set of possible
additions to the assembly in every step, the simulation would not be consistent without
the simulation history. If the user would revert one simulation step and then proceeded
again to the next step, it could have a different outcome.

35

3. Implementation .
Some of the interesting algorithms used in the simulator implementation are further

discussed in Appendix Section D.2.

3.2 MuTAGEN – Tile Assembly Synthesizer
In this section, MuTAGEN application is described. MuTAGEN acronym stands for
the Meta-Material Tile self-Assembly system GENerator, and it is a program for solving
the PATS problem defined in Section 2.3.2.

There is only one published PATS problem solver (known to the author) called 2PATS
developed by a team led by Kari [82–83]. This solver is available in two versions,
the first version is written in C++ programming language and the second version
intended for distributed computing is written in Haskell programming language. The
main disadvantage of both versions of the 2PATS program is that, as its name suggests,
it only solves binary patterns, i.e., patterns with only two colours. Because it was
needed to solve patterns of at least 16 colours for the EXPRO project, the MuTAGEN
application was developed.

In the rest of this section, features of the application are presented in Section 3.2.1,
and the architecture of the application is further discussed in Section 3.2.2.

3.2.1 Features
MuTAGEN synthesiser is a console application, which means it has no graphic user
interface. It is written in the modern specification of C++ programming language
like MuTATOR. Even though MuTAGEN is a console application, it uses GTKmm
library [77–78] because it offers useful functions for processing bitmap image files and
functions for testing file existence on a hard disk. Because MuTATOR also utilises the
GTKmm library, the usage of the library in MuTAGEN does not introduce new project
dependency. Moreover, MuTAGEN also uses the spdlog library [79] for logging and
control over the output in the console.

The only goal of MuTAGEN is to solve the PATS problem such that the user inputs a
pattern and the application returns the aTAM tile assembly system file in JSON repre-
sentation compatible with MuTATOR simulator which was described in Section 3.1.1.
An illustration of MuTAGEN workflow is in Figure 3.4.

For solving the tile set synthesis problem, MuTAGEN uses an implementation of
PS-H (Partition-Search with Heuristics) algorithm developed by Lempiäinen et at. [69]
described in Section 2.3.2. Because the PS-H is a greedy algorithm, it searches for the
solution based on local optimum given by the heuristic, it generally does not always
find the globally optimal solution, but it gives a somewhat optimal solution much faster
than complete space search methods. Therefore, in order to find the best solution,
MuTAGEN runs the PS-H algorithm multiple times and then returns the best solution
found. Found solutions are lexicographically ordered by the number of different glue
types needed and then by the number of unique tiles required for the self-assembly of
the given pattern, i.e., a solution with a lower number of glue types is prefered over the
solution with fewer unique tiles but with a greater number of glue types.

Intuitively, the goal is to get the given pattern ”drawn” (recreated) by the self-
assembly process. Therefore, the input pattern can be specified by either a bitmap
image file or a text file. For usage of the image file, each colour represents a tile type
with a unique feature and the position of the colour (pixel) in the image determines the
desired position of a tile in the pattern. Similarly, in the text file pattern, the tile types
are specified by integer numbers separated by spaces to denote rows of the pattern.

36

. 3.2 MuTAGEN – Tile Assembly Synthesizer

Initial	tiling Optimal	tilingpattern.png

Self-Assembled	Pattern Tile	Assembly	System	(JSON)

MuTAGEN	SynthesisImage	Pattern

PS-H	algorithm
Optimization

Figure 3.4. Example of MuTAGEN workflow. An image pattern is given to MuTAGEN,
which returns the most optimal solution found as a JSON file specifying the Tile Assembly
System which self-assembles into the desired pattern. Different colour shades in the tiling

examples represent different tile types.

Note that the number of tiles in the solution of the pattern is always greater than or
equal to the number of colours in the given pattern and thus one particular colour in
the pattern can be represented by multiple tile types with different glue configurations
in the solution. Additionally, it is very advantageous to use lossless image formats, e.g.,
PNG or BMP, when specifying a pattern using an image file, as compression methods
of lossy image formats, e.g., JPEG, cause a change of colour for some pixels in the
pattern which consequently devalues the pattern.

The application provides several options to customise the behaviour of the searching.
The user can specify the number of concurrent computation threads. By default, the
number of used threads is set to the number of processor cores of the computer, which
should ensure the optimal performance, and it significantly reduces the computation
time. The user can specify the number of runs of the searching algorithm, which
increases the probability of finding a more optimal solution. Because the time needed
for one run of the searching algorithm might not be known, the user can specify a

37

3. Implementation .
desired time of the optimisation. Furthermore, the user can specify both the number
of optimisation runs and time of the optimisation, and the optimisation terminates on
whichever event occurs first.

The application also provides several options to modify the output solution. The user
can select the position (orientation) of the ”L-shaped” seed structure which can be set
to any corner of the pattern. The application allows the user to set the type of the seed
structure either to ”self-assembling” type or ”fixed” type. The ”self-assembling” type
is the standard seed structure which can self-assemble from a single origin seed tile and
then support the pattern assembly. On the other hand, the ”fixed” type seed structure
is generated as already assembled in the TAS file where the individual seed tiles do not
have glues between themselves. Therefore, the ”fixed” type of seed structure simulates
an external template in the system which cannot self-assemble, but it provides the
needed support for the pattern assembly.

Additionally, the application offers an option to remove tile types which correspond
to a given colour in pattern from the solution. This option can further reduce the
number of tile types of solution or removes filler tiles; however, it is hazardous as it can
destroy the self-assembling property of the solution.

Finally, the application provides an option to load all previously mentioned options
from a text file which can be easily created and modified by the user and thus it
can be used for re-running the search process with the same conditions or sharing the
configuration between users.

3.2.2 Application architecture

Like in MuTATOR, the Object-Oriented Programming (OOP) approach is also used
in the design on MuTAGEN application. Both applications share a common library
of classes representing entities used in the tile assembly systems such as representa-
tions of glue, tile, or tile assembly system. In the MuTAGEN architecture, the main
class is TasSynthesizer, which encapsulates the logic for parsing the given pattern,
optimisation process and implementation of the PS-H algorithm.

The PS-H algorithm performs searching in the space of partitions and thus to facil-
itate the abstractions, the TasSynthesizer utilises a class template Partition. The
class template is a C++ language feature which allows for defining a family of classes
with the same functions performed on different types of data. The typical usage of
class templates is for defining data containers such as arrays, maps, queues or linked
lists which allows to store any data type in them and perform actions typical for the
corresponding container. A partition is also a container because it can store a config-
uration of different data types. For example, a k-coloured input pattern is a partition
of colours, and a solution to the PATS problem is effectively a partition of tiles.

In the application, there are defined two additional specialisations of the Partition
class template – the PatternPartition class and the TilePartition class. The spe-
cialised classes retain the same functionality as the Partition class but define addi-
tional functions which are specific for the particular specialisation. The class inheritance
is illustrated by an inheritance diagram in Figure 3.5.

As the name suggests, the PatternPartition class is an internal representation of
the desired pattern. It consolidates functions for parsing supported image files and
text files which define the pattern. Therefore, the class unifies the representation of a
pattern which is used to guide the optimisation process.

The other specialisation, TilePartition, represents a partitioning of tiles and pro-
vides additional functions for merging tile types, functions for testing whether the tiling

38

. 3.2 MuTAGEN – Tile Assembly Synthesizer

Partition<T>

TilePartition PatternPartition

<Tile::SharedPtr>

Partition
<Tile::SharedPtr>

<PatternClass>

Partition
<PatternClass>

Figure 3.5. Class inheritance diagram of specialised classes which represents pattern par-
titioning and tile partitioning, where dotted lines indicate classes created from a class

template, and full lines indicate inheritance of classes.

is constructible or functions for generating seed structure for the tiling. The construction
of an instance of the TilePartition class implements the MGTA function described in
Definition 2.34. The TasSynthesizer class utilises the TilePartition class to perform
the search operations on it, and the TilePartition also stores the ongoing solution of
the problem during the optimisation process.

A couple of examples of the synthesiser application implementation are further de-
scribed in Appendix Section D.3.

39

Chapter 4
Experiments

This chapter discusses the results of experiments, which were conducted to validate
properties of the simulator implementation and the synthesiser implementation. Ex-
periments were performed on a single PC with parameters shown in Table 4.1. All
measured values were captures from the inside of implemented applications.

Parameter Value
Operating System Linux Mint 18.2 (64-bit)
Processor Type Intel® Core™ i3-4010U
Processor Frequency 1.70 GHz
Number of Processor Cores 2
Number of Concurrent Threads 4
Processor Cache Size 3 MB
Memory Size 8 GB
Memory Type DDR3L
Memory Frequency 1333 MHz

Table 4.1. Specification of machine used for experiments data measuring.

In the rest of this chapter, the results of experiments which show the performance of
MuTATOR application are described in Section 4.1. Also, the results of experiments
which were performed on MuTAGEN application to verify the influence of synthesised
pattern on the resulting tile assembly system are presented in Section 4.2.

4.1 MuTATOR Experiments
This section discusses how properties of the simulated system influence the time needed
for computing the simulation. The first two experiments presented here were conducted
on the aTAM simulator, and the results of the experiments are shown in Section 4.1.1.
Next, the results obtained by the simulation of various 2HAM systems are described in
Section 4.1.2.

4.1.1 Simulating aTAM
It is always advantageous to know how the computation time is affected by the size of
the simulation. For the case of aTAM simulation in MuTATOR application, a series
of computation time measurements were captured in order to validate the computation
time dependence on the number of performed simulation steps. The captured data
are illustrated by a graph in Figure 4.1 together with a table containing a set of basic
statistics about a selected data in Table 4.2.

There were performed 200 measurements of the computation time which the simu-
lator needed for simulating the given number of simulation steps from the initialised
state for each number of steps. As a representative model, the TAS assembling the

40

. 4.1 MuTATOR Experiments

Figure 4.1. Computation time dependence on the number of simulated steps using the
aTAM system, which assembles Sierpinski triangle fractal pattern. The blue triangle is
the mean value of 200 measurements, which are denoted by grey crosses. The blue line is

a linear trend fitted to mean values.

Num. of steps [1] Mean [s] Minimum [s] Maximum [s] Std. deviation [s]
200 0,0365 0,0328 0,0569 0,0023

1 000 0,1864 0,1773 0,2158 0,0050
2 000 0,3683 0,2815 0,4063 0,0157
4 000 0,7386 0,6032 0,8115 0,0246
6 000 1,1310 0,9458 1,2585 0,0323
8 000 1,5033 1,1401 1,6588 0,0448

10 000 1,8767 1,5563 2,0432 0,0550

Table 4.2. Basic statistics of the computation time needed for simulating selected number
of steps in aTAM based on 200 measurements.

Sierpinski triangle fractal pattern was selected as it does not terminate; thus, it is not
limited by the number of steps. As can be seen in the graph, the computation time
can be approximated as a linear function of the number of simulated steps. This result
agrees with expectations, as the simulator uses an algorithm which updates only the lo-
cal neighbourhood of the last added tile in the assembly after initialisation. Therefore,
the algorithm has a constant maximum number of operations in each step.

As can be seen in Table 4.2, the standard deviation of measured data is relatively
small as the data are considerably consistent. The leading cause of differences between
measured times is the random nature of aTAM system which causes that every sim-
ulation sequence is slightly different as in every step, there is a different number of
available positions, where tiles can attach. Therefore, the computation time can vary.

Additionally, an experiment was conducted to determine the computation time of a
large number of steps using the same tile assembly system. The resulting computation
times are 19,09 s for 100 000 steps, 113,94 s for 500 000 steps and 198,68 s for 1 000 000

41

4. Experiments .
simulated steps. These measurements are consistent with the estimated linear trend
from the graph in Figure 4.1.

Moreover, MuTATOR application offers an option to the user, which enables periodic
redrawing of the simulated assembly during more extensive simulations. If the periodic
redrawing is enabled, the simulation time dependence on the number of simulated steps
will change to exponential function as the redrawing of the assembly is more demanding
as the number of tiles in the assembly grows. During the redrawing of a large number of
tiles, the computation time is heavily influenced by the computation power available in
the used computer. Therefore, measurements which were captured with the redrawing
enabled are not presented here as they have small information value, and they depend
on the used computer machine.

The following experiment investigates how the number of tiles in the simulated system
affects the computation time of the simulation. The measured data are depicted in a
graph in Figure 4.2.

Figure 4.2. Comparison of computation time for aTAM systems with different number of
tiles. Trends are fitted with linear functions.

There were performed ten sets of measurements on three systems – Sierpinski Trian-
gle, Binary Counter and Logwidth Binary Counter, which are denoted by blue, green
and red colour in the graph, respectively. The system referred to as Logwidth Binary
Counter, assembles a binary counter with no additional supports unlike its alternative
counterpart Binary Counter. The Logwidth Binary Counter consists of 19 unique tile
types, but it is more tile efficient in the process of assembling the binary counter pattern
than the other binary counter system. The remaining two systems consist of 7 tiles.

In the graph, it can be seen that the two systems with seven tiles have both very
similar computation times, whereas the Logwidth Binary Counter has slightly longer
computation times. The longer computation time is caused by the fact that more tiles
must be checked whether they can be placed on the given location in the assembly in
each simulation step.

42

. 4.1 MuTATOR Experiments

4.1.2 Simulating 2HAM
The simulation of 2HAM systems is quite computationally demanding, which can be
demonstrated by the measurements shown in the following graphs. A series of measure-
ments on various 2HAM systems were conducted to examine the dependencies between
the computation time and properties of the given system. The results of experiments
are presented in Figures 4.3, 4.4 and 4.5. For experiments, five systems were used.

