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Abstrakt

Tato práce předkládá návrh systému pro zpracováńı obrazu a následnou
navigaci mobilńıho robotu specificky navržený pro architekturu pro-
gramovatelných hradlových poĺı (FPGA). Základem práce je popis
návrhu řešeńı, které vycháźı ze specifických vlastnost́ı FPGA ar-
chitektury a je jim přizp̊usobeno. Část zpracovávaj́ıćı obrazová data
je rozdělena na dvě části: detektor významných bod̊u v obraze
vycházej́ıćı z algoritmu Speeded Up Robust Features (SURF) a deskrip-
tor významných bod̊u založený na algoritmu Binary Robust Indepen-
dent Elementary Features (BRIEF). Obě části jsou kompletně imple-
mentovány v logice hradlového pole. Navigačńı algoritmus je určen
pro zpracováńı vestavným procesorem a vycháźı z algoritmu SURFnav
vyvinutého na Fakultě elektrotechnické ČVUT. Začátek práce je věnován
teoretickému úvodu do problematiky navigace mobilńıch robot̊u a stro-
jového viděńı. V závěru práce je vyhodnocen výkon detekčńı části algo-
ritmu.

Abstract

This thesis propose a system design for image processing and mobile
robot navigation specifically suitable for the architecture of the Field-
programmable Gate Arrays (FPGAs). The image processing part of the
design consists of the image feature detector based on the Speeded Up
Robust Features (SURF) algorithm and the image feature descriptor
based on the Binary Robust Independent Elementary Features (BRIEF)
algorithm. The image processing part is completely implemented in the
FPGA fabric. The navigation algorithm is designed as a software for
the embedded processor of the module. It is based on the SURFnav
navigation algorithm developed on the Faculty of Electrical Engineering
of the CTU. This thesis also provides the reader with the background of
the mobile robot navigation and image feature extraction methods. The
image feature detector part of the design is evaluated in the end of this
thesis.
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1 INTRODUCTION

1 Introduction

For any autonomous vehicle the ability to navigate in its environment is essential. If we
take evolution and nature as examples of perfect mastery of navigation we will realize that
many of the living organisms navigate themselves by sight. This is also the main motivation
for building systems that can navigate themselves by means of machine vision. With the
growing computational performance of nowadays computers we have seen in recent years
successes like first vehicles capable of autonomous navigation in an urban area [7] or a
squad of flying quad-copters capable of synchronized movement in a confined space [8].
All these systems use powerful on-board or off-board computers for navigation. However
sometimes the application imposes strict restrictions on hardware dimensions or power con-
sumption of navigation system. For example the unmanned aerial vehicles (UAVs) are a
typical platform which is restricted by its lifting capacity and a power consumption. These
two demands make any use of conventional powerful computer platforms or hardware ac-
celeration on graphics cards (GPUs) unusable because they are either too big to be carried
by the small mobile robot or consume too much power which make them unsuitable for the
long term operation on batteries. However if we take a closer look on the vision based navi-
gation methods the major computationally demanding part usually consist in tasks related
with the image processing. In the field of mobile robotics the local image feature extraction
is especially utilize. The image feature extraction algorithms are computationally intensive
however processes performed by them could be easily parallelized because they usually
perform same computational operations on the different sets of data. This make the image
feature extraction algorithms ideal for implementation on the Field-Programmable Gate
Arrays (FPGAs). The FPGA architecture allows the programmer to built custom designs
specifically suitable for given tasks.

In this thesis I would like to present a novel design for the FPGA architecture which is
capable of real-time visual navigation by following natural landmarks. The design consists
of the image feature detector and the image feature descriptor implemented in the FPGA
fabric and the navigation algorithm implemented in software of embedded processor of the
FPGA chip. The motivation behind the work on this thesis is to develop small, fast and
reliable architecture capable of continuous video stream processing on low-end FPGA chips.

In early stage of my work at the Intelligent and Mobile Robotics Group I originally had
to follow up on the work done by Jan Šváb in his master thesis [4]. He built a custom
FPGA-based camera module specifically suitable for applications in mobile robotics and
implemented a complete Speeded-Up Robust Features (SURF) algorithm [9] on the device.
However it has shown that his solution is very consistent and provides only minimum space
for any improvements. Few enhancements were introduced to the original design in order
to allow the module to be used in navigation tasks. The results of this work is in review in
the article [10].
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1 INTRODUCTION

During the work on the original design I suggested a new method of image feature detec-
tion specifically suitable for the FPGA architecture and tasks related with the mobile robot
navigation. It was decided to implement and try the new design. This thesis summarizes
the work done on this project which leads to the new design so far capable of real-time
image processing.

This thesis is structured in four chapters. The first two chapters provide the reader with
the background of the mobile robot navigation and image feature extraction methods. More
attention is paid to the SURF algorithm and the SURFnav navigation method [11], [3], [1].
Chapter “Method design” describes the suggested new method of the image feature de-
tection, the description and the navigation. Chapter “Implementation” describes the im-
plementation of the image feature detector and the image feature descriptor in the FPGA
fabric. Finally, the chapter Experiments contains evaluation of the image feature detector
part of the design.
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2 VISION BASED NAVIGATION

2 Vision based navigation

For any autonomous vehicle the ability to navigate in its environment is essential. The
process of navigation could be roughly described as a process of determining suitable and
safe path between the starting and the goal point. To achieve this objective the mobile robot
has to solve tasks of localization, mapping and motion planning [12]. Although localization,
mapping and motion planning are three different areas of interest and could be studied
separately they are closely related and in the context of the intelligent navigation are often
studied together. Figure 1 shows the simplified relations between these three tasks.

Intelligent
Navigation

SLAM

Navigation Exploration

MappingLocalization

Motion Planning

Figure 1: Navigation tasks relations. Courtesy of [1].

2.1 Localization

Localization is a process when the robot determines its position. Localization could be
either incremental or absolute [13].

2.1.1 Incremental localization

Incremental localization, also called dead-reckoning, assumes that the starting position
of mobile robot is known. During the navigation the robot estimates its current position
from the previously known position and an increment of travelled distance. The biggest dis-
advantage of this method is that it accumulates position error over time. Most well known
examples of dead-reckoning techniques are odometry or inertial navigation (i.e. naviga-
tion using accelerometers and gyroscopes). Due to accumulation errors these techniques
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2 VISION BASED NAVIGATION

are not suitable for long term localization, however they are usually cheap to implement
and easy to use so they are fairly popular. Examples of purely vision based incremental
localization methods would be visual odometry or systems based on optical flow. Visual
odometry (e.g. [14]) is a process of determining robot’s position using sequential camera
images to estimate the distance travelled. Optical flow is a principle used by optical mouse
for estimating speed and heading. On the same principle works for example the PX4FLOW
Smart Camera developed by 3D Robotics which uses sum of absolute differences (SAD)
method for optical flow determination between two consecutive images [15]. The advantage
of visual odometry and optical flow systems is that they provide the enhanced navigation
accuracy for robots using any type of locomotion on almost any surface.

2.1.2 Absolute localization

Absolute positioning means that the mobile robot has no information about its starting
position and has to estimate its position in a global coordinate system. This method usu-
ally relies on the map of the environment in which the navigation system must construct
a match between the observations and the expectations. Typically the mobile robot esti-
mates its position relatively to the landmarks in the area. These landmarks could be either
natural or artificial [13]. Natural landmarks are usually objects which are naturally present
in the environment (like walls, corners, etc.). The position of artificial landmarks, which
are placed manually in the environment in order to improve navigation accuracy, is usually
known in advance. By vision based localization it could be various blobs or patterns whose
detection in the image is more easier than the detection of natural landmarks. Another
examples of artificial landmarks are active beacon systems. Beacon systems always use
triangulation or trilateration for localization relatively to three or more transmitters which
actively transmits signals about its position. Beacon systems consist of beacons mounted
at known positions in the environment and a receiver on board of the mobile robot (or
vice versa). Examples of absolute positioning beacon systems could be global positioning
system (GPS) or Ubisense system [16].

2.2 Mapping

The problem of localization is very closely related to mapping. Systems that use vision
for navigation could be roughly divided into three main groups depending on whether they
use map of the environment for navigation or not [17]. These three groups are

• map based navigation,

• map-building based navigation,

• map-less navigation.
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2 VISION BASED NAVIGATION

In the first two cases the mobile robot localization is based on the map of its environment.
This model (map) represents knowledge about the environment. Maps could be generally
divided into four main groups [1], [18]: sensory, geometric, topological and landmark maps.

(a) 2D laser scan. (b) Occupancy grid. (c) Geometric map.

Figure 2: Map examples 1. Courtesy of [2].

Sensory maps are only appropriately represented and saved sensory data. Sensory maps
are quite simple to construct but they are always memory demanding particularly
when the long term navigation is performed. The best example of sensory map is
a point cloud produced by laser scanner. An example of the 2D point cloud is in
Figure 2a. Point cloud data could be further simplified in a form of occupancy grid.
Occupancy grids represent the environment by a grid consisting of cells where each
cell contains information about whether the accordant place is occupied or not. Fig-
ure 2b shows the occupancy map of a room with three obstacles the black color
corresponds to traversable area, white color represents detected obstacles. In the
figure it can be seen that occupancy grid maps also rely on the position of the mo-
bile robot. Areas which are out of sight or has not been mapped yet are considered
occupied (depicted by gray color).

Geometric maps are usually built from geometrical primitives such as lines or simple
bodies. These maps bring more abstraction than sensory maps and therefore occupy
less memory. They are usable for example in indoor or urban environments where a lot
of flat surfaces are present. Figure 2c shows the 2D geometric map of a room where
obstacles and walls are approximated by line segments. An example of geometric
mapping of the urban area is in the paper [19] where the authors used laser scan
data of a large scale urban area and built the map from plane primitives.

Topological maps are basically graphs. Nodes represent the most characteristic places
of the environment and edges represent routes. Information about how to navigate
from one node to the another could be bound to edges. An example of topological
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2 VISION BASED NAVIGATION

(a) Topological map. Courtesy of [3]. (b) Landmark map (SURFnav algorithm).

Figure 3: Map examples 2.

map would be a map of public transport system. Another example is in Figure 3a
where a topological map of sidewalks in the park is depicted. An example of visual
topological mapping is in the paper [20].

Landmark maps are used frequently in the field of mobile robot visual navigation.
Landmark map contains information about landmarks which could be observed from
given location. Landmarks should be salient points or areas in the image which are
easily detectable, recognizable and traceable. Localization and navigation is done
by detecting landmarks and matching them with those from the map. In Figure 3b
there is a possible representation of the topological map. Black line represents the
mobile robot path. Black points represent individual detected features and blue lines
correspond to feature tracking during the robot’s movement. The dashed red line
corresponds to the current position of the mobile robot. This implies that the mobile
robot should observe image features which are marked by red circles from its current
position.

2.2.1 Map based navigation

These are systems that use map for navigation. This map is one of aforementioned types.
There are two types of map based navigation systems [17]. The first one are systems that
need a complete map of an environment before the navigation starts.
The second type of map-based navigation techniques are those called “teach and repeat”
techniques. The map is not provided to the robot in advance but it is built by the robot
during the first guided pass through the environment. In the field of visual navigation it is
mainly the sensory or the landmark map.

Paul Furgale and Timothy D. Barfoot published several papers on the long term teach
and repeat methods. In the article [21] they presented solely visual teach and repeat method
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2 VISION BASED NAVIGATION

based on the stereovision and tracking of image features. During the teaching phase the
mobile robot is logging stereo images which are subsequently postprocessed into a series
of overlapping submaps. During the repeat pass the mobile robot uses the database of
submaps to repeat the route. The system can start at any place along the pre-learned
path. The method combine topologically connected key frames (submaps) with a con-
troller that attempts to drive the robot to the same viewpoints along the pre-trained path
(visual odometry). It means that during the repeat phase the algorithm interleaves local-
ization and visual odometry for path following. In the paper [22] they extended previously
described solely visual method with laser scanners for motion estimation.

Article [23] presents a simple form of teach and repeat navigation. It utilizes a map
consisting of salient image features remembered during a teaching phase and a simple left-
right turn algorithm based on tracking image features for mobile robot steering during the
repeat phase.

Another teach and repeat method called SURFnav [11] was developed on the Czech
Technical University. The SURFnav navigation is based on the monocular vision supported
by the dead-reckoning. The dead-reckoning techniques are separately not suitable for the
long term localization because they accumulates position error. Therefore the mobile robot
uses the vision for estimation of its position and heading. In the article [11] is mathemat-
ically proved that the heading correction itself can suppress odometric error keeping the
position error bound and is sufficient for the long term robot localization. Moreover the
algorithm’s computational complexity doesn’t grow together with the map growth which
makes the SURFnav algorithm well suitable for long term navigation and embedded plat-
forms with limited computational power.
During the teach phase the mobile robot is guided along straight line segments through the
environment, measuring distance travelled by dead-reckoning and composing a landmark
map of the environment. During the repeat phase the mobile robot drives the individual
segments as follows. At each segment start the robot is turned to the desired direction
according to compass value. During the traversal of the segment the heading of the robot
is corrected based on matched visual features from the map and from the current observa-
tion. This method is called visual compass. The end of the segment is recognized according
to traveled distance, which is measured by odometry.

Other examples of visual teach and repeat algorithms could be found in literature. In
the paper [17] there is a brief overview of these methods.

2.2.2 Map-building based navigation

These are systems that build a map of the environment as they traverse through it.
It means that they are self-localizing the robot in the environment simultaneously during
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2 VISION BASED NAVIGATION

the map construction. This is called Simultaneous Localization and Mapping (SLAM) [24].
However this procedure leads to problems that are directly connected with the nature of
such algorithms. On the one hand the map building of the environment depends on accurate
localization of the robot but on the other hand the robot localizes itself within that map.
This leads to the observation that localization and mapping errors accumulate over time
and motion. SLAM is therefore defined as a problem of building a model leading to a new
map, or repetitively improving an existing map. A lot of examples of SLAM algorithms
could be found in literature (e.g. comprehensive overview of visual SLAM methods is in
the paper [17]).

2.2.3 Map-less navigation

These are systems that do not use any map for navigation. Therefore they are also
called reactive navigation systems. Navigation is only a reaction on current observation of
the environment. Map-less navigation systems mostly include reactive techniques that use
visual clues derived from the segmentation of an image, optical flow, or visual odometry for
the navigation. Typical representative of these methods is GeNAV system [25] developed
by Intelligent and Mobile Robotics Group. GeNAV is a system for unstructured roads
following and crossroads recognition based on the texture segmentation of an image. The
algorithm seeks the edges of the unstructured road and navigates the mobile robot in its
center. If it detects the corssroad it informs the control computer.

2.3 Motion planning

Motion planning is a process of finding suitable and safe path between the start and
the goal positions. Motion planning is usually based on results of the localization and the
mapping.

By the map-based and the map-building based navigation it depends on the map. By
the sensory or the geometric map the navigation can be performed for example by means
of the Virtual Force Fields [26], where the goal point produces virtual attractive force and
every obstacle produces virtual repulsive force, or by means of the Rapidly-exploring Ran-
dom Tree (RRT) [27]. The RRT algorithm is capable of path planning for mobile robots
respecting their kinodynamic constraints. In Figure 4 there is an example of path planning
using RRT algorithm.
Navigation on topological maps is quite simple because it can use any graph traversal al-
gorithm to reach the goal (e.g. A∗ algorithm or the greedy algorithm)
By the Teach and Repeat methods the primary motion planning is provided by the human
during the first guided pass through the environment.
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2 VISION BASED NAVIGATION

Figure 4: Path planning using RRT algorithm. Courtesy of [3].

Specific kind of motion planning is exploration, when the mobile robot plans its motions
in order to explore specific area. By exploration the goal is to get the mobile robot in place
where it can obtain new information of the environment.
Another field of motion planning is related with formation control [28], swarm robotics [8]
and agent technologies [29] where the motion planning algorithms need to plan the suitable
path for more mobile robots.
There are also algorithms which do not implement any higher intelligence for motion plan-
ning. Typical example are various household cleaning robots which are not aware of the
shape of the area and perform only simple random reactive navigation inspired by insect
behaviour.

In conclusion the efficiency of motion planning algorithms is generally influenced by
their ability to retrieve the knowledge about their environment and the ability to process
these knowledge.
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3 IMAGE FEATURE EXTRACTION ALGORITHMS

3 Image feature extraction algorithms

Image feature extraction is considered to be a high-level image processing technique,
which performs operations over an image in order to extract local features, which could be
either points, regions or edge segments. Local features are areas of the image, which are
expected to be reliably and repeatably detectable, preferably from a wider range of camera
positions. They are used in many machine vision applications such as object recognition,
robotic mapping and navigation, image stitching, 3D reconstruction or video tracking.

Image feature extraction always consists of two phases: the detection and the descrip-
tion. The interest points detection is a process which purpose is to identify the salient
points in the image. Its input are the image data and output are locations of interest
points in the picture optionally together with some more information about the located
point (e.g. scale, contrast, etc.) The interest point description is a process when the sur-
rounding of the detected interest point is described in order to allow the feature matching.
The feature matching is a process when the description of two points is compared in order
to determine whether these two points corresponds to the same feature of the environment.

This chapter provides the reader with basic overview of commonly used feature extractor
algorithms with focus on interest point detectors and related descriptors which are used
in robotic navigation. More attention is paid to the Speeded Up Robust Features (SURF)
algorithm, which is a part of the original implementation [4]. Separate part discusses known
implementations of image feature extractors on the FPGA architecture.

3.1 Interest points detection

Interest points detection is a process of feature extraction, which purpose is to identify
interest points in the image. A lot of algorithms have been proposed on this topic. A com-
prehensive overview of image feature detector algorithms is in article [30].

One of the first interest point detectors was the Moravec operator introduced in the
year 1980. After that the feature detection has been a growing field in the computer vision.
Moravec operator works mainly as a corner detector defining corner as a point with low
self-similarity. It measures the differences between a sliding image window and windows
shifted in several directions. This method is called auto correlation.
The Harris corner detector [31] is based on the Moravec operator but it is more robust to
noise, intensity and rotation changes. It uses a Gaussian to weight the derivatives inside
the sliding window. Several Harris-based algorithms was proposed mainly to deal with the
low scale invariance of the original detector. Their overview can be found in the article [30]
One of the most robust image feature detectors is the Scale Invariant Feature Transform
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3 IMAGE FEATURE EXTRACTION ALGORITHMS

(SIFT) detector [32] that apart from detecting features proposes a descriptor that is invari-
ant to scale, rotation and illumination changes. It uses the difference of Gaussians for image
feature detection. However fully implemented SIFT is highly computational demanding.

3.1.1 Speeded Up Robust Features

The original Speeded Up Robust Features (SURF) algorithm as proposed by Bay et al [9]
relies on estimation of Gaussian and Haar wavelet filter responses by box filters. It consists
of four stages: integral image generation, interest point detection, orientation assignment
and descriptor generation.

Integral image generation This is a key component of SURF algorithm because it sig-
nificantly reduces memory and computational demands. When using integral image
it is necessary to perform only four read operations in order to calculate rectangular
area integral of any size. The integral image is calculated using the equation 1.

IΣ(x, y) =
x∑

i=0

y∑
j=0

I(i, j) (1)

Figure 5: Integral image usage illustration. Courtesy of [4].

The usage of integral image is shown in figure 5, where the integral over the gray
area is calculated using the equation 2.

IΣ(ABCD) = IΣ(A) + IΣ(D)− IΣ(B)− IΣ(C) (2)

Interest point detection The second stage identifies interest points by finding local
maxima among determinants of Hessian matrices. Equation 3 shows definition of
this determinant for a general two dimensional function f .

H(x, y) =

∣∣∣∣∣∣∣∣
∂2f

∂x2

∂2f

∂x∂y
∂2f

∂y∂x

∂2f

∂y2

∣∣∣∣∣∣∣∣ =
∂2f

∂x2

∂2f

∂y2
−
(
∂2f

∂x∂y

)2

(3)
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3 IMAGE FEATURE EXTRACTION ALGORITHMS

In the case of machine vision the two dimensional function actually represents the
image luminance. In the original SURF the second order partial derivatives are re-
placed by convolution of the image with derivatives of appropriate Gaussian kernels.
Thus, the equation (3) becomes:

H(x, y, σ) =

∣∣∣∣Lxx(x, y, σ) Lxy(x, y, σ)
Lxy(x, y, σ) Lyy(x, y, σ)

∣∣∣∣ (4)

Where Lxx(x, y, σ) represents a convolution with a second order derivative of a dis-
cretized twodimensional Gaussian of variance σ. The SURF detector approximates
the Gaussian kernel responses L with box filter responses D. Figure 6 shows the
comparison of the original Gaussian kernels Lxx, Lyy, Lxy with their box filters ap-
proximations Dxx, Dyy, Dxy. Convolution of the image with these kernels is calculated
much faster using the integral image. The box filter approximation allows to rewrite
equation (4) as H ∼ DxxDyy − (0.9Dxy)

2. By the SURF algorithm the coefficient of
0.9 represents the weighting mechanism which compensates the box filters approxi-
mation.

Figure 6: Discretized Gaussian kernels and their approximations. Courtesy of [4].

To achieve scale invariance the algorithm uses filters with multiple sizes. This creates a
three dimensional space of determinant results called the scale space. After estimation
of the Hessian determinants on all the scales for the whole image their local maxima
are extracted. Located local maxima are then compared with predefined threshold.
The point is declared an image feature if it passes both conditions.
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3 IMAGE FEATURE EXTRACTION ALGORITHMS

Orientation assignment This phase is connected with the descriptor generation. To
achieve the orientation invariance, which is important in many machine vision ap-
plications, the interest point is assigned a “dominant direction”. This direction is
calculated from the responses of Haar wavelet filters centered around the interest
point.

Descriptor generation The original SURF descriptor is a 64 element wide vector of
floating point numbers calculated from a square area neighbouring the interest point
rotated in the direction of the dominant direction. This neighborhood is divided in
16 equal sub-squares, which are regularly sampled by Haar wavelet filters. Horizontal
dx and vertical dy Haar wavelet responses are weighted by a 2D Gaussian func-
tion centered at the interest point. The resulting values within each sub-square are
summed to form a vector

∑
dx;
∑
dy;
∑
|dx|;

∑
|dy|. The vectors of all sub-squares

are chained to form a vector and then normalized in order to obtain final descriptor.
The SURF descriptor contains also the sign of the interest point’s Hessian value in
order to simplify feature matching. Since the SURF detector usually finds interest
points on blob-like structures, this sign distinguishes light blobs on dark background
from the opposite case.

3.2 Interest point description

The interest point description is a process when the surrounding of the detected interest
point is described in order to allow the feature matching. The resulting descriptors can be
mutually matched using their euclidean distances (or other measures). Many algorithms
features their own descriptor (e.g. SIFT, SURF) however there are also descriptors which
can be used with almost any feature detector. The original SURF descriptor was presented
earlier in this chapter. However it takes a lot of computation operations in floating point
numbers to assemble it. This is not very good for embedded applications because specialized
hardware funds need to be utilized by microprocessors or microcontrollers in order to be
able to process floating point numbers efficiently. Therefore some other descriptor which is
easy to construct was searched for.

3.2.1 BRIEF descriptor

The Binary Robust Independent Elementary Features (BRIEF) descriptor was proposed
in paper [5]. It is a fast to implement easy to construct image feature descriptor which uses
pairwise intensity comparison of pixels inside an image patch which surrounds located fea-
ture. These comparisons form a set of unique binary tests which are subsequently stored
into an nd-dimensional bit vector. In the original paper the nd constant takes values of 128,
256 and 512. Several different approaches to choosing the test locations are proposed in the
paper. However it has shown that completely random set of binary tests performs better
than any artificially created set of tests. In Figure 7 there is an example of two random
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3 IMAGE FEATURE EXTRACTION ALGORITHMS

sampling BRIEF and the artificially created BRIEF descriptor. The descriptor similarity
can be evaluated using the Hamming distance, which is very efficient to compute.

Figure 7: BRIEF descriptor binary tests examples. Courtesy of [5].

Several improvements were proposed to the BRIEF descriptor since the original pa-
per was published. Mainly improving the descriptor’s rotation invariance. Binary Ro-
bust Invariant Scalable Keypoints [33] (BRISK) is a scale and rotation invariant version
of BRIEF which uses a deterministic comparison pattern. Oriented FAST and Rotated
BRIEF [34](ORB) is another attempt to achieve a scale and rotation invariant BRIEF.
It uses FAST (Features from Accelerated Segment Test) as a keypoint detector. By the
same authors of [5] there is an improvement of original method D-BRIEF [35] which uses
discriminative projections for descriptor construction.

3.3 FPGA based image feature extractors

In the recent years the popularity of the FPGA based image processing has grown
rapidly. A lot of articles on image processing by FPGA was published. This section lists
the known image feature extractors implemented in the field programmable gate arrays.

From the FPGA SIFT implementations there are implementations by Bonato et al [36]
and Feng-Cheng Huang et al [37]. Bonato et al presented a complete SIFT implementation
for the Altera Stratix II FPGA capable of feature detection on images with the resolution of
320×240 pixels in 33 ms. However they implemented the descriptor calculation in the soft-
core processor with throughput of one descriptor per 11.7 ms which significantly restricts
the number of detected features by the real time applications. Feng-Cheng Huang et al
proposed an architecture for SIFT feature extraction which is capable of feature detection
on the images with the resolution of 640×480 pixels in 3.4 ms and of the feature description
in 0.03 ms per feature. However the article doesn’t specify the utilized FPGA platform and
it can be only roughly concluded that the design occupies 1.3 million logic gates.

The first published FPGA acceleration of SURF is [38]. Another implementation was
proposed by Bouris et al [39]. They presented an implementation capable of processing the
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3 IMAGE FEATURE EXTRACTION ALGORITHMS

images with the resolution of 640×480 pixels at 56 frames per second. However they perform
only the feature detection and orientation assignment and not the feature description. From
their paper the number of processed features is also unclear. Another implementation was
proposed by Battezzati et al in the article [40]. Their approach uses massive parallelization
of the whole algorithm in two Xilinx Virtex-6 FPGAs achieving feature detection on the
images with the resolution of 640×480 pixels in 3.0 ms and the feature description in
0.01 ms per feature. However these results are achieved at the cost of extreme utilization
of the FPGA fabric. Last known implementation of the FPGA SURF was proposed by
Schaeferling et al [41]. Their Flex-SURF implementation is flexible in image size processing
and features a specialized memory access management. The descriptors are computed in
the embedded hardcore processor.
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4 Method design

This chapter intends to provide the reader with the description of developed navigation
algorithm. I originally had to follow up on the work done by Jan Šváb in his master
thesis [4]. During his studies Jan Šváb developed an implementation of original SURF
algorithm on FPGA and built a specialized hardware module suitable for the machine
vision applications. However it has shown that his implementation was very consistent and
in the hardware (FPGA configuration) part there is not much to improve. Partly because
the FPGA fabric was almost all used by the original implementation. Partly because the
hardware description language in which the implementation is written is almost impossible
for reverse engineering. This is caused by the fact that this language is not interpreted by
processor line by line but only specifies the dataflows through programmable logic which
means all the actions are done in parallel. Room for improvement has shown to be in the
software and in the minor improvements which make the minimodule more suitable for use
as a self-contained navigation platform [10]. These improvements consisted in connecting
auxiliary cores to the original design which perform control of the mobile robot, odometry
reading and communication with the secure digital (SD) memory card.
Therefore I have developed a new algorithm for the image feature extraction specifically
suitable for FPGA chips and realtime mobile robot navigation. In this chapter I would
like to describe the algorithm and explain why I implemented the individual parts of the
algorithm in a specific way. The algorithm consists of the image feature detection, the
image feature description and own visual navigation. The image feature detection part is
custom designed and it is highly optimized for use on the FPGA platform. In principle it
is based on the original implementation but it is simplified so it can achieve the real time
performance. The image feature description part uses BRIEF descriptor for description of
interest points. The navigation algorithm is based on the SURFnav algorithm.
The first part of the chapter describes the architecture of FPGA chips which is necessary
for definition of FPGA strengths and weaknesses. The second part describes the developed
image feature detector. The third part is about used image feature descriptor and the last
part is about the navigation algorithm.

4.1 Field-programmable gate array (FPGA)

The field-programmable gate array (FPGA) belongs to the family of semiconductor de-
vices called Programmable logic devices (PLD). PLD is an electronic component used to
build reconfigurable digital circuits. Unlike a logic gate, which has a fixed function, a PLD
has an undefined function at the time of the manufacture. Before the PLD can be used it
must be programmed.

FPGA contains the programmable logic components called Configurable logic blocks
(CLBs) arranged in an array and a hierarchy of reconfigurable switches that can rearrange
the interconnections between the logic blocks. Typical structure of this architecture is in
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Figure 8: FPGA architecture.

Figure 8. Single CLB usually consists of a few logic cells. A typical cell consists of a con-
figurable switch matrix with 4 or 6 inputs called Look-up table (LUT) which implements
combinatorial logic, D-type flip-flop gate which implements sequential logic, full adder and
some circuitry which determines global behaviour of the logic cell. Today’s FPGAs can
have up to several millions of logic cells.
Another important part of nowadays FPGA chips are clock management and generation
circuitry (PLLs, DCMs), embedded memory blocks (block RAMs) and embedded multipli-
ers. These components allow synthesizing designs with higher speed, clocking or memory
demands. A recent trend is to incorporate traditional FPGAs with the embedded micro-
processors and related peripherals to form a complete “system on a programmable chip”.
Therefore we can meet devices with integrated hardcore processors and various endpoints
for high-speed communication buses (e.g. Ethernet, SATA, PCI Express). An example of
such architecture is depicted in Figure 9 which shows the structure of Xilinx Virtex-5 fam-
ily chip.

The FPGA configuration is generally specified using the hardware description language
(HDL) or the schematic design. Programming the FPGA is very different from the classi-
cal programming. Classical program runs on a processor and it is interpreted line-by-line.
In contrary to the FPGA programming where the code only specifies the dataflows through
the FPGA fabric. But this actually gives the programmer the ability to develop a special-
ized and highly optimized design which can outperform almost any conventional design.
Moreover this optimization usually leads to the possibility of using slower clock and there-
fore reduce the device’s power consumption.

When the design is ready to be implemented on FPGA chip, using an electronic design
automation tool, a technology-mapped netlist is generated. Netlist can then be fitted to
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I/O ports

PowerPC 440 processor

PCIe and Ethernet endpoints

Clock regions

Clock generation circuitry
(PLLs, DCMs)

embedded block RAMs

embedded multipliers

Figure 9: FPGA structure.

the actual FPGA architecture using the place-and-route process. It is also a good practice
to write the simulation files for every design entity. It helps with the verification of design
functionality and with the testing of the design for any unexpected situations.

The main drawbacks of the FPGAs are their cost and the time needed for development
of an application. Compared with microprocessor designs FPGAs can offer true parallelism
and the opportunity of designing fully custom and optimal designs. However learning to
use or design complex FPGA systems is more challenging and also the debugging of the
design is more difficult than by software approaches. Another issue is connected with the
HDL programming because every developer uses his own coding style, making it almost
impossible for reverse engineer of the code. This drawback can be partially suppressed by
using and respecting the programming methodologies such as [42], [43].

4.2 Image feature detector

The image feature detector developed for purposes of this thesis is derived from original
SURF detector (see chapter 3 for details) but it is highly optimized for the use on FPGAs.
First of all I would like to present a closer look on SURF algorithm and comment the
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individual parts from the view of FPGA programmer. I would like to provide the reader
with the conclusions which lead me to implement the design the way I did.

4.2.1 Integral image generation

The whole algorithm starts with the generation of an integral image (see chapter 3
for details). The calculation of integral image is very simple and it is performed similarly
on FPGA and in software. It consists of an array where the values of the integral image
from previous image line are stored and of a sum register. The calculation is performed
so that with every pixel the integral image value is calculated as a sum of value of sum
register which sums luminance of pixels from the beginning of the image line, and a value of
integral image of pixel right above the current pixel. The generation of integral image has
only one issue. For example if we want to calculate an integral image of a picture with the
resolution of 1024×768 pixels in grayscale(8 bit per pixel) the integral image value binary
representation can occupy 28 bits so the whole image occupies 3.5 times more memory
than the original image. So if we don’t want to lose any data, we need to dimension all
the FPGA logic the way it can handle such numbers. This consequently leads to higher
utilization of the FPGA fabric. Another problem with integral image is its storage. Despite
the modern FPGAs incorporate embedded block RAMs the size of an integral image on
standard resolution frame can’t be stored in the device. To my best knowledge there are two
implementations of SURF algorithm on FPGA which rely on storing an image in embedded
block RAMs. Bouris et al [39] presented an implementation which can process images with
resolution only up to 640×480 pixels where the integral image storage occupies 72% of
block RAM resources in the Xilinx Virtex-5 device. Battezzati et al [40] presented a short
paper on the SURF architecture which also relies on storing the integral image data inside
the FPGA. Their solution occupies 90% of two high-end Xilinx Virtex-6 FPGAs. Based
on the above it is obvious that for the price of higher speed extreme utilization of FPGA
fabric needs to be paid.

4.2.2 Hessian detector

In software the contribution of integral image is undeniable. As it was mentioned in
chapter 3 it is necessary to perform only four read operations in order to calculate the
rectangular area integral of any size. This feature is mostly utilized by Hessian point de-
tector. It significantly helps to speed up the convolution of an image with the appropriate
Gaussian kernels. Considering the size and number of these kernels it would take much
more time to make the convolution pixel by pixel. This is partly due the processors se-
quential nature. On the other side the FPGA can utilize parallel logic so it should be
possible to do the convolution “on-line”. This would mean buffering only enough data, to
be able to calculate the appropriate responses of Gaussian kernels. But if we take a closer
look it would be impossible to actually calculate the responses. The smallest Gaussian
kernel in original implementation is of 9×9 pixels size and features 126 weighted pixels (for
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all kernels Dxx, Dyy, Dxy). It would eat up an enormous portion of FPGA fabric to perform
the sum of these weighted elements reliably and fast. With such an utilization the scale
space construction wouldn’t be even possible.
This leads to an idea of simplifying the Gaussian kernels. In my algorithm the Gaus-
sian kernels are replaced with three point central numerical second order differences [44].
Equations 5, 6 and 7 show numerically calculated second order partial differences of two
dimensional function at the point x, y where h is a stepping distance.

∂2f(x, y)

∂x2
=
f(x+ h, y)− 2f(x, y) + f(x− h, y)

h2
(5)

∂2f(x, y)

∂y2
=
f(x, y + h)− 2f(x, y) + f(x, y − h)

h2
(6)

∂2f(x, y)

∂x∂y
=
f(x+ h, y + h) + f(x− h, y − h)− f(x+ h, y − h)− f(x− h, y + h)

4h2
(7)

After convolution with the simplified kernels the data are processed by Hessian detector.
As an original SURF algorithm, my implementation uses the determinants of Hessian
matrices to locate the image’s significant points. The determinants are calculated exactly
by definition described by the equation 4 in chapter 3.

4.2.3 Scale space construction

The size of convolution kernels is closely related with the scale space construction. The
scale space can be constructed in two different ways. The first one is to scale dimensions
of convolution kernels and perform convolution on fixed image. This way is used by the
original SURF algorithm because due to the use of an integral image it takes same time
to compute the response of convolution kernel of any size. The second one is to iteratively
smooth and subsample the original image with the fixed size of convolution kernels.
My algorithm uses the second way of constructing the scale space. The reason is in the
implementation of the algorithm in FPGA fabric.

As it has been shown thanks to simplifying the convolution kernels and lack of usability
of an integral image in further stages of the navigation algorithm the integral image gen-
eration has been omitted. The image feature detector was developed as on-line from the
beginning. This means that it processes the data stream of any source directly. With con-
volution kernel of 3×3 pixels size on base scale it is only necessary to buffer 3 consecutive
image lines. After that, with every incoming pixel the kernels produce the result of con-
volution with underlying 9 pixels for further processing by Hessian calculator (the whole
architecture is described and depicted in chapter 5). The architecture of image feature
detector is divided into the separate processing chains, each detecting features on separate
scale. Each chain takes pixel data on the input and in the first stage buffers 3 lines of
them and produces the rescaled pixel data and the convolution data for further processing.
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D D Dxx yy xy

Figure 10: Comparison of convolution kernels.

These rescaled data are connected on the input of another processing chain. It can be said
that the scale space construction is only a residual product of buffering three lines of pixel
data which is necessary. So far the four scales are implemented in the hardware with scale
factor of two. This corresponds to convolution with kernels of sizes 3×3, 6×6, 12×12 and
24×24 pixels. The reason is in the implementation because it is more economical to use the
division by powers of two (in this case the sum of four pixels is divided by four) than to
divide by any other number. However it is possible to divide by any number but it would
take more FPGA fabric to do so. In Figure 10 there is a comparison of convolution kernels
of the same size from the original implementation and my implementation. The original
implementation kernels are in the first row, the simplified kernels are in the second row.
By Dxx and Dyy kernels black squares represent the weighting of each image pixel by coef-
ficient -2. By Dxy black squares represent the weighting of each image pixel by coefficient
-1. White squares represent weighting coefficient 1 and gray squares 0. It can be seen that
besides the Dxy kernel there is not a significant difference.

4.2.4 Interest point localization

The next step is to locate the local maxima amongst Hessian values. This is done by
comparing Hessian value with its eight closest neighbours. In order to achieve this three
lines of Hessians need to be buffered and after that processed simultaneously. After locating
the local maxima these are compared with the pre-defined threshold to produce the final
localization of interest points. In further stage of implementation these points could be
simply compared throughout the scale space in order to obtain the highest local maxima
amongst all located features but this functionality has not yet been implemented.
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4.3 Image feature descriptor

I chose the BRIEF descriptor (see chapter 3 for details) for my work because it had shown
that on a long term navigation scenario dataset it outperformed other feature descriptors
in speed and repeatability [6]. The BRIEF descriptor uses intensity comparison of pixels
inside an image patch which surrounds located feature. These comparisons form a set of
unique binary tests which are subsequently stored into an nd bit vector. In original paper
the nd constant takes values of 128, 256 and 512. For my work I decided to implement 128
bit long BRIEF descriptor on the patch of size 50×50 pixels. The composition of unique
binary tests has been generated randomly.

4.3.1 Descriptor generation

The generation of BRIEF is completely done in FPGA fabric. There is an implementa-
tion of BRIEF descriptor in the OpenCV library which uses an integral image to compute
the descriptor. This is logical since the features are normally detected on several scales and
therefore the patch and consecutively the pixel sizes need to be properly enlarged. But my
implementation doesn’t feature integral image generation and storage therefore the descrip-
tor needs to be calculated in another way. Descriptor calculation is done from the original
image which is stored in an external memory. If I save only the original image, it would
take a lot of memory read operations to calculate descriptors on higher scales. Therefore
the algorithm saves the original image together with its smoothed and subsampled copies.
Table 1 shows the performance comparison of description based on the integral image, the
original image and the original image with all the scales saved in the memory. Values in the
table are derived from computing necessary data for image with the resolution of 1024×768
pixels. The overall size in the memory is calculated as a number of pixels times bit width.
This bit width is 8 bit per pixel for the original and the rescaled images and 28 bit per pixel
for the integral image. The entry of number of write operations assumes a fully utilized
32 bit wide memory bus to an external memory. Number of read operations expresses an
amount of memory read operations which are necessary for calculation of one 128 bit wide
BRIEF descriptor on an appropriate scale. For the integral image and the original image
with all scales this amount is constant. For the original image saved in the memory it is
necessary to perform four times more read operations to calculate the descriptor with the
every following scale. Table 1 shows that when operating only on four scales it is most effi-
cient to buffer the image data for all of the scales. The precise implementation is described
further in the chapter 5.

4.3.2 Orientation assignment

By the computer vision algorithms it is usual to perform orientation assignment of the
descriptor so the interest point description is immune to rotation changes. This is necessary
for computer vision applications like image stitching or object recognition where there is
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Integral image Original image
Original image

with scales

Size in the memory 22 020 096b 6 291 456b 8 454 144b
Number of write operations 688 128 196 608 264 192
Number of read operations 1024 256/1024/4096/16384 256

Table 1: Description performance comparison.

high possibility of a bigger viewpoint change. However for purposes of the mobile robotics
the orientation assignment of the descriptor is not necessary. When using ground vehicles
the camera is usually mounted on top of the mobile robot and aims forward. When not
operating in extremely rough terrains the vertical axis of the camera remains still.

4.4 Navigation algorithm

The navigation algorithm is based on the SURFnav algorithm [11], [3], [1] briefly de-
scribed in the chapter 2. Now the algorithm will be described in more detail together with
proposed modifications. The algorithm consists of two main phases the teach phase and
the repeat phase.

4.4.1 Teach phase

During the teach phase the mobile robot is guided through the environment along the
polyline path. The polyline path is split into individual line segments creating the landmark
map of the environment. The algorithm uses the fact that when traversing the line segment
with camera heading forward the detected image features are migrating through the image
along the imaginary lines from the center of the image to the edges. Making the path a
virtual tunnel of image features. The local segment landmark map contains information
about in which part of the segment the image features were visible and what were their
image coordinates. This information is sufficient to compute image coordinates of the
landmarks for particular robot position. The landmark map is composed from entries which
structure can be seen in the table 2. In my implementation the image feature positions are
integer values and they are described by the BRIEF descriptor.

4.4.2 Repeat phase

The repeat phase of the algorithm navigate the mobile robot along the individual seg-
ments of the composed map. At the beginning of each segment the mobile robot turns to
the predefined direction by means of odometry and starts traversing the segment. During
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Record Value

Initial azimuth and length: 2.13, 7.03

Landmark 0:
First position: 760, 163
Last position: 894, 54
First and last visible distance: 0.00, 4.25
Descriptor: 1, 11010110001010001011101001...

Landmark 1:
First position: 593, 381
Last position: 689, 377
First and last visible distance: 0.72, 6.73
Descriptor: -1, 0100100011100110111001110...

Table 2: Segment landmark map composition.

the traversal the system detects image features and match them with the learned ones.
Figure 3b in chapter 2 shows the situation from the mobile robot’s point of view. The red
circles in the figure highlight image features which are searched in a current view. The
position of the red dashed line is determined by the means of odometry. If the match be-
tween keypoints is detected the difference between observed and expected position of image
feature in the image is calculated. The differences are used to create navigation histogram
with fixed number of bins. The maximum peak in the histogram determines the correction
of heading of the mobile robot.

Figure 11: Detected landmarks in the picture and the corresponding navigation histogram.
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Figure 11 shows the typical result of visual compass. Blue crosses mark currently visible
image features and green crosses corresponds to landmarks stored in the map. Matched
landmarks are connected with the lines. Correspondences near the center value are con-
nected with green lines, others are connected with the blue ones. The navigation histogram
is depicted under the picture showing that the mobile robot is slightly left from the pre-
learned trajectory.
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5 Implementation

In the previous chapter the theoretical basis for implementation is described. This chap-
ter describes the actual implementation of the algorithm in hardware (FPGA configuration)
and software. The first part of this chapter provides the reader with an overview of refer-
ence boards on which the implementation has been tested. The second part discusses the
proposed FPGA architecture and the last part is about the implementation of SURFnav
navigation algorithm in the software of the module.
Due to the necessity of previous theoretical testing of the detection and description algo-
rithm an implementation in MathWorks Matlab software was also developed. The actual
implementation has been developed in Xilinx ISE Design Suite System Edition [45]. The
ISE Design Suite System Edition includes ISE Design Software(XISE), Xilinx Platform
Studio(XPS), Software Development Kit(SDK) and System Generator for DSP. The ISE
Design software is the main application of the suite. It is the project manager, text and
schematic editor. It allows the user to built custom FPGA designs by means of HDL
programming, schematic drawing or by adding macro components from various libraries
to the design. Xilinx Platform Studio is used for creating the whole System On a Pro-
grammable Chip (SOPC) designs by adding and connecting components from the vast
database of embedded Intelectual Property(IP) cores. It also allows the user to built the
new IP cores by providing the assisted design flow. Both XPS and XISE are intended to
built the FPGA configuration and provide the user with the resulting bitstream. Xilinx
Software Development Kit provides programming environment for designs which features
embedded processors. It allows to built and compile software projects which can be then
run on FPGA specific processor architecture (softcore or hardcore).

(a) Schvab minimodule (b) Xilinx ML507 board

Figure 12: Development platforms.
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5.1 Reference boards

For the purposes of algorithm evaluation two development boards featuring same FPGA
chip have been chosen. The first of them is a Schvab minimodule, built by Jan Šváb [4], [10].
The minimodule composes of a standard off-the shelf Avnet AES-MMP-V5FXT70-G Mini-
Module Plus board and a custom baseboard specifically designed for computer vision ap-
plications. Figure 12a shows the minimodule with the connected heathsink over the FPGA
chip.
The second one is a Xilinx ML507 evaluation platform board. This is a high-end devel-
opment board which features a lot of auxiliary circuitry. Figure 12b shows the layout of
the development board. In the table 3 the main features of both boards are listed. By the
ML507 development board only circuitry which was utilized during the development of
this thesis is listed.

Schvab minimodule ML507 development board

FPGA Xilinx Virtex-5 Xilinx Virtex-5
XC5VFX70T-2-FF665 XC5VFX70T-1-FFG1136

Memory 64MB DDR2 SDRAM 256MB DDR2 SDRAM
32MB flash memory 32MB flash memory
4MB SSRAM 1.125MB ZBT synchronous SRAM
SD Card slot SD Card slot

I/O and serial port RS232 serial port
Communication USB 2.0 PHY Video input (VGA)

10/100/1000 Ethernet PHY Video output (DVI connector)
SATA master/slave subsystem LEDs, DIP switches, Push buttons
Expansion connector (23 pins) Expansion connector (96 pins)
Camera connector

Table 3: Reference boards features.

5.2 FPGA configuration

From the beginning of my bachelor project I set up a goal to develop an implementation
which can operate in real time. This means that all image features with corresponding
descriptors are calculated within the duration of one image frame. One image frame is
defined as a duration of full frame with digital video signal timing specifications. Digital
video signal consists of two main areas. Display area, where image pixel data are provided,
and blanking area, where there are no pixel data provided (corresponds to black color).
This is due to the historical development because the cathode ray tube (CRT) monitors
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which compose picture on the screen by beam deflection need some time to move the beam
from the end of one line to the beginning of the next line. For precise synchronization hor-
izontal and vertical synchronization pulses are provided. For standardized 4:3 resolutions
the display area forms about 70% of the whole frame. In Figure 13 there is a digital video
timing diagram showing both display and blanking area of the image and corresponding
synchronization signals.
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Figure 13: Digital video timing diagram.

In Figure 14 there is an overview of the proposed FPGA architecture. The design is
divided into four main parts: pixel I/O, feature detector, feature descriptor and embedded
processor with its peripherals. Pixel I/O part comprises of several cores, which purpose
is to provide further logic with pixel data and corresponding data-aligned clock signals
together with the signals determining position in the image. Feature detector takes the
stream of pixel data on the input and provides locations of image features on the output.
Feature descriptor part of the design takes positions of located features and calculates
corresponding descriptors. The Feature descriptor part utilizes the memory interface with
the on-board SRAM memory which has shown to be the key component in feature de-
scription process. Both the Feature detector and descriptor parts are custom designed and
completely standalone. They form a complete feature extractor which takes the image data
on the input and provide locations of key features together with their description on the
output. The last part in the design features embedded processor core with peripherals.
These peripherals are except one communication core all Xilinx’s IP cores. The Embedded
processor part is used for the actual visual navigation algorithm. Now every part of the
design will be presented in detail.
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Figure 14: Block diagram of the high-level FPGA architecture.

5.2.1 Pixel I/O

The reference board Xilinx ML507 features VGA in and DVI out circuitry making it
possible to connect the board with VGA output of the computer on one side and with the
display on the other side. This is a very useful feature for development of computer vision
algorithms. Thanks to this feature the programmer can instantly verify functionality of
the solution only by sight. Thorough testing can be performed later but for basic check
it provides an excellent help. Pixel I/O comprises of three individual cores: I2C CNTRL,
VGA COUNTER and VGA CNTRL.

I2C CNTRL core is a simple core which performs initialization of on board chips connected
to the VGA input and DVI output by means of i2c serial bus in order to assure their
correct functionality.
By VGA input chip (Analog Devices AD9980 High Performance 8-Bit Display Inter-
face chip) the initialization consists of setting correctly registry information about
incoming VGA signal. This helps the device to correctly synchronize with the incom-
ing analog data signal and provide clear and stable image and pixel clock for further
processing in FPGA fabric. It also provides the horizontal and vertical synchroniza-
tion signals, which all together form an external input of the whole implementation.
By DVI output chip (Chrontel CH7301C) the initialization consists of master enable
of the chip functionality and provision of information about incoming data signal
(from FPGA).
The protocol for communication with both devices is a standard i2c protocol without
acknowledging. As has been said this core is used only for initialization of auxil-
iary circuitry after start (or restart) therefore there is no need for implementing the
whole i2c communication interface. This core is suitable to perform initialization of
almost any i2c or i2c-like device, such as camera module (OmniVision OV9653 CMOS
camera) attached to the Schvab minimodule board.
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VGA COUNTER core is a second key component on the input of the design. It’s purpose is to
synchronize with the incoming horizontal and vertical pulses and provide the logic
with x,y coordinates of the right incoming pixel data. Together with x,y coordinates
there is one more output from the core which marks the display and blanking area
of the image.

VGA CNTRL core is an auxiliary output core which helps graphically represent any debugging
data from the FPGA logic. Moreover it can read the content of SRAM memory which
is used for storing the image data. It forms something like a presentation layer to the
DVI output chip, rearranging the data to match the correct timing and format for
displaying.

5.2.2 Feature detector

Feature detector is a system of heavily pipelined cores which are divided into four sep-
arate feature detection processing chains, each processing the image on a different scale.
Feature detection processing chain takes 8 bit wide pixel data stream on the input, calcu-
lates determinants of Hessian matrix and locates the local maxima amongst them. There
are seven cores in the design of the feature detection processing chain, each of them repre-
sented by an VHDL entity. The interconnection of individual entities is shown in Figure 15
(for better readability clock and reset signals are not depicted because they are connected
to all of the cores). The processing chain works as follows.

First of all three lines of pixel data are buffered in the PIXEL BUFFER core. This core
stores incoming image data in local block RAM resources and release them in appropriate

pixel_buffer
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Figure 15: Feature detection chain architecture.
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moment. It means that with every incoming pixel the core provides the luminance data for
three pixels located in the image above each other.

These pixel triplets are processed by two cores. The first of them is an auxiliary core
PIXEL SCALER, which performs the operations needed for subsampling incoming data. At
current state the PIXEL SCALER core utilizes logic of moving sum and provides the av-
erage value of luminance of four pixels in the shape of square with an edge length of 2
pixels. The second core to utilize pixel triplets is the DERIVATIVE COUNTER core. This core
computes the convolution of an image with simplified 3×3 kernels (see details in chapter 4).

The resulting data from the DERIVATIVE COUNTER core are processed by the HESSIAN CALC

core. This core computes the resulting determinants of Hessian matrix. These determinant
values are in fact signed numbers which can take values from -524 288 ([Dxx, Dyy, Dxy] =
[−512, 512, 512]) up to 262 544 ([Dxx, Dyy, Dxy] = [512, 512, 0]). In binary representation it
takes 20 bits to represent the determinant values.

To reduce the FPGA fabric utilization I decided to implement something like a floating
point representation of Hessian values by numbers which occupies only 8 bits. This looks
like a significant loss of precision but this operation is legit because the algorithm is not
interested in global maxima but local maxima. Therefore every Hessian value is compared
only with its 8 surrounding neighbours. This leads to an idea of comparing only the most
significant bits of the Hessian values behind the first logical 1 in the binary representation
of the value. Moreover this simplification partially suppresses jitter of the detector. This is
due to the fact that when the detector is fed by synthetic, fully digital, signal (e.g. image
buffered in the memory of the device) the luminance values of individual pixels are same
all the time (when processing the image over and over). When using any type of analog
to digital signal conversion (e.g. camera or VGA input) the luminance of pixels jitters a
little. This small jitter is then multiplied by DERIVATIVE COUNTER and HESSIAN CALC cores
and consequently produces big jitter of the whole detector. So the FPGA fabric utilization
and the jitter reduction are two main reasons to implement only comparison of the most
significant bits of Hessian values. Hessian values shrinking is implemented in a logic of
PRELOC MAX FINDER core.

Since the bit width of Hessian values is reduced to 8 bits it is possible to use the second
instance of PIXEL BUFFER core to buffer three lines of Hessian values.

The last core in the design of feature processing detection chain is the LOC MAX FINDER

core. This core compares the incoming Hessian values with its 8 closest surroundings and
produce a record with position specification of key feature if it locates a local maxima
which satisfies the threshold condition.
Now every core will be described in more detail.
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PIXEL BUFFER

It is a multi-purpose core for data buffering. It stores incoming data in three instances
of first-in first-out (FIFO) memory connected in chain and release them in appropriate
moment. The data buffering is completely controlled by the horizontal synchroniza-
tion pulses. In Figure 16 there is a simplified schematic of the PIXEL BUFFER core.
For better readability there are not clock and reset signals in the schematic. Clock
signals are only connected to the input and to the output ports of the individual
FIFOs and the reset signal is connected with the vertical synchronization signal to
form the master reset for the whole core.
With every incoming pixel the core provides data for three pixels located in the im-
age above each other. The number of stored pixels in each line (corresponds to each
FIFO) is controlled only by the first three horizontal synchronization pulses after the
vertical synchronization pulse which resets all the FIFOs. This allows changing the
width of the processed image without the need to reconfigure the core (this feature
could be utilize for example for multiplexing of the camera images from more sources
through one detector). There is also a horizontal synchronization enable signal which
is related with the design clocking and scale space construction which is described
further in this chapter.
The PIXEL BUFFER core utilizes three Xilinx FIFO18 primitives.
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Figure 16: Simplified block diagram of the PIXEL BUFFER core.

DERIVATIVE COUNTER

This core calculates the responses of derivative filters as stated in chapter 4. It consists
of three element deep 24bit wide shift registr which buffers incoming pixel data from
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PIXEL BUFFER. These data form 3×3 matrix from which the signed values of Dxx,
Dyy and Dxy filter responses are calculated. With every falling edge of the clock
incoming data and content of the shift register are shifted. With every rising edge of
the clock the core produces values of Dxx, Dyy and Dxy filter responses.

HESSIAN CALC

This core calculates the final value of the determinant of Hessian matrix according to
the equation 4 in chapter 3. It produces 24 bit wide signed number. The HESSIAN CALC

core utilizes two embedded multipliers for the calculation of the descriptor.

PRELOC MAX FINDER

Simple core which shrinks 24 bit wide Hessian values to 8 bit. The resulting 8 bit value
is formed from the sign bit, the 2 bit wide exponent and the 5 bit wide mantissa. The
resulting 8 bit value is shown in Figure 17. As mentioned above the Hessian values
can occupy maximum of 20 bits. Therefore the exponent part of the representation
indicates the position of the most significant ‘one’ in the Hessian value representation,
tailing the Hessian value into four quintuplets. Mantissa is then the content of that
quintuplet with the highest ‘one’ in binary representation.

7 0456

sign bit exp mantissa

Figure 17: PRELOC MAX FINDER result value composition.

LOC MAX FINDER

This core is intended to locate the local maxima amongst Hessian values which sat-
isfies the threshold condition and produce final entries with x,y coordinates of lo-
cated feature. It consists of three element deep 24bit wide shift registr (same as by
DERIVATIVE COUNTER core), which buffers incoming Hessian values from the second
instance of the PIXEL BUFFER in the feature detection chain. The content of the shift
register forms 3×3 matrix of Hessian values in which the center value is compared
with its 8 surroundings. If there is no higher Hessian value in the matrix and the
value satisfies the external 7 bit wide threshold condition the point is declared the
key feature. The LOC MAX FINDER core is the only core in the design of the Feature
detector which takes on the input x,y coordinates provided by the VGA COUNTER core.
These coordinates are used for the generation of key feature entry. This entry is a
24 bit wide logic vector which consists of the sign bit of Hessian value and the x, y
coordinates which are currently provided on the input of the core.

PIXEL SCALER

It is an auxiliary core which does not have to be implemented. Its purpose is to
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produce rescaled pixel data. As mentioned in chapter 4 the scale space construction
is done by resampling the original image data by the scale of two. The core takes the
data from the PIXEL BUFFER core on the input and performs moving sum over four
pixels in a shape of square with the edge length of two pixels. The resulting average,
which is performed by a simple bit shift, is sampled with provided clock signal from
higher scale. This is related with the clock generation mechanism which is described
further in this chapter. This approach also ensures best possible alignment of the
rescaled pixel data with the higher scale pixel clock.

So far there are four feature detection processing chains in Feature detector part of the
implementation. The first of them is connected directly with the Pixel I/O, processing the
image data on basic scale. The rest of chains are connected in cascade on the rescaled data
output of previous chain, together forming a four scale image feature detector.

The biggest task in development of Feature detector was to provide the logic with correct
and precise timing. Clock signals are derived from signals provided by VGA COUNTER core,
namely the vga x count and vga y count. The vga x count signal is incremented with
every incoming pixel clock positive edge. When the horizontal synchronization pulse is
detected the vga y count signal is incremented. To correctly implement the scale space
construction it is necessary to adjust the base clock signal. This consists of dividing the
base clock by two and skipping every odd line of the image (means the clock signal is
holding steady during the whole line). This procedure is repeated for every consecutive
scale. If we take a closer look it can be shown that the clocking signals can be derived
from the vga x count and vga y count signals. The division of the base clock on x axis
is quite obvious. If we look at the vga x count signal as the counter or register, which
value is incremented every clock cycle, it can be easily concluded that every bit of such a
counter (taken from the least significant bit) corresponds to division of base clock by two.
Skipping of odd lines could be derived from vga y count signal. For the base scale there
is no skipping. For the first scale every odd line needs to be skipped, this corresponds to
the least significant bit of vga y count register. For the second scale every odd line from
the first scale needs to be skipped, this corresponds to state where the least significant bit
and the second bit of the vga y count register are both in logic one. Etc.
Clock signals for every scale could be synthesize by only adding logical AND between the
respective signals, but it would mean gated clock signals which is bad design practice. Using
signals of clock and clock enable seems to be better idea but it would mean connecting
these signals in all the cores of each chain, which utilizes more FPGA fabric than the
third approach. The third approach is to provide the logic with continuous clock signal,
appropriately divided according to scale and the line skipping perform in the PIXEL BUFFER

core. Line skipping then consists of enabling inputs and outputs of the FIFOs in the
PIXEL BUFFER core which in fact is equal to enabling the horizontal synchronization pulse.
In conclusion the precise timing is provided by the clock signals which are derived from
the vga x count signal (synthesize tools can recognize dividing the clock by two which is
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not gated operation in FPGA fabric) and horizontal sync enable signals which are derived
from vga y count. Both the clock and the horizontal sync enable signals determine the
correct behaviour of the Feature detector.
Considering the performance of an individual chain it can process the continuous stream of
data, with only appropriate clock, horizontal synchronization and vertical synchronization
signals provided. The information about whether the point is a local feature or not is
delayed only by 4 image lines and 4 pixels behind the pixel data are provided on the input
of the chain.

5.2.3 Feature descriptor

This is a part of implementation which takes care of computing BRIEF descriptors.
During the development work on this thesis there was an idea to compute the descrip-
tor in the software on the embedded processor core (this strategy is utilized for example
by [4], [40], [39]). However it would mean a significant performance bottleneck for both the
memory bus utilization and processor cycles which will be spent by transfusing the image
data for and there. Therefore I decided to implement the description cores together with
the corresponding memory interface in FPGA fabric. The last question remains: “Which
memory should be utilized?”
If we take a closer look on method design (see chapter 4 for details) first of all the whole
image together with its subscaled copies needs to be stored in the memory. As it was
mentioned in the same chapter the inner block RAM resources can’t store such amount of
data. Therefore the implementation uses the SRAM memory on the development board.
Moreover the SRAM memory on the development board is a Zero Bus Turnaround (ZBT)
synchronous SRAM memory. ZBT SRAM memory eliminates dead bus cycles when turn-
ing the bus around between reads and writes, or writes and reads. It means that it has
zero latency, the data are only delayed by two clock cycles. Figure 18 shows the simpli-
fied timing diagram of ZBT SRAM memory. It demonstrates the ability of the memory to
perform read and write cycles consecutively without any waste cycles. SRAM memories
are also better in accessing stored data in a random order than other memories which are
designed for sequential access.

These reasons have been recognized as a key feature of interest point description imple-
mentation. When implemented in FPGA fabric, the implementation can fully utilize the
memory bus bandwidth and thus achieve the highest possible performance.
The Feature descriptor part of the design comprises of MEMORY MANAGER, FEATURE BUFFER

and DESCRIPTION CNTRL cores.
The MEMORY MANAGER core handles appropriate communication with the ZBT SRAM mem-
ory. It is the point where five different clock signals meets together. First of them is a
master clock signal for synchronizing the communication with the SRAM memory. At the
current point this clock corresponds to the base pixel clock. Several attempts had been
made to speed up the communication with SRAM memory in order to achieve higher
performance but with little or no success. The rest of the incoming clock signals are the

35/50



5 IMPLEMENTATION

clk

address

write_en

data_in

data_out

A1 A2 A3 A4 A5 A6

D1 D3

Q2 Q4

Figure 18: Zero Bus Turnaround SRAM memory timing diagram.

pixel clocks on all the scales. Together with the pixel clock signals pixel data are provided.
The MEMORY MANAGER core saves the incoming pixel data to the SRAM memory and when
there is no need for writing transaction it performs read operations on the address defined
by input rd address. This leads to maximum possible utilization of data memory bus
bandwidth. In the whole frame with the display resolution of 1024×768 pixels there are
1 083 264 clock cycles. 264 192 clock cycles are used for write operations(according to the
Table 1 in the chapter 4). This allows 819 072 possible read cycles.
The second core in the design is the FEATURE BUFFER core. This core is connected to the
processing chains and performs the final selection of image features for description, auto-
matic thresholding and image feature storage. Feature selection filters out points so close
to the image border, that their descriptor could not be calculated. The automatic thresh-
olding is a process when the implementation modifies the threshold for LOC MAX FINDER

core in order to maintain an approximately constant number of located image features per
image. This number is defined for every scale by two generics. The first of them specifies the
maximum allowable number of image features in the image, the second one the minimum
number of image features.
The last core in the Feature descriptor is the DESCRIPTION CNTRL core. This core reads the
stored image features from FEATURE BUFFER core and performs composition of the BRIEF
descriptor. This consists of providing the MEMORY MANAGER core with appropriate addresses
to read pixel data from. As mentioned in the Table 1 it is necessary to perform exactly
256 read operations to construct the BRIEF descriptor. Now every core will be described
in more detail.

FEATURE BUFFER

This core is connected to all four processing chains and performs final selection of
image features for description, automatic thresholding and image feature storage.
In Figure 19 there is a simplified block diagram of the FEATURE BUFFER core. The
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core takes feature data from LOC MAX FINDER core on the input. Then it compares
the x,y coordinates with the predefined set of constants xmin, xmax, ymin and ymax

which filter out all the key features that could not be described (they are too close to
the frame border). When the key feature succeed conditions the write enable signal
for FIFO is generated and the feature is stored in the FIFO memory for further
processing by the DESCRIPTION CNTRL core. All the write pulses are summed during
the duration of the one frame and this sum is compared with predefined constants
tmin and tmax. If this sum exceeds the tmax value the threshold is incremented by
one. When the sum underflows the tmin value the threshold is decremented by one.
This is the principle of the automatic thresholding which maintain the number of
located features between tmin and tmax values. The FEATURE BUFFER core utilizes
four instances of Xilinx FIFO36 primitive for the key feature storage.
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Figure 19: Simplified block diagram of the FEATURE BUFFER core.

MEMORY MANAGER

The MEMORY MANAGER core has shown to be the toughest core for development. Its
complexity lies in a fact that there are five different and discontinuous (odd line
skipping) clock signals which meet together in this core. The purpose of the core is
to save the image data that came from PIXEL SCALER cores of the detector chains
and in the spare time provides data to the DESCRIPTION CNTRL core for descriptor
construction. The core consists of four 32 bit wide buffers for incoming pixel data and
a state machine which controls the communication with the SRAM memory. When
the 32 bit wide register for any chain is full its content needs to be written to the
SRAM memory before next pixel data arrive. Experiments with “write on demand”
system didn’t work well so the precise deterministic write system has been utilized.
The SRAM memory clock is the base pixel clock. It means that every four clock
cycles the data for the base scale chain needs to be stored. Then every eight clock
cycles the data for the first scale chain needs to be stored and so on. Figure 20 shows
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the timing diagram of two write cycles. The diagram apply for the display area of
the image frame. During the blanking area only read operations are performed.
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scale0_data
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scale3_data

read cycles

Figure 20: Timing diagram of SRAM memory bus utilization during display area.

Every chain has also its own address range for the data storage. Images are stored in
the memory as if they were parts of a frame with the resolution of 1024×768 pixels
which is the base scale resolution. It means that when the memory is read out as a
static image with resolution of 1024×768 pixels, subscaled images are not distorted.
This allows using same address offsets for computation of descriptors on any scale.
There is only one issue with the Xilinx ML507 development board because it features
only 9 Megabits of SRAM memory. This is unfortunately not enough to save the whole
image on all the scales in desired format. Therefore only half of the base scale image
is present at the memory at any moment. When the base scale image reading reaches
the half of the image, it moves the writing address back to the first pixel and starts
rewriting the image from the beginning. It gives the DESCRIPTION CNTRL core only
512 image lines to perform descriptor composition for points located in the first half
of the image. However the Schvab minimodule board features 4 Megabytes of the
SRAM memory which is enough for storing whole images.

DESCRIPTION CNTRL

This core’s functionality is to assemble the descriptor for located features. It reads
the data from FEATURE BUFFER FIFOs and test them whether it is possible to per-
form description of located points. If it is possible it generates sequence of addresses
to be read out from the SRAM memory in order to assemble the descriptor. The
testing lies in comparing current value of y coordinate in the image (vga y count)
with y coordinate of located feature. The BRIEF descriptor requires the y coordi-
nate of located feature to be at least 25 lines above the current y coordinate. If it
was not, the descriptor would be assembled from two camera images instead of one
(the current one). The address offsets are stored in one instance of Xilinx RAMB18

38/50



5 IMPLEMENTATION

primitive. During the composition of the descriptor they are read out and added or
substracted to the x and y coordinates of located feature. These new coordinates are
then serialized to an address and send to the MEMORY MANAGER core. Incoming data
from the MEMORY MANAGER core are then compared in pairs and form the resulting
descriptor. When the generation is finished ‘done’ signal is generated and the data
are send to the Embedded processor part of the design. The number of descriptors is
limited by clock cycles during the blanking time and spared cycles during the display
time. Theoretically it is possible to compute 3199 descriptors during the duration of
the one frame, however the random distribution of features together with the need
of waiting for enough data to be buffered decreases the real amount of computed
descriptors somewhere about 400-500 descriptors per image.

5.2.4 Embedded processor and its peripherals

The Xilinx Virtex 5 FPGA contains hardcore PowerPC 440 processor (depicted in Fig-
ure 9 in the chapter 4). It is a main part of the embedded processor subsystem block.
Implementation of this part is slightly different than of the other parts of the design be-
cause it is almost completely built from Xilinx’s Intelectual Property (IP) cores. Building
such a SOPC design from IP components is quite simple because it is only necessary to
correctly connect the predefined IP cores and assign them correct properties (e.g. address
range, baud rates, etc.). The Embedded processor subsystem consists of several Xilinx IP
cores and one custom designed IP core. Xilinx cores provides functionality of the DDR2
memory controller for communication with auxiliary DDR2 memory, the BRAM controller
for storing smaller software designs, the UART communication interface, the floating point
unit attached by an auxiliary processing unit(APU) bridge directly to the PowerPC and
finally the interrupt controller.

Address R/W Bits Description

0x00 R 0 frame sync - bit distinguishing consecutive frames
21:31 x coordinate position of the feature

0x04 R 0:1 feature scale:
00 - base scale
01 - first scale
10 - second scale
11 - third scale

20:31 y coordinate position of the feature
0x08 R 0:31 descriptor first word (0:31)
0x0C R 0:31 descriptor second word (32:63)
0x10 R 0:31 descriptor third word (64:95)
0x14 R 0:31 descriptor fourth word (96:127)

Table 4: MASTER CNTRL core user accessible registers.
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The custom designed MASTER CNTRL core provides communication bridge between the
image feature extraction part of the implementation and the Embedded processor subsys-
tem. So far it has six accessible registers where the information about the incoming image
feature is stored. This core is directly connected with the DESCRIPTION CNTRL core on the
one side, and with the PLB bus and the interrupt controller on the other side. When the
DESCRIPTION CNTRL core generates the ‘done’ signal the key feature x,y coordinates to-
gether with corresponding descriptor are read out and stored in user accessible registers of
the core. After that the MASTER CNTRL core generates the interrupt signal which tells the
software running on the PowerPC processor that the new data are ready to be read out.
The list of user accessible registers is in the table 4.

5.2.5 Implementation costs

At the current state the Feature detector and the Feature descriptor is capable of pro-
cessing any image with the full frame width of 2048 pixels (including display and blanking
time) and a pixel clock of 200 MHz in real time. This corresponds for example to the
VESA Signal 1280×1024 @ 100 Hz timing with 1760 pixels full frame width and the pixel
clock of 190.96 MHz. Higher resolutions can be achieved by utilization of more internal
Block RAM resources for the PIXEL BUFFER core or by data buffering exclusion during the
blanking area of the image line. Higher pixel clock rate is achievable only in the Feature
detector part of the design. The currently used SRAM memory is limited by 200 MHz clock.

The custom designed part of the system occupies only 5% of Slices and 19% of inner
Block RAM resources when placed and routed on the Xilinx Virtex-5 FX70T FPGA. Full
design together with embedded processor and its peripherals occupies 36% of Slices and
25% of inner Block RAM resources. The largest part of Slices is occupied by auxiliary
floating point unit and DDR2 controller of the processor.

5.3 Software description

This section describes the software written in C language which runs on the embedded
PowerPC 440 processor. As stated until now the implementation of the feature detector and
the feature descriptor leaves the CPU performance intact. So the whole CPU performance
is dedicated to the tasks related with visual navigation. However due to the complexity of
the development of this thesis the actual navigation algorithm hasn’t been implemented
yet and it is the subject of the future work. So far the software of the device is capable
of initialization of every peripheral including the interrupt controller. After initialization
it enable interrupts for the PowerPC processor and defines an interrupt handler method.
When the interrupt is generated by the MASTER CNTRL core the interrupt handler method
reads out the MASTER CNTRL core user accessible registers and stores the incoming key fea-
ture data to the main system memory. These data are then sent to the computer via the
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UART interface. Due to the fact that the implementation processes 60 frames per second
with about 500 descriptors per frame the interrupt handling needs to be temporarily sus-
pend during the slow UART communication. It means that the implementation buffers
data for few consecutive frames then suspends interrupt handling and sends the data via
the UART interface to the computer.
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6 Experiments

This thesis introduced a new feature detection method which had to be evaluated.
Because it brings a significant simplification into the process of feature detection the main
question was if it can achieve comparable results in the mobile robot navigation. This
chapter describes the experiments which were done in order to evaluate the behaviour of
the feature detector.

The experiments were performed on the Xilinx ML507 development board which was
connected to the video output of the computer. The processed video signal was a standard-
ized VESA 1024×768 @ 60Hz video signal. This layout of the experiment also helped verify
the ability of the detector to operate in real conditions because it had to process basically
analog signal (the device was connected via the VGA interface). Two experiments were
performed in order to evaluate the stability of the feature detector and the performance in
a long term navigation task.

6.1 Stability test

The first test used the fact that the device was connected via the VGA interface to
evaluate the stability of the feature detector. By stability it is understood the detector’s
ability to repeatably detect the same image features in the image. In the earlier phase of
the development of this thesis the input image data were stored on the MMC memory
card connected to the development board. On such a stable data the detector performed
flawlessly without any jitter. However when connected to the VGA interface the detector
starts to jitter. The first test intended to test the detector’s ability to deal with this kind of
unstable signal therefore one image was processed 20 times by the detector and positions
of located image features were stored in the memory. The stability was measured as a
number of points which were detected in the image on the exact same position between
more images. The stability was calculated for 2, 10 and 20 consecutive frames. The image
feature detector produced in average 372 image feature positions per image and during
the whole test it marked 802 different feature positions in the image. Table 5 shows the
measured stability success rates for individual scales and number of processed consecutive
frames.

The results in table 5 show that approximately 50% of all the image feature data suffer
from the detector jitter in a long term. In my opinion these results are caused by minor
problems with the description part of the design which processes the data from the detection
part. When evaluated only by sight on the screen which is connected between the detector
and the descriptor part of the design it doesn’t seem that the detector would produce such
a big jitter. Moreover on the higher scales the detector jitter ceases which is in conflict
with the results. Further testing is necessary for evaluation of these results.
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Scale Stability[%] Stability[%] Stability[%]
(20 frames) (10 frames) (2 frames)

0 48.7 69.8 79.5
1 53.9 71.2 84.3
2 52.3 72.3 87.0
3 49.5 73.1 92.6

Table 5: Stability success rates.

6.2 Performance in the long term navigation scenario test

The second test measured the performance of the feature detector in a scenario of
outdoor vision-based longterm autonomous navigation. The evaluation method is based
on the article [11] and it is described in the article [6]. It focuses on the ability of the
feature extraction and matching algorithm to establish heading of the robot relatively to
the intended path. The evaluation algorithm establishes the robot heading by finding a
modus of horizontal displacements of the tentative correspondences. The modus is found
by histogram voting (as it is depicted in the figure 11 in the chapter 4). The dataset
used for evaluation contains 12 images from five locations covering seasonal changes of
the Stromovka forest park in Prague throughout the year. Figure 21 shows the seasonal
changes on one of the five locations. Figure 22 shows the rest of the locations. Individual
images at given location vary in seasonal changes and slightly in the viewpoint.
The evaluation was done for the sample Matlab implementation and for the key feature
position data obtained from the FPGA feature detector for the rates of 100, 200 and
400 detected features per image. The detection rates for the other feature detectors were

(a) November 2009 (b) December 2009 (c) January 2010 (d) February 2010

(e) March 2010 (f) April 2010 (g) May 2010 (h) June 2010

(i) July 2010 (j) August 2010 (k) September 2010 (l) October 2010

Figure 21: The dataset capturing the seasonal changes. Location II. Courtesy of [6].
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(a) Location I. (b) Location III. (c) Location IV. (d) Location V.

Figure 22: The dataset locations. Courtesy of [6].

provided by thesis supervisor (brief description of these algorithms is in the chapter 3).
Due to some issues with the feature descriptor part of the design the descriptors used for
the evaluation were computed in software from position data obtained from the FPGA.
Two tests were performed. One with the descriptor generated by Matlab according to the
implementation (means 128 bit long BRIEF descriptor) and the second with the OpenCV
sample BRIEF descriptor(512 bit long). Figures 23a and 23b show the dependence of the
success rate on the number of extracted features for the implemented BRIEF128 descriptor
and OpenCV BRIEF512 descriptor respectively.
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(a) Matlab BRIEF128 descriptor.
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(b) OpenCV BRIEF512 descriptor.

Figure 23: Heading estimation success rate..

The results show that both the FPGA and the Matlab implementations report approx-
imately the same estimation success rate. With the OpenCV BRIEF512 descriptor the
results are even better than for the implemented BRIEF128. This will be considered for
future work. On this particular dataset both the PC and FPGA implementations even
outperform robust image feature detectors like SIFT or SURF. In the evaluation only the
original BRIEF descriptor which uses STAR as a detector performs better.
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7 Conclusion

This thesis presented a novel FPGA design which is capable of real time image feature
detection and description. The main goal of this thesis was to develop an FPGA architecture
which is capable of the mobile robot navigation. Therefore I suggested a new method of
image feature extraction specifically suitable for the FPGA architecture and tasks related
with the mobile robot navigation.

The suitability of the design for FPGA platform is best expressed by the device uti-
lization. The custom designed part of the architecture occupies when placed and routed
on high-end Xilinx Virtex-5 FX70T FPGA chip only 5% of Slices and 19% of inner Block
RAM resources. This is so few that I tried to fit the architecture into the low-end Xilinx
Spartan-3E device and the design occupied only 32% of Slices. The design can also fit
with minor modifications without problems into the Altera Cyclone-IV E FPGA on the
DE0-nano development board [46] which is sold for 79$.

The implementation in the current state is designed to be capable of processing in real-
time any image with the full frame width up to 2048 pixels (including the display and
the blanking time) and a pixel clock up to 200 MHz. This corresponds for example to
the VESA Signal 1280×1024 @ 100 Hz timing with 1760 pixels full frame width and the
pixel clock of 190.96 MHz. The implementation is capable of feature extraction during the
duration of one image frame with the theoretical amount of about 3000 described features
per image (depends on the resolution).

All of these results are complemented with the feature detector evaluation results. Due
to the introduced simplifications I didn’t expect that the implementation can outperform
robust feature extractors like SURF or SIFT in the long term scenario navigation task.
Therefore I am convinced that the main goal of this thesis was achieved and that the
implementation can provide features for the mobile robot navigation.

Considering the future work on this project first I would like to finish the navigation
part of the design and test it with an actual mobile robot. The results of the detector
evaluation convinced me to push the design further and already now I believe that the
whole navigation algorithm can be implemented in the FPGA fabric.

The work on this project was very challenging and it definitely enriched me with a lot
of new experience that I would like to use in a further development of this project.
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Appendix

CD Content

In table 6 are listed names of all root directories on CD

Directory name Description
bp bachelor thesis in pdf format.
sources source codes

Table 6: CD content
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