
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Robotic Trajectory Optimization

Petr Cezner

Supervisor: Ing. Martin Ron
Field of study: Cybernetics and Robotics
Subfield: Systems and Control
May 2017

ii

Acknowledgements
I would like to thank my supervisor Ing.
Martin Ron for his leadership, help and
wise advice during the writing of this the-
sis.

I would also like to thank my family and
all of my friends for their support during
the writing of this work and during my
studies.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in preparation of university the-
ses

In Praque, 24. May 2017

. .

iii

Abstract
With the onset of the Fourth Industrial
Revolution, an effort is being made to
optimize existing production processes to
maximize production. One area where
attempts are made to optimize produc-
tion are industrial complexes with robot
manipulators. In this work, an algorithm
is implemented which, from the knowl-
edge of the internal structure of robots
(their dynamics) is able to optimize tra-
jectory of their end-effectors in order to
achieve lower energy consumption. The
algorithm using several points in space (ie.
via-points) of the original collision-free tra-
jectory forms a new energy-efficient tra-
jectory. The added value of the thesis is
the automatic creation of a program for
the robot written in language KRL for
KUKA robots. This program has been
successfully tested on a real robot and
resulting reduction of power was to 14.48
percent of the original one.

Keywords: Optimization, Energy
demand, Manipulator, Trajectory,
IPOPT solver, Matlab, KUKA, KRL
code

Supervisor: Ing. Martin Ron

Abstrakt
S nástupem čtvrté průmyslové revoluce
se čím dál tím víc projevuje snaha opti-
malizovat stávající výrobní procesy pro
dosažení maximální produkce. Jednou z
oblastí, kde je snaha optimalizovat vý-
robu jsou průmyslové komplexy s robo-
tickými manipulátory. V této práci je im-
plementován algoritmus, který ze znalosti
vnitřní struktury robotů (jejich dynamiky)
je schopen optimalizovat jejich trajektorii
s cílem dosažení nižší energetické spotřeby.
Algoritmus pomocí několika bodů v pro-
storu (tzv. via-points) původní bezkolizní
trajektorie koncového efektoru vytvoří no-
vou energeticky účinnější trajektorii. Při-
danou hodnotou předložené práce je au-
tomatická tvorba programu pro pohyb
robotu v jazyku KRL pro KUKA roboty.
Tento program byl úspěšně testován na
reálném robotu a výsledné trajektorie do-
sahovaly snížení energetické náročnosti až
14.48 procent původní spotřeby.

Klíčová slova: Optimalizace,
Energetická náročnost, Manipulátor,
Trajektorie, IPOPT solver, Matlab,
KUKA, KRL kód

Překlad názvu: Optimalizace
robotických trajektorií

iv

Contents
1 Introduction 1
2 State of the Art 3
2.1 Used method 3
3 Theoretical basis 5
3.1 Optimization 5
3.1.1 Optimization Problem 5
3.1.2 Solving Optimization Problem 5
3.1.3 Nonlinear Optimization 6
3.1.4 IPOPT Solver 7

3.2 Mathematical model of a Robotic
Manipulator . 7

3.3 Kinematics Model 7
3.3.1 Daneavit-Hartenberg (DH)
Convention . 8

3.3.2 Direct kinematic 9
3.4 Dynamic Model 10
3.4.1 Euler-Lagrange formulation vs.
Newton-Euler formulation 10

3.4.2 Newton-Euler formulation . . . 11
3.5 Studied System 14
3.5.1 Robot Parameters 14

4 Solving the problem 19
4.1 Problem setup 19
4.1.1 Optimization variables 20
4.1.2 Geometrical Optimalization . 21
4.1.3 Kinematic Optimization 23

4.2 Implemation of the Criterion
function . 25
4.2.1 Calculation of the torques . . . 25
4.2.2 Calculation of the currents . . 26
4.2.3 Evalution of the Criterion
function . 27

5 Experiments 31
5.1 Experiment in Simulated
Environment 31
5.1.1 Original Trajectory 31
5.1.2 Optimal Trajectory 32
5.1.3 Results from simulation 33

5.2 Experiment with real manipulator 42
5.2.1 Trajectory 1 43
5.2.2 Trajectory 2 47

6 Conclusion 51
6.1 Future improvements 52

A Bibliography 53
B Figures from Experiments 55
B.1 Trajectory 1 - Simulation 55
C Content of the CD 67
D Project Specification - English
Version 69
E Project Specification 71

v

Figures
3.1 Denavit–Hartenberg kinematic
parameters - Siciliano et al. [14] . . . 8

3.2 Link i in Newton-Euler
formulation - Siciliano et al. [14] . . 11

3.3 KUKA KR5 ARC 16
3.4 Operation space of KUKA KR5 -
part 1 KUKA Roboter Group GmbH
[10] . 16

3.5 Operation space of KUKA KR5 -
part 2 KUKA Roboter Group GmbH
[10] . 17

4.1 Trajectory of the manipulator
end-effector. 20

4.2 Evaluation of s in polynomials
(4.18), (4.19) and (4.20) 23
4.3 Bond graph of motor i 26

5.1 Computed position of original
Trajectory 1. The black arrow shows
direction of the movement. 34

5.2 Computed position of optimazed
Trajectory 1. The black arrow shows
direction of the movement. 35

5.3 Trajectory 1 - side view from
Process Simulate 35

5.4 Trajectory 1 - front view from
Process Simulate 36

5.5 Close look up at speed and
acceleration of first joint - original
trajectory . 37

5.6 Close look up at speed and
acceleration of first joint - Optimal
one . 37

5.7 Computed power in each
discretization step - original
trajectory . 38

5.8 Computed power in each
discretization step 38

5.9 Computed position of original
Trajectory 2. The black arrow shows
direction of the movement. 39

5.10 Computed position of optimazed
Trajectory 2. The black arrow shows
direction of the movement. 40

5.11 Close look up at speed and
acceleration of first joint - original
trajectory . 40

5.12 Close look up at speed and
acceleration of first joint - Optimal
one . 41

5.13 Computed power in each
discretization step - original
trajectory 2 . 41

5.14 Computed power in each
discretization step - optimal
trajectory 2 . 42

5.15 Measured data of trajectory 1 -
original one . 44

5.16 Measured data of trajectory 1 -
optimal one . 45

5.17 Power consumption measured on
real robot and its interpolation -
original trajectory 1 45

5.18 Power consumption measured on
real robot and its interpolation -
optial trajectory 1 46

5.19 Computed power in each
discretization step - optimal
trajectory from simulation 46

5.20 Measured power consumption of
original second trajectory 47

5.21 Measured power consumption of
optimal second trajectory 48

5.22 Closer look at power consumption
one cycle of second original
trajectory . 48

5.23 Closer look at power consumption
one cycle of second optimal
trajectory . 49

5.24 Computed power from application
- Trajectory 2 49

B.1 Original trajectory 1 between joint
1 and 2 . 55

B.2 Original trajectory 1 between joint
1 and 3 . 56

B.3 Original trajectory 1 between joint
2 and 3 . 56

B.4 Acceleration of manipulator -
original trajectory 1 57

vi

B.5 Calculated power of manipulator -
original trajectory 1 57

B.6 Calculated energy of manipulator -
original trajectory 1 58

B.7 Speed of manipulator - original
trajectory 1 . 58

B.8 Speed and acceleration of first
joint - original trajectory 1 59

B.9 Calculated torque - original
trajectory 1 . 59

B.10 Used power (Blue line) and power
caused by movement (orange line) -
original trajectory 1 60

B.11 Optimal trajectory between joint
1 and 2 . 60

B.12 Optimal trajectory between joint
1 and 3 . 61

B.13 Optimal trajectory between joint
2 and 3 . 61

B.14 Acceleration of manipulator -
optimal trajectory 1 62

B.15 Calculated power of manipulator -
optimal trajectory 1 62

B.16 Calculated energy of manipulator
- optimal trajectory 1 63
B.17 Velocity of manipulator - optimal
trajectory 1 . 63

B.18 Velocity and acceleration of first
joint - optimal trajectory 1 64

B.19 Calculated torque - trajectory 1 64
B.20 Used power (Blue line) and power
caused by movement (orange line) -
optimal trajectory 1 65

Tables
3.1 Robot parameters - limits of joints 15
3.2 Robot parameters - masses of
links . 15

3.3 Robot parameters - Inertia vectors
for each axis 15

3.4 Robot parameters - Center of the
Mass vectors 15

4.1 Total number of variables
concerning robot trajectory 21

4.2 Found Daneavit-Hartenberg
parameters . 26

4.3 Parameters of robot motor 27

5.1 Energy save for simulation -
Trajectory 1 . 33

5.2 Distance between points of original
Trajectory 1 (see Figure 5.1) 33

5.3 Energy save for simulation -
Trajectory 2 . 39

5.4 Distance between points of
Trajectory 2 (see Figure 5.9) 39

5.5 Values from experiments with real
manipulator KUKA KR5 -
Trajectory 1 . 44

5.6 Values from experiments with real
manipulator KUKA KR5 -
Trajectory 2 . 47

vii

Chapter 1
Introduction

With the onset of the Industrial Revolution 4.0, there are more efforts to max-
imize the capacity of manufacturing processes with their cost minimalization.
One of the areas, where these efforts could be found are areas which used
industrial manipulators in a production. Industrial manipulators are one of
the highest electrical energy consumers in the facility. There are several ways
how to optimized the energy consumption of the manipulators.

One way is to slow down the speed of manipulator movement. This type
of optimization has the disadvantage that the production cell (part of the
production line) has to be optimized at once. Due to slow down of movement
it is possible that the production cycle time could not be fulfilled.

The other way of optimization is an optimization of robotic trajectories.
The implementation of this method, reduces the energy consumption of the
robotic manipulators and simultaneously fulfills the production cycle time.
The application of this approach needs to assembly the mathematical model
of the manipulator. The model brings the understanding of the system dy-
namics.

The aim of this thesis is to implement the second approach for energy
saving. Although the approach is more complex than the first one, it increases
the number of possible real applications. The mathematical model is used for
the creation of the criteria function. The function is then used as the input
into the nonlinear programming (NLP) solver. The basic variables such as
position, velocity, and acceleration of the new trajectory are found by the
equations presented in the recommended literature of this work.

1

2

Chapter 2
State of the Art

Based on the review of the papers published by IEEE (see a survey of
literature) it is shown that the full potential of industrial robots isn’t fully
exploited. In most cases, the industrial manipulators are constructed for the
satisfaction of the given task regardless of their power consumption.

The three papers Bukata et al. [3], Björkenstam et al. [1] and Gleeson et al.
[5] address this issue for industrial robotic manipulators.

In paper Bukata et al. [3], the method of energy optimization of robotic cells
is introduced. This method reduces of the robot velocity without the need
for the structure of the manipulator. This approach has highly limitations
(for example: not respecting of the robot dynamics, the high complexity of
implementation) for applicability in the industry.

In paper Björkenstam et al. [1] and Gleeson et al. [5] the method for
optimization of the robotic trajectory is presented. The knowledge of the
manipulator structure is required.

2.1 Used method

In the recommended literature Björkenstam et al. [1] and Gleeson et al. [5],
there are two algorithms, which can be used for optimization of the robotic
trajectory. In general, both of the algorithms are the same. The main
difference between them is the number of used variables.

In paper Björkenstam et al. [1], one of the control variables is an actuator
(motor) moment. As it is said in Gleeson et al. [5], it is not easy to control
this variable on the real robotic manipulator, because the input parameters
of the systems are limited by predefined sets of commands. These commands
are typically, the position of the point and the velocity of the robot at that
point. Probably for that limitations, the original developers of the algorithm
for paper Björkenstam et al. [1] came with the new algorithm.

The new algorithm, which is presented in paper Gleeson et al. [5], is more
suitable for application in the industry environment. The developers reduce
the number of variables used for NLP (non-linear programming) at each point
of trajectory from five variables to four.

In paper Björkenstam et al. [1] and GleesonGleeson et al. [5] are used the
same discrete optimal control problem as of the continuous optimal problem,

3

2. State of the Art
and as stated in Gleeson et al. [5], paper Gleeson et al. [5] is the continuation of
the work presented in Björkenstam et al. [1]. For that reason, in the following
chapter, the algorithm presented in Gleeson et al. [5] will be explored and
implemented.

