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Abstract

Machine learning tasks typically require large amount of data for training. This dissertation
focuses on time series analysis, which is a frequent type of data collected in industry. The
desired application is modeling and analysis of machines behavior. The behavior models require
well-structured training data sets which are usually prepared manually. That is an expensive
and exhausting task prone to errors. This complication limits the growth of applications of
behavior models in industry, which motivated us to investigate the entire process of stochastic
modeling of machines behavior to automate the deployment process as much as possible.

Our research was initiated by a task of modeling industrial robotic-manipulator behavior
based on its power consumption, where we needed to segment a power-consumption time series
by particular robotic operations. This analysis served as a support for research of optimal
scheduling of robotic operations to reduce power consumption of robots. We expanded our
target domain from the robotic power consumption to a general repetitive behavior observed in
time series. Our findings are verified on the robotic use cases, but we keep our methods general
enough to be applicable on wide range of industrial tasks, which was verified by successfully
applying the methods on batch-heating ovens.

To reduce the manual interventions in the modeling process, we formulate the segmentation
task as the motif discovery task. Motif discovery searches for repetitive behavior in time series
and it has quadratic time complexity unless an approximation methods are used. One of our main
contributions is a novel pre-filtering method that significantly reduces the time complexity of
motif discovery to be linear for most real-life data sets, and ensures the high quality of the motifs.
On the other end of the process, we propose a method of parameters-continuity preference which
significantly reduces the size of the training data sets required for time-varying hidden Gauss-
Markov models. These models provide great classification and inference performance, but there
is rarely enough data to train them. Our contribution overcomes this issue by learning more
information from less data. The entire work results in the Motif Discovery and Detection
Framework which solves the whole task of machine behavior modeling.

The dissertation is structured according to the research progress. Each chapter contains the
related work concerning the topic of the chapter, separate definition of the goals and discusses
the findings from simulations and experiments. This elevates the modularity of our research, and
the modularity of the Motif Discovery and Detection Framework, which promotes its adoption
by practitioners.

Keywords: time series, Gauss-Markov process, Hidden Markov model, motif discovery, EM
algorithm, few-shot learning, robot dynamics, Bayesian inference, birthday paradox, machine
learning, data mining, segmentation

v



vi



Abstrakt

Úlohy strojového učeńı typicky vyžaduj́ı velký objem dat pro učeńı svých model̊u. Tato dizertace
se zabývá analýzou časových řad, které jsou častým typem dat zaznamenávaných v pr̊umyslu.
Ćılovou aplikaćı je modelováńı a analýza chováńı stroj̊u. Tyto modely chováńı potřebuj́ı přesně
strukturované trénovaćı datové sady, které jsou typicky připravované ručně. To je nákladný a
únavný proces náchylný k chybám. Tato komplikace znesnadňuje rozš́ı̌reńı aplikaćı takových
model̊u chováńı v pr̊umyslu, což nás motivovalo ke zkoumáńı celkového procesu stochastického
modelováńı chováńı stroj̊u s ćılem co nejv́ıce automatizovat krok nasazeńı těchto model̊u v praxi.

Náš výzkum začal úlohou modelováńı chováńı pr̊umyslového robotického manipulátoru za
použit́ı dat o pr̊uběhu jeho spotřeby elektrické energie, kde bylo zapotřeb́ı segmentovat časové
řady spotřeby robotu na jednotlivé robotické operace. Tato analýza posloužila jako základ pro
výzkum optimálńıho plánováńı robotických operaćı za účelem sńıžeńı spotřeby elektrické en-
ergie. Ćılovou doménu našeho řeseńı jsme rozš́ı̌rili ze spotřeb pr̊umyslových robot̊u na obecné
opakuj́ıćı se vzory chováńı v časových řadách. Naše výsledky jsou primárně ověřovány na
př́ıpadech pr̊umyslových robot̊u, ale naše metody jsou obecné a jsou aplikovatelné na širokou
škálu pr̊umyslových prolémů, což jsme také ověrili na pr̊umyslové aplikaci na vsádkových pećıch.

Abychom zredukovali nutnost ručńıch zásah̊u do modelovaćıho procesu, zformulovali jsme
zadáńı segmentace časové řady jako úlohu odhalováńı motiv̊u (dále jen motif discovery). Motif
discovery hledá v časových řadách opakuj́ıćı se vzory, a pokud neńı použita jeho aproximačńı
varianta, má motif discovery kvadratickou výpočetńı složitost. Jedńım z našich hlav́ıch př́ınos̊u
je nová stochastická předfiltračńı metoda, která významně snižuje výpočetńı složitost motif
discovery úlohy, a to na lineárńı složitost pro většinu časových řad z praxe, přičemž vysoká
kvalita nalezených motiv̊u z̊ustává zachována. Na druhém konci procesu detekce vzor̊u jsme
navrhli metodu preferováńı spojitosti v parametrech, která značně snižuje množstv́ı potřebných
trénovaćıch dat potřebných pro naučeńı časově proměnlivých skrytých Gauss-Markovských mo-
del̊u. Tyto modely se vyznačuj́ı výbornými klasifikačńımi a odvozovaćımi schopnostmi, ale
málokdy je k dispozici dostatek dat k jejich dobrému natrénováńı. Náš př́ınos překonává toto
omezeńı efektivńım źıskáváńım v́ıce informace z menš́ıho množstv́ı dat. Celá tato dizertačńı
práce vyústila v nástroj Motif Discovery and Detection Framework, který řeš́ı celý proces tvorby
a aplikace model̊u chováńı stroj̊u.

Dizertace je strukturovaná podle postupu výzkumu. Každá kapitola obsahuje rešerši sou-
časné problematiky týkaj́ıćı se tématu dané kapitoly, samostatnou definici ćıl̊u a také diskuzi o
výsledćıch simulaćı a experiment̊u. Tato struktura podtrhuje modularitu našeho výzkumu stejně
jako i modularitu nástroje Motif Discovery and Detection Framework, což má za ćıl podpořit
přej́ımáńı prezentovaných výsledk̊u do praxe.

Kĺıčová slova: časové řady, Gauss-Markovský proces, skrytý Markovský model, motif discove-
ry, EM algoritmus, few-shot učeńı, dynamický model robotu, Bayesovská inference, narozeninový
paradox, strojové učeńı, dolováńı dat, segmentace
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Chapter 1

Introduction

This dissertation started as an industrial-application project. Originally, the goal of the project
was to optimize energy consumption of robotic cells. For that, an energy-consumption model
of robotic manipulators was required, as shown in [1] and [2]. We performed consumption
measurements of industrial manipulators in laboratory and also at a car manufacturer welding
line (Škoda Auto). This data served us as a basis for the models, but it was necessary to
carefully prepare them for any model-identification task that followed. At the beginning, we
were preparing the data manually, which proved to be very slow, prone to human errors and
the overall quality of the resulting data sets was sub-optimal. This became obvious especially
when we started evaluating the model performance and predictions accuracy. The better data
set was used, the better predictions were and vice versa. At that point, we began to research
ways how to automate the process of data-set preparation and we realized there is still much
to research. The need for automatic data preparation and the follow-up machine-learning tasks
span across many domains, not only the domain of industrial robots. Virtually any domain that
produces some time series (i.e., a time sequence of measurements) can benefit from modeling
the time series. The first challenge to overcome is the data-set preparation. A high-quality data
set opens the road to more sophisticated models with better performance.

This dissertation covers the whole process of building a predictive model of behavior dis-
covered in time series. It is based on research focused on industrial robots, but our results are
general and modular, they can be applied on a wide range of use cases. The thesis is structured
so that each chapter is a piece of a puzzle ordered the same way as the final data-processing
pipeline. In Chapter 2, we describe a constructive bottom-up analysis of the dynamic model of a
6-DOF robotic manipulator. This analysis provides valuable insight into the expected structure
of the behavior model we wish to automatically learn in later stages of the work. Chapter 3
presents the first approach of manual segmentation of time series and discusses the challenges
we encountered. In Chapter 4, the manual preparation is automated by formulating the task
as the motif discovery problem. We introduce a fast motif discovery framework that utilizes
a novel prefiltering algorithm for an efficient pruning of the search space. Chapter 5 studies
the problem of organizing the unequal-length segments into an unknown number of clusters
according to their similarity. A novel similarity measure is proposed that compares unequal-
length sequences and normalizes them by their information content. At this point, all tools for
automatic data set preparation are developed. Next chapters consider the dynamic model and
its automated learning. Chapter 6 studies suitability of the Bayesian probabilistic modeling
framework for the time series modeling. Hidden Markov models (HMM) are proposed as the
model because they are very similar to the linear state-space models which are well adopted
across industry. Applicability of the time-varying form of the HMM is demonstrated on labo-
ratory experiments showing promising results. In Chapter 7, we adopt the more general model
of continuous-state time-varying hidden Gauss-Markov model. We discuss their disadvantage of
requiring a big training data set and propose a solution in a form of the parameters-continuity
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2 CHAPTER 1. INTRODUCTION

assumption. Extensive experiments on real-life data sets show that this assumption leads to a
better performance of models even if the training data set is small. This chapter also presents
the classification module which is used as the detection module of the overall data-processing
pipeline.

