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Abstract
Evoluční algoritmy se osvědčily při řešení mnoha problémů z různých oblastí. Jejich
použití v úlohách mobilní robotiky může být přínosné jak pro nalezení nových způ-
sobů řešení těchto úloh, tak i pro rozšíření míry autonomie mobilních robotů. V této
práci je rozebráno použití genetického programování pro řešení takových úloh, jako
je dosažení cíle a vyhýbání překážkám pro mobilního robota vybaveného laserovým
senzorem vzdálenosti a informací o poloze cíle. Pro řešení zmíněných úloh byla defi-
nována potřebná gramatika kontrolérů. Genetické programování bylo použito k vyví-
jeni kontrolérů dvou typů: structure-free a structure-restricted. Testování a zhodnocení
výsledných kontrolérů bylo provedeno v simulačním prostředí. Práce popisuje použité
fitness funkce a kontroléry pomocí nich nalezené. Ukázalo se, že pomocí genetického
programování je možné nalézt kontrolér schopný dosažení cíle a objíždění překážek.
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Abstract
Evolution algorithms have proven to be useful in finding solutions to many tasks from
various fields. Their usage in mobile robotics can be beneficial for finding novel solu-
tions to some tasks, and could also increase the level of autonomy of mobile robots.
This work aims to examine the usage of genetic programming for goal reaching and
collision avoidance tasks of a mobile robot equipped with the laser sensor and informa-
tion about the goal position. For these tasks, a grammar for controllers was defined.
Genetic programming was used for developing controllers of two types: structure-free
and structure-restricted. Obtained controllers were tested in a simulation environment.
This work describes used fitness functions and controllers developed using them. It
was shown, that it is possible to find a controller capable of goal reaching and collision
avoidance task using genetic programming.

Keywords
Evolutionary methods; Genetic programming; collision avoidance; obstacle avoidance;
mobile robotics; wheeled robots;
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In this thesis following abbreviations are used:

CFG Context free grammar
DS Derivation step
EA Evolutionary algorithms
GP Genetic programming
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1 Introduction

For few decades autonomous mobile robots were used in many areas including security,
military and industrial applications. In these areas robots performed tasks, that could
be dangerous or difficult for a human [1]. Nowadays mobile robots are also spreading into
the new areas, such as household and health care [2]. Here they are used to simplify daily
activities and reduce the amount of work performed by human, e.g. for lawn mowing
or cleaning [3]. Such large area of usage demands a collision avoidance behaviour, so
that robot doesn’t damage itself or objects around. In industrial applications such task
may be solved by the path planning, but in other areas where the environment may be
unknown and changing the other approach is needed. This task requires such controller
which would use data from sensors to move the robot around the environment safely
without collisions.

The autonomy of the mobile robot is desirable in the civil mobile robotics. In military
or exploration tasks it may be the necessity. Since it’s hard to program the behaviour of
the robot in all possible situations, the idea of the robot, that is programming itself, is
very attractive. The evolutionary methods are a promising way to ensure the autonomy
of the robot, because they are offering a possibility to create programs without human
interaction. If necessary, the robot could only specify the required result and the
solution to a problem could be found by a suitable evolutionary algorithm.

This thesis is focused on the analysis of controller types and fitness functions used in
evolutions of the robot motion controllers.

1.1 Evolutionary algorithms
Evolutionary algorithms (EA) are one of the approaches in the artificial intelligence
used for solving optimization problems. The EA uses mechanisms similar to the ones
found in the process of the biological evolution, such as selection, reproduction and
mutation.

Similarly to the biological evolution, the most adapted to the environment individuals
are rewarded by the opportunity to participate in the reproduction. Their genes are
propagated to the next generations to create even more adapted offspring. In the
biological evolution, the level of adaptation is determined by the natural selection. In
the EA the fitness function is used to evaluate the capabilities of each individual. The
new generation is created from the genes of the most adapted individuals proportionally
to their fitness score [4].

The robot motion controllers in this thesis are created using the genetic program-
ming (GP). The GP is a methodology based on the evolutionary algorithms, where the
evolving individuals are programs. The fitness of these programs is determined by their
ability to solve the predefined task.
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2 Grammatically-based Genetic
Programming

2.1 Genetic programming
Genetic programming is one of the methodologies based on the biological evolution,
created to find programs that perform predefined tasks. A process of finding the optimal
result is called evolution or learning. An initial population is formed as few randomly
generated programs in the beginning of the evolution. A process of learning is then
started. The evolution ends after a predefined number of generations passed or when
the optimal result is discovered. Generated programs are compared by the score of
the fitness function, which evaluate the result of every generated program. The value
returned by the fitness function shows how adapted the tested controller is. Evolution
select the fittest individuals in every generation to participate in breeding and create
the next generation.

In this thesis genetic programming is used to create programs that control robot
movement to avoid obstacles in simulated and real environment. Each program has a
form of a mathematical expression where inputs from robot sensors, goal’s location and
some constants can be used to calculate desired velocity of robot wheels. The context-
free grammar is used for the creation and the representation of these expressions. This
grammar enables a simple creation of syntactically correct programs and ensures that
they remain correct after two of them swap components.

2.2 Context free grammar
A Context-Free Grammar (CFG) 𝐺 is a set of grammar rules to describe a language.
CFG is defined as a quadruple 𝐺 = (𝑁, 𝑇, 𝑃, 𝑆), where

• 𝑁 is a set of non-terminal symbols (non-terminals),
• 𝑇 is a set of terminal symbols (terminals),
• 𝑃 is a set of productions (rules, replacing rules),
• 𝑆 is a start symbol, symbol from the set 𝑁 . [5]
Two sets of symbols are used to define a CFG. First set 𝑇 includes terminal symbols,

which makes the content of a legal program (sentence). The second set 𝑁 includes non-
terminal symbols, that are useful for creating a structure of a program. Non-terminals
define sub-languages of a language described by 𝐺. In programs they can represent
various data types.

Start symbol 𝑆 ∈ 𝑁 is a non-terminal representing the whole language defined by 𝐺.
Productions from the set 𝑃 are used to define rules by which symbols can be replaced

by other symbols. They define how each type of non-terminals can be expanded by
strings of non-terminals or terminals.
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2.2 Context free grammar

Productions can be written in a form

𝛼→ 𝛽, where 𝛼 ∈ 𝑁, 𝛽 ∈ {𝑇 ∪𝑁}*.

In the notation above 𝛼 is a non-terminal and 𝛽 is representing a string of zero or more
terminals and/or non-terminals.

Several productions defined for a non-terminal 𝛼 which have a form 𝛼→ 𝛽1, 𝛼→ 𝛽2
may be also written as 𝛼→ 𝛽1 | 𝛽2.

2.2.1 Derivation step
Programs created by genetic programming for this thesis have a form of mathematical
expression, which is a string of terminals. These strings are derived by applying pro-
ductions on every non-terminal starting with the start symbol (first string). Derivation
step rewrites the actual string containing non-terminals and zero or more terminals
to another string of non-terminals and/or terminals. Syntactically correct programs
are created by performing several derivation steps until all the symbols in string are
terminals.

Derivation step (DS) is defined as an application of a production from 𝑃 to a non-
terminal 𝛼 ∈ 𝑁 [5].