4

Chapter 3
Theoretical basis

In this chapter, the fundamental theory for optimizations of robotic trajectory
is introduced. The first part of this chapter 3.1 deals with the optimization.
This section explains how the proper optimization problem is setup and how
the different algorithms are used for solving. The second part of the chapter
3.2 is about the Mathematical model of the robotic manipulator. The key
terms like the kinematic model 3.3 and the dynamic model 3.4 are introduced.

3.1 Optimization

Optimization is the process of best parameters selection from common set
of available parameters. The goal of the optimization task is to find a set of
values of the otimized variables which maximize or minimize criterial function.

3.1.1 Optimization Problem

According to Boyd and Vandenberghe [2], a mathematical optimization
problem has the form:

minx f0(x) (3.1)
subject to fi(x) ≤ bi i = 1, · · · ,m, (3.2)

where the x = (x1, · · · , xn) is the optimization variable of the problem, the
function f0: Rn → R is the objective function, the functions fi: Rn → R,
i = 1, · · · ,m, are the constraint functions. There are two type of constraints
functions: equality and inequality. The functions (3.2) are inequality con-
straints functions. These functions have limits, or bounds. In (3.2) b1, · · · , bm
are limits for inequality functions. A vector x∗ is called the optimal, or a solu-
tion of the problem (3.1)-(3.2), if it has the smallest objective value among all
vectors that satisfy the constraints: for any z with f1(z) ≤ b1, · · · , fm(z) ≤ bm,
we have f0(z) ≥ f0(x∗).

3.1.2 Solving Optimization Problem

To solve the optimization problem, algorithm which calculates a solution of
the problem (to some given accuracy) is used. If constraints like in (3.1)-

5

3. Theoretical basis
(3.2) are set, the algorithm (solver) has to satisfy it. In these days, there
are many of solvers, and each of them is suitable for a different kind of
optimization problem. The effectiveness of these algorithms, as stated in
Boyd and Vandenberghe [2], or the ability to solve the optimization function
problem, depends on many factors. For example the particular form of the
objective and constraints functions, number of input variables and constraints,
there are some unique structures, such as sparsity (as is said in Boyd and
Vandenberghe [2]: „Problem is sparse if each constraint function depends on
only a small number of variables“).

3.1.3 Nonlinear Optimization

If the object or constraints functions are not linear, but not known to be
convex, nonlinear optimization (nonlinear programming) is used. Unfortu-
nately, the general nonlinear problem is difficult to be effectively solved. In
the real world, we can find many systems, which are inherently nonlinear,
e.g. in the case of electrical circuit, the nonlinear element is a diode. For
the diode, classical Ohm law doesn’t be apply, and if the diode is in the
complex electrical circuit, it is not possible to solve this problem with tra-
ditional method (superposition, loop currents,...). So it is crucial to have
the algorithms, which are capable of handling it. According to Chinneck [4],
there are twelve main reasons, why nonlinear models are inherently much
more difficult to optimized. First, seven of them are presented here:..1. Differing between local and global optimum is difficult. The

main limitation of numerical methods for solving nonlinear programs
is that they usually have information only about the current point.
Typically they have information about current point x (and stored
information about past points that have been visited), about the value
of the function at x, the value of the constraint functions at x and so
on. This limited information is just enough for recognizing when the
function is at local maximum or minimum. This also means that there
is not enough imformation to find global maxima...2. Optima are not restricted to extreme points. In linear program-
ming, there are limited places to look for the optimum. It only checks to
the extreme points or corner points of the feasible region. For nonlinear
programming, an optimum (local or global) could be anywhere. The
optimum could be at an extreme point, along with the edge of the feasible
area, or in the interior of the feasible region...3. There could be many disconnected possible areas. Nonlinear
constraints, which are used, may twist and curve the areas so they can
create multiple possible regions. So if the algorithm finds a suitable area,
there could be some other disconnected (discontiguous) feasible regions
that the algorithm has not found and explore.

6

...................... 3.2. Mathematical model of a Robotic Manipulator..4. Different starting points may lead to different final solutions.
Many algorithms choose a direction for search and then find the best
value of the objective function in that direction...5. Finding a feasible starting point may be difficult. Unlike in linear
programming in the nonlinear programming it is not guaranteed finding
a point that satisfies all of the constraints and hence is feasible. It may
happen that no feasible points exist anywhere...6. Satisfy equality constraints is difficult. In nonlinear programming,
the solution is difficult to find, which meets curving and twisting equations
of the constraint functions. Equality constraints may be violated if the
algorithm moves to the another point, which has a better solution for
objective function...7. Determination of the outcome is not designated. There is no
guarantee that the solution found by solver is local optimum or global
optimum. The calculation of the objective function value could take a
long time and could end like an infeasible solution. In these cases, it is
not strictly necessary that the object function is infeasible if no feasible
solution is found.

3.1.4 IPOPT Solver

In this thesis, IPOPT solver is used. As in Gleeson et al. [5] the IPOPT
solver was used. Abbreviation IPOPT stands for Interior Point Optimizer. It
is open source software package for large-scale nonlinear optimization as is
said in Kawajir [8]. IPOPT implements an interior line search filter method
that aims to find a local solution of (3.1)-(3.2).

3.2 Mathematical model of a Robotic Manipulator

For better adjusting the robot controllers, kinematic and dynamic mathe-
matical model of the robotic manipulator is needed. In following section the
mathematical model is introduced.

3.3 Kinematics Model

As is said in Siciliano et al. [14] and Grepl [6], from mechanical viewpoint
the robotic manipulator is viewed as a kinematic chain of rigid bodies (links).
These links are connected to each other by joints. There are two types of
joints: revolute and prismatic. The manipulator is specified as chain having
one end constrained to the base of the robot. Another end is called end-
effector. The motion of each link of the manipulator is determined by the
motion of previous one. It is necessary to know the position and orientation
of the end-effector for manipulating the object in space. In this section, the
fundamental information about direct kinematic is introduced.

7

3. Theoretical basis
3.3.1 Daneavit-Hartenberg (DH) Convention

In robotics, the determination of the position and the orientation of base of
reference is ambiguous. There are several options. The shape of transforma-
tion matrices is depends on the chosen option. The general systematic method
for describing a respective position links of the robot is needed. The best
option is the solution with the smallest number of parameters. In robotics,
the Denavit Hartenberg (or DH) convention for the description of the open
kinematic chain is used. DH convention uses four variables. In the Figure 3.1,
we can see two rigid bodies i and i− 1 connected to each other with rotation
linkage. Let’s assume that the joints are twisted.

Figure 3.1: Denavit–Hartenberg kinematic parameters - Siciliano et al. [14]

Denavit Hartenberg convention is adopted to define the state of the link of
frame i as follows Siciliano et al. [14]:..1. Choose axis zi along the axis of Joint i+ 1..2. Locate the origin Oi at the intersection of axis of axis zi with the common

normal to axes zi−1 and zi. Also, locate Oi′ at the intersection of the
common normal with axis zi−1...3. Choose axis xi along the common normal to axes zi−1 and zi with
direction from Joint i to Joint i+ 1...4. Choose axis yi so as to complete a right-handed frame.

The position and orientation of the Frame i on the Frame i+1 are completely
specified by specifying the four parameters:..1. ai distatnce between Oi and O

′
i,..2. di coordiante of O′i along zi−1,

8

.................................. 3.3. Kinematics Model..3. αi angle between axes zi−1 and zi about axis xi to be taken positive
when rotation is made counter-clockwise,..4. υi angle between axes xi−1 and xi about axis zi−1 to be taken positive
when rotation is made counter-clockwise.

Two of the four parameters (ai and αi) are constant. They are defined by
the construction of the manipulator. Remaining parameters υi and di are the
variables depending on the type of the joint between Link i and Link i-1...1. If the Joint i is revolute, then the variable is υi...2. If the Joint i is prismatic, then the variable is di.

It could be said that, the three out of four parameters are constraints
depending on the constructions of the manipulator. The last parameter is
depending on the position of the manipulator. As it is said in Siciliano
et al. [14], it is possible to use DH parameters to express the transformation
between Frame i and Frame i− 1 by using following transformation matrices.

Ai−1
i′

=


cos(υi) − sin(υi) 0 0
sin(υi) cos(υi) 0 0

0 0 1 di
0 0 0 1

 (3.3)

Ai
′

i =


1 0 0 ai
0 cos(αi) − sin(αi) 0
0 sin(αi) cos(αi) 0
0 0 0 1

 (3.4)

Transformation matrix from Frame i to Frame i− 1 is the result of multipli-
cation of matricis (3.3) and (3.4).

Ai−1
i (qi) = Ai−1

i′
Ai
′

i

=


cos(υi) − sin(υi) cos(αi) sin(υi) sin(αi) ai cos(υi)
sin(υi) cos(υi) cos(αi) − cos(υi) sin(αi) ai sin(υi)

0 sin(αi) cos(αi) di
0 0 0 1


(3.5)

As it is said in Siciliano et al. [14] and it could be seen in (3.5), the transfor-
mation matrix is the function of one input variable qi. Variable qi is υi for
revolute joint or di for prismatic joint.

3.3.2 Direct kinematic

The transformation matrix (3.5) described in the previous section can be used
for calculation of the direct kinematic problem. Direct kinematic is a process

9

3. Theoretical basis
of determination of the position of end-effector given the rotation angle of each
joint. The process of direct kinematic always leads to one solution. It leads to
one homogenous transformation matrices by the composition of the individual
transformation matrices described in (3.5). Input for the function are joint
variables q. The outputs are Cartesian coordinates XYZ and corresponding
rotation of end-effector. With the use of (3.5), it is possible to calculate
transformation from the base of the manipulator to its end-effector.

3.4 Dynamic Model

The kinematic model of robot manipulator considers only the motion without
the forces and torques, which act on the robot during its movement, whereas
the dynamic model describes the relations between forces, torques and motions
Spong et al. [16]. Using the dynamic model, simulation of the real manipulator
can be created. In this work, the dynamic model is used for the simulation of
movement and energy consumption of the robot. As it is said in Siciliano et al.
[14], the dynamic model is created in joint space. There are two methods
used for calculation of the dynamic of the robotic manipulator. One is based
on Euler-Lagrange formulation, and the other one is based on Newton-Euler
formulation. Both of these formulations lead to the same equation of motion
(see in Siciliano et al. [14], Spong et al. [16] and GleesonGleeson et al. [5]):

τ = M(q(t))q̈(t) + C(q(t), q̇(t)) + G(q(t), q̇(t)), (3.6)

where τ is vector of torques, M is matrix of inertia, C includes the centrifugal
and Coriolis forces, G is matrix of the external forces i. e. gravity. Variable
q(t) is joint space coordinate vector at time t, q̇(t) is joint space vector of
speed at time t and q̈(t) is joint space acceleration vector at time t.

3.4.1 Euler-Lagrange formulation vs. Newton-Euler
formulation

It can be seen in section 3.4, the both method leads to the same solution.
The question, which formulation should be used is the wildly discussed topic.
There is no clear answer, which of these formulations should be applied.
There are several factors, which have to be considered during the decision.
Euler-Lagrangian formulation look at the multi-body robot as a whole. It
also eliminates the inertial reaction forces between the links and is best suited
for the analysis of control schemes. On the other hand, the Newton-Euler
formulation creates dynamic equations for each link separately. It performs
the inverse dynamics in real time by the evaluation of equations in a numeric
and recursive way. The Newton-Euler formulation is widely used in robots
controllers for its simple implementation.

For the calculation of dynamic equations, the Matlab algorithm called
ReDySim (Shah [13]) is used. ReDySim (Recursive Dynamics Simulator) is
free-to-use sets of Matlab scripts, which computed the inverse (like Newton-
Euler formulation) and forward dynamic recursive equations of the robots and

10

................................... 3.4. Dynamic Model

multibody systems. In the next section 3.4.2 the Newton-Euler formulation
will be described.

