
Web application for

ordering and automatic

printing of custom stickers

Peter Basár
Czech technical university in Prague
Faculty of Electrical Engineering

Department of Control Engineering

May 20, 2022

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

492320Osobní číslo:PeterJméno:BasárPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra řídicí techniky

Kybernetika a robotikaStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Webová aplikace pro objednávání a automatický tisk nálepek na míru

Název bakalářské práce anglicky:

Web application for ordering and automatic printing of custom stickers

Pokyny pro vypracování:
Cílem bakalářské práce je aplikace, která umožní uživatelům objednávat vlastní motivy nálepek v malém množství,
které budou zpracované pro automatizovanou výrobu. Východiskem bakalářské práce je rešerše stávajících
řešení a komunikace se společnostmi o problému tisku v malém počtu. Výsledkem bakalářské práce také bude
jak zpracování vstupu pro tisk, tak i vhodného vstupu pro automatizované vyřezávání z daného tisku.
Implementace webové aplikace, jak serverové tak uživatelské strany, bude umožňovat uživatelům nahrát si vlastní
obrázky, vybrat si z existujících a výrobci tyto různé uživatelské objednávky předá ve vhodném formátu.
Navrhněte způsob testování aplikace, proveďte test aplikace a výsledky testu vyhodnoťte.

Seznam doporučené literatury:
[1] Feldroy D., Feldroy A., Two scoops of django 3.x
[2] Oficiální stránka knihovny React reactjs.org
[3] Oficiální dokumentace Django docs.djangoproject.com

Jméno a pracoviště vedoucí(ho) bakalářské práce:

doc. Ing. Ivan Jelínek, CSc. kabinet výuky informatiky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 20.05.2022Datum zadání bakalářské práce: 26.01.2022

Platnost zadání bakalářské práce:
do konce letního semestru 2022/2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
prof. Ing. Michael Šebek, DrSc.

podpis vedoucí(ho) ústavu/katedry
doc. Ing. Ivan Jelínek, CSc.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgements

I would like to thank doc. Ing. Ivan Jeĺınek, CSc. for his
guidance and giving me this oportunity, Department of control
engineering for enabling me to work on this thesis and my
friends and family for supporting me during my studies.

Declaration

I declare that this work is all my own work and I have cited
all sources I have used in the bibliography.

Prague, May 20, 2022

Prohlašuji, že jsem předloženou práci vypracoval samostatně,
a že jsem uvedl veškerou použitou literaturu.

V Praze, 20. května 2022

Abstract

Automation of ordering and production systems is one of the
ways that can be used to make products more widely accessi-
ble among the customers by lowering the production cost and
prices.

This work focuses on automation in the area of custom
sticker printing. However, this work could be generalized to
other industries that deal with custom ordering with products
such as glass, wood, engraving, or clothing.

Automation is being implemented using a web applica-
tion, which takes care of the communication with customers
and provides data (images and dimensions) to production pro-
cesses such as printing and cutting.

Research of existing solutions, both local and foreign com-
panies, is introduced at the beginning of this work. Addi-
tionally, this work contains the functionality description and
design of both the frontend and backend of the application.
Application is also fully implemented, and the source code
can be found in the bibliography [20]. The backend utilizes
Python (framework Django [1]) and database PostgresSQL [4],
and the frontend uses JavaScript language (framework React
[3]). Moreover, the application is also deployed on a publicly
accessible server and was tested in automated printing. How-
ever, a small home printer was used in automated printing,
not the industry-grade printer and a cutter used in actual pro-
duction. The printer printed sticker images and their cutout
image masks beneath each other according to the order made
by the user.

In conclusion, it can be stated that the goals of the bach-
elor thesis were met. An application has been created that
will allow users to order sticker designs in small quantities
for automated production. A survey of existing solutions was
carried out (Section 2.3), and the issue of small-scale printing
was specified in communication with companies. The core
of the bachelor’s thesis is also the processing of input for
printing and cutting, the editor for uploading designs, and
handing over the design to the manufacturer in a suitable
format. Part of the bachelor’s thesis is the final testing of the
application, including the evaluation of results.

The application will be publicly accessible on ad-
dress sticker-application-frontend.herokuapp.com and
sticker-application-backend.herokuapp.com for at least
one year. For possible changes or problems, refer to the source
code[20]

Abstrakt

Automatizace objednávaćıch a výrobńıch proces̊u je jeden ze
zp̊usobu jakým můžeme rozš́ı̌rit dostupnost produkt̊u mezi
zákazńıky pomoćı snižováńı náklad̊u a cen.

Táto práce se zabývá automatizaćı v problematice tǐstěńı
nálepek na zakázku, ale je j́ı možné zobecnit i na daľśı odvětv́ı,
které se této problematice objednávańı na zakázku bĺıž́ı, jako
např́ıklad objednávańı skla, dřeva, grav́ırováńı nebo oblečeńı.

Automatizace je doćılená využit́ım webové aplikace, která
se stará o komunikaci se zákazńıky jako i o vhodné předáváńı
dat (obrázky a rozměry) výrobńım proces̊um jako jsou tǐstěńı
a řezáńı.

Součást́ı práce je pr̊uzkum existuj́ıćıch řešeńı a společnost́ı
jak lokálńıch, tak i zahraničńıch. Dále také obsahuje popis
funkcionality, návrh uživatelské i serverové strany aplikace.
Kromě návrhu je taky plně implementovaná a zdrojový kód
se nacháźı ve výčtu zdroj̊u práce[20]. Serverová část využ́ıvá
jazyku Python (framework Django [1]) a databázi Post-
gresSQL [4], uživatelská strana využ́ıvá jazyku JavaScript
(framework React [3]). Na závěr je aplikace taky spuštěná na
webu a testovaná v automatickém provozu, kde po vytvořeńı
objednávky docháźı k automatickému tǐstěńı. Pro tǐstěńı nej-
sou využitý skutečný tiskárny použ́ıvány na nálepky ani řezaćı
stroje ale využ́ıvá se pouze domáćı tiskárny, která vytiskne
vizuálńı návrh nálepky a taky masku vyřezáńı v požadované
velikosti.

Ačkoli je aplikace na webu tak je veřejně dostupná
a bude k dispozici nejméně rok po odevzdáńı této
práce. Uživatelská a serverová část aplikace je dostupná
na adrese sticker-application-frontend.herokuapp.com

a sticker-application-backend.herokuapp.com. Při
problémech s připojeńım doporučuji nahlédnout do zdrojového
kódu aplikace[20], který bude potencionálně aktualizován.

Na závěr může být řečeno, že ćıle bakalářské práce byly
splněny. Aplikace, která umožńı uživatel̊um objednávat
nálepky v malém množstv́ı s automatickým tǐstěńım. Byl
proveden pr̊uzkum existuj́ıćıch řešeńı (Section 2.3), přičemž
bylo dotazováno na problematiku tisku malého počtu nálepek
na objednávku. Mezi jádro bakalářské práce patř́ı zpracováńı
vstupu na tǐstěńı a ořezáváńı, editor pro nahráváńı obrázk̊u,
a předáváńı objednávky výrobci ve vhodném formátu. Část
bakalářské práce tvoř́ı také finálńı testováńı aplikace a
zhodnoceńı výsledk̊u.

Kličová slova: bakalařská práce, webová aplikace, autom-

sticker-application-frontend.herokuapp.com
sticker-application-backend.herokuapp.com
sticker-application-frontend.herokuapp.com
sticker-application-backend.herokuapp.com

Keywords: bachelor’s thesis, web application, automation,
automated printing, custom orders, stickers, backend, fron-
tend, Python, Django framework, Django REST framework,
API, React framework, JavaScript, database, PostgresSQL,
JWT, filtration, editor

atizace, automatický tisk, objednáváńı na mı́ru, nálepky,
serverová strana, uživatelská strana, Python, Django fram-
work, Django REST framework, API, React framework,
JavaScript, databáze, PostgresSQL, JWT, filtrace, editor

Překlad názvu: Webová aplikace pro objednávańı a auto-
matický tisk nálepek na zakázku

Contents

1 Chapter: Introduction 1
1.1 motivation . 1
1.2 results . 1

2 Chapter: Existing solutions 1
2.1 good examples . 1

2.1.1 Redbubble [8] . 1
2.1.2 Diginate [9] . 3
2.1.3 Stickeryou [10] . 5

2.2 worse examples . 6
2.3 communication with companies . 8

2.3.1 summary . 8
2.3.2 possible solutions . 8

2.4 conclusion . 8

3 Chapter: Application functionality 9

4 Chapter: Development procedure 10

5 Chapter: Frontend general design and implementation 11
5.1 technologies . 11
5.2 code structure . 11

5.2.1 routing and components . 11
5.2.2 visualized . 13

5.3 functionality . 23
5.3.1 local storage . 23
5.3.2 navigation and authentication . 23

5.3.2.1 desktop and mobile navigation . 23
5.3.2.2 number badges for cart and favorites . 23
5.3.2.3 JWT authentication . 24
5.3.2.4 logging in . 24
5.3.2.5 logging out . 24
5.3.2.6 registering . 24
5.3.2.7 changing password . 24

5.3.3 color managment . 24
5.3.4 handling responsivness . 24

5.3.4.1 grid system . 24
5.3.5 filtering system . 25

5.3.5.1 tags and names . 25
5.3.5.2 sticker dimensions . 25

5.3.6 product page . 25
5.3.6.1 sticker presented on familiar item . 26
5.3.6.2 choosing material and style . 26
5.3.6.3 amount picker . 26
5.3.6.4 price calculation . 27