The system denoted as ABC in graphs is the system which assembles a subset of
the alphabet, and it is used in the example from Section 2.2.3. It is the only system
from the five tested systems which terminates. The system Infinite Line assembles
into an infinitely long line of tiles with a height of two tiles. The system Random
Integer system generates random strings of bits in the 2HAM simulation, and thus
it generates random binary representations of integer numbers. The last two systems
Logwidth Binary Counter and Sierpinski Triangle are the same systems used for the
aTAM experiments described above.

12 20 27 28 29
 5 12 64

1856

 4 13 67

1147

 19 28 35 39
 50

 62

 76

 93

106

 7 11 22 59

Figure 4.3. Computation time of the simulation sequence of several 2HAM systems. Num-
bers above data points denote the number of supertiles in the corresponding system in

particular simulation step. Trends are fitted with exponential functions.

In the Figure 4.3, the explosion of needed computation time for 2HAM systems can
be observed. The exponential growth of computation time is particularly prominent
for the Infinity Line and the Random Integer systems. The computation difficulty is
driven by two factors, which are the number of supertiles in the system and the number
of available positions of each supertile to which other supertile can be adjoined. The
number of supertiles in the system is annotated around each data point in the graph
in Figure 4.3, or it can be observed in a separate graph in Figure 4.4.

It can be seen that systems with relatively slow supertile growth in the simulation se-
quence, such are the Logwidth Binary Counter and the ABC systems, can be simulated
in reasonable amounts of time. It can be seen that the increase of the computation
time of two consecutive steps in the Logwidth Binary Counter system allowed its sim-
ulation until the eighth step where the influence of the second factor took over. On the

43

4. Experiments .

Figure 4.4. Number of supertiles in simulation sequence of several 2HAM systems. Trends
are fitted with exponential functions.

other hand, the systems such as the Infinite Line and the Random Integer, rendered
exceptionally difficult to simulate past the third step as the number of supertiles in the
system exploded from 67 in the second step to 1 147 in the third step for the case of
the Random Integer system, and from 64 to 1 856 for the case of the Random Integer
system.

The dependency between the number of supertiles and the computation time is il-
lustrated in a graph in Figure 4.5.

0123401 2

3

01 2

3

012
3
4
5

6

7

8

012 3

Figure 4.5. Computation time dependence on the number of supertiles in the 2HAM sys-
tems. Numbers above data points denote the corresponding simulation step. Trends are

fitted with exponential functions.

44

. 4.2 MuTAGEN Experiments

4.2 MuTAGEN Experiments
The properties of synthesis of tile assembly systems using MuTAGEN application are
demonstrated with several experiments in the following text. The experiments are pri-
marily focused on how properties of the desired pattern influence the synthesised tile
assembly system. The main properties of the pattern are the number of colours it
contains k, its size and whether it is symmetric, or it contains some form of repeating
pattern. The properties of the synthesis process, which can affect the solution is the
number of the optimisation cycles, the position of the seed structure. Also, the compu-
tation time of the synthesis process is measured. The synthesised system if evaluated
by the number of its tiles |T | and by the number of its glues |Σ|.

First, the influence of the number of colours in the pattern is examined in Sec-
tion 4.2.1. Next, synthesised systems from the set of patterns are compared to their
counterparts with known optimal or analytic solutions in Section 4.2.2. Lastly, the
influence of a seed position on a synthesised system is presented in Section 4.2.3.

4.2.1 Synthesising TAS
In this experiment, the effects of different patterns on the computation time of synthetic
solutions are demonstrated.

To determine how the number of colours in the pattern k and the size of the pattern
influences the synthesis time, a set of random patterns was generated. The largest form
of each random k-coloured pattern is shown in Figure 4.6. The set of different sized
patterns was generated from the largest pattern by iteratively cropping the bottom row
and the right column of pixels. This procedure yielded a series of square patterns with
a side of size in the range from 5 to 16 points. The random patterns were chosen to
decrease any influence of the symmetry in the pattern on the synthesised systems. The
presented results correspond to the most optimal solutions obtained after 24 optimisa-
tion cycles.

a) k = 2 b) k = 4 c) k = 6
Figure 4.6. Random k-coloured patterns of size 16× 16 used for testing of synthesis prop-

erties.

The dependence between the number of colours in the pattern and the number of
points in the system is illustrated in Figure 4.7. The synthesis time of the pattern
with six colours was faster than for patterns with two or four colours, which can be
surprising. The faster synthesis of the more-coloured pattern is caused by the fact that
the used algorithm tries to merge pairs of tiles with the same colour in the pattern.
A less-coloured pattern has more unordered pairs of points with the same colour, and
therefore, the optimisation algorithm performs more computations.

However, unsurprisingly, the more-coloured pattern generally yields tile assembly
systems with more tile types and more glues needed for the self-assembly of the pattern.
The number of tiles and the number of glues for different sized random k-coloured

45

4. Experiments .

Figure 4.7. Comparison of synthesis time dependences on the number of points in random
k-coloured patterns (Figure 4.6). Trends are fitted with exponential functions.

a) |T | b) |Σ|
Figure 4.8. Graphs comparing dependences between the number of tiles or glues in syn-
thesised systems and the number of points in random k-coloured patterns (Figure 4.6).

Trends are fitted with linear functions.

patterns are illustrated in graphs in Figure 4.8. It can be seen that the number of tiles
in the system is approximately a third of the number of points in the pattern in the case
of a random pattern. Similarly, the number of glues needed in the synthesised system
can be approximated as a linear function in the number of points in a random pattern.

Besides the random patterns, a small experiment was performed using larger image
patterns, which are shown in Figure 4.9. The image patterns were synthesised using
12 optimisation cycles. The properties of the image patterns can be found in Table 4.3
together with properties of the most optimal solutions found and the time needed for
the synthesis. There was performed one additional synthesis of a 2-coloured pattern of
size 48× 36 depicting the CTU logo, but the synthesiser has not even once completed

46

. 4.2 MuTAGEN Experiments

a) b) c)
Figure 4.9. Larger image patterns used for testing TAS synthesis.

Figure Size k |T | |Σ| t [s]
4.9 a 16× 16 4 85 29 103,43
4.9 b 25× 25 4 97 32 1477,86
4.9 c 24× 24 5 114 36 1729,42

Table 4.3. Comparison of properties of synthesised solutions for larger image patterns,
where k is the number of colours in the pattern, |T | is the number of tiles found, |Σ| is the
number of glues, and t is the time of synthesis. Results are the best solutions found after

12 optimization cycles.

the optimisation cycle in 12 hours of running time. Together with the data in the
table, this demonstrates how rapidly is the computation time increasing in response to
relatively small changes in the pattern size.

4.2.2 Comparison of synthesised and analytic solutions

The goal of this experiment is to compare the known optimal solutions of self-assembly
of some pattern to the synthesised solutions from the given pattern.

Note that the actual tiles in the systems are not tested whether they are identical,
as only the number of tiles and glues are used for the comparison. This experiment
merely tries to confirm that the synthesiser can found the optimal solution in terms of
tile and glue counts. The synthesised system is generally not expected to have the same
tiles as its analytic counterpart, because the synthesised solution is always finite in the
number of points in the pattern and it relies on the configuration of the seed structure.
Therefore, the tiles contributing to the seed structure are not counted.

In the Figure 4.10, the three patterns which were used in this experiment are dis-
played. The first pattern is the Chessboard, which can be self-assembled using two tiles
with two glues. The second used pattern is the Sierpinski Triangle, which was used for
testing the simulator. The Sierpinski Triangle system contains four non-seed tiles with
two glues. Last used system is the Binary Counter which was also used in experiments
with the simulator. The Binary Counter also contains four tiles with two types of glue.
The properties of the systems can be found in Table 4.4.

These patterns were given to the synthesiser in the size of 16 × 16 points, and the
presented results were the most optimal found after 24 optimisation cycles. As it can
be seen in the table, synthesised solutions of the Chessboard pattern and the Sierpinski
Triangle fractal both yielded solutions with the same number of non-seed tiles with
the same number of glues as their analytic counterparts. However, the solution of
the Binary Counter pattern was considerably worse. This experiment demonstrated
that the pattern synthesis could result in a system with the optimal theoretic number
of tiles and glues, but there are patterns for which the synthesised solution is always
suboptimal.

47

4. Experiments .

a) b) c)
Figure 4.10. Image patterns used for comparing analytic and synthetic solutions.

Analytic solution Synthetic solution
System Figure |T | |Σ| |T | |Σ| t [s] Optimal?
Chessboard pattern 4.10 a 2 2 2 2 107,82 True
Sierpinski triangle 4.10 b 4 2 4 2 133,77 True
Binary counter 4.10 c 4 2 11 5 174,04 False

Table 4.4. Comparison of properties of analytic and synthetic solutions of patterns, where
|T | is the number of tiles found, |Σ| is the number of glues, and t is the time of synthesis.
Presented results are the best solutions found after 24 optimization cycles. The size of

2-coloured patterns used for synthesis was 16× 16.

4.2.3 Influence of seed position on the solution
The last experiment tries to verify that the seed position affects the synthesised system.
As was mentioned in the definition of the PATS problem in Section 2.3.2, the seed
structure for a synthesised system covers two adjacent sides of the pattern assembly.
MuTAGEN application offers the user an option to choose from which sides the seed
supports the assembly. The idea behind this experiment is whether the position of the
seed can influence the properties of the synthesised system.

A set of patterns of size 8×8 was generated. Each pattern has one type of symmetry.
Example patterns are presented in Figure 4.11. The vertically symmetric pattern is
expected to yield equal solutions for a seed located either on the bottom or the top of
the assembly and no matter if it lies on the left side or the right side of the assembly.
Note that the pattern with horizontal symmetry is identical as the pattern with vertical
symmetry rotated by 90 degrees. Thus, it is not included here as it would yield similar
results as the pattern with a vertical symmetry. The second class of patterns are
the patterns with both vertical and horizontal symmetry, which is referred to as full
symmetry for simplicity. The pattern with full symmetry is expected to yield equal
solutions no matter on seed position. The last group of patterns used for this experiment
are the patterns with diagonal symmetry. The pattern with diagonal symmetry is
expected to yield equal solutions for diagonally opposed seed positions as the pattern
is the same relative to the seed structure.

Table 4.5 contains the properties of the most optimal solutions found after 24 op-
timisation cycles. In each row, most optimal solutions for a given seed position are
highlighted. As can be seen, for each type of pattern symmetry, there are systems
which match the mentioned expectations, but also there are systems with behaviour
opposing the expectations. It can be said that the seed position slightly affects the
properties of the synthesised system, but it is not entirely clear from the obtained data
on how the seed position affects the properties of the synthesised system.

48

. 4.2 MuTAGEN Experiments

a) Vertical b) Full c) Diagonal
Figure 4.11. Examples of symmetric patterns used for testing the influence of seed position

to synthesised TAS.

Left-Bottom Left-Top Right-Top Right-Bottom
Symmetry |T | |Σ| |T | |Σ| |T | |Σ| |T | |Σ|

19 9 19 9 17 7 17 8
16 7 16 7 16 9 16 8

Vertical 18 7 19 9 18 7 16 8
17 6 17 7 17 9 15 8
17 8 18 8 20 8 19 9
18 7 18 7 18 7 16 8
15 7 16 6 15 7 15 7

Full 12 5 12 5 12 7 15 7
18 8 18 8 15 8 18 7
15 5 14 7 17 8 16 7
17 9 18 7 18 9 18 9
16 8 18 7 14 8 17 8

Diagonal 17 9 18 9 17 9 18 8
19 9 18 8 16 8 18 8
17 7 19 8 18 9 15 8

Table 4.5. Comparison of the most optimal solutions to symmetric patterns found depend-
ing on the position of seed structure, where |T | is the number of tiles found, and |Σ| is
the number of glues. Presented results are the best solutions found after 24 optimization

cycles. The size of 2-coloured patterns used for synthesis was 8× 8.

49

Chapter 5
Conclusions

The theory of tile-based self-assembly systems has been presented, and the basic con-
cepts of the theory were thoroughly discussed in the theory chapter. Two applications
were successfully developed to their first usable versions using theoretical knowledge.
The MuTATOR simulator is an entirely original design, and it is capable of simulat-
ing two types of abstract tile assembly systems. MuTATOR has been experimentally
verified that the developed algorithms are able to simulate an aTAM model with linear
computation complexity. Also, it has been shown that a 2HAM model is simulated
with exponential computation complexity.

The second developed application can be used to generate tile assembly systems which
self-assemble into the desired pattern. The algorithm used by MuTAGEN application
is an implementation of the Partition Search with Heuristics algorithm for solving the
PATS problem. It has been experimentally demonstrated that the synthesiser is able
to find a nearly optimal solution in reasonable amounts of time with the relation to
the size of the desired pattern. The influence of particular properties of a pattern used
for the tile assembly system synthesis have been experimentally tested, and the result
presented. Additionally, the application offers a variety of options which can be used
to modify the synthesised system.

Both applications were developed with specific requirements of the EXPRO project
in mind, and both applications are intended to be used for research purposes. The
MuTATOR application could be used as a framework for developing novel tile assem-
bly models which would model some aspects of tile-based self-assembly of macroscale
systems.

5.1 Ideas for future enhancements
Future work could include further optimisation of simulation algorithms, especially the
simulation of 2HAM. In the current state, the 2HAM simulator works only in the single
computation thread. By using the multi-threaded solution, the 2HAM simulation could
be several times faster.

There exists an option in MuTAGEN application to perform a batch of measure-
ments to obtain a set of durations of a simulation to a given step. However, the batch
processing cannot run in headless mode in the current state, i.e., running the applica-
tion without the GUI. Implementation of headless mode to MuTAGEN would make it
easier to use the application in scripts, and thus, the results of simulations could be
processed in another program.

Another field of improvement could be the development of novel better heuristics or
meta-heuristics for the MuTAGEN application. The new heuristic could help direct
the solution to be better suited for macroscale self-assembly. The primary problem
of macroscale self-assembly is the limited number of manufacturable types of mecha-
nism which would mimic the behaviour of a glue in the abstract self-assembly models,
whereas, in the nanoscale, a large number of glue types can be easily generated.