1.1 Goals

We aim to build an entire system that simplifies and automates the process of modeling the
behavior of cyber-physical systems to supervise the correct operation of the system in real time.
The ultimate goal is to create a framework that consumes a sensory data stream on the input,
discovers behavior patterns in it, learns a stochastic model of particular patterns and applies
the models for the online pattern detection. All this process should be without any or almost
any manual intervention. This is summarized in the following goals.

• Design methods for automatic search of apriori-unknown patterns in time series.

• Propose a solution to cluster the variable-length sequences to reduce the number of the
unsorted patterns into groups containing only patterns which are similar.

• Develop machine-learning methods for the identification of the model parameters.

• Apply the invented methods for an online detection of repetitive behavior observed in time
series.

• Validate the results on real-life use cases from industrial robotics.

It can be seen the dissertation focuses on a broad spectrum of problems, whose certain aspects
are often neglected in their complexity. This dissertation provides a holistic view to formulate
cross-functional requirements and proposes a solution to them, e.g., the pattern-learning module
requires the motifs to be localized with a high precision.

1.2 Outline of Concept

Figure 1.1 outlines the elements of the target solution in a higher level of abstraction.

Time Series Preprocessing

Motif Discovery

Similarity Clustering

Pattern Modeling

Online Detection Discrete Events

Figure 1.1: Conceptualization of framework.

Our starting point is a long data stream, i.e., time series. Mostly, we focus on uniformly
sampled time series continuous in values (captured by floating point representation of num-
bers). The time series is analyzed, a model is learned from it, and after deployment, these
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models transform the time series into a much sparser log of discrete events, representing the
detected patterns. The discrete-events log is our endpoint and our research does not investigate
consequent analysis of these logs.

Our approach identifies several main steps in the process as depicted in Figure 1.1. Prepro-
cessing serves as preparation step, where smoothing, standardization, whitening and other pure
signal augmentations take place.

After that, we need to extract repeating patterns from the signal. That is the purpose of
the Motif Discovery step. Its task is to find repeating patterns (motifs) in signal, which are not
known in advance. It is a rather complicated and resource-heavy step known for its quadratic
time complexity. However, a good localisation of the discovered motifs is needed because the
Pattern Modeling task is very sensitive to knowing the location of the motifs precisely.

When motifs are extracted from the time series, they have to be clustered by their classes.
Clustering is a classic machine learning task. According to our goals, we require the clustering
to be easy to tune. Clusters can be labeled to provide better interpretability of the motifs. The
output of this step is a training data set containing the clustered motifs in the time series.

Pattern Modeling takes the motifs data set and learns the model for each cluster. We prefer
Bayesian models for their uncertainty specifications they provide along with their predictions
and inferences.

The final step of Online Detection uses the trained set of pattern models and uses it for
segmentation and following classification of the segments.

1.3 Notation

As this work intersects the domains of machine learning, dynamic system control, and signal
processing, each chapter contains its specific notation that relates to the scope of the chapter.
However, a subset of math notation rules applies for the whole work. Bold font of small letters
is used for vectors, bold capitals for matrices, and calligraphic font for sets. Column-vector
notation is used implicitly.

For denoting probability throughout this text, we use a shortened notation of, e.g., Pr(X =
x) = p(x), which improves readability. Probability is here thought of as a scalar function
assigning a scalar value to a point from its possibly multidimensional domain space. For discrete
domains, the p(x) represents probability mass function (pmf), whereas for continuous domain,
it is a probability density function (pdf).

The vertical line denotes the condition, e.g., p(x|y) is the pdf of value x given value y. Where
possible, we use the Kalman-filter-theory subscripts for brevity, e.g., µt|t−1 denotes an estimate
of µ at time t based on data from time instance t− 1.
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Chapter 2

Model of Robot Dynamics

2.1 Introduction

The main focus of this dissertation is on modeling robotic operations. As described in [3], it is
practical to assume the robotic operations are in fact a Gaussian process with latent (hidden)
variables. Many tools for analyzing the Gaussian pdf are available. A theoretical formalism for
developing the hidden Markov models (HMM) and their training was described in [4]. Later, a
generalization to continuous-state hidden Gauss-Markov models (CS-HGMM) was devised using
a generalized form of the Viterbi algorithm [5]. In this chapter, we start by briefly introducing
the physical model of the robot dynamics that is well-founded and widely used in practice. It
drives our decisions throughout this dissertation. The physical model of the dynamics serves as
a starting point for the expected structure of the stochastic model.

2.2 Chapter Specific Notation

The following notation is used in this chapter.

• Time derivative d
dt is expressed by a dot above the variable, e.g., dx

dt = ẋ.

2.3 Expected Structured Model

Figure 2.1: 6-DOF robotic manipulator KUKA KR5

The expectation-maximization (EM) algorithm described later in section 7.2.3 requires a
structured model of the system to automatically estimate the unknown parameters of the un-
derlying model. The system consists of dynamics of the robot and dynamics of the controlling
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input forces at each axis. There is a well-founded basis for modeling the dynamics of the robotic
manipulator in a form of an actuated serial chain for example in [6]–[8] and specifically for the
robot used in this project KUKA KR5 (Figure 2.1) was modeled in [9].

Dynamics of a serial chain manipulator can be generally described by matrix-vector form as:

τ = D(q)q̈ + C(q, q̇)q̇ + f(q̇) + g(q) + fext(q), (2.1)

where each row corresponds to one joint of the robot. Let n be the number of degrees of freedom
of the robot. Variables τ ,q, q̇, q̈ are all vector-valued n×1 functions of time and represent joints
torque, position, speed and acceleration respectively. D(q) is n× n symmetric positive definite
matrix of inertia. C(q, q̇) is n × n matrix of centrifugal and Coriolis forces. Note that both
matrices D and C are in fact matrix-valued functions depending on joints configuration. Vector
f(q̇) represents Coulomb and viscose friction of dimension n×1, g(q) is a n×1 vector of torques
induced by gravity. fext(q) is a n×1 vector of external forces applied on the joints of the robot.

Let us assume that the friction force f(q̇) is negligible to simplify the model. The component
fext(q) becomes a part of D(q) because only a rigid connection of manipulated object to the
last link of the robot is assumed here. No other external forces are taken into account. These
steps produce a simplified model

τ = D(q)q̈ + C(q, q̇)q̇ + g(q). (2.2)

This can be rewritten into the following form.[
q̇
q̈

]
=

[
q̇

−D−1(q)C(q, q̇)q̇

]
+

[
0

D−1(q) [τ − g(q)]

]
, (2.3)

This form is non-linear, for the purposes of EM algorithm linear approximation is a more
suitable. For linear approximation in proximity of the executed trajectory (operating point), we
introduce following substitution.

x =

[
x1

x2

]
=

[
q̇− q̇tr
q̈− q̈tr

]
∈ R2n, (2.4)

u = τ − τ tr − g(qtr) ∈ Rn, (2.5)

where τ tr is the torque of operating trajectory, qtr is the joints value of operating trajectory
and dotted versions are their respective time derivatives.

Linear approximation along a parametric trajectory is[
ẋ1

ẋ2

]
=

[
0 I

−D−1(qtr)H(qtr, q̇tr, q̈tr) −D−1(qtr)C(qtr, q̇tr)

] [
x1

x2

]
+

[
0

D−1(qtr)

]
u, (2.6)

where I is an identity matrix. The final form of the stochastic Gauss-Markov model of the overall
model should be in a time-varying form for the reasons discussed above. Since a specific form of
EM algorithm for the model parameters estimation was derived in this project, the model (2.2)
needs to be modified to fit the suitable form of

st = Atst−1 + vt, (2.7)

yt = Btst + et, (2.8)

where st is the vectors of hidden states of the system. At is a state evolution matrix of the
linearly approximated system at the time instance t. The vector vt, et is a process noise and
a measurement noise respectively, which are both a Gaussian white noise with zero means and
some parametric covariances. yt is an m × 1 output measurement vector and Bt is an output
weighting matrix at time instance t. The expected models (2.7) and (2.8) are discrete in time.
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Superscripts cont and discr are used to distinct between continuous and discrete version of
equations respectively.