5.3.7 handling favorite stickers . 27
5.3.7.1 listing favorite stickers . 27

5.3.8 handling cart stickers . 28
5.3.8.1 listing stickers in cart . 28

5.3.9 making an order . 29
5.3.10 editor . 29

5.3.10.1 tool managment . 30
5.3.10.2 layering system . 30

6 Chapter: Backend general design and implementation 31
6.1 technologies . 31
6.2 code structure . 31

6.2.1 API request handling . 33
6.3 database . 35

6.3.1 General database . 35
6.3.2 Gallery database . 35
6.3.3 Cart and favorites database . 36
6.3.4 Order database . 36
6.3.5 Editor database . 36
6.3.6 Visualization of databases . 37

6.4 functionality . 44
6.4.1 authentication . 44

6.4.1.1 LoginSerializer . 44
6.4.1.2 RegisterSerializer . 45

6.4.2 media storage . 45
6.4.3 creating stickers . 45
6.4.4 filtering system . 46
6.4.5 price calculation . 46
6.4.6 product page . 46
6.4.7 favorites . 46
6.4.8 cart . 46
6.4.9 ordering . 47
6.4.10 editor . 47

7 Chapter: Testing 47

8 Chapter: Running the application 48

9 Chapter: Future works 50

10 Chapter: Conclusion 50

1 Chapter: Introduction

1.1 motivation

Software used for automating communication with customers
can be a powerful tool for making it easier for customers to
solve their requests quickly and for the company to provide a
particular service promptly.

The research, design, implementation, and testing of such
an application is the purpose of this thesis.

Users can upload their design files or order and slightly
modify existing ones from the gallery with this application.
Customization is enhanced by providing users with a web
editor for uploading and editing their designs.

Additionally, this application’s approach can be used
to automate other services as well. Services that require
visual customization with user-provided designs can utilize
the entirety of this application. Services that are not highly
customizable can mainly use the technique of processing
customer orders.

Examples of such services can include various clothing cus-
tomization applications (shoes, t-shirts, headwear), sporting
equipment (snowboard, skateboard, skiing equipment), editing
custom furniture dimensions and or shapes, and many more.

1.2 results

The results of this thesis are a walkthrough of the entire design
process of the frontend and the backend of the application, im-
plementation of both frontend and backend as well as testing
the functionality of the application.

The design is supported by the research of existing solu-
tions and discussions about those solutions.

2 Chapter: Existing solutions

Research has been done in December 2021 and existing solu-
tions may have changed since that period.

2.1 good examples

2.1.1 Redbubble [8]

great filtering system, lots of options, amazing presentation
Among the best companies that sell stickers with vast de-

signs is Redbubble.
With headquarters in Australia, this company offers a vast

ecosystem where people can, among other things, order stick-
ers in 3 different sizes from the gallery with hundreds of thou-
sands of designs.

A Filtering

For customers not to get lost in this extensive gallery,
Redbubble offers an exemplary filtering system, and from my
observation, it works as follows.

After the visitor reaches the product listing page, he will
be offered different keywords which are used to describe stick-
ers Figure 1.

Figure 1: Initial filtering options

Figure 2: Filtering options after selecting keyword ”Sports”

Figure 3: Filtering options after selecting ”Hockey”

We can observe that to the right side of keywords in Fig-
ures 1, 2 and 3 there is an arrow with which a user can access
many more keywords. Categories are often similar, but they
also seem a bit random, meaning that they are probably not
part of a hand-crafted structure but rather it is a listing of
the most common keywords which are related to the one that

1

the user is currently browsing and that after selecting the new
keyword, the previous selections are forgotten. A bit of ran-
domness and unrelatedness can be seen in Figure 4 which is
a result of selecting keywords in order ”Sports”, ”Hockey”,
”Sticks” and that about half of the filtered stickers aren’t as-
sociated with the first two categories, but only the last one.

Figure 4: Filtration options after selecting categories in
order: ”Sports” - ”Hockey” - ”Sticks”

Additionally, filtering also changes URL suffix by
adding ”/hocker+sticker” resulting in URL https://www.

redbubble.com/shop/hockey+stickers. By adding ”stick-
ers” in the suffix, the site also filters out many of the products
besides stickers it offers.

B Product page

After clicking on the sticker, we are redirected to its page.
There, the presentational images are trying to inform the cus-
tomer about the size of the chosen sticker. There are a total of
4 sizes per sticker (Figure 5) and 3 items on which the sticker
is being placed to present its size: water bottle, laptop, and
bedside table (Figure 6). Additionally, there are three mate-
rial options to choose from: matte, glossy, and transparent.
Each of these items is also appropriately presented Figure 7.

Figure 5: Sticker size options

Figure 6: Size presentation on familiar items

Figure 7: Presentation of chosen materials, from the left side:
matte, glossy, and transparent

2

https://www.redbubble.com/shop/hockey+stickers
https://www.redbubble.com/shop/hockey+stickers

By having this presentation, visitors are being helped with
imagining the size of the sticker they might order. One of the
disadvantages, however, can be that a customer is limited to
only four size options.

After a quick inspection of the site, it can be observed
that the images which are representing the size are unique for
each of the chosen sizes and materials. Those images are most
likely static images. By having static images for size represen-
tation, they are limiting themselves for adding features such
as giving users options to pick the size they want, because if
they were to give users 100 size options, the space required
to store all of these images would be vast and having server-
side generated images on request is also not computationally
viable.
One way that this could be solved would be to have the fron-
tend pair those images together by simply positioning them on
top of each other, or more comfortably using one of the fron-
tend packages to combine them into one image, for example,
”merge-images” Node.js package [7].

Different materials also have their reflective properties
(Figure 7), and after closer inspection, for one sticker, the
site needs 25 images of surprising size 1.84 MB 1, surprising
because I was expecting even bigger space needed.

The site also offers a lower price per sticker (Figure 8),
unfortunately only after ordering more of the same type. The
price per one small-sized sticker is about 3.21¿, which is rel-
atively expensive.
Additional features that the site offers are user reviews, a small
description of the chosen material, slidable sticker listing by
the same creator, another slidable sticker listing with similar
designs, and a list of all tags used by the sticker (Figure 9).

Figure 8: Information about the lower price after buying
more stickers of the same type

1Checked by downloading the source images for one material and one
size and then multiplying by 12: sizes*mateirals

Figure 9: All tags/keywords used by the chosen sticker

2.1.2 Diginate [9]

great filtering system, lots of options, amazing presentation,
absence of existing designs

Another good example is the website Diginate, which re-
sides in England and offers only printing of your uploaded
designs.

A Materials

Diginate offers vinyl, metallic, and windows or cling
sticker types (Figure 10). Each of these options offers dif-
ferent materials.
For vinyl: gloss, matt, clear, textured, and wall.
For metallic: silver, gold, brushed aluminum, brushed gold,
sparkly, holographic.
For cling stickers: gloss, clear, gloss self-cling, clear self-cling.
Visitors can choose from 15 different types of stickers and are
offered quality presentational images and gradual options to
not get lost in types of stickers.

Figure 10: Different sticker types offers from Diginate

B Editor

If users want to upload their stickers, they are recom-
mended to use the existing editor2 which they can reach within

2in option ’d’ in Figure 11 over the ”Design Builder” option, there are
the biggest amount of checkmarks

3

a few clicks: choosing sticker type, choosing material, the
shape of the sticker, sticker finalization3, setting sticker dimen-
sions and then clicking on the ”Design builder” (Figure 11).

Figure 11: Nested options a users has to go through in order
to get to the editor

After choosing the golden material, the background
of the editors is presented as golden. After uploading a
transparent sticker, the golden background is visible through
the transparent part of the sticker.
The editor has an option to create a cutout border auto-
matically4. I am not sure as to what type of algorithm
they are using for generating those cutout lines, but after

3whether users wants stickers on a sheet of paper or have them cut
4only if the user chose the editor with custom cut-out shape

observing how this algorithm behaves, it may be that each of
the non-filled spaces in the sticker is used as a starting point
for the cutout-line generator and is expanded to the nearest
sticker border (Figure 12).
Users can then choose which of these cutout lines they want
to use and how far away from the sticker they want to have
the line (Figure 13).
Unfortunately, users cannot create these cutout lines individ-
ually.
After cutting out the lines and saving the motive5, users are
transferred to the presentational site where they can slightly
rotate the sticker with their cursor and change the reflective
properties, which is great complementary detail and gives the
users the feeling of familiarity as they can somewhat observe
the sticker in 3D (Figure 14).

The biggest downside of this editor is, however, that it is
very slow. After editing the cutout lines of the sticker, it takes
roughly 3 seconds to see any difference and the experience is
very frustrating. If this wasn’t the case, this editor would be
very close to being perfect.

Figure 12: Automatically generated cutout lines offered to
the user

5user has to register

4

Figure 13: Options user has for editing the generated cutout
lines

Figure 14: Presentation of the sticker after applying cutout
lines and continuing to the next stage of order fulfillment.
Presentation is interactive and slightly rotates with the
mouse movement, which also changes its reflectiveness

2.1.3 Stickeryou [10]

speed and simplicity of the editor
With Stickeryou, customers can shop for multiple products,

such as magnets, t-shirts, patches, and stickers.

A Editor

Stickeryou doesn’t provide ordering of existing motives.
However, they are utilizing a very simple form of an editor,
which may seem limiting and simplistic, but it is the fastest
one and offers one of the best user experiences.