50

. 5.1 Ideas for future enhancements

Therefore, methods for compensating the effects of the self-assembly of systems with
an insufficient number of glues could be developed and tested within the MuTATOR
framework. The methods could be based on concentration programming models, where
the concentrations of different tile types in the system would be changed during the
assembly process. Another method could utilise passing signals between the tiles or
perhaps globally controlling which glues are active and inactive during the given time
in the assembly process as this approach would be more suitable for macroscale imple-
mentation by utilising electronics. The method could incorporate aspects of the staged
assembly model which would improve the ability to control the self-assembly process,
but it would make the process more complicated.

These ideas could be implemented and tested in the MuTATOR or MuTAGEN appli-
cations which could help the research of the macroscale tile-based self-assembly systems.

51

References

[1] Bertoldi, Katia, Vincenzo Vitelli, Johan Christensen, and Martin van
Hecke. Flexible mechanical metamaterials. Nature Reviews Materials. Nature
Publishing Group, 2017, Vol. 2, No. 11, pp. 17066. Available from DOI 10.1038/na-
trevmats.2017.66.

[2] Ion, Alexandra, Johannes Frohnhofen, Ludwig Wall, Robert Kovacs,
Mirela Alistar, Jack Lindsay, Pedro Lopes, Hsiang-Ting Chen, and Patrick
Baudisch. Metamaterial Mechanisms. In: Proceedings of the 29th Annual Sym-
posium on User Interface Software and Technology. New York, NY, USA: ACM,
2016. pp. 529–539. UIST ’16. ISBN 978-1-4503-4189-9. Available from DOI
10.1145/2984511.2984540. Available from
http://doi.acm.org/10.1145/2984511.2984540.

[3] Philp, Douglas, and J. Fraser Stoddart. Self-Assembly in Natural and Unnatu-
ral Systems. Angewandte Chemie International Edition in English. 1996, Vol. 35,
No. 11, pp. 1154-1196. Available from DOI 10.1002/anie.199611541. Available from
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.199611541.

[4] Whitesides, George M., and Bartosz Grzybowski. Self-Assembly at All Scales.
Science. American Association for the Advancement of Science, 2002, Vol. 295,
No. 5564, pp. 2418–2421. ISSN 0036-8075. Available from DOI 10.1126/sci-
ence.1070821. Available from
https://science.sciencemag.org/content/295/5564/2418.

[5] Santos, Daniel, Matthew Spenko, Aaron Parness, and Mark Cutkosky. Di-
rectional adhesion for climbing: theoretical and practical considerations. Journal of
Adhesion Science and Technology. Taylor & Francis, aug, 2007, Vol. 21, No. 12-13,
pp. 1317–1341. Available from DOI 10.1163/156856107782328399.

[6] Doty, David. Theory of Algorithmic Self-assembly. Commun. ACM . New York,
NY, USA: ACM, dec, 2012, Vol. 55, No. 12, pp. 78–88. ISSN 0001-0782. Available
from DOI 10.1145/2380656.2380675.

[7] Adleman, LM. Molecular computation of solutions to combinatorial prob-
lems. Science. American Association for the Advancement of Science, nov,
1994, Vol. 266, No. 5187, pp. 1021–1024. ISSN 0036-8075. Available from DOI
10.1126/science.7973651. Available from
https://science.sciencemag.org/content/266/5187/1021.

[8] Winfree, Erik. Algorithmic self-assembly of DNA. California Institute of Tech-
nology, may, 1998. Ph.D. Thesis. Available from
http://resolver.caltech.edu/CaltechETD:etd-05192003-110022.

[9] Seeman, Nadrian C. Nucleic acid junctions and lattices. Journal of Theoretical
Biology. nov, 1982, Vol. 99, No. 2, pp. 237–247. ISSN 0022-5193. Available from
DOI 10.1016/0022-5193(82)90002-9. Available from
http://www.sciencedirect.com/science/article/pii/0022519382900029.

52

http://dx.doi.org/10.1038/natrevmats.2017.66
http://dx.doi.org/10.1038/natrevmats.2017.66
http://dx.doi.org/10.1145/2984511.2984540
http://doi.acm.org/10.1145/2984511.2984540
http://dx.doi.org/10.1002/anie.199611541
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.199611541
http://dx.doi.org/10.1126/science.1070821
http://dx.doi.org/10.1126/science.1070821
https://science.sciencemag.org/content/295/5564/2418
http://dx.doi.org/10.1163/156856107782328399
http://dx.doi.org/10.1145/2380656.2380675
http://dx.doi.org/10.1126/science.7973651
https://science.sciencemag.org/content/266/5187/1021
http://resolver.caltech.edu/CaltechETD:etd-05192003-110022
http://dx.doi.org/10.1016/0022-5193(82)90002-9
http://www.sciencedirect.com/science/article/pii/0022519382900029

. .
[10] Wang, H. Proving theorems by pattern recognition – II. The Bell System Technical

Journal. jan, 1961, Vol. 40, No. 1, pp. 1–41. ISSN 0005-8580. Available from DOI
10.1002/j.1538-7305.1961.tb03975.x.

[11] Winfree, Erik, Furong Liu, Lisa A Wenzler, and Nadrian C Seeman. De-
sign and self-assembly of two-dimensional DNA crystals. Nature. Nature Pub-
lishing Group, aug, 1998, Vol. 394, No. 6693, pp. 539–544. Available from DOI
10.1038/28998.

[12] Rothemund, Paul W. K., and Erik Winfree. The Program-size Complexity of
Self-assembled Squares. In: Proceedings of the Thirty-second Annual ACM Sym-
posium on Theory of Computing. New York, NY, USA: ACM, 2000. pp. 459–468.
STOC ’00. ISBN 1-58113-184-4. Available from DOI 10.1145/335305.335358.

[13] Rothemund, Paul WK. Folding DNA to create nanoscale shapes and patterns.
Nature. Nature Publishing Group, mar, 2006, Vol. 440, No. 7082, pp. 297. Available
from DOI 10.1038/nature04586.

[14] Rothemund, Paul W. K, Nick Papadakis, and Erik Winfree. Algorithmic Self-
Assembly of DNA Sierpinski Triangles. PLOS Biology. Public Library of Science,
dec, 2004, Vol. 2, No. 12. Available from DOI 10.1371/journal.pbio.0020424.

[15] Chen, Holin, Ashish Goel, Chris Luhrs, and Erik Winfree. Self-assembling tile
systems that heal from small fragments. Presented at the thirteenth International
meeting on DNA based computers (DNA). 2007. Available from
https://web.stanford.edu/˜ashishg/papers/selfhealing2.pdf.

[16] Kautz, Steven M, and James I Lathrop. Self-assembly of the Discrete Sierpinski
carpet and Related Fractals. DNA Computing and Molecular Programming. Berlin,
Heidelberg: Springer Berlin Heidelberg, jan, 2009, pp. 78–87. ISSN 1611-3349.
Available from DOI 10.1007/978-3-642-10604-0 8.

[17] Patitz, Matthew J. An introduction to tile-based self-assembly and a survey of
recent results. Natural Computing. Springer Netherlands, 2014, Vol. 13, No. 2,
pp. 195–224. ISSN 15729796. Available from DOI 10.1007/s11047-013-9379-4.

[18] Thorkelsson, Kari, Peter Bai, and Ting Xu. Self-assembly and applications of
anisotropic nanomaterials: A review. Nano Today. Elsevier Ltd, 2015, Vol. 10,
No. 1, pp. 48–66. ISSN 1878044X. Available from
https://www.sciencedirect.com/science/article/pii/S1748013214001613.

[19] Baron, Alexandre, Ashod Aradian, Virginie Ponsinet, and Philippe Barois.
Self-assembled optical metamaterials. Optics and Laser Technology. Elsevier, 2016,
Vol. 82, pp. 94–100. ISSN 00303992. Available from
https://www.sciencedirect.com/science/article/pii/S0030399216301153.

[20] Gomez-Graña, Sergio, Aurélie Le Beulze, Mona Treguer-Delapierre,
Stéphane Mornet, Etienne Duguet, Eftychia Grana, Eric Cloutet, Georges
Hadziioannou, Jacques Leng, Jean-Baptiste Salmon, Vasyl G. Kravets,
Alexander N. Grigorenko, Naga A. Peyyety, Virginie Ponsinet, Philippe
Richetti, Alexandre Baron, Daniel Torrent, and Philippe Barois. Hierar-
chical self-assembly of nanoparticles for optical metamaterials. 2016, pp. 1–21.
Available from
http://arxiv.org/abs/1606.02105.

[21] McManus, Jennifer J., Patrick Charbonneau, Emanuela Zaccarelli, and Neer
Asherie. The physics of protein self-assembly. Current Opinion in Colloid and
Interface Science. The Authors, 2016, Vol. 22, pp. 73–79. ISSN 1359-0294. Available

53

http://dx.doi.org/10.1002/j.1538-7305.1961.tb03975.x
http://dx.doi.org/10.1038/28998
http://dx.doi.org/10.1145/335305.335358
http://dx.doi.org/10.1038/nature04586
http://dx.doi.org/10.1371/journal.pbio.0020424
https://web.stanford.edu/~ashishg/papers/selfhealing2.pdf
http://dx.doi.org/10.1007/978-3-642-10604-0{unhbox voidb@x kern .06em vbox {hrule width.3em}}8
http://dx.doi.org/10.1007/s11047-013-9379-4
https://www.sciencedirect.com/science/article/pii/S1748013214001613
https://www.sciencedirect.com/science/article/pii/S0030399216301153
http://arxiv.org/abs/1606.02105

References .
from DOI 10.1016/j.cocis.2016.02.011. Available from
https://www.sciencedirect.com/science/article/pii/S1359029416300292.

[22] Sun, Hongcheng, Quan Luo, Chunxi Hou, and Junqiu Liu. Nanostructures based
on protein self-assembly: From hierarchical construction to bioinspired materials.
Nano Today. Elsevier Ltd, 2017, Vol. 14, pp. 16–41. ISSN 1878044X. Available
from DOI 10.1016/j.nantod.2017.04.006. Available from
https://www.sciencedirect.com/science/article/pii/S1748013216305436.

[23] Levchenko, Igor, Kateryna Bazaka, Michael Keidar, Shuyan Xu, and
Jinghua Fang. Hierarchical Multicomponent Inorganic Metamaterials: Intrin-
sically Driven Self-Assembly at the Nanoscale. Advanced Materials. Wiley-
Blackwell, 2018, Vol. 30, No. 2, pp. 1702226. ISSN 09359648. Available from DOI
10.1002/adma.201702226.

[24] Haghighat, Bahar, Brice Platerrier, Loic Waegeli, and Alcherio Martinoli.
Synthesizing rulesets for programmable robotic self-assembly: A case study using
floating miniaturized robots. In: Mauro Dorigo, Marcoand Birattari, Xiaodong
Li, Manuel López-Ibáñez, Kazuhiro Ohkura, Carlo Pinciroli, and Thomas
Stützle, eds. International Conference on Swarm Intelligence. Cham: Springer
International Publishing, 2016. pp. 197–209. ISBN 978-3-319-44427-7. Available
from DOI 10.1007/978-3-319-44427-7 17.

[25] Haghighat, Bahar, and Alcherio Martinoli. Automatic synthesis of rulesets
for programmable stochastic self-assembly of rotationally symmetric robotic
modules. Swarm Intelligence. Springer US, 2017, Vol. 11, No. 3-4, pp. 243–270.
ISSN 19353820. Available from DOI 10.1007/s11721-017-0139-4.

[26] Rubenstein, Michael, Alejandro Cornejo, and Radhika Nagpal. Programmable
self-assembly in a thousand-robot swarm. Science. American Association for the
Advancement of Science, 2014, Vol. 345, No. 6198, pp. 795–799. ISSN 0036-8075.
Available from DOI 10.1126/science.1254295. Available from
http://www.ncbi.nlm.nih.gov/pubmed/25124435.

[27] Gauci, Melvin, Radhika Nagpal, and Michael Rubenstein. Programmable Self-
disassembly for Shape Formation in Large-Scale Robot Collectives. In: Roderich
Groß, Andreas Kolling, Spring Berman, Emilio Frazzoli, Alcherio Mar-
tinoli, Fumitoshi Matsuno, and Melvin Gauci, eds. Distributed Autonomous
Robotic Systems: The 13th International Symposium. Cham: Springer Interna-
tional Publishing, 2018. pp. 573–586. Available from DOI 10.1007/978-3-319-73008-
0 40.

[28] Doty, David, Jack H Lutz, Matthew J Patitz, Scott M Summers, and Damien
Woods. Intrinsic universality in self-assembly. In: Proceedings of the 27th inter-
national symposium on theoretical aspects of computer science. 2009. pp. 275–286.
Available from
http://arxiv.org/abs/1001.0208v2.

[29] Doty, D., J. H. Lutz, M. J. Patitz, R. T. Schweller, S. M. Summers, and
D. Woods. The Tile Assembly Model is Intrinsically Universal. In: 2012 IEEE
53rd Annual Symposium on Foundations of Computer Science. 2012. pp. 302–310.
ISSN 0272-5428. Available from DOI 10.1109/FOCS.2012.76.

[30] Demaine, Erik D., Sarah Eisenstat, Mashhood Ishaque, and Andrew
Winslow. One-dimensional staged self-assembly. Natural Computing. Springer
Netherlands, 2013, Vol. 12, No. 2, pp. 247–258. ISSN 15677818. Available from
DOI 10.1007/s11047-012-9359-0.