3.4.2 Newton-Euler formulation

This section is based on notation and formulation from Siciliano et al. [14].
In general, the Newton-Euler formulation bases on that, all forces acting on
the generic link of the manipulator are balanced. Sets of equations, which are
determined by this balance, allows to use recursive type of solution. First,
the forward recursion is used to find out the link velocities and accelerations.
After that, the backward recursion is used to calculate the force and torque,
which acts on the link during its movement. Let us consider the following
Link i (Figure 3.2) from the kinematic chain with the motor based on joint
i+ 1.

Figure 3.2: Link i in Newton-Euler formulation - Siciliano et al. [14]

The Link has following parameters:.mi mass of link. Ii inertia tensor of link. Imi moment of inertia of rotor along its rotational axis. ri−1,Ci vector from origin of Frame (i− 1) to center of mass Ci. ri,Ci vector from origin of Frame (i) to center of mass Ci. ri−1,i vector from origin of Frame (i− 1) to origin Frame i

The velecoties and accelerations which are considered are:. ṗCi linear velocity of center of mass Ci. ṗi linear velocity of origin of Frame i

11

3. Theoretical basis
. ωi angular velocity of link. ωmi angular velocity of rotor. p̈Ci linear acceleration of origin of Frame i. ω̇i angular acceleration of link. ω̇mi angular acceleration of rotor. g0 gravity acceleration

The forces and moments to be considered are:. fi force exerted by Link i− 1 on Link i.−fi+1 force exerted by Link i+ 1 on Link i. µ moment exerted by Link i−1 on Link i with respect to origin of Frame
i− 1.−µi+1 moment exerted by Link i+ 1 on Link i with respect to origin of
Frame i

Let us consider that all variables (vectors and matrices) are referenced to the
base Frame.

Recursive Algorithm

The derivation of all equations which will be introduced in this subsection
can be found in Siciliano et al. [14]. As it is said in Siciliano et al. [14], the
recursive algorithm of the Newton-Euler method is not in the closed form. It
is because the motion of Link i is computed by the kinematic relationship of
velocities and accelerations through the movement.

The joint space positions, velocities, and accelerations have to be known
(calculated) before the calculation of the links velocities and accelerations.
This calculation is recursive because the velocities and accelerations of the
base frame link are calculated first. After that, the Newton-Euler equations
for calculating the forces and torques, which affect the links, can be used in
the recursive fashion. Starting with the forces and moments of the end-effector
and ending with the link of the base frame. As is said in Siciliano et al. [14],
in summary, the recursive algorithm can be divided into two parts. Forward
which propagates the velocities and accelerations and the backward which
spreads the forces and torques along the structure of the kinematic chain.

This work focuses on rotational robotic manipulator, thus only the equations
for revolute joints will be considered. Equations for prismatic can be found
in Siciliano et al. [14].

ωii = Ri−1
i
>(ωi−1

i−1 + ϑ̇iz0) (3.7)

12

................................... 3.4. Dynamic Model

Equation (3.7) compute the angular velocity of Link i. In equation (3.7),
Ri−1
i is rotation matrix from previos Link i− 1 to the Link i. ωi−1

i−1 is angular
velocity in Link i− 1, ϑ̇i is joint space velocity and z0 is an axis of rotation.

Next equations show the calculation of angular acceleration in Link i:

ω̇ii = Ri−1
i
>(ω̇i−1

i−1 + ϑ̈iz0 + ϑ̇i(ωi−1
i−1 × z0), (3.8)

where Ri−1
i is rotation matrix from previos Link i− 1 to the Link i. ωi−1

i−1 is
angular velocity in Link i− 1, ω̇i−1

i−1 is angular acceleration in Link i− 1, ϑ̇i
is joint space velocity in Link i, ϑ̈i is joint space acceleration and z0 is axis
of rotation.

Following equations compute the linear acceleration:

p̈ii = Ri−1
i
>
p̈i−1
i−1 + ω̇ii × rii−1,i + ωii × (ωii × rii−1,i), (3.9)

where Ri−1
i is rotation matrix from previos Link i− 1 to the Link i. p̈i−1

i−1 is
linear accelertion of Link i− 1, ωii is angular velocity in Link i, ω̇ii is angular
acceleration in Link i and rii−1,i is vector from origin of Frame i− 1 to origin
of Frame i.

Equation (3.10) show the linear acceleration of the center of the mass
(COM) of Link i:

p̈iCi = p̈ii + ω̇ii × rii,Ci + ωii × (ωii × rii,Ci), (3.10)

where p̈ii is linear acceleration of Link i, ω̇ii is angular acceleration of Link i,
ωii is angular velocity of Link i and rii,Ci is vector from origin of Frame i to
eneter of mass Ci.

Next equation (3.11) calculates the angular acceleration of the rotor from
Figure 3.2:

ωi−1
mi = ω̇i−1

i−1 + kriq̈iz
i−1
mi + kriq̇iω

i−1
i−1 × z

i−1
mi , (3.11)

where ω̇i−1
i−1 is angular acceleration of the Link i− 1, kri is the gear reduction

ratio of Motor i, q̈i is the general acceleration, q̇i is the general velocity and
zi−1
mi is the unit vector along the rotation vector of Link i− 1.
Following equation (3.12) compute the force, which act on the Link i:

f ii = Ri
i+1f

i+1
i+1 +mip̈

i
Ci, (3.12)

where Ri
i+1 is the rotation matrix from Link i to the Link i+ 1, f i+1

i+1 is the
force which act on the Link i+ 1, mi is the mass of the Link i and p̈iCi is the
linear acceleration of the center of mass of the Link i. As it could be seen,
equation (3.12) is equation of the second Newton Law. It could also be seen
as the forces effect of the previous Link.

Next equation (3.13) shows the calulation the moment of the Link i:

µii = −f ii × (rii−1,i × rii,Ci) +Ri
i+1µ

i+1
i+1 +Ri

i+1f
i+1
i+1 × r

i
i,Ci

+ Iiiω̇ii + ωii × (Iiiωii) + ωii × (Iiiωii)
+ kr,i+1q̈i+1Imi+1z

i
mi+1 + kr,i+1q̇i+1Imi+1ω

i
i × zimi+1

, (3.13)

13

3. Theoretical basis
where Iii is the inertia tensor of Link i. The calculation of inertia tensor is
not a part in this work. The values of inertia tensor are gained from CAD
program.

Finally the torque can be calculated as:

τ i = µii
>
Ri−1>

i z0 + kriImiω
i−1
mi

>
zi−1
mi

+ Fviϑ̇i + Fsisgn(ϑ̇i)
, (3.14)

where Fvi is the viscous friction coefficient and Fsi is the Coulomb friction
coefficient.

As it is said in Siciliano et al. [14], the equations above includes a lot
of constants. These constants are Iii, rii,Ci , z

i−1
mi and z0 = [0 0 1]>. The

Newton-Euler recursive algorithm has these two phases for given joint space
positions, velocities, and accelerations (see in Siciliano et al. [14]):

.With known initial conditions ω0
0, p̈0

0 − g0
0, and ω̇0

0, by use (3.7), (3.8),
(3.9), (3.10) and (3.11) for i = 1 . . . N can be ωii, ω̇ii,p̈ii, p̈iCi and ωi−1

mi
computed.

.With known terminal conditions fN+i
N+i and µ

N+i
N+i use (3.12) and (3.13)

for i = 1 . . . N to compute f ii and µii, and then use (3.14) to compute τ i.

3.5 Studied System

The robotic manipulator for which the algorithm is implemented is KUKA
KR5 ARC (see Figure 3.3). Robot KUKA KR5 is six-axes robotic indus-
try manipulator from ARC family which is primarily used for the welding
operation. Its maximal payload is up to 5 kilograms.

This thesis aims to the KUKA KR5 of DCE at FEE at CTU in Prague.
This robot is connected to the measure card from WAGO company. This card
is capable of measuring the power consumption of robot during its movement.
The measurement will be used for the comparison of the power consumption
of original and optimal trajectory.

3.5.1 Robot Parameters

The parameters of the KR5 were taken from the datasheet and the $machine.dat
file. The $machine.dat contains masses of each link and some DH parameters
(e.g α). The reason, why these values are stated in the file, is that the robot
controller used them for its calculation. The values of some robot parameters
are in the following tables 3.1, 3.2, 3.3, 3.4:

14

................................... 3.5. Studied System

Axis Joint Limits* [◦] Velocity Limits [◦/s] Acceleration Limits [◦/s2]
1 +50/− 40 +154 +2159.3
2 +65/− 180 +154 +616
3 +158/− 15 +228 +1379.3
4 +350/− 350 +343 +3411.9
5 +130/− 130 +384 +5229.6
6 +350/− 350 +721 +5804.9

Table 3.1: Robot parameters - limits of joints

* limits for laboratory of DCE of FEE at CTU in Prague

Axis Mass [Kg]
1 0
2 19.3
3 26.67
4 7.41
5 2.53
6 0.6

Table 3.2: Robot parameters - masses of links

Axis (Robot) 1 2 3 4 5 6
Axis (Cartesian) [Kg ·m2]

x 0 0.197 0.49 1.7282 0.1046 0.1786
y 0 3.078 3.025 0.509 0.3528 0.2057
z 3.963 1.967 0.799 0.637 0.218 0.027

Table 3.3: Robot parameters - Inertia vectors for each axis

Axis (Robot) 1 2 3 4 5 6
Axis (Cartesian) [m]

x 0 0.3005 -0.0378 -0.0542 0.0165 0
y 0 0.032 -0.1322 0.0121 0 0
z 0 0 -0.0071 -0.027 -0.0648 0.1333

Table 3.4: Robot parameters - Center of the Mass vectors

The following Figures 3.4 and 3.5 are taken from robot datasheet. The
parameters in Figures 3.4 and 3.5 may be not matched with table 3.1 due to
workspace limitation of the laboratory.

15

3. Theoretical basis

Figure 3.3: KUKA KR5 ARC

Figure 3.4: Operation space of KUKA KR5 - part 1 KUKA Roboter Group
GmbH [10]

16

................................... 3.5. Studied System

Figure 3.5: Operation space of KUKA KR5 - part 2 KUKA Roboter Group
GmbH [10]

17

18

Chapter 4
Solving the problem

In this chapter, the algorithm presented in Gleeson et al. [5] is implemented.
First the setup of the optimization problem is introduced in section 4.1. Key
variables for the problem are presented. In the section 4.2 the criteria function
is implemented.

4.1 Problem setup

In this section, the main optimization variables and constraints are introduced.
As it is said in Gleeson et al. [5], the problem could be viewed as following

optimal control problem: to find control signal u, that minimize the cost
function

J = Φ(x(ta), ta, x(tb), tb) +
∫ tb

ta
L(x(t), u(t), t)dt (4.1)

while satisfying

ẋ(t) = f(x(t), u(t), t) (4.2)

g(x(t), u(t), t) ≥ 0 (4.3)

H(x(ta), ta, x(tb), tb) = 0 (4.4)

for t ∈ [ta, tb],
where f(x(t), u(t), t) is twice differentiable function of states. Function

g(x(t), u(t), t) is constraint function and H(x(ta), ta, x(tb), tb) is Hamiltonian
of of optimal control problem.

As it could be seen in Gleeson et al. [5], the cost function is composed of
the function Φ, which represents the initial and final cost, and Lagrangian
that includes the running cost along the trajectory. This problem will be
described in section 4.2.

19

4. Solving the problem..................................
4.1.1 Optimization variables

q
start

q
end

Linear phase

Spline phase

q
0

q
f

q
f
qk-1 k

k

k+1

s ,s ,sk-1 k-1 k-1

qk-1=

=q
f

k+1

s ,s ,sk k k

q
mid
k00

Figure 4.1: Trajectory of the manipulator end-effector.

In the Figure 4.1, a typical robotic trajectory can be seen. The trajectory is
set by the via-points, qmid, where the direction of the movement is changed.
Around these points are areas (zones), where the original trajectory can be
optimized. Besides that, the path is also defined by start point qstart and the
end point qend. Areas around the via-points divide the trajectory into two
types of phases. Spline phase, which is inside of the zone and linear phase,
which connect these zones. Each of these phases has its start point q0, with
speed q̇0 and its end point qf with speed q̇f . These phases also hold its
duration in variable ∆t and start time t0. The positions inside the phases
are held by parameterized variable s (scalar), which is uniquely spaced in
time. The first derivation of this variable s, is parametrized velocity ṡ (scalar)
and it is introduced for calculation of the velocity. The second derivation
is the parametrized acceleration s̈ (scalar), which is used to compute the
acceleration. Calculated velocity and acceleration are inputs for calculation
of the torque τ , which describes the system dynamics.

