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Abstract
In this master’s thesis, a controller capable of balancing and steering Sk8o, an
unstable, segway-like bipedal wheeled robot, is designed. This is achieved using
Model Predictive Control, formulated as a quadratic program. This program is
solved using OSQP. The resulting controller is validated in simulations, deployed
onto the robot and tested in hardware experiments, comparing it to a preexisting
LQR controller. Three distinct experiments are shown: stabilization in the pres-
ence of an external disturbance, following a simple trajectory (driving forward and
backwards) and following a complex trajectory (slalom). Additional controllers
using Koopman Model Predictive Control are found via Extended Dynamic Mode
Decomposition and are likewise tested and deployed on the robot. The thesis
concludes by discussing issues of those additional controllers.

Keywords: Model Predictive Control, Koopman Model Predictive Control, Re-
ceding Horizon, Extended Dynamic Mode Decomposition, Sk8o, segway, unstable
system, quadratic program, OSQP
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Abstrakt
V této diplomové práci se věnuji návrhu regulátoru schopného balancovat a řídit
nestabilního dvounohého kolového robota Sk8o, jehož struktura je podobná vozidlu
segway. Tohoto je dosaženo pomocí metody Model Predictive Control, která je
řešena jako kvadratický program. K řešení tohoto programu je užit solver OSQP.
Výsledný regulátor je ověřen v simulacích a nasazen na robota, kde jsou následně
provedeny experimenty. Tři různé experimenty jsou ukázány: stabilizace při
zavedení vnější poruchy, následování jednoduché trajektorie (jízda vpřed a vzad)
a následování složitější trajektorie (slalom). Regulátor je porovnán s již existu-
jícím regulátorem typu LQR. Následně jsou formulovány další regulátory metodou
Koopman Model Predictive Control, s pomocí algoritmu Extended Dynamic
Mode Decomposition. Tyto jsou též nasazeny na robota a ověřeny v simulacích
a experimentech. Na konci práce jsou probrány problémy těchto dalších regulátorů.

Klíčová slova: Model Predictive Control, Koopman Model Predictive Con-
trol, Receding Horizon, Extended Dynamic Mode Decomposition, Sk8o, segway,
nestabilní systém, kvadratický program, OSQP
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1 | Introduction

The robot Sk8o, captured in figure 1.1 in all of its dazzling beauty, could not
possibly be accused of lacking style. Until recently, it did however lack a predictive
controller. In this thesis, I rectify the situation by implementing model predictive
control (MPC) for Sk8o.

MPC is a control scheme that selects optimal sequences of control actions by
harnessing a model to predict the evolution of the controlled system.

Figure 1.1: Photo of Sk8o
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Chapter 1 Introduction

1.1 Problem Statement

My task is twofold. First and foremost, the robot must be balanced, as by itself it
is unstable. The second objective is to steer the robot in accordance with references
to its velocity and yaw rate, which are continuously provided by a human operator.

1.2 Thesis Outline

I begin by describing the Sk8o robot in chapter 2. Its sensors, actuators and pro-
cessors are discussed, as well as the overall hardware architecture. Also introduced
within the chapter is a nonlinear mathematical model that will be used in further
parts of the thesis.

In the somewhat technical chapter 3, I describe changes I made to the robot’s pro-
gramming in order to allow for the deployment of MPC. I also perform preliminary
tests of the robot’s computational performance.

Chapter 4 details the design of the controller. It defines a linear predictor1 and
formulates MPC as a quadratic program. A section detailing the implementation
in Sk8o follows. I then verify the controller through simulations and conclude the
chapter by performing experiments on the real hardware.

Having achieved the goals set out by my assignment, I decided to explore further. In
chapter 5, I proceed to a data-driven variant of MPC, the Koopman model predictive
control (KMPC), which makes use of a more complex lifted linear predictor, in an
effort to better forecast the robot’s future. The majority of the chapter concerns
itself with obtaining the lifted linear predictor. Once that is achieved, the resulting
controller is validated in simulations and hardware experiments, just like the MPC
controller before it. The performance of the KMPC controller falls short of my
expectations, and possible causes are discussed.

The thesis concludes in chapter 6, in which I also provide a list of open problems.

1Usually, the entity referred to here as linear predictor would simply be called a linear model. I
use the name linear predictor for the sake of compatibility with another control scheme – Koopman
MPC – which I also tackle later in the thesis.
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2 | Sk8o Robot

In this chapter I will provide a brief description of the actuators, sensors and
processors of the robot I was tasked with controlling. I will touch upon the internal
organisation of the robot and the information flow within it. I’ll conclude the
chapter by introducing a model of the robot.

The Sk8o robot was designed, built and programmed by Krištof Pučejdl and
Martin Gurtner of the AA4CC group at CTU FEE, while the dynamical model I
make use of was derived by Dominik Hodan in his master’s thesis [6]. Thus, this
chapter does not describe my contributions, except where explicitly stated.

Sk8o, depicted in figure 1.1, is a bipedal, wheeled robot. Its mode of locomotion
is similar to that of the Segway vehicle – the robot drives its wheels to turn and
move its body, while also maintaining an upright position. Additionally, the robot
is capable of extending and contracting its legs.

2.1 Actuators

Sk8o is endowed with four eX8108 105KV BLDC motors, each of which is controlled
by Ben Katz’s 3-phase motor controller1. Two motor assemblies are placed at the
wheels of the robot, while the remaining two reside in the robot’s hips. Those two
hip motors are sufficient for fully controlling the lengths of the legs – this is due to
the structure of the limb, which contains a kinematic loop.

Two modes of operation are supported by the motor controllers. Either the position
of the motor (measured by a hall effect sensor mounted on the controller) or the
motor’s torque (calculated from currents applied to it) can be controlled. The first
mode is used in the hip motors, which are tasked with maintaining a selected leg
extension, while the wheel motors use the torque-control mode. The maximum
torque setpoint is software-limited to 0.7 Nm.

1https://github.com/bgkatz/3phase_integrated
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Chapter 2 Sk8o Robot

UARTOdroid N2+

Xbox
controller

I2C

Teensy 4.0

IMU

Left hip
motor controller

Left wheel
motor controller

Right hip
motor controller

Right wheel
motor controller

CAN 1

CAN 2

Figure 2.1: Hardware diagram of Sk8o

2.2 Sensors

Each motor controller measures and reports the position and velocity of its motor,
as well as the torque exerted by it. An ICM-42688 IMU attached to the robot
body provides measurements of accelerations, angular rates and Euler angles. The
IMU has a built-in antialiasing filter, whose bandwidth is set to 1051 Hz. Lastly,
a RealSense camera can be mounted on the robot. The camera will be omitted
from further discussion, as it is not utilized in this thesis.

2.3 Hardware Architecture

Figure 2.1 shows the connections between individual components of the Sk8o
robot’s hardware. There are two computational resources available: the Teensy
4.0 board and the Odroid N2+ computer.

The single-cpu Teensy is programmed in C++ and its main loop runs at 1 kHz.
Its tasks include periodically gathering measurements from the motor controllers
and from the IMU and transmitting them (on demand) to the Odroid computer.

4



Hardware Architecture Section 2.3

The Odroid computer boasts a total of six CPU cores2 and runs Ubuntu. It
allows the robot to interface with the outside world – most notably, to wirelessly
connect to an Xbox controller, which is used by the robot’s operator to steer
it. Individual functions of the Odroid computer are implemented as services,
programmed either in Python or in C++. Communication between the services
is facilitated by Lightweigh Communications and Marshalling (LCM)3, using a
publisher-subscriber pattern.

Originally, controlling Sk8o was done exclusively from within the Teensy board –
i.e., the Odroid computer would only concern itself with passing commands from
the Xbox controller to Teensy. As part of the preparatory work for my thesis, I’ve
made some modifications (elaborated in section 3.1) which allow for the roles to
be reversed: a controller can now run in the Odroid computer, with Teensy acting
merely as a middleman passing the required actions to the motor controllers. This
allows for computationally demanding control schemes to be used, such as in [6],
or indeed, in this very thesis.

2Consisting of a Quad-core Cortex-A73 and a Dual-core Cortex-A53.
3See https://github.com/lcm-proj/lcm for details.
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Chapter 2 Sk8o Robot

2.4 System model

I use the Segway model of the robot derived in [6]. It approximates Sk8o as a
wheeled inverted pendulum of constant length – the position of the hip motors is
therefore fixed. This results in a nonlinear system with two inputs and six states

uT =
[
uL uR

]
, xT =

[
χ̇ φ̇ ψ̇ χ φ ψ

]
, (2.1)

where uL and uR are torques applied to the left and right wheels, respectively, χ is
the distance travelled, φ is the angular deviation of the pendulum from the upright
position, and ψ is the angle of rotation around the vertical axis. The states are
also illustrated in figure 2.2.

Figure 2.2: The Segway model (figure reproduced with permission from [6])

The equations of the model, as well as values of mw, mp, w, l, and r are reproduced
in appendix A.

