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Abstract

Cílem této práce je vytvo�it audio-vizuální detektor �e�i, t.j. algoritmus, kter˝ auto-
maticky identifikuje, zda osoba ve videozáznamu v danou chvíli mluví. Tato úloha
je d�leûitá pro tzv. audio-vizuální diarizaci nebo audio-vizuální rozpoznávání a u�ení
identit. Navrûen˝ detektor �e�i má dv� fáze. V první fázi je �e� detekována pouze na
základ� vizuální informace. V druhé �ásti jsou jiû detekované �ásti videa testovány
na synchronnost s audio signálem. Z lokalizovan˝ch v˝znamn˝ch bod� na detekované
tvá�i jsou extrahovány geometrické video p�íznaky. Mel-frequency cepstral coe�cients
jsou pouûity jako audio p�íznaky. Synchronnost audio a video p�íznak� je testována
kanonickou korela�ní anal˝zou s fixními projek�ními koeficienty. Tento algoritmus je
schopen vizuáln� detekovat �e� a spolehliv� ov��it synchronnost na dostate�n� dlouhé
�ásti videozáznamu, podle experiment� alespo� 8 sekund.

Klí�ová slova

Detektor �e�i, Audio-vizuální synchronnost, MFCC, CCA
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Abstract

The aim of this thesis is to create an audio-visual speech activity detector, i.e. an
algorithm which automatically identifies whether a person in a video is speaking at a
time. This task is important in audio-visual diarisation problem and in audio-visual
cross modal identity recognition and learning. A two phase speech activity detector
is proposed. First, the speech activity is detected in a video sequence based on the
visual information only. Second, the parts detected in the first phase are tested on
synchrony with the audio signal. Geometrical video features are extracted from facial
landmarks that are localized in a region found by a face detector. Mel-Frequency
Cepstral Coe�cients are used as audio features. The synchrony of audio and video
features is tested by Canonical Correlation Analysis with fixed projection coe�cients.
The algorithm is able to detect lip activity and reliably confirm the synchrony on a
su�ciently long audio-video sequences, at least 8 seconds according to the experiments.

Keywords

Speech Activity Detection, Audio-Video Synchrony, MFCC, CCA
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1 Introduction

Audio-visual speech activity detector is an algorithm which identifies whether a per-
son visible in a video speaks at a time. There are typical situations that occur with
respect to a captured scene and sound. First, only a single person is visible in a video.
Then the task is to determine whether the person is a speaker. Second, several people
are captured in the video and its respective audio signal contains a speech of one of
them. In that case we should determine who is the speaker. Third, multiple persons
are visible but we don’t know if one of them is a speaker.

This task can be solved in two di�erent manners, video-only or audio-video. We can
say that a person is speaking when his/her lips are moving. It can be assumed that a
person is not likely to perform any lip motion when not speaking, or that the lip motion
is rather very small and slow (i.e. are showing only emotional expressions). However,
this might be a false assumption when dealing with multimedia data. Typically in
TV news, an anchor is speaking while a scene containing a di�erent person is being
showed on the screen. This person might had been speaking in the original scene but
the original speech has been replaced by the anchor’s comments. Since a person should
be classified as a speaker only if the same person is seen and heard, it is necessary to
check whether the lip motion is synchronous with the audio signal.

1.1 Motivation

In recent years, the use of media increased rapidly, and the virtual distances between
places got shorter. There are tons of TV shows, series, films and documentaries pro-
duced every year, and it is common to meet other people through video calls and confer-
ences. Sometimes, we just want to sort our media in a meaningful manner. Sometimes,
selecting a part of the whole media file might be useful. The ability to automatically
identify a speaker can become a useful tool in several di�erent applications.

First of all, it can enhance liability of voice detection algorithms in noisy environ-
ments. It can be assumed that a voice signal is likely to be detected if a person’s lips
visible on a video are moving. Voice detection is a necessary preliminary step for speech
recognition. This might be useful even when making a video call. In that case, we want
to transmit only the signal relevant to the conversation in the highest quality, not a
background noise. We can assume that the relevant signal to be transmitted is when
a person visible on the camera is speaking. Therefore, even a distant voice signal of a
person not visible in the video signal should be treated as a noise.

There are several audio-video recording types, such as video conferences and broad-
casted news, where having a way how to extract a contribution of each speaker might
become handy. Diarization and video indexing are exactly the algorithms needed for an
easy orientation within a wast number of files and video hours. A diarization algorithm
takes a video as an input and gives a timeline of who was speaking when as an output.
It has to learn speaker models from the video automatically. This involves a speaker
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1 Introduction

recognition method based on both audio and visual identity, and further assignment of
these two modalities together. A preliminary step for this is a reliable speaker detector,
that can indicate monologue sections within a video sequence.

After all, once we know how to detect synchrony automatically, it might be useful to
make shifted audio-visual signals synchronous, assuming one signal has been delayed
with respect to the other. This can be particularly useful when aligning media that has
been incorrectly received, corrupted by conversion or just asynchronously captured.

1.2 Problem statement

The goal of this thesis is to propose and test an audio-visual speech detector, an
algorithm that indicates a video subsequences where a speaker is visible on the video
by investigating both audio and video signals jointly. A lip activity detector will be
employed first, as a lip motion is a necessary condition for speaking. In addition to that,
the audio and video signals will be tested on synchrony. Only the subsequeces selected
by the video lip activity detector and classified as synchronous will be considered as
speech subsequences.

1.3 Thesis structure

The thesis is structured as follows: Section 2 provides an overview of the algorithms
that have been published in the recent years. The cited publications briefly introduce
problems of the speech activity detection based on both audio and visual signals, audio-
visual synchrony and speaker identification. The Section 3 describes the proposed
methods. The feature extraction from both audio and video signals, as well as their
synchrony measure, is explained. The functionality tests of the proposed methods and
their results are shown in Section 4. The results are discussed and conclusions are made
in Section 5.
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2 Related work

Humans combine audio and visual information in deciding what has been spoken,
especially in noisy environments; human speech perception is bimodal in nature. The
visual modality benefit to speech intelligibility in noise has been quantified as far back
as in [1]. Cross-modal fusion of audio and visual stimuli in perceiving speech has been
demonstrated by the McGurk e�ect [2]. For example, when the spoken sound "ga" is
superimposed on the video of a person uttering "ba", most people perceive the speaker
as uttering the sound "da". This illusory e�ect clearly demonstrates the importance of
optical information in the process of speech perception. There are three key reasons
why vision benefits human speech perception [3]: It helps speaker (audio source) local-
ization, it contains speech segmental information that supplements the audio, and it
provides complimentary information about the place of articulation.