The joint space vector is specified by the Pq degree of freedom of the
manipulator. In this thesis, the degree of freedom is six, because in these
days the typical manipular used in the manufacture has six axes. The path
with Pvp via-points has Pps spline phases and Ppl linear phases. It can be

20

.................................... 4.1. Problem setup

seen in Figure 4.1, that the total number of phases Pc can be summarized as:

Pc =P ps+ Ppl = Pps + Pps + 1 = Pvp + Pvp + 1 (4.5)

Let’s assume that the number of discretization points in each phase is Ns.
Then the total number of variables is described in Table 4.1.

Varible Amount
q, q̇ NsPc
τ , q̈, s̈ (Ns − 1)Pc
∆t, t0 Pc
s, ṡ NsPc
r Psp

Table 4.1: Total number of variables concerning robot trajectory

The r in Table 4.1 is zone radius around the via-points, in which the trajectory
is optimized. It should be noted that the trajectory in Figure 4.1 is simplified
for the better showing of the desired behavior of the algorithm.

4.1.2 Geometrical Optimalization

As mentioned in previous section 4.1.1, the trajectory of robot end-effetor
has two types of phases, linear and spline. Both types of phases start with
the start point q0 and end with the end point qf . For the finding of these
points, the following equations are used:

v1 = Pkvp − Pk−1
vp , (4.6)

v2 = Pk+1
vp − Pkvp, (4.7)

where v1 and v2 are vectors directing from the via-point. In this stage of
calculation, the start point, and the end point are took as the particular case
of via-point, without the zone for optimization. In equations (4.6) and (4.7)
the Pkvp represents the via-point k and Pk−1

vp is previous via-point and Pk+1
vp

is the following via-point. After that, using (4.8) and (4.9) are points qk−1
f ,

qk0, qkf and qk+1
0 calculated, where the points denoted by the symbol k are

the start point and the end point of the spline phase around the via-point
Pkvp. Points denoted by the symbol k− 1 and k+ 1 are the end point and the
start point of the adjacent linear phases.

qk0 = qk−1
f = Pkvp + d1v1, (4.8)

qkf = qk+1
0 = Pkvp + d2v2, (4.9)

where d1 and d2 are computed like:

d1 = 1− rk

l1
, (4.10)

21

4. Solving the problem..................................
d2 = rk

l2
, (4.11)

where rk is size of the zone around the point Pkvp in meters. l1 and l2 are
joint space Euclidean distance between the points Pkvp and Pk−1

vp or between
Pkvp and Pk+1

vp for l2. The distance is calculated:

l =

√√√√ 6∑
i=1

(q0[i]− qf [i])2, (4.12)

where q0[i] denoted to the i-th part of the position vector q0 respectively qf .
After that, the joint values q, between the start point q0 and end point

qf , can be calculated with use of the specific parameters s. Parameter s has
specific characteristics. By definition (Jönsson and Ustyan [7]):

s ∈ 〈0, 1〉. (4.13)

For linear phase, it is possible to calculate points q by linear interpolation:

q = q0 + s(qf − q0). (4.14)

For the spline phase, the path of end-effector is specified by the parameter s
as in the case of linear phase. But the path within the zone is determined
by three points q0, qf , qmid. For calculations of the path joint points q, the
following polynomial expression is used:

q = q̃1(s) + p(s)(q̃2(s)− q̃1(s)), (4.15)

where q̃1(s) and q̃2(s) are linear interpolation between the points q0, qf , qmid.

q̃1(s) = q0 + s(qmid − q0), (4.16)

q̃2(s) = qmid + s(qf − qmid). (4.17)

The polynomials p(s) in equation (4.15) are chosen due to its smoothness
property. As it is said in Gleeson et al. [5], a smooth transition at s = 0 and
s = 1 with the continuous derivative of order m requires a polynomial p(s),
of degree 2m + 1. First, second and third order of continuity at the phase
boundaries has been implemented which corresponds to the following three
polynomials (Gleeson et al. [5]).

p3(s) = 3s2 − 2s3 (4.18)

p5(s) = 10s3 − 15s4 + 6s5 (4.19)

p7(s) = 35s4 − 84s5 + 70s6 − 20s7 (4.20)

The following Figure 4.2 shows, how these polynomials behave from s = 0 to
s = 1.

22

.................................... 4.1. Problem setup

0 0.2 0.4 0.6 0.8 1
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

po
ly

no
m

ia
ls

Evaluation of s in polynomials

p3(s)
p5(s)
p7(s)

Figure 4.2: Evaluation of s in polynomials (4.18), (4.19) and (4.20)

The equations (4.14) and (4.15) are taken from Gleeson et al. [5]. It can
be seen that the equation (4.14) looks like the special case of equation (4.15).
It is possible to get equation (4.14) from (4.15) by setting the polynomial
equal to zero and replacing the variable qmid with the variable qf . Then it is
possible to treat each phase with one equation only and the linear phase is
the particular case of spline phase. The final equation in the application is:

q = q̃1(s) + p(s)(q̃2(s)− q̃1(s))
{
like in (4.10) for spline phase,
qmid = qf , p(s) = 0 for linear phase

(4.21)
Values calculated by the equation (4.21) have to obey maximal and minimal

boundaries value for joint space position.

qlower ≤ q ≤ qupper

These limitations are set by the workspace of the robot.

4.1.3 Kinematic Optimization

To be sure, that the variables presented in the previous section (4.1.1) opti-
mized the trajectory geometrically and kinematically, the following constraints
have to be implemented. In paper Gleeson et al. [5], there are these con-
straints:

− si + 2smpi − si+1 = 0, (4.22)

− ṡi + 2ṡmpi − ṡi+1 = 0, (4.23)

si+1 − si − ṡmpi∆t/N = 0, (4.24)

ṡi+1 − ṡi − s̈i∆t/N = 0, (4.25)

23

4. Solving the problem..................................
where si is parameter s at discretization step i in one phase and si+1 is
parameter s at discretization step i+ 1 in same phase.

Equations (4.22) and (4.23) represent the midpoint constraints, which is
used when the midpoint method for discretization of the criteria function is
used. Equations (4.24) and (4.25) are used for derivation constraints, which
connect the first and second time derivation of the parameter s presented in
section 4.1.1. The equations presented here can be used both for linear phase
and for the spline phase because the parameter s is independent of the type
of the phases.

However, the implementation of the midpoint discretization method brings
another constraint into the optimization problem, which has to be fulfilled.
The equation (4.25) looks like the forward Euler discretization method, and
the decision for using it was made. The constraints, which make sure, that
the time derivation of parameter s fulfills the time evolution are:

si+1 − si − ṡi∆t/N = 0, (4.26)

ṡi+1 − ṡi − s̈i∆t/N = 0. (4.27)

Optimalization of Speed

The first time derivation of parameter s is used for the calculation of optimal
velocity. The velocity in the joint space q̇ calculated with parameter ṡ has
fulfilled the following constraints for the linear phase:

q̇lower ≤ ṡi(qf − q0)/l ≤ q̇upper, (4.28)

where l is calculated by the equation (4.12).
The velocity in the spline phase is computed by the time derivation of the

equation (4.15), which has to fulfill the constraints q̇lower ≤ q̇ ≤ q̇upper:

q̇ = ṡ(qmid − q0) + ṡ
dp(s)
ds

(q̃2(s)− q̃1(s)) + ṡp(s)(qf − qmid + q0). (4.29)

Like in the previous section, the linear phase is the special case for spline
phase. The final equation used in the application is:

q̇ =ṡ(qmid − q0) + ṡ
dp(s)
ds

(q̃2(s)− q̃1(s))+

+ ṡp(s)(qf − qmid + q0)
{
like in (4.29) for spline phase,
qmid = qf , p(s) = 0 for linear phase

(4.30)

The velocity at the phases boundaries has to be equal. The parametric
variable ṡ is not only limited by the maximum or minimum joint space
velocity but also by the following constraints:

q̇k−1
f − q̇k0 = 0, (4.31)

24

.......................... 4.2. Implemation of the Criterion function

where q̇k−1
f is final velocity of the phase k− 1 and q̇k0 is initial velocity of the

phase k.
q̇kf − q̇k+1

0 = 0, (4.32)

where q̇kf is final velocity of the phase k and q̇k+1
0 is initial velocity of the

phase k + 1. With both of these constraints, it is ensured that the velocity
at the phase boundaries has the same direction and the absolute value of
velocity is same at both side of boundaries.

Optimalization of Acceleration

For the calculation of the acceleration, the second derivation of parameter s
is used. The acceleration for the linear phase is according to Gleeson et al.
[5] is calculated and it is constraint by:

q̈lower ≤ s̈i(qf − q0)/l ≤ q̈upper (4.33)

The acceleration for the spline phase is calculated like the second time
derivation of equation (4.15). The computed acceleration also has to fulfill
the constraints, which are the limitations of the maximal robot acceleration.

q̈ =s̈(qmid − q0) +
(
s̈
dp(s)
dt

+ ṡ2 d
2

ds2 p(s)
)

(q̃2(s)− q̃1(s))+

+
(

2ṡ2 d

ds
p(s) + s̈p(s)

)
(qf − qmid + q0)

(4.34)

The final equation used in application is same as equation (4.34) for spline
phase. For linear phase the variables qmid = qf and polynomial p(s) = 0.

4.2 Implemation of the Criterion function

The joint space parameters calculated in the previous section are then used
for evaluation of the criterion function. First, the torque, which acts on the
robot during the movement is computed. The torque is then used for the
calculation of negative electric power, which is generated by the torques and
the forces, which are caused by the movement.

4.2.1 Calculation of the torques

For the calculation of the torques, the Mathematical model of the manipulator
has to be implemented. As it is written in the previous section 3.4.2, the
Daneavit-Hartenberg parameters have to be found. If the steps one to four
presented in section 3.3.1 are followed, the following parameters are found:

25

4. Solving the problem..................................
Link i αi [rad] di [m] ai [m]

1 π/2 0.400 0.180
2 0 0.135 0.600
3 π/2 0.135 0.120
4 π/2 0.620 0
5 π/2 0 0
6 0 0.115 0

Table 4.2: Found Daneavit-Hartenberg parameters

Parameter θ of DH parameters is replaced by the angle of rotation q
computed by equation (4.21). Parameters a and d were found in the datasheet
or $machine.dat of KUKA KR5.

The equations of the mathematical model used in the final application are
calculated by the ReDySim algorithm by Shah [13]. ReDySim (Recursive
Dynamics Simulator) is free-to-use sets of Matlab scripts, which compute the
inverse and forward dynamic recursive equations of the robots and multibody
systems. Parameters necessary for the calculation of the inverse dynamic
are input into the ReDySim algorithm. Redysim already contains inbuilt
parametrization of KR5. Inverse dynamic symbolic equations for each Link
are output. The only parameters which are not filled into the equations
are parameters for joint space position, velocity, and acceleration. These
parameters are supplied by the solver during the optimization process.

4.2.2 Calculation of the currents

The torque computed in the previous section is then applied to the calculation
of the electric current, which is generated in the motor of the robot by the
movement of the Link mass. First, the current has to be calculated. In
this thesis, the complex system of the synchronous motor is replaced by
approximation of DC motor. The model of DC motor is described by the
bond graph in Figure 4.3. This model is used for each motor separately.

Se 1

Ri

Gi : K I

Ri/ui = ii

ui = Keiqi

ii

3/2Kmiii = τnegi
qi

Figure 4.3: Bond graph of motor i

26

.......................... 4.2. Implemation of the Criterion function

The constants K in Figure 4.3 are computed as follows:

Kei = Kui

60×
√

2
1000× 2π

√
3
. (4.35)

The constant Kei is a current constant used for the conversion of the joint
space velocity into the voltage. Constant Kui is a voltage constant of the
unit V/1000ot×min−1 Souček [15]. The value of Kui for each motor, could
be found in Table 4.3 for the tested robot.