6



3 | Preparatory Work

When I began work on my thesis, the only control scheme deployed on the
Sk8o robot consisted of an LQR controller running on the Teensy board. Model
predictive control is significantly more computationally demanding than LQR, as
in each step it queries a quadratic program solver. Thus, given a choice between
using the Teensy microcontroller or the full-fledged Odroid computer, it is natural
to pick the latter. As controlling Sk8o from Odroid was novel at the time, it
seemed prudent to first ascertain its feasibility and to remove any obstacles that
might arise1.

Recalling figure 2.1, using Odroid moves the controller a step further away from
the actuators. Several questions needed to be answered before proceeding to MPC
implementation:

• Will this move introduce significant communication delays?

• Will Odroid be usable for a real-time application?

• Which combinations of prediction horizon length2 and control frequency are
achievable?

To help me answer these questions, I ported a version of the LQR controller (tuned
for a control frequency of 200Hz) from Teensy to Odroid. This experiment was
eventually successful in two ways – firstly, I was able to balance and steer Sk8o by
LQR running on Odroid (albeit with worse performance compared to running it
on Teensy3). More importantly, in porting the controller I became aware of a few

1Another motivation for exploring the issues of controlling Sk8o from Odroid was the concurrent
work of Dominik Hodan, who in [6] controls Sk8o using reinforcement learning – an approach
that likewise makes use of the Odroid computer.

2The term prediction horizon will be explained in more detail in chapter 4. In a nutshell, the
length of the prediction horizon N describes how far into the future the controller must plan. As
such, the value of N plays an important role in determining the computational complexity of
MPC.

3In particular, the controller exhibited a tendency towards oscillations. I suspect this could
have been caused by the inevitable increase in communication delays, even after issues discussed

7



Chapter 3 Preparatory Work

problems in the existing codebase that needed to be addressed.

3.1 Resolving Communication Issues

Simplifying somewhat for the sake of brevity, the program running on the Teensy
consisted of a main loop that was executing without any timing restrictions and a
secondary control loop that executed once per millisecond. The main loop executed
the following pseudocode:

1 read and save a message from CAN 1, if available

2 read and save a message from CAN 2, if available

3 read 1 byte from UART into buffer, if available

4 if buffer contains whole UART message

5 parse and save UART message

6 empty buffer

The control loop then undertook all other functions. It could (by a UART message)
be switched into a mode in which it ran the LQR controller (with references coming
over UART and calculated actions passing to motor controllers via CAN). The other
mode, relevant to my use case, was called motor mode. In it, the microcontroller
awaits a UART message with actions and passes it over to motor controllers
directly.

There are two issues with this implementation: firstly, lines 1 and 2 of the main
loop’s pseudocode together take 30 µs to execute. Since the length of a UART
message containing actions to be passed to motor controllers is 35 bytes, and both
CAN lines are checked before receiving each byte over UART, a needless delay of
1.05ms is incurred. This is significant compared to the transmission time of the
message over UART, which given the baudrate of 2M, equals 175 µs.

The second issue results from the message being retransmitted to motor controllers
from within the control loop. Depending on when the last byte of the message is
received by Teensy, up to another millisecond of delay adds up.

further in this chapter were solved. Perhaps this could be fixed by retuning the LQR – though
I chose not to spend time on doing so, as running LQR on Odroid wasn’t the objective of this
thesis.

8



Real-time Usability of Odroid Section 3.2

I fixed the first issue by replacing line 3 of the pseudocode above with logic that
continues reading bytes from UART until the message currently being received is
complete (or until there are no more bytes to be read, whichever happens first).
The second problem is then fixed by retransmitting the motor references instantly
upon receiving the message, from the main loop. Thus, the new main loop is
equivalent to following pseudocode:

1 read and save a message from CAN 1, if available

2 read and save a message from CAN 2, if available

3 WHILE a byte is available to read from UART

4 read 1 byte from UART into buffer

5 IF buffer contains whole UART message

6 BREAK

7 IF buffer contains whole UART message

8 parse UART message

9 IF message contains commands for motors

10 IF motor mode is active

11 send commands to motors over CANs

12 ELSE

13 save UART message

14 empty buffer

3.2 Real-time Usability of Odroid

An undisputable advantage that is lost when moving control from Teensy to
Odroid is that of simplicity. The program running on Teensy makes use of just
one timer-based interrupt. It is therefore easy to understand the microcontroller’s
timing, and one can be certain that its performance will be real-time.

The same cannot be said for Odroid, as it is much more complex. It’s not a
reasonable goal to attempt to understand the inner workings of the whole operating
system and its scheduling to such depth as to be certain of its performance.

Something I have briefly investigated was whether a real-time operating system
could be made to work on Sk8o. This, alas, didn’t lead anywhere. There is no
official support for the real-time kernel from Odroid’s manufacturer Hardkernel,

9



Chapter 3 Preparatory Work

and while there is evidence of someone trying to apply a real-time patch on their
own4, doing so apparently leads to driver issues.

This regrettably means that there are no guarantees when it comes to the real-time
performance of Odroid. Still, some steps in the right direction could be taken. I
decided to dedicate two cores of the faster Cortex-A73 CPU to the critical services
needed for control – one for the controller service itself and the other for an existing
service that facilitates UART communications with the Teensy. This is done by
adding the cores to the isolcpus parameter of Odroid’s boot.ini file and launching
the services with affinities for their respective CPU cores via taskset.

I also measured the jitter of the aforementioned LQR running in C++ on Odroid,
on its dedicated CPU core. I ran the program for 30 s, during which time its main
loop executed a total of 6 · 103 times. I have calculated the jitter ji in each step as

ji = ti−1 − ti − T , (3.1)

where ti is the time of executing the i-th loop and T is the control period of the
LQR, i.e. 5ms. Note the absence of absolute value in the equation. The result is
visualized in figure 3.1.

I deemed this result acceptable. The jitter appears fairly consistent and never
exceeded 2% of the control period.

3.3 Predicton Horizon Length and Control Frequency

The goal of this last preliminary test was to obtain an estimate of the time it will
take to solve the MPC quadratic program and to pick a feasible combination of
horizon length and control frequency. To this end, I first generated 104 random
initial conditions of the Sk8o system. For each one, I formulated the MPC quadratic
program, as will be described in section 4.2. To solve the QP, I used the Python
interface5 for the OSQP solver, described in [11]. I noted the times that elapsed

4https://forum.odroid.com/viewtopic.php?f=55&t=41129

5https://github.com/osqp/osqp-python

10
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Predicton Horizon Length and Control Frequency Section 3.3

Figure 3.1: Histogram of jitters measured over 30 s of LQR run time

until OSQP returned a solution. This process was repeated for various lengths of
prediction horizon N , sweeping 5 to 100. The solver’s setup parameters were kept
at their default values, with the exception of warm_start (set to True) and the
couple eps_abs and eps_rel, which were both set to 10−4.

The testing program was written in Python (which at that point I had decided to
use instead of C++) and ran on the Odroid computer on its own dedicated CPU
core – mirroring the conditions under which the real controller would eventually
run.

The mean values of times taken to find a solution are shown in figure 3.2. The
results were encouraging and led me to choose the combination of a control
frequency of 50Hz and control horizon length of 20 steps. Looking at the figure,
this choice might appear overly cautious – a frequency of 50Hz gives the controller
20ms to come up with a solution. The mean time taken in the test to find a
solution at this horizon length was just 1.3ms. There were however reasons to be
careful.

11



Chapter 3 Preparatory Work
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Figure 3.2: Results of Odroid OSQP timing test

Firstly, the MPC used in this test was based on a slightly modified version of the
model described in section 2.4 – one that omitted the states x and ψ, reducing
the state vector’s dimension from 6 to 4. It wasn’t clear at the time whether the
full model would be necessary or not6.

Secondly, a linear predictor obtained by linearization of the nonlinear model was
used in the test. I planned to eventually also try other, more computationally
demanding linear predictors – in particular, the Koopman variant of model pre-
dictive control, described in chapter 5, would make use of lifted linear predictors.
More details will be provided in the dedicated chapter – for now, I’ll limit myself
to noting that using a lifted linear predictor is akin to artificially increasing the
state space dimension. The dense MPC formulation I describe in 4.2 minimizes the
impact of this increase on computational complexity, however, it is not eliminated
fully.

6It would turn out to be necessary, because with the reduced model Sk8o had a tendency of
drifting away due to imperfect velocity tracking.
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Predicton Horizon Length and Control Frequency Section 3.3

Thirdly, in the real controller, some of the time budget would need to be allocated
to tasks other than solving the quadratic problem – to publishing the solution and
possibly also debug data as LCM messages, at the very least.

And lastly, one needs also to consider the duration of the control horizon as
measured in seconds, rather than just its length measured in steps. Since the
duration of each step of the horizon is equal to the control period, doubling the
control frequency while keeping the horizon’s length constant will halve its duration.
For the combination of 50Hz and 20 steps, the duration of the horizon is 0.4 s, a
time I considered sufficiently long to capture the evolution of the robot’s dynamics.
If I wished to increase the frequency to 100Hz, I would need 40 steps to achieve the
same duration. And the time to solution for 40 steps averaged at 5.8ms already.
In doubling the frequency, I would go from needing 6.5% of available time to 58%.

In light of all those points, I chose to err on the side of caution and select 20 steps
at 50Hz.