Derivation step can be written as:

𝐴 𝛼 𝐶
𝛼→𝛽===⇒ 𝐴 𝛽 𝐶

where 𝛼 ∈ 𝑁 is a non-terminal and 𝐴, 𝐶, 𝛽 ∈ {𝑇 ∪ 𝑁}* are strings of zero or more
terminals and/or non-terminals. In the relation above string 𝑥 = 𝐴 𝛼 𝐶 has been
changed to string 𝑦 = 𝐴 𝛽 𝐶 by applying the production 𝛼→ 𝛽.

Repeated derivation rooted in a non-terminal 𝐴 has a form

𝐴
*==⇒ 𝛼

where 𝐴 ∈ 𝑁 and 𝛼 ∈ {𝑇 ∪𝑁}*. Symbol *==⇒ represents zero or more derivation steps.
Such series of derivation steps may be represented as a tree. Start symbol is placed
in the root of tree, non-terminals are placed at branch nodes, terminals are placed at
leaf nodes. Each derivation step is pictured as an expansion of a non-terminal node to
various combinations of terminals and non-terminals.

2.2.2 Example of CFG program
For creating an expression

((𝑎1 − 𝑎2) + (𝑎3 × 𝑎4))
where 𝑎1, 𝑎2, 𝑎3, 𝑎4 are real numbers, many grammars may be used. One of the possible
grammars is described below and contains only the minimal number of symbols and
productions.

Type of symbols Symbols
Terminals 𝑎1 𝑎2 𝑎3 𝑎4 + − ×
Non-terminals 𝑆 𝑅

Table 1 Possible set of symbols to create a program with CFG

Terminals +, − and × are mathematical operators of addition, subtraction and mul-
tiplication. These terminals only occur on the right side of productions together with

3



2 Grammatically-based Genetic Programming

RR

+ R

S

R

R

a1

− ×R R

a2 a3 a4

Figure 1 Example of a program made with CFG

other terminals or non-terminals (in this case only non-terminals). Terminals 𝑎1, 𝑎2,
𝑎3, 𝑎4 are terminals representing inputs of the program. In contrast to in-function
terminals these may occur alone on the right side of the production.

The non-terminal 𝑅 represents real numbers, the non-terminal 𝑆 is a start symbol
(𝑅 may also be used as a start symbol, then only one type of non-terminal will exist).

Productions defined for this grammar may have the following form

𝑆 → 𝑅

𝑅→ 𝑅 + 𝑅 | 𝑅−𝑅 | 𝑅×𝑅 | 𝑎1 | 𝑎2 | 𝑎3 | 𝑎4

For representing the series of derivation steps

𝑆
*==⇒ ((𝑎1 − 𝑎2) + (𝑎3 × 𝑎4))

a derivation tree which is shown on Fig. 1 may be used.

2.3 Creating of the initial population
Initial population is filled with randomly created programs. It is recommended for
initial population to have some level of diversity [5, 6], so that different functions and
inputs were presented in gene pool. Diversity is important, because the main changes
between populations in genetic programming are achieved by crossovers, but when the
population is homogeneous the new unique individuals are not likely to be found.

For obtaining the diversity in an initial population few techniques may be used. The
two basic, which were described by John Koza [6], are called "full" method and "grow"
method. These techniques are using only one parameter, maximum depth 𝐷, to control
enlargement of the trees.

• "Full" method creates an initial population, where all the trees are of the full
depth. For the trees created with CFG that means, that leaf nodes made of input
terminals may only occur at the maximum depth 𝐷.

• "Grow" method creates trees with depth not exceeding the maximum depth 𝐷.
This method allows algorithm to create derivation trees of various sizes and forms.

John Koza [6] also presented more complex technique, which he called "ramped half-
and-half" method. This technique combines both "full" and "grow" methods to ensure
the diversity of the initial population.

This technique creates equally large groups of derivation trees distinguished between
each other by different depth parameter. This parameter may have a value in a range

4



2.4 Reproduction

between the smallest possible tree depth defined for used grammar and any bigger
number specified by user. Half of the derivation trees from each group is created using
the "grow" method and other half using the "full" method.

"Ramped half-and-half" method ensures, that initial population includes derivation
trees with several different depths and shapes, however it doesn’t guarantee, that du-
plicates don’t occur. Identical trees in the initial population are not desirable, because
same computing resources and time are spent on both duplicates, when they could
be used more effectively by processing other individuals. It is recommended to avoid
adding duplicates to the initial population.

In this thesis "ramped half-and-half" technique is used. If size of the population is not
divisible by number of used depths, the method and the depth parameter of excessed
trees are chosen randomly.

Individuals of the initial population are formed using algorithm 1 and CFG defined
by a quadruple (𝑁, 𝑇, 𝑃, 𝑆). Productions have a form 𝛼 → 𝛽, where 𝛼 ∈ 𝑁 and
𝛽 ∈ {𝑁∪𝑇}. For every production 𝑚𝑖𝑛𝐷𝑆 is defined as a minimal number of derivation
steps that are necessary to create only terminals, i.e. minimal number of derivation steps
to create 𝛼

𝛼→𝛽===⇒ 𝛽
*==⇒ 𝛾 where 𝛾 ∈ 𝑇 *. Individuals are formed as derivation trees

with the limited maximum depth 𝐷.
Creation of every new derivation tree starts with placing a start symbol 𝑆 to its root

and to a queue of non-terminals that don’t have defined offspring. Afterwards following
steps are repeated until the queue is not empty:

1. Select the first item in the queue and label it as the current non-terminal 𝐶
2. Define variable 𝑐𝐷 as a depth of 𝐶
3. Randomly select a production 𝑃𝐶 ∈ 𝑃 of the form 𝐶 → 𝛽 with 𝑚𝑖𝑛𝐷𝑆𝐶 ≤

(𝐷 − 𝑐𝐷)
4. Add every non-terminal 𝐹 ∈ 𝛽 to the queue
5. Delete 𝐶 from the queue and return to step 1
The algorithm above describes the way to create a derivation tree using the "grow"

method. To create the "full" derivation tree another restriction should be added to a
step 3.

Selected productions should additionally satisfy the condition 𝑚𝑎𝑥𝐷𝑆𝐶 ≥ (𝐷− 𝑐𝐷),
where 𝑚𝑎𝑥𝐷𝑆𝐶 is the maximum number of derivation steps to create only terminals.
For some grammars it’s possible, that "full" trees defined as above don’t exist, for
example because some terminals can only have the depth less than 𝐷. In such cases
the definition of "full" trees may be adjusted to the requirements of the certain grammar.
Algorithms appropriate for new definition are then used to create trees.

2.4 Reproduction

In this thesis GAlib library for C++ language is used to control the process of learning.
The "simple" genetic algorithm was selected for all evolutions. This genetic algorithm
selects the best individuals of every population based on their fitness scores for a re-
production to create the entirely new generation [7]. The best individual is copied to
the text generation. New individuals are made as a result of a process called crossover,
when two programs swap their parts. Every individual produced this way may also be
changed by a random mutation, which replaces randomly selected part of a program
by a newly created one.