Kmi = Kτi

2
3
√

2
. (4.36)

Kτ represents the moment constant, which is used for the calculation of the
force constant. The force constant Km serves then for the computation of the
negative torque by multiplying with current of motor. The negative torque
describes the torque caused by the movement of the mass of the Link.

Link i Manufacturer Model Ku [V/1000ot×min−1] Kτ [Nm/A] R [Ω]
1, 2 Siemens 1FK7080 105 1.61 0.98
3 Siemens 1FK7042 89 1.40 4.67

4, 5, 6 Siemens 1FK7032 45 0.67 5.05
Link i Manufacturer Model Km [Nm/A] Ke [V/1000ot×min−1]
1, 2 Siemens 1FK7080 0.7590 0.8187
3 Siemens 1FK7042 0.6600 0.6930

4, 5, 6 Siemens 1FK7032 0.3158 0.3509

Table 4.3: Parameters of robot motor

It has to be noted that this modeling of the motor is simplified. The
equations for calculation of constants K are more explained in Souček [15].

4.2.3 Evalution of the Criterion function

The currents which are in the motor (for each motor separately) has to be
introduced:

ic = ineg + ip. (4.37)

In equation (4.37), ic represents the overall current consumed inside the
motor during the movement. Variable ip is the positive current, which came
to the motor from an electrical network. Variable ineg represents the negative
current, presented in the previous section. This current is caused by the
movement of the mass of Link. It is produced inside the motor. Simplified
goal of the criterial function is to minimize the difference between positive
and negative current.

For following equations next definition is used:

km = 3
2Km. (4.38)

Variable km on left side of equation (4.38) is from equation (4.36). This
definition is made for the better readability in equations.

27

4. Solving the problem..................................
The overall torque can be calculated as the sum of the positive torque

(caused by positive current) and the negative torque (caused by negative
torque). All τ and i are funtions of time:

τ = τ p + τneg (4.39)

or as it was shown in section 4.2.2, overall torque can be calculated like:

τ = kmic = kmip + kmineg (4.40)

and if the equation (4.40) is expressed as:

kmip = τ − kmineg = τ − τneg = τ p. (4.41)

To calculate the energy caused by the currents, the power in each discretiza-
tion step i has to be computed. Power at one discretization step i in phase k
can be calculated like:

P k,i = q̇i
>
τ i. (4.42)

The equation (4.42) came into following form, when the equation (4.39) is
used:

P k,i = q̇i
>(τ ip + τ ineg). (4.43)

The positive torque can be negative because of used method of calculation of
the joint space velocity. The industrial manipulators don’t have the capability
of the recuperation of the energy. The recuperation is a process of returning
the energy back into the electrical network, when the robot is decelerating
or stopping. Therefore the energy, which comes into the system from the
network has to be consumed, and equation (4.43) has to go over into next
form:

P k,i =
∣∣q̇i>τ ip∣∣+ q̇i>τ ineg (4.44)

and for each link in phase k and for each discretization step i:

P k =
Ns−1∑
i=1

(
Naxis∑
j=1

(∣∣q̇ijτ ipj ∣∣+ q̇ijτ
i
negj

))
,

q̇i =


q̇1
q̇2
...

q̇Naxis−1
q̇Naxis

 , τ
i =


τ1
τ2
...

τNaxis−1
τNaxis

 .
(4.45)

The reason why the power at last point of phase k is not computed is that
the last point is same as the first point of the following phase k + 1. This

28

.......................... 4.2. Implemation of the Criterion function

step ensures that the power consumption is not calculated twice. For the last
phase in trajectory, the last point is of course computed, so i goes to Ns.

If into the equation above the equation (4.41) is infilled, it came into:

P k =
Ns−1∑
i=1

(
Naxis∑
j=1

(∣∣q̇ij(τ ij − τ inegj)∣∣+ q̇ijτ
i
negj

))
,

q̇i =


q̇1
q̇2
...

q̇Naxis−1
q̇Naxis

 , τ
i =


τ1
τ2
...

τNaxis−1
τNaxis

 .
(4.46)

With the equation (4.46), it is possible to calculate the power acting in phase
k. To calculated the energy, the result form (4.46) has to be multiplied by
the discretization constant hk in phase k, which is computed like:

hk = ∆tk

Ns
, (4.47)

where ∆tk is time duration of phase k. Noted that the hk is equal whitin the
phase. The final form of criteria function is:

J =
Np∑
k=1

hkP k

=
Np∑
k=1

(
hk

Ns−1∑
i=1

(
Naxis∑
j=1

(∣∣q̇ij(τ ij − τ inegj)∣∣+ q̇ijτ
i
negj

)))
,

(4.48)

where Np is number of phases.
Equation (4.48) is a discretization form of the criteria function presented

in equation (4.1) for energy optimization. As it is said in Gleeson et al. [5],
the function could be modified for the different purpose of optimization.

29

30

Chapter 5
Experiments

The equations and algorithm presented in the previous chapter are imple-
mented in the application in Matlab programming language. The test ma-
nipulator, the KUKA KR5 ARC of the department of control engineering of
FEE at CTU in Prague was used.

Before the test on the real manipulator, the optimal trajectory has to
be computed by implemented application. The output of the application is
offline made robotic code (program) in KRL (Kuka robotic language), which
can be immediately used on the real manipulator. Two trajectories are chosen
for a proof of concept. First one is the simple trajectory consisting of three
points. The second one is more complex trajectory with five points. All joints
are moving in the second trajectory.

5.1 Experiment in Simulated Environment

Points of original trajectory are the input for the program. These points
are used by equations (4.8) and (4.9) for calculation of start and end points
of each phase. The calculation also needs the radius in each via-point of
the trajectory. The part of the trajectory inside of the spehere with this
radius is treated as a spline phase. Another important input variable is a
number of points for discretization of each phase and the array with parameter
specifying the type of phase. The variable 0 denotes linear phase and variable
1 denotes spline phase. It is possible that the spline phase follows the spline
phase. In further, it is possible to have more linear or spline phases right
after each other. Each phase has its own sampling frequency obtained during
optimization. Therefore, the Figures 5.5, 5.6, 5.7, 5.8, 5.11,5.12 , 5.13 and
5.14 on the x axis have a discretization step instead of time.

5.1.1 Original Trajectory

The variables mentioned above are held in the main script main.m of ap-
plication. In this script, it is possible to set the name of output robotic
program and location, where the program will be saved. Optimization pro-
cess is started by the execution of the scripts. The parameters for original
trajectory are computed first. In the original trajectory, all phases are linear

31

5. Experiments
(in carthesian space) and each start and end points are „fine“. This means
that the robot has to stop in it. Because the number of phases in original
trajectory is smaller than in optimized one, the number of discretization
variables is larger. The number of discretization points in original trajectory
is increased or decreased dependence on a number of discretization points in
optimal one so the number of discretization points is equal.

The positions are calculated by equation (4.14). The velocities are calcu-
lated by the time which is computed by standard trapezoidal motion profile
with equal and constant acceleration and deceleration Stienecker [17]. The
time is computed like:

∆tk = ∆θi
vmaxi

+ vki
amaxi

⇐⇒ vmaxi
amaxi

< ∆θi, (5.1)

or

∆tk = 2
√

∆θi
amaxi

⇐⇒ vmaxi
amaxi

≥ ∆θi, (5.2)

where ∆tk is duration of time in phase k. The variables vmaxi and amaxi are
absolute maximal speed and acceleration vectors (see Table 3.1) in joint i.
The variable ∆θi denotes the absolute joint-space trajectory length in joint i.

The acceleration is then calculated like a derivation of the velocity by
Matlab function diff(). The variables are inserted into the equation (4.46).
The result is in next used for calculation of energy (equation (4.48)) by
multiplying with time from equation (5.1) or (5.2).

5.1.2 Optimal Trajectory

The next step in the application is an optimization. Phases start and end
points, which were created by equations (4.8) and (4.9) are inserted and held
in an object of class energyModel. The objects of class energyModel have
implemented all necessary equations presented in chapter 4. The equations
(4.30) and modified version (4.34) are created by Matlab function diff() as a
first and second derivation of equation (4.21). The classes of phases are right
after that inserted into the Matlab anonymous function, for more information
about anonymous function see MathWorks [11], which can be considered as
criteria function of the optimization problem. Then the nonlinear solver is
set up. Chosen solver is IPOPT solver presented in section 3.1. The solver
tries to find out the set of variable s, ṡ and s̈. These variables are held in one
array (vector) because the IPOPT solver in Matlab does not support multiple
inputs variables. After the all solver options are set up, the optimization
started.

Originaly the trajectories consisting of at most three phases were optimized
in one step. The optimization of the trajectory which has seven phases
took one and half hour to solve. The time of optimization grows almost
exponentially. The reason why the time of optimization took a long time is a
number of control variables. For example, if there are five phases and in each
phase are five discretization points the total number of control variables are

32

..........................5.1. Experiment in Simulated Environment

seventy-five. Because of that, the decision to separate the trajectories into
the smaller pieces was made. This decision caused that the optimal solution
of optimization is suboptimal. For the trajectories which have more than
three phases following algorithm is used:

while satisfying all constraints;
for i = 1 to k with step 2 do

[M i, . . . ,M i+2] = optimize([M i, . . . ,M i+2]);
end

Algorithm 1: Used suboptimal optimization strategy.

where M is array of phases and variable k is total number of phases. To
ensure, that the phases between the suboptimal solution match, the same
constraints as (4.31) and (4.32) are used, but for the suboptimal boundaries.
Using these steps, the „suboptimal“ trajectory is found. After that, the
optimal trajectory is transferred into KRL code which can be later executed
on real KUKA manipulator.

5.1.3 Results from simulation

In this section, the results of the simulation are presented. As it was said,
two types of trajectories described in section 5.1 were chosen. Firstly the
results for easiest one will be introduced.

First Trajectory - Results

The first trajectory has three points: the start point, the end point, and one
via-point. At this via-point the size of the radius was changed gradually.
Following table show how the change of radius modify the difference between
positive and negative energy presented in previous chapter 4:

Radius [m] Final Time [s] Final Energy [J] Energy Save [%] Time Save [%]
fine 1.16 364.73 0 0
0.05 1.16 153.35 57.96 0
0.1 1.16 155.25 57.43 0
0.15 1.16 147.86 59.46 0
0.2 1.16 175.66 51.84 0
0.25 1.16 188.45 48.33 0
0.3 1.16 136.49 62.58 0
0.35 1.16 138.67 61.98 0

Table 5.1: Energy save for simulation - Trajectory 1

And table 5.2 shows distance between the points in Cartesian space:

V1 → V2 V2 → V3

Distance [m] 0.552 0.516

Table 5.2: Distance between points of original Trajectory 1 (see Figure 5.1)

33

5. Experiments
As it is seen in Table 5.1, the best optimization was 62.58 % of the original

one („fine“). These energy reductions are partly because the robot does
not stop in the via-points as in original trajectory. The final time of each
new trajectories in Table 5.1 is same as in original one. It is because the
criterial function is primarily written for energy saving. For the solution of
the problem was better to fulfill the given upper time boundary (original
duration). Even the experiments with longer time boundary then the original
one, leads to the fulfillment of the set time limits. That could be caused by
acceleration because the torque is associated with acceleration.

The application produces many graphs. The most important ones will be
shown here. The rest of figures could be seen in Appendix B.

Figures 5.1 and 5.2 show the trajectory before optimization and after. The
zone radius is 0.2 meters. The trajectory is smooth after the optimization.
Note that the trajectory looks linear only between the chosen joints and
only in joint space. The Figure 5.3 shows the trajectory in Cartesian space.
In the Figure 5.3 the behavior of PTP motion is shown. The Figure 5.4
shows the front view of the trajectory. The blue line is the original trajectory,
and the red line is the optimized one. Both pictures were taken in Process
Simulate. Process Simulate is process software by Siemens for simulation and
verification of industrial process with many useful functions. One of them is
an easy visualization of robots movements.

