
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Control Engineering

ITEM, TinyOS module for sensor networks ï

Testing and application

Diploma Thesis

Author: Bc. Pavel Beneġ

Supervisor: Ing. JiŚ² Trdliļka

Thesis Due: May 2010

Declaration

 I hereby declare that I have written my diploma thesis myself and used only

the sources (literature, projects, SW etc.) listed in the enclosed references.

Prague, May 2010 éééééééééééé.

 Signature

III

Acknowledgements

 I would like to thank the chief of my diploma thesis Ing. JiŚ² Trdliļka, for his patience,

help and suggestions, which were very much appreciated.

 I would like to special thank my family and my girlfriend for constant support

and encouragement during the course of my studies.

IV

Abstrakt

 Tato pr§ce se zabĨv§ testov§n²m a aplikac² modulu ITEM. Jde o komunikaļn² modul

navrģenĨ pro pouģit² v aplikac²ch pro bezdr§tov® senzorov® s²tŊ. D²ky implementovanĨm

protokolŢm TDMA (Time Division Multiple Access) a E-ASAP (Extended-Adaptive Slot

Assignment Protocol) je modul schopnĨ reagovat na dynamick® zmŊny struktury s²tŊ. PŢvodn²

verzi modulu je potŚeba pŚed pouģit²m v re§lnĨch aplikac²ch dŢkladnŊ otestovat a odstranit

objeven® nedostatky. Pro testov§n² je nutn® zajistit sbŊr dat ze s²tŊ a jejich zpŊtn®

vyhodnocen². Nejprve je ovŊŚena spr§vn§ funkļnost modulu. K tomuto ¼ļelu byla vytvoŚena

JAVA aplikace, kter§ zachycuje a pŚehlednŊ zobrazuje pŚesnĨ sled ud§lost² jednotlivĨch

zaŚ²zen². Jejich vyhodnocen²m pak mŢģeme, vzhledem k pouģit® struktuŚe s²tŊ, rozhodnout

o spr§vnosti funkce. Po otestov§n² spr§vn® funkļnosti jsou testov§ny vlastnosti s²tŊ s pouģit²m

modulu ITEM. Mezi tyto vlastnosti patŚ² vyuģit² kapacity komunikaļn²ho kan§lu a doba

potŚebn§ pro doruļen² dat od zdroje k c²li. Pro srovn§n² vĨsledkŢ byla zvolena pŢvodn² verze

modulu pouģit®ho pro sbŊr dat, kterĨ vyuģ²v§ CSMA protokol. Na z§vŊr je vytvoŚena aplikace

pro mŊŚen² dat. MŊŚen² dat v rŢznĨch m²stech s²tŊ je nejļastŊjġ²m poģadavkem bezdr§tovĨch

senzorovĨch s²t².

V

Abstract

 This thesis deals with testing and application of the ITEM module. It is

a communication module designed for usage in applications for wireless sensor networks.

Thanks to implemented TDMA (Time Division Multiple Access) and E-ASAP (Extended

Adaptive Slot Assignment Protocol) protocols the module is able to react to dynamic network

structure changes. The original version of the module must be thoroughly tested

and discovered inadequacies must be removed before using in practical applications. Data

must be collected from the network and then re-evaluated for testing. First, a correct function

of the module is verified. For this reason a JAVA application was created. It captures

and clearly presents exact sequence of events of individual network devices. With re-

evaluation of these events we can determine correctness of the ITEM module function due

to used network structure. After verification of correctness, performance of the network with

the ITEM module is tested. This performance test contains channel capacity utilization

and message delivery from source to target duration. For comparison of results, original

version of module used for data collection, which uses CSMA protocol was chosen. Finally,

application for data measurement was created. Data measurement in various places

of the network is the most common requirement of wireless sensor networks.