The uploaded image is fitted into one of the chosen cutout
motives, or a border is created evenly around a sticker after
using the ”Image Die-Cut” option, which takes into account
the transparency of the image Figure 15. Additional editing
options include also resizing the image.

One small problem, however, is that when there is text
in the uploaded image. The ”Image Die-Cut” option creates
unwanted borders, and there is no option for a user to correct
this behavior Figure 16. However, a more experienced user
can create a white background around the text in his local
editor and then upload the image.

Additionally, they put heavy emphasis on printing in a
big volume as the price for a small sticker (3cm x 3cm) is
roughly 9¿.

Figure 15: Sticker cut-out shape selection options

5

Figure 16: Undesirable cut-out border for transparent
stickers with text

2.2 worse examples

Companies that aren’t presented in a positive light are
anonymized with an assigned number in Figure 19. At least
one company mentioned in this section improved their website
during the time this work was being finalized, and specifically
naming the company is not essential for this work.

When it comes to local companies, I’ve found only one
among the other 19, which offers users an editor for uploading
sticker design, and that is Expressprint.cz. This editor, how-
ever, is not fully-featured. After the user uploads the image
into the designated rectangular area, he can only rotate and
resize the sticker. The type of cutout has to be specified in
the text area with the order.

The prices which all the local companies offer are high
enough that they would discourage any customer that wants
to print a few stickers. Either these prices aren’t publicly
available, or one needs to make an order of 10, 50, or 100
stickers with the same motive, or the prices go upwards
of 12¿ per sticker. But as expected, these prices come to
reasonable levels but only after a large order has been made.
Moreover, vast majority of local companies also utilizes
a rather old-fashioned web-design for example Figures 17
and 18, not so enchanting presentational images Figure 18, or
a very lenthy way of ordering sticker using the text form6.

Additional data about more companies can be viewed in
the following table Figure 19.

6this applies to most of the local companies

Figure 17: Web-design of Company #22

Figure 18: Web-design of Company #21

6

Figure 19: Table with all the gathered research data about sticker printing companies, created before 10.12.2021

7

2.3 communication with companies

19 companies have been contacted, and 2 answered some of
the questions outlined in the email. Here are the takeaways
from these messages.

The first company stated that they started the company
with a similar idea, and that is allowing small volume orders
for ordinary people. However, they weren’t very successful,
and the main problems were not just in communication and
ordering system but also with work procedures.

The second company is interested in the automatic solu-
tion, and they are considering implementing a similar applica-
tion. They explain that, on average, 45 minutes is spent per
customer, and that includes communication, design prepara-
tion, administration, printing, cutting, packaging, and ship-
ping. When it comes to low volume orders from ordinary peo-
ple, the materials often don’t have the best design files, their
images often don’t have sufficient resolution, and text is very
small as the printer itself has its own resolution, and in order
for a text to be visible it has to has a certain size7 and also the
cutting plotter can be inaccurate8 and that has to be taken
into account when designing.

They shared that the most expensive and the slowest parts
of the production were communication with customers, adver-
tisement, and separation of complex cutouts.

At last, they mentioned that they have printers with a
width of 16 meters, often print during the night, and the mis-
use of copyright is the responsibility of the customer.

2.3.1 summary

It can be noted that both companies stated that the com-
munication with customers is very expensive and essential
problem to solve in order to provide small volume orders
effectively, especially to ordinary people who often don’t have
the best materials and aren’t familiarized with the nuances of
sticker printing.

After solving the problem with communication, the pro-
duction also brings its own set of challenges. Work procedures
have to be effectively designed or reworked with automation
in mind, as applying such solutions to existing procedures can
be problematic.

7Given example for text minimal size was 2mm
8Given example of inaccuracy was 0.5mm

2.3.2 possible solutions

Following are the possible solutions for some of the problems
highlighed by the companies.

� Communication with customers

When it comes to custom orders, automating the com-
munication with customers is essential in order to be
able to support a large number of small volume orders.
A web application with an editor can be a great tool to
handle the requirements of the customers, paired with a
sensibly designed database for managing these orders.

� Insufficient resolution

After a design file with the insufficient resolution is up-
loaded to the editor, it can be inspected by the user as
editor canvas resolution can be automatically set and
thus reflect the resolution of the printer. As the editor
reflects the printer resolution, problems with small text
should be easily observable. Additionally, users may be
prompted with a warning that the file is too small.

� inaccuracy of the cutting plotter

The editor offers different cutouts for users to choose
from, and each cutout can have its own ’safe’ area and
area, which can be inaccurately cut. Additionally, after
designing the file, users could be prompted, for example,
with four automatically generated images that show the
possible errors and ask them if they are ok with such
misalignment or want to edit their designs to solve these
errors.

� Materials

As having an automatic production work procedure that
supports different materials per printer can be a difficult
problem, it could be better to offer only a limited amount
of materials or a singular material to choose from.

2.4 conclusion

If there is a need for an e-shop for stickers, one should
be open to being inspired by Redbubble. Their filtration
system, presentational images for sizes and different materials,
reviews, and the ecosystem for ordinary people to share their
designs led to the creation of a database of millions9 of designs.

9source: redbubble.com

8

On the other hand, if one wants to make an automatic
ordering tool for stickers, Stickeryou shouldn’t be overlooked.
Stickeryou offers a great and fast editor experience with few
but sufficient and simple tools for its users to upload and edit
their order, including the option for a ”die-cut” border. More-
over, Diginate also offers a high-quality editor, however, the
speed with which a user can edit their designs is slow and
unpleasant. Other than that, Diginate offers the best user ex-
perience when it comes to the number of options of available
materials and the way of presenting finished orders.

3 Chapter: Application functionality

The core of the application functionality revolves around of-
fering the user high customization options, in this case, for
sticker orders.

At the same time, this application offers companies tools
for helping them to automate the production processes needed
to be able to give users such options for relatively acceptable
prices.

The following list describes these functions for the users as
well as the company.

A Functionality offered to users

� Manage account

– Login

– Register

– Change password (not implemented but desired)

� Browse stickers

– Filter existing stickers by name and tags

– Browse through similar designs of the sticker on the
sticker’s page

� Buy existing sticker designs

– Edit sizes of existing stickers

– Compare the size with familiar object on sticker page

– Add (remove) existing stickers to (from) cart

– Being able to add stickers to cart from the gallery
page

– Add (remove) existing stickers to (from) favorites

– Finalize order

� Order uploaded stickers

– Upload custom image file

– Picking predefined cutout outlines

– Defining canvas dimensions in millimeters

– Picking a material

– Picking a material-specific style

– Moving with the uploaded image

– Painting on the editor (and removing the paint)

– Picking the color of the paint

– Erasing contents from uploaded image (and re-
erasing)

9

– Scaling the image

– Quantity of canvas stickers to be ordered

– Add canvas to the cart

B Functionality offered to company

� Automation

– Paid order with design and cutout files ready for
printing and cutting in the database

– Automated stacking of these orders on a page

– Offering custom sticker printing without the need for
communication through the editor

– Offering resize options for existing designs

� Web database editor

– Managing prices for different materials

– Easily adding new (removing) available (existing)
materials through database

– Easily adding new (removing) available (existing)
cutout shapes through the database

� Existing stickers

– Managing different materials and style options for a
particular sticker

– Being able to present materials and style options of
1 sticker on 1 page

� Database editor

– Easily editing, creating or removing database items
with user friendly Django admin application

4 Chapter: Development procedure

This application has been developed in three major parts: re-
search, planning, and implementation.

A Research

� Searching for existing solutions

� Comparing foreign and local companies in different as-
pects

� Summarizing the best features and planning on top of
them

� Reaching out to local companies

B Planning

� Summarizing goals of the application, its functions and
strategy in Miro [11]

� Choosing suitable technologies

� Creating frontend design for application pages in Figma
[13]

C Implementation

� Creating Django application with PostgresSQL [4]
database

� Learning React [3] and creating a React application

� Piecwise implementing parts of the application (frontend
+ backend API) in a sensible order

� Deploying and testing the application on Heroku [5]

10

5 Chapter: Frontend general design
and implementation

5.1 technologies

Following technologies and services were used in the frontend
development:

� React JavaScript library [3]

– Mui [14] user interface React library with existing
component

– React Axios [15] library for API request handling

– React Router [16] library for routing and structur-
ing application pages

� Figma [13] design application for frontend design layout
for both desktop and mobile devices

� Adobe Photoshop [17] for editing sticker and promo im-
ages

5.2 code structure

React codebase is located in React application’s src folder. In
React, React class and functional components10 are created
and nested into each other. This structure and nesting can be
represented with a tree graph Figure 20.

Class components in this application are closer to the root
and contain functional definitions and variables used by the
functional components that it imports. Functional compo-
nents, in this case, suffice as importable standalone user in-
terface entities. The functionality of these entities is mostly
dependable on the variables and functions which are passed as
an argument from the component that is importing it.

An example of such a relation can be a Class component
representing sticker listing, this component contains variables
such as a list of all the stickers it has to display, and in or-
der to display, it imports function component StickerList re-
sponsible for styling the list and gives it stickers as an ar-
gument. Additionally, StickerList functional component also
import functional component Sticker responsible for styling
individual stickers which are displayed.

At the root of this tree is Index.js file, which contains React
Index Class with routing URL paths to each separate page

10reactjs.org/docs/components-and-props.html

of the application, variable and function definitions that are
used in multiple pages, which are passed as parameters. One
example of such a variable is the variable for storing items a
user has in his cart as well as a function that asks the server for
an updated version of this cart. Cart stickers variable is being
used in every Navigation Class instance and is thus passed as
an argument.