-0.5 -0.4 -0.3 -0.2 -0.1 0

Joint 1 [rad]

-1.6

-1.55

-1.5

-1.45

-1.4

-1.35

-1.3

-1.25

-1.2

-1.15

Jo
in

t 2
 [r

ad
]

Trajectory - joint 1 and 2

 V1

 V2

 V3

Optimized trajectory
Original trajectory

Figure 5.1: Computed position of original Trajectory 1. The black arrow shows
direction of the movement.

34

..........................5.1. Experiment in Simulated Environment

-0.5 -0.4 -0.3 -0.2 -0.1 0

Joint 1 [rad]

-1.6

-1.55

-1.5

-1.45

-1.4

-1.35

-1.3

-1.25

-1.2

-1.15

Jo
in

t 2
 [r

ad
]

Trajectory - joint 1 and 2

 V1

 V2

 V3

Optimized trajectory
Original trajectory

Figure 5.2: Computed position of optimazed Trajectory 1. The black arrow
shows direction of the movement.

Figure 5.3: Trajectory 1 - side view from Process Simulate

35

5. Experiments

Figure 5.4: Trajectory 1 - front view from Process Simulate

Figures 5.5 and 5.6 show the velocity and acceleration of the first joint. The
Figure 5.5 has standard trapezoidal motion profile. The Figure 5.6 presents
the slowing down the maximum speed by optimization tool. The force is
therefore minimized. The closer look shows how the constraints (4.31) and
(4.32) adjust the speed and acceleration at the same position (ex. samples 4
and 5). The acceleration at the last point of phase k − 1 (sample 4) is equal
to zero, but speed is same as the speed at the first point of phase k (sample
5), which has nonzero acceleration. As it was mentioned in the explanation
of (4.45) the last point N (sample 4) of phase k − 1 is neglected. It has to
be also noted that the initial and final velocity of the trajectory could not
be set. One of the reasons is that the solver finds these velocities, which are
best for achieving the minimal energy consumption.

36

..........................5.1. Experiment in Simulated Environment

0 5 10 15
Samples

0

1

2

3

[r
ad

/s
]

Speed in Joint 1 [rad/s]

0 5 10 15
Samples

-4

-2

0

2

4

[r
ad

/s
*s

]

Acceleration in Joint 1 [rad/s*s]

Figure 5.5: Close look up at speed and acceleration of first joint - original
trajectory

0 2 4 6 8 10 12 14

Samples

-2

-1

0

1

2

[r
ad

/s
]

Speed in Joint 1 [rad/s]

0 2 4 6 8 10 12 14

Samples

-20

0

20

40

[r
ad

/s
*s

]

Acceleration in Joint 1 [rad/s*s]

Figure 5.6: Close look up at speed and acceleration of first joint - Optimal one

Figures 5.7 and 5.8 present the power consumption of the manipulator
before and after the optimization. From the figures, the times when the
manipulator accelerated and decelerated can be seen. The curve in Figure
5.7 (orginal one) is smoother than in the Figure 5.8. However, the maximum

37

5. Experiments
power of optimized trajectory is noticeably lower.

0 5 10 15
Samples

0

5

10

15

20

25

30

35

40

P
ow

er
 [W

]

Power

Figure 5.7: Computed power in each discretization step - original trajectory

0 2 4 6 8 10 12

Samples

0

5

10

15

20

25

30

35

P
ow

er
 [W

]

Power

Figure 5.8: Computed power in each discretization step

38

..........................5.1. Experiment in Simulated Environment

Second Trajectory - Results

The second trajectory (Figure 5.9) is more complicated than the previous
one. It has five points through which the end-effector has to go. Overall
it has three via-points (points with zone radius for optimization). In this
trajectory, it is guaranteed that each joint is moving during the movement.
For optimization process, all via-points has the same radius. The following
Table 5.3 shows the results from optimization:

Radius [m] Final Time [s] Final Energy [J] Energy Save [%] Time Save [%]
fine 2.74 630.9 0 0
0.05 2.74 292.28 53.67 0
0.1 2.74 292.14 53.69 0

Table 5.3: Energy save for simulation - Trajectory 2

V1 → V2 V2 → V3 V3 → V4 V4 → V5

Distance [m] 0.55 1.2 0.7 0.54

Table 5.4: Distance between points of Trajectory 2 (see Figure 5.9)

Figures 5.9 and 5.10 show how trajectory looks before optimization and
after it. In the figure, 5.10 can be seen where trajectory starts and end. The
radius at via-points is set to 0.1 meters. At Figure 5.10 can be seen, that the
optimization zone isn’t the same at all via-points. The zone in joint space is
not same as the zone in the Cartesian space, see 3.3.1.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Joint 1 [rad]

-1.6

-1.55

-1.5

-1.45

-1.4

-1.35

-1.3

-1.25

-1.2

-1.15

-1.1

Jo
in

t 2
 [r

ad
]

Trajectory - joint 1 and 2

 V1

 V2

 V3

 V4 V5

Optimized trajectory
Original trajectory

Figure 5.9: Computed position of original Trajectory 2. The black arrow shows
direction of the movement.

39

5. Experiments

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Joint 1 [rad]

-1.6

-1.55

-1.5

-1.45

-1.4

-1.35

-1.3

-1.25

-1.2

-1.15

-1.1

Jo
in

t 2
 [r

ad
]

Trajectory - joint 1 and 2

 V1

 V2

 V3

 V4 V5

Optimized trajectory
Original trajectory

Figure 5.10: Computed position of optimazed Trajectory 2. The black arrow
shows direction of the movement.

Figures 5.11 and 5.12 show the velocity and acceleration of the first joint.
The evaluation of velocity and acceleration of original trajectory has the same
character as the velocity and acceleration of previous original trajectory.

0 5 10 15 20 25 30 35

Samples

0

1

2

3

[r
ad

/s
]

Speed in Joint 1 [rad/s]

0 5 10 15 20 25 30 35

Samples

-4

-2

0

2

4

[r
ad

/s
*s

]

Acceleration in Joint 1 [rad/s*s]

Figure 5.11: Close look up at speed and acceleration of first joint - original
trajectory

40

..........................5.1. Experiment in Simulated Environment

0 5 10 15 20 25 30

Samples

-2

-1

0

1

2

[r
ad

/s
]

Speed in Joint 1 [rad/s]

0 5 10 15 20 25 30

Samples

-20

0

20

40

[r
ad

/s
*s

]

Acceleration in Joint 1 [rad/s*s]

Figure 5.12: Close look up at speed and acceleration of first joint - Optimal one

Figures 5.13 and 5.14 show the power consumption of manipulator before
and after optimization. Also, like in the previous section, the evolution of
power consumption dependents on the acceleration.

0 5 10 15 20 25 30

Samples

0

5

10

15

20

25

30

35

40

P
ow

er
 [W

]

Power

Figure 5.13: Computed power in each discretization step - original trajectory 2

41

5. Experiments

0 5 10 15 20 25

Samples

0

10

20

30

40

50

60

70

P
ow

er
 [W

]

Power

Figure 5.14: Computed power in each discretization step - optimal trajectory 2

5.2 Experiment with real manipulator

As it was mentioned in the introduction of chapter 5 the code in KRL is
the output of the application. The KRL is a abbreviation for Kuka Robotic
Language. Every noncooperative robot from KUKA is programmed in this
language. Every program has two files: .src and .dat. The .src file contains
the instruction for the robot. It does not contain the information about the
coordinates of points. This information is held in file .dat. The KRL uses
many types of motion command such as PTP (point-to-point), LIN (linear
motion type), etc (for more information see KUKA Roboter Group GmbH
[9]).

The motion is then performed by command PTP completed by the name
of the point. For example, the command PTP P1 means: go to the position
P1 and use point to point motion type. It is used because this motion type
enables to set upper boundaries for joint speed and acceleration.

The position could be written in two ways. First one uses Cartesian
notation. The point then has the coordinates X, Y and Z plus addition
Euler’s angles A, B and C. These angles were described in section 3.3.2. The
second way uses the joint space coordinates. The points have six variables -
one for each joint of the manipulator in degrees. So the positions of calculated
points in radians are converted into the degrees.

Unfortunately, in KRL the exact setting velocity and acceleration for each
joint isn’t available. Only upper bounds for velocity and acceleration can be
set in KRL. Therefore the user isn’t sure whether the values computed by
the application are correctly interpreted in the robot. The user is sure that

42

............................5.2. Experiment with real manipulator

the boundaries are not exceeded.
Another problem is that the velocity in PTP is calculated by the controller

in percentage. The velocity could be set from 0 to 100 percent, and 100
percent means the maximal velocity of the slowest joint, which movement
takes the longest duration. The calculation is the same as equations (5.1)
and (5.2). Controller finds the slowest joint and adjusts the velocities for
other joints. When equations(5.1) and (5.2) were used for computed values
by application, every joint has the same time duration of the movement. It
is caused by variable s. As it was said in chapter 4 variable s is uniquely
located in time. Therefore the computed values are set as speed boundaries
in KRL code.

It also has to be noted that the end-effector has to wait for 0.2 seconds
in each via-points of both the original trajectories. The results presented in
following sections have to be taken as the potential of energy consumption
reduction.

5.2.1 Trajectory 1

The first trajectory presented in previous section 5.1 was tested on the real
robotic manipulator. The power consumption was measured on WAGO-I/O-
SYSTEM 750 card. This card records and processes all relevant measurement
quantities in a three-phase power supply. The measured quantity was the
consumed power on each phase of the power supply. Powers of all three
phase were then transformed into overall power consumption. After that, the
measured data were analyzed by the program (Pruměrná Spotřeba script)
written by Martin Ron, the supervisor of the thesis. In this program, the
trajectory pattern of data is chosen. This pattern is then found with specified
accuracy in the measured data, and then it was processed. Originally the
pattern was identified using the peaks in the data as features.

In this thesis, the analytical program (Pruměrná Spotřeba script) was
improved by interpolating the data and taking all the interpolated sample
values as features. With the interpolation of pattern, the start and the end
times of each cycle are found in data from the measurement. Corresponding
powers are then found in measurement data of power consumption Ron [12].
This approach brings more accuracy into the pattern finding and calculation
of energy consumption. To have the more precise result, the same movement
was performed 15 times. After that measured data was analyzed and the
results are in Table 5.5.

43

5. Experiments
Radius
[m]

Final Time
[s]

Final Energy
[Wh]

Final Energy
[J]

Energy Save
[%]

Time Save
[%]

fine 1.4 0.005628 20.2608 0 0
0.05 1.6 0.005589 20.1204 0.69 -14.3
0.1 1.4 0.004993 17.9748 11.28 0
0.15 1.4 0.005132 18.4752 8.81 0
0.2 1.4 0.004958 17.8488 11.90 0
0.25 1.6 0.005272 18.9792 6.32 -14.3
0.3 1.6 0.004813 17.3268 14.48 -14.3
0.35 1.6 0.005133 18.4788 8.79 -14.3

Table 5.5: Values from experiments with real manipulator KUKA KR5 - Tra-
jectory 1

As it could be seen the energy consumption was reduced in the interval of
0.69 to 14.48 percent of original one. From above-mentioned reasons, mainly
due to the impossibility of exact setting of required velocity and acceleration
the duration of optimal movements in some cases prolonged.

Following Figures shows the measured power consumption. The Figures
present measured data from original trajectory and optimal trajectory of the
zone with radius 0.2 meters.

Figures 5.15 and 5.16 show the power consumption of the trajectories,
which were performed 15 times. In Figure 5.15 the highest peaks are caused
by returning of the robot to the start position. The sample period is 0.04
seconds.

800 1000 1200 1400 1600 1800
Samples

5

10

15

20

25

30

35

A
ct

iv
e

po
w

er
 [W

]

KR5 arc

Figure 5.15: Measured data of trajectory 1 - original one

44

............................5.2. Experiment with real manipulator

0 500 1000 1500
Samples

0

5

10

15

20

25

30

A
ct

iv
e

po
w

er
 [W

]
KR5 arc

Figure 5.16: Measured data of trajectory 1 - optimal one

Figure 5.17 shows the one cycle of trajectory from the measurement. It
contains the original movement and its interpolation was used for analysis in
the analytical program (Pruměrná Spotřeba script).