Contents

1 Introduction .. 1

1.1 Aim of this thesis ... 1

1.2 Wireless sensor networks ... 1

1.3 TinyOS and NesC .. 3

1.4 Hardware .. 3

2 Theoretical considerations ... 6

2.1 TDMA protocol .. 6

2.2 CSMA protocol .. 7

2.3 ASAP and E-ASAP protocols .. 8

2.3.1 ASAP protocol ... 8

2.3.2 E-ASAP protocol .. 10

2.4 Collection protocol ... 11

3 Realization ... 13

3.1 ITEM module description .. 13

3.1.1 Original version .. 13

3.1.2 Inadequacies of original version ... 15

3.1.3 Current version ... 16

3.2 Collection and ITEM module interconnection ... 21

3.3 ITEM module testing ... 25

3.3.1 Testing and visualization of function ... 25

3.3.2 Testing of performance .. 31

3.4 Data measurement application ... 36

4 Experiments and results ... 39

4.1 Testing and visualization of function ... 39

4.2 Testing of data measurement application ... 48

5 Conclusion ... 50

6 Future work .. 52

References.. 53

Contents of the DVD-ROM ... 55

List of Figures

Figure 1.1 Application of wireless sensor network (edited original from [4]) 2

Figure 1.2 TelosB module and block diagram (taken from [5]) .. 4

Figure 1.3 Tmote Sky module ï top (left) and bottom side view (taken from [8]) 5

Figure 2.1 TDMA example ... 6

Figure 2.2 Guard periods example .. 7

Figure 2.3 Frame length example .. 8

Figure 2.4 ASAP protocol example (taken from [13]) .. 9

Figure 2.5 E-ASAP protocol example (taken from [13]) .. 10

Figure 2.6 Collection module connection ... 12

Figure 3.1 ITEM module ... 14

Figure 3.2 ITEM module connection .. 15

Figure 3.3 Frame reduction example ... 16

Figure 3.4 ITEM data sending procedure .. 18

Figure 3.5 General data packet format .. 19

Figure 3.6 ITEM INF packet details .. 20

Figure 3.7 Collection and ITEM module interconnection ... 22

Figure 3.8 Collection module with ITEM data sending procedure ... 23

Figure 3.9 JAVA application, part for data reading .. 24

Figure 3.10 Interface for testing connection .. 26

Figure 3.11 ITEM visualization packet format ... 26

Figure 3.12 ITEM visualization packet details ï type Inf ... 27

Figure 3.13 ITEM visualization packet details ï type Slot start ... 27

Figure 3.14 ITEM visualization packet details ï type Broadcast send 28

Figure 3.15 ITEM visualization packet details ï type Broadcast receive 29

Figure 3.16 JAVA application for testing and visualization of ITEM function 30

Figure 3.17 Testing performance data packet (details sent between nodes) 32

Figure 3.18 Testing performance data generation procedure (in case with the ITEM module) 33

Figure 3.19 Testing performance data generation procedure (in case without the ITEM

module) .. 34

Figure 3.20 Testing performance data packet (details sent to computer) 35

Figure 3.21 JAVA application for testing of ITEM performance ... 36

Figure 3.22 Data measurement packet details ... 37

Figure 3.23 JAVA application for data measurement ... 38

Figure 4.1 Test 1 network distribution .. 40

Figure 4.2 Test 1 network performance (network with the ITEM module) 41

Figure 4.3 Test 1 network performance (original Collection module) 41

Figure 4.4 Test 2 network distribution .. 42

Figure 4.5 Test 2 network performance (network with the ITEM module) 43

Figure 4.6 Test 2 network performance (original Collection module) 43

Figure 4.7 Test 3 network distribution .. 44

Figure 4.8 Test 3 network performance (network with the ITEM module) 45

Figure 4.9 Test 3 network performance (original Collection module) 45

Figure 4.10 Test 4 network distribution .. 46

Figure 4.11 Test 4 network performance (network with the ITEM module) 47

Figure 4.12 Test 4 network performance (original Collection module) 47

Figure 4.13 Test 1 application for data measurement ... 49

Figure 4.14 Test 2 application for data measurement ... 49

1

Chapter 1

Introduction

1.1 Aim of this thesis

 Technologies of wireless sensor networks (WSNs) are being rapidly developed in these

days. The possibility of arbitrary configuration has a great potential for usage in industrial,

military and many others applications. Wireless sensor networks consist of spatially

distributed autonomous devices called nodes. Individual nodes fulfill several functions

(from data measurement to processing, forwarding and evaluating). Nodes are often placed

in hostile or badly accessible places. For the purpose of ensuring long lifetime of individual

nodes, we must minimize their energy consumption. The highest consumption is caused

by data transmission in the network.