5



2 Grammatically-based Genetic Programming

Data: An empty program 𝑡𝑟𝑒𝑒, maximum tree depth 𝐷
Result: A new program 𝑡𝑟𝑒𝑒
𝑙𝑖𝑠𝑡𝑇𝑜𝑃𝑟𝑜𝑐𝑒𝑠𝑠← new list of non-terminal nodes without defined offspring;
insert 𝑆 into 𝑡𝑟𝑒𝑒 as root;
insert 𝑆 into 𝑙𝑖𝑠𝑡𝑇𝑜𝑃𝑟𝑜𝑐𝑒𝑠𝑠;
repeat

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒← first element of 𝑙𝑖𝑠𝑡𝑇𝑜𝑃𝑟𝑜𝑐𝑒𝑠𝑠;
𝑐𝐷 ← depth of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒;
𝑃𝐶 ∈ 𝑃 ← randomly chosen production with

𝛼𝐶 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 & (𝑚𝑖𝑛𝐷𝑆𝐶 ≤ (𝐷 − 𝑐𝐷));
remove 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 from 𝑙𝑖𝑠𝑡𝑇𝑜𝑃𝑟𝑜𝑐𝑒𝑠𝑠;
foreach 𝑛𝑒𝑤𝑁𝑜𝑑𝑒 ∈ 𝛽𝐶 do

insert 𝑛𝑒𝑤𝑡𝑁𝑜𝑑𝑒 into 𝑡𝑟𝑒𝑒 below 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒;
if 𝑛𝑒𝑤𝑁𝑜𝑑𝑒 ∈ 𝑁 then

insert 𝑛𝑒𝑤𝑁𝑜𝑑𝑒 into 𝑙𝑖𝑠𝑡𝑇𝑜𝑃𝑟𝑜𝑐𝑒𝑠𝑠;
end

end
until 𝑙𝑖𝑠𝑡𝑇𝑜𝑃𝑟𝑜𝑐𝑒𝑠𝑠 = ∅;

Algorithm 1: Creating of the initial program using the CFG (𝑁, 𝑇, 𝑃, 𝑆) with pro-
ductions 𝑃𝑖 of form 𝛼𝑖 → 𝛽𝑖 and minimal number of DS to create only terminals
𝑚𝑖𝑛𝐷𝑆𝑖

2.4.1 Crossover

Crossover is an operation of the part exchange between two programs.
In classical GP this operation was a difficult task, because of the problem with

choosing crossover points so that new individuals were grammatically correct, but CFG
offers a very elegant way to perform a crossover.

Context Free grammar defines two types of symbols: terminals and non-terminals.
Since every type of non-terminal has a defined set of productions, grammatically cor-
rect structures are produced when sub-trees below non-terminals of the same type are
swapped. The structure of derivation trees made with CFG ensures, that there is at
least one non-terminal above every terminal in every individual. Due to this facts
non-terminals are the perfect candidates for crossover points.

Pseudo-code for a crossover of two derivation trees is shown at algorithm below.
During every operation children are created as copies of parent trees. After that non-
terminals of the same type are randomly selected in both children and sub-trees below
them are swapped.

Data: Parent program 𝑝1, parent program 𝑝2
Result: Child program 𝑐1, child program 𝑐2
𝑐1 ← 𝑝1;
𝑐2 ← 𝑝2;
repeat

𝑛𝑎 ∈ {𝑁 ∩ 𝑐1} ← randomly chosen non-terminal from 𝑐1;
𝑛𝑏 ∈ {𝑁 ∩ 𝑐2} ← randomly chosen non-terminal from 𝑐2;

until 𝑛𝑎 = 𝑛𝑏;
swap the subtrees below 𝑛𝑎 and 𝑛𝑏;

Algorithm 2: Crossover algorithm for the CFG (𝑁, 𝑇, 𝑃, 𝑆)
An example of crossover is shown at Fig. 2. In two parent trees 𝑝1 and 𝑝2, which are
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RR

+ R

S

R

R

a1

− ×R R

a2 a3 a4

R

× R

S

R

R

a4

+ R

a4

a3

Parent tree p1 Parent tree p2

R

+

S

R

R

a1

− R

a2

R

×

S

R

R

a4

+ R

a4

Child tree c1 Child tree c2

R

a3 R

R

× R

a3 a4

Figure 2 Example of a crossover of programs made with CFG

RR

+ R

S

R

R

a1

− ×R R

a2 a3 a4

R

+ R

S

R

R

a1

− R

a2

a1

Before mutation After mutation

Figure 3 Example of a mutation of program made with CFG

pictured on top, non-terminals of type 𝑅 were selected as crossover points. Children 𝑐1
and 𝑐2, pictured on the bottom, are produced by algorithm 2.

This figure also demonstrates, that as non-terminals make all the branch nodes of a
derivation tree, crossover may dramatically change a structure and a content of parent
trees if the right crossover points are chosen.

2.4.2 Mutation

Similarly to a natural evolution, in GP individuals get their properties directly from
their parents. Once in a while random mutation happens and additionally changes
some of children qualities. This change has a very little probability to occur both in
natural evolution and GP.

After every crossover newly created individual may randomly mutate, with the prob-
ability defined by user. Mutation applies to a single program. A pseudo-code for this
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2 Grammatically-based Genetic Programming

operation is shown in algorithm below. When the program is chosen for a mutation
a non-terminal is randomly selected in its derivation tree, sub-tree below this non-
terminal is then replaced by new randomly created sub-tree. An example of a mutation
is shown on Fig. 3.

Data: Parent program 𝑝
Result: Child program 𝑐
𝑐← 𝑝;
𝑛 ∈ {𝑁 ∩ 𝑐} ← randomly selected non-terminal from 𝑐;
𝑠𝑢𝑏← new tree created using algorithm 1 with the CFG (𝑁, 𝑇, 𝑃, 𝑛);
replace subtree below 𝑛 with 𝑠𝑢𝑏;

Algorithm 3: Mutation algorithm for the CFG (𝑁, 𝑇, 𝑃, 𝑆)
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3 General structure of robot motion
controllers

In this chapter, the usage of CFG for the representation of the robot motion controllers
is discussed. The used grammar is described in section 3.1. The implemented way
of execution of the created program is described in section 3.2. Types of the used
controllers are described in 3.3.

3.1 CFG for motion controllers
Context free grammar which was used to form programs in this thesis may be described
as 𝐺 = (𝑁, 𝑇, 𝑃, 𝑆), where set of non-terminals is 𝑁 = {𝑆, 𝑅}, set of terminals is
𝑇 = {𝑖𝑛1, . . . , 𝑖𝑛14, 𝑚𝑖𝑛, . . . , 𝑖𝑓𝐺𝑟𝐷𝑒𝑙𝑎𝑦} and set of productions 𝑃 is shown in Tab. 2.

As it’s seen above, two types of non-terminals are used. Non-terminals 𝑅 represent
parts of the program, while 𝑆 stands for the whole program. There is no fundamental
difference between these types of non-terminals. The only reason 𝑆 is used is to easily
distinguish the start of program tree, i.e. output. In our implementation crossover and
mutation points are only located in non-terminals of 𝑅 type.