54

http://dx.doi.org/10.1016/j.cocis.2016.02.011
https://www.sciencedirect.com/science/article/pii/S1359029416300292
http://dx.doi.org/10.1016/j.nantod.2017.04.006
https://www.sciencedirect.com/science/article/pii/S1748013216305436
http://dx.doi.org/10.1002/adma.201702226
http://dx.doi.org/10.1007/978-3-319-44427-7{unhbox voidb@x kern .06em vbox {hrule width.3em}}17
http://dx.doi.org/10.1007/s11721-017-0139-4
http://dx.doi.org/10.1126/science.1254295
http://www.ncbi.nlm.nih.gov/pubmed/25124435
http://dx.doi.org/10.1007/978-3-319-73008-0{unhbox voidb@x kern .06em vbox {hrule width.3em}}40
http://dx.doi.org/10.1007/978-3-319-73008-0{unhbox voidb@x kern .06em vbox {hrule width.3em}}40
http://arxiv.org/abs/1001.0208v2
http://dx.doi.org/10.1109/FOCS.2012.76
http://dx.doi.org/10.1007/s11047-012-9359-0

. .
[31] Woods, Damien. Intrinsic universality and the computational power of self-

assembly. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences. 2015, Vol. 373, No. 2046. ISSN 1364503X.
Available from DOI 10.1098/rsta.2014.0214.

[32] Furcy, David, and Scott M. Summers. Optimal Self-Assembly of Finite Shapes
at Temperature 1 in 3D. Algorithmica. Springer US, 2018, Vol. 80, No. 6,
pp. 1909–1963. ISSN 14320541. Available from DOI 10.1007/s00453-016-0260-6.

[33] Demaine, Erik D., Sándor P. Fekete, Christian Scheffer, and Arne Schmidt.
New geometric algorithms for fully connected staged self-assembly. Theoretical
Computer Science. Elsevier B.V., 2017, Vol. 671, pp. 4–18. ISSN 03043975. Avail-
able from DOI 10.1016/j.tcs.2016.11.020. Available from
https: / / www . sciencedirect . com / science / article / pii / S030439751630679X ?
via%3Dihub.

[34] Chalk, Cameron, Eric Martinez, Robert Schweller, Luis Vega, Andrew
Winslow, and Tim Wylie. Optimal Staged Self-Assembly of General Shapes.
Algorithmica. Springer US, 2018, Vol. 80, No. 4, pp. 1383–1409. ISSN 14320541.
Available from DOI 10.1007/s00453-017-0318-0.

[35] Chen, Ho Lin, David Doty, and Shinnosuke Seki. Program Size and Temperature
in Self-Assembly. Algorithmica. Springer US, 2015, Vol. 72, No. 3, pp. 884–899.
ISSN 14320541. Available from DOI 10.1007/s00453-014-9879-3.

[36] Evans, Constantine G., and Erik Winfree. Optimizing Tile Set Size While
Preserving Proofreading with a DNA Self-assembly Compiler. In: David Doty,
and Hendrik Dietz, eds. DNA Computing and Molecular Programming: 24th
International Conference. Jinan, China: Springer International Publishing, 2018.
pp. 37–54. ISBN 978-3-030-00030-1. Available from DOI 10.1007/978-3-030-00030-
1 3.

[37] Johnsen, Aleck C., Ming-Yang Kao, and Shinnosuke Seki. Computing Minimum
Tile Sets to Self-Assemble Colors Patterns. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2014, pp. 699–710. ISSN 1611-3349. Available from
DOI 10.1007/978-3-642-45030-3 65. Available from
http://arxiv.org/abs/1404.2962.

[38] Seki, Shinnosuke, and Andrew Winslow. The Complexity of Fixed-Height Pat-
terned Tile Self-Assembly. 2016, pp. 1–22. Available from
http://arxiv.org/abs/1604.07190.

[39] Göös, Mika, and Pekka Orponen. Synthesizing Minimal Tile Sets for Patterned
DNA Self-Assembly. Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2009,
Vol. 6518 LNCS, pp. 71–82. ISSN 03029743. Available from DOI 10.1007/978-3-
642-18305-8 7. Available from
http://arxiv.org/abs/0911.2924.

[40] Adleman, Len, Qi Cheng, Ashish Goel, Ming-Deh Huang, David Kempe,
Pablo Moisset de Espanés, and Paul Wilhelm Karl Rothemund. Combinato-
rial optimization problems in self-assembly. In: Proceedings of the Thiry-fourth
Annual ACM Symposium on Theory of Computing. New York, NY, USA: ACM
Press, 2002. pp. 23–32. STOC ’02. ISBN 1-58113-495-9. Available from DOI
10.1145/509907.509913.

[41] Lathrop, James I., Jack H. Lutz, and Scott M. Summers. Strict self-assembly
of discrete Sierpinski triangles. Theoretical Computer Science. Elsevier B.V.,

55

http://dx.doi.org/10.1098/rsta.2014.0214
http://dx.doi.org/10.1007/s00453-016-0260-6
http://dx.doi.org/10.1016/j.tcs.2016.11.020
https://www.sciencedirect.com/science/article/pii/S030439751630679X?via{%}3Dihub
https://www.sciencedirect.com/science/article/pii/S030439751630679X?via{%}3Dihub
http://dx.doi.org/10.1007/s00453-017-0318-0
http://dx.doi.org/10.1007/s00453-014-9879-3
http://dx.doi.org/10.1007/978-3-030-00030-1{unhbox voidb@x kern .06em vbox {hrule width.3em}}3
http://dx.doi.org/10.1007/978-3-030-00030-1{unhbox voidb@x kern .06em vbox {hrule width.3em}}3
http://dx.doi.org/10.1007/978-3-642-45030-3{unhbox voidb@x kern .06em vbox {hrule width.3em}}65
http://arxiv.org/abs/1404.2962
http://arxiv.org/abs/1604.07190
http://dx.doi.org/10.1007/978-3-642-18305-8{unhbox voidb@x kern .06em vbox {hrule width.3em}}7
http://dx.doi.org/10.1007/978-3-642-18305-8{unhbox voidb@x kern .06em vbox {hrule width.3em}}7
http://arxiv.org/abs/0911.2924
http://dx.doi.org/10.1145/509907.509913

References .
2009, Vol. 410, No. 4-5, pp. 384–405. ISSN 03043975. Available from DOI
10.1016/j.tcs.2008.09.062. Available from
https://www.sciencedirect.com/science/article/pii/S030439750800724X.

[42] Soloveichik, David, and Erik Winfree. Complexity of Self-Assembled Shapes.
SIAM Journal on Computing. jan, 2007, Vol. 36, No. 6, pp. 1544–1569. ISSN 0097-
5397. Available from DOI 10.1137/S0097539704446712.

[43] Chen, Ho-Lin, Rebecca Schulman, Ashish Goel, and Erik Winfree. Reducing
Facet Nucleation during Algorithmic Self-Assembly. Nano Letters. 2007, Vol. 7,
No. 9, pp. 2913-2919. Available from DOI 10.1021/nl070793o. Available from
https://pubs.acs.org/doi/abs/10.1021/nl070793o. PMID: 17718529.

[44] Aggarwal, Gagan, Qi Cheng, Michael H. Goldwasser, Ming-Yang Kao, Pablo
Moisset de Espanes, Schweller, Robert T., Pablo Moisset de Espanes, and
Robert T Schweller. Complexities for Generalized Models of Self-Assembly.
SIAM Journal on Computing. Society for Industrial and Applied Mathemat-
ics, 2005, Vol. 34, No. 6, pp. 1493–1515. ISSN 0097-5397. Available from DOI
10.1137/S0097539704445202.

[45] Demaine, Erik D., Martin L. Demaine, Sándor P. Fekete, Mashhood Ishaque,
Eynat Rafalin, Robert T. Schweller, and Diane L. Souvaine. Staged self-
assembly: Nanomanufacture of arbitrary shapes with O(1) glues. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). Springer Netherlands, 2008, Vol. 4848 LNCS,
No. 3, pp. 1–14. ISSN 03029743. Available from DOI 10.1007/978-3-540-77962-9 1.

[46] Chen, Ho-Lin, and David Doty. Parallelism and Time in Hierarchical Self-
assembly. In: Proceedings of the Twenty-third Annual ACM-SIAM Symposium on
Discrete Algorithms. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2012. pp. 1163–1182. SODA ’12. Available from
http://dl.acm.org/citation.cfm?id=2095116.2095208.

[47] Cannon, Sarah, Erik D. Demaine, Martin L. Demaine, Sarah Eisen-
stat, Matthew J. Patitz, Robert Schweller, Scott M. Summers, and
Andrew Winslow. Two Hands Are Better Than One (up to constant fac-
tors). Stacs 2013 . 2012, No. January. ISSN 01616382. Available from DOI
10.4230/LIPIcs.STACS.2013.172. Available from
http://arxiv.org/abs/1201.1650.

[48] Demaine, Erik D., Matthew J. Patitz, Trent A. Rogers, Robert T. Schweller,
Scott M. Summers, and Damien Woods. The Two-Handed Tile Assembly Model
is not Intrinsically Universal. Algorithmica. feb, 2016, Vol. 74, No. 2, pp. 812–850.
ISSN 1432-0541. Available from DOI 10.1007/s00453-015-9976-y.

[49] Behsaz, Bahar, Ján Maňuch, and Ladislav Stacho. Turing Universality of Step-
Wise and Stage Assembly at Temperature 1. In: Darko Stefanovic, and Andrew
Turberfield, eds. DNA Computing and Molecular Programming. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2012. pp. 1–11. ISBN 978-3-642-32208-2. Avail-
able from
https://link.springer.com/chapter/10.1007/978-3-642-32208-2_1.

[50] Reif, John H. Local Parallel Biomolecular Computation. In: Proceedings of
DNA Based Computers III, DIMACS . American Mathematical Society, 1999.
pp. 217–254. Available from
https://users.cs.duke.edu/˜reif/paper/DNAassembly/Assembly.pdf.

56

http://dx.doi.org/10.1016/j.tcs.2008.09.062
https://www.sciencedirect.com/science/article/pii/S030439750800724X
http://dx.doi.org/10.1137/S0097539704446712
http://dx.doi.org/10.1021/nl070793o
https://pubs.acs.org/doi/abs/10.1021/nl070793o
http://dx.doi.org/10.1137/S0097539704445202
http://dx.doi.org/10.1007/978-3-540-77962-9{unhbox voidb@x kern .06em vbox {hrule width.3em}}1
http://dl.acm.org/citation.cfm?id=2095116.2095208
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.172
http://arxiv.org/abs/1201.1650
http://dx.doi.org/10.1007/s00453-015-9976-y
https://link.springer.com/chapter/10.1007/978-3-642-32208-2_1
https://users.cs.duke.edu/~reif/paper/DNAassembly/Assembly.pdf

. .
[51] Chandran, Harish, Nikhil Gopalkrishnan, and John Reif. The Tile Complex-

ity of Linear Assemblies. In: Susanne Albers, Alberto Marchetti-Spaccamela,
Yossi Matias, Sotiris Nikoletseas, and Wolfgang Thomas, eds. Automata, Lan-
guages and Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
pp. 235–253. ISBN 978-3-642-02927-1. Available from
https://link.springer.com/chapter/10.1007/978-3-642-02927-1_21.

[52] Becker, Florent, Éric Rémila, and Ivan Rapaport. Self-assemblying Classes of
Shapes with a Minimum Number of Tiles, and in Optimal Time. In: FSTTCS .
2006. pp. 45–56. LNCS. Available from DOI 10.1007/11944836 7. Available from
https://hal.archives-ouvertes.fr/hal-00460570.

[53] Kari, Lila, Shinnosuke Seki, and Zhi Xu. Triangular and Hexagonal Tile Self-
assembly Systems. In: Proceedings of the 2012 International Conference on Theo-
retical Computer Science: Computation, Physics and Beyond. Berlin, Heidelberg:
Springer-Verlag, 2012. pp. 357–375. WTCS’12. ISBN 978-3-642-27653-8. Available
from DOI 10.1007/978-3-642-27654-5 28. Available from
https://link.springer.com/chapter/10.1007/978-3-642-27654-5_28.

[54] Jonoska, Natasa, Stephen A. Karl, and Masahico Saito. Three dimensional
DNA structures in computing. Biosystems. 1999, Vol. 52, No. 1, pp. 143 - 153.
ISSN 0303-2647. Available from DOI 10.1016/S0303-2647(99)00041-6. Available
from
http://www.sciencedirect.com/science/article/pii/S0303264799000416.

[55] Demaine, Erik D., Martin L. Demaine, Sándor P. Fekete, Matthew J. Patitz,
Robert T. Schweller, Andrew Winslow, and Damien Woods. One Tile to Rule
Them All: Simulating Any Tile Assembly System with a Single Universal Tile.
In: Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsou-
pias, eds. Automata, Languages, and Programming. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014. pp. 368–379. ISBN 978-3-662-43948-7. Available from
https://link.springer.com/chapter/10.1007%2F978-3-662-43948-7_31.

[56] Summers, Scott M. Reducing Tile Complexity for the Self-assembly of Scaled
Shapes Through Temperature Programming. Algorithmica. Jun, 2012, Vol. 63,
No. 1, pp. 117–136. ISSN 1432-0541. Available from DOI 10.1007/s00453-011-9522-
5.

[57] Doty, David, Lila Kari, and Benoît Masson. Negative Interactions in Irreversible
Self-assembly. Algorithmica. May, 2013, Vol. 66, No. 1, pp. 153–172. ISSN 1432-
0541. Available from DOI 10.1007/s00453-012-9631-9. Available from
https://link.springer.com/article/10.1007/s00453-012-9631-9.

[58] Patitz, Matthew J., Robert T. Schweller, and Scott M. Summers. Exact
Shapes and Turing Universality at Temperature 1 with a Single Negative Glue.
In: Luca Cardelli, and William Shih, eds. DNA Computing and Molecular
Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. pp. 175–189.
ISBN 978-3-642-23638-9. Available from
https://link.springer.com/chapter/10.1007%2F978-3-642-23638-9_15.