13





4 | Model Predictive Control

Model predictive control (MPC) is a control scheme that seeks to, in each control
step, plan out an optimal sequence of actions. This optimality is understood in
the sense that the controlled system’s trajectory, which would result from such a
sequence of actions, minimizes a user-defined cost function. Once such a sequence
is found (which is achieved by solving a quadratic program), the first element of
the sequence is applied to the system, and the rest of the sequence is discarded. In
the next step, the whole process repeats. MPC only predicts (and plans) a certain
number of steps into the future – it only considers a finite prediction horizon.

I will begin by describing a linear predictor, which facilitates the forecasts of the
system’s evolution. This will be followed by a concrete definition of MPC and its
formulation as a quadratic program. After that, I will describe how I implemented
MPC in the Sk8o robot and conclude by verifying the resulting controller – both
in simulations and by running experiments on the physical hardware.

4.1 Linear Predictor

Let the system, whose evolution needs to be predicted, be a nonlinear discrete-time
system

xk+1 = τ(xk, uk) , (4.1)

where xk ∈ R6 is the state vector of the system at time k, uk ∈ R2 is the input
applied to the system at time k, and τ(x, u) is a nonlinear function. I assume that
all the states of the system are measured.

The sought linear predictor is in the form of a linear discrete-time system
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zk+1 = Azk +Buk ,

x̂k = Czk ,
(4.2)

where x̂k is the predicted state of the nonlinear system at time k and zk is the
predictor’s state at time k. Now, let’s discuss the dimension of zk with respect to
the order of the nonlinear system.

Firstly, if the dimension of zk is equal to that of xk, the option naturally presents
itself to set zk = xk. In that case, C is an identity matrix and matrices A,
B may be identified by linear approximation of τ(x, u) at a suitable operating
point. Alternatively, if trajectories of the nonlinear system are available, A, B
may be found in a data-driven way, for example, via the Extended Dynamic
Mode Decomposition algorithm, which will be described in section 5.3. The linear
predictor with zk = xk will henceforth be called the unlifted linear predictor.

Conversely, a lifted linear predictor is one where the dimension of zk is greater
than that of xk. Use of lifted linear predictors is the defining characteristic of the
Koopman MPC (KMPC), and as such, will be dealt with in chapter 5.

For the rest of this chapter, I will only use the unlifted linear predictor.

For completeness’ sake, one could also devise a linear predictor whose zk had
a lower dimension than xk. Such a predictor would then only be capable of
forecasting a subset of the original system’s states. While such a predictor could
be useful in some settings, I don’t expect the need for reduction of the state’s
dimension to arise in Sk8o, which is already fairly low-dimensional. I will thus not
discuss this variant further.

4.2 MPC Formulation

Assuming that an unlifted linear predictor was obtained, it is now possible to
formulate MPC as a quadratic program to be solved by a QP solver.

The goal is to drive the state of the system xk towards a reference rk. This is
equivalent to driving the regulation error ek = rk − xk towards zero. A second
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requirement is to minimize used actions, so as to conserve energy. Those objectives
(and their relative weighing) are described by a standard quadratic cost function

J =
1

2
eTNSeN +

1

2

N−1∑
k=0

eTkQek + uTkRu
T
k , (4.3)

where N is the length of prediction horizon and ek, uk are the regulation error
and control action at time k, respectively. Matrix S ≥ 0 penalizes the error at the
end of the prediction horizon, matrix Q ≥ 0 does the same within the horizon and
R > 0 penalizes the actions.

The full optimization problem is then

min
uk,ek

J({uk}Nk=0, {ek}Nk=0) ,

subject to zk+1 = Azk +Buk ,

ek = rk − Czk ,

umin ≤ uk ≤ umax ,

parametrized by xt = given ,

z0 = xt ,

rk = given ,

k = 0, 1, ..., N ,

(4.4)

where matrices A, B, C constitute an unlifted linear predictor (4.2), and umin,
umax are limits imposed on the actions. I do not impose any constraints on the
system’s state.

The optimization problem (4.4) as formulated scales with the dimension of zk, as
it is a decision variable. While this is not a concern in this chapter, where the
dimension of zk is constant1, it would become an issue in chapter 5, where the

1In an unlifted linear predictor, the dimension of zk is always equal to that of the original
system, i.e. 6 in the case of Sk8o.
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dimension of zk is increased2. Thus, I chose to convert the problem to the dense
MPC formulation, where only uk are decision variables.

Let

U = [uT0 , u
T
1 , ...u

T
N−1]

T ,

r = [rT0 , r
T
1 , ..., r

T
N ]T .

(4.5)

The dense formulation of MPC as a quadratic program can then be written as

min
U

1

2
UTHU +

[
zT0 rT

]
F TU ,

subject to umin ≤ uk ≤ umax ,

parametrized by xt = given ,

z0 = xt ,

rk = given ,

k = 0, 1, ..., N ,

(4.6)

Here the predictions of future states are no longer explicitly spelled out as con-
straints but rather are folded into matrices H and F , whose construction is
elaborated in appendix B. I will not replicate the whole derivation of the dense
MPC formulation in this thesis – it may be found for example in textbook [2].

4.3 Implementation in Sk8o

I implemented the MPC as a linux service named MPC control running on Odroid
N2+. Diagram 4.1 shows how this new service interacts with other existing
services on Odroid. Thin arrows with hexagonal labels represent LCM messages3.

2As a result of using lifted linear predictors.
3The diagram shows the messages as point to point connections for sake of clarity – just to

avoid possible confusion, I’d like to note that messages in Lightweight Communications and
Marshalling are implemented as broadcasts. Individual services then subscribe only to those
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Stoupento control
service

MPC control
service

Hardware bridge
service

references measurements

actions

Robot operator
(via Xbox controller)

Teensy
(via UART)

ODroid N2+

Figure 4.1: Diagram of information flow between Odroid services

MPC control makes use of two threads – one runs at 50Hz and is responsible
for solving the QP (4.6) and publishing the found action u to LCM. The second
thread concerns itself with incoming LCM communications, the most important of
which are the measurements of Sk8o’s sensors, and velocity references sent by the
user. For handling the incoming messages, I reused code originally developed by
Dominik Hodan in his master’s thesis [6]. The MPC control service runs on its
own dedicated CPU core, as described in section 3.2.

My MPC Control service receives references for forward speed χ̇, and yaw rate
ψ̇, from an existing Stoupento control service4, which gets them from an Xbox
controller held by the robot’s operator. In normal operation, the operator inputs
their desired values of χ̇, ψ̇ by manipulating the joystick on the Xbox controller – I
expanded the Stoupento control service to also allow the sending of a predefined
sequence of references, which I use in further sections to conduct experiments on
the robot. The Stoupento control service runs in Python.

messages that are of interest to them – represented in the diagram by a thin arrow entering a
service block.

4The word Stoupento in this service’s name was an early candidate for the robot’s name, before
its creators settled on calling it Sk8o. As of the time of writing, the word remains present across
the codebase.
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The Hardware bridge service is written in C++ and handles UART communica-
tions with the Teensy board, and by extension, with the actuators and sensors of
the robot as described in chapter 2. It too existed prior to my work – I made some
minor changes to it, allowing it to pass motor actions (which are published by
my MPC control service) to Teensy and making it run on a dedicated CPU core.
Apart from passing commands to Teensy, Hardware bridge also periodically5

requests measurements from it, which are then sent over to the MPC Control

service.

There is a slight simplification in the diagram – Hardware bridge does not actually
publish the states of the Sk8o system; rather, it publishes the measured velocities
of the wheels and measurements from the IMU unit. The wheel velocities are then
converted inside the MPC control service into χ̇, ψ̇ (using a known wheel’s radius
and distance between the wheels). The IMU measurements are converted into φ̇
and φ. The convertor also handles an offset of four degrees in φ (as the IMU does
not read zero when the robot is standing upright). This conversion code is taken
from Dominik Hodan’s work.

In Hodan’s work, the converter did not provide the measurements of χ and ψ. As
both of those states are necessary for me, I obtain them by numerically integrating
the measured values χ̇ and ψ̇, respectively, in MPC control service’s control loop,
as illustrated in figure 4.2.

The references for those states are likewise integrated from χ̇ref and ψ̇ref . This
leaves me with two undefined references – φ̇ref and φref . I chose to always set
those references to zero, the rationale being that a perfectly upright position of
the robot is best as far as maintaining balance is concerned. A zero φref is clearly
at odds with nonzero χ̇ref , but this conflict is present at the very heart of my task,
and can be handled by MPC without issue. It simply forces the MPC to make
compromises between perfect balance and perfect velocity tracking.

The entity described as MPC controller in figure 4.2 is tasked with solving the
dense-formulated MPC quadratic program (4.6). It is implemented as a Python
object, internally using a Linear predictor object. I intentionally separated this

5Once per 2 ms.
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MPC
Controller

LCM
const. 0

LCM

Converter

LCM

Figure 4.2: Internal diagram of MPC control service

functionality to ease the future progression to lifted linear predictors. For now, it
simply implements an unlifted linear predictor as described in 4.1.
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4.3.1 MPC Setup

The MPC uses a prediction horizon N = 20, as determined in section 3.3, and
limits umin = −0.5 Nm, umax = 0.5 Nm. The limits on actions were determined
experimentally. I had started with values of ±0.7 Nm – which are the maximums
put in place by the robot’s creators – but found that Sk8o’s wheels occasionally lost
contact with the ground and slipped6. Lowering the limits to ±0.5 Nm appeared
to solve this issue.