Depending on their functions, terminals may be divided into two groups. In-function
terminals {𝑚𝑖𝑛, . . . , 𝑖𝑓𝐺𝑟𝐷𝑒𝑙𝑎𝑦} are identified by strings, and occur only as first ele-
ments on the right side of productions and represent operations, which are made on
vectors placed in the corresponding non-terminals. Terminals of this type are shown in
Tab. 2 as parts of productions.

Input terminals 𝑇 = {𝑖𝑛1, . . . , 𝑖𝑛14}, listed in Tab. 3, are the actual data available
for programs, they represent constants or information about environment received by

Subset Production Subset Production
1 S → R 1 R → productNumber R R
1 R → min R 1 R → ratioNumber R R
1 R → max R 1 R → 𝑖𝑛1 | . . . | 𝑖𝑛6
1 R → mean R 2 R → cutLeft R
1 R → plusLong R R 2 R → cutRight R
1 R → plusShort R R 2 R → double R
1 R → minusLong R R 2 R → leftThird R
1 R → minusShort R R 2 R → centralThird R
1 R → productLong R R 2 R → rightThird R
1 R → productShort R R 2 R → 𝑖𝑛7 | . . . | 𝑖𝑛9
1 R → ratioLong R R 3 R → mergeFirst R R
1 R → ratioShort R R 3 R → plusMinus R R
1 R → mergeVectors R R 3 R → ifGreater R R R R
1 R → plusNumber R R 3 R → 𝑖𝑛10 | . . . | 𝑖𝑛14
1 R → minusNumber R R 3 S → ifGrDelay R R R R R

Table 2 Set of productions available for GP during the evolution process.
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3 General structure of robot motion controllers

Type of input Symbol Terminal
Robot wheel velocity 𝑖𝑛1 [left wheel, right wheel]
Goal position 𝑖𝑛2 Cartesian coordinates: [x, y, z]
Goal position 𝑖𝑛3 [− tan 𝛼], where 𝛼 is the polar angle
Goal position 𝑖𝑛4 [distance to the goal]
Constant 𝑖𝑛5 [1.0, 1.0]
Constant 𝑖𝑛6 [0.0, 0.0]
Constant 𝑖𝑛7 [5.6]
Constant 𝑖𝑛8 [0.2]
Input from laser sensor 𝑖𝑛9 All data from laser sensor: [𝑖0, . . . , 𝑖679]
Input from laser sensor 𝑖𝑛10 The 1 fifth of 𝑖𝑛9: [𝑖0, . . . , 𝑖135]
Input from laser sensor 𝑖𝑛11 The 2 fifth of 𝑖𝑛9: [𝑖136, . . . , 𝑖271]
Input from laser sensor 𝑖𝑛12 The 3 fifth of 𝑖𝑛9: [𝑖272, . . . , 𝑖407]
Input from laser sensor 𝑖𝑛13 The 4 fifth of 𝑖𝑛9: [𝑖408, . . . , 𝑖543]
Input from laser sensor 𝑖𝑛14 The 5 fifth of 𝑖𝑛9: [𝑖544, . . . , 𝑖679]

Table 3 List of input terminals available for GP during the evolution process

robot during simulation.
Four out of fourteen terminals are constants, they are defined once at the beginning

of evolution and are never changed again. Such terminals may be useful as references.
Constants has indexes five to eight. Terminal 𝑖𝑛5 is a vector of two ones, 𝑖𝑛6 is a
vector of two zeros, 𝑖𝑛7 is a vector with one element, which is a range of a laser sensor
(5.6 m), 𝑖𝑛8 is a vector with one element—distance from laser sensor to obstacle, on
which penalizations are started.

Remaining terminals are changing their values during simulation. These terminals
provide robot with knowledge about itself and surrounding environment. Terminal 𝑖𝑛1
is a vector with two elements: left and right wheel velocities of a robot in rad s−1.
Terminals 𝑖𝑛2–𝑖𝑛4 specify the goal position relative to a robot: 𝑖𝑛2 gives Cartesian
coordinates of the goal in meters, 𝑖𝑛3 gives − tan 𝛼, where 𝛼 is a polar angle of the
target, and 𝑖𝑛4 gives the distance to the target in meters. Inputs 𝑖𝑛9–𝑖𝑛14 represent
data from a laser sensor. Terminal 𝑖𝑛9 is a vector that contains data from the whole
angular range of laser sensor. Remaining terminals 𝑖𝑛10–𝑖𝑛14 contain a fifth part of 𝑖𝑛9
each, in given order starting on the left part of the robot.

Since for different evolutions different grammars were used, to distinguish between
them 𝑃 is divided into three subsets 𝑃1–𝑃3. Each subset is labelled with a number to
highlight its usage in evolutions.

In this work, productions are used to construct mathematical operations which will
be performed on input vectors. Description of production structures and its execution
is in section 3.2.

3.2 Execution of CFG program

As it was specified above, each program is constructed as a tree, therefore each one
has multiple inputs placed in leaf nodes and one output placed in a root. Each node
except for in-function terminals has few attributes including a vector of real numbers.
During execution vectors of non-terminals are successively specified until start symbol
is reached and the output is generated.

Each production 𝑃 : 𝛼 → 𝛽 is viewed as an assignment, where vector v in 𝛼 is
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3.3 Structure-free and structure-restricted controllers

calculated by processing an operation coded in 𝛽. In this thesis 𝛽 ∈ {𝑇 ∪ 𝑁}* may
consist of one to six symbols. If 𝛽 contains just one symbol, which may be both terminal
or non-terminal with specified vector a, then v = a. Otherwise, if 𝛽 contains more than
one symbol, v is obtained by changing vectors in 𝛽. In such case, 𝛽 is composed of
one to five non-terminals with vectors, which are marked with symbols a–e, and one
in-function terminal 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛, which specifies rules by which v is calculated from
vectors a–e. Vector v is obtained by applying 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 on vectors a–e, written as
v = 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛(a, . . . , e). List of used operations with associated productions is shown
in Tab. 4.

3.3 Structure-free and structure-restricted controllers
During work on this thesis two types of controllers were developed by GP depending
on level of its autonomy. Controllers of the first type were created completely by the
evolution process, without restrictions applied on their structure. The first production
in such controllers is 𝑆 → 𝑅, which doesn’t change the output and is used so that repro-
duction could change the significant part of program. Such controllers need minimum
of human interaction to be created. The result of evolution is a universal algorithm,
which is capable of reaching the goal without collisions with obstacles. The problem
of this approach is that evolution tries to optimise several often contradicting values.
For example, avoidance of a collision may lead to increasing of distance from the goal.
Such conflicts may cause, that desired controller might not evolve.