[59] Padilla, Jennifer E., Wenyan Liu, and Nadrian C. Seeman. Hierarchical self
assembly of patterns from the Robinson tilings: DNA tile design in an enhanced
Tile Assembly Model. Natural Computing. Springer Netherlands, 2012, Vol. 11,
No. 2, pp. 323–338. ISSN 15677818. Available from DOI 10.1007/s11047-011-9268-
7.

57

https://link.springer.com/chapter/10.1007/978-3-642-02927-1_21
http://dx.doi.org/10.1007/11944836unhbox voidb@x kern .06em vbox {hrule width.3em}7
https://hal.archives-ouvertes.fr/hal-00460570
http://dx.doi.org/10.1007/978-3-642-27654-5{unhbox voidb@x kern .06em vbox {hrule width.3em}}28
https://link.springer.com/chapter/10.1007/978-3-642-27654-5_28
http://dx.doi.org/10.1016/S0303-2647(99)00041-6
http://www.sciencedirect.com/science/article/pii/S0303264799000416
https://link.springer.com/chapter/10.1007%2F978-3-662-43948-7_31
http://dx.doi.org/10.1007/s00453-011-9522-5
http://dx.doi.org/10.1007/s00453-011-9522-5
http://dx.doi.org/10.1007/s00453-012-9631-9
https://link.springer.com/article/10.1007/s00453-012-9631-9
https://link.springer.com/chapter/10.1007%2F978-3-642-23638-9_15
http://dx.doi.org/10.1007/s11047-011-9268-7
http://dx.doi.org/10.1007/s11047-011-9268-7

References .
[60] Padilla, Jennifer E., Matthew J. Patitz, Raul Pena, Robert T. Schweller,

Nadrian C. Seeman, Robert Sheline, Scott M. Summers, and Xingsi Zhong.
Asynchronous Signal Passing for Tile Self-assembly: Fuel Efficient Computation
and Efficient Assembly of Shapes. In: Giancarlo Mauri, Alberto Dennunzio,
Luca Manzoni, and Antonio E. Porreca, eds. Unconventional Computation
and Natural Computation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
pp. 174–185. ISBN 978-3-642-39074-6. Available from
https://link.springer.com/chapter/10.1007/978-3-642-39074-6_17.

[61] Jonoska, Nataša, and Daria Karpenko. Active Tile Self-assembly, Self-similar
Structures and Recursion. 11, 2012. Available from
https://arxiv.org/pdf/1211.3085.pdf.

[62] Jonoska, Nataša, and Daria Karpenko. Active Tile Self-Assembly, Part 2: Self-
Similar Structures and Structural Recursion. International Journal of Foundations
of Computer Science. 2014, Vol. 25, No. 02, pp. 165-194. Available from DOI
10.1142/S0129054114500099.

[63] Adleman, Leonard, Qi Cheng, Ashish Goel, and Ming-Deh Huang. Running
time and program size for self-assembled squares. Proceedings of the thirty-third an-
nual ACM symposium on Theory of computing - STOC ’01 . New York, New York,
USA: ACM Press, 2003, pp. 740–748. Available from DOI 10.1145/380752.380881.
Available from
http://portal.acm.org/citation.cfm?doid=380752.380881.

[64] Becker, Florent. Pictures worth a thousand tiles, a geometrical program-
ming language for self-assembly. Theoretical Computer Science. Elsevier B.V.,
2009, Vol. 410, No. 16, pp. 1495–1515. ISSN 03043975. Available from DOI
10.1016/j.tcs.2008.12.011.

[65] Becker, Florent, Éric Rémila, and Nicolas Schabanel. Time optimal self-
assembly for 2D and 3D shapes: The case of squares and cubes. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics). Springer, Berlin, Heidelberg, 2009, Vol. 5347
LNCS, pp. 144–155. ISSN 03029743. Available from DOI 10.1007/978-3-642-03076-
5 12.

[66] Ma, Xiaojun, and Fabrizio Lombardi. Synthesis of tile sets for DNA self-assembly.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems. may, 2008, Vol. 27, No. 5, pp. 963–967. ISSN 02780070. Available from DOI
10.1109/TCAD.2008.917973. Available from
http://ieeexplore.ieee.org/document/4492836/.

[67] Seki, Shinnosuke. Combinatorial optimization in pattern assembly (Extended Ab-
stract). Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). Springer, Berlin, Hei-
delberg, 2013, Vol. 7956 LNCS, No. 902184, pp. 220–231. ISSN 03029743. Available
from DOI 10.1007/978-3-642-39074-6-21.

[68] Czeizler, Eugen, and Alexandru Popa. Synthesizing minimal tile sets for complex
patterns in the framework of patterned DNA self-assembly. Theoretical Computer
Science. Springer, Berlin, Heidelberg, 2013, Vol. 499, pp. 23–37. ISSN 03043975.
Available from DOI 10.1016/j.tcs.2013.05.009.

[69] Lempiäinen, Tuomo, Eugen Czeizler, and Pekka Orponen. Synthesizing Small
and Reliable Tile Sets for Patterned DNA Self-assembly. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lec-

58

https://link.springer.com/chapter/10.1007/978-3-642-39074-6_17
https://arxiv.org/pdf/1211.3085.pdf
http://dx.doi.org/10.1142/S0129054114500099
http://dx.doi.org/10.1145/380752.380881
http://portal.acm.org/citation.cfm?doid=380752.380881
http://dx.doi.org/10.1016/j.tcs.2008.12.011
http://dx.doi.org/10.1007/978-3-642-03076-5{unhbox voidb@x kern .06em vbox {hrule width.3em}}12
http://dx.doi.org/10.1007/978-3-642-03076-5{unhbox voidb@x kern .06em vbox {hrule width.3em}}12
http://dx.doi.org/10.1109/TCAD.2008.917973
http://ieeexplore.ieee.org/document/4492836/
http://dx.doi.org/10.1007/978-3-642-39074-6-21
http://dx.doi.org/10.1016/j.tcs.2013.05.009

. .
ture Notes in Bioinformatics). Springer, Berlin, Heidelberg, 2011, Vol. 6937 LNCS,
pp. 145–159. ISSN 03029743. Available from DOI 10.1007/978-3-642-23638-9 13.

[70] Göös, Mika, Tuomo Lempiäinen, Eugen Czeizler, and Pekka Orponen. Search
methods for tile sets in patterned DNA self-assembly. Journal of Computer and
System Sciences. Elsevier Inc., 2014, Vol. 80, No. 1, pp. 297–319. ISSN 00220000.
Available from DOI 10.1016/j.jcss.2013.08.003.

[71] Winfree, Erik, Rebecca Schulman, and Constantine Evans. Xgrow Simulator
[online]. 2003. [Accessed 2019-05-07]. Available from
http://www.dna.caltech.edu/Xgrow/.

[72] Patitz, Matthew J. Simulation of self-assembly in the abstract tile assembly model
with ISU TAS. In: FNANO. 2009, pp. 56–69. Available from
http://arxiv.org/abs/1101.5151.

[73] Patitz, Matthew, Trent Rogers, and Michael Sharp. ISU TAS [online]. 2018.
[Accessed 2019-05-07]. Available from
http://self-assembly.net/wiki/index.php?title=ISU_TAS&oldid=1489.

[74] Patitz, Matthew, Trent Rogers, and Michael Sharp. PyTAS [online]. 2018.
[Accessed 2019-05-07]. Available from
http://self-assembly.net/wiki/index.php?title=PyTAS&oldid=1490.

[75] Meyers, Scott. Effective modern C++. 1st ed. Sebastopol, California: O’Reilly
Media, 2014. ISBN 978-1-491-90399-5.

[76] Cppreference.com [online]. 2000. [Accessed 2019-05-07]. Available from
https://en.cppreference.com/.

[77] Cumming, Murray, Bernhard Rieder, Jonathon Jongsma, Ole Laursen, Marko
Anastasov, Daniel Elstner, Chris Vine, David King, Pedro Ferreira, and
Kjell Ahlstedt. Programming with gtkmm 3 [online]. 2005. [Accessed 2019-05-
07]. Available from
https://developer.gnome.org/gtkmm-tutorial/3.24/.

[78] The GNOME Project. Gtkmm: gtkmm Reference Manual [online]. 2005. [Ac-
cessed 2019-05-07]. Available from
https://developer.gnome.org/gtkmm/3.18/.

[79] gabime. spdlog [online]. 2016. [Accessed 2019-05-07]. Available from
https://github.com/gabime/spdlog.

[80] Crockford, Douglas. JSON [online]. 1999. [Accessed 2019-05-07]. Available from
http://json.org/.

[81] Standard ECMA-404. The JSON data interchange format [online]. 2017. [Ac-
cessed 2019-05-07]. Available from
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf.

[82] Kari, Lila, Steffen Kopecki, Pierre-Étienne Meunier, Matthew J. Patitz, and
Shinnosuke Seki. Binary Pattern Tile Set Synthesis Is NP-Hard. Algorithmica.
Springer Nature, apr, 2016, Vol. 78, No. 1, pp. 1–46. ISSN 1432-0541. Available
from DOI 10.1007/s00453-016-0154-7. Available from
https://link.springer.com/article/10.1007%2Fs00453-016-0154-7.

[83] Kopecki, Steffen. 2PATS [online]. 2014. [Accessed 2019-05-12]. Available from
http://self-assembly.net/wiki/index.php?title=2PATS-tileset-search.

59

http://dx.doi.org/10.1007/978-3-642-23638-9{unhbox voidb@x kern .06em vbox {hrule width.3em}}13
http://dx.doi.org/10.1016/j.jcss.2013.08.003
http://www.dna.caltech.edu/Xgrow/
http://arxiv.org/abs/1101.5151
http://self-assembly.net/wiki/index.php?title=ISU_TAS&oldid=1489
http://self-assembly.net/wiki/index.php?title=PyTAS&oldid=1490
https://en.cppreference.com/
https://developer.gnome.org/gtkmm-tutorial/3.24/
https://developer.gnome.org/gtkmm/3.18/
https://github.com/gabime/spdlog
http://json.org/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://dx.doi.org/10.1007/s00453-016-0154-7
https://link.springer.com/article/10.1007%2Fs00453-016-0154-7
http://self-assembly.net/wiki/index.php?title=2PATS-tileset-search

Appendix A
Specification

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

420090Osobní číslo:LukášJméno:BertlPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra řídicí techniky

Kybernetika a robotikaStudijní program:

Systémy a řízeníStudijní obor:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Samoskládání: modelování, simulace a plánování

Název diplomové práce anglicky:

Self-assembly: modelling, simulation, and planning

Pokyny pro vypracování:
1. Seznamte se s Wangovým dlážděním a jeho rozšířeními pro modelování procesu samoskládání: abstract tile-assembly
model (aTAM) and two-handed assembly model (2HAM) [1].
2. Vyviňte programový nástroj pro aTAM a 2HAM, který umožňuje simulování a vizualizaci procesu samoskládání a
verifikaci jeho korektnosti.
3. Seznamte se s metodami kombinatorické optimalizace [2,3].
4. Navrhněte a implementujte metodu pro (semi-)automatickou definici množiny dlaždic pro konstrukci zadaného dláždění.
5. Experimentálně vyhodnoťe vlastnosti implementovaného algoritmu. Popište a diskutujte získané výsledky.

Seznam doporučené literatury:
[1] M. J. Patitz, “An introduction to tile-based self-assembly and a survey of recent results,” Nat. Comput., vol. 13, no. 2,
pp. 195–224, Jun. 2014.
[2] R. Martí, P. M. Pardalos, M. G. C. Resende: Handbook of Heuristics. Springer 2018, ISBN 978-3-319-07123-7
[3] M. Gendreau & Jean-Yves Potvin (ed.), 2019. 'Handbook of Metaheuristics,' International Series in Operations Research
and Management Science, Springer, edition 3, number 978-3-319-91086-4, December.

Jméno a pracoviště vedoucí(ho) diplomové práce:

RNDr. Miroslav Kulich, Ph.D., inteligentní a mobilní robotika CIIRC

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 24.05.2019Datum zadání diplomové práce: 24.01.2019

Platnost zadání diplomové práce:
do konce letního semestru 2019/2020

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
prof. Ing. Michael Šebek, DrSc.

podpis vedoucí(ho) ústavu/katedry
RNDr. Miroslav Kulich, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

61

Appendix B
Glossary of Abbreviations

API . Application Programming Interface
aTAM . abstract Tile Assembly Model
ATAM . Active Tile Assembly Model
CIIRC . Czech Institute of Informatics, Robotics and Cybernetics
CTU . Czech Technical University
DNA . Deoxyribonucleic acid
GIMP . GNU Image Manipulation Program
GNOME . GNU Network Object Model Environment
GNU . GNU’s Not Unix
GTK . GIMP Toolkit
GUI . Graphical User Interface
IMR . Intelligent and Mobile Robotics group
ISU TAS . Iowa State University Tile Assembly Simulator
kTAM . kinetic Tile Assembly Model
MuTAGEN . the Meta-Material Tile Assembly system GENerator
MuTATOR . the Meta-Material Tile Assembly sysTem simulatOR
OOP . Object-Oriented Programming
PATS . Patterned self-Assembly Tile set Synthesis problem
PTAM . Probabilistic Tile Assembly Model
PyTAS . Python-based Tile Assembly Simulator
rgTAM . restricted glue Tile Assembly Model
SAS . Staged self-Assembly System model
STAM . Signal passing Tile Assembly Model
TAS . Tile Assembly System
WYSIWYG . What You See Is What You Get
XML . eXtensible Markup Language
2HAM . Two-Handed Assembly Model

63

Appendix C
Contents of the CD

./

Code/

Thesis/

common/

doc/

external/

MuTAGEN/

MuTATOR/

CMakeLists.txt

README.md

src/

Makefile

README.md

thesis.pdf

Figure C.1. Diagram showing the directory structure of the CD.

The diagram in Figure C.1 shows the structure of contents of the enclosed CD.
There is a README.md file for each part of the project which informs about contents of
the directory where is located.