 At the Czech Technical University in Prague in the Department of Control Engineering

was created a software module called ITEM (Integrated TDMA E-ASAP Module).

This module controls forwarding of the data in the network in a way that there are no

collisions, which are common problem at this type of networks.

 Our first target of this thesis is identification of inadequacies of the ITEM module

and their elimination. We also have to carry out such corrections that enable usage

of the ITEM module in practical applications. We must thoroughly test the module before we

can use it in practical applications. Another objective of this thesis is to create visualization

of function of tested module. The last aim of this work is implementation of application

for data measurement.

1.2 Wireless sensor networks

 A great expansion and early successes of wireless sensor networks show that it has

the opportunity to become a very useful tool, such as the Internet. Just as the Internet allows

us faster, easier access to data and information from the digital world, sensor networks expand

our ability to access data from the physical world [1].

CHAPTER 1 INTRODUCTION

2

 The basic element of the network is a device called node. The node consists

of a processing unit with limited computational power and limited memory, sensors,

a communication device (usually radio transceiver) and a power source. These nodes

are commonly located in certain areas to monitor a specific phenomenon. These areas

are often remote or hostile. A power source is typically formed of batteries, but unlike cell

phones or wireless laptops periodic recharging is not possible. For this reason, great emphasis

is on low power consumption. Most power is consumed by data transmission and thus sensor

networks often form wireless ad-hoc networks [2], where each node supports multi-hop

routing algorithm (data forwarding to the base station through other devices in the network).

 Special requirements of sensor network applications and resource constraints in sensor

network hardware platform determine the properties of used operating systems. They

are typically less complex than general-purpose operating systems. Probably, the most popular

operating system for wireless sensor networks is TinyOS. Programs for TinyOS are written

in special programming language called NesC, which is an extension of the C programming

language.

Figure 1.1 Application of wireless sensor network (edited original from [4])

CHAPTER 1 INTRODUCTION

3

1.3 TinyOS and NesC

 TinyOS [3] is an operating system designed especially for usage in wireless sensor

networks. Its programming model is customized for even-driven applications. TinyOS

provides a set of reusable components. These components provide and use interfaces for their

wiring. These interfaces are the only point of access to the component.

 Two sources of concurrency are tasks and events. Task is deferred computation

mechanism which runs to completion. Tasks do not preempt each other. A component can use

task when timing requirements are not strict. Events also run to completion, but it can preempt

the execution of a task or another event.

 Only one application runs on node at a time. Deep tying of application with used

hardware leads to three important requirements. First requirement is that all resources

are statically known. Second, applications are built of a set of reusable system components,

connected with application specific code. Third, a hardware/software boundary varies

depending on the application and hardware platform.

 Used programming language NesC simplifies the application development, reduces

the code size and eliminates many sources of potential bugs by performing a whole-program

optimization and compile time data race detection. NesC distinguishes between two types

of components: modules and configurations. The modules provide application code and they

implement one or more interfaces. The configurations wire used components together.

 The NesC programming language meets unique requirements for programming

of wireless sensor network applications. Success of the component based model is shown

by the way in which components are used in the TinyOS code.

1.4 Hardware

 Designs of devices for wireless sensor networks vary from application to application.

We meet with nodes size as a coin to nodes size as a personal computer, with cheap nodes

for simple applications to expensive, sophisticated devices for demanding applications. We

use TelosB and Tmote Sky modules in this work. Both modules are almost identical. Tmote

Sky module will be described in detail.