This is why structure-restricted controllers were also designed. In contrast to structure-
free programs, these algorithms include parts defined by user, which can’t be changed
by evolution. This approach allows user to bias the evolution towards more promising
results or to assemble controllers produced by different evolutions.
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3 General structure of robot motion controllers

Production Output vector
S → R v = a
R → min R v = [min(a1, . . . , a𝑛)], where 𝑛 = |a|
R → max R v = [max(a1, . . . , a𝑛)], where 𝑛 = |a|
R → mean R v = [mean(a1, . . . , a𝑛)], where 𝑛 = |a|
R → plusLong R R v = [a1 + b1, . . . , a|b| + b|b|, a|b|+1, . . . , a|a|],

if |a| > |b|, otherwise
v = [a1 + b1, . . . , a|a| + b|a|, b|a|+1, . . . , b|b|],

R → plusShort R R v = [a1 + b1, . . . , a𝑛 + b𝑛], where 𝑛 = min(|a|, |b|)
R → minusLong R R v = [a1 − b1, . . . , a|b| − b|b|, a|b|+1, . . . , a|a|],

if |a| > |b|, otherwise
v = [a1 − b1, . . . , a|a| − b|a|,−b|a|+1, . . . ,−b|b|],

R → minusShort R R v = [a1 − b1, . . . , a𝑛 − b𝑛], where 𝑛 = min(|a|, |b|)
R → productLong R R v = [a1 × b1, . . . , a|b| × b|b|, a|b|+1, . . . , a|a|],

if |a| > |b|, otherwise
v = [a1 × b1, . . . , a|a| × b|a|, b|a|+1, . . . , b|b|],

R → productShort R R v = [a1 × b1, . . . , a𝑛 × b𝑛], where 𝑛 = min(|a|, |b|)
R → ratioLong R R v = [a1 ÷ b1, . . . , a|b| ÷ b|b|, a|b|+1, . . . , a|a|],

if |a| > |b|, otherwise
v = [a1 ÷ b1, . . . , a|a| ÷ b|a|, b|a|+1, . . . , b|b|],

R → ratioShort R R v = [a1 ÷ b1, . . . , a𝑛 ÷ b𝑛], where 𝑛 = min(|a|, |b|)
R → mergeVectors R R v = [a1, . . . , a|a|, b1, . . . , b|b|]
R → 𝑖𝑛1 | . . . | 𝑖𝑛6 v = a
R → cutLeft R v = [a𝑛, . . . , a|a|], where 𝑛 = ⌈|a| ÷ 2⌉
R → cutRight R v = [a1, . . . , a𝑛], where 𝑛 = ⌊|a| ÷ 2⌋
R → double R v = [2× a1, . . . , 2× a|a|]
R → leftThird R v = [a1, . . . , a𝑛], where 𝑛 = round(|a| ÷ 3)
R → centralThird R v = [a𝑛, . . . , a𝑚], where 𝑛 = round(|a| ÷ 3),

𝑚 = |a| − 𝑛
R → rightThird R v = [a𝑛, . . . , a|a|], where 𝑛 = |a| − round(|a| ÷ 3)
R → plusNumber R R v = [a1 + b1, . . . , a|a| + b1]
R → minusNumber R R v = [a1 − b1, . . . , a|a| − b1]
R → productNumber R R v = [a1 × b1, . . . , a|a| × b1]
R → ratioNumber R R v = [a1 ÷ b1, . . . , a|a| ÷ b1]
R → 𝑖𝑛7 | . . . | 𝑖𝑛9 v = a
R → mergeFirst R R v = [a1, b1]
R → plusMinus R R v = [a1 + b1, a2 − b1, . . . , a|a| + b1] if |a| is odd,

otherwise v = [a1 + b1, a2 − b1, . . . , a|a| − b1]
R → ifGreater R R R R v = c if a1 > b1, otherwise v = d
R → 𝑖𝑛10 | . . . | 𝑖𝑛14 v = a
S → ifGrDelay R R R R R v = c if a1 > b1, otherwise v = e for d seconds

Table 4 Set of productions available for GP during the evolution process. Every production
has one output vector v on the left side, and on the right side one to five input vectors a–e
placed in non-terminals starting from the left. Symbol |a| stands for number of elements in
vector a.
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4 Experiments

In this chapter the simulation environment and fitness functions used in the evolutionary
process will be discussed.

4.1 Simulation environment

In genetic programming it’s required that every generated individual is tested under the
same conditions. In the real environment it is impossible to ensure such thing during
evolution, where hundreds and thousand evaluations are performed. Furthermore, maps
on which generated algorithms are tested contain obstacles and since robots are mobile,
programs from first generations would most likely lead robot to collision and may
damage real robots. In order to avoid this disadvantages, tests were performed in
a simulator called V-REP [8, 9] (The Virtual Robot Experimentation Platform).

V-REP allows user to create scenes filled with the diversity of scene objects: robots,
obstacles and sensors. It offers several existing models available for usage, as well as
tools to edit them and their functionality or to create new ones. The program uses
Bullet physics library [10] for simulation of the movement of objects, collision detection
and response. Further advantage of V-REP is that it "implements a ROS [11, 12] node
with a plug-in which allows ROS to call V-REP commands via ROS services, or stream
data via ROS publishers/subscribers", as stated in [9]. This functions make possible to
switch between created scenes, start and stop simulation from program in which evolu-
tion is running (main program). Data exchange between simulator and main program
is performed via ROS publishers and subscribers on the 10 Hz update rate. Simulator
provides program with data from laser sensor, information about goal position and in-
formation about simulator state, including simulation time. Main program processes
these data and publishes the required velocity of robot wheels. Since the simulation
doesn’t take place in real time and V-REP controlling via ROS services may have vari-
able delay, main program also publishes the duration of the simulation. The simulator
may then stop the robot when needed and publish information about the end of the
simulation. This ensures that all controllers are tested for the same amount of time.

Robot dr12 (courtesy of Cubictek co. ltd.) with attached Hokuyo URG 04LX UG01
laser sensor, both from V-REP model collection, was used in simulations of tested
controllers. Sensor provides information about obstacle distances for 680 points in
range 5.6 m×240°. The script for this laser sensor originally published data in the
PointCloud2 message type, but was adjusted to publish in the LaserScan message type.

4.2 Maps

Three pairs of maps, that were used for evolution of collision avoidance algorithms, are
shown in figures below. In these figures white color shows the area on which robot may
move, light-blue color shows areas where obstacles are placed and yellow square shows
the goal.
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4 Experiments

Figure 4 Maps used for the evolution of collision avoidance controllers

Figure 5 Maps used for the evolution of collision avoidance controllers

Figure 6 Maps used for the evolution of collision avoidance controllers
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4.3 Structure-free controllers

Maps shown in Fig. 4 were used in first evolutions of structure-free collision avoidance
controllers. The map depicted on the left was filled with randomly placed obstacles,
the robot and the goal were placed in the opposite corners. The map depicted on the
right was created with corridors connecting two rooms. Rooms were placed in opposite
corners, where the robot and the goal were located.

This maps were replaced after several evolutions, due to the following problem.
Robots that went straight to goal had a disadvantage already on early stages of evo-
lution, because an obstacle was placed ahead of them. Every algorithm that lead the
robot straight to the target caused immediate collision with an obstacle and had worse
fitness scores, than algorithms which made robot go the other way. To eliminate such
disadvantage the new set of maps shown in Fig. 5 was created.

Scenes shown in Fig. 6 were created for evolution of structure-restricted controllers.
These controllers were composed of two parts: a goal reaching algorithm defined before
the start of the evolution and an algorithm of collision avoidance, which was generated
by the evolution. These maps were created smaller with only few obstacles to make the
task simpler.

4.3 Structure-free controllers

Structure-free controllers were developed in several evolutions in different environments
with different fitness functions 𝐹 , population sizes 𝑆, number of generations 𝑁𝑔𝑒𝑛,
probabilities of mutation 𝑃𝑚𝑢𝑡 and simulation durations 𝑇𝑠𝑖𝑚. Every created controller
was tested on 𝑛 = 2 maps to eliminate the influence of surroundings on fitness score.
Probability of crossover 𝑃𝑐𝑟𝑜𝑠𝑠 = 0.9 was same for all evolutions. Initial populations
were created using "ramped half-and-half" method with minimum tree depth 𝑑𝑚𝑖𝑛 = 3
and maximum tree depth 𝑑𝑚𝑎𝑥 = 6.

First implemented fitness function was

𝐹 =
𝑛∑︁

𝑖=1
(1 + 𝐷𝑖)× (1 + 𝐶𝑖), (1)

where 𝐷𝑖 is the final distance from the goal and 𝐶𝑖 is a number of algorithm evaluations
spent near obstacles, i.e. time spent near obstacles in s ·10−1. The goal was to minimize
the fitness score.

Two evolutions with 𝑆 = 25, 𝑃𝑚𝑢𝑡 = 0.01, 𝑇𝑠𝑖𝑚 = 30 s took place on maps shown
in Fig. 4. Numbers of generations were 𝑁𝑔𝑒𝑛 1 = 46 and 𝑁𝑔𝑒𝑛 2 = 58. In addition to that
one evolution with 𝑆 = 20 and 𝑁𝑔𝑒𝑛 3 = 25 took place on the same maps. All evolutions
were using the set of productions 𝑃 = 𝑃1 ∪ 𝑃2 and inputs 𝑖𝑛1–𝑖𝑛9. All had the similar
result. Produced controllers made the robot to stay near the start position. In the first
case, the robot was driving around the start, in the second case, it was rotating around
the start position and the last one was slowly moving forward.

Such results were more probably caused by variable 𝐶𝑖, which was increasing rapidly
every time when the robot approached the obstacle. This way the robot had to travel
1 m towards the goal only to compensate 0.1 seconds near the obstacle. Moreover maps,
on which evolution took place, had first obstacles close to a robot. Taking in consid-
eration this conditions, most controllers, that would have tried to move would most
probably lose to those which would stay on the start.

These results have shown, that both maps and fitness functions had to change. New
scenes depicted in Fig. 5 were created. Obstacles were placed farther from the start
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Figure 7 The development of the best score for the first evolution with fitness function 2.
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Figure 8 The development of the best score for the second evolution with fitness function 2.

position of the robot, so it could start moving towards the goal without the immediate
collision.

The fitness function was changed to the following:

𝐹 =
𝑛∑︁

𝑖=1
(1 + 𝐷𝑖)× (1 + 𝛾𝑖 × 𝐶𝑖), (2)

where variables 𝐷𝑖 and 𝐶𝑖 are the same as in fitness function 1. Coefficient 𝛾𝑖 ∈ R,
0.01 ≤ 𝛾𝑖 ≤ 0.45 was increased by 0.01 after every generation until gained its maximum
value. Similarly to the function above, the goal was to minimize the fitness score.

Two evolutions with parameters 𝑆 = 30, 𝑃𝑚𝑢𝑡 = 0.01, 𝑇𝑠𝑖𝑚 = 30 s, 𝑁𝑔𝑒𝑛 1 = 117 and
𝑁𝑔𝑒𝑛 2 = 122 took place. For both evolutions set of productions 𝑃 = 𝑃1 ∪ 𝑃2 and inputs
𝑖𝑛1–𝑖𝑛9 were used. The development of the best scores is shown in Fig. 7 for the first
evolution and in Fig. 8 for the second one.

As it seen in these graphs, the best generated controllers were created on early stages
of evolution. In the first evolution, the minimal fitness scores have decreased from 8.44
in the initial population to 7.33 in the second generation. It practically didn’t changed
for the next 119 generations. The best controller had fitness score 7.28 developed in
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4.3 Structure-free controllers

Figure 9 The best controller gener-
ated by the first evolution with fitness
function 2 on map 1, 𝑇𝑠𝑖𝑚 = 30 s

Figure 10 The best controller gener-
ated by the first evolution with fitness
function 2 on map 2, 𝑇𝑠𝑖𝑚 = 30 s

Figure 11 The best controller gener-
ated by the first evolution with fitness
function 2 on map 1, 𝑇𝑠𝑖𝑚 = 30 s

Figure 12 The best controller gener-
ated by the first evolution with fitness
function 2 on map 2, 𝑇𝑠𝑖𝑚 = 30 s

71 generation. The robot controlled by this algorithm slowly went forward and didn’t
turn. The evolution found the optimal velocity, with which the robot haven’t collided
with an obstacle by the end of the simulation time, as it’s seen in Fig. 9 and Fig. 10.

The best score in the second evolution was 7.46. The individual which gained this
value was created in the initial population. Later generations didn’t manage to improve
the scores. The best algorithm slowly moved the robot backwards in the direction of
the goal. By the end of the simulation it was near the start position, as it’s shown in
Fig. 11 and Fig. 11.

As it seen in graphs, the first evolution had shown better adaptation to the changing
environment, than the second one. The first evolution managed to repeatedly create
individuals with scores close to the best result, when the second one haven’t. This could
have been due to the difference of the initial populations, but the more probable cause
is that the first evolution was actually divided into several sub-evolutions. The fitness
function maintained the same. The initial population of every sub-evolution was the
last population of the previous one. The 𝛾𝑖 coefficient had the same value in these two
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Figure 13 The development of the best score for the first evolution with fitness function 3.

populations and was changed by the same rate as in the second evolution. The first
evolution was interrupted after 20 generations, then three times after 21 generations,
one time after 20 and continued for 14 more generations before it ended. The second
evolution was first interrupted after the 80 generation, when 𝛾𝑖 wasn’t changing for
several generations. The worse results could have been obtained because the best algo-
rithm from each generation is copied to the next generation. This individual is tested
only once on the early stage of the evolution, and it may not be adapted to the changing
environment. However, it’s involved in breeding and influence all generations, produc-
ing not adapted offspring. The first evolution didn’t have this disadvantage, because
after every interruption the best individual was tested again under new conditions. If
it was no longer the best, it influence on the evolution was limited. The best individual
is omitted in the statistics.

The results could have been improved by dividing the evolution into sub-evolutions
and also by optimizing the initial and the final value of 𝛾𝑖 and the rate of its increase.

The next fitness function was tested under the assumption, that good goal reaching
algorithm would avoid obstacles, because collisions would slow the robot down. The
fitness score was calculated as

𝐹 =
𝑛∑︁

𝑖=1
𝐺𝑖 + 5×

(︂
1− 𝐷𝑖

𝐷𝑖 𝑚𝑎𝑥

)︂
+ 5×

(︂
1− 𝑇𝑖

𝑇𝑚𝑎𝑥

)︂
, (3)

where 𝐺𝑖 = 1 if the robot reached the goal and 𝐺𝑖 = 0 otherwise. 𝐷𝑖 is the final distance
from the goal, 𝐷𝑖 𝑚𝑎𝑥 is the maximal possible distance from the goal on current map,
𝑇𝑖 is the time needed to reach the goal and 𝑇𝑚𝑎𝑥 is the duration of the simulation, both
in seconds. If the robot didn’t reach the goal by the end of the simulation, 𝑇𝑖 = 𝑇𝑚𝑎𝑥.
The goal was to maximize the result.