The ./Code/ directory contains source files of the MuTATOR and MuTAGEN ap-
plications in ./Code/MuTATOR/ and ./Code/MuTAGEN/ directories, respectively.

The ./Thesis/ directory contains this thesis in the file named thesis.pdf, and
source files of the thesis are located in the ./Thesis/src/ directory.

64

Appendix D
Code listings

This chapter includes several examples of our implementation of data structures and
functions in MuTATOR and MuTAGEN applications.

D.1 MuTATOR and MuTAGEN Common Data Structures

D.1.1 Implementation of Tile
In this section, the data structure of Tile class is presented. The basic idea behind the
Tile class implementation can be seen in Listing D.2.

1 class Tile
2 {
3 public:
4 enum class Side {
5 North, East, South, West
6 };
7

8 static constexpr std::array<Tile::Side, 4> sides = {
9 Tile::Side::North,

10 Tile::Side::East,
11 Tile::Side::South,
12 Tile::Side::West
13 };
14

15 ...
16

17 private:
18 Glue m_north;
19 Glue m_east;
20 Glue m_south;
21 Glue m_west;
22 imr::JSON::Dictionary m_additional_info;
23 };

Listing D.2. Implementation of the Tile class data structure.

The implementation of the Tile class corresponds to the definition of the tile in
the theory of tile-based self-assembling systems. Therefore, the Tile class consists of
four Glue classes which represents glues for each side of the tile (lines 18–21). The
m_additional_info member variable is used for storing additional information and
configurations of the tile object such as its colour or label in JSON format (line 22).

Note the definition of enum class Side and the corresponding static array sides
which are both often utilized in algorithms for accessing to glue on the given tile side
or for easy iteration (lines 4–6 and 8–13).

65

D Code listings .
1 class TileConfiguration
2 {
3 public:
4 ...
5

6 private:
7 TileAssemblySystem const m_tas;
8 std::unordered_map<Tile::Position, TileID> m_tile_map;
9 std::unordered_set<Tile::Position> m_perimeter;

10 std::unordered_set<Tile::Position>
11 m_perimeter_with_enough_bond_strength;
12 Boundary m_boundary;
13 };

Listing D.3. Implementation of the TileConfiguration class data structure.

D.1.2 Implementation of Tile Configuration
The TileConfiguration class representing an assembly of tiles in the MuTATOR sim-
ulator is shown in this section. The member variables of the TileConfiguration class
are presented in Listing D.3.

The implementation of TileConfiguraion class is based on the theoretic definition
of an assembly of tile assembly system. Therefore, the class contains member m_tas
which encapsulates the tile assembly system used in the simulation. The member vari-
able m_tile_map stores the configuration of tiles in the assembly space using mapping
between 2D position vectors and TileID which are used to reference particular instance
of Tile class owned by the m_tas variable (lines 7, 8).

For acceleration of various algorithms, the TileConfiguration class stores current
configuration of its perimeter and perimeter positions with available bonding strength
greater than system temperature, in m_perimeter and m_perimeter_with_enough
_bond_strength variables, respectively (lines 9, 10). The m_boundary variable stores
the positional limits of the assembly (line 11).

D.2 MuTATOR Algorithm Implementations
In this section, a couple of examples from the simulator implementation are described.

D.2.1 aTAM: Algorithm for finding the set of tiles to extend the
assembly

The first presented example is a function which finds for the set all tiles which can
extend the simulated assembly in the current step. One possible implementation can
be seen in Listing D.4.

Please note that the code was reformated to fit the page, and comments were removed
from it. The algorithm uses the current state of the simulation, and thus, it does not
explicitly state any function inputs. However, the algorithm uses an instance of class
TileConfiguration called m_configuration, which stores the current state of the
simulated aTAM assembly.

First, the output vector of actions possible_actions is initialised (line 4). The
action type AtamSimulator::Action consists of a pair of a position in the assembly and
internal ID of a tile. Then, each position on the assembly space named position which
lies in the perimeter of the assembly is checked in the loop (lines 6–8). The perimeter

66

. D.2 MuTATOR Algorithm Implementations

1 std::vector<AtamSimulator::Action>
2 AtamSimulator::find_all_possible_actions() const
3 {
4 auto possible_actions = std::vector<AtamSimulator::Action>{};
5

6 for(auto const & position :
7 m_configuration.get_perimeter_with_enough_bond_strength()
8) {
9 auto candidate_tile_sides = std::array<Glue, 4>{};

10 for(auto const side : Tile::sides) {
11 auto const side_i = static_cast<size_t>(side);
12 auto const neighbour_tile = m_configuration.get_tile_on(
13 position + unit_vector(side)
14);
15

16 candidate_tile_sides[side_i] =
17 neighbour_tile[complement(side)];
18 }
19

20 auto const candidate_tile = Tile{
21 candidate_tile_sides[0], candidate_tile_sides[1],
22 candidate_tile_sides[2], candidate_tile_sides[3]
23 };
24

25 auto const compatible_tiles =
26 m_configuration.get_tas()
27 .find_tiles_with_matching_not_null_glues(candidate_tile);
28

29 for(auto const tile_id : compatible_tiles) {
30 if(m_configuration.can_be_placed_on(position, tile_id)) {
31 possible_actions.emplace_back(position, tile_id);
32 }
33 }
34 }
35

36 return possible_actions;
37 }

Listing D.4. Implementation of aTAM function which returns a set of all possible pairs of
a tile and position suitable for addition to the simulated assembly.

of the assembly refers to the set of unoccupied positions directly neighbouring to the
occupied positions in the assembly in this thesis. Additionally, the function used in
line 7 filters the set of perimeter positions and returns only those positions where the
combined glue strength of adjoined tiles is greater than or equal to system temperature.
This filtration further reduces the number of cycles needed for the function to return.

An array of four instances of Glue class named candidate_tile_sides is initialised,
which is used to hold glues of an ideal (most likely non-existent) tile that could be
attached at position (line 9). The ideal candidate tile is generated by copying glues of
the adjacent tiles and assigning them to complement sides of the tile (lines 10–18), and
then an instance of Tile class named candidate_tile is constructed (lines 20–23).

67

D Code listings .
The candidate tile is then used for finding a set of all tiles in the system with the same
non-null glue sides as the candidate tile denoted as compatible_tiles (lines 25–27).

Finally, if there are any tiles in the compatible_tiles set, then each tile is tested
whether it has sufficient glue strength to be placed on position. If the tile does have
enough strength, it is paired up with the position and added to possible_actions
vector (lines 29–33). This process is subsequently repeated for another position in the
assembly perimeter. In the end, all suitable pairs of positions and tiles are found and
returned (line 36).

In the actual implementation, the function is not used to find suitable tiles in every
step of simulation as it is used only for the very first step. Because each found action
stays valid for next steps until its corresponding position gets occupied, it is sufficient to
search for new actions only in the local neighbourhood of the last attached tile using a
similar function which does not search the whole assembly perimeter. The computation
of the simulation step is significantly accelerated by saving all found actions and by
updating them based only on the local changes in the assembly.

D.2.2 2HAM: Simulation step algorithm

The next algorithm implemented in the simulator and described here is a function which
finds all possible combinations of supertiles in the current step of 2HAM simulation.
One possible implementation is presented in Listing D.5.

Like the previously presented function, also this function does not have explicitly
declared input, but it is using the internal representation of 2HAM simulation state.
The 2HAM simulation state is defined as a vector of supertiles which are implemented
using the TileConfiguration class. Note that a single instance of the same class is
used to represent the state of the aTAM simulation, but there is a whole vector of those
instances in the 2HAM simulation. One action of 2HAM simulation is the unification
of two supertiles. In order to unite two supertiles, one of them has to be translated to
ensure that the supertiles are disjoint. Therefore, in the implementation, the simulator
action TwoHamSimulator::ActionTuple is defined as a triplet of two supertiles and
translation. In each step of 2HAM simulation, there can be multiple of those actions
which will be stored in set next_actions of type TwoHamSimulator::Actions (line 3).

In order to find all supertiles that can be united in the given step, every unordered pair
of supertiles must be checked. Each pair of supertiles denoted as configuration1, and
configuration2 is constructed by two nested for-cycles (lines 4–8). The function then
tries every translation of configuration1 so that it is disjoint with configuration2
and they share a common interface. Each translation is calculated as the difference of
a perimeter position of configuration1 and a frontier position of configuration2,
where the set of frontier positions consist of the occupied positions on the outer edge
of the configuration (lines 10–17). Next, configuration2 is copied and translated us-
ing the calculated translation (lines 19–22). Then, the translated supertile is tested
whether it is disjoint with configuration1 and whether both supertiles generates
enough bonding strength (lines 24–26). If the translated supertile can be united with
configuration1, a simulator action is constructed, storing the found supertile (lines
27, 28).

In the rest of the cycle, the found unification is checked whether it was not already
found in previous simulation steps, and if it was not, it is added to the next_actions
set (lines 30–46). This procedure is then repeated for each frontier position of
configuration2, for each perimeter position of configuration1 and each unordered
pair of supertiles in the current step of the simulation. Thus the function finds the set

68

. D.2 MuTATOR Algorithm Implementations

1 TwoHamSimulator::Actions TwoHamSimulator::simulate_next_production()
2 {
3 auto next_actions = TwoHamSimulator::Actions{};
4 for(auto id1 = 0u; id1 < m_configurations.size(); id1++) {
5 auto const & configuration1 = m_configurations.at(id1).tiles;
6 for(auto id2 = id1; id2 < m_configurations.size(); id2++) {
7 auto const & configuration2 =
8 m_configurations.at(id2).tiles;
9

10 for(auto const & perimeter_position :
11 configuration1.get_perimeter()
12) {
13 for(auto const & frontier_position :
14 configuration2.find_frontier_of_tiles()
15) {
16 auto const translation =
17 perimeter_position - frontier_position;
18

19 auto translated_configuration =
20 TileConfiguration{ configuration2 };
21

22 translated_configuration.translate(translation);
23

24 if(configuration1.can_be_united_with(
25 translated_configuration)
26) {
27 auto const action_tuple =
28 std::make_tuple(id1, id2, translation);
29

30 auto action_already_exists = false;
31 for(auto const & actions_in_step :
32 m_production_history
33) {
34 for(auto const & history_action :
35 actions_in_step
36) {
37 if(action_tuple == history_action) {
38 action_already_exists = true;
39 break;
40 }
41 }
42 if(action_already_exists) { break; }
43 }
44 if(!action_already_exists) {
45 next_actions.emplace(action_tuple);
46 }
47 }
48 } }
49 } }
50 return next_actions;
51 }

Listing D.5. Implementation of 2HAM simulator function which finds the set of all possible
combinations of supertiles for the next simulation state.

69

D Code listings .
of all possible unifications of supertiles and returns it (line 50). Note that the function
has six nested for-cycles at one point, which makes this function quite computation
demanding. One possible optimisation for the future implementation would be utilising
a multi-thread programming and testing each pair of supertiles concurrently.

D.3 MuTAGEN Algorithm Implementations
In this section, two algorithms implemented in MuTAGEN application are further dis-
cussed in detail.

D.3.1 Partition-Search with Heuristics (PS-H)
In the following Listings D.6, D.7, it can be seen the implementation of the PS-H
algorithm introduced in Section 2.3.2. Please note that the code is separated into two
listings despite the code was stripped of comments and reformated in order to fit it on
the page.

In the first part of the PS-H algorithm (Listing D.6), can be seen that the function
takes two inputs, a tile partition a_tiling and a pattern a_pattern, and the function
returns an optimised tile partition. This configuration allows for entirely or partly
suboptimal tile pattern a_tiling to be optimised.

First, the inputted tiling is copied to the new instance tiling, which is safe to modify
(line 5). The set of all unordered pairs of tiles in tiling where both elements have
the same colour in a_pattern is found and stored as same_color_class_pairs (lines
6, 7). The set stores all possible pairs of partition classes which can be merged together
such that the pattern is not damaged. The algorithm then repeats the following process
until same_color_class_pairs set is depleted.

The set of the same coloured pairs is filtered (ordered) using the trio of heuristics
denoted as H1, H2, and H3 in the code. Because the limited space of the page and
the implementation of each heuristic is very similar, only the H1 heuristic is explic-
itly stated in the code. The first heuristic H1 filters those pairs of tiles which share the
maximum number of glues between themselves. The heuristic is implemented in the fol-
lowing fashion. First, an empty set of pairs common_glues_pairs is initialised together
with a counter of the maximum number of glues shared between the tiles in the pair
max_num_of_common_glues (lines 11–13). Then, it is obtained the number of com-
mon glues num_of_common_glues for each pair of tiles in same_color_class_pairs
(lines 15–17). If num_of_common_glues is greater than the current maximum, the
common_glues_pairs set is emptied, and the new maximum is set (lines 18–21). Now
if the num_of_common_glues is equal to the max_num_of_common_glues, the pair is
added to the common_glues_pairs set (lines 22–24).

The other two heuristics H2 and H3 indicated in lines 26 and 27, respectively, are
implemented similarly as H1 where each heuristic takes the set of pairs filtered by the
previous heuristic, and it performs additional filtering. The H2 heuristic prioritises pairs
where the tile type with greater number of occurrences in the current tiling is maximal,
and H3 prioritises pairs where the tile type with smaller number of occurrences in the
current tiling is also maximal. Formal definitions of each heuristic are described in
Algorithm 2.4.