CHAPTER 1 INTRODUCTION

4

Figure 1.2 TelosB module and block diagram (taken from [5])

 The main parts of the module are a microcontroller, a radio transceiver, a power

source, an external memory and one or more sensors (we did not have sensors available in this

work). The brain of the node is ultra low power Texas Instruments MSP430 F1611

microcontroller featuring 10kB of RAM and 48kB of flash. This 16-bit RISC processor has

an internal digitally controlled oscillator that operates up to 8Mhz. The features of MSP430

F1611 are presented in detail in the Texas Instruments MSP430 x1xx Family Userôs Guide

[6]. The Chipcon CC2420 (IEEE 802.15.4 compliant) radio takes care of the wireless

communication. The CC2420 has programmable output power and provides a digital received

signal strength indicator (RSSI). Usage of CC2420 is available in Chipconôs datasheet [7].

The node contains USB port for serial communication. The power source consists of two AA

batteries. The serial code flash ST M25P80 40Mhz is used for data storage. The flash shares

SPI communication lines with the CC2420 transceiver. Tmote Sky module contains two

expansion connectors for additional devices (analog sensors, LCD displays and digital

peripherals) and connection for two photodiodes and for a humidity/temperature sensor.

CHAPTER 1 INTRODUCTION

5

Figure 1.3 Tmote Sky module ï top (left) and bottom side view (taken from [8])

6

Chapter 2

Theoretical considerations

2.1 TDMA protocol

 Time Division Multiple Access is a shared medium access method [9]. This method

allows several users to share one medium by dividing time into time slots.

Figure 2.1 TDMA example

 These successive repeating time slots are assigned to those devices, which access

the medium. Each time slot is owned only by one device. Each device can access shared

medium only in own time slots. Fulfillment of these assumptions guarantees prevention

of multiple accesses at the same time and occurrence of collisions. A group of several time

slots is called a frame.

 This medium access method requires accurate time synchronization of all devices. So-

called guard periods are used for inaccuracies in time synchronization. Medium access

is permitted in these periods. This restriction prevents time slot overlap and possibility

of collision occurrence.

CHAPTER 2 THEORETICAL CONSIDERATIONS

7

Figure 2.2 Guard periods example

There are many options of time slot assignment. Time slot assignment used in this thesis

is inspired by E-ASAP protocol, which will be described later in this text.

2.2 CSMA protocol

Carrier Sense Multiple Access is another shared medium access method. This method

is based on probabilistic medium access protocol. Each device verifies medium availability

before a data sending can start. Data can be sent only when medium is free. Using CSMA

method doesnôt prevent from collision occurrence (simultaneous medium access). There exist

CSMA modifications which try to minimize collision occurrence or even completely remove

collisions [10].

One of these modifications is CSMA/CA (CSMA with Collision Avoidance).

If a device, which wants to send a data, detects occupation of a channel, it waits random time

before data sending. This random time reduce a probability of a collision. This modification

of CSMA is often used in wireless sensor networks [11].

Another possible modification is CSMA/CD (CSMA with Collision Detection). Sending

devices are able to detect collision and stop sending immediately. Another attempt to send

data runs through random time delay. Stopping immediately after collision detection results

in more efficient capacity utilization, because there is no wasting with bandwidth usage

for sending entire collision packet. CSMA modification with collision detection is not used

in wireless networks [12].

Furthermore, there exists modification CSMA/BA (CSMA with bitwise arbitration)

known also as CSMA/CR (CSMA with collision reduction). All devices are assigned

CHAPTER 2 THEORETICAL CONSIDERATIONS

8

a priority. When there is collision detection, the device with higher priority is preferred

for data sending.

2.3 ASAP and E-ASAP protocols

Time slot assignment between network devices can be scheduled in many ways. E-

ASAP protocol (Extended Adaptive Slot Assignment Protocol) [13] deals with this issue. This

protocol extends ASAP protocol (Adaptive Slot Assignment Protocol). E-ASAP

in comparison with ASAP improves channel utilization. Principles of both protocols will be

described in this chapter.

2.3.1 ASAP protocol

ASAP protocol sets frame length of new node (a node that is currently connected

to the network) according to frame length of nodes in its contention area (set of nodes, which

can cause sent packets collision) and minimizes number of unassigned slots. This mechanism

improves channel utilization. TDMA format in ASAP is shown in Figure 2.3.

Figure 2.3 Frame length example

 Frame length of each node can be changed dynamically (doubled or halved) according

to slot assignment in its contention area. This prevents collisions of packets sent by devices

with different frame length. First slot is reserved for sending control packets of newly

connected devices so there are no data packet sent.

 Each node keeps information about own frame length and assigned own slots, as well

as information about assigned slots of neighbor nodes and information about assigned slots

of hidden nodes (nodes at distance of two hops).

CHAPTER 2 THEORETICAL CONSIDERATIONS

9

Figure 2.4 ASAP protocol example (taken from [13])

 Details about neighbor and hidden nodes are extracted from collected information

packets that each device sends in own assigned time slot. Each node sends two types

of packets. The first type is the above-mentioned information packet that contains details

about assigned slots of sender and his neighbors. The second type is data packet that contains

details about senderôs frame length, senderôs current slot, maximal frame length among

the sender and its neighbors and data.

 Slot assignment procedure for newly connected devices is as follows. First, a new node

collects information sent by neighbor nodes. This node then sets the frame length

as the maximum frame among all nodes in its contention area. If there are unassigned slots,

they can be assigned to the new node. If all slots are occupied, but there are nodes that own

more slots, slot is released from the node which owns the largest number of slots. New node

then assigns newly created, free slot itself. If there are no free slots or any device owns more

slots, the new node doubles the frame length and assigns free slot itself. The first slot in frame

is reserved, so doubling the frame length and copying slots from lower to the upper half

of the frame creates a free slot on the position of the first slot in upper half of the frame.

 In the slot assignment conflicts can occur (e.g. if we connect new node between two

nodes with the same own slot, out of radio range). Conflict solution follows three methods.

First way is to delete the conflicting slot. When nodes with conflicting slots own also correctly

assigned slots, conflicting slots are simply deleted. Second way is to divide conflicting slots

CHAPTER 2 THEORETICAL CONSIDERATIONS

10

between nodes. When each node owns only conflicting slots and there is no possibility

to solve the conflict in current frame length, frame length is doubled and slots are divided

between nodes.

2.3.2 E-ASAP protocol

Although ASAP improves channel utilization compared with conventional slot

assignment protocols, the frame length in whole network tends to grow (because the initial set

of maximum frame length). Each node assigns own slot at minimum frame length in which

there are no conflicts in E-ASAP protocol. This method improves channel utilization

in comparison with ASAP.

First slot is reversed similarly as in ASAP protocol. E-ASAP protocol differs in retained

information. Information about assigned slots of neighbor and hidden nodes extends

information about frame length of these nodes.

Figure 2.5 E-ASAP protocol example (taken from [13])

Slot assignment procedure for newly connected devices is similar to ASAP protocol.

New node collects information sent by neighbor nodes, then sets the minimum frame length

(four slots) and at the end assigns a free slot itself like in ASAP.

Detection and solution of conflicts is the same as in ASAP.

CHAPTER 2 THEORETICAL CONSIDERATIONS

11

2.4 Collection protocol

Typical application for wireless sensor networks considers free placement of nodes

in free space. There is only a small amount of nodes that are connected to the base station. It

is usually required to evaluate data from all nodes in the network. Data must be transported

from source to base station. For this purpose various mechanisms are proposed for data

collection (e.g. [14], [15] and [16]). One of these mechanisms is Collection protocol [17]

included in applications for TinyOS 2.x.

The principle of Collection protocol is base on building of one or more collection trees.

Each node in the network is a part of only one collection tree. Nodes can send own generated

data or resend received data. Collection protocol tries to deliver data from source to at least

one root in the network. There are no guarantees of data delivery.

A node can perform four different roles. Nodes that generate data for sending are called

producers. Nodes that overhear messages are called snoopers. Forwarding message can be

modified. Nodes that modify forwarding messages are called in-network processors. Nodes

that only receive data from network have the last role. These nodes are called consumers.