One more detail remains to be addressed – the MPC formulation (4.6) requires a
reference rk for each step of the prediction horizon, and I have so far only shown
how the reference for the first step, r0, is obtained (in figure 4.2). The references
for χ̇, ψ̇, φ̇ and φ are kept constant across the whole prediction horizon, while
the references for χ and ψ follow a ramp with slope defined by references for their
derivatives, i.e.

χ̇i
ref = χ̇0

ref ,

φ̇i
ref = 0 ,

ψ̇i
ref = ψ̇0

ref ,

χi
ref = χ0

ref + i · χ̇0
ref ,

φi
ref = 0 ,

ψi
ref = ψ0

ref + i · ψ̇0
ref ,

(4.7)

where the upper index i ∈ 0, 1, ... N marks the step of prediction horizon which the
reference belongs to. Note that preview is not used – I assume that no knowledge
of the future references is available. This is consistent with my problem statement
(section 1.1).

6I think this is related to the fact that, not long before my work, Sk8o’s tires were replaced
with new ones made out of a slightly different material and their design was somewhat altered.
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Matrices A, B are obtained by linear approximation of the nonlinear model from
section 2.4. The jacobian of the nonlinear state transfer function is calculated,
using the equilibrium (all states zero) as operating point. It is then discretized
using a sampling time of 20 ms. The resulting matrices are

A =



9.2 · 10−1 −1.3 · 10−3 0 0 −7.5 · 10−1 0

2.8 · 10−1 1.0 0 0 3.2 0

0 0 9.6 · 10−1 0 0 0

1.9 · 10−2 1.2 · 10−5 0 1 −7.6 · 10−3 0

2.8 · 10−3 2.0 · 10−2 0 0 1 0

0 0 1.9 · 10−2 0 0 1


(4.8)

B =



−3.1 · 10−1 −3.1 · 10−1

1.1 1.1

1.2 −1.2

−3.2 · 10−3 −3.2 · 10−3

1.1 · 10−2 1.1 · 10−2

1.2 · 10−2 −1.2 · 10−2


. (4.9)

And lastly I used the following matrices Q, R:

Q = diag([20, 0.237, 0.119, 20, 6000, 1]) R =

[
1 0

0 1

]
, (4.10)

where diag(d) denotes a diagonal matrix with elements d on its diagonal. The
(experimentally determined) tuning of weighs in Q, particularly the emphasis on
state φ, reflects the fact that balancing the robot is the more important goal.
Indeed, if balance is lost and the robot falls, the secondary goal of following velocity
and yaw rate references cannot be fulfilled in the slightest.
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Matrix S is then obtained as the infinite-horizon solution of discrete-time Riccati
equation associated with an LQR problem defined by matrices A (4.8), B (4.9), Q,
R (4.10). I reproduce it below, replacing elements whose absolute value is < 10−3

with zeroes.

S =



5.9 · 103 1.7 · 103 0 2.5 · 103 2.3 · 103 0

1.7 · 103 4.9 · 102 0 7.1 · 102 7.3 · 102 0

0 0 2.8 · 10−1 0 0 6.1 · 10−1

2.5 · 103 7.1 · 102 0 2.5 · 103 1.2 · 103 0

2.3 · 103 7.3 · 102 0 1.2 · 103 1.3 · 104 0

0 0 6.1 · 10−1 0 0 1.9 · 101


(4.11)
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4.4 Simulations

In this section I reproduce three simulations verifying the capability of MPC
to control Sk8o. The simulator uses the model described in section 2.4 and is
implemented in Python. The nonlinear system is numerically integrated with an
integration step of 2ms, using the fourth-order Runge-Kutta method. The MPC
controller formulated earlier in this chapter controls the system at 50Hz.

Except for the first simulation, the simulations start with the system in equilibrium,
i.e. x0 = [0, 0, 0, 0, 0, 0]T .

Even though the references used in the experiments are known in advance, I do
not use preview in my controllers. This is done to mimick the intended use case of
the robot, where references are provided by a human operator.

4.4.1 Stabilization

The first test confirms that the controller is able to bring the system from a nonzero
initial condition back to the equilibrium. The initial condition of the simulation is
x0 = [1, 1, 1, 0, 0, 0]T . The simulation is captured in figure 4.3.

4.4.2 There and Back Again

In this simulation, the MPC is given a simple set of references – first, it is tasked
with driving the robot forward for two seconds, then it ought to keep it still for
three seconds, then it is supposed to drive it backwards for two seconds.

The simulation result is visualized in figure 4.4. I’ve elected not to plot the states
ψ̇ and ψ, as they (unsurprisingly) remain zero for the duration of the simulation.

4.4.3 Slalom

This last task consists of a set of references that, if followed perfectly, would see
the robot move along a slalom-like trajectory. The slalom consists of eight 180◦

arcs with common radius of 25 cm. The trajectory also progressively increases in
difficulty. The time allotted for passing the first two arcs is 4 s, the second couple
must be passed in 3 s, third in 2.25 s and fourth in 1.69 s. The result is visualized
in figure 4.5.
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Figure 4.3: MPC simulation: Stabilization
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4.5 Experiments on Sk8o

This section will show measurements from the physical Sk8o robot. Three experi-
ments were performed – Stabilization, There and Back Again, and Slalom. The
last two mentioned experiments are analogous to simulation experiments presented
in section 4.4, using the exact same references.

In the Stabilization experiment, the references given to the robot are zero (i.e. it
is tasked with balancing in place). An external disturbance is then applied to the
robot using a simple contraption which will be described shortly in section 4.5.1.

All experiments were performed once with MPC controlling the robot and then
a second time, using the original LQR controller. Both resulting trajectories are
overlaid for comparison in figures 4.7, 4.8, and 4.9.

For legibility’s sake, I omit the control actions from those figures. Figures with
the controls included can be found in appendix D. The appendix version of figure
4.7 is also longer, showing three consecutive disturbances instead of one.

4.5.1 Minimalistic Repeatable Disturbance Applier

To disturb the robot, I devised a simple device, which I’ll refer to as the Minimalistic
Repeatable Disturbance Applier (MRDA). Its design is captured in figure 4.6. As
the name implies, its purpose is to make the disturbances applied to the robot
consistent across multiple experiments.

MRDA is essentially a simple pendulum. Specifically, it consists of a PET bottle
filled with water (represented by point mass m in the diagram), hung on a plastic
twine of length l. Sk8o (drawn in blue) is positioned directly below the pivot point
of the pendulum. The bottle is brought to a defined height h1 and released. It
swings down to h2 and impacts the unsuspecting robot in the back of its body7.
The values of of parameters used above are listed in table 4.1.

7This point of impact is not chosen to make the whole endeavour appear more dastardly.
Rather, I picked it to minimize the risk of damaging the robot’s electronics, which are positioned
closer to the front of its body.
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l

m

d

h1h2

Figure 4.6: Diagram of Minimalistic Repeatable Disturbance Applier

Parameter Value

l 460 cm
d 170 cm
h1 70 cm
h2 30 cm
m 500 g

Table 4.1: Parameters of Minimalistic Repeatable Disturbance Applier
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4.5.2 Discussion of Experimental Results

First and foremost, it is clear from the experiments that the MPC controller I
designed and implemented is capable of steering and balancing Sk8o. I’ve shown
that it can track references for both χ̇ and ψ̇, and to balance the robot even in
the presence of an external disturbance.

I’ve also compared the trajectories of Sk8o controlled by my MPC controller with
trajectories obtained by controlling Sk8o by a preexisting LQR controller. The
results show the performance of the two controllers to be comparable. Determining
which of the two controllers is better is somewhat problematic though, for several
reasons.

Firstly, the two controllers are tuned differently. It wasn’t clear which matrices Q,
R were used to tune the original LQR controller8. Even if they were available, it
isn’t certain that they would perform well in MPC due to differences between the
controllers.

Given the different tuning, it isn’t at all obvious how to judge the quality of
tracking. For example, in figure 4.7, state φ appears to be regulated better by the
MPC, while in state χ LQR’s trajectory seems superior. This could be caused by
the difference in tuning alone.

The two controllers have different action limits – I had to reduce the MPC’s action
limit to 0.5 Nm to avoid slipping, while the LQR’s actions are constrained to
0.7Nm9.

The MPC is also disadvantaged by running at a lower frequency (50 Hz compared
to the LQR’s 1 kHz). A secondary handicap is caused by the fact that it runs
on Odroid, unlike the LQR which runs on Teensy. Recalling figure 2.1, Odroid is
further away from the robot’s actuators and sensors. Thus, the MPC is burdened
by greater communications delays than the LQR.

8Though some matrices can be found in Adam Kollarčík’s master’s thesis [7], the controller
was apparently subsequently retuned by others. To the best of my knowledge, the matrices used
to tune the latest iteration of LQR running on Sk8o are lost to history.

9In Teensy, the LQR’s actions are clipped to these values, while in my MPC, the limits are
formulated as constraints on the optimization problem.
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And lastly, to make any meaningful comparison, a statistically significant amount
of experiments ought to be conducted. I wasn’t able to do this due to time
constraints.