Next, step is to randomly select one pair from the remaining pairs which were filtered
by the heuristics. Each pair of tiles have a uniform probability of selection (lines 29–
40). The randomly selected pair is named pair (line 42). Next, the tile pattern tiling
is copied together with the selected pair and same_color_class_pairs so it can be

70

. D.3 MuTAGEN Algorithm Implementations

1 TilePartition TasSynthesizer::optimize_tiling(
2 TilePartition const & a_tiling,
3 PatternPartition const & a_pattern
4) {
5 auto tiling = TilePartition::clone(a_tiling);
6 auto same_color_class_pairs =
7 tiling.find_tile_class_pairs_of_same_color(a_pattern);
8

9 while(!same_color_class_pairs.empty()) {
10 // H1: common_glues_pairs
11 auto common_glues_pairs =
12 std::unordered_set<TilePartition::PairOfTiles>{};
13 auto max_num_of_common_glues = 0u;
14 for(auto const & pair : same_color_class_pairs) {
15 auto const num_of_common_glues = number_of_common_glues(
16 *pair.first, *pair.second
17);
18 if(num_of_common_glues > max_num_of_common_glues) {
19 common_glues_pairs.clear();
20 max_num_of_common_glues = num_of_common_glues;
21 }
22 if(num_of_common_glues >= max_num_of_common_glues) {
23 common_glues_pairs.insert(pair);
24 }
25 }
26 // H2: maximum_point_count_of_larger_class_in_pairs
27 // H3: maximum_point_count_of_smaller_class_in_pairs
28

29 auto const selection_vector = std::vector<
30 std::reference_wrapper<const TilePartition::PairOfTiles>>(
31 std::cbegin(maximum_point_count_of_smaller_class_in_pairs),
32 std::cend(maximum_point_count_of_smaller_class_in_pairs)
33);
34

35 std::random_device rd;
36 auto generator = std::mt19937{ rd() };
37 auto random_index_distribution =
38 std::uniform_int_distribution<size_t>{
39 0, selection_vector.size()-1 };
40 auto const random_index = random_index_distribution(generator);
41

42 auto const & pair = selection_vector.at(random_index).get();
43

44 auto copied_objects = TilePartition::clone_with_pair_and_set(
45 tiling,
46 pair,
47 same_color_class_pairs
48);

Listing D.6. An implementation of the PS-H algorithm written using C++ in MuTAGEN
application (1/2).

71

D Code listings .
tested whether merging the tile types in pair yields better (more optimal) tiling without
the risk of losing the current solution (lines 44–48). The implementation continues in
Listing D.7.

Copied intances of tiling, pair and same_color_class_pairs are retrieved and
named visiting_tiling, first_merging_pair and visiting_same_color_pairs,
respectively. The visiting_tiling is used to check whether the tiling is still
constructable after merging the tile types of first_merging_pair (lines 49–51).

After that, tile types in merging_pair are merged together in visiting_tiling,
and then, it is tested whether the tiling is still constructible using the function
is_constructable(). The function returns a tuple with a boolean value containing
the result of the test and another pair of tile types to be merged, which prevents the
tiling from being constructible. The merging is repeated until the visiting_tiling is
either found to be constructible or every tile pair, which prevents the constructability
of the tiling is merged (lines 56–64).

If the visiting_tiling is not found constructible, it is abandoned, and the merging
pair, which create it is removed from the same_color_class_pairs set (lines 90–92).
Otherwise, the visiting_tiling is tested whether it is a refinement of the pattern,
and it not the main loop is broken because any subsequent merges cannot improve
the current tiling (lines 67–71). If the merged tiling is both constructible, and it is a
refinement of the pattern, it is set as the new best-found solution (lines 73, 74).

Before the start of the next loop, the same_color_class_pairs set is recreated from
the visiting_same_color_pairs by filtering out pairs of tile types where the tile type
which was removed from the tiling in the merging process is not included (lines 76–88).

After depleting the set of same coloured pairs, the tiling is additionally checked
whether it contains duplicate tile types and these types are eventually merged (line
94). The last step is a consolidation of used glue types which is done by the function
reassign_glue_ids() (line 95). The reassign_glue_ids() function can further de-
crease the number of the needed glues in the tiling, which is further described in the
following text. In the end, the function returns the most optimal found tiling (line 96).

D.3.2 Glue type reduction function

The last example from MuTAGEN implementation is the function which is used to
reassign glue types of tiles in the TilePartition class. The function code is presented
in Listing D.8.

After generating the tile partition using the PS-H algorithm described above, the
individual tiles in the partition end up with sparsely distributed glue type identification
numbers (IDs) due to the fact that merging of the tile types in PS-H algorithm takes
place in no particular order. For example, there exists glue with type ID 3 and glue
with type ID 6, but there are no glues with type IDs 1, 2, 4, 5, 7, and so forth in the
tiling. This function ensures that the glue type IDs are reassigned beginning from the
ID 1 to the number of unique glues in the system.

Because of the requirements placed on the tile assembly system which solves the
partitioning problem, the self-assembly process sequence of the system is determined
by the combination of south and west glues in the individual tile type (in the case of
the origin of seed structure is placed in the south-west corner). Additionally, thanks
to the way how the MGTA function assigns glue type IDs in the start of the system
synthesis, the set of all glue type IDs which are located on the south side of the tiles
σS(T) is disjoint with the set of glues on the west side of the tiles σW (T), where T

72

. D.3 MuTAGEN Algorithm Implementations

49 auto visiting_tiling = std::get<0>(copied_objects);
50 auto first_merging_pair = std::get<1>(copied_objects);
51 auto visiting_same_color_pairs = std::get<2>(copied_objects);
52

53 auto tiling_is_constructable = false;
54 auto merging_pair = first_merging_pair;
55

56 do {
57 visiting_tiling.merge_tiles(merging_pair);
58 std::tie(tiling_is_constructable, merging_pair) =
59 visiting_tiling.is_constructable();
60 } while(
61 (!tiling_is_constructable)
62 && (merging_pair.first != nullptr)
63 && (merging_pair.second != nullptr)
64);
65

66 if(tiling_is_constructable) {
67 auto const tiling_is_refinement_of_pattern =
68 visiting_tiling.is_refinement_of(a_pattern);
69 if(!tiling_is_refinement_of_pattern) {
70 break;
71 }
72

73 tiling = visiting_tiling;
74 visiting_same_color_pairs.erase(first_merging_pair);
75

76 same_color_class_pairs.clear();
77 for(auto const & p : visiting_same_color_pairs) {
78 if(tiling.contains_class(p.first)
79 && tiling.contains_class(p.second)
80 && (p.first != p.second)
81 && (same_color_class_pairs.count(p) < 1)
82 && (same_color_class_pairs.count(
83 TilePartition::PairOfTiles{p.second, p.first}
84) < 1
85)
86) {
87 same_color_class_pairs.insert(p);
88 }
89 }
90 } else {
91 same_color_class_pairs.erase(pair);
92 }
93 }
94 tiling.merge_duplicate_tiles();
95 tiling.reassign_glue_ids();
96 return tiling;
97 }

Listing D.7. An implementation of the PS-H algorithm written using C++ in MuTAGEN
application (2/2).

73

D Code listings .
1 void TilePartition::reassign_glue_ids()
2 {
3 for(auto const & tile : get_classes()) {
4 for(auto && side : Tile::sides) {
5 auto & glue = tile->operator[](side);
6 glue.set_id(-glue.get_id());
7 }
8 }
9

10 auto vertical_glue_id_counter = 1;
11 auto horizontal_glue_id_counter = 1;
12 auto vertical_glue_id_map = std::unordered_map<Glue, Glue>{};
13 auto horizontal_glue_id_map = std::unordered_map<Glue, Glue>{};
14

15 for(auto const & tile : get_classes()) {
16 auto const & north_glue = tile->get_north();
17 if(vertical_glue_id_map.count(north_glue) < 1) {
18 vertical_glue_id_map[north_glue] =
19 Glue{ vertical_glue_id_counter++, 1u };
20 }
21 auto const & south_glue = tile->get_south();
22 if(vertical_glue_id_map.count(south_glue) < 1) {
23 vertical_glue_id_map[south_glue] =
24 Glue{ vertical_glue_id_counter++, 1u };
25 }
26 auto const & east_glue = tile->get_east();
27 if(horizontal_glue_id_map.count(east_glue) < 1) {
28 horizontal_glue_id_map[east_glue] =
29 Glue{ horizontal_glue_id_counter++, 1u };
30 }
31 auto const & west_glue = tile->get_west();
32 if(horizontal_glue_id_map.count(west_glue) < 1) {
33 horizontal_glue_id_map[west_glue] =
34 Glue{ horizontal_glue_id_counter++, 1u };
35 }
36 }
37

38 for(auto const & p : vertical_glue_id_map) {
39 replace_glue(p.first, p.second);
40 }
41 for(auto const & p : horizontal_glue_id_map) {
42 replace_glue(p.first, p.second);
43 }
44 }

Listing D.8. Implementation of function which consolidates the glue types within the set of
tiles and it can further reduce the number of glues in the solution system after synthesising

the solution using the PS-H algorithm.

denotes the set of all tiles in the system. This relation can be written as

σS(T) ∩ σW (T) = ∅.

Finally, because the pair of south and west glues σS(t) and σW (t), respectively, which
determines the behaviour of the tile t in the system is ordered, the glue IDs used in the

74

. D.3 MuTAGEN Algorithm Implementations

south glues can be reused in the west glues. Therefore, the number of needed glues in
the system can be reduced to half.

The function is implemented using the code in Listing D.8. It is easy to see that the
function does not take any input, and it is applied to the instance of the TilePartition
class. First, all glues are assigned with negative IDs, which prevents possible ID colli-
sions during the process of reassigning the IDs (lines 3–8). Then, ID counters and glue
ID maps are initialised for glues in the horizontal direction (east, west) and for glues in
the vertical direction (north, south) separately (lines 10–13). Next, for each tile type in
the system, the following process is repeated. Glue ID of each tile side is tested whether
it is already in the corresponding map. If the glue ID has been mapped, the algorithm
continues to the next glue or tile. Otherwise, the glue is assigned the next ID from the
corresponding counter and the new mapping is added to the corresponding map (lines
16–35). In the end, the new glue IDs is applied to the tiles in the system using the
maps (lines 38–43).

75

Appendix E
User Manuals

E.1 MuTATOR User Manual
The Meta-Material Tile self-Assembly sysTem simulatOR

E.1.1 Dependencies

. CMake 3.10 or newer (https://cmake.org/). GTKmm 3.0 or newer (libgtkmm-3.0-dev) (https://www.gtkmm.org/). Cairomm 1.0 or newer (https://www.cairographics.org/) (should be included in
GTKmm). spdlog (https://github.com/gabime/spdlog) (included in ./external/). Doxygen (http://www.doxygen.org/) with graphviz module (https://www.
graphviz.org/) (optional, for building documentation)

MuTATOR was tested and developed with GCC 7.3.0, GTKmm 3.12.0, Cairomm
1.12.0, Cairo 1.14.6 and Doxygen 1.8.11.

E.1.2 How to compile

For compiling MuTATOR project, it is needed to use standard CMake compilation
procedure from the project root directory.

Type the following commands from the project root directory:

mkdir build && cd build
cmake ..
make

To clean the generated files, type the following commands:

cd build
make clean
cd ..
rm -r build
rm -r bin

E.1.3 How to run

Application executable is located in ./bin/ directory. Type the following line to run
the application:

cd ./bin
./mutator [options] <arg-tas>

76

https://cmake.org/
https://www.gtkmm.org/
https://www.cairographics.org/
https://github.com/gabime/spdlog
http://www.doxygen.org/
https://www.graphviz.org/
https://www.graphviz.org/

. E.1 MuTATOR User Manual

Description of program arguments:

Argument Position Description
<arg-tas> 1st Tile Assembly System (TAS) JSON string of the system to

be simulated. More about TAS JSON representation can be
found in Section E.1.4.

Description of program options:

Option Description
-h, -help, --help, --usage Prints the program usage instructions and

exits.
-v, --version Prints the program version information and

exits.
--verbose, --debug Prints out debug messages and more verbose

messages about program status.
--tas=<path string>,
--tas-path=<path string>,
--input=<path string>

Specifies path to the Tile Assembly System
(TAS) JSON file that will be loaded after pro-
gram start. More about TAS JSON represen-
tation can be found in Section E.1.4

--, --stdin Specifies that the TAS JSON should be read
from the standard input. Useful for piping
output from MuTAGEN directly to MuTA-
TOR. More about TAS JSON representation
can be found in Section E.1.4.

--module-meshes-dir=<path string>,
--module-meshes-path=<path string>

Specifies path to directory with alternative
definitions of tile module meshes. The direc-
tory must contain files to all modules that are
files named tileXX.txt where XX is 01 to 16.
If the path is not valid or the directory does
not contain all module mesh definitions, the
default meshes will be used. More about Mod-
ule Mesh Definition files can be found in the
Section E.1.5

Examples of usage:

Run MuTATOR without any options:

./mutator

Specifying a path to a TAS file to be opened at the startup:

./mutator --tas="../tas/binary_counter.json"

Directly input a TAS JSON as a string argument to the program:

./mutator "{ ...<tas_json>... }"

Specifying to load TAS JSON from standard input or pipe:

./mutator --

Specifying to load TAS JSON directly from MuTAGEN using a pipe:

77

E User Manuals .
./mutagen ../patterns/pattern.png | ./mutator --

Specifying directory with alternative module meshes definitions:

./mutator --module-meshes-dir="../alternative_meshes/"

Specifying to display more verbose messages and debug messages:

./mutator --verbose

Showing program usage instructions:

./mutator --help

E.1.4 Tile Assembly System: JSON Representation

The JSON file structure is described using the following definitions.

Basic Definitions

Tile Assembly System (TAS) is represented by two required elements – tiles and tem-
perature and two optional elements – seed and simulator.

Tiles are simply a set of all tiles which can occur in the system. A single tile is
defined by four glues on each side of the tile (in the 2D case). Glue is defined by its
strength and identifier.

Temperature is an integer constant greater than or equal to 1 and defines the mini-
mum strength of tile glues which is needed for the formation of tile bond.

Seed structure is only used in aTAM simulation, and the seed structure must be
specified in order to simulate an aTAM model. The seed represents the initial tile
structure from which the system grows. Seed can be single tile or array of multiple tiles
with their positions. Simulator element is used to specify preferred simulator for the
given file.