Let us form a superstate st as

st =

x1

x2

u

 =

q− qtr
q̇− q̇tr
τ − τ tr

 . (2.9)

The equations (2.6) can be rearranged to the form of (2.7) as follows.

Acont
t =

 0 I 0
−D−1(qtr)H(qtr, q̇tr, q̈tr) −D−1(qtr)C(qtr, q̇tr) D−1(qtr)

Sq Sq̇ Γ

 , (2.10)

where matrices H(qtr, q̇tr, q̈tr), C2(qtr, q̇tr) are some (in general) nonzero parameters derived
using linear part of the Taylor series of (2.3). The matrices Sq and Sq̇ represent a control law
depending on system states x1, x2. Γ is a block matrix of a linear autonomous evolution of the
control inputs.

When the system is controlled by a state feedback, matrices Sq and Sq̇ become some constants
and matrix Γ zeroes out. Since there are some neglected dynamics of the actuating subsystems,
it is likely that Γ cannot be zero even in the case of the state feedback. On the other hand, if
the robot is controlled by a set of dynamic controllers, each looped with only one actuator, then
all matrices Sq,Sq̇,Γ can be nonzero. Although a part of dynamics would be neglected this way,
it reduces complexity of the learning problem for the EM algorithm.

Discretization of Acont
t using the forward Euler approximation method yields

Adiscr
t ≈ (I + Acont

t )h

=

 I Ih 0
−D−1(qtr)H(qtr, q̇tr, q̈tr)h I−D−1(qtr)C(qtr, q̇tr)h D−1(qtr)h

Sqh Sq̇h I + Γh

 , (2.11)

where h is a sufficiently short sampling period. This is the expected time-varying discrete system
matrix. First block row is set and known and the rest are subjected to the EM algorithm
estimation.

Clearly the choice of the discrete approximation has a substantial impact on the resulting
form of Adiscr

t , but the purpose of this expression is just to find acceptable initial conditions for
subsequent iterative estimation. However, an analysis of parameters found by EM estimation
could increase precision of robot identification.

The expected linearly approximated measurement matrix Bt is derived from a simplified
mathematical model of synchronous electric motor as shown in [9] and takes a form of

Bdiscr
t = Bcont

t =
[
0 Λq̇ Λτ

]
, (2.12)

where both Λq̇ and Λτ are some generally nonzero parametric matrices representing an influence
of a self-induced current and a control input respectively. The output measurement should not
be affected by a position of the motor, but only by the speed of the motor and then by some
reference signal, which is described as a Markov process here. A reasonable simplification of
Bt = B can additionally reduce the parameters learning complexity.

2.4 Conclusion

In this chapter, we described the expected structure of the robot dynamical model. The pa-
rameters Adiscr

t and Bdiscr
t from (2.11) and (2.12) are quite complicated. Obtaining them by a
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bottom up modeling from the first principle is prone to error. This is the main reason why the
machine learning approach for identifying the parameters is so attractive. However, machine
learning is known for requiring a lot of data. In this dissertation, we focus on solving this issue
by automating the training-data acquisition and by reducing the required amount of them.



Chapter 3

Manual Preparation of Data Sets

The first step towards our goals of automatic behavior detection is a semantic segmentation of
time series, i.e., selecting segments that correspond to a particular behavior of a system. The
traditional approach requires user to manually specify approximate templates for the segments,
and then directly detect the patterns based on the similarity with the specified template. This
chapter builds on our initial publication [10] and our work published in [11], where we proposed
a significant speedup of the similarity search while utilizing a similarity measure that is well
interpretable and thus easy to tune. The burden of manual preprocessing of time series can be
solved by motif discovery which is studied later in Chapter 4.

3.1 Introduction

Manufacturers today concentrate more and more on the energy savings and one of the ways to
achieve lower energy consumption is the possibility to bring devices (and especially robots) into
a sleep mode. Estimations and some preliminary measurements show that bringing the robots
into a sleep mode during the weekends, when the production is stopped, offers potential savings
in the range of percents out of the total consumption of a production lines. Such type of pauses
is called planned. During working time there may however occur pauses that are unplanned and
the possibility to use the sleep mode also here offers even higher energy reductions. However,
mechanisms are needed to detect whether there are pauses in the production and if it makes
sense to utilize an energy-saving mode.

The usual case we focus on is following. The robotic cell is set and configured and running.
An uninterrupted production is the priority and thus no or very limited external interventions are
allowed. Any change of the controlling program or a robotic program would require successive
testing, which would prolong pause in production and also increase cost of deployment of the
solution. Complexity of the controlling PLC programs grows with the complexity of the cell and
intervention of more programmers also increases the risk of introducing additional errors. This
is why it is hardly possible to insert additional code into controlling PLC to enable observation
of the process. On the other hand an independent modular estimator of the operating states
based only on measured power consumption does not require any intervention in the current
control logic. This brings valuable possibility to speed up the deployment of solution on the
existing robotic line without risk of introducing new errors into original programming of devices
in line.

This chapter focuses on the analysis of the robotic movements, which are called operations,
in a welding cell based on the measurement of the robot power consumption. In such a way
it is possible to have information about the production status of the welding cell, i.e. of the
individual robots, without a single intervention or disruption of the main controller program
that controls the welding cell. Methods of behaviour pattern recognition are used.

These methods of pattern recognition are limited by the initial pattern learning. Right now

9
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our focus is on subsequent procedure of localisation of patterns as if they were properly learned.
The learning mechanism is substituted by manual selection of proper patterns to be searched
in the online data. An automated machine learning of the patterns will be of interest in the
upcoming phases of this work.

The possibility of knowing the robotic operations and their power consumption allows open-
ing further research directions such as automatic identification of the state machines, which
would describe the behaviour of the robotic cell, or such as adapting an eventual energy func-
tion obtained analytically.

3.1.1 Objectives

The welding cell this use case is focused on, consists of 6 robots and other pieces of equipment
such as turn tables, conveyors, gluing machine and welding guns. A general structure of the
welding cell is depicted in Figure 3.1.

Figure 3.1: Structure of the welding cell

Figure 3.2 shows power consumption of one robot from the cell in Figure 3.1 (blue line), and
the power consumption of the turn table (red line) that is at the beginning of the cell’s product
flow. The turn table consumption is used in further assumptions to identify the beginning of the
next production cycle, i.e. the fact that a new product has been inserted and that the sequence
of robot operations for this product can start.

The main objective of the chapter is to present a way how the behavior of the production
line can be analyzed based on the measurements of the electrical power consumption of the
individual components. Moreover, the power consumption must be segmented into individual
operations to analyze them separately. This separate analysis is performed also in the simulation
environment and can be utilized for example to obtain a so-called energy function, which can be
used in further optimizations as described, e.g., in [2]. More details are provided in Section 3.3.

In our case, the electrical power consumption has been measured for every robot and also for
other major energy consumers. This extensive measurement had to be done in order to identify
the major consumers for which it makes sense to measure the electrical power, i.e., whose power
consumption is worth optimizing.

Another important issue is the potential of power consumption decrease by bringing the
devices into a sleep mode during their inactivity. This capability of certain devices such as
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Figure 3.2: Power consumption of one robot

robots can be used during short pauses during production (starting in range of tens of seconds)
to longer pauses (typically pauses during the weekends).

3.1.2 Related Work

In paper [12] the authors use region-based segmentation stemming from frequency analysis of
the original signal. This brings good results as the authors try to identify anomalies in the signal
that are composed of different-frequency signals and thus produce regions various from those
representing the correct signal.

Paper [13] presents an approach where a finite state machine is built based on the discrete
events in the signal representing the sum of the power consumption of the appliances. The
consumption of the appliances or their count are unknown. The consumption of each appliance
is supposed to be constant in each state. For a given measured consumption a combination of
appliances and their states must be found that correspond to that consumption. In other words,
a scalar value is assigned to each state of each appliance. This approach cannot be used in our
case because the power consumption of the robots varies during the execution of their operations
and the operations may not be characterized with scalars. Other papers like [14], [15] or [16]
concentrate on home appliances as well. Paper [17] focuses on behavior pattern recognition in
long-term time series data obtained from measurement of power consumption in urban zones.
The authors use Pearson correlation coefficient as the similarity metrics and Ward’s linkage for
hierarchical cluster analysis.