To sum up: I deem the MPC regulator fit for use. Its performance is comparable
to that of the original LQR.
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Control

Having implemented a working MPC controller in chapter 4, I decided to go
beyond the requirements of my assignment and expand the implementation to
Koopman Model Predictive Control (KMPC).

KMPC works, for the most part, the same as MPC, with one crucial difference: it
uses a lifted linear predictor. In a nutshell, the lifted linear predictor expands (lifts)
the state vector into a higher dimension, adding to it nonlinear functions of the
states (called observables). Operating on this lifted state can allow this predictor
to better forecast the evolution of the nonlinear system, which is supported by the
Koopman operator theory on dynamical systems.

The structure of this chapter reflects the fact that KMPC is basically MPC with a
different linear predictor. The majority of the chapter will deal with the problem
of identifying a the lifted linear predictor. Section 5.7 will note the few ways in
which KMPC’s formulation differs from MPC. Just like in chapter 4, I’ll conclude
by assessing KMPC in simulations and hardware experiments (sections 5.8 and
5.9, respectively).

5.1 Koopman Operator

What follows is a very brief introduction of the theory upon which lifted linear
predictors are based. The idea of representing the behaviour of nonlinear systems
in a lifted space was first introduced in [8] by Koopman in the 1930s. For a rigorous
discussion of Koopman operator theory, see [3]. For the sake of brevity, I will also
limit myself to autonomous systems – the extension to controlled systems can be
found in [9].

Consider an autonomous, discrete-time dynamical system
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xk+1 = τ(xk), xk ∈ M, (5.1)

where M is a finite-dimensional state space and τ : M 7→ M is a nonlinear
function. The first step is to define new functions in the form g : M 7→ R, which
are called observables. Observables belong to an infinite-dimensional vector space
of functions F . Note that observables need not be linear.

The Koopman operator K : F 7→ F is defined as an operator that advances
observables one step into the future. In other words, K is defined by the equation

(Kg)(xk) = g(τ(xk)) = g(xk+1). (5.2)

Crucially, the Koopman operator itself is linear. Assuming that F contains
functions mapping the state x to its components, K captures the dynamics of (5.1)
in their entirety. This would make the Koopman operator a perfect candidate for
a linear predictor. Alas, it is also infinite-dimensional, so it cannot be directly
used for control synthesis.

Not all is lost, however – by taking a finite-dimensional subset of F , it is possible
to obtain a finite-dimensional approximation of K. And this approximation can
be used to build a lifted linear predictor [9].

5.2 Lifted Linear Predictor

Just like in section 4.1, the goal is to predict the evolution of a discrete-time,
nonlinear system defined by

xk+1 = τ(xk, uk) . ((4.1) revisited)

This will once again be achieved by a linear predictor in the form
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zk+1 = Azk +Buk ,

x̂k = Czk .
((4.2) revisited)

The difference here is that the dimension of z is no longer equal to that of x. The
lifted state z of the lifted linear predictor is defined as

z = G(x) =


g0(x)

g1(x)
...

gL+5(x)

 , (5.3)

where gi(x) are observables, as defined in section 5.1, and G(x) is the lifting function.
L shall be called the lifting dimension and denotes the number of observables in
excess of six. I choose to fix the first six observables as elements of x, i.e.

g0(x) = χ̇ ,

g1(x) = φ̇ ,

g2(x) = ψ̇ ,

g3(x) = χ ,

g4(x) = φ ,

g5(x) = ψ .

(5.4)

The lifting dimension and the choice of functions gi(x) for i > 5 are design
parameters of the lifted linear predictor.

Once the observables have been chosen, matrices A, B of (4.2) can be identified in
a data-driven fashion using the Extended dynamic mode decomposition algorithm,
which I introduce in section 5.3. Matrix C is trivial to obtain due to the choice of
the first six observables – it takes the form of a zero-padded identity matrix. The
matrices A, B, C, and function G(x) together constitute a lifted linear predictor.
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5.3 Extended Dynamic Mode Decomposition

The Extended Dynamic Mode Decomposition (EDMD) algorithm, introduced in
[12], is the tool that facilitates identification of linear predictors from trajectory
data. I use a variant of EDMD, described in [9], which is adapted for use in
controlled systems. If one desired to apply the algorithm to a non-lifted linear
predictor, they could easily do so – all that is needed is to view the predictor as a
lifted one, but with a trivial lifting function G(x) = x.

Let’s assume that a set of trajectory data of the nonlinear system defined by
equation (4.1) is available. It could be obtained as measurements of the physical
system, or it could have originated from simulations. The data is organised into
triplets of xi, x+i , and ui so that

x+i = τ(xi, ui) , i = 0, 1, ...D , (5.5)

where D is the number of data points and τ(x, u) is the state transfer function of
the nonlinear system. It is not necessary for all the data points to have originated
from a single trajectory, but equation (5.5) must be satisfied.

The data is aranged into matrices and the states xi, x+i and lifted, obtaining
matrices

Xlift = [G(x0),G(x1), ...,G(xD)] ,

X+
lift = [G(x+0 ),G(y

+
1 ), ...,G(x

+
D)] ,

U = [u0, u1, ...uD] .

(5.6)

EDMD then solves the optimization problem

min
A,B

||X+
lift −AXlift −BU ||F , (5.7)

with || · ||F representing the Frobenius norm. Denoting the Moore-Penrose pseu-
doinverse of a matrix as (·†), the analytical solution to 5.7 is
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[A,B] = X+
lift[Xlift, U ]† . (5.8)

5.4 Obtaining the Data for EDMD

The EDMD algorithm requires trajectory data of the nonlinear system to be
predicted. This section will describe how I obtained said data. At the section’s
end, I mention some approaches that did not work.

5.4.1 Closed-loop Simulation

I generated the trajectory data by simulating the nonlinear Sk8o system described
in section 2.4, with a stabilizing controller added. The system is numerically
integrated using the fourth-order Runge-Kutta method with integration step
δt = 2ms. It is controlled with control period T = 20ms, which corresponds to
the control frequency used by MPC running on the real robot (the controllers used
will be discussed later in this section).

The resulting simulation is resampled at frequency fs = T−1. Multiple simulated
trajectories are obtained in the form of x(s)i , u(s)i , i = 0, ...N (s), where (s) denotes
the index of the simulated trajectory and where N (s) is the number of samples in
simulated trajectory (s). Each trajectory is simulated for up to 0.5 s, which means
that the maximum value of N (s) is 25. Some simulations are terminated sooner,
as will be described below, resulting in N (s) < 25 for some values of (s).

I arrange the obtained samples (from all trajectories) into matrices X, X+

X =
[
x
(0)
0 x

(0)
1 ... x

(0)

N(0)−1
x
(1)
0 ... x

(1)

N(1)−1
x
(2)
0 ...

]
,

X+ =
[
x
(0)
1 x

(0)
2 ... x

(0)

N(0) x
(1)
1 ... x

(1)

N(1) x
(2)
1 ...

]
,

U =
[
u
(0)
0 u

(0)
1 ... u

(0)

N(0)−1
u
(1)
0 ... u

(1)

N(1)−1
u
(2)
0 ...

]
,

(5.9)

which are then lifted, obtaining Xlift = G(X), X+
lift = G(X+). Thus I arrive at the

matrices required by EDMD.
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To introduce variability into the data sets, I initialize each simulation (s) with
a random initial condition x

(s)
0 . The components of x(s)0 are picked by sampling

uniform distributions with following (experimentally found) limits:

|χ̇(s)
0 | ≤ 0.5 ,

|φ̇(s)
0 | ≤ 0.1 ,

|ψ̇(s)
0 | ≤ 0.05 ,

|χ(s)
0 | ≤ 0.5 ,

|φ(s)
0 | ≤ π

8
,

|ψ(s)
0 | ≤ 0.05 .

(5.10)

In addition to constraining the initial condition of the simulation, in each simulation
step i the following condition is checked:

|φ(s)
i | ≤ π

4
(5.11)

If condition (5.11) is violated, the simulation of that trajectory is terminated. This
is done for two reasons – firstly, to deemphasize irrecoverable falls in the data1,
and secondly to stay within the interval where the nonlinear model is valid. The
real Sk8o is a hybrid system in the sense that when |φ| ≈ π

2 , an impact of the
robot’s body with the floor occurs. The model does not take this into account.

I simulated two batches of data, each consisting of multiple trajectories. The first
set, which I’ll refer to as the identification set, totalled 3000 s of simulations, while
the second, validation set, contained trajectories totalling 500 s.