0 5 10 15 20 25 30
Samples

5

10

15

20

25

30

35

A
ct

iv
e

po
w

er
 [W

]

Interpolate pattern
Original movement

Figure 5.17: Power consumption measured on real robot and its interpolation -
original trajectory 1

Figure 5.18 shows the one cycle of optimal trajectory from the measurement.

45

5. Experiments
It contains the original movement and its interpolation used for analysis in
the analytical program (Pruměrná Spotřeba script).

0 5 10 15 20 25 30
Samples

6

8

10

12

14

16

18

20

22

24

26

A
ct

iv
e

po
w

er
 [W

]

Interpolate pattern
Original movement

Figure 5.18: Power consumption measured on real robot and its interpolation -
optial trajectory 1

0 2 4 6 8 10 12

Samples

0

5

10

15

20

25

30

35

P
ow

er
 [W

]

Power

Figure 5.19: Computed power in each discretization step - optimal trajectory
from simulation

46

............................5.2. Experiment with real manipulator

As it could be seen in Figures 5.18 and 5.19, the simulated power consump-
tion has similar behaviour as the real one.

5.2.2 Trajectory 2

The same approach as in the previous section was applied on the trajectory
two. The results are:

Radius
[m]

Final Time
[s]

Final Energy
[Wh]

Final Energy
[J]

Energy Save
[%]

Time Save
[%]

fine 2.6 0.013799 49.676 0 0
0.05 2.4 0.013265 47.754 3.86 7.69
0.1 2.8 0.010966 39.4776 20.53 -16.67

Table 5.6: Values from experiments with real manipulator KUKA KR5 - Tra-
jectory 2

Figures 5.20 and 5.21 show the measured data. Figures 5.22 and 5.23 show
closer look at one cycle.

600 800 1000 1200 1400 1600
Samples

0

10

20

30

40

50

60

A
ct

iv
e

po
w

er
 [W

]

KR5 arc

Figure 5.20: Measured power consumption of original second trajectory

47

5. Experiments

0 500 1000 1500 2000
Samples

0

5

10

15

20

25

30

35

40

A
ct

iv
e

po
w

er
 [W

]

KR5 arc

Figure 5.21: Measured power consumption of optimal second trajectory

0 10 20 30 40 50 60
Samples

0

10

20

30

40

50

60

70

A
ct

iv
e

po
w

er
 [W

]

Interpolate pattern
Original movement

Figure 5.22: Closer look at power consumption one cycle of second original
trajectory

48

............................5.2. Experiment with real manipulator

0 10 20 30 40 50 60 70 80
Samples

5

10

15

20

25

30

35

40

A
ct

iv
e

po
w

er
 [W

]
Interpolate pattern
Original movement

Figure 5.23: Closer look at power consumption one cycle of second optimal
trajectory

0 5 10 15 20 25

Samples

0

10

20

30

40

50

60

70

P
ow

er
 [W

]

Power

Figure 5.24: Computed power from application - Trajectory 2

49

5. Experiments
In Figures 5.23 and 5.24 are differences in second part of the movement. In

the simulation, power consumption is computed by the torque and if one or
more joints aren’t moving the torque on that joints is minimal. However, on
the real manipulator the power consumption is still going on. Nevertheless,
the model is still usable and produces applicable results.

50

Chapter 6
Conclusion

The objectives of the submitted thesis is the optimization of the robotic
manipulator’s energy consumption. The thesis comes from the state of the
art of the problem. This work presents basic principles of the creation of the
manipulator mathematical model. Kinematic and dynamic characteristics of
the robot movement are simulated. The most suitable method was selected
from recommended literature.

The mathematical model has been implemented on the six-axis manipulator
(KUKA KR5 ARC), which is the frequently used type of robot. The nonlin-
ear programming problem was set up to find out the most energy-effective
trajectory. Interior Point Optimizer (IPOPT) finds the optimum by inter-
actively solving a sequence of the optimization problems. The optimization
problem is defined by the tailor-made criteria function, which is described
as the difference between the energy spent on the movement and the energy
produced by the movement.

The control variable of the criterial function is the internal parametriza-
tion variable si and its first and second time derivation, which describes all
positions, velocities and accelerations of the arbitrary point of end-effector
movement. The solver also has to keep the boundaries of trajectory variables,
and has to fulfill the optimization constraints.

All the above mentioned conclusions were proofed by the experiments in the
simulation environment and on the real robotic manipulator. A mathematical
model is very sensitive to its parameters. The small change of the mass, the
length of the links and the matrix of inertial tensor led to the large change
in energy consumption. However, in all cases, the energy consumption was
reduced.

In the simulation, the average energy saving was about 40 percent of the
original trajectory criteria function result. On the real robot, there was not a
possiblity of an exact adjustment of the required parameters. The optimal
result was adjustable by the position parameter of end-effector only, and the
speed and acceleration were adjustable only through the upper limits. For
that reason, experiments are approximated to the optimal solution. Despite
the complications, the average saving was about 10 percent of the original
energy consumption.

The approach presented in this work shows that the control of the ma-

51

6. Conclusion......................................
nipulator with the knowledge of its inner structure brings many advantages.
Besides the energy consumption reduction, it extends the lifetime of the
manipulators and in most cases accelerates the production cycle time.

6.1 Future improvements

This submitted application could be extended in the future. One of the
most important extensions is the implementation of collision detection means.
The other extension is the more accurate model of the drive unit (motor)
of the manipulators. Improved application by these extensions would be
implemented as the plug-in to the Process Simulate. The Process Simulate is
the process software by Siemens, and it is used for simulation of the production
lines. Also in the future, the application would be extended by robots made
by other manufacturers such as ABB, Fanuc, etc.

52

Appendix A
Bibliography

[1] Björkenstam, S., Gleeson, D., Bohlin, R., Carlson, J. S., and Lennartson, B.
(2013). Energy efficient and collision free motion of industrial robots using
optimal control. In 2013 IEEE International Conference on Automation
Science and Engineering (CASE), pages 510–515.

[2] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge
University Press, Cambridge, UK ; New York, 1 edition.

[3] Bukata, L., Šůcha, P., Hanzálek, Z., and Burget, P. (2017). Energy Opti-
mization of Robotic Cells. IEEE Transactions on Industrial Informatics,
13(1):92–102.

[4] Chinneck, J. W. (2015). Practical optimization: A gentle introduction.
http://www.sce.carleton.ca/faculty/chinneck/po.html.

[5] Gleeson, D., Björkenstam, S., Bohlin, R., Carlson, J. S., and Lennartson,
B. (2015). Optimizing robot trajectories for automatic robot code genera-
tion. In 2015 IEEE International Conference on Automation Science and
Engineering (CASE), pages 495–500.

[6] Grepl, R. (2007). Kinematika a dynamika mechatronických systémů.
Vysoké učení technické v Brně, Brno.

[7] Jönsson, V. and Ustyan, T. (2011). Implementa-
tion of a generic virtual robot controller – fraunhofer-
chalmers centre. http://www.fcc.chalmers.se/publication/
implementation-of-a-generic-virtual-robot-controller/.

[8] Kawajir, Y. (2014). Introduction to IPOPT: A tutorial for download-
ing, installing, and using IPOPT. https://www.coin-or.org/Ipopt/
documentation/.

[9] KUKA Roboter Group GmbH (2015). KUKA System Softeare 8.4 -
Operating and Programming Instructions for System Integrators. Augsburg,
Germany, 1 edition.

[10] KUKA Roboter Group GmbH (2016). Specification KR
5. https://www.kuka.com/-/media/kuka-downloads/imported/
48ec812b1b2947898ac2598aff70abc0/spez_kr_5_arc_en.pdf.

53

http://www.sce.carleton.ca/faculty/chinneck/po.html
http://www.fcc.chalmers.se/publication/implementation-of-a-generic-virtual-robot-controller/
http://www.fcc.chalmers.se/publication/implementation-of-a-generic-virtual-robot-controller/
https://www.coin-or.org/Ipopt/documentation/
https://www.coin-or.org/Ipopt/documentation/
https://www.kuka.com/-/media/kuka-downloads/imported/48ec812b1b2947898ac2598aff70abc0/spez_kr_5_arc_en.pdf
https://www.kuka.com/-/media/kuka-downloads/imported/48ec812b1b2947898ac2598aff70abc0/spez_kr_5_arc_en.pdf

A. Bibliography.....................................
[11] MathWorks (2017). Anonymous Functions - MATLAB &

Simulink. https://www.mathworks.com/help/matlab/matlab_prog/
anonymous-functions.html.

[12] Ron, M. (2015). Teoretická analýza skriptu pro de-
tekci cyklu. https://docs.google.com/document/d/1_
w0htNScSTRF-KbQwXDd7UWuylNz3NZFkyb_YGLy584/edit?usp=embed_
facebook.

[13] Shah, S. V. (2016). Recursive dynamics simulator (redysim). http:
//redysim.weebly.com/.

[14] Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. (2010). Robotics:
Modelling, Planning and Control. Springer Science & Business Media.

[15] Souček, P. (2002). Vysoce dynamické pohony posuvů obráběcích strojů.
Společnost pro obráběcí stroje.

[16] Spong, M. W., Hutchinson, S., and Vidyasagar, M. (2005). Robot
Modeling and Control. Wiley, Hoboken, NJ, 1 edition.

[17] Stienecker (2010). 10: Control of Industrial Robots. https://
drstienecker.com/tech-332/10-control-of-industrial-robots/.

54

https://www.mathworks.com/help/matlab/matlab_prog/anonymous-functions.html
https://www.mathworks.com/help/matlab/matlab_prog/anonymous-functions.html
https://docs.google.com/document/d/1_w0htNScSTRF-KbQwXDd7UWuylNz3NZFkyb_YGLy584/edit?usp=embed_facebook
https://docs.google.com/document/d/1_w0htNScSTRF-KbQwXDd7UWuylNz3NZFkyb_YGLy584/edit?usp=embed_facebook
https://docs.google.com/document/d/1_w0htNScSTRF-KbQwXDd7UWuylNz3NZFkyb_YGLy584/edit?usp=embed_facebook
http://redysim.weebly.com/
http://redysim.weebly.com/
https://drstienecker.com/tech-332/10-control-of-industrial-robots/
https://drstienecker.com/tech-332/10-control-of-industrial-robots/

Appendix B
Figures from Experiments

B.1 Trajectory 1 - Simulation

-0.5 -0.4 -0.3 -0.2 -0.1 0

Joint 1 [rad]

-1.6

-1.55

-1.5

-1.45

-1.4

-1.35

-1.3

-1.25

-1.2

-1.15

Jo
in

t 2
 [r

ad
]

Trajectory - joint 1 and 2

 V1

 V2

 V3

Optimized trajectory
Original trajectory

Figure B.1: Original trajectory 1 between joint 1 and 2

55

B. Figures from Experiments

-0.5 -0.4 -0.3 -0.2 -0.1 0

Joint 1 [rad]

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

Jo
in

t 3
 [r

ad
]

Trajectory - joint 1 and 3

 V1

 V2

 V3

Optimized trajectory
Original trajectory

Figure B.2: Original trajectory 1 between joint 1 and 3

-1.6 -1.55 -1.5 -1.45 -1.4 -1.35 -1.3 -1.25 -1.2 -1.15

Joint 2 [rad]

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

Jo
in

t 3
 [r

ad
]

Trajectory - joint 2 and 3

 V1

 V2

 V3

Optimized trajectory
Original trajectory

Figure B.3: Original trajectory 1 between joint 2 and 3

56

............................... B.1. Trajectory 1 - Simulation

0 5 10 15

Samples

-5

0

5
[r

ad
/s

*s
] Acceleration in Joint 1 [rad/s*s]

0 5 10 15

Samples

-1

0

1

[r
ad

/s
*s

] Acceleration in Joint 2 [rad/s*s]

0 5 10 15

Samples

-2

0

2

[r
ad

/s
*s

] Acceleration in Joint 3 [rad/s*s]

0 5 10 15

Samples

-1

0

1

[r
ad

/s
*s

] Acceleration in Joint 4 [rad/s*s]

0 5 10 15

Samples

-5

0

5

[r
ad

/s
*s

] Acceleration in Joint 5 [rad/s*s]