5.2.1 routing and components

URL routing is handled by React Router library [16] and is
defined in the React root’s Index.js file.

Here is a complete list of all URL paths that the cur-
rent site uses:

� Path: ”/”, Page function: home page with sticker
filtering and listing

� Path: ”/sticker/:sticker id”, Page function: separate
page for a sticker

� Path: ”/favorites”, Page function: listing of stickers
user saved as favorites

� Path: ”/cart”, Page function: listing of stickers that
user has saved in cart

� Path: ”/cart/continue”, Page function: page for fi-
nalizing orders

11

https://reactjs.org/docs/components-and-props.html

Figure 20: Visualization of React components nesting

12

5.2.2 visualized

Following images are screenshots of completed and deployed application’s user interface.

(a) Homepage miniaturized (b) Mobile navigation menu

Figure 21: Homepage and mobile menu

13

(a) Login popup (b) Register popup

(c) Resetting password popup

Figure 22: Popups for loggin in, registering and resetting password

14

Figure 23: Promo part of the homepage

Figure 24: Gallery filter on the homepage

15

Figure 25: Stickers gallery on the homepage

16

Figure 26: Sticker item page

17

Figure 27: Page with user’s favorites

18

Figure 28: Page with user’s cart items

19

Figure 29: Page for creating order

20

Figure 30: Page with user’s orders information

21

Figure 31: Editor interface

22

5.3 functionality

This application contains many functionalities on separate and
often the same pages. In order to present them in an easy-to-
understand way, they will be firstly individually described and
then mapped in a graph under a page that uses it.

5.3.1 local storage

Local storage is being used so that variables that are widely
used within the application are easily accessible. Among these
variables are authentication tokens, username, and a variable
representing if the user is temporary or authenticated (chang-
ing the variable doesn’t authenticate the user, its purpose is
visual).

Variable names are defined in variable src/ GlobalCon-
stants.js / LOCAL STORAGE.

5.3.2 navigation and authentication

Through navigation menu, the user is being offered different
options to traverse through the different pages of the applica-
tion or execute specific on-click functions.

These are current clicable options for user in the navigation
menu:

� ”browse stickers” button that redirects users to home
page

� ”create your own stickers” button that redirects
users to the editor

� Clickable logo that redirects users to home page

� ”favorites” button that redirects users to page with
stickers saved as favorites

� ”cart” button that redirect user to a page with cart
items and order finalization

� ”login” button that opens a floating dialog box for log-
ging in

� ”logout” button that logs out a logged in user

� ”register” button that opens a floating dialog box for
registering

� clickable hanburger icon which opens up mobile menu
if user is accessing this application on mobile

5.3.2.1 desktop and mobile navigation The naviga-
tion menu has both desktop and mobile versions. Both are
React components, and both are imported. Depending on the
width of the screen, if a screen is very narrow, the mobile ver-
sion will be active, while the desktop version will disable all
of its clickable buttons except the logo and hamburger icon
(which are now visible and active). When in desktop mode
hamburger icon and mobile navigation is hidden, and click-
able desktop menu buttons are active.

images/kapitola_5/functionality/desktop_moblie_navigatioon.png

Figure 32: Desktop (top) and mobile navigation (bottom
two) menu

5.3.2.2 number badges for cart and favorites After a
user adds a sticker to either favorites or a cart, the application
updates its lists for cart and favorite stickers with an API call
and also updates numbering in the navigation menu that sym-
bolizes the total count of items saved to favorites and to cart.
Badges have been implemented with Mui Badge11 component.

11mui.com/material-ui/react-badge/

23

https://mui.com/material-ui/react-badge/

Figure 33: Number badges for favorite and cart item count

5.3.2.3 JWT authentication Application authentica-
tion utilizes JWT technology. On API calls that require users
to be authenticated (user’s data-related calls such as manag-
ing favorites, cart, orders, ...), it passes the access token to a
header as a Bearer token argument in format Authorization:
”Bearer <access token>”.

In order to utilize JWT authentication and at the same
time offer services such as managing favorites and stickers in
the cart even to users who did not register and log in on a visit,
the application searches local storage for access and refresh
tokens and verifies them Figure 51. If no valid access token is
available, frontend requests for a new temporary user (which is
created in the database) and receives appropriate tokens. At
the same time, local storage variable user/auth/is temp user
is being set to 1.

5.3.2.4 logging in After being prompted with the login
dialog window, the user can enter login information, either
username or email and password specified during registration,
and click on the confirmation button. After clicking on a but-
ton, React uses variables that ”mirrored”12 form text inputs
and makes login API call (see 6.2.1 for API definitions).

12React Class component PopupFormBuilder, responsible for dialog
windows for login, registering, and changing password, contains variables
which are copying contents of form text inputs on any change in those
inputs

On successful response, the user receives access and refresh
tokens. These tokens are then saved in local storage, and a
variable representing if the current user is temporary or not13

is set to 0.

5.3.2.5 logging out Logging out is available only to
logged-in users and can be accomplished by pressing the lo-
gout button in the navigation menu.

After user presses the button, all the tokens from lo-
cal storage are deleted, local storage variable (Section 5.3.1)
user/auth/is temp user is set to 1, and web application is re-
freshed (triggering on visit request for temporary tokens Fig-
ure 51).

5.3.2.6 registering After being prompted with the regis-
tration dialog box, the user has to enter the username, email,
and password.

After confirming the registration, the appropriate API call
is being made (see 6.2.1 for API definitions).

On successful response, the registration dialog box is
turned off, the login dialog box turned on, and the user can
now log in.

5.3.2.7 changing password One can access the dialog
box for changing the password from the login dialog box, which
contains a ”forgot password” button. This button closes the
login dialog box and opens up the change password dialog box.

The functionality of changing the password is not imple-
mented due to the prioritization of other more essential fea-
tures.

5.3.3 color managment

The vast majority of colors displayed in the application are
being imported from the GlobalConstants.js file located in the
React’s root src directory.

Colors are defined in COLORS objects that map color
names to color hexadecimal representation.

5.3.4 handling responsivness

5.3.4.1 grid system Mui grid system14 is being used to
define the layout of the user interface.

13All users who visit the application are temporary and have temporary
access tokens

14mui.com/material-ui/react-grid/

24

https://mui.com/material-ui/react-grid/

Dynamic behavior definition is being done by specifying
the widths of a Grid component parameters (xs, sm, md, lg,
xl) as well as other parameters specifying its behavior and
alignment. Additionally, the user has to work with React syn-
tax and CSS (cascading style sheets) to match the desired
behavior.

5.3.5 filtering system

The filtering system is available on the home page over the
sticker listing and offers filtering by custom name, name of
particular sticker, tags, and combinations of these. By default,
there are no filtration parameters set.

5.3.5.1 tags and names The functionality of this filtra-
tion system works by providing the query parameters in the
get request URL. These parameters are obtained from Mui’s
Autocomplete15 component, which, if provided with options,
offers a user an interface for choosing from these options and
searching through these options with text input.

However, Autocomplete component requires that we give
it options that it can work with. And so it has to repeat-
edly update its options with an appropriate API call (see Sec-
tion 6.2.1).

Updating options is being done specifically
with function src/ Components/ App StickerListing/
App StickerListingFilter.js/ initialSearchBoxFetch(value).
This function takes text input as an argument, and if such
text contains less than three characters, no filtration is being
done in the backend, and the backend returns the most
popular tags. If the text contains more than three characters,
the backend returns tags, sticker names, and input text as
one of the options, as well as the count of how many stickers
contains such a string of characters.

This update is being called on page visit, on Autocomplete
text input change.

15mui.com/material-ui/react-autocomplete/

Figure 34: Three examples of the same filter in different
states

5.3.5.2 sticker dimensions In order to give users the
ability to add stickers to a cart from the listing and customize
its size, there has to be some sort of slider or input field, and
that’s where the slider for picking the longest sticker dimension
comes in.

This slider gives users the ability to pick the sticker size
they are looking for right from the menu. Along with inform-
ing the server which size we want, we also recalculate the prices
of the presented stickers.

Additionally, coupled with names and tag filtering, this
”longest sticker dimension” is being sent to the server request-
ing stickers to present.

5.3.6 product page

The main purpose of the product page is to present the selected
sticker, its materials, and price and give users the option to
save and buy the sticker as well as pick the amount.

25

https://mui.com/material-ui/react-autocomplete/

5.3.6.1 sticker presented on familiar item Presenting
is being done on a familiar item, in this case, a laptop, with a
real scale.

In order to be able to know how many pixels such sticker
should have, we have to know the width and height of the
presented laptop image and the real-life scale of such image
(how many millimeters is one pixel).

To further improve presentation, multiple familiar items
should be used on different sticker sizes.

Figure 35: Sticker presentational image for 2 different sizes

5.3.6.2 choosing material and style Each sticker has
some id that is specified in the URL of the product page. In
order to present the sticker, its materials, and styles, we have
to make an appropriate API call by specifying the sticker id
as an argument.

In the received data, besides general sticker information,
there are nested JavaScript objects such that sticker material
options contain multiple sticker style options. This structure
makes it easy to implement material and style selection.