Implementation of Collection protocol consists of three main components: Link

estimator, Routing engine and Forwarding engine. Link estimator estimates link quality

among neighbors. Link quality is represented by a number, whose value should be in range [0,

65535]. Smaller values signal better link quality. Routing engine calculates a route

from the source to the root of a collection tree. Roots can be changed dynamically. Routing

engine keeps information about neighbor nodes that can build a route to the root of the tree.

The best candidate is chosen according to link quality detected in Link estimator. Forwarding

engine attends to message transmissions. It evaluates retransmissions, duplicate suppressions,

packet timing and loop detection. CSMA protocol, which is described in chapter 2.2, is used

for access to the communication channel.

CHAPTER 2 THEORETICAL CONSIDERATIONS

12

Figure 2.6 Collection module connection

13

Chapter 3

Realization

3.1 ITEM module description

3.1.1 Original version

 The first version of ITEM module [18] was created at the Czech Technical University

in Prague in the Department of Control Engineering in order to build a communication module

for wireless sensor networks. This module should provide collision free (elimination of data

packets interference) data transmission in the network. The main part of the communication

module was designed according to E-ASAP protocol that uses the principle of TDMA

protocol. First version was designed for TinyOS 1.x operating system. TinyOS 1.x has been

replaced by a new version TinyOS 2.x. We have rewritten first version of ITEM for TinyOS

2.x operating system [19]. TinyOS 2.x is used in wireless sensor networks until today.

 Structure and properties of communication module ITEM will be described in this

chapter. The whole system is shown in Figure 3.1. It consists of several smaller, independent

parts. Each part of the module performs the corresponding function. With this layout

the module can be easily developed, tuned and tested.

 The first part of the module is called TimeSync. We need accurate time

synchronization of all devices for correct time slots sequence in TDMA protocol. TimeSync

module fulfills these requirements. Time synchronization is based on simple averaging

algorithm. Each device sets its own local time at connection to the network according

to neighbor nodes. Local time is then corrected according to:

ὸὰέὧὥὰ=
ὸὶὩάέὸὩ+ὸὰέὧὥὰ

2
.

 SimpleTime module was created for local time manipulations.

CHAPTER 3 REALIZATION

14

Figure 3.1 ITEM module

 If the device has correct local time, the principle of TDMA protocol can be applied.

Part called TDMA performs time division into time slots. Information about local time

and frame length must be known to generate correct time slot number. When time is divided

into time slots, time slots must be correctly assigned to devices. Wrong distribution of time

slots can cause collision in data transmission. Module called EASAP according

to implemented E-ASAP protocol provides correct distribution. E-ASAP protocol is resistant

to dynamic changes in the network.

 Messages are sent and received by a module called Comm. This module provides radio

and serial communication. In this version, the ITEM module distinguishes between two

message types: Information packets (INF) and Data packets (DAT).

CHAPTER 3 REALIZATION

15

 Data can be sent only in nodeôs own time slots. That means that data generated out

of these time slots must be stored. A module called Data was created for this purpose.

The Data module consists of two data queues. One queue keeps data for sending, second

queue keeps received data until a user processes them.

 ITEM module contains module called WatchDog. WatchDog monitors whole system

functionality. If this module detects an irregular running of a program, it restarts the device

and sets the program into the initial state.

 The last part of ITEM module is called Core. Core connects all these modules into one

functional module. It provides an interface for superior application. Users do not need worry

about data sending. They only choose a number of owned slots and then insert sending data

and process received data. The ITEM module ensures correct data delivery.

Figure 3.2 ITEM module connection

3.1.2 Inadequacies of original version

 Original version contains some inadequacies. One of these inadequacies is occupation

of the same slot by nodes connected to the network in one place at the same time. Connected

nodes receive the same information packets, but they donôt know anything about one another.

This leads to occupation of the same slot by connected nodes and occupation of the same slot

leads to collisions.

 One of inadequacies is possibility of sending only one message per time slot. Most

of the time inside the slot is unused. This limitation results in poor channel utilization.

CHAPTER 3 REALIZATION

16

 Improved capacity utilization of the communication channel can be achieved by better

solution of frame length reduction. In original version, the frame length reduction is possible

only if there are no assigned slots in upper half of frame. We can see a small example of this

case in Figure 3.3. There are four nodes in the network. Assigned slots are: 1, 2, 5 and 6.

Frame length is 8. If we remove node with own slot number 2 from the network, there is no

frame length reduction because it is not possible. If nodes with own slots number 5 and 6

replace these slots with free slots in lower half of frame, reduction of frame length is possible.

The reduction of frame length results in better channel utilization.

Figure 3.3 Frame reduction example

 All messages sent by ITEM module are broadcasted. A superior application has no

possibility of sending messages only to given device in range.

 Last recognized inadequacy is sending messages over one, ITEMôs defined, radio

interface. Parts of data packet (header and footer) are created according to used interface. This

mechanism of data sending complicates connection of ITEM module with superior

applications that divide and process packets according to these parts.

3.1.3 Current version

 The current version is substantially modified in a comparison with the original.

Motivation for these modifications was to enhance performance and eliminate

the inadequacies of the original version. The main idea of the ITEM module was maintained.

CHAPTER 3 REALIZATION

17

Adjustments relate primarily to various parts of the module. Important change addresses a way

to send messages. Sending messages with the ITEM module is found to be unsuitable

for practical applications (e.g. using application for data collection with ITEM). This way

of sending data satisfies using of applications that use only one type of messages and only one

radio interface. If application uses more types of messages and more radio interfaces, then it is

easier for data sending to use radio interfaces used in application. In current version the ITEM

module doesnôt send data packets. Data sending must be implemented in superior application

(where necessary radio interfaces can be used). The ITEM module only signals times for data

sending. Procedure for data sending is presented in Figure 3.4.

 The diagram in Figure 3.4 doesnôt include idle times at the beginning of time slots.

These idle times delay sending data due to possible inaccuracies in time synchronization.

Information packets are not sent in each own slot as shown in figure. Information packets are

sent after defined number of own slots. The ITEM module computes remaining time in own

slot. It compares computed remaining time with time used for sending the longest message

and evaluates the possibility of sending another message. This leads to an improvement

of the original version. The ITEM module can arrange sending more messages during own slot

in this version. Data sending is moved to the superior application that uses necessary radio

interface. This results in possibility of messages addressing (removes restriction

for broadcasted messages). This way of sending data also reduces data types used in ITEM

module. There are no data packets (DAT) in ITEM. Data queues in module called Data are not

needed, but this module was not removed. Data module still exists, but there is only one data

queue. This queue is designed for storage data from superior application. Function for data

storage and information about data queue properties were built into ITEM interface.

CHAPTER 3 REALIZATION

18

Figure 3.4 ITEM data sending procedure

 Other changes affected computation of the local time. 64-bit local time, composed

of two 32-bit numbers, was replaced by 32-bit local time. This modification simplifies local

time computations, saves memory and reduces the length of the information packet.

CHAPTER 3 REALIZATION

19

 Original version doesnôt deal with bad time slot assignment. Each device now

evaluates bad slot assignment according to details in received information packets. If a device

detects that there is another device with the same slots in contention area, it analyses this

situation and release collision slot. A new time slot is assigned with random delay. There is

a Random component in TinyOS 2.x for random delay generation. This way of collision

solution also solves restrictions of sequent node connection. When assignment of bad slot is

detected, slot is released and then a new slot is assigned with random delay. Random delay

simulates sequent connection of nodes.

 Current version of ITEM solves correct frame length reduction. If the following

relationship is satisfied, assigned slots from upper half of frame are released, frame length is

reduced and nodes that released upper slots assign new free time slots themselves.

ὲόάὦὩὶ έὪ
ὥίίὭὫὲὩὨ ίὰέὸί
Ὥὲ ὪὶὥάὩ

ὪὶὥάὩ ὰὩὲὫὸὬ

2
 1.