0 5 10 15

Samples

-5

0

5

[r
ad

/s
*s

] Acceleration in Joint 6 [rad/s*s]

Figure B.4: Acceleration of manipulator - original trajectory 1

0 5 10 15

Samples

0

5

10

15

20

25

30

35

40

P
ow

er
 [W

]

Power

Figure B.5: Calculated power of manipulator - original trajectory 1

57

B. Figures from Experiments

0 5 10 15

Samples

0

50

100

150

200

250

300

350

400

E
ne

rg
y

[J
]

Energy

Figure B.6: Calculated energy of manipulator - original trajectory 1

0 5 10 15

Samples

0

2

4

[r
ad

/s
]

Speed in Joint 1 [rad/s]

0 5 10 15

Samples

0

0.5

1

[r
ad

/s
]

Speed in Joint 2 [rad/s]

0 5 10 15

Samples

0

1

2

[r
ad

/s
]

Speed in Joint 3 [rad/s]

0 5 10 15

Samples

0

0.5

1

[r
ad

/s
]

Speed in Joint 4 [rad/s]

0 5 10 15

Samples

0

2

4

[r
ad

/s
]

Speed in Joint 5 [rad/s]

0 5 10 15

Samples

0

5

[r
ad

/s
]

Speed in Joint 6 [rad/s]

Figure B.7: Speed of manipulator - original trajectory 1

58

............................... B.1. Trajectory 1 - Simulation

0 5 10 15

Samples

0

1

2

3
[r

ad
/s

]
Speed in Joint 1 [rad/s]

0 5 10 15

Samples

-4

-2

0

2

4

[r
ad

/s
*s

]

Acceleration in Joint 1 [rad/s*s]

Figure B.8: Speed and acceleration of first joint - original trajectory 1

0 5 10 15

Samples

-200

0

200

[N
m

]

Torque in Joint 1 [Nm]

0 5 10 15

Samples

-500

0

500

[N
m

]

Torque in Joint 2 [Nm]

0 5 10 15

Samples

-200

0

200

[N
m

]

Torque in Joint 3 [Nm]

0 5 10 15

Samples

-10

0

10

[N
m

]

Torque in Joint 4 [Nm]

0 5 10 15

Samples

-2

0

2

[N
m

]

Torque in Joint 5 [Nm]

0 5 10 15

Samples

-0.5

0

0.5

[N
m

]

Torque in Joint 6 [Nm]

Figure B.9: Calculated torque - original trajectory 1

59

B. Figures from Experiments

0 5 10 15

Samples

0

200

400

[W
]

Powers in axis 1 [W]

0 5 10 15

Samples

0

200

400
[W

]
Powers in axis 2 [W]

0 5 10 15

Samples

0

100

200

[W
]

Powers in axis 3 [W]

0 5 10 15

Samples

0

5

10

[W
]

Powers in axis 4 [W]

0 5 10 15

Samples

0

2

4

[W
]

Powers in axis 5 [W]

0 5 10 15

Samples

0

1

2

[W
]

Powers in axis 6 [W]

Figure B.10: Used power (Blue line) and power caused by movement (orange
line) - original trajectory 1

-0.5 -0.4 -0.3 -0.2 -0.1 0

Joint 1 [rad]

-1.6

-1.55

-1.5

-1.45

-1.4

-1.35

-1.3

-1.25

-1.2

-1.15

Jo
in

t 2
 [r

ad
]

Trajectory - joint 1 and 2

 V1

 V2

 V3

Optimized trajectory
Original trajectory

Figure B.11: Optimal trajectory between joint 1 and 2

60

............................... B.1. Trajectory 1 - Simulation

-0.5 -0.4 -0.3 -0.2 -0.1 0

Joint 1 [rad]

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3
Jo

in
t 3

 [r
ad

]
Trajectory - joint 1 and 3

 V1

 V2

 V3

Optimized trajectory
Original trajectory

Figure B.12: Optimal trajectory between joint 1 and 3

-1.6 -1.55 -1.5 -1.45 -1.4 -1.35 -1.3 -1.25 -1.2 -1.15

Joint 2 [rad]

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

Jo
in

t 3
 [r

ad
]

Trajectory - joint 2 and 3

 V1

 V2

 V3

Optimized trajectory
Original trajectory

Figure B.13: Optimal trajectory between joint 2 and 3

61

B. Figures from Experiments

0 2 4 6 8 10 12 14

Samples

-50

0

50

[r
ad

/s
*s

] Acceleration in Joint 1 [rad/s*s]

0 2 4 6 8 10 12 14

Samples

-10

0

10
[r

ad
/s

*s
] Acceleration in Joint 2 [rad/s*s]

0 2 4 6 8 10 12 14

Samples

-20

0

20

[r
ad

/s
*s

] Acceleration in Joint 3 [rad/s*s]

0 2 4 6 8 10 12 14

Samples

-50

0

50

[r
ad

/s
*s

] Acceleration in Joint 4 [rad/s*s]

0 2 4 6 8 10 12 14

Samples

-50

0

50

[r
ad

/s
*s

] Acceleration in Joint 5 [rad/s*s]

0 2 4 6 8 10 12 14

Samples

-50

0

50

[r
ad

/s
*s

] Acceleration in Joint 6 [rad/s*s]

Figure B.14: Acceleration of manipulator - optimal trajectory 1

0 2 4 6 8 10 12

Samples

0

5

10

15

20

25

30

35

P
ow

er
 [W

]

Power

Figure B.15: Calculated power of manipulator - optimal trajectory 1

62

............................... B.1. Trajectory 1 - Simulation

0 2 4 6 8 10 12

Samples

0

20

40

60

80

100

120

140

160

180
E

ne
rg

y
[J

]
Energy

Figure B.16: Calculated energy of manipulator - optimal trajectory 1

0 2 4 6 8 10 12 14

Samples

-2

0

2

[r
ad

/s
]

Speed in Joint 1 [rad/s]

0 2 4 6 8 10 12 14

Samples

0

0.5

1

[r
ad

/s
]

Speed in Joint 2 [rad/s]

0 2 4 6 8 10 12 14

Samples

0

1

2

[r
ad

/s
]

Speed in Joint 3 [rad/s]

0 2 4 6 8 10 12 14

Samples

-5

0

5

[r
ad

/s
]

Speed in Joint 4 [rad/s]

0 2 4 6 8 10 12 14

Samples

-2

-1

0

[r
ad

/s
]

Speed in Joint 5 [rad/s]

0 2 4 6 8 10 12 14

Samples

-2

0

2

[r
ad

/s
]

Speed in Joint 6 [rad/s]

Figure B.17: Velocity of manipulator - optimal trajectory 1

63

B. Figures from Experiments

0 2 4 6 8 10 12 14

Samples

-2

-1

0

1

2

[r
ad

/s
]

Speed in Joint 1 [rad/s]

0 2 4 6 8 10 12 14

Samples

-20

0

20

40

[r
ad

/s
*s

]

Acceleration in Joint 1 [rad/s*s]

Figure B.18: Velocity and acceleration of first joint - optimal trajectory 1

0 2 4 6 8 10 12

Samples

-1000

0

1000

[N
m

]

Torque in Joint 1 [Nm]

0 2 4 6 8 10 12

Samples

-200

0

200

[N
m

]

Torque in Joint 2 [Nm]

0 2 4 6 8 10 12

Samples

-100

0

100

[N
m

]

Torque in Joint 3 [Nm]

0 2 4 6 8 10 12

Samples

-50

0

50

[N
m

]

Torque in Joint 4 [Nm]

0 2 4 6 8 10 12

Samples

-5

0

5

[N
m

]

Torque in Joint 5 [Nm]

0 2 4 6 8 10 12

Samples

-0.5

0

0.5

[N
m

]

Torque in Joint 6 [Nm]

Figure B.19: Calculated torque - trajectory 1

64

............................... B.1. Trajectory 1 - Simulation

0 2 4 6 8 10 12

Samples

0

200

400
[W

]
Powers in axis 1 [W]

0 2 4 6 8 10 12

Samples

0

50

100

[W
]

Powers in axis 2 [W]

0 2 4 6 8 10 12

Samples

0

50

100

[W
]

Powers in axis 3 [W]

0 2 4 6 8 10 12

Samples

0

10

20

[W
]

Powers in axis 4 [W]

0 2 4 6 8 10 12

Samples

0

2

4

[W
]

Powers in axis 5 [W]

0 2 4 6 8 10 12

Samples

0

0.2

0.4

[W
]

Powers in axis 6 [W]

Figure B.20: Used power (Blue line) and power caused by movement (orange
line) - optimal trajectory 1

65

66

Appendix C
Content of the CD

optimization

ReDySim_Symbolic

Scripts

_petr_cezner_bw.pdf

The folder with matlab optimization tool.

ReDySim algorithm scripts for generating
of the dynamic equations.
Matlab scripts for analysis of measured data.

The electronic version of bachelor work.

67

68

Appendix D
Project Specification - English Version..1. Study the general principles of modeling of the dynamic movement of
robotic manipulators for the purpose of its energy consumption optimiza-
tion...2. Focus on 6 axis robotic manipulators...3. Study the recommended literature about algorithms for robotic trajectory
optimization...4. Implement studied optimization algorithms...5. Verify the implemented algorithms using simulation.

69

70

České vysoké učení technické v Praze
Fakulta elektrotechnická

katedra řídicí techniky

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Student: Cezner Petr

Studijní program: Kybernetika a robotika
Obor: Systémy a řízení

Název tématu: Optimalizace robotických trajektorií

Pokyny pro vypracování:

1. Nastudujte principy modelování dynamiky pohybů robota s cílem minimalizovat jeho spotřebu.
2. V rámci práce se zaměřte na 6-osého robota.
3. Seznamte se v doporučené literatuře s algoritmy pro optimalizaci trajektorie robota.
4. Implementujte prozkoumané algoritmy optimalizace.
5. Ověřte implementované algoritmy za použití simulace.

Seznam odborné literatury:

[1] D. Gleeson, S. Björkenstam, R. Bohlin, J. S. Carlson and B. Lennartson, 'Optimizing robot trajectories for
automatic robot code generation,' 2015 IEEE International Conference on Automation Science and Engineering
(CASE), Gothenburg, 2015, pp. 495-500. doi: 10.1109/CoASE.2015.7294128.
[2] S. Björkenstam, D. Gleeson, R. Bohlin, J. S. Carlson and B. Lennartson, 'Energy efficient and collision free
motion of industrial robots using optimal control,' 2013 IEEE International Conference on Automation Science and
Engineering (CASE), Madison, WI, 2013, pp. 510-515. doi: 10.1109/CoASE.2013.6654025.
[3] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, 'Robotics: Modelling, Planning and Control,' London: Springer,
2009. ISBN: 1846286425.

Vedoucí: Ing. Martin Ron

Platnost zadání: do konce letního semestru 2017/2018

L.S.

prof. Ing. Michael Šebek, DrSc.
vedoucí katedry

 prof. Ing. Pavel Ripka, CSc.
děkan

V Praze dne 9. 2. 2017

	Introduction
	State of the Art
	Used method

	Theoretical basis
	Optimization
	Optimization Problem
	Solving Optimization Problem
	Nonlinear Optimization
	IPOPT Solver

	Mathematical model of a Robotic Manipulator
	Kinematics Model
	Daneavit-Hartenberg (DH) Convention
	Direct kinematic

	Dynamic Model
	Euler-Lagrange formulation vs. Newton-Euler formulation
	Newton-Euler formulation

	Studied System
	Robot Parameters

	Solving the problem
	Problem setup
	Optimization variables
	Geometrical Optimalization
	Kinematic Optimization

	Implemation of the Criterion function
	Calculation of the torques
	Calculation of the currents
	Evalution of the Criterion function

	Experiments
	Experiment in Simulated Environment
	Original Trajectory
	Optimal Trajectory
	Results from simulation

	Experiment with real manipulator
	Trajectory 1
	Trajectory 2

	Conclusion
	Future improvements

	Bibliography
	Figures from Experiments
	Trajectory 1 - Simulation

	Content of the CD
	Project Specification - English Version
	Project Specification