Voice is produced by the vibration of the vocal cord and the configuration of the
vocal tract that is composed of articulatory organs, including the nasal cavity, tongue
and lips. Since some of these articulators are visible, there is an inherent relationship
between the acoustic and visible speech. The basic unit that describes how speech con-
veys linguistic information is the phoneme. Approximately 42 phonemes in American
English [4] and 36 in Czech [5] are generated by specific positions or movements of
the vocal tract articulators, but only some of them are visible. Such visible units are
called visemes. The number of visually distinguishable units, visems, is much smaller
the number of audible units, phonems, therefore a viseme often corresponds to a set of
phonemes. There is no universal agreement about the exact partitioning of phonemes
into visemes, but some visemes are well-defined, such as the bilabial viseme consisting
of phoneme set "p", "b", "m". A typical clustering into 13 visemes introduced in [6] is
often used to conduct visual speech modeling experiments.

Speech consists of consonants and vowels. Vowels are voiced and can be considered
as quasi periodic source of excitation, while consonant are unvoiced and are similar
to random noise [7]. Grouping consonants and vowels form di�erent phonemes and
visemes. Some visually distinctive consonants are acoustically easily confusable and
visa versa [3]. Information about the place of articulation can help disambiguate, for
example, the pairs "p" - "k", "b" - "d" and "m"-"n". On the other hand, consonances
"d" and "n" sound di�erent but look the same as they are members of the same viseme
class. There are only few consonants that require lips to close firmly, specifically "b",
"p" and "m", and the lower lip to touch the upper teeth, "v" and "f". All vowels need
mouth to be open when uttered.

2.1 Speech activity detection

Speech activity detection (SAD) is an important first step of speech processing al-
gorithms, such as speech recognition and speaker recognition. It is usually understood
as a process of identifying all segments containing speech in an audio signal. Several
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types of speech activity detectors can be distinguished according to the data they work
with: audio, video and audio-video.

2.1.1 Audio speech activity detection

There are many audio-domain SAD algorithms available. Audio SAD can be classified
as either time-domain approaches or frequency-domain approaches. Implementation
of time-domain algorithms is computationally simple but better quality of speech de-
tection is usually obtained with the frequency-domain algorithms. SAD include both
unsupervised systems that threshold against some value of an energy or voicing feature
[8] and supervised systems which train a classifier with features such as Mel frequency
cepstral coe�cients (MFCCs) or perceptual linear prediction coe�cients (PLPs). Clas-
sifiers such as support vector machines [9], gaussian mixture models [10], and multi-layer
perceptrons [10] have been successfully used. Algorithms for structured prediction have
also found success, including both hidden markov models (HMMs) [11] and conditional
random fields (CRFs) [12].

However, the reliability of the above audio-domain SAD algorithms deteriorates sig-
nificantly with the presence of highly non-stationary noise. The vision associated with
the concurrent audio source, as already mentioned, contains complementary informa-
tion about the sound which is not a�ected by acoustic noise, and therefore has the
potential to improve audio-domain processing.

2.1.2 Video speech activity detection

The visual aspects of speech detection can be categorized into geometric and non-
geometric analysis. Geometric analysis focuses on the shape of the mouth region and
lip features. The non-geometric analysis makes use of transformation to other domains
to represent certain aspects of the region of interest [13].

Exploiting the bimodal coherence of speech, a family of visual SAD algorithms has
been developed, exhibiting advantages in adverse environments. The algorithm in [14]
uses a single Gaussian kernel to model the silence periods and Gaussian mixture models
(GMM) for speech, with principal component analysis (PCA) for visual feature repre-
sentation. A dynamic lip parameter is defined in [15] to indicate lip motion, which is
low-pass filtered and thresholded to classify an audio frame. HMMs with post-filtering
are applied in [16], to model the dynamic changes of the motion field in the mouth
region for silence detection. This HMM model is however trained only on the visual
information from the silence periods, i.e. without using those from the active periods.

2.2 Audio-video synchrony

In the previous sections, it has been shown that it is possible to detect and under-
stand information from an audio or video signals. Also, that their cross-modal analysis,
assuming signals are synchronous, can help to seek information in an adverse environ-
ment. But are they really synchronous? Is the talking face on the video really the
source of the audio signal?

4



2.2 Audio-video synchrony

In order to investigate synchrony, the source of an audio signal has to be located in
a video first. It is necessary to pinpoint only pixels associated with audio sources and
distinguish them from other moving sources. This problem can be general (anything
can be a sound source), limited on a specific class or adapted on talking faces only.

2.2.1 Audio source localization

The problem of a source location that is unrestricted to a specific class of objects
is investigated in [17]. They presented a robust approach for audio-visual dynamic lo-
calization, based on a single microphone. The solution had to overcome the fact that
audio and visual data are inherently di�cult to compare because of the huge dimen-
sionality gap between these modalities. The proposed algorithm is based on canonical
correlation analysis (CCA) with removed inherent ill-posedness by exploiting the typi-
cal spatial sparsity of audio-visual events.

An example of a class specific detection is a speaker localization in a large space where
the speaker’s face cannot be seen. In this case, the decision has to be based only on
body motion or sound source location. An approach to audio-video speaker localization
in a large unconstrained environment has been proposed in [18]. This method auto-
matically detects the dominant speaker in a conversation with the idea that gesturing
means speaking. The classification is based on CCA of MFCC features and optical flow
associated with moving pixels regions. In order to increase preciseness, a triangulation
of the information coming from the microphones is computed to estimate the position
of the actual audio source.

Talking faces are usually not detected by investigating audio-video synchrony. A face
detector is used instead and the synchrony is checked for each individual detected face.

2.2.2 Talking faces speech synchrony

Asynchrony of a talking face and an audio signal can occur in several cases. First, an
audio or video signal can be delayed. Second, a narrated scene where someone speaking
is being shown while a narrator is speaking. Third, a not talking face or a picture is
visible but the audio signal consists of a speech. Each of these cases are likely to happen
in di�erent types of videos, therefore methods dealing with asynchrony detection are
usually problem specific. Work [19] presents an empirical study to review definitions of
audiovisual synchrony and examine their empirical behavior.

Audio-video latency is a common problem when broadcasting or streaming media,
this delay is sometimes corrected by the end user device or application. All the other
cases are synchronous from the technical point of view, however the speaker is not
visible in the video. Speech and narrated scenes are usually being distinguished in
news, sports or TV shows. Only small time windows can be considered for synchrony
detection as the scene can be very dynamic. This problem is then naturally expanded
to video indexing and diarization, discussed in section 2.3.1.