An industrial use case is dealt with in paper [18] that relates to a state estimation and
a corresponding energy audit of injection moulding machines. The authors concentrate on
identifying the production state of the machine and neglect its sub-states. The reason for
neglecting the sub-states is that their duration is too short (much shorter than the duration of
the production state, which may be down to 14 seconds, according to [18]), and typically also
the power level in different states differs significantly. The two-level neuron network classifies
the states and is not able to classify the sub-states because of the length of the sample window
that is used for classification. Authors of paper [19] focus on pattern recognition of 1-D signal in
industrial batch dryer. Their goal is to slice the measured data of pressure into time windows of
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the periodic batch processing intervals. They use supervised learning of a Takagi-Sugeno fuzzy
model. Their data are strongly periodic and interval boundaries are distinct. This way cannot
be used for our case because the operational states of the robots must be identified with a much
higher granularity, i.e. the sampling period for the power consumption measurement is much
shorter, and therefore we are also able to identify operational states, whose duration is in range
of a few seconds.

Generally, a major research area for pattern search is the area of speech recognition. There
have been many research papers dealing with this topic such as [20] or [21]. In most cases a great
robustness is needed because the pronunciation of different speakers varies for individual words.
This holds even for a speech of one speaker according to his/her current conditions. Therefore,
in the time domain the signal is variable and the corresponding frequency spectrum of the same
word may differ significantly. During the subsequent classification in the frequency domain a
certain robustness is necessary to recognize such a word. Moreover, the robustness does not
worsen the precision because different words are well differentiated also in the frequency domain
from each other. In our case, frequency analysis is not suitable because the signals are very
similar in spectrum. Figure 3.3 contains frequency spectra of two instances of the same operation
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Figure 3.3: Frequency spectrum of two instances of one operation

but from different time points during the day. One time point is at the end of the working shift
and the other is at the beginning of the next one. The correlation of the two instances from
Figure 3.3 is 83 %, which is too low contrary to the fact that both spectra correspond to the
same operation. Moreover when we analysed frequency spectra of two different operations, we
got results with correlation up to 85 %. This fact shows that the frequency analysis cannot be
used to classify the operations.

3.2 Identification of Operations

As described above, we have devised methods to identify the energy consumption of each separate
robotic operation based only on the power measurement. By watching the welding process
separable operations were observed and consequently we were able to label sections in the power
data, which correspond to particular operations of each robot. One pattern for each robotic
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operation was chosen as a model pattern. Such a pattern is to be automatically found in whole
set of energy data. This preparation steps must be done before automatic localization of patterns
can proceed.

For the sake of clarity we reduce our view in the following text only on one pattern of one
operation of a robot in offline data. By dividing the primary task into subproblems we achieve
simplification of the procedure. First the data needs to be filtered so that we suppress the
noise and the error coming from misplaced samples. Then we need to evaluate similarity of all
segments of energy data and afterwards the measure of similarity is taken as a threshold to find
local maxima. Location of these maxima matches the location of the pattern in the data.

Our data are rather densely sampled and when the model pattern is extracted, it leads to
a long vector of many samples. This vector is said to be the feature vector. The dimension of
this vector has slowing impact on computation time. We propose a reduction of the dimension
of the feature vector to speed up the searching algorithm.

3.2.1 Filtering Data

As mentioned above, our data suffer from noise and random sample-swap corruption. Sam-
ple swapping cannot be completely prevented by means of sorting samples according to their
timestamps. And yet this random error in data has a big impact on success of the searching
algorithm. For that reason we have to bring filtering to our solution to minimize occurrence of
this error. In addition we also need to suppress noise in signal by filtering.

Due to the nature of error we want to get rid of, a median filter is used. Its filtering window
length was chosen empirically to filter out random signal errors with a big amplitude difference
such as unsynchronised neighbouring samples, where two neighbours are swapped. Median filter
is still conserving high peaks that are used as classification feature in detecting part of our
work. For signal xt, for t = 1, 2, · · · , T − w + 1 with given width of window w the median filter
transforms signal as follows:

x̃t = Median{xt, xt+1, · · · , xt+w},

where x̃t means median-filtered sample on t-th position, and T is the total number of samples
in the input signal. The filtered signal x̃ is defined as a column vector:

x̃ = [x̃1, · · · , x̃t, · · · , x̃T−w+1]>. (3.1)

As we need the detection algorithm to be fast enough to satisfy real-time demands, we must
choose the filtering window to be short. A window of length w = 5 is chosen as a good balance
between smoothing effect and computation cost. The longest usable window was w = 7 samples,
above this number of samples signal distortion collides with other threshold rules introduced in
our algorithm.

3.2.2 Similarity of Segments

We acquired labelled model patterns by manually choosing well measured filtered segments of
energy signal. Next task is to find a good measure of similarity when we are given two vectors
of the same length containing 1-D data signals. As discussed in the introductory section, a
frequency analysis does not result in very convincing outputs in our case. Therefore the similarity
of the signal in time domain is evaluated in a similar way as the image-processing techniques
do.

From patterns located manually from the energy data we expect variations between them
to be caused by static gain and additive white noise. The observed static gain is most likely
correlated with a continual use of robots – all the mechanisms in the production cell reach higher
temperature and their power consumption rises. The trend of consumption increase is not linear,
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but as it is very slow, we model it as if it was simply linear. The two column vectors x,y of the
length w of the same pattern shape are expected to satisfy equation:

y = ax + b+ et, (3.2)

where a is a constant, b is a constant and et is a column vector of normal random variables rep-
resenting the white noise, being dependent on time. For signals, which are just affine projection
of each other, their correlation coefficient is a good measure of dependency. In fact the Pearson’s
correlation coefficient is equal to one for such a dependency. Our expected form of dependency
includes the white noise element in equation (3.2). This noise will lower the correlation coeffi-
cient as the SNR (Signal to Noise Ratio) goes to zero. But if we expect rather small values of
noise (SNR much bigger than 0 dB), the correlation coefficient will not be affected much.

From this preliminary analysis we can justify use of the Pearson correlation coefficient for
its simplicity and expected functionality in our case. It is defined as follows.

ρx,y =
cov(x,y)

σxσy
(3.3)

cov(x,y) =
1

w

w∑
i=1

(xi − µx)(yi − µy) (3.4)

σx =

√
(x− µx)>(x− µx)

w
(3.5)

Coefficients σy and σy are the standard deviations of values of vectors x and y respectively. The
cov(x,y) is the cross-covariance of the vectors x and y. The µx and µy are the mean values of
x,y respectively.

The mean values µx, µy are not known exactly and we use their approximations by sample
means x̄, ȳ respectively. The computation of covariance is then also modified to receive the best
unbiased estimate. The formulas for sample correlation coefficient are as follows.

ρ̂x,y =
ĉov(x,y)

sxsy
(3.6)

ĉov(x,y) =
1

w − 1

w∑
i=1

(xi − x̄)(yi − ȳ) (3.7)

sx =

√
(x− x̄)>(x− x̄)

w − 1
(3.8)

Since exact correlation coefficients are unreachable for us, we will further in this chapter use
these terms always in the meaning of sample correlation, sample mean and sample deviation
and we will omit the word sample.

3.2.3 Segment for Comparison

After having established the measure of good match of two segments for the energy data it must
be considered, which segments to compare. The straightforward procedure is to compare every
possible window of the same length as the model pattern vector. Such a strategy guarantees
us a good precision of localization in time. It is also the most demanding way regarding the
computational cost. This is where we proposed two distinct ways how to form the vectors to
compare.

Straightforward Choice of Segments

In this case we proceed simply as described above. We pick the range of samples from energy
data so that we have the segment of the same length as the length of model pattern. Then we



3.2. IDENTIFICATION OF OPERATIONS 15

calculate the Pearson correlation coefficient for them and store it in the vector of results rstraight.
The length of rstraight is equal to the number of repeated calculations of correlation coefficient
and can be expressed as

dim(rstraight) = dim(x̃)− w + 1

where x̃ is the filtered vector of energy consumption data defined in equation (3.1). The bigger
w is, the less correlations are needed to be computed, but also the harder it is to compute them.
Number of multiplications for covariance computation is w and also number of multiplications
for the deviations is w for each. Roughly 3w multiplications need to be done for each checked
window on the energy data vector. This leads to approximately 3w dim(rstraight) multiplicative
calculations on floating point numbers to search through the whole data vector x̃. For our data
holds that w � dim(x̃) and thus we can simplify that the computational cost of our algorithm
for correlation evaluation depends approximately linearly O(dim(x̃)). The length of x̃ cannot
be changed, since we still need to search through all the data.