This reduction results in better channel utilization. A function for determination of the quantity

of owned slots by node was added to ITEM interface.

 An actual reduction of frame length is evaluated according to:

ὲόάὦὩὶ έὪ
ὥίίὭὫὲὩὨ ίὰέὸί
Ὥὲ ὪὶὥάὩ

 +
ὲόάὦὩὶ έὪ ὶὩίὩὶὺὩὨ
ίὰέὸί Ὥὲ ὰέύὩὶ
ὬὥὰὪ έὪ ὪὶὥάὩ

ὪὶὥάὩ ὰὩὲὫὸὬ

2
1.

The new version implements a possibility of time slots reservation. Time slots marked

as reserved canôt be assigned to any node. These slots serve for different purposes

(e.g. sending test messages). Information about reserved slots was included in the information

packet as shown in Figure 3.6. Each data packet sent to the serial link of the computer is

in format presented in Figure 3.5.

Figure 3.5 General data packet format

CHAPTER 3 REALIZATION

20

 Output meaning:

 00 ï Leading byte,

 DEST ADDR ï Destination address,

 SOURCE ADDR ï Source address,

 MSG LENGTH ï Data length,

 GROUP ID ï Message type,

 HANDLER TYPE ï Message type,

 DATA ï Data itself.

Figure 3.6 ITEM INF packet details

 Output meaning:

 DATA TYPE ï Data type,

 DATA LENGTH ï Length of information packet,

 TIME STAMP ï Time of packet generation,

 RESERV SLOTS ï Reserved slots,

 ID ï Node Id,

 FRAME ï Node actual frame length,

 NR OF SLOTS ï Quantity of assigned time slots,

 SLOTS ï Assigned time slots,

 NR OF NODES ï Quantity of neighbors,

 NODES INFO ï Neighbors info (Id, frame length, nr. of slots, slots).

CHAPTER 3 REALIZATION

21

3.2 Collection and ITEM module interconnection

 As mentioned in chapter 2.4, Collection module for collecting data from the network is

included in applications for operating system TinyOS 2.x. Using this module ensures data

delivery from data source to the base station. Sending and forwarding messages is based

on the CSMA protocol [10]. If we want to use Collection module together with designed

ITEM module, Collection module must be edited. These modifications are described in this

part of the thesis.

 The simplest solution is creation of a new module that interconnects these two

modules. Newly created module is called CollToItem. Interconnection is shown in Figure 3.7.

 Prepared data for sending to the root of the Collection tree are generated in User

application and then inserted into the Collection module. Collection module passes received

data to User application when the node is marked as the root of the tree. Messages that we

donôt want to send to the root of the tree must be inserted directly into the CollToItem module.

 Original version of the Collection module sends and receives data packets as shown

in Figure 2.6. But we want to send data by ITEM module, which ensures that the data will be

sent at the right time (in correct time slot). Direct data sending from Collection module is

replaced by passing data to the CollToItem module. Receiving data is conserved in Collection

module. Message acknowledgement is for this kind of communication (using TDMA) turned

off. It is because of the possibility of sending more data in own slot. A transmitting device

does not have to wait for confirmation from receiving device, which can reply only in own slot

with the ITEM module.

CHAPTER 3 REALIZATION

22

Figure 3.7 Collection and ITEM module interconnection

 The CollToItem module receives messages for sending from Collection module

and from User application. Received messages are marked with corresponding type

(estimation or forward message from Collection module, broadcast message from User

application) and stored in data queue provided by the ITEM module. If data queue is full

the CollToItem module indicates unsuccessful receipt of data. ITEM module signals

to the CollToItem module right time for sending. Data packet is removed from data queue

and sent over the same radio interface which is used in Collection module or User application

for receiving.

CHAPTER 3 REALIZATION

23

Figure 3.8 Collection module with ITEM data sending procedure

 Data generated at various points in the network are sent to the root of the tree. The root

forwards received messages to a serial link of the connected computer. A JAVA application