Liveness is a test that ensures that biometric cues are acquired from a live person
who is actually present at the time of capture [20]. The liveness detection is used as
impostor attack prevention in biometric systems based on speaker identification and
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face recognition. The talking face modality provides richer opportunities for verifica-
tion than any ordinary multimodal fusion does [21]. The signal contains not only voice
and image but also a third source of information, the simultaneous dynamics of these
features. Therefore, the liveness check is performed by measuring the degree of syn-
chrony between the lips and the voice extracted from a video sequence. The systems
are usually based on CCA [21, 22, 23] and coinertia analysis (CoIA)[21, 22, 23, 20].
Also, HMMs were used in [20].

2.3 Speaker identification

Speaker identification can be a very complex problem and its solution has to be al-
most exclusively tailored for a specific application. Usually, the existence of only one
speaker at a time is assumed, however some papers are dealing with multiple active
speakers [24]. Sometimes, we know what is being said, i.e. a video transcript is avail-
able. A high precision of automatic naming of characters in TV videos [25] was achieved
by combining multiple sources of information, both visual and textual. Sometimes, we
even don’t know whether there is a speaker in a video.

Among the di�erent methods that perform speaker detection, only a few are perform-
ing the fusion of both audio and video modalities. Some of them just select the active
face among all detected faces based on the distance between the peak of audio cross
correlation and the position of the detected faces in the azimuth domain [26, 27]. A few
of the existing approaches perform the fusion directly at the feature level, which relies
on explicit or implicit use of mutual information [28, 27, 29]. Most of them address the
detection of active speaker among a few face candidates, where it is assumed that all
the faces of speakers can be successfully detected by the video modality.

A good example of an application, where speaker detection has to be performed in
real time, is a video conference (distributed meeting). A boosting-based multimodal
speaker detection algorithm is proposed by [30]. They compute audio features from the
output of sound source localization, place them in the same pool as the video features,
and let the logistic AdaBoost algorithm select the best features. This speaker detector
has been implemented in Microsoft RoundTable. A detection based on mouth motion
only is deployed in [31].

2.3.1 Diarization and video indexing

Speaker diarization is the task of determining “who spoke when?” in an audio or
video recording that contains an unknown amount of speech and also an unknown
number of speakers . More formally this requires the unsupervised identification of
each speaker within an audio stream and the intervals during which each speaker is
active [32]. The application domains, from broadcast news, to lectures and meetings,
vary greatly and pose di�erent problems, such as having access to multiple microphones
and multimodal information or overlapping speech. Clear examples of applications for
speaker diarization algorithms include speech and speaker indexing, document content
structuring, speaker recognition (in the presence of multiple or competing speakers), to
help in speech-to-text transcription, speech translation est.
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2.3 Speaker identification

Speaker diarization of AV recordings usually deals with two major domains, broad-
casted news (BN) and conference meetings. The algorithms has to be adapted according
to the di�erences in the nature of the data. BN usually has better signal-to-noise ratio
but the audio often contain music and applause. Also, people occur less frequently
and the actions are less spontaneous. On the other hand, meetings are more dynamic
with possibly overlapping speech. A multimodal approach to speaker diarization on
TV talk-shows is proposed in [33]. Work [34] proposed a Dynamic Bayesian Network
(DBN) framework that is an extension of a factorial Hidden Markov Model (fHMM)
and models the people appearing in an audiovisual recording as multimodal entities
that generate observations in the audio stream, the video stream, and the joint audio-
visual space.

Indexing is trying to structure TV-content by person allowing a user to navigate
through the sequences of the same person [35]. This structuration has to be done
without any predefined dictionary of people. Most methods propose to index people
independently by the audio and visual information, and associate the indexes to obtain
the talking-face one [25, 36, 37, 38]. This approach combines clustering errors provided
in each modality which is trying to be overcome in [35] .
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3 Methods

The implementation of an audio-visual speech detector consists of several steps that
have to deal with both audio and video stream. As not all pixels in video frames are
important for speech detection, as well as not all audio frequencies, the dimensionality
can be reduced by extracting only the important features. Features from audio and
video streams are extracted separately and then analyzed together in order to check
their synchrony.

The number of video frames is significantly smaller than the number of audio sam-
ples. However, we want to analyze frames and samples that correspond to each other.
In this work, a subsequence of samples corresponding to a frame is considered as in
Figure 1. Video features are extracted form each individual frame and audio features
from the corresponding subsequence of audio samples, therefore there is exactly one
audio and one video feature vector describing each frame. There is no audio samples
overlap of two consecutive subsequences.

All extracted features need to be as independent on the speaker as possible. The
used methods have to treat both female and male voices, as well as video features have
to be invariant to the face size and head pose.

Frame NFrame N-1 Frame N+1 Frame N+2

Video
stream

Audio
stream

tN tN+1tN-1 tN+2
Time

Subsequence N

Figure 1 Audio subsequence corresponding to a frame N

3.1 Audio features

An acoustic speech signal contains a variety of information. It contains a message con-
tent as well as information from which the speaker speaker be identified. The most com-
monly used audio features for both speech and speaker recognition are Mel-frequency
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Figure 2 MFCC computation steps along with the results for each step of a single processed
audio subsequence

Cepstral Coe�cients (MFCCs), so they were chosen as audio features for this work.

Computing of MFCC features consists of six steps (as shown in Figure 2): framing,
windowing, Fast Fourier Transform (FFT), Mel-frequency wrapping, logarithm and
Discrete Cosine Transform (DCT).

The first step of MFCC computation is framing. A frame can be seen as the result of
a speech waveform multiplied by a rectangular pulse whose width is equal to the frame
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length. As we want to compute one audio feature vector in respect to each video frame,
the frame length will be equal to the time di�erence between two consecutive video
frames (i.e. 40ms for frame rate 25fps). Windowing by a rectangular shape window
would introduce a significant high frequency noise at the beginning and end points of
each frame, because of the sudden changes from zero to signal and from signal to zero.
To reduce this edge e�ect, the Hamming window is used instead. The coe�cients of a
Hamming window w are computed from the following equation.

w(n) = 0.54 ≠ 0.46 cos
3 2fin

N ≠ 1

4
, 0 Æ n Æ N ≠ 1 (1)

The window length is N .

The next step is a conversion from the time domain to the frequency domain by
computing Fast Fourier Transform (FFT). The FFT is a fast implementation of the
Discrete Fourier Transform (DFT), shown in equation (2). The DFT of a vector x of
length N , a vector of the audio signal values in a particular frame , multiplied by the
windowing function vector, is another vector X of length N .

X(k) =
N≠1ÿ

n=0
x(n)w(n)Êkn

N , k = 0, 1, . . . , N ≠ 1 (2)

where

Êkn
N = e≠j( 2fi

N ) (3)

The procedure continues with Mel-frequency warping. A Mel is a unit based on the
humanly perceived pitch di�erence between two particular frequencies. The Mel scale
has approximately linear frequency spacing below 1000 Hz, and logarithmic spacing
above [39]. Two times higher value in Mel indicates two times higher pitch (the pitch
di�erence equal to one octave). The reference point between this scale and normal
frequency measurement is defined by assigning a perceptual pitch of 1000 Mel to a 1000
Hz tone, 40 dB above the listener’s threshold [40]. The conversion formula is expressed
by the following equation.

mel(f) = 2595 log
3

1 + f

700

4
(4)

After the FFT block, the spectrum of each frame is filtered by a set of filters. The
filter bank consists of 32 triangular shaped band-pass filters, whose centers are equally
spaced in the Mel space, see Figure 3. This gives a vector c of 32 discrete values, but
only the first thirteen, including the zeroth order coe�cient, are further considered.
Their logarithm is then transformed by Discrete Cosine Transform (DCT), as shown in
the following equation,

Y (k) = a(k)
Mÿ

m=1
c(m) cos

3
fi

2M
(2m ≠ 1)(k ≠ 1)

4
, k = 1, 2, . . . , M (5)
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3.1 Audio features
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Figure 3 Triangular shaped band-pass filters in the frequency space

where

a(k) =

Y
__]

__[

aÔ
M

, k = 1
Ú

2
M

, 2 Æ k Æ M

(6)

M is the number of cepstral coe�cients (i.e. the length of the vector c). The resulting
MFCC features along with the original speech signal and its spectrogram can be seen
in Figure 4.

The original MFCCs are used along with their delta (first order derivatives) and delta-
delta (second order derivatives) values, as they describe the change between frames. In
total, 39 audio features are extracted from a subsequence of audio samples correspond-
ing to each video frame. In all experiments, Voicebox speech processing toolbox for
Matlab [41] is used to extract MFCCs.
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Figure 4 Speech signal and its corresponding spectrogram and MFCC features, resectively

3.2 Video features

Video features describe the lip motion of a potential speaker. In this work, geomet-
rical lip features are used, therefore the features describe the shape of a mouth rather
than raw intensity values in the mouth region. The extraction of such features consists
of several steps, namely face detection, facial landmarks localization and geometrical
features extraction. Also, the features have to be normalized so that they are invariant
to the face size and head pose. However, we suppose that all analyzed speakers are
facing the camera; no profile views are considered for simplicity.

3.2.1 Face detection and facial landmarks localization

The first step of extracting video features is a face detection. In this work, a reliable
commercial face detector Eyedea [43], based on Waldboost [42], is used. This detector
provides a bounding box for each face that appears on a frame and the detection con-
fidence.

As the next step, facial landmarks are estimated on each of the detected faces. The
Chehra detector [44] is used for facial landmark localization in all experiments. The
method estimates landmark locations by finding parameters of a 3D shape model by
means of regression. A facial model is initiated and then the incremental update of
the cascade of linear regression is done by propagating the results from one level to
the next. As learning the cascade of regression is by nature a Monte-Carlo procedure
[45], every level is trained independently using only the statistics of the previous level.
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3.2 Video features

Figure 5 A result of the face detection (the red box) and facial landmarks localization (the
green stars)

Finally the landmarks are found by projecting the model to the image.

The detection and facial landmark localization is done in each frame independently,
no tracking is used. This is mainly due to the code availability, as the authors of Chehra
provided Matlab codes just for landmarks localization in a single image, even though
the tracking procedure is described in [44].

The result of the face detection is a bounding box and the facial landmark detector
provides positions of 49 facial landmarks for each face in a video frame. An example of
the detection and localization result is shown in Figure 5.

3.2.2 Feature extraction and normalization

The positions of facial landmarks cannot be used directly as video features, since their
value depends on the face position and size in a particular frame. Neither coordinates
within the face bounding box can be used, as the description would not be invariant
to the head pose. Also, some of the landmarks are redundant for lip activity description.

First, the positions of facial landmarks are normalized. The normalization is done by
a homography mapping from the estimated facial landmarks coordinates in a frame xe

to the corresponding initial facial model coordinates xi used by the Chehra detector.
The mapping is given by the equation xi = Hxe [46], where points xi and xe are in
homogeneous coordinates and H is a 3 ◊ 3 matrix. The matrix H has to be estimated
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3 Methods

from the facial points, preferably those that are not in the mouth region, as the lip
landmarks are the main subject of normalization.

The equation xi = Hxe may be expressed in terms of the vector cross product as
xi ◊ Hxe = 0. If the j-th row of the matrix H is denoted by hj€, than we may write

Hxe =

Q

ca
h1€xe

h2€xe

h3€xe

R

db (7)

.
Writing xi = (x1

i , x2
i , x3

i ), the cross product may be given explicitly as

xi ◊ Hxe =

Q

ca
x2

i h3€xe ≠ x3
i h2€xe

x3
i h1€xe ≠ x1

i h3€xe

x1
i h2€xe ≠ x2

i h1€xe

R

db (8)

.
Since hj€xe = x€

e hj for j = 1, 2, 3, this gives a set of three equations in the entries of
H, which may be written in the form

S

WU
0€ ≠x3

i x€
e x2

i x€
e

x3
i x€

e 0€ ≠x1
i x€

e

≠x2
i x€

e x1
i x€

e 0€

T

XV

Q

ca
h1

h2

h3

R

db = 0 (9)

.
These equations have the form of Aih = 0, where Ai is a 3 ◊ 9 matrix and h is a
9-vector made up of the entries of the matrix H. As only two of the equations in 9
are linearly independent, it is usual to omit the third equation [46]. Then the set of
equations becomes

C
0€ ≠x3

i x€
e x2

i x€
e

x3
i x€

e 0€ ≠x1
i x€

e

D Q

ca
h1

h2

h3

R

db = 0 (10)

.

Each point correspondence gives rise to two independent equations in the entries
of H. Given a set of four such point correspondences, we obtain a set of equations
Ah = 0, where A is the matrix of equation coe�cients build from the matrix rows Ai

contributed from each correspondence, and h is the vector of unknown entries of H.
We seek a non-zero solution h. The matrix A is a 8 ◊ 9 matrix of rank 8, and thus has
a 1-dimensional null-space which provides a solution for h.

The coe�cients of a homography matrix H are computed from four point correspon-
dences that are shown in Figure 6. These points were selected for these reasons: no or
minimal movement of these points when speaking, no selected point is in the mouth
region, no three points are on a single line. This gives suitable normalization of the
facial landmarks, especially of the mouth region.

As not all facial landmarks are needed for speech detection, only those from the mouth
region are further considered. Actually, as lips tend to have shape of an ellipse when
uttering vowels, only two parameters describing the minor and major axes are needed.
Therefore, only the distances between lips in the horizontal and vertical directions are
measured. These two distances are computed from the normalized facial landmarks as
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Figure 6 The four points used to estimate the homography mapping (red circles)

shown in Figure 7. The video descriptor for each face in a frame is a vector these two
distances and their first and second derivatives, in total 6 features.
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Figure 7 Two distances used as video features (green line segments)
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3.3 Canonical correlation analysis

An important tool for understanding the relationship between audio and video data
is canonical correlation analysis (CCA). The CCA is a statistical method to measure
the relationship between two sets of multidimensional data [47]. We can use it to find
the linear combinations of audio variables and video variables whose correlations are
mutually maximized. In other words, it finds the best direction to combine all the audio
and image data, projecting them onto a single axis.

Let v represent the video features and a be a vector of audio features corresponding
to a single frame, as defined in sections 3.2 and 3.1 respectively. As the number of audio
and video features is di�erent, the length of the vectors v and a is also di�erent. Both
signals are considered as random vectors due to their temporal variations. Both vectors
v and a are assumed to have a zero mean. Each of these vectors is projected onto a
one dimensional subspace by coe�cient vectors wv and wa, respectively. The result
of these projections is a pair of canonical variables v€wv and a€wv. The correlation
coe�cients of these two variables defines the canonical correlation between v and a
[48],

fl = E[w€
v va€wa]

Ò
E[w€

v vv€wv]E[w€
a aa€wa]

= w€
v CvawaÒ

wv
vCvvwvw€

a Caawa

, (11)

where E denotes the expectation and C is a covariance matrix. Specifically Cvv and
Caa are the covariance matrices of v and a, respectively; Cva is the cross-covariance
matrix of the two vectors.

Let Nv be the dimension of visual features, Na the dimension of audio features and
NF the number of frames. Define a matrix V œ RNF ◊Nv , where a row t contains the
video features vector v€(t). In the same way, define a matrix A œ RNF ◊Na , where
a row t contains the coe�cients of the audio signal a€(t). The empirical canonical
correlation from equation (11) becomes

fl = w€
v (V€A)waÒ

w€
v (V€V)wvw€

a (A€A)wa

(12)

The CCA is defined as the maximum fl over the coe�cients wa and wv,

flú = maxwv ,wa
fl. (13)

This problem is solved by the equivalent eigenvalue problem [48]:

C≠1
vv CvaC≠1

aa Cavwv = fl2wv

C≠1
aa CavC≠1

vv Cvawa = fl2wa
(14)

Maximizing the correlation is equivalent to finding the largest eigenvalue and its cor-
responding eigenvector. It is necessary to solve only one of these equations, as the
solution of the other easily follows by using the solution of the first one.
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3.3 Canonical correlation analysis

The coe�cients wa and wv are usually estimated for each couple of matrices V and
A separately, i.e. the coe�cients are di�erent for each investigated audio-video subse-
quence. This is computationally ine�cient as the eigenvalue problem in equation (14)
has to be solved for each subsequence. Also, as the direction of the highest correlation
is di�erent every time, the discrimination between synchronous and asynchronous sub-
sequences might not be very accurate. Depending on the length of the subsequence,
the coe�cient might be estimated so that the correlation is actually higher for asyn-
chronous frames rather than synchronous. For these reasons, it is preferred to estimate
coe�cients on a longer training sequence and keep them fixed for test subsequences.

In this work, the coe�cients wa and wv are estimated only once on a long audio
video sequence and then used for computing fl of each tested subsequence. The idea
is to classify the subsequences with a high fl value as synchronized and vice versa. In
order to do so, an optimal threshold on fl is found.
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4 Experiments

The speaker is detected in two di�erent ways, by considering the visual information
only and by adding a synchrony test. First, a video only lip activity detector, which
estimates speech parts of a video from visual features only, was tested. Then the prop-
erties of the CCA used as a statistical score of synchrony are investigated. At last, an
audio-visual speech detector is proposed as an application of the CCA with the use of
the video lip activity detector.

4.1 Video lip activity detection

The lip activity detection is based on a simple fact that the lips are moving when a
person is speaking. The video features described in Chater 3.2 directly describe how
much is a the mouth open at a time. The idea is to classify a part of a frame sequence
as “speaking” only when the lips are closing and opening quickly. If a mouth is open for
a long time or the motion is too slow, it is probably just an expression of an emotion,
such as smile or surprise. Figure 8 shows the measured vertical distance between lips
(blue line); the horizontal distance depends on what is uttered, but it doesn’t play a
key role in the lip activity detection.

Sliding window filter As we refer to a quick change of the distance between lips, it is
better to work with the first derivatives, that are shown in Figure 8 (green line). To
detect the speaking parts, two sliding window filters and thresholding were employed.
The first sliding window filter computes the standard deviation of the first derivatives
in a particular window. As thresholding of this result usually provides a lot of short
“speaking” subsequences rather than less longer ones, the result is further filtered by
a mean filter. The mean filter reduces the number of short time low value results,
therefore we get fewer subsequences but of a longer duration. An example of the signal
after filtering is shown in Figure 9.

Window size dependency The dependency of the result on sizes of the sliding win-
dows has been tested. We thresholded the filtered signal by di�erent thresholds; if the
threshold is low, the rate of false positives is very high and vice versa. The overall error,
the rate of false positives and false negatives, is decreasing with the window size. The
test results can be seen in Figure 10. The result is better if the standard deviation filter
window is bigger and can be improved even more by enlarging the mean filter window
size. A larger window also means a higher threshold used for classification. Overall, the
error does not depend on the window sizes significantly. The key aspect of windowing
by a larger windows is to detect longer subsequences, rather than a lot of shorter ones,
as it is easier to determine synchrony on more frames.
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4.1 Video lip activity detection
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Figure 8 Original video features (vertical distance between lips and its firt derivatives) along
with their original and estimated labels of the "speaking" parts
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Figure 9 First derivatives of the vertical distance between lips filtered by std and mean sliding
window filters along with their original and estimated labels of the "speaking" parts (the same
video segment as in Figure 8)
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Figure 10 Dependency of false negative and false positive rate on the sliding windows sizes and
threshold for the video lip activity detector(|wstd| and|wmean| are sizes of the std and mean
window filters, respectively)

The lip activity detector was tested on the Cardi� Conversational Database [49], The
achieved accuracy was 78.9%, using window sizes 5 for the standard deviation filter and
15 for the mean filter, and threshold 0.8, a detailed result can be seen in Table 1. The
major source of inaccuracy was an incorrect localization of facial landmarks, which
could not be corrected by the lip activity detector itself. Moreover, the method is very
sensitive to the threshold setting as every person opens mouth in a di�erent way and
the landmark localization work with di�erent accuracy for each person. The lip motion
is a biometric marker for people identification [50]. However, not all speech parts can be
detected correctly even if all the features were perfect. There are some typical motions
that look like visemes, but actually do not come with any sound, such us breathing in
with an open mouth before starting speaking.

4.2 Introspection of synchrony detection by the CCA

Canonical correlation analysis expresses the correlation between audio and video sig-
nals and is being used as a statistical score of synchrony in this work. Several test has
been done in order to prove the capability of CCA to express the level of synchrony
between audio and video signals. The dependency of the CCA result on the number of
used frames has been investigated for both the training and testing. Also, a possibility
of using more than one eigenvector in equation (14) is discussed.

The training and testing of the CCA was done on two independent video sequences.
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4.2 Introspection of synchrony detection by the CCA

Both videos contain a single speaker talking without pauses, the speaker is di�erent
in both videos. The CCA coe�cients were estimated on a single video file, using the
whole audio-video sequence. The testing was done on the second video using di�erent
number of frames in tested subsequences. The videos were captured by a conventional
web camera at resolution 720x480 at frame rate 25 fps. The duration of the training
and testing video is 139 and 63 seconds, respectively.

4.2.1 Coe�cient estimation

The CCA coe�cients are estimated from the audio and video features of a video
sequence. The result vary according to the length of the used sequence. The coe�cient
estimated on a short sequences have dominant values, however the selection of these
dominant elements vary a lot from sequence to sequence. It has been shown that for
training coe�cient values wa and wv converge to unique vectors with the increasing
length of the used sequence. Figure 11 shows the convergence of the estimated coe�-
cients.

The expressiveness of the CCA was tested by sliding window of length |w| that is
equal to the number of frames in a tested video subsequence. This window was shifted
one by one frame throughout the whole tested video sequence and the CCA result was
computed on each of them. Taking a sequence of synchronous audio and video signals,
the audio signal has been shifted by N frames with respect to the video signal in each
window. This way, both synchronous and asynchronous signal samples are investigated.
Such results for each window and audio shift are shown in correlation diagrams.

Correlation diagram The correlation diagrams show the capability of the CCA to
express the level of synchrony. The correlation diagram is a 2-D matrix where each
column corresponds to a video frame number and row to the audio shift by N frames.
By a frame number we mean the center frame of a tested window. Audio shift value
means that the audio signal was shifted by N frames with respect to the video signal.
The CCA result for each window center frame and audio shift is expressed by the color
at a particular position. The values were mapped to a colormap according to their
value so that the higher values are warmer and the lower are colder colors.

The CCA coe�cient were estimated on the entire training video. The quality of the
statistical score of sychrony computed by using these estimated coe�cients was first
tested on the training video. A correlation diagram has been computed for a window
size 200 frames, see Figure 12. This initial test shows that the di�erence between
the synchronous and asynchronous tested windows is readily apparent. In all further
experiments, we use this fixed projection.

4.2.2 Synchrony analysis

It has been shown that the CCA result is capable to distinguish synchronous and
asynchronous sequences. However, the test in Figure 12 was carried out on the same
video as the CCA coe�cients were estimated from. In order to prove that the CCA has
the the capability to distinguish synchronous and asynchronous sequences in general,
the CCA has been tested on an independent video. In the following tests, the same
coe�cients as in the Section 4.2.1 were used (coe�cient vectors estimated on the entire
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4 Experiments

Figure 11 Convergence of the CCA coe�cients with a longer audio-video sequence used for
the estimation (each column contains concatenated vectors wa and wv). The beginning of
the sequence used for estimation is the same for all columns, only the last frame number
changes in each column, therefore in each column a di�erent number of frames was used for
coe�cient estimation.
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Figure 12 The dependency of the CCA result on an audio shift shown on a correlation diagram
(testing and training on the same video). The CCA was computed for a sliding window of
the length 260 frames. The distinct red line of synchronous sequences is nicely visible.
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4.2 Introspection of synchrony detection by the CCA

training video), but a di�erent video with a di�erent speaker and a di�erent text was
used for testing.

Window size dependency The correlation diagrams were computed for di�erent win-
dow sizes. The large windows provide an expected highly discriminating results, how-
ever the small windows su�er from aperture problem. For small windows, a locally
high correlation are observed even for asynchronous windows. The dependency can be
seen in Figure 13. A clearly visible di�erence between synchronous windows and win-
dows with the sound track shifted by N frames can be seen for window size |w| longer
than 200. Window size between 100 and 200 provides a high value for synchronous se-
quences, however some asynchronous sequences show high values of correlation as well.
This phenomena is even more noticeable for |w| smaller than 100. This is probably
caused by a local similarity of the signal. A vertical cross-section through the diagram
in Figure 13 for frame number 1200 can be seen in Figure 14. The values for small
window are rather oscillating, however an obvious peak expressing the synchrony is
visible for windows bigger than 100 frames. The reliability of the synchrony check by
the CCA highly depends on the window size.

Classification The CCA provides a single value for the whole AV subsequence. As
the resulting value increases with a level of synchrony, it is intuitive to use thresholding
for the classification. In order to find the best threshold, we constructed histograms of
values for synchronous and asynchronous subsequences. The histograms are computed
from the diagrams shown in Figure 13 and can be seen in Figure 15. The histogram of
synchronous samples is computed from the diagram row of audio shift 0; all windows
except for those between audio shifts -5 and 5 were used to computed histograms of
the asynchronous samples. The values close to the audio shift 0 were eliminated as the
audio shift is too small to consider them as asynchronous, however they are not entirely
synchronous. As expected, the error (histogram overlap) decreases with the window
size. The mean of asynchronous subsequences remains at zero for all window sizes, but
their standard deviation is decreasing with larger windows. We can observe the same
phenomenon for synchronous subsequences. The values for a window as small as ten
frames are almost indistinguishable. However, the discriminability grows with a longer
window size. This means that it is possible to classify an AV subsequece as synchronous
or asynchronous by thresholding if the used window is large enough.