Feature Extraction

As we showed in subsection 3.2.3, reducing the length of the model pattern algorithm would
lower the computational cost of computing correlation vector rstraight. With increase of speed
we would loose portion of certainty this way, because we would give up portion of information
contained in the trimmed part of the model pattern. However, the demand for the speed of
algorithm is unavoidable. It may be bearable to let the computations run for some hours on
static data for one robotic cell, but when confronted with higher number of cells running online,
the speed becomes critical.

For that we need to extract as much of the viable information from the original model pattern
as possible. Same extraction must be done on the energy data to get the data vector of the
same type of features. On the other hand the computational cost of extraction must be small, so
that we improve overall performance rather than generate even more expensive one. Our energy
data contain reasonable amount of local maxima and even human sight can recognise periodic
repetition of these peaks. That is why we empirically decided to choose energy consumption
peaks for our distinctive feature. Peaks can be detected during just one iteration per sample
and so it is viable even for online execution.

To avoid undesirable peaks we bring the following additional rules.

• Only peaks with value above the threshold are considered. The threshold is chosen so that
only dominative peaks are checked. Those contains enough information for classification
and avoiding small peaks helps to shrink the length of feature vector.

• When more than one peak is present in defined neighbourhood, then only the biggest one
is picked. First peak is prioritized for the same-valued peaks.

Due to use of the median filter the local extrema of energy data are usually flattened. The
neighbourhood is empirically chosen as double of the length of the median filter window.

Fig. 3.4 shows the model pattern and peaks chosen according the rules above. The distinctive
peaks under the green dashed threshold line worth special attention. Suppose we have chosen
the threshold right on top of some peak as we can see in Fig. 3.4 at time 8.5 s. Energy data
shows a small drift in offset during the working shift of the robotic cell. This drift can bring the
peaks neglected before to half plane above the threshold. This would cause that some patterns
physically generated by the same type of operation would have few more dominant peaks than
others. This problem leads us to the next step of the boosted algorithm.

The measure of similarity we chose has its drawbacks, more precisely we need to have a pair
of the vector of the same length to be able to compare them. By extraction of feature vector
we actually create new downsampled data vector with adaptive sampling time. If we focus only
on the case when two patterns should be classified to belong to the same operation, we can
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Figure 3.4: Extracted peaks from model pattern

have four distinctive cases of timestamp matching. See Fig. 3.5, where some general simplified
feature vector is presented. Values are here omitted, as the focus is only on timestamps of the
samples. The rows represent possible feature vectors of the pattern of the same operation, all of
them are aligned by the first sample as the window check them. The top row of index 5 is our
model pattern feature vector. The rest of rows (blue) are taken from energy data. We could pick
simply first N samples in the window and check their correlation with model. This would work
if the extraction marked only valid peaks and did not add any peaks on the border as discussed
earlier. That case should occur most of the times but it depends heavily on the good choice of
threshold for extraction. This simplest case is depicted in Fig. 3.5 on the row indexed by 4.
The case when there sometimes are peaks added from region near the threshold is depicted by
the row of index 3. Similarly row 2 shows case when some peak falls below the threshold and is
missing in data (around time 3). Finally on row 1 there is mixture of both cases - missing peak
and added peak.

Simple approach with considering first N samples leads to drop of magnitude of correlation
coefficient on location where it should be maximal. To fix that we need to pair up corresponding
timestamps together and drop those which remains unpaired. We know apriori the duration of
the model pattern and the patterns we search for should not deviate much from it. So we use
the window at least as long as is the model pattern by means of time duration. Maximal length
is not explicitly bounded. Then we assign to each sample of model pattern vector sample from
data vector based on the eucleidian distance of timestamps. In other words, we choose from
data the closest neighbours to the aligned model pattern samples. This way we equalize sizes
of compared vectors. Finally we evaluate correlation of the vectors of the aligned timestamps
and only vectors correlated enough are passed next for value correlation. This way we consider
correlation not only of order of samples but also of the position of chosen samples. This also
decreases the number of correlations of value vectors to check.
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Figure 3.5: Segmentation match cases

3.2.4 Correlation Vector

The procedure above generates vector of correlation coefficients as shown on Fig. 3.6. In this
vector we are looking for the values greater than some threshold. This threshold was was chosen
as very sharp match, its value is 0.99 and is depicted by green dashed line in Fig. 3.6. You can
see that there are two maximals, where correlation exceeds threshold value and these extrema
are then classified as match.

In the Fig. 3.7 is the example how the boundaries of operations are located. Red vertical
lines depicts where operation starts or ends.

3.2.5 Locating the Pauses

For overall evaluation of energy consumption for some longer period of time (days), we need to
locate also pauses and determine their durations. This is much easier task than locating patterns
because pauses are typically sections in energy data, where the consumption is rather constant.
We compute the difference of neighbouring pairs of samples and consider only values smaller
than some minimal value. Then we apply rule that constant sections shorter than 2 minutes are
not considered to be actually pauses.

3.2.6 Evaluation of Hit-miss Ratio

We need to define the measure of quality of our algorithm. This is not a trivial task since our
knowledge about the robotic cell is very limited (intentionally). The few things we can assume
are as follows. We know the number of cycles over some period, because it is equal to the number
of turns of the turntable which consumption we measured. These turns are well distinguishable
so the number of turns is reliable. But during the shift the operation types varies and robot is
operating based on one robotic program for a portion of cycles and then it switches for different
robotic program for next portion of cycles and so on. Also some special programs are sometimes
triggered, e.g., periodic tool maintenance.
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We can evaluate the recall of the algorithm. Let us have ncycles the number of cycles, nmatches
the number of matches for one particular operation as the operation occurs once per cycle at
maximum. We define the recall – the measure of quality q ≥ 0 of our algorithm as the ratio:

q =
1

ncycles

∑
operations

nmatches (3.9)

We rely here on the fact that we can exactly determine ncycles from some appliance behaviour
in robotic cell, but this assumption may not always hold. In these cases we use n̂cycles estimate
from tact period of the robotic cell and we rely on that we correctly classified pauses. then we
can use quality measure estimate q̂ as follows.

q ≥ q̂ =
1

n̂cycles

∑
operations

nmatches (3.10)

n̂cycles =
Tconsidered − Tpauses

Ttact
(3.11)

Where we suppose that the tact duration Ttact is at maximum the real duration of one cycle
or less. Then holds that n̂cycles ≥ ncycles. Parameter Tconsidered is the duration of searched
section of energy data and Tpauses is the total duration of all pauses in searched section of data.
The closer q gets to the value 1, the better our locating algorithm performed. Values above 1
indicates false positive classifications, lower values indicates false negative classifications.

We tested our algorithm on all robotic operations for one program from all six robots from
testing robotic cell. The length of searched data was five days of production. Our results in
terms of the quality measure q reach 88 %, but when a bad model pattern is chosen, q can drop
even down to 55 %. Overall, when a suitable pattern is chosen, the resulting quality measure is
in range 70 % to 90 % This shows that reliability of our detection depends strongly on choice of a
good representative model pattern as we discussed in subsection 3.2.3 about feature extraction.

We address these caveats of the direct similarity measure approach in later chapters (e.g.,
Chapter 6), where we develop a model-based approach for detecting operations.

3.3 Power Consumption Simulation

In some situations it is not possible to perform all necessary experiments and measurements
with real equipment because of some physical or organizational limitations. This has also been
the case of this application because all the measurements were done during ordinary production.
Thus, it has not been possible to change the robotic paths to perform any additional movements,
which are not part of productive robotic operations, to identify a set of parameters relating e.g.
to the dependency of the power consumption on a specific robot trajectory, to the robots’
dynamic parameters, etc.

Therefore a simulation environment has been used, namely Tecnomatix Process Simulate.
This environment contains robot controllers implemented according to the Robot Controller
Simulation (RCS) specification, which means that the robot controllers perform Realistic Robot
Simulation (RRS). One of the features of the recent Process Simulate version is the possibility
to simulate power consumption of the robot movements. By summation of the total energy used
by a robot for one particular movement performed repeatedly with different speed settings we
can construct so called energy function.