Basically, at the initial visit, we initialize and keep track of
the indexes for material and style options (these are lists in the
received object). And after the user presses other generated
material of style, these indexes are updated. Consequently,
after ordering or adding the sticker to favorites, we use these
indexes to find the style id, and only this id is being used to
uniquely identify sticker, material, and style options. This is
possible as a result of the database structure.

Figure 36: Presented sticker change after choosing different
material

5.3.6.3 amount picker Implemented with Mui’s
TextField component that allows single incrementing
changes, and integers above value 1.

26

Figure 37: Filed for choosing sticker amount on product page

5.3.6.4 price calculation Price calculation is a very
simple linear function that takes in the price parameter
of an individual sticker style specified in the database as
price per square mm and multiplied by the current sticker’s
longest side.

Such price calculation is defined in function src/ Compo-
nents/ App StickerListing/ App StickerListingFilter.js/ recal-
culateStickerPrices(longestSidePick) and /src/ Components/
App StickerPage/ App StickerPage.js / updateStickerPrice().

5.3.7 handling favorite stickers

All the data about which stickers are saved as favorites is saved
in the React root Index class and passed down to other com-
ponents as well as functions defining the addition and removal
of such stickers from the list.

All that is needed to add (remove) the sticker to (from) fa-
vorites is a parameter specifying sticker style option id (unique
sticker design identifier) and making an appropriate API call
(see Section 6.2.1). After these actions, the frontend also au-
tomatically requests an update of favorited stickers list with
an API call.

This function is available in sticker listing as well as prod-
uct page with visual indications of which sticker is already
added to favorites.

Figure 38: Examples of buttons that manage favorites

5.3.7.1 listing favorite stickers Upon visiting URL /fa-
vorites, the user is presented with all the stickers that are
currently his favorites and has options to visit those stickers
by clicking on them or removing them from the list.

All the data necessary to list these stickers are being ob-
tained by an API call to the appropriate url (see Section 6.2.1).

27

Figure 39: Cropped part of the favorites page for desktop
and mobile device

5.3.8 handling cart stickers

Similar to Section 5.3.7 that describes managing of favorite
stickers, the cart is almost exactly the same structure but with
a different name and just a slightly edited database structure
(see Figure 47).

Same as with favorites, appropriate API calls have to be
made that uniquely specify the sticker (sticker style option id).
Additionally, information regarding quantity and size has to
be provided.

Users can add (remove) stickers to (from) their carts on
the listing and product page.

Figure 40: Examples of buttons used for adding stikers to
cart

5.3.8.1 listing stickers in cart Similarly to ?? 5.3.7.1, in
order to list stickers, we have to ask the server for the specific
user’s information.

This list can be visited on a specific URL /cart. Moreover,
information about dimensions, price of the individual stickers
as well as the whole value of the cart is being presented.

Whilst in the cart, users can remove their cart items.

28

Figure 41: Cropped part of the cart page for desktop and
mobile device

5.3.9 making an order

After the user is satisfied with what is saved in the cart,
and the button to continue with the order in the cart page
is pressed, he is redirected to the page for order finalization
on URL /cart/continue.

On this page, the user has to specify basic contact infor-
mation and finalize the order. On successful order finalization,

a new order is created in the database with all the items cur-
rently saved in the cart, and the user’s cart is emptied.

Figure 42: Order finalization page for mobile device

5.3.10 editor

Editor, in this case, is an interactive 2D space on a computer
screen that offers different useful tools for visual editing. After
the user of the editor is finished, the editor data is sent to and
processed by the application backend.

The architecture of the editor is heavily employing a layer-
ing system with canvas HTML elements[21]. Implementation
of the editor can be found in the React codebase [20].

The current implementation of the editor is solely designed
for desktop devices and offers this functionality:

� Upload custom image file

� Picking predefined cutout outlines

� Defining canvas dimensions in millimeters

29

� Picking a material

� Picking a material-specific style

� Moving with the uploaded image

� Painting on the editor (and removing the paint)

� Picking the color of the paint

� Erasing contents from uploaded image (and re-erasing)

� Scaling the image

� Quantity of canvas stickers to be ordered

� Add canvas to the cart

5.3.10.1 tool managment The editor contains the fol-
lowing tools:

� Move tool

� Paint tool

� De-paint tool (removing paint)

� Eraser tool

� De-eraser tool (restoring erased area)

Each one of the tools is represented by an index 0-4. Addi-
tionally, each tool also has tool states. These states are mostly
describing the current state of the tool, meaning that if the
user presses the button, the currently selected tool is in active
mode (on mouse move, it does its predefined function such as
move image or paint) or inactive mode (the tool doesn’t do
anything). These tools utilize mouse event listeners.

Figure 43: editor tools and their width adjustment slider,
plus and minus indicate current tool option (either adding to

a layer or removing from layer)

5.3.10.2 layering system The paint tool, and eraser
tool each have their own hidden (not visible on screen) canvas
layers implemented using HTML canvas element [21]. The
main difference between the two is that the eraser tool is
scaling and moving with the image (if we move the image, we
move the eraser tool layer). Such relationship can be observed
on Figure 44.

Only one layer is visible, and that is presenting layer.
Presenting layer is regularly rerendered after the user makes
an action that changes the visual appearance of this layer.
The rendering process is a series of following actions. Use an
eraser mask to remove parts of the uploaded image, place the
image on the presenting layer, and place the paint layer on
presenting layer.

A cutout image is used to establish the initial dimensions of
the whole canvas. Changing the cutout image automatically
changes canvas width and height. The cutout image is not
being used in rendering but is just being placed on top of the
presenting layer.

30

Figure 44: Layering system illustration

6 Chapter: Backend general design
and implementation

6.1 technologies

Following technologies and services were used in the backend
development:

� Web framework Django[1] for server-side web develop-
ment.

� PostgresSQL[4] database system for storing the Django
model instances.

� AWS S3 storage solution[6] for storing images of stickers
and other image media.

� Miro[11] tool for sketching ER diagrams for database
and for laying out the early application design.

6.2 code structure

Django project source code[20] is being stored in a separate
folder web app django. Main Django application16 has the
same name as the project and additional Django application
is app sticker listing.

Django applications can each hold the model17 defini-
tions. and views18 file with response definitions on API
requests. Routing is handled by URL dispatcher which
links the user-specified URL19 patterns to user-created views
functions20. In this project, all URL patterns are specified in
web app django’s application URL file.

The following list summarizes each application by its
use case and what definitions it contains.

A Application: web app django

� Functions

– This application handles all the user-related data
such as authentication.

� Models

16docs.djangoproject.com/en/4.0/ref/applications/
17docs.djangoproject.com/en/4.0/topics/db/models/
18docs.djangoproject.com/en/4.0/topics/http/views/
19docs.djangoproject.com/en/4.0/topics/http/urls/
20user-created function defined in application’s views.py file

31

https://docs.djangoproject.com/en/4.0/ref/applications/
https://docs.djangoproject.com/en/4.0/topics/db/models/
https://docs.djangoproject.com/en/4.0/topics/http/views/
https://docs.djangoproject.com/en/4.0/topics/http/urls/

– User()21

� Views

– GetTemporaryUserTokens(APIView)22

– LoginView(generic.CreateAPIView)

– RegisterView(generic.CreateAPIView)

B Application: app sticker listing

� Functions

– This application handles sticker-related data such as
listing, filtering system, and sticker data requests.

� Models

– SizeLimit()

– Material()

– StickerMaterial(Material)23

– Style()

– StickerStyle(Style)

– Tag()

– StickerTag(Tag)

– Gallery()

– GalleryItem()

– Sticker(GalleryItem)

– MaterialOption()

– StickerMaterialOption(MaterialOption)

– StyleOption()

– StickerStyleOption(StyleOption)

� Views

– parseStickerObjects(max side length, stickers)

– parseFilterOptions(filterTags, filterNames, text=””)

– parseStickerData(sticker)

– parseQuery(request)

– filterStickersByTags(tags,objects=None)

– filterStickersByNames(names,objects=None)

– StickerList(APIView)

– GetFilterOptions(APIView)

– StickerPage(APIView)

21Empty argument represents inheriting from Django default model
class django.db.models.Model

22APIView means that this function is being called as an API view
function by URL handler

23Argument represents parent class which child class is inheriting from

C Application: app cart favorites

� Functions

– This application handles data related to sticker fa-
vorite listing and cart managment.

� Models

– Cart()

– CartItem()

– StickerCartItem(CartItem)

– Favorites()

– FavoriteItem()

– StickerFavoriteItem(FavoriteItem)

� Views

– parseFavoriteStickerItems(favoriteStickerItems)

– parseCartStickerItems(cartStickerItems)

– FavoritesPage(APIView)

– AddFavoriteViewSticker(APIView)

– RemoveFavoriteSticker(APIView)

– CartPage(APIView)

– AddStickerToCart(APIView)

– RemoveStickerFromCart(APIView)

D Application: app order

� Functions

– This application handles data related to ordering.

� Models

– DeliveryData()

– Order(DeliveryData)

– OrderItem()

– OrderStickerItem(OrderItem)

� Views

– parseOrderCreationPageData(cartStickerItems)

– parseGetOrderData(orders)

– OrderCreationPage(generic.CreateAPIView)

– GetOrders(APIView)

E Application: app editor

� Functions

32

– This application is responsible for editor backend
functionality.

� Models

– UserEditor()

– CanvasMaterial(Material)

– CanvasMaterialOption(MaterialOption)

– CanvasStyle(Style)

– CanvasStyleOption(StyleOption)

– FinishedCanvas()

– CanvasCutoutImage()

� Views

– parseEditorPageData()

– EditorPage(APIView)

6.2.1 API request handling

Django REST framework library is being used for API devel-
opment within the Django framework.

After installing24, setting up and importing the library,
APIView view with specified HTTP methods such as GET
or POST has to be created and linked to the URL dispatcher.
All that is needed afterward is to call a specific HTTP method
from the frontend on a specific URL.

Additionally, if user authentication is required, JWT to-
kens will have to be specified in the frontend HTTP method
and in the APIView view allowed user permission classes25

would have to be specified such as AllowAny or IsAuthenti-
cated.

However, implementation of login and register view is uti-
lizing generic CreateAPIView class26 which already provides
POST HTTP method handling using serializers27, so nothing
except permission classes, queryset, and serializer class has to
be provided to make these views functional.

The following list comprises all available API URLs, their
HTTP methods, views, and their purpose. Views that these
URLs utilize will be specified in the functionality subchapter.

� URL: ’api/tags/’

HTTP method: GET

view: app sticker listing.view.GetFilterOptions()

24django-rest-framework.org/#installation
25django-rest-framework.org/api-guide/permissions/
26django-rest-framework.org/api-guide/generic-views/#createapiview
27django-rest-framework.org/api-guide/serializers/

purpose: This function is being used when a user
browses through the available filter options dropdown.
As soon as the user types into the dropdown, new options
will be available, either existing tags, existing names, or
just the typed text. The user is also informed on how
many stickers fall into the scope of that particular tag
or a name.

� URL: ’api/stickers/’

HTTP method: GET

view: app sticker listing.StickerList()

purpose: This function is being called when the user
has already selected names, tags, and sizes of stickers he
wants to browse through. Stickers filtered by tags and
names are returned.

� URL: ’api/sticker/<int:sticker id>/’

HTTP method: GET

view: app sticker listing.StickerPage()

purpose: This function returns all the data necessary
for the creation of a sticker product page.

� URL: ’api/favorites/’

HTTP method: GET

view: app cart favorites.FavoritesPage()

purpose: Returns user’s favorite items.

� URL: ’api/favorites/remove/’

HTTP method: POST

view: app cart favorites.RemoveFavoriteSticker()

purpose: Removes favorite sticker from user’s favorites.

� URL: ’api/favorites/add/’

HTTP method: POST

view: app cart favorites.AddFavoriteSticker()

purpose: Adds favorite sticker to user’s favorites.

� URL: ’api/cart/’

HTTP method: GET

view: app cart favorites.CartPage()

purpose: Returns user’s cart information.

33

https://www.django-rest-framework.org/#installation
https://www.django-rest-framework.org/api-guide/permissions/
https://www.django-rest-framework.org/api-guide/generic-views/#createapiview
https://www.django-rest-framework.org/api-guide/serializers/

� URL: ’api/cart/remove/’

HTTP method: POST

view: app cart favorites.RemoveStickerFromCart()

purpose: Removes selected user’s sticker from the cart.

� URL: ’api/cart/canvas/remove/’

HTTP method: POST

view: app cart favorites.RemoveCanvasFromCart()

purpose: Removes the selected user’s canvas from the
cart.

� URL: ’api/cart/add/’

HTTP method: POST

view: app cart favorites.AddStickerToCart()

purpose: Adds selected sticker to user’s cart.

� URL: ’api/cart/add/canvas/’

HTTP method: POST

view: app cart favorites.AddCanvasToCart()

purpose: Creates finished canvas and adds it to user’s
cart.

� URL: ’api/order/creation/’

HTTP method: POST

view: app order.OrderCreationPage()

purpose: Returns data used in the page for creating
orders such as final order price.

� URL: ’api/order/create/’

HTTP method: POST

view: app order.CreateOrder()

purpose: Creates order from existing items in the cart.

� URL: ’api/order/’

HTTP method: POST

view: app order.GetOrders()

purpose: Returns all of the user’s orders.

� URL: ’api/editor/’

HTTP method: POST

view: app editor.EditorPage()

purpose: Returns data necessary for the editor.

� URL: ’api/token/’

HTTP methods: POST

view: rest framework simplejwt.views.TokenObtainPairView()

purpose: Default view function from rest framework
JWT library which returns refresh and access tokens and
required authentication arguments username and pass-
word.

� URL: ’api/token/refresh/’;

HTTP methods: POST

view: rest framework simplejwt.views.TokenRefreshView()

purpose: Default view function from rest framework
JWT library which returns new access token upon pro-
viding valid refresh token.

� URL: ’api/token/verify/’

HTTP methods: POST

view: rest framework simplejwt.views.TokenVerifyView()

purpose: Default view function from rest framework
JWT library which returns validity of provided access
token by HTTP status codes.

� URL: ’api/token/temp/’;

HTTP methods: POST

view: web app django.views.GetTemporaryUserTokens()

purpose: This function creates a temporary user in the
database and returns refresh and access tokens.

� URL: ’api/token/login/’;

HTTP methods: POST

view: web app django.views.LoginView()

purpose: This function takes in email (can also be
a username), password and authenticates user using
django.contrib.auth.autheticate method.

� URL: ’api/token/register’

HTTP methods: POST

view: web app django.views.RegisterView()

purpose: This function takes in the username, email,
and password, and after validating the uniqueness of
username and email, and validating their format, a new
User instance is created in the database.

34

6.3 database

Database was designed and reworked using the Miro28 tool
and implemented through Django’s models29 which outlines
the database structure and then commits those changes to the
dabase, in our case PostgresSQL database.

Current database structure is divided into 5 sections. Gen-
eral database, gallery database, cart and favorites database,
order database and editor database. Following list describes
those division, the models that are declared in each of these
sections, their datatype, and their functions.

6.3.1 General database

General database mostly outlines definitions for parent30

models that are used in other databases, excluding SizeLimit
and User model.

For models attributes see Figure 45.

� Model: User():

Represents visitors both logged in as well as a temporary.

� Model: SizeLimit():

An instance of this model is being used for many stickers
that share the same printing size limitations. One reason
for making such limitations can be that certain types of
stickers have different size constraints on how big of a
printing space is available, or another reason would be
to make sure that there is enough surface for a vacuum
gripper to pick the stickers.

� Model: Material():

Material is a parent class for other material item-specific
materials.

� Model: Style():

Style is a parent class for other item-specific styles. Style
defines price per area, is represented by an icon, has a
size limit and other defining variables.

� Model: Tag():

The tag represents a piece of information that can cat-
egorize an item such as a sticker in the gallery by some
of its distinct features such as theme, color, and others.

28miro.com
29docs.djangoproject.com/en/4.0/topics/db/models/
30Models that are used by other models inherit its definition

� Model: MaterialOption():

Each item in a gallery can have multiple material op-
tions, and this parent class defines its general variables.

� Model: StyleOption():

Each item in a gallery can have multiple style options,
and this parent class defines its general variables.

6.3.2 Gallery database

The Gallery database includes definitions for stickers, its
materials, styles, and the gallery itself.

For models attributes see Figure 46.

� Model: Gallery():

Gallery is a model representing possible different gallery
instances. Such galleries are out of the scope of this
project, but examples could be that certain users could
create their own sticker shops and would be entirely sep-
arated from the current gallery.

� Model: GalleryItem():

Gallery item is a parent class defining general vari-
ables which an item in a gallery would use. Different
gallery items besides single stickers could be, for exam-
ple, sticker packs.

� Model: Sticker(GalleryItem):

Sticker is a child class of GalleryItem and represents a
single sticker that can hold many materials and styles.

� Model: StickerMaterial(Material):

Sticker-specific material definition.

� Model: StickerStyle(Style):

Sticker-specific style definition.

� Model: StickerTag(Tag):

Model for sticker-specific tags.

� Model: StickerMaterialOption(MaterialOption):

Sticker material option defines a connection between
Sticker and a StickerMaterial. A sticker can hold multi-
ple material options.

35

https://miro.com/
https://docs.djangoproject.com/en/4.0/topics/db/models/

� Model: StickerStyleOption(StyleOption):

As a child class of StyleOption, it defines sticker-specific
fields which will define the sticker style (design) option.
Examples of such options can be glossy or matte after
we have chosen the vinyl material option for the sticker.

6.3.3 Cart and favorites database

The cart and favorites database outlines the structure for
managing the user’s cart and favorite items.

For models attributes see Figure 47.

� Model: Cart():

Cart is a model representing the user’s cart. This model
is unique, is automatically created, and serves an orga-
nizational purpose.

� Model: CartItem():

CartItem is a parent class defining general variables
which an item in a cart would use.

� Model: StickerCartItem(CartItem):

StickerCartItem is a child class of CartItem and repre-
sents a sticker in a cart.

� Model: CanvasCartItem(CartItem):

CanvasCartItem is a child class of CartItem and repre-
sents a user-created canvas in a cart.

� Model: Favorites():

Favorites is a model representing the user’s favorite
items. This model is unique, is automatically created,
and serves an organizational purpose.

� Model: FavoriteItem():

Favorite item is a parent class defining general variables
which an item saved to favorites would have.

� Model: StickerFavoriteItem(FavoriteItem):

StickerFavoriteItem is a child class of FavoriteItem and
represents a sticker saved as a favorite.

6.3.4 Order database

The order database outlines the structure for managing orders.

For models attributes see Figure 48.

� Model: DeliveryData():

Delivery data is a model defining basic order information
that the user has to provide.

� Model: Order(DeliveryData):

Model representing an order made by the user.

� Model: OrderItem():

OrderItem is a parent class defining general variables an
item in order would have.

� Model: OrderStickerItem(OrderItem):

Child model of OrderItem and represents a sticker in a
user’s order.

� Model: OrderCanvasItem(OrderItem):

Child model of OrderItem and represents a canvas in a
user’s order.

6.3.5 Editor database

This database handles data necessary for the editor to
function.

For models attributes see Figure 49.

� Model: CanvasMaterial(Material):

Defines canvas-specific material.

� Model: CanvasStyle(Style):

Defines canvas-specific style.

� Model: CanvasMaterialOption(MaterialOption):

Creates a canvas material option for editor users to
choose from.

� Model: CanvasStyleOption(StyleOption):

Creates a canvas style option for editor users to choose
from and links it to a specific CanvasMaterialOption.

36

� Model: UserEditor():

UserEditor is a model representing the user’s editor.
This model is unique, is automatically created, and
serves an organizational purpose.

� Model: CanvasCutoutImage():

Represents a cutout option that a user can choose from
when deciding what should be a sticker’s final shape.

� Model: FinishedCanvas():

Represents a canvas that the user uploaded to the server.
This canvas is later used when displaying the user’s can-
vas in the user’s cart and when creating an order.

6.3.6 Visualization of databases

37

After designing and implementing the database, an application DataGrip[18] from JetBrains was used for viewing the auto-
matically generated ERD (Entity-relationship model) of the PostgresSQL database and positioning its models according to our
designed logical structure. This structure was then exported to an application draw.io[12], where final presentational touches
were made.

Figure 45: General database structure

38

Figure 46: Gallery database structure

39

Figure 47: Cart and favorites database structure

40

Figure 48: Order database structure

41

Figure 49: Editor database structure

42

Figure 50: Default Django autogenerated database structure (for completeness)

43

6.4 functionality

6.4.1 authentication

Authentication is implemented with JWT31, specifically with
JWT library32 for Django rest framework. This library takes
care of the token generation and validation.

In order to pr2ovide user-specific services such as saving
items to cart or favorites and without having to implement
copies of such saving functions in browser storage (for unau-
thenticated users) and in the database (for logged-in users),
each user has a User model instance in a database. In order
for a user to access this instance, the user is provided JWT
tokens to access a temporary database user instance, which is
created upon visiting the application. The logic for handling
this behavior is described in the following diagram.

Figure 51: Action diagram for a user who visits the web
application page

31JSON web tokens
32django-rest-framework-simplejwt.readthedocs.io

After a user has obtained valid tokens for the temporary
user, he can save items to the cart, interact with canvas, and
save items to favorites as a regular logged-in user could.

If, however, the user wants to have an account, have an
email, username, and password associated with it. He needs
to register.

Logging in and registering is handled by the
generic view from Django rest framework library
rest framework.generics.CreateAPIView where our own
serializers are being used.

In these serializers, we specify what data is required for
such API calls, what data is being returned, how such data
should be verified, and what types of error text should be
returned.

These serializers are defined in a file
’django root/web app django/authentication/serializers.py’
and are linked to the specific app that the serializer folder is
put in.

6.4.1.1 LoginSerializer Login serializer firstly tries to
authenticate the user with the data is received. If a user is
successfully validated, we update the user instance’s last login
parameter. Else if the user doesn’t exist, we return an error
message.

After successful authentication, we return his username
and tokens.

� Requiered data

Even though email is specified as a required data
field, the user can enter his username into this
field too. For this functionality to work, the
default Django authentication function had to
be modified and linked in the Django settings.
Function handling authentication is defined in file
’django root/web app django/authentication/UsernameAndEmailAuthenticationBackend.py’.

– email

– password

� Data returned on success

On successful login, the user receives a username and
tokens for that particular account.

– username

– access

– refresh

44

https://django-rest-framework-simplejwt.readthedocs.io/

6.4.1.2 RegisterSerializer Register serializer checks
uniquenes of username, email, their minimal lengths, and uses
standard internal password validation function33.

Upon valid validation, the user instance is created, and the
user receives valid HTTP OK status code 200.

� Requiered data

– username

– email

– password

� Data returned on success

Just HTTP OK status code 200 is returned.

6.4.2 media storage

In order to minimize the server load responsible for returning
API responses, all sticker images and other images are stored
on a public AWS S3 instance.

When creating a new sticker, we need to specify its location
on the S3 instance. These sticker images are arranged in the
following fashion.

33docs.djangoproject.com/en/2.0/ modules/django/ con-
trib/auth/password validation/

Figure 52: File system structure on media server

6.4.3 creating stickers

In the current state, sticker creation is being handled using
the built-in Django admin site34.

Firstly, we have to specify our models in the admin.py file
in each of the Django applications.

After that, if we created Django admin user35, we can just
access the admin site with our credentials by navigating to the
admin URL path specified in the URL dispatcher file (’/admin’
by default).

A Creating the first sticker

For creating the first sticker, we have to have uploaded
sticker images in the AWS S3 instance and also have other
model instances available.

Order for actions we have to take in order to create the
first sticker.

(a) Create SizeLimit model instance

(b) Create StickerMaterial model instance

34docs.djangoproject.com/en/4.0/ref/contrib/admin/
35python manage.py createsuperuser

45

https://docs.djangoproject.com/en/2.0/_modules/django/contrib/auth/password_validation/
https://docs.djangoproject.com/en/2.0/_modules/django/contrib/auth/password_validation/
https://docs.djangoproject.com/en/4.0/ref/contrib/admin/

(c) Create StickerStyle model instance

(d) Create few instances of StickerTags

(e) Create Gallery model instance

(f) Create StickerItem model instance and link it to Gallery
instance

(g) Create StickerMaterialOption model instance and link it
to (StickerItem, StickerMaterial) instance

(h) Create StickerStyleOption model instance and link it to
(StickerStyle, StickerMaterialOption)

B Creating another sticker with the same gallery,
material and style

For creating another sticker, we don’t have to do as many
actions as with the first sticker.

(a) Create StickerItem model instance and link it to Gallery
instance

(b) Create StickerMaterialOption model instance and link it
to (StickerItem, StickerMaterial) instance

(c) Create StickerStyleOption model instance and link it to
(StickerStyle, StickerMaterialOption)

6.4.4 filtering system

A user can access the filtering system on the main page.
Users can filter stickers by specifying their name or a tag.

Additionally, multiple combinations of these are supported.
Firstly, a user can ask for available tags and names by

specifying part of its text and sending HTTP GET method
on API URL ”api/tags/” . If the text, the user is using to
filter the stickers, has at least some threshold length (currently
of size ¿= 3), then StickerTags and names are individually
gathered, ordered by the count (tags can be part of multiple
stickers, and multiple stickers can contain the same text), and
the query is limited by a set constant36.

All of this filtering is being handled by Django query
filter37 and is implemented in a view function GetFilterOp-
tions() in web app django/views.py views file.

After the user selects the tags and names to filter stick-
ers by, another HTTP GET API call is being made to URL

36For example, a query won’t return more than 40 tag instances
37docs.djangoproject.com/en/4.0/topics/db/queries/

”api/stickers” with tags, names, and selected longest dimen-
sion length as parameters. This API call is handled by view
function StickerList() in Django web app django application.

This view function parses the arguments and calls succes-
sively functions for filtering all sticker objects by tags and then
filtering those filtered stickers by names. After all of this is
done, data about individual filtered stickers are sent to the
user.

6.4.5 price calculation

Current project architecture utilizes user customization in
terms of length and dynamic variable price calculation
based on the length of the longest side of the sticker
multiplied by sticker style price parameters, in this case,
price per square mm variable.

6.4.6 product page

After the user clicks on the listed sticker, he is rerouted to
the sticker page. While loading the sticker page, the user
is calling an API URL ”api/sticker/<int:sticker id>/” to get
the data of the sticker he is visiting. This API call is handled
by view function StickerPage() of Django app sticker listing
application.

All that this view function is doing is checking if such
sticker instance exists, is active, and, if so, returns correctly
parsed data about that sticker. If such a sticker doesn’t exist
or is not active, the function returns HTTP 404 status code.

6.4.7 favorites

After the user clicks on a sticker in the gallery or on the
product page, an API call is being made to the URL
”api/favorites/add/” with sticker identity information as well
as user authentication. User’s favorite items are updated on
the client’s side with an API call on ”api/favorites/” and
the button that is used to add that sticker to favorites will
remove the sticker from favorite by calling an API URL
”api/favorites/remove/” with the same data as with adding.

6.4.8 cart

After the user clicks on the ’add to cart’ or ’buy’ button,
depending on if it is a canvas or a sticker, API calls are being
made on URLs ”api/cart/add/canvas/” and ”api/cart/add/”

46

https://docs.djangoproject.com/en/4.0/topics/db/queries/

accordingly. If it’s a canvas, image data is being transferred
additionally to wanted dimensions, material, style, and user
authentication information.

After the user clicks on the remove button on the
favorites page, API calls are being made on URLs
”api/cart/canvas/remove/” and ”api/cart/remove/” depend-
ing on if its a canvas or a sticker with their identifying infor-
mation and user authentication data. After that, the cart item
is removed from the database.

6.4.9 ordering

Ordering is being handled with serializers[2]. After submit-
ting the order with the user contact information on API URL
”api/order/create/”, all the data is being checked with cus-
tom validator functions fields38. After successful submission,
the serializer parses the cart items to order items and creates
a new order, as well as removes all the user’s cart items from
the user’s cart.

6.4.10 editor

After the user submits the finished design on API URL
”api/cart/add/canvas/”, a new instance of model Finished-
Canvas is being created. The finished canvas contains all the
necessary data to print a sticker, including dimensions, image
to be printed, cutout image, and combined image (image
+ cutout + background). Such images are automatically
created after canvas submission in the backend.

After finishing the order, a new instance of the OrderCan-
vasItem model is created, which parses data from the item’s
FinishedCanvas.

38most of these validators check only the field size but can be easily
extended

7 Chapter: Testing

The application was deployed on the Heroku cloud platform
(files used in deployment can be found in the source code
[20]). The application took up 2 Heroku server instances,
one instance was used for the frontend and the other for the
backend. Additionally, backend server run the PostgresSQL
database Heroku addon 39.

The application was globally accessible and tested on
desktop as well as mobile devices. The application is not
thoroughly optimized, and because of large uncompressed
images and because of frequent API calls, the application is
slightly slower on mobile devices.

Additionally, the editor is implemented using [21], and
during the testing, it was discovered that this element is
being rendered much faster on the Google Chrome browser
compared to Firefox as the canvas element is utilizing Google
Chrome’s hardware acceleration [22].

The editor was implemented for the desktop version of the
application and is thus unusable using mobile devices. Other
parts of the application work optimally40 on both desktop
and mobile.

As one of the application’s goals was to be utilized in the
automatic printing of stickers, a Python script that connects
to the database and prints the ordered items on paper was
implemented and tested. Video of the actual test of the ap-
plication and automated printing is located in the source code
directory [20].

39elements.heroku.com/addons/heroku-postgresql
40besides the slow speed on mobile devices mentioned earlier

47

https://elements.heroku.com/addons/heroku-postgresql

8 Chapter: Running the application

There are two recommended options for running the appli-
cation. Both of these solutions require setting up AWS S3
media server[6] and PostgresSQL database[4].

The first option is to run the application on Heroku[5] cloud
platform. The prepared files needed to run the application on
Heroku are located in the application source code directory
[20].

The second recommended option is to run the application
locally. This option requires installing Django[1], Node.js, and
additional libraries for Python. Requirements are described in
the application source code directory [20].

48

Figure 53: Architecture of the deployed application

49

9 Chapter: Future works

Future works that would utilize this application could make
use of the entirety of the application and continue developing
automated printing on an industrial-grade printer and cutting
plotter. Other similar products besides stickers that could use
most of the application might include custom laser engraving,
woodcutting, metal cutting, glass cutting, and other materials
that would require a 2D editor.

Moreover, this work can be partially used in developing
automated solutions for different products other than stick-
ers, such products may include custom furniture, sportswear,
clothing, and many other solutions that could tap into many
different industries and sectors.

Results of this work will be advertised to all contacted
companies producing stickers, and thus this work can be used
by them when developing their custom solution.

10 Chapter: Conclusion

Part of this work was conducting research of existing solutions
and companies providing sticker printing services. The total
number of surveyed companies was 25. Most of the researched
companies were local, didn’t offer an editor for uploading and
editing designs, did not offer a gallery with existing designs,
and their prices indicated that they are mainly focused on the
businesses, not individuals with small volume custom orders
as the prices for single small sticker were in the orders of tens
of euro.

Some of the researched companies and others were con-
tacted. Totally 19 companies were contacted by email, and 2
of these companies responded. Both of these companies were
local. One company was very interested in such a solution as
the communication with customers was one of the most expen-
sive parts of the whole ordering process and took on average
45 minutes per customer as described in Section 2.3. The sec-
ond company was a little skeptical from experience when it
comes to offering services for an average person as they often
don’t provide the best quality files for printing.

After taking existing solutions into consideration, the de-
sign of the frontend and backend parts of the application have
been developed.

What followed was the implementation of the design using
Python (Django framework [1]) for the backend, PostgresSQL
[4] database, and JavaScript (React framework [3]) for the
frontend. Application has been developed to be suited for

both mobile and desktop devices, with the exception of the
editor, which is only usable on desktops. Source code can be
found in the bibliography[20].

Functional application was then launched on Heroku
cloud platform [5] a will be publicly available for at least
one year on sticker-application-frontend.herokuapp.

com and sticker-application-backend.herokuapp.com41.
Additionally, AWS S3 [6] instance has been used as a media
server hosting sticker designs.

The application was successfully tested and successfully
performed functions described in Section 3. However, it was
discovered that the editor, which was implemented using can-
vas HTML element [21], was much faster than Chrome browser
compared to Firefox because of the browser implementation
differences [22].

Finally, a Python script that fetches paid orders from the
database and parses the sticker images and cutout images, and
automatically prints them using a locally connected printer
was implemented and tested. Video of the test is available in
the directory with the source code [20].

The next step, which is not part of this thesis, is to share
the solution and the source code with the local and foreign
companies with the hope that they will be heavily inspired to
implement their own and try to offer their customers a better
service and more customization as well as save the production
costs.

References

[1] Official documentation for Python Django
https://docs.djangoproject.com

[2] Django REST framework serializers
https://www.django-rest-framework.org/api-

guide/serializers/

[3] Official React website https://reactjs.org

[4] Official PostgresSQL database website
https://www.postgresql.org/

[5] Heroku cloud hosting website https://www.heroku.com/

[6] Amazon AWS S3 storage website
https://aws.amazon.com/s3/

41see [20] for possible updates related to accessibility

50

sticker-application-frontend.herokuapp.com
sticker-application-frontend.herokuapp.com
sticker-application-backend.herokuapp.com
https://docs.djangoproject.com
https://www.django-rest-framework.org/api-guide/serializers/
https://www.django-rest-framework.org/api-guide/serializers/
https://reactjs.org
https://www.postgresql.org/
https://www.heroku.com/
https://aws.amazon.com/s3/

[7] Repository for Node.js package that combines images
http://github.com/lukechilds/merge-images

[8] Redbubble shop website https://www.redbubble.com/

[9] Diginate shop website https://diginate.com/

[10] Stickeryou shop website https://www.stickeryou.com/

[11] Tool used in planning phase of the project
https://miro.com

[12] Tool used in finalizing diagrams for database,
architecture, and page visit diagram
https://drawio-app.com/

[13] Design tool Figma that was used in the planning phase
of the development https://www.figma.com/

[14] Library of React styled components that were used in
frontend implmentation https://mui.com/

[15] Repository of Axios Node.js package for handling HTTP
requests https://github.com/axios/axios

[16] Website of Router Node.js package for URL handling in
React https://reactrouter.com/

[17] Visual editing application used when editing stickers
https://www.adobe.com/products/photoshop.html

[18] Database tool used when creating database
presentational diagrams
https://www.jetbrains.com/datagrip/

[19] Feldroy D., Feldroy A., 24.3.6 Things That Should Be
Tested, Two scoops of django 3.x, (ed. 07 2021, pp.
300-301)

[20] Application source code hosted on university GitLab
https://gitlab.fel.cvut.cz/basarpet/bachelor-

thesis-sticker-web-application

[21] Editor is implemented using canvas html element
https://developer.mozilla.org/en-

US/docs/Web/API/Canvas_API

[22] Canvas element in Chrome utilizes hardware acceleration
https://developer.chrome.com/blog/taking-

advantage-of-gpu-acceleration-in-the-2d-canvas/

51

http://github.com/lukechilds/merge-images
https://www.redbubble.com/
https://diginate.com/
https://www.stickeryou.com/
https://miro.com
https://drawio-app.com/
https://www.figma.com/
https://mui.com/
https://github.com/axios/axios
https://reactrouter.com/
https://www.adobe.com/products/photoshop.html
https://www.jetbrains.com/datagrip/
https://gitlab.fel.cvut.cz/basarpet/bachelor-thesis-sticker-web-application
https://gitlab.fel.cvut.cz/basarpet/bachelor-thesis-sticker-web-application
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.chrome.com/blog/taking-advantage-of-gpu-acceleration-in-the-2d-canvas/
https://developer.chrome.com/blog/taking-advantage-of-gpu-acceleration-in-the-2d-canvas/

	Chapter: Introduction
	motivation
	results

	Chapter: Existing solutions
	good examples
	Redbubble redbubblesite
	Diginate diginatesite
	Stickeryou stickeryousite

	worse examples
	communication with companies
	summary
	possible solutions

	conclusion

	Chapter: Application functionality
	Chapter: Development procedure
	Chapter: Frontend general design and implementation
	technologies
	code structure
	routing and components
	visualized

	functionality
	local storage
	navigation and authentication
	desktop and mobile navigation
	number badges for cart and favorites
	JWT authentication
	logging in
	logging out
	registering
	changing password

	color managment
	handling responsivness
	grid system

	filtering system
	tags and names
	sticker dimensions

	product page
	sticker presented on familiar item
	choosing material and style
	amount picker
	price calculation

	handling favorite stickers
	listing favorite stickers

	handling cart stickers
	listing stickers in cart

	making an order
	editor
	tool managment
	layering system

	Chapter: Backend general design and implementation
	technologies
	code structure
	API request handling

	database
	General database
	Gallery database
	Cart and favorites database
	Order database
	Editor database
	Visualization of databases

	functionality
	authentication
	LoginSerializer
	RegisterSerializer

	media storage
	creating stickers
	filtering system
	price calculation
	product page
	favorites
	cart
	ordering
	editor

	Chapter: Testing
	Chapter: Running the application
	Chapter: Future works
	Chapter: Conclusion