Two evolutions with parameters 𝑆 = 30, 𝑃𝑚𝑢𝑡 = 0.01, 𝑇𝑠𝑖𝑚 = 30 s, 𝑁𝑔𝑒𝑛 1 = 53 and
𝑁𝑔𝑒𝑛 2 = 80 took place. For both evolutions set of productions 𝑃 = {𝑃1 ∪ 𝑃2} and
inputs 𝑖𝑛1–𝑖𝑛9 were used. The development of the best scores is shown in Fig. 13 for
the first evolution and in Fig. 14 for the second one.

The best generated controller in the first evolution succeeded in the goal reaching
task. However, it was moving backwards without the knowledge about obstacles in its
way and was colliding with them. On the first map shown in Fig. 15 robot passed the
first obstacle but hit it several times. However, it got stuck on the second map shown
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Figure 14 The development of the best score for the second evolution with fitness function 3.

Figure 15 The best controller gener-
ated by the first evolution with fitness
function 3 on map 1, 𝑇𝑠𝑖𝑚 = 30 s

Figure 16 The best controller gener-
ated by the first evolution with fitness
function 3 on map 2, 𝑇𝑠𝑖𝑚 = 30 s

in Fig. 16.
The second evolution produced an algorithm, which had an obstacle avoiding be-

haviour. Its results are shown in Fig. 18 and Fig. 19. The robot haven’t collided with
an obstacle once in both learning maps and have shown similar results in other scenes,
for example in Fig. 17. The robot moved fast in the environment with the corridor
and managed to approach the goal in less than 30 s, while on the map with random
obstacles it was slow and came close to the goal in more than 90 s. Despite the fact,
that the robot was near the goal, it couldn’t reach the target even after two minutes.

The next tested fitness function was following:

𝐹 =
𝑛∑︁

𝑖=1
𝐺𝑖 + 5×

(︂
1− 𝐷𝑖

𝐷𝑚𝑎𝑥

)︂
+ 100× d𝑆𝑖

𝑁𝑖
−𝑂𝑖, (4)

where variables 𝐺𝑖, 𝐷𝑖 and 𝐷𝑖 𝑚𝑎𝑥 are the same as in fitness function 3. d𝑆𝑖 is the change
of the distance between the robot and the goal between two updates (approximately
0.1 s) in meters, 𝑁𝑖 is a number of updates and 𝑂𝑖 is a penalization for approaching the
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Figure 17 The result of the best controller generated by the second evolution with fitness
function 3 on testing map, 𝑇𝑠𝑖𝑚 = 30 s

Figure 18 The best controller generated
by the second evolution with fitness
function 3 on map 1, 𝑇𝑠𝑖𝑚 = 100 s

Figure 19 The best controller generated
by the second evolution with fitness
function 3 on map 2, 𝑇𝑠𝑖𝑚 = 29 s

obstacle. The penalization was calculated as

𝑂𝑖 =
𝑁𝑖∑︁

𝑗=1
𝑜𝑗 ,

where 𝑜𝑗 = 0.001 if there is an obstacle in less than 0.45 m from robot, 𝑜𝑗 = 0.002 if
the distance is less than 0.3 m and 𝑜𝑗 = 0.004 if it’s less than 0.2 m. The goal was to
maximize the result.

The assumption was that the component of fitness function d𝑆𝑖, which is dependent
on the velocity of the robot, would make the evolution to reward faster individuals.
The penalization 𝑂𝑖 would prevent the individuals which collide with obstacles from
gaining good scores. As a result fast algorithm which avoid obstacles would evolve.

Two evolutions with parameters 𝑆 = 20, 𝑃𝑚𝑢𝑡 = 0.01, 𝑇𝑠𝑖𝑚 = 30 s, 𝑁𝑔𝑒𝑛 1 = 50 and
𝑁𝑔𝑒𝑛 2 = 74 were tested. For both evolutions set of productions 𝑃 = {𝑃1 ∪ 𝑃2} and
inputs 𝑖𝑛1–𝑖𝑛9 were used. The development of the best scores is shown in Fig. 20 for
the first evolution and in Fig. 21 for the second one.

The best individuals weren’t able to avoid collisions, neither they moved to the goal,
as it is seen in figures 22–25. The first evolution (figures 22 and 23) generated a
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Figure 20 The development of the best score for the first evolution with fitness function 4.
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Figure 21 The development of the best score for the second evolution with fitness function 4.

controller, which moved fast and after 2–3 seconds of the random changing of the
direction flipped over. The result of the second evolution (figures 24 and 25) was
similar. The robot went straight and after 5–6 seconds of the movement hit against the
obstacle.

In both cases evolution was generating individuals, which velocity and behaviour lead
to a collision. Although the first evolution was making a progress, as it’s seen in Fig. 20,
it was interrupted. The reason is that the only difference between best individuals was
their velocities and as a result time of being near obstacles.

The results of these experiments showed, that evolutionary algorithms have compli-
cations with optimising of several contradicting functions. Fitness functions 1, 2 and 4
had components rewarding the robot for moving towards the goal and parts punishing it
for coming close to obstacles. Fitness function 3 only rewarded the robot for approach-
ing the target. The best controllers of the evolutions with fitness function 1 stayed near
the start position. Individuals tested with functions 2 and 4 haven’t shown any signs
of obstacle avoidance behaviour, neither they have the tendency to approach the goal.
In contrast to that, evolutions using fitness function 3 have found algorithms leading
the robot towards the goal. One of them found the solution to avoid the collisions with
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Figure 22 The best controller gener-
ated by the first evolution with fitness
function 4 on map 1, 𝑇𝑠𝑖𝑚 = 2 s

Figure 23 The best controller gener-
ated by the first evolution with fitness
function 4 on map 2, 𝑇𝑠𝑖𝑚 = 3 s

Figure 24 The best controller gener-
ated by the first evolution with fitness
function 4 on map 1, 𝑇𝑠𝑖𝑚 = 5 s

Figure 25 The best controller gener-
ated by the first evolution with fitness
function 4 on map 2, 𝑇𝑠𝑖𝑚 = 6 s

the obstacles.
The best results were obtained by evolutions with more specialized fitness function.

Therefore the next controller was assembled from the results of several evolutions with
different less general goals.

4.4 Structure-restricted controller

The structure-restricted controller was created to examine how the separation of the
goals would affect the outcome of the evolution. For this purpose the production S→
ifGrDelay R R R R R was created. The operation coded in the terminal ifGrDelay is
an if-then-else test with five inputs. If first input value is greater, than the second, the
robot movement is controlled from the third input. Otherwise, the robot is controlled
from the fifth input for the period specified in the fourth input. The sub-trees below the
first two non-terminals are set by hand. The first input is the distance to the nearest
obstacle in front of the robot, i.e. the minimal value in the central third of vector in
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4.4 Structure-restricted controller

Figure 26 Maps used to the evolutions with the goal reaching task.

𝑖𝑛12. The second input is a constant 0.5 m. Remaining inputs are found by GP. The
sub-tree under the third non-terminal was generated by evolution with the goal reaching
task. The sub-trees below the fourth and the fifth non-terminals were evolving in an
evolution with obstacle avoidance goal.