The last thing that remains to be discussed regarding the simulation are the
controllers used in it. For each trajectory, I generate a new controller based on

1I.e., not to train the predictors too much in forecasting the future in situations that the robot
can’t handle. If |φ| is over 45°, the result is most likely going to be a loss of balance and fall. I’d
rather have a predictor that works better when the robot is upright and worse when failure is
inevitable, than one that perfectly forecasts its fall towards the floor at the cost of worsening its
performance during normal operation.
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one of two baseline controllers – either a LQR or an MPC with unlifted predictor,
as described in chapter 4. The controllers are given zero references on all states.
All the controllers use the same matrix Q(s) to penalize the states:

Q(s) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 200 0 0

0 0 0 0 15 0

0 0 0 0 0 10


∀(s) . (5.12)

The matrix penalizing actions is randomly generated for each controller to make
them distinct. Two variants are used:

R(s)
α =

[
50ρ0 0

0 50ρ0

]
R

(s)
β =

[
50ρ1 0

0 50ρ2

]
, (5.13)

where ρ0, ρ1, ρ2 are obtained by sampling a uniform distribution (0, 1]. In this
way, controllers with equal penalties on both wheels and controllers with differing
penalties are generated.

To further enhance the data, I sabotage the used controllers by adding random
pertrubations to their outputs. The actions u(s)i are obtained as

u
(s)
i = u

ctrl(s)
i + u

nrand(s)
i , (5.14)

where uctrl(s)i is the output of the controller used in simulated trajectory (s) and
u
nrand(s)
i is a random vector whose components are obtained by sampling a normal

distribution parametrized by mean value µ = 0 and standard deviation σ = 0.1.

5.4.2 Unsuccessful Approaches

Obtaining usable data proved to be one of the major challenges in harnessing
EDMD. Before arriving at using closed-loop data as described in section 5.4.1, I
had tried several other approaches, some of which are listed in this section.
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I’ve experimented with generating open-loop data. The method was similar to
that described above, except that instead of uctrli being generated by feedback
controllers, it would be obtained from a variety of functions – including sines and
square waves of varying frequencies, amplitudes and offsets, constants and others.
Using open-loop data in the identification and validation sets appeared to worsen
the performance2 of found linear predictors. Mixing it with closed loop data did
not seem to help either – the best results were achieved when the proportion of
open loop data in the mix reached zero.

Simulating trajectories that were significantly longer than 0.5 s or that used a
lower magnitude of initial conditions likewise led to poor results. I think this was
caused by the data insufficiently exploring the state-space. In the case of long
(5 s or longer) trajectories, I think the issue was that the controllers brought the
system close to equilibrium too quickly, and most of the data was thus taken up
by the system being almost at rest, disturbed only by the perturbations I added
to the controller’s output.

I also attempted to use data gathered from the real robot, by driving it around
with the MPC controller found in chapter 4 and logging the actions and state
measurements. This proved unusable – linear predictors identified on data from
the real robot performed horribly, often predicting that the system will remain in
its current state even if the robot was about to fall. I suspect the issue was similar
to that described above – insufficient exploration of the state space. While this
could perhaps be remedied by driving the robot more recklessly3 , I elected not to
go down that path, not wishing to damage Sk8o.

5.5 Evaluation Metric

Before I proceed to finding the lifted linear predictors, let me define how I evaluated
the predictors’ performance. It was necessary to introduce a metric, since many
different lifting functions G(x) and with them many different linear predictors can

2By performance I mean the predictor’s ability to forecast the evolution of the nonlinear
system – how I evaluated it will be described in selection 5.5.

3I.e. supplying faster-varying references of greater magnitude, leading to greater perturbations
of the controller’s output.
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be devised – thus a need for comparing their performance arises. The metric I use
is based on normalized root mean square error (NRMSE).

To calculate the metric, I use a set of simulated trajectories – the 500 s validation
set mentioned in section 5.4.1. Given a linear predictor consisting of matrices A, B,
C, and a lifting function G(x), as described in section 5.2, and given a simulated
trajectory x

(s)
i , u(s)i , i = 0, 1, ..., N (s), the first step is to calculate the predicted

trajectory in the following fashion:

z0 = G(x(s)0 ) ,

x̂i = Czi ,

zi+1 = AG(x̂i) +Bu
(s)
i ,

(5.15)

where x̂i = [ ˆ̇χi, ˆ̇φi,
ˆ̇
ψi, χ̂i, φ̂i, ψ̂i]

T is the predicted state of the system in step i of
the trajectory, and z is the state of the linear predictor. Then, NRMSE of the
predicted trajectory is calculated on a per-state basis as

NRMSE(χ̇)(s) =
||(χ̇(s)

0 , χ̇
(s)
1 , ...χ̇

(s)

N(s))− ( ˆ̇χ0, ˆ̇χ1, ... ˆ̇χN(s))||

||(χ̇(s)
0 , χ̇

(s)
1 , ...χ̇

(s)
N )− µ(χ̇

(s)
i )||

,

...

NRMSE(ψ)(s) =
||(ψ(s)

0 , ψ
(s)
1 , ...ψ

(s)

N(s))− (ψ̂0, ψ1, ...ψ̂N(s))||

||(ψ(s)
0 , ψ

(s)
1 , ...ψ

(s)

N(s))− µ(ψ
(s)
i )||

,

(5.16)

where µ(·) signifies the mean of the argument over i = 0, ...N (s).

The calculation is repeated for all trajectories in the validation set. Then, the
final value of the NRMSE metric of the linear predictor is obtained by summing
all NRMSE(·) results across all states and all trajectories.

I’ve also divided the resulting sum by the number of trajectories in validation set.
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This is mentioned only for completeness’ sake and serves no purpose in the end4.

The metric is formulated for a lifted linear predictor but may be equally applied
to an unlifted linear predictor by setting G(x) = x.

5.6 Finding a Lifted Linear Predictor

Now, equipped with a definition of the lifted linear predictor (from section 5.2),
EDMD (from section 5.3), data to use in EDMD (from section 5.4.1) and a metric
to compare the quality of linear predictors (from section 5.5), it is finally time to
identify a lifted linear predictor.

First however, a set of observables must be chosen. Picking the right observables
(beyond the first six, which I have fixed as components of the state vector of the
nonlinear system (4.1)) is quite challenging, as the options are by definition infinite,
and their selection can drastically affect the quality of predictions produced. A
few examples will follow, showing how this task was tackled in previous works.

One can start by exploiting their knowledge of the nonlinear system’s dynamics.
For example, when seeking to predict the evolution of a pendulum with angle
θ, the observable sin(θ) presents itself as a promising candidate. This method
was used in [4] to forecast the states of an array of coupled pendulums or in [10]
to predict the dynamics of a power grid. Another option is to generate a family
of parametric functions, as in [9], where a hundred thin plate spline radial basis
functions are employed to anticipate the behaviour of forced Van der Pol oscillator.
Delay embeddings, used in [1] or in [5], provide yet another possibility – having
values from previous time steps act as observables.

I decided to take inspiration from all of the papers referenced above. I experimented
with various choices of observables, some of which I describe below. In describing
them, I only note the added observables – the first six are always assumed to be
the original Sk8o states.

4I added the division when I anticipated that I might compare metrics calculated on different
validation data sets.
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• Observables found as terms of analytical solution of the nonlinear model,
described in section 2.4. To avoid clutter, those are reproduced in appendix
C.

• The humble constant. Here only a single observable which maps the state to
a constant g(x) = 1 is used.

• Thin spline radial basis functions. Inspired by [9], these observables take
the form g(x) = |α(x) − α0|2 log(|α(x) − α0|), where α(x) is one of the
components of x and α0 ∈ R is a parameter. Various amounts of splines
with various parameters were tested.

• Using no observables at all. This essentially identifies an unlifted linear
predictor, using a data-driven approach instead of the linear approximation
used in section 4.1.

I’ve also experimented with adding delay embeddings to the sets of observables
mentioned above, but their addition seemed to consistently worsen the predictors’
performance. Therefore, I will not discuss them further.

Selected linear predictors are ranked by their NRMSE metric in table 5.1. The table
also lists the lifting dimension L, defined previously as the number of observables
in excess of six. For the sake of comparison, I also evaluated the unlifted linear
predictor from section 4.1 and included it in the table.

NRMSE L Description of observables

3.806 19 Solution of nonlinear model
6.126 0 No observables (unlifted predictor via EDMD)
6.127 1 Constant observable (g(x) = 1)
6.186 250 Splines
6.498 150 Splines
6.991 100 Splines
8.674 50 Splines
26.290 0 No observables (predictor with matrices from eqs. (4.8), (4.9))

Table 5.1: NRMSE values of selected linear predictors
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Figure 5.1: Predictions of linear predictors compared to simulated trajectory

Just for illustration, figure 5.1 shows the predictions of 3 linear predictors on a
sample simulated trajectory5. The predictions shown come from the best predictor
according to the evaluation metric, from an unlifted predictor using matrices
obtained by linear approximation, and from an unlifted predictor found by EDMD.

5Generated without perturbations on controller’s output.
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5.7 Difference in Formulation and Implementation of
KMPC

The KMPC formulation

min
U

1

2
UTHU +

[
zT0 rT

]
F TU ,

subject to umin ≤ uk ≤ umax ,

parametrized by x0 = given ,

z0 = G(x0) ,

rk = given ,

k = 0, 1, ..., N ,

(5.17)

differs from the MPC formulation (4.6) only in the initialization of z0. This is also
the only point where the implementation differs – in KMPC, in each loop, the
lifting function G(x) is evaluated.

Apart from this, the KMPC controller differs from the MPC controller only in the
linear predictor it uses. The matrices Q, R are the same as those I used in the
MPC controller (see (4.10)).
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5.8 Simulations

The simulations used for verifying the KMPC controller are the same as the ones
used for verifying MPC in section 4.4.