TAS JSON structure

Root elements of the file can be seen in the following commented pseudo-JSON code.

{
"temperature": <positive_integer>,
"tiles": [...],
"seed": [...] | {...}, // optional
"simulator": <id_string> // optional

}

Temperature element

Temperature temperature is an unsigned integer greater or equal to 1. The tempera-
ture must always be specified.

Simulator element

String simulator is optional and can be used to specify the preferred simulator to
simulate the given TAS model.

The recognised (case insensitive) strings are the following:

. aTAM: the aTAM simulation model. 2HAM: the 2HAM simulation model

78

. E.1 MuTATOR User Manual

Tile element

Tile object is specified by the following elements:

{
"north": {

"id": 1,
"strength: 2,

},
"east": {

"id": 2,
"strength: 2,

},
"south": {

"id": 5,
"strength: 2,

},
"west": {

"id": 4,
"strength: 1,

},
"additional_info": {...}

}

Each glue element north, east, south and west is optional and can be skipped. The
skipped glue is represented by the null glue, which means that the tile cannot bond on
this side.

Each specified glue object must have both its elements id and strength, which are
both integers.

Last element additional_info is also optional and carry information about tile
visualization and user information.

The additional_info can contain the following elements:

. label: String that will be shown on tile (string, default:). label-size: Size of the label (float, default: 8.0). label-color: Color of the label (X11 color string, default: black). line-width: Width of the tile border line (float, default: 1.0). line-color: Color of the tile border line (X11 color string, default: black). fill-color: Color of the tile body (X11 color string, default: white)

Seed element

Seed element is optional in general but please note, that it is required for the aTAM
simulation. The seed can be a single object representing a single seed tile, for example

{
...
"seed": <tile_element>,
...

}

or it can be array of tiles with positions, as in the following example

{
...
"seed": [

79

E User Manuals .
{

"position": {
"x": 1,
"y": 0

},
"tile": <tile_element>

}, {
"position": {

"x": 1,
"y": 1

},
"tile": <tile_element>

}
],
...

}

For structure of the Tile object (<tile_element>), see the section above.
Object position has two number elements x and y, which specifying the position of

the seed tile tile in the seed structure. This object must specify both its elements.

Tiles element

The element tiles consists from array of Tile objects (<tile_element>), see the section
above.

{
...
"tiles": [

<tile_element>,
...
<tile_element>

],
...

}

E.1.5 Module Mesh Definition File Structure

The text file that defines a module mesh must have the following format:

<number of vertices N>
<number of triangle elements M>

// empty line
<x> <y> <z> // vertex ID: 1
<x> <y> <z> // vertex ID: 2
... // other vertecies
<x> <y> <z> // vertex ID: N

// empty line
<ID> <ID> <ID> // 1st element
... // other elements
<ID> <ID> <ID> // M-th element

// end of file

Where the <number of vertices N> is a positive non-zero integer number that de-
fines how many mesh nodes will be specified, <number of triangle elements M> is

80

. E.2 MuTAGEN User Manual

positive non-zero integer number that defines how many triangle elements will create
module mesh.

Each vertex is defined as 3D point using floating-point numbers <x> <y> <z> but
only <x> and <y> are actually used for drawing the module mesh. The line on which
the vertex definition lies represents ID of the vertex. Vertex ID are numbered from 1.

Each element is defined on one line, and it defined using at least three vertex IDs
which will be drawn as a triangle in module mesh. The vertex IDs are ignored from the
fourth ID onwards in the element definition; it means that only the first three IDs are
used in drawing.

Example of Module Mesh Definition file:

NOTE: The following example was shortened using ”...”.

1400
618

-1.400000e-01 -5.000000e-01 0.000000e+00
-9.000000e-02 -5.000000e-01 0.000000e+00
9.000000e-02 -5.000000e-01 0.000000e+00
...
-2.481333e-01 -2.736187e-01 0.000000e+00
-2.577768e-01 -2.474160e-01 0.000000e+00
-2.371039e-01 2.841897e-01 0.000000e+00

5 21 165 396 557 556
21 6 166 397 559 558
7 22 167 398 561 560
...
385 386 387 1389 1391 1400
387 388 385 1392 1393 1400
389 390 391 1394 1399 1397

E.2 MuTAGEN User Manual

The Meta-Material Tile self-Assembly system GENerator

E.2.1 Dependencies

. CMake 3.10 or newer (https://cmake.org/). GTKmm 3.0 or newer (libgtkmm-3.0-dev) (https://www.gtkmm.org/). Cairomm 1.0 or newer (https://www.cairographics.org/) (should be included in
GTKmm). spdlog (https://github.com/gabime/spdlog) (included in ./external/). Doxygen (http://www.doxygen.org/) with graphviz module (https://www.
graphviz.org/) (optional, for building documentation)

MuTAGEN was tested and developed with GCC 7.3.0, GTKmm 3.12.0, Cairomm
1.12.0, Cairo 1.14.6 and Doxygen 1.8.11.

81

https://cmake.org/
https://www.gtkmm.org/
https://www.cairographics.org/
https://github.com/gabime/spdlog
http://www.doxygen.org/
https://www.graphviz.org/
https://www.graphviz.org/

E User Manuals .
E.2.2 How to compile

For compiling the whole project, you can use the standard CMake compilation proce-
dure. Type the following commands from the project root directory:

mkdir build && cd build
cmake ..
make

For cleaning the generated files, type the following commands:

cd build
make clean
cd ..
rm -r build
rm -r bin

E.2.3 How to run

Application executable is located in ./bin/ directory. Type the following line to run
the application:

cd ./bin
./mutagen [options] <arg-input> <arg-output>

Description of program arguments:

Argument Position Description
<arg-input> 1st Path to an image file or text file that specifies the re-

quired pattern of tiles. Also, it can be specified using
options --input or --pattern. Lossless image formats
are preferred (e.g. BMP, PNG). All supported input
file formats are listed below, or they can be shown us-
ing ./mutator --help-formats option or below in Sec-
tion E.2.4.

<arg-output> 2nd Path to output file or directory, where the resulting TAS
will be stored. Also, it can be specified using options
--output or --tas. If not specified, left empty or ”--”
the resulting TAS will be printed to standard output.

Description of program options:

82

. E.2 MuTAGEN User Manual

Option Description
--configuration=<path string>,
--config=<path string>

Specifies a path to configuration file which can
be used to specify other program options and
flags. Option values that are specified by the
user are preferred over option values specified by
the configuration file. More about configuration
file format can be found in Section E.2.5.

-h, -help, --help, --usage Prints the program usage instructions and exits.
--help-formats, --list-formats Prints all supported image and text formats of

pattern input file.
-v, --version Prints the program version information and

exits.
--verbose, --debug Prints out more verbose messages about pro-

gram status. WARNING: Cannot be used while
piping output TAS to another program, for ex-
ample, MuTATOR!

--print-tas, --print-output Prints out the output TAS even if the output
file path is specified.

--input=<path string>,
--pattern=<path string>

Path to a image file or text file that specifies
the required pattern of tiles. Lossless image
formats are preferred (e.g. BMP, PNG). All
supported input file formats can be shown
using --help-formats option or below in
Section E.2.4.

--output=<path string>,
--tas=<path string>

Path to output file, where the resulting TAS will
be stored. If not specified, left empty or ”--”
the resulting TAS will be outputted to standard
output. Default: --

--cycles=<positive integer> Number of optimization cycles. Default: 1
--threads=<positive integer> Number of used concurrent threads in optimiza-

tion. The default value corresponds to the num-
ber of processor cores in the system.

--timeout-min=<positive integer>,
--minutes=<positive integer>

Optimization timeout time in minutes. After
the timeout elapses, no more optimization tasks
are spawned. NOTE: The value of this option
is combined with timeout in seconds option
--timeout-sec. Default: 0 minutes

--timeout-sec=<positive integer>,
--seconds=<positive integer>

Optimization timeout time in seconds. After
the timeout elapses, no more optimization tasks
are spawned. NOTE: The value of this option
is combined with timeout in minutes option
--timeout-min. Default: 0 seconds

83

E User Manuals .
Option Description
--seed-fixed, --fixed Specifies that seed structure will be generated

as fixed, that means it cannot be self-assembled.
This is the default behaviour.

--seed-assembling, --assembling Specifies that seed structure will be generated
as self-assembling and the whole assembly will
start from single seed tile.

--seed-left, --left Specifies that one of the seed borders should lie
on the left of the pattern. Default seed position
is left and bottom.

--seed-right, --right Specifies that one of the seed borders should lie
on the right of the pattern. Default seed position
is left and bottom.

--seed-top, --top Specifies that one of the seed borders should lie
on the top of the pattern. Default seed position
is left and bottom.

--seed-bottom, --bottom Specifies that one of the seed borders should lie
on the bottom of the pattern. Default seed po-
sition is left and bottom.

--filter-ids=<integer vector>,
--ignore-ids=<integer vector>

List of integer labels of tiles that will be ex-
cluded from tile set when generating TAS. The
list must consist of only integer labels and must
be enclosed within square brackets [], and val-
ues in the list must be separated by a comma.
Make sure that the whole list is enclosed with
quotation marks when using spaces inside the
list. Example: --filter-ids=[̈1, 2, 3]¨ or
--filter-ids=[1,2,3]. Default: []

--enable-meshes, --show-meshes Specifies that tiles should be rendered with mod-
ule meshes in MuTATOR.

--mesh-mode Does the same thing as specifying the following
options --enable-meshes --ignore-ids=[0].
WARNING: Be careful when using this option,
ignoring tile with label 0 may result in uncon-
structable TAS.

84

. E.2 MuTAGEN User Manual

E.2.4 Supported input formats:
The first program argument or option --input, --pattern must be specified as the
path to file that describes the desired pattern. This input file must have one of the
formats in the following lists and its standard extensions.

Supported image formats:
Label Name
GdkPixdata GdkPixdata
icns MacOS X icon
gif GIF
xpm XPM
xbm XBM
png PNG
pnm PNM/PBM/PGM/PPM
ani Windows animated cursor
tga Targa
ico Windows icon
qtif QuickTime
bmp BMP
jpeg JPEG
wmf Windows Metafile
tiff TIFF
svg Scalable Vector Graphics

Supported text formats:
Text file with extensions *.txt, *.pattern, or *.mutagen, where positive integer

values separated by tabulator in row, represents partitioning of the pattern and new-
line starts next row. Text pattern is rotated 90 degrees counter clock-wise in the final
assembly.

Examples:

Specifying pattern image and output TAS to standard output (implicitly) using options:

./mutagen --input="../patterns/image.png"

Specifying pattern image and output TAS to standard output (explicitly) using op-
tions. Note that options can have arbitrary order, but the program arguments must be
in a defined order:

./mutagen --output="--" --input="../patterns/image.png"

Specifying pattern text file and saving output TAS to file using options with verbose
output:

./mutagen --verbose --pattern="../patterns/file01.txt"
--tas="tas01.json"

Specifying pattern image file and saving output TAS to file using program arguments
and also preview the output TAS in the console:

./mutagen --print-output ../patterns/pattern.bmp pattern_output.json

Specifying pattern text file and saving best output TAS from 10 optimisation cycles:

./mutagen --cycles=10 ../patterns/pattern.txt ./pattern_tas.json

85

E User Manuals .
Showing program usage instructions:

./mutagen --help

Showing all supported input pattern file formats.:

./mutagen --help-formats

E.2.5 Description of the Configuration file
Program options can be provided by the configuration text file with the following rules:

. Line Comments are initiated by #. Empty lines are ignored. One Option specification per line. Option specification consists of Identifier and Value and they are separated by =. Identifier is the same as program option described above in Section E.2.3. Whitespace before Identifier, whitespace between Identifier and = and between = and
Value and whitespace after Value is ignored. Option identifier can omit the initial - or -- from its name. Mentioned Flag is assumed as true if it is not specified otherwise, to disable flag
simply do not list it or set it as false if you want to be explicit. Value itself must not contain whitespace, otherwise it must be enclosed with ”

Example of the Configuration file:

#
MuTAGEN Example Configuration
#

Timeout options
cycles = 24
timeout-min = 1

Seed position and type
seed-bottom # flags are automatically assumed as ’true’
seed-left
seed-fixed = true # explicitly enabled flag

Show Mesh on tiles is disabled
enable-meshes = false # explicitly disabled flag

Do not ignore tiles
ignore-ids = []

Verbose output is disabled
verbose = false

86

	TITLE
	Acknowledgement/Declaration
	Abstrakt
	Abstract
	Contents
	Tables/Figures
	Listings/Algorithms
	Introduction
	Motivation
	Thesis outline

	Theory
	Self-Assembly of Tiles
	Origin of Tile Assembly Model
	A brief overview of recent results
	Preliminaries and notation

	Models of Tile Assembly Systems
	Abstract Tile Assembly Model
	Kinetic Tile Assembly Model
	Two-Handed Assembly Model
	Staged Self-Assembly Model
	Overview of Other Model Variants

	Tile Set Synthesis Problems
	The Shape Assembly Problem
	The Patterned Self-Assembly Problem

	Implementation
	MuTATOR -- The Tile Assembly Simulator
	Features
	Application architecture

	MuTAGEN -- Tile Assembly Synthesizer
	Features
	Application architecture

	Experiments
	MuTATOR Experiments
	Simulating aTAM
	Simulating 2HAM

	MuTAGEN Experiments
	Synthesising TAS
	Comparison of synthesised and analytic solutions
	Influence of seed position on the solution

	Conclusions
	Ideas for future enhancements

	References
	Specification
	Glossary of Abbreviations
	Contents of the CD
	Code listings
	MuTATOR and MuTAGEN Common Data Structures
	MuTATOR Algorithm Implementations
	MuTAGEN Algorithm Implementations

	User Manuals
	MuTATOR User Manual
	MuTAGEN User Manual