4.4.1 The goal reaching task

Evolutions for the goal reaching task took place on the specific maps with the specific
fitness functions. The set of productions used for these evolutions was 𝑃 = {𝑃1}, the
set of terminals was 𝑇 = {𝑖𝑛1, . . . , 𝑖𝑛6}. Generated algorithms were tested on four
maps shown in Fig. 26 with the duration of the simulation 𝑇𝑠𝑖𝑚 = 20 s. The goal was
placed in different directions from the robot, so it could learn to turn towards the goal
from any position.

Several evolutions with different parameters took place. Statistics are not available
for these evolutions, as they were made in the beginning of the work on this thesis,
when this option wasn’t yet implemented.

The fitness function was calculated as

𝐹 = 1

1 +
𝑛∑︀

𝑖=1
(𝐷𝑖)

, (5)

where 𝑛 = 4 is the number of maps on which the algorithm was tested and 𝐷𝑖 is the
final distance from the goal.

The evolution, that found the best controller, had the parameters 𝑆 = 15, 𝑁𝑔𝑒𝑛 = 26,
𝑃𝑚𝑢𝑡 = 0.03, 𝑃𝑐𝑟𝑜𝑠𝑠 = 0.9 and 𝑇𝑠𝑖𝑚 = 20 s. The initial population was created using the
"grow" method with the maximum tree depth 𝑑𝑚𝑎𝑥 = 5. The results of the generated
controller are shown in Fig. 27.

4.4.2 The obstacle avoiding task

The evolution of structure-restricted controllers for obstacle avoidance had the following
parameters: 𝑆 = 24, 𝑁𝑔𝑒𝑛 = 200, 𝑃𝑚𝑢𝑡 = 0.03, 𝑃𝑐𝑟𝑜𝑠𝑠 = 0.9 and 𝑇𝑠𝑖𝑚 = 20 s. The
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Figure 27 The best result of the goal reaching controller evolution. 𝑇𝑠𝑖𝑚 = 30 s

evolution could use the whole set of productions 𝑃 and the whole set of the terminals
𝑇 . Every created algorithm was tested on 𝑛 = 2 maps shown in Fig. 6.

Controllers were created with a predefined part. As it was stated above, production
S→ ifGrDelay R1 R2 R3 R4 R5 was applied to the start symbol. The sub-tree returning
the minimal distance in front of the robot was below the non-terminal 𝑅1. The constant
0.5 m was below the non-terminal 𝑅2. The production R3 → double R6 was applied to
the non-terminal 𝑅3. The algorithm generated by evolution described in the previous
subsection was placed below the non-terminal 𝑅6. The initial population was created
by the rules of the "ramped half-and-half" technique ignoring everything below non-
terminals 𝑅1–𝑅3. The minimum and the maximum tree depths were set as 𝑑𝑚𝑖𝑛 = 3
and 𝑑𝑚𝑎𝑥 = 6. The crossover and the mutation operations were set to ignore the part of
the controller below non-terminals 𝑅1–𝑅3. Described steps were made to ensure, that
the predefined part would not change in the process of evolution. As a consequence
the evolution may focus on the sub-trees below non-terminals 𝑅4 and 𝑅5, which is the
collision avoidance part.

The following fitness function was used in the evolution of the structure-restricted
obstacle-avoiding algorithm:

𝐹 =
𝑛∑︁

𝑖=1
𝐺𝑖 + 5×

(︂
1− 𝐷𝑖

𝐷𝑚𝑎𝑥

)︂
−𝑂𝑖, (6)

where 𝐺𝑖 = 1 if the robot reached the goal and 𝐺𝑖 = 0 otherwise. 𝐷𝑖 is the final distance
from the goal, 𝐷𝑖 𝑚𝑎𝑥 is the maximal possible distance from the goal on the map 𝑖 and
𝑂𝑖 is the penalization for approaching an obstacle. The penalization is calculated as

𝑂𝑖 =
𝑁𝑖∑︁

𝑗=1
𝑜𝑗 ,

where 𝑁𝑖 is the number of measurements, 𝑜𝑗 = 0.006 if the distance between the robot
and the nearest obstacle is less than 0.2 m and 𝑜𝑗 = 0 otherwise. The goal was to
maximize the fitness scores.

The development of the best score is shown in Fig. 28. The controller with the
best fitness score 𝐹 = 10.18 was created in the 157 generation. Its result is shown in
Fig. 29. As it’s seen, the robot collided with the obstacle after 17 s of the simulation.
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Figure 28 The development of the best score for the evolution of the structure-restricted
controller.

Figure 29 The result of the structure-restricted controller with the best fitness score. 𝑇𝑠𝑖𝑚 =
17 s

This happened due to the goal reaching part of the algorithm. The controller may
lead the robot towards the goal both normally and backwards. In this case, it led the
robot backwards. The controller achieved the best scores, because the penalization was
working only if an obstacle was in the range of laser sensor. In this case, the collision
wasn’t even detected.

The other controller with good fitness scores created by this evolution developed in
the 68 generation. It had the fitness score 𝐹 = 10.09, which isn’t much smaller, than the
score of the best individual. However, the result of this controller shown in Fig. 30 was
better. This controller managed to approach the goal before the end of the simulation
and not to collide with any obstacle. The smaller fitness score may be caused by a
penalization, which the robot could get while passing by the obstacle. Even though the
controller shown good results on the learning maps, it failed to repeat the success on
other maps it was tested on, as is shown in Fig. 31. The behaviour was similar to the
behaviour of its offspring on learning maps.

The results show, that the evolution with the structure-restricted programs may de-
velop a controller capable of avoiding obstacles and reaching the goal. The disadvantage
of this approach is that the outcome of the whole controller depends strongly on the
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Figure 30 The result of the best structure-restricted controller. 𝑇𝑠𝑖𝑚 = 30 s

Figure 31 The result of the best structure-restricted controller on testing map. 𝑇𝑠𝑖𝑚 = 17 s

functionality of all its parts, particularly the ones created separately.
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5 Conclusion

In this thesis the usage of evolutionary methods for creation of mobile robot controllers
with collision avoidance behaviour was presented. The work was focused on controllers
solving both goal reaching and collision avoidance task.

Firstly the context free grammar often used in the genetic programming for the
representation of programs was described. Elements and construction rules used to
form programs for the particular robot and the particular task were offered afterwards.

Several evolutions were performed to examine how different fitness functions affect
the outcome of evolution of collision avoiding structure-free controllers. The results
showed, that the best controllers are obtained by evolutions with the least complicated
fitness function, which is focused on the satisfaction of only one goal.

Further, the evolution of the structure-restricted controller took place to examine
how the controller composed of several independently evolved parts would perform.
The best generated controller showed good results on the learning map, but failed to
repeat them in other environments.

In my experiments, structure-free controllers have shown better results, than the
structure-restricted controller. But that may not be the general rule, since many factors
could affect the result.

In this thesis few of many possible fitness functions were represented, leaving many
other to explore and to analyse. The future work may be focused on the improve-
ment of the quality of evolving controllers by performing longer evolutions with larger
population sizes, or using more complicated types of genetic programming.
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