Projections to other directions The number of CCA coe�cient vectors is equal to
the minimum number of features of both audio and video feature vectors. As we use
6 video features and 39 audio features, the number of CCA coe�cient vectors is 6.
The linear combination of the first coe�cient vector, an eigenvector with the highest
corresponding eigenvalue, and the feature vector gives projection to the directions with
the highest correlation. Therefore, the first coe�cient vector is the most significant for
the synchrony evaluation. As all the coe�cient vectors, the eigenvectors in equation
(14), are orthogonal, their projection provides an independent results that can be used
either separately or combined together. Correlation diagrams for each individual coef-
ficient vector computed by a sliding window of size 250 frames can be seen in Figure
16. The result of the first coe�cient vector gives an already expected result. How-
ever, the second shows that the CCA values are higher for more subsequences that are
synchronous. The other four does not seem to have a significant meaning while used
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Figure 13 Correlation diagrams computed with a di�erent length of the sliding window |w| (the
number of frames that are used for computation). The result of the CCA is very dependent
on the number of frames used for the computation
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Figure 14 Cross-section (one column) of the diagrams in Figure 13 (window centered at the
frame number 1200). A distinct mode of synchronized subsequences when CCA was computed
on a large window, oscillations otherwise.

alone, however their combination may have a better result than the first coe�cient only.

Averaging projections The idea is to average results of multiple coe�cient vectors in
order to increase values for synchronous frames and vice versa. Since the contributions
of the coe�cient vectors are not correlated, their combination might filter out random
fluctuation of high correlation for small windows. The resulting diagrams of averaging
are in Figure 17. The first diagram is a result of the first coe�cient vector only, the
second is an average of the first two, the third is an average of the first three etc. The
number of high values is increasing for windows in the row of synchronous frames, as
we wanted. However, the values belonging to asynchronous frames are increasing as
well. This might not be an improvement for the final classification.

Error The histograms shown in Figure 15 are computed from the first CCA coe�cient
vector only. It might be interesting to see whether the averaging of results from multiple
coe�cient vectors can decrease the error. The error is estimated from the histograms by
integrating their overlap. The intersection of the histogram curves defines the optimal
threshold. The error is then half of the sum of incorrectly classified subsequences.
A graph that shows a dependency of error on the window size for multiple averaging
results is shown in Figure 18. The slope of curves representing errors of averaged results
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Figure 15 Histograms of the CCA results for asynchronous (red curve) and synchronous (green
curve) video subsequences computed from the diagrams shown in Figure 13. The histograms
are shown for an increasing window size.
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4.2 Introspection of synchrony detection by the CCA
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Figure 16 Correlation diagram computed by a fixed size window. Each of the correlation
diagrams is a projection by a di�erent CCA coe�cient vector. The diagrams are sorted by
the eigenvalue corresponding to each of the coe�cient vectors in the decreasing order.
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Figure 17 Correlation diagrams computed by averaging the results from each CCA coe�cient
vector (i.e. average of the diagrams in Figure 16). The first diagram is the result of the first
coe�cient vector only, the second is the average of the first and second one, the third of the
first three est.
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Figure 18 Error (computed form the histogram overlaps) dependency on the window size and
averaging of the results contributed by individual coe�cient vectors

from the first three and four coe�cient vectors is decreasing more steeply than of the
others. Although, this phenomenon changes at window size 150 frames. The averages
from the first five and six coe�cient vectors seems to have the worst result. The best
result, especially for large windows, provides the first coe�cient vector without any
averaging. Its error is as low as 1% for a window of size 300 frames.

Precision-recall curves As the last test, we investigated precision-recall (P-R) curves.
Precision is a fraction of all positive classifications that are true positive; recall is a frac-
tion of all originally positive instances that were classified as positive. The precision
and recall is measured for an increasing threshold, which spans a P-R curve. The best
curve is the one which has the biggest area under the curve. The dependency of the
P-R curve on the window size can be seen in Figure 19. It clearly shows that a longer
window improves the P-R curve. Figure 20 shows the e�ect of averaging is not very
significant. However, the P-R curves of the averaged results indicate a slightly better
performance for certain threshold settings.

4.3 Applications of the CCA

The CCA can be employed as a synchrony test. It has been used to improve the
video only lip detector by testing the synchrony. Additionally, the CCA result for
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Figure 19 Precision-Recall curve of the CCA results for di�erent window sizes on which the
CCA is computed (only the first coe�cient vector is used)

shifted windows provides a tool that can estimate an unknown delay between audio
and video signals in case of a corrupted sequence.

4.3.1 Detection of synchronized video segments

The speech can be estimated from the lip motion only, supposing that the speaker is
always speaking when his/her lips are moving. However, in some cases, the lip motion
may not always indicate speech. There are some situations when lips are moving and
nothing is uttered, such as breathing in or smiling, or the uttered sound is not neces-
sarily a speech, i.e. emotional expressions. Also, the speaker might be di�erent from
the person that is visible on the video, however this case is rather rare.

It has been shown that the synchrony can be determined on a large windows with
a high accuracy. However, to test a large window in an arbitrary video might not be
always reliable. Almost all videos that require a speech detection has some level of dy-
namics. A change of speakers within a tested video sequence would introduce boundary
artifacts. A part of the tested sequence would contain a voice, face or both of a di�erent
speaker and the synchrony test would not be reliable.

In order to overcome these problems, we propose a two phase audio-visual lip activ-
ity detector. In the first phase, the potential speech parts are detected by the video
lip activity detector described in 4.1. This eliminates the boundary artifacts, i.e. it

30



4.3 Applications of the CCA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

ci
si

o
n

 

 

average of 1
average of 2
average of 3
average of 4
average of 5
average of 6

Figure 20 Precision-Recall curve of the averaging CCA results for window size |w| = 200. Each
curve was obtained by averaging the results of individual coe�cient vectors

ensures that the tested parts really contain only the face of one potential speaker. The
preliminary speech part detection also provides subsequences as long as possible, so the
window for testing the synchrony is long enough. The second phase is the synchrony
test by computing the CCA. The CCA is computed on each of the subsequences selected
by the lip activity detector. The subsequence represented by the CCA result is then
classified by thresholding.

Cardi� Conversational Database The proposed audio-visual speech activity detector
was tested on the Cardi� Conversational Database [49]. The database contains of 16
videos that represent 8 conversations. Each speaker was captured separately on a single
video, however the two videos contain a single conversation. Therefore, we tested the
videos one by one, but the two videos belonging to one conversation were tested with
audio signal computed by summing the two audio signals together. This way, each
video contained both synchronous and asynchronous parts.

First, the video only lip activity detector with threshold 0.8, standard deviation filter
window size 5 and mean filter window size 15, was used to detect the speech parts. Each
part was then analyzed for synchrony. The CCA was computed on each subsequence
selected by the lip activity detector and classified as synchronous if the CCA result
value was higher than 0.2. The classification error was then computed as the sum of all
incorrectly classified frames over the number of frames in the tested video. The CCA
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video name video only audio-video CCA on ground-truth segments
P1_P2_1402_C1 0.2680 0.1816 0.1150
P1_P2_1402_C2 0.2114 0.2383 0.1603
P1_P3_1502_C1 0.2806 0.2801 0.1032
P1_P3_1502_C2 0.1979 0.1920 0.0928
P3_P4_1502_C1 0.1208 0.2271 0.0518
P3_P4_1502_C2 0.1683 0.1941 0.0819
P5_P2_1003_C1 0.1355 0.1511 0.0144
P5_P2_1003_C2 0.4654 0.3797 0.0933
P5_P3_2202_C1 0.2220 0.2537 0.0732
P5_P3_2202_C2 0.2196 0.2217 0.0590
P6_P2_1602_C1 0.1644 0.2054 0.0324
P6_P2_1602_C2 0.2408 0.3088 0.0214
P6_P3_1602_C1 0.1401 0.3253 0.3234
P6_P3_1602_C2 0.2394 0.2361 0.0322
P6_P4_1602_C1 0.1432 0.2248 0.0946
P6_P4_1602_C2 0.1624 0.1948 0.0455

average 0.2079 0.1920 0.0871

Table 1 Classification error of the video only lip activity detector (video only), two phase
audio-video speech detection, i.e. the result of video only lip activity detector tested on
synchrony by CCA (audio-video) and CCA classification of an the ground-truth segments
(CCA on ground truth). The video names are constructed as follows: ID of speaker 1, ID of
speaker 2, conversation number, video number of the conversation

projection coe�cients were fixed as in all previous tests. The classification results can
be seen in Table 1.

The overall classification error is lower for the audio-visual detection than the video
detection only. However, the results of the speech detection are very dependent on
the tested videos. The classification error of the CCA estimated on the ground truth
subsequences, i.e. the ground-truth subsequences of speech classified as asynchronous,
is lower.

There are several sources of errors that can significantly influence the result accuracy.
First, the CCA coe�cients are trained on a single video that is in a di�erent language
(trained on female voice in Czech, tested on male voices in Welsh English). Second, due
to the lighting conditions of the dataset videos, the Chehra detector is very inaccurate.
Third, all the steps are very sensitive to the threshold selection. Especially the threshold
of the video only lip detector significantly influence the result of the synchrony check.
A high threshold can result in a large number of short windows, rather than smaller
amount of long windows, and the CCA synchrony test is very inaccurate for very small
windows. Selection of the optimal parameters is highly dependent on the speaker and
capturing conditions.

4.3.2 Estimation of audio delay

The CCA synchrony test provides a tool to estimate an audio shift for a video signal
with latency. Let v(t) be the video signal and a(t+·) be the audio signal with unknown
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4.3 Applications of the CCA

delay · . The delay is found by

·ú = arg max
·

CCA
!
v(t), a(t + ·)

"
, (15)

that is implemented by shifting the audio signal back and forth. The frame di�erence
between the original position and the maximum of the CCA results is the desired audio
shift.

The shift estimation was tested on all videos previously used in this work. It has been
tested on 10 seconds long subsequences. The video alignment finds the exact delay in
99.1% subsequences. The error is caused by estimating the maximum somewhere very
close to the correct shift, but not exactly to the desired one.
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5 Conclusion and future work

An audio-visual speech activity detector has been proposed. The algorithm has two
phases, the video only lip activity detection and audio-video synchrony test. The visual
lip activity is detected from the first derivatives of the vertical distance between lips by
applying two sliding window filters, the standard deviation and the mean, of di�erent
sizes and thresholding. The synchrony is checked by CCA on the video subsequences
pre-segmented by the visual lip activity detector. The CCA had fixed coe�cients es-
timated on a single long video sequence. The CCA result is thresholded in order to
classify subsequences as synchronous or asynchronous. Only the parts of the video
segmented by the visual lip activity detector and confirmed by the CCA result thresh-
olding as synchronous are labeled as speech part of the tested videos.

The video only lip activity detection gives good results if the optimal threshold is
used. Unfortunately, the threshold varies a lot from speaker to speaker and it is hard
to find a threshold that can be used generally. The way a person opens the mouth is a
biometrical marker. The performance of the visual lip activity detector is also limited
by the quality of the video features. The Chehra landmark localization is not always
reliable, and is especially sensitive to illumination. This fact significantly influenced
the results of testing on the Cardi� Conversational Database.

The synchrony test was done by the CCA. The CCA is a standard tool for a cross-
modal analysis. It projects feature vectors into a one-dimensional space in the direction
of the highest correlation. The CCA coe�cients are usually estimated on each tested
subsequence separately, however we have shown that they converge to a unique vector
when estimated on a single long sequence. Therefore, a fixed projection was used. The
CCA is very accurate for long tested sequences. The local high correlation fluctuation
is apparent for short subsequences and the test result is rather unreliable. We can
accurately distinguish between synchronous and asynchronous audio-video sequences if
a su�cient number of frames is used. The reliable result is for a sequence 8 seconds
long. As a side e�ect, the audio shift can be estimated for videos when one of the audio
or video signals was delayed.

The proposed solution uses a simple classification based on a projection to a one-
dimensional space (a linear combination), regardless of the speech content, and has
fixed thresholds that does not accommodate to a particular speaker. Speech signals are
not stationary. Certain phonemes clearly maps to corresponding visemes; however, the
recogntion of the synchrony is probably di�erent for each viseme and phoneme. For
certain speech audio-visual segments, the synchrony recognition is intrinsically ambigu-
ous. As a future work, we would like to investigate a machine learning based solution.
A solution that would learn from data what audio features are important for particular
audio features automatically. We aim the decision on the synchrony be possible from
a shorter sequence of several frames only. This way, we would probably not be limited
by a long subsequences and could directly classify video parts without a preliminary
segmentation, which might significantly decrease the classification error.
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Appendix A

Contents of the enclosed DVD

directory content
thesis This thesis in PDF
code Matlab code for the proposed method
data Not publicly available data used in this thesis

Table 2 Content of the attached DVD
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