The energy function fE(xi; τi) is the primary motivation to perform the experiments, where
subscript letter E stands for energy. Note that the energy function depends on the trajectory
the robot moves along, which is explicitly expressed by the trajectory index τi. The energy
function can be approximated as

fE(xi; τi) = a−1x
−1
i + a0 + a1xi (3.12)
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as suggested in [2]. Variable xi represents the duration of the execution of trajectory τi. If the
energy model of the robot is not known, which is the most usual case, the energy function must
be estimated from measurements or from simulation. As mentioned above, the measurement
with physical robots is usually not possible and therefore the robotic paths must be imported in
the simulation environments and the energy function must be approximated from the simulated
values.

The generation of the energy function is done in the following way. For a given robotic cycle
the operations are grouped into movement and welding ones. The movement operations are
those during which the robot moves from one point to another over a trajectory without any
interruptions. The welding operation is composed of movements as well but the trajectories are
typically short and the major activity of the robot is to perform welding at the specific welding
points. The reason for such a division is the assumption that during welding operations the speed
of the movements cannot be changed significantly because of the short distance between the
individual welding points. On the other hand, the speed during the movement operations makes
sense to be changed to minimize the power consumption. More details about this optimization
task is provided in [2].

Figure 3.8 shows the Gantt diagram of a robotic operation sequence performed in the welding
cell. The first horizontal line is the length of one cycle, i.e., the time after which the robot repeats
its set of operations for the next part. The second horizontal line means movement of the robot
to the turn table and the third line represents the welding operations. The subsequent lines
represent operations of gripping the part and moving it to another table.

Figure 3.8: Gantt diagram example of operations of one robot in the cell

This robotic cycle can be separated into two movement and one welding operation. The
welding operation is represented by third horizontal line (as described above). The first move-
ment operation is shown by the second horizontal line, i.e., the one preceding the welding, and
the second movement operation is represented by the set of the horizontal lines that succeed the
welding operation.

The data obtained from the simulation are approximated with function from equation 3.12
as shown in Figure 3.9. Unfortunately the precision of the simulation can hardly be verified
with measurement because of the fact that not all the trajectories, which were used to obtain
the energy function in simulation, can be executed in the production cell. However, according
to simulation software benchmarks, the simulated cumulative energy consumption is within 20
% margin of error, which justifies the use of the simulation results.

3.4 Conclusion

In this chapter use case, we have shown how the power-consumption signal can be used to
recognize behavior patterns corresponding to individual robotic operations. This is necessary
for detecting the production pauses that may be either planned or unplanned. Especially in
the case of unplanned pauses, the model of the welding cell must be known to predict further
behavior. The methods described here laid a basis for optimizing the robotic movements in [2]
to decrease their energy consumption, by putting the robots to a sleep mode when a production
pause occurs. The detection of robotic operations achieved the hit ratio of almost 90 % when
tuned properly.
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Figure 3.9: Energy function

However, detection based on direct similarity measure has its limits. Namely, it requires
manual tuning of thresholds both for detection and for feature extraction. The approach is
sensitive to the correct choice of the representative segment and similarity deviations are difficult
to interpret.

These limitations led us to further investigate the topic of automatic segmentation, pattern
modeling and detection in next chapters.
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Chapter 4

Motif Discovery

Most industrial processes generate time-series data containing repetitive patterns. E.g., a weld-
ing robot repeats the same welding operations on each car body it processes. The robot’s
movements are measured in the form of a time series, and the welding operations make the
patterns. In reality, the operations vary due to noise or drift in hidden process parameters,
but their imprints in sensory time series remain recognizable. We exploit the repetitiveness
of manufacturing processes and formulate the Motif discovery task. The priority is to devise
an algorithm for a lossless high-precision motif localization. However, the presented algorithm
is general and can be applied to the state-of-the-art Motif discovery algorithms. This chapter
details our original idea of acceleration of the Motif discovery and is based on our submitted
work [22] (unpublished as of yet).

4.1 Introduction

With the digitization of the manufacturing processes, a large amount of time-series data is
produced. These data usually come from sensors used for the monitoring and control of man-
ufacturing processes. The time series data are also available in many other domains such as
financial markets, wearable electronics, healthcare, etc.

One of the problems in the time series analysis is finding repeated patterns, so called motifs.
This process is called pattern mining or motif discovery and interest in it has risen significantly
in the last two decades [23]. The term motif came from the bioinformatics domain, where it
meant a repeated nucleotide or an amino-acid sequence pattern [24]. The patterns found can
be used for various problems such as anomaly detection, discrete log generation, classification,
or regression.

The need for motif discovery in time series has been discussed extensively. A comprehensive
overview is available, e.g., in [25]. We consider motif discovery to be important for an automatic
dataset preparation, which is an essential task in every machine-learning application. The
dataset preparation from continuous time series is a manual-intensive task where there is no
simple rule for automated segmentation and annotation. Depending on the pattern and its
characteristics, various applications arise, e.g., the health of the monitored machine, anomaly
detection in the financial market behavior and others.

The majority of current research into motif discovery expects the pattern, or at least its
length, to be known in advance. This is a significant limitation in cases where there is a need to
search for any repeating pattern that occurs in the time series generated by the process to be
analyzed. There are few results that are capable of coping with variable-length motifs but they
suffer from various drawbacks, which need more attention to be solved.

The existing solutions search for the most similar pair of pattern occurrences. From the data
examination perspective, there are two possible approaches. First, the exact motif discovery,
which guarantees that after finishing, there is no better pattern available in the time series under

23
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specific conditions. The conditions are usually the expected motif length, or the range of possible
lengths. Requiring the length weakens the discovery claim of the algorithms. Moreover, the time
complexity of the exact algorithms is lower-bounded to be quadratic [23], which motivates our
focus on approximate algorithms that are better suited for huge time series.

The other approach is the approximate motif discovery, which gives the most similar motif
occurrences with a certain probability. Such approaches can achieve better computational com-
plexities, however, state of the art methods achieve complexities close to quadratic when they
try to get good quality results. Most of them adopted symbolic representation as a dimension-
ality reduction technique. A step like this greatly reduces the time complexity by a constant
factor by sacrificing a certain amount of data information. Approaches of random projection
showed promising speedups. All the state of the art algorithms aim to improve the candidates
comparison stage or data preparation stage, while we aim at reducing the required number of
motif candidates, easily avoiding unpromising comparisons.

In time series where motifs are scarce, most of the comparisons in motif search are wasted
on comparing sub-sequences that can be considered noise. We utilized the Birthday problem
phenomenon for modeling and exploiting the behavior of standard comparison-based motif dis-
covery algorithms. By introducing a cheap motif candidates generation strategy, we develop a
motif discovery system with implicit motif length determination and any-time algorithm prop-
erty. Our system is designed to keep O(N) time complexity for time series of N ≈ 109 samples.
Additionally, since most of the literature focuses on the time complexity, paying less attention
to the quality measure, we propose metrics for evaluating the quality of motif discovery.

4.1.1 Notation

The following list describes the notation used for the individual variables. Bold font of small
letters is used for vectors, and bold capitals are matrices. The colon is used for a range of indices
forming a column vector. Let’s consider a time series T as a sequence of observations:

T = x0:N = [x0, x1, x2, . . . , xN ]> , (4.1)

where xt ∈ R is t-th one-dimensional measurement ordered in time, N is the length of the time
series. w is the length of the minimal window used for feature calculations.

The subsequence vector xi:i+L−1 is a continuous segment of time series T consisting of
measurements xt starting at point i and ending at point i + L − 1 with the length L, In this
chapter, we restrict subsequences to have Lmin < L� N , and 1 ≤ i ≤ N − L+ 1. Lmin is the
minimal motif size.

The motif is a subsequence xi:i+L−1, for which there is at least one more subsequence
xj:j+L−1 in time series T , whose distance (similarity) computed by the distance function

D(xi:i+L−1,xj:j+L−1)

satisfy the threshold γ. The distance function have to be suitably length-normalized. Informally,
motif is a segment in time series that occurs at least twice. The occurrences have to be similar.

The trivial motif is a motif whose occurrences overlap. Formally, the overlap of subse-
quences happens when |j − i| < L. Generally, the trivial motifs are unwanted discoveries.

The notation is summarized in Figure 4.1, which contains two motif occurrences of length L
and one example of trivial motif.

4.1.2 Related Work

The first part of the motif discovery algorithm is data preprocessing, the main goal of which is
to drop or manipulate the data before it is used to enhance and secure the performance [26].
Generally, this can be understood as a form of dimension-reduction technique.