The meanings of the legends are the following:

• MPC (lin) – MPC using unlifted linear predictor found by linearization, from
chapter 4.

• MPC (dd) – MPC using the second best predictor (according to NRMSE
metric) found in section 5.2 – the unlifted linear predictor obtained via
EDMD.

• KMPC – MPC using the best predictor (according to NRMSE metric) found
in section 5.2 – the lifted predictor with observables from analytical solution
of the nonlinear model.

The simulation results are visualized in figures 5.2, 5.3 and 5.4.

5.9 Experiments on Sk8o

The experiments too are exactly the same as those performed in section 4.5.

They are reproduced in figures 5.5, 5.6, 5.7,5.8, with actions omitted for readability.
I’ve also decided to split the slalom plot in twain, as it is becoming fairly crowded.
The full plots may be found in appendix D.
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51



Chapter 5 Koopman Model Predictive Control

 -1.0
  0.0
  1.0

̇ χ 
[m

s−
1 ]

MPC (lin) traject(ry
MPC (dd) traject(ry
KMPC traject(ry
reference

 -2.0

  0.0

  2.0

̇ φ 
[ra

d
s−

1 ]

 -2.5

  0.0

  2.5

̇ ψ 
[ra

d
s−

1 ]

  0.0

  1.0

χ 
[m

]

 -0.1
  0.0
  0.1

φ 
[ra

d]

 -0.5
  0.0
  0.5

ψ 
[ra

d]

 -0.5

  0.0

  0.5

u L
 [N

m
]

0 2 4 6 8 10 12
t [s]

 -0.5

  0.0

  0.5

u R
 [N

m
]

u (MPC (lin) trajectory)
u (MPC (dd) trajectory)
u (KMPC trajectory)

Closed loop simulation: There and Back Again

Figure 5.3: Simulation: There and Back Again
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Figure 5.6: Experiment: There and Back Again
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5.10 Discussion

Although capable of balancing and steering the robot, both controllers found in
this chapter (the KMPC controller with lifted linear predictor6 and the MPC with
unlifted predictor obtained via EDMD) failed to deliver better results than the
MPC controller from chapter 4, in spite of the fact that their linear predictors
scored better in the evaluation metric, as documented in table 5.1. At best, they
perform similarly to the original MPC (such as in tracking χ̇ref in figure 5.6). At
worst, their performance is inferior (for example in state ψ in figure 5.8, where
both data-driven controllers exhibit a larger overshoot at t ≈ 13 s.).

I believe that the simulation data used to identify and evaluate the predictors (see
section 5.4.1) are at fault. All of the trajectories are simulated with zero references
– I suspect this causes the identified linear predictor to overfit to trajectories
corresponding to the regulation task and worsens its ability to predict the states
of the robot during reference tracking tasks. The logical next step would be to
add references to the datasets, alas, I ran out of time and could not implement
this. At least one other issue is present, which I discuss below.

5.10.1 Pitfalls of Using the Full Model with EDMD

When testing controllers which used linear predictors obtained via EDMD, I
encountered a curious, seemingly non-sensical behaviour: the performance of the
robot appeared to degrade with distance travelled. At first, the robot would track
references for velocity χ̇ref and yaw rate ψ̇ref as expected. After driving it around
for a while though, it would start to visibly oscillate (in its yaw ψ) when given a
χ̇ref > 0, even as ψ̇ref was zero. The same behaviour did not occur in the MPC
controller found in chapter 4 (where the linear predictor is obtained by linear
approximation).

The phenomenon is captured in figure 5.9, where the same experiment is performed
twice, both times using the same MPC controller with an unlifted linear predictor
obtained via EDMD. The trajectory labeled as MPC (dd) was obtained by running

6I only discuss the linear predictor that scored the best in the evaluation metric, but I have
also experimented with predictors using other observables. The results were was similar or worse.
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Figure 5.9: Failure of pre-moved data driven controller

the experiment right after starting the controller, while the other trajectory,
MPC (dd) pre-moved, was preceded by a period of driving the robot around,
which resulted in nonzero initial values of χ and ψ7. As show in the figure, merely
changing the values of those two states significantly worsened the performance in

7Only the reference for the trajectory without pre-moving is plotted in the figure.
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regulating ψ̇ and, as a result, ψ.

I speculated that, probably due to insufficiencies of the identification data, EDMD
has incorrectly identified an effect of one or both of the states χ, ψ on the remaining
states of the system. This would prove to be the case.

Consider the unlifted linear predictor found via EDMD. Its matrix A is equal to



9.5 · 10−1 1.8 · 10−2 0 2.9 · 10−3 −4.7 · 10−1 −1.1 · 10−1

1.4 · 10−1 9.4 · 10−1 0 −9.3 · 10−3 2.1 0

0 0 9.5 · 10−1 0 −1.4 · 10−3 −3.7 · 10−2

1.9 · 10−2 2.1 · 10−4 0 1.0 −5.4 · 10−3 0

1.5 · 10−3 1.9 · 10−2 0 −1.2 · 10−4 1.0 0

0 0 2.0 · 10−2 0 0 1.0


.

(5.18)

I’ve replaced all elements of (5.18) whose absolute value is less than 10−4 with
zeroes for legibility.

The nonlinear model (see section 2.4) assumes that Sk8o moves over a flat horizontal
plane. There is therefore no reason for states χ and ψ to affect the dynamics of the
system in any way. In other words, the columns 4 and 6, corresponding to effects
of states χ and ψ, respectively, should each contain only one nonzero element
(blue), like in the matrix A obtained by linear approximation, which I reproduce in
((4.8), revisited). This is clearly not the case. Considering specifically the entries
of (5.18) shown in red, the linear predictor apperently assumes that χ affects the
future of the states χ̇, φ̇, and φ, and that ψ does the same to χ̇ and ψ̇.

A =



9.2 · 10−1 −1.3 · 10−3 0 0 −7.5 · 10−1 0

2.8 · 10−1 1.0 0 0 3.2 0

0 0 9.6 · 10−1 0 0 0

1.9 · 10−2 1.2 · 10−5 0 1 −7.6 · 10−3 0

2.8 · 10−3 2.0 · 10−2 0 0 1 0

0 0 1.9 · 10−2 0 0 1


((4.8), revisited)
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The presence of such, physically unjustifiable, state relationships is presumably
also a contributing factor to the inferior performance of controllers found in this
chapter.

In hindsight, it would have been better to use the version of the nonlinear model
without states χ and ψ, as is done in Hodan’s work. The states could then be added
back in manually, by augmenting the matrices of linear predictors. Alternatively, it
might perhaps be enough to enhance the simulated datasets by adding trajectories
with larger magnitudes of the two states.

61





6 | Conclusion

The goal of this thesis was to design and deploy a predictive controller capable of
balancing and steering Sk8o. I fulfilled this objective by implementing an MPC
controller in chapter 4. I’ve tested the controller in simulations and on the physical
robot, devising three different experiments which demonstrated the controller’s
ability to follow both simple and complex references and to withstand an external
disturbance. The experiments confirmed that the controller is fit for use. Its
performance is comparable to that of the preexisting LQR controller.

In chapter 5, I expanded the scope of this thesis to include Koopman MPC, in the
hopes of improving upon my MPC controller. This proved to be a challenging task,
with unexpected complexities emerging particularly when it came to obtaining
trajectory data for the identification of linear predictors via EDMD. I wasn’t able
to solve all of the encountered issues in the time I had available. As a result, the
KMPC controller I implemented is functional and able to balance the robot but
exhibits quirks that make it impractical to use when steering Sk8o for prolonged
time.

6.1 Open Problems and Future Work

What follows is a short list of problems that I did not have time to address.

6.1.1 EDMD with Reduced Order Model

As mentioned in section 5.10.1, I encountered a problem where EDMD would learn
nonsensical effects of states φ and ψ on the system’s dynamics. As mentioned
therein, a promising course of action presents itself – if the identification of a linear
predictor via EDMD was reformulated to make use of a modified model with states
φ, ψ removed, this problem would vanish. The states could then be reintroduced
by augmenting the matrices of the resulting linear predictor.
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6.1.2 Better Simulation Data Sets

The simulated trajectories used for identification and evaluation of linear predictors,
while usable, could be improved upon. The trajectories currently consist only of
regulation tasks, where a controller attempts to move the Sk8o system from an
initial condition back to the equilibrium. If reference tracking trajectories were
added, the datasets would more faithfully recreate the real use case of the robot,
and might allow for better-performing linear predictors to be identified.

6.1.3 Soft Constraints

I hadn’t imposed any hard constraints on the states of Sk8o to ensure that the
MPC optimization problem 4.6 always had a solution. Adding soft constraints on
some states (particularly on φ) could perhaps improve the controller’s performance.
If the requirement that the robot remains upright was formulated via a soft
constraint, more freedom would be allowed in tuning the cost matrix Q.

6.1.4 Hip Position Bug

There is an issue that sometimes occurs when Sk8o is being controlled from Odroid.
It manifests itself as a sudden movement of one of Sk8o’s hip motors, resulting in
a rapid change in its height. This in turn results in a quick change in the other
states, often followed by a loss of balance and fall of the robot.

I assume this issue is in some way related to communication, as I’ve only seen
it happen while controlling Sk8o from Odroid. The bug is also not limited to
controlling the robot via MPC – I had also observed it back when I controlled
Sk8o with LQR running on Odroid. The uncalled-for movement of Sk8o’s hip
could be caused by a UART message with motor commands from Odroid becoming
corrupted, briefly changing the required hip setpoints. So far however, this is just
a hunch – while the behaviour would be consistent with such a cause, there is a
checksum in place in the UART communication that should prevent it. I’ve yet to
investigate whether it is sufficient.

Frustratingly, the error appears fairly infrequently and without any apparent
regularity, making observation, not to mention replication, difficult. Sometimes it
may happen twice in 10 minutes of operation, other times, half an hour passes
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Open Problems and Future Work Section 6.1

without the bug rearing its ugly head. I’d especially like to resolve this problem, as
its presence means that using my MPC controller may at any time be unexpectedly
interrupted by Sk8o’s rendezvous with the floor.
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A | Equations of the Segway
model

This appendix is reproduced from Hodan’s master’s thesis [6], with some minor
changes and typo corrections.

The nonlinear model introduced in section 2.4 used x as its state variable. Defining
x = [q̇g, qg], qg = [χ, φ, ψ], and u = [uL, uR], the model is described by the equation

q̈g =M−1
g (Bgu− (Cg +Dg)q̇g −Gg) (A.1)

Figure A.1: The Segway model (figure reproduced with permission from [6])

The values of matrices used in equation (A.1) are
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Chapter A Equations of the Segway model

Mg =

m11 m12 0

m21 m22 0

0 0 m33

 , Qg =

 0 c12 c13

0 0 c23

c31 c32 c33

 ,

Dg =

d11 d12 0

d21 d22 0

0 0 d33

 , Bg =

 1/r 1/r

−1 −1

−w/2r w/2r

 , Gg =

 0

−mlg sinφ
0

 ,

(A.2)

Symbol Parameter Value Unit

b damping coefficient 1 · 10−2 Nmsrad−1

J wheel moment of inertia about its turning axis 7.35 · 10−4 kgm2

K wheel moment of inertia about the vertical axis 3.9 · 10−4 kgm2

mw wheel mass 3.0 · 10−1 kg
r wheel radius 8.0 · 10−2 m
w distance between wheels 2.9 · 10−1 m
l height of centre of mass 2.907 · 10−1 m
Ipx roll moment of inertia of the pendulum 1.5625 · 10−2 kgm2

Ipy pitch moment of inertia of the pendulum 1.18625 · 10−2 kgm2

Ipz yaw moment of inertia of the pendulum 1.18625 · 10−2 kgm2

mp mass of the segway without wheels 4.0 kg

Table A.1: Parameters of the Segway model. All moments of inertia are shown
with respect to the centre of mass of the body

where the elements are
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m11 = mp + 2mw + 2
J

r2
, m12 = m21 = mpl cosφ, m22 = Ipy +mpl

2,

m33 = Ipz + 2K + (mw +
J

r2
)
w2

2
− (Ipz − Ipx −mpl

2) sin2 φ,

c12 = −mplφ̇ sinφ, c13 = mplψ̇ sinφ, c23 = (Ipz − Ipx −mpl
2)ψ̇ sinφ cosφ,

c31 = mplψ̇ sinφ, c32 = −c23, c33 = −(Ipz − Ipx −mpl
2)φ̇ sinφ cosφ,

d11 =
2b

r2
, d12 = d21 = −2b

r
, d22 = 2b, d33 =

w2

2r2
b

(A.3)

The values of the physical parameters can be found in table A.1.
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B | Matrices of the dense MPC
formulation

The dense MPC formulation 4.6 uses matrices F and H. Details of their assembly
follow below.

Note that matrices A, B, C come from the linear predictor used, while matrices
R, Q and S define the MPC’s cost function.

H = C̄T Q̄C̄ + R̄, (B.1)

F =

[
ÂT Q̄C̄

−T̄ C̄

]T

. (B.2)

Q̄ =



CTQC

CTQC
. . .

CTQC

CTSC


(B.3)

T̄ =



QC

QC
. . .

QC

SC


R̄ =



R

R
. . .

R

R


(B.4)
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Chapter B Matrices of the dense MPC formulation

Ā =


0

A 0
. . . . . .

A 0

 B̄ =


B

. . .

B

 (B.5)

C̄ =



B

AB B

A2B AB B
...

. . .

AN−1B . . . B


Â =



A

A2

...

...
AN


(B.6)
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C | Observables Derived from
Model

The observables I use in the KMPC controller found in chapter 5 originated as the
analytical solution of the nonlinear model described in appendix A.

I solved the model in Matlab, substituting in the parameters of the model and
splitting the solution for each of Sk8o’s six states into individual terms. I then
combined all of the terms into a single set of functions, which is reproduced in
(C.1).

Not all of the functions fi are fit for use as observables gi(x) however, as some fi
are functions of u. I formulated two approaches of tackling this:

• A : Don’t use fi if it is a function of u.

• B : Use all fi, setting uL = uR = 0.1.

Additionally, I was concerned that the denominators of some of the functions might
become zero. I likewise formulated two approaches:

• 0 : Don’t worry about it and use the functions as they are.

• 1 : Replace each denominator den with limit(den). The limit(den) function
returns den if ∥den∥ > 0.1, otherwise it returns 0.1 · sgn(den).

By combining those approaches I arrive at 4 sets of observables. I ran EDMD for
all of them. They all scored essentially the same in the evaluation metric described
in section 5.5 (their results starting to differ in 4th decimal place), so I decided to
only discuss the one that scored the best out of them, which was the combination
A1. I.e., removing functions of u and limiting denominator values.

The order in which the rest scored was A0, B1, B0.
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Chapter C Observables Derived from Model

f0(x) = − φ̇

0.80 cos(φ)2 − 1.0

f1(x, u) = − uL
0.80 cos(φ)2 − 1.0

f2(x, u) = − uR
0.80 cos(φ)2 − 1.0

f3(x) = − χ̇

0.80 cos(φ)2 − 1.0

f4(x) = − φ̇2 sin(φ)

0.80 cos(φ)2 − 1.0

f5(x) = − ψ̇2 sin(φ)

0.80 cos(φ)2 − 1.0

f6(x) = − cos(φ) sin(φ)

0.80 cos(φ)2 − 1.0

f7(x) = − φ̇ cos(φ)

0.80 cos(φ)2 − 1.0

f8(x, u) = − uL cos(φ)

0.80 cos(φ)2 − 1.0

f9(x, u) = − uR cos(φ)

0.80 cos(φ)2 − 1.0

f10(x) = − χ̇ cos(φ)

0.80 cos(φ)2 − 1.0

f11(x) = − ψ̇2 cos(φ)2 sin(φ)

0.80 cos(φ)2 − 1.0

f12(x) = − φ̇

0.80 cos(φ)2 − 1.0

f13,u(x) = − uL
0.80 cos(φ)2 − 1.0

f14(x, u) = − uR
0.80 cos(φ)2 − 1.0

f15(x) = − χ̇

0.80 cos(φ)2 − 1.0

f16(x) = − 1.0 sin(φ)

0.80 cos(φ)2 − 1.0

f17(x) = − φ̇ cos(φ)

0.80 cos(φ)2 − 1.0

f18(x, u) = − uL cos(φ)

0.80 cos(φ)2 − 1.0

f19(x, u) = − uR cos(φ)

0.80 cos(φ)2 − 1.0

f20(x) = − χ̇ cos(φ)

0.80 cos(φ)2 − 1.0

f21(x) = − φ̇2 cos(φ) sin(φ)

0.80 cos(φ)2 − 1.0

f22(x) = − ψ̇2 cos(φ) sin(φ)

0.80 cos(φ)2 − 1.0

f23(x) =
ψ̇

11.36 sin(φ)2 + 1.0

f24(x, u) =
uL

11.36 sin(φ)2 + 1.0

f25(x, u) =
uR

11.36 sin(φ)2 + 1.0

f26(x) =
ψ̇ · χ̇ sin(φ)

11.36 sin(φ)2 + 1.0

f27(x) =
φ̇ · ψ̇ cos(φ) sin(φ)

11.36 sin(φ)2 + 1.0

(C.1)
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D | Supplemental Experiment
Figures

This appendix contains figures of experiments performed on the physical robot in
their full form, including control actions. Figures for the stabilization experiment
also show the whole experiment, which consisted of applying three consecutive
disturbances to the robot via the device described in 4.5.1. This figure was limited
to only the first disturbance in preceding chapters to improve legibility.

The meaning of the legends used within the figures follows:

• LQR – refers to the original LQR controller running on Teensy

• MPC (lin) – MPC controller with unlifted linear predictor obtained via
linearization, as described in section 4.1.

• MPC (dd) – MPC controller with unlifted linear predictor obtained by
EDMD, as described in section 5.3.

• KMPC – Koopman MPC with lifted linear predictor using observables
described in appendix C.
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Figure D.1: Full Experiment: Stabilization
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Figure D.2: Full experiment: There and Back Again
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