4.1. INTRODUCTION 25

Figure 4.1: Subsequence positional notation

One of the most commonly used methods is the representation of data using the symbolic li-
brary, such as SAX (Symbolic Aggregate approXimation) and its variants. The SAX algorithm,
first introduced by [27], reduces the length of time series by the PAA (piece-wise aggregate
approximation) and then quantizes the continuous values resulting in a string of symbols. The
SAX approach also needs to address the data granularity discovery problem. The topic of granu-
larity discovery is discussed in [28], where the authors determine the quantization of continuous
values in large databases using hierarchical clustering methods. After the conversion of time
series into symbolic sequences, methods for finding the longest common subsequences can be
applied. An interesting approach of byte-pair encoding was proposed in [29], where the string
is gradually compressed by substituting the most common symbol pair by a new symbol. The
detection of the motif is then simplified to finding the same symbol and decompressing it back to
the original subsequence. This method relies on the smoothing property of SAX and degrades in
performance when SAX fails to conserve important motif-related information from the original
time series due to the quantization. Some authors, e.g., [30]–[32] use only the PCA for dimension
reduction, others use autoencoders [33].

For the comparison of possible motifs candidates, a suitable metric is needed. It is possible
to divide metrics into two main categories. The first category uses the distance-based metric.
Mostly lp-norms (e.g. Euclidian) and DTW (Dynamic Time Warping) distance-based methods
are used [34]. Lp-norms suffer from weak flexibility, such as a fixed length of time series. This
drawback is addressed in [35], where the authors propose to normalize the Euclidean distance
by the square root of the motif length to increase the robustness of Lp-norm with respect to
the variable length. The DTW method is used more often than Lp-norms as it provides better
results when the number of motif occurrences is small. DTW was first introduced by [36],
and this algorithm allows a comparison of time series with different lengths. Note that DTW
is known for its computational complexity, but this disadvantage is diminished by increasing
computational resources. One of the oldest metrics used for the comparison is based on the
discrete Fourier transformation (DFT) [37] and discrete wavelet transformation (DWT) [38]. It
was shown that both methods have similar performance [39]. The authors in [40], [41] base their
similarity metric on the histogram of gradients. Cepstrum of the time series (signal) [42], [43]
can also be used. Another method uses the envelope (wave) of the signal. The envelope is a
smooth curve outlining the extremes of the signal (time series). This approach helps in better
matching such signals [44].

The next aspect in time-series motif discovery is selecting the optimal length of motifs. The
fixed-length approach is widely used in several studies such as [45]–[47]. It examines every
possible combination of subsequences of given length by a brute-force approach. The time
complexity of such an approach renders this method infeasible for larger time series. A pruned
variable-length motif search by enumeration was proposed by [48]. Any of these approaches
brings a high time-complexity burden.

The MK (Mueen-Keogh) algorithm [23] presents an improved brute-force motif discovery.
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They randomly segment the time series and then compute the distance between randomly chosen
segments and the rest of the time-series segments to determine the upper bound for the motifs
distances. Exceeding the bound results in early abandoning of the motif candidate, saving
computational resources. This approach, which guarantees the accuracy of the motif discovery,
mentions the Birthday paradox briefly as an explanation for the performance boost by the early
abandoning principle.

To mitigate the time complexity, approximate motif discovery techniques emerged. Authors
in [49], [50] propose the random projection algorithm that reduces the length of time series by
random sampling, comparing only a fraction of the original samples. This type of sampling
scheme loses a lot of information. Authors in [51], [52] proposed an approximate variable-length
motif discovery algorithm that can process big time series. Their hierarchical motif enumeration
algorithm utilizes a fast numerosity reduction scheme [53] and recurrent SAX word enumeration
to greedily search through the vast search space. While this approach is fast, it relies on SAX
transformation of the time series and thus risks missing some fine-detailed motifs.

In [54], the authors present the CHIME (Collaborative HIerarchy based Motif Enumeration)
algorithm. This algorithm has three major parts. It represents the time-series using SAX as a
sequence of symbols. Then it creates a tree structure to accelerate the search for the nearest
neighbors. After that, using the Collaborative Enumerator, it compares two sequences in time
series in one dimension. If there is a match, the algorithm looks into other dimensions to detect
if the match is also in a different dimension. This approach, however, relies heavily on the SAX
transformation.

In [55], the authors exploit dimensionality reduction by feature extraction. After that, they
search for motifs in the continuous feature space using distance measure on the feature vectors
while also optimizing the length of the motif. It is a type of so-called any-time algorithm.
However, this approach requires tuning at least five parameters, making it difficult to deploy in
practice.

In [56], the authors use an adaptive collision table for exact motif discovery which has a
linear time-complexity in expectation. This approach needs to know the motif length and uses
lp-norm as the distance function. The linear time complexity of the algorithm is based on the
assumption of having continuously-valued time series, which is not the case in practice. Due to
the limitations coming from quantization, their approach turns out to be quadratic in reality.
We provide an analysis of the quantization effect further in Section 4.2.5.

For further details, surveys [25], [57] provide an overview of motif discovery methods, com-
paring them with respect to their computational complexity and robustness.

4.1.3 Contributions and Objectives

The main contribution lies in creating a Motif Discovery Framework (MoDiF), where a modu-
lar approach to motif discovery using approximation methods is used. The modularity brings
independence of other typical motif discovery steps such as similarity measure, symbolic repre-
sentation of time series, motif-length determination, etc. The ability of our approach to reduce
the number of motif candidates makes it an excellent asset to be incorporated into any motif-
discovery pipeline. It possesses the any-time property. Moreover, thanks to the framework’s
modularity, our approach does not impede other steps in the motif-discovery pipeline.

There are many exact motif discovery algorithms, but their time complexity is high and
cannot be lowered under O(N2) (see [23]). Approximation methods overcome the exact-methods
complexity issue, but as described in Section 4.1.2 there are some disadvantages. The approach
presented in this chapter is unique and tackles an aspect of the motif-discovery problem which
has not been exploited up to now. This aspect concerns the pre-filtration of the time-series data
and we show an efficient way to combine it with virtually any other motif-discovery method.

The objective of this chapter is to show how the contribution was achieved and emphasize
metrics of motifs quality, which is usually of low interest in motif-discovery literature.
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We start with problem formalization in Section 4.2.1 and a high-level overview of the MoDiF
in 4.2.2. Then, in Section 4.2.3, we describe the details of how the feature vector is created to
access the time-series subsequences efficiently. In Section 4.2.4, we analyze the birthday paradox
and in Section 4.2.5 focus on how to set parameters to reduce the growth rate of the number
of equal pairs. This leads to the main contribution of the chapter; how to use and set up the
collision table to discover motifs efficiently. This contribution is further elaborated in Section
4.2.6, where it is applied to the motif-length search task. The formal complexity analysis of the
framework is provided in Section 4.2.7. The theoretical contribution is evaluated by experiments
in Section 4.3. The results are discussed and future steps are outlined in Section 4.4.

4.2 Motif Discovery Framework – MoDiF

4.2.1 Problem Definition

Given a univariate time series T , we search for a maximally covering set of motifs ranked by
their similarity. The minimal length of a motif is set to be Lmin, so any shorter motif candidates
are disregarded. Motifs can be of any length, but we restrict our problem to no time-warping.
Motifs are assumed to be noisy and the algorithm must run in the any-time regime.

We assume the time series to be a stationary random process with normally distributed
values, which can be achieved by removing trends and normalization during data preprocessing.
This is a widely adopted empiric assumption [58], [59].

4.2.2 High-level Architecture

Here, we describe the high-level architecture of MoDiF. It has two major phases, as depicted
in Figure 4.2a – the candidate-generation phase and the inflation phase. These two phases
alternate until all samples are examined or an early termination is invoked. We denote a single
cycle of the two phases as an epoch.

We start with the idea that any motif consists of subsequences that are motifs themselves.
The shorter subsequences are cheaper to evaluate for similarity. We take the extreme step of
searching for the shortest possible subsequences that are similar to each other. We denote such
short subsequences as windows.

In the candidate-generation phase, we pick windows from the time series randomly without
repetition and store them in the collision table. The collision table is an associative array (also
called dictionary) consisting of (key, value) pairs, where the value is a bin containing references
of the chosen windows in the time series, and the key is a feature vector (see Section 4.2.3).
An illustrative example of the binning procedure is in Figure 4.2b. If the feature vector of two
or more windows is the same, these windows are similar, which is indicated by a collision. In
the dictionary, the references to the colliding windows are stored in a bin under the same key.
The chance of collision grows rapidly with the number of draws because of so-called birthday
paradox, as explained later in Section 4.2.4. The motif candidates are generated in batches to
improve computational efficiency.

The second phase takes the motif candidates from the collision table and searches for optimal
similarity by varying the length of motif candidates as described in Section 4.2.6. We call it the
inflation phase. If the motif fails to overcome a pre-defined threshold of the similarity metric, it
is discarded. If the motif is accepted, its occurrence is removed from the time series. The next
epoch continues the search only in the remainder of the time series. All the samples covered by
the discovered motifs are also removed from the collision table.

Computationally, the inflation phase is orders of magnitude more expensive than the candi-
date-generation phase. The key idea here is to reduce the number of candidates coming from
the candidate-generation phase. Only pairs that overcome the threshold, pass the first filter.
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Figure 4.2: Algorithm procedure diagrams

4.2.3 Feature Vector

The choice of features has a significant impact on the properties of the proposed motif candidates.
We chose the window itself as a feature vector which is the most efficient computational solution.
Each w-long window becomes feature vector vi = xi:i+w−1, where i is the index to the time series
T . The length w affects the localization precision of the algorithm. In practice w ranges from
3 to 20, determined by the strategy described in Section 4.2.5. The feature vector needs to
be quantized because the quantization allows for exact equality of the feature vectors which
indicates the similarity of the windows. The feature vectors need to be uniformly distributed
across the bins in the collision table, which is achieved by uneven quantization. Intuitively, if
all bins contain approximately the same number of references to the windows in the time series,
the computational efficiency is the best. The uneven quantization thresholds are calculated as
follows. Assuming the feature vector is jointly normally distributed random vector, we apply
the whitening transform [60] on vi:

zi = Wvi,W ∈ Rw×w, (4.2)
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where the whitening matrix W is chosen so that the following condition is met:

WW> = Σ−1,Σ ∈ Rw×w (4.3)

Σ = cov(vi,vi)

where Σ is the covariance matrix of vi. We use the unbiased estimate of the covariance:

Σ ≈ 1

|V| − 1

∑
vi∈V

(vi − µv)(vi − µv)T ,

where µv is the sample mean vector of v, V is the set of Monte Carlo sampled feature vectors from
the time series, and |V| the size of the set V. The matrix decomposition (4.3) is obtained, e.g.,
by the Cholesky decomposition or by the singular value decomposition. We apply the quantile
transform on the whitened vector zi, which approximates the probability integral transform [61].
In practice, assuming jointly normal distribution of feature vector holds well [59]. Note that the
quantile transform spreads out the denser regions and concentrates the sparse regions and can
be applied on arbitrarily distributed features. Thanks to that, the transformed feature vectors
become approximately uniformly distributed.

The whitening procedure can also be viewed as an application of series of linear filters that
extract a feature vector from the window xi:i+w−1 features are independent, i.e., orthogonal. For
example, band-passing filters with non-overlapping bands satisfy the property of orthogonality.

The total bin count plays a key role in the reduction ratio. It will turn out in Section 4.2.7
that in the worst case scenario when all N −w+ 1 windows have to be examined, the expected
number of compared pair candidates is reduced by a factor exponential in dim(vi). This is
closely related to the birthday paradox as described in the next section.

4.2.4 Birthday Paradox

In brief, the birthday paradox states that a group of 23 randomly chosen people have more
than 50 % chance to contain at least one pair with the same birthday. On the other hand,
the probability of someone having birthday on a particular selected day of the year is only
1 − (364/365)23 ≈ 6.1 %. The difference in probability is counter intuitive and thus somewhat
paradoxical. The rate of growth of the probability of any birthday collision is very high and
surpasses 99 % in the group of 60 people.

This surprisingly quickly growing probability of collision manifests itself in the candidate-
generation phase of our system. As shown in Section 4.2.3, the feature vectors are supposed to
be distributed uniformly over the collision table. Let the total number of bins in the collision
table be denoted as d and expressed as

d = bdim(vi), (4.4)

where b is the number of bins in a single dimension of the collision table. Then the probability
p(s; d) of at least one collision in the collision table with the total of d bins when s windows are
drawn (independently of each other) is

p(s; d) = 1−
s−1∏
i=1

(
1− i

d

)
(4.5)

≈ 1− exp

(
−s(s− 1)

2d

)
(4.6)

≈ 1−
(
d− 1

d

)s(s− 1)

2 , (4.7)
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given s ≤ d. If s > d, then p(s; d) = 1. The random draw of windows is required to be done
without repetition. Equations (4.5)-(4.7) depict how quickly the probability of collision grows.

The expected number of colliding windows Nc when s windows were drawn, is critical,
since we compare only the Nc colliding candidate pairs. We will derive it from the binomial
distribution. From the perspective of a bin, the binning process is a repeated Bernoulli process
with probability of success (hitting the current bin) 1/d. The probability of a particular number
of successes (hits) k of a single bin follows the binomial distribution B(k; s, 1/d), where the
number of trials is s and the probability of success is 1/d. The expected number of all bins with
exactly k hits denoted as Nk is expressed as:

Nk(k) =

d∑
i=1

B(k; s, 1/d) = dB(k; s, 1/d) = d

(
s

k

)(
1

d

)k (
1− 1

d

)s−k
, (4.8)

where B(k; s, 1/d) is the probability mass function of the binomial distribution.
For the evaluation purposes, the expected number of bins containing at least m hits can be

expressed from the cumulative density function (cdf) of the binomial distribution as:

Nm = d
(
1− cdfB(m−1;s,1/d)

)
, (4.9)

where cdfB(m−1;s,1/d) stands for the binomial distribution cumulative density function of at most
m− 1 successes given s trials with trial success probability 1/d.

The expected number of all candidate pairs Nc generated from the collisions is the sum of
expected combinations using (4.8):

Nc =
s∑
i=2

(
i

2

)
Nk(i). (4.10)

We tested the validity of models (4.8), (4.9), and (4.10) on a simulated white-noise time
series. In Figure 4.3a, the number of expected candidate pairs from (4.10) are compared to the
observed number in the experiments. The pair plot in Figure 4.3c depicts how the whitened
feature vectors are evenly distributed in the collision table, which illustrates the effect of the
quantile transform.

Uniformly distributed windows will generate the least number of collisions in the collision
table. Any time series containing motifs generates more collisions. This notion justifies the
use of the collision table as a means to find the motifs efficiently. To give the motifs chance to
collide before the system is saturated by random collisions, we need to set up parameters of the
collision table b and dim(vi) to keep the expected number of candidates Nc manageable for all
s. We propose a method for setting the parameters in Section 4.2.5.

4.2.5 Collision Table Parameters

The success of our approach lies in a correct design of the collision table. This subsection
analyses the key cornerstones for setting the right parameters.

When a new collision occurs in a bin with more than one window, as many new candidate
pairs are generated as there are windows already in the bin. As soon as s > d, multiple windows
in at least one bin are inevitable (due to the pigeonhole principle), and the algorithm turns to
have time complexity of O(s2). That is why we need to keep d big. Luckily, the collision table
size defined in (4.4), grows exponentially with the exponent w = dim(vi). We need to adjust
the bin count d so that the number of candidate pairs modeled by (4.10) is minimized. This
task can be solved iteratively resulting in a desired value of d, but a trivial solution is to choose
d as big as possible.

To increase d, we can either increase b or w, but there is a limit to increasing either of
those. For b, we are limited by the quantization and the finite representation of numbers in



4.2. MOTIF DISCOVERY FRAMEWORK – MODIF 31

0 10 20 30 40
Epoch

0

2000

4000

6000

8000

10000

12000

Nu
m

be
r o

f c
an

di
da

te
s

Expected num. of pairs
±  Observed without  cutting
±  Observed with  cutting

(a) Predicted and observed number of candidates on the
Artificial data set of cover = 0.28 %

10 20 30 40
Epoch

0.5

0.6

0.7

0.8

0.9

AU
C

(b) AUC evolution (µ± σ) during epochs on the Artifi-
cial data set of cover = 0.28 %

0.00

0.25

0.50

0.75

1.00

0

0

20

40

1

0 20 40
0

0

20

40

2

0 20 40
1

0 20 40
2

(c) Collision table occupancy for the Artificial data set of
cover = 0.28 %

0.00

0.25

0.50

0.75

1.00

0

0

20

40

1

0 20 40
0

0

20

40

2

0 20 40
1

0 20 40
2

(d) Collision table occupancy for the ASTRO data set
[62]

Figure 4.3: Behavior of the MoDiF for b = 50, w = 3, batch = 1000, 10 experiment repetitions.

digital computers. After a certain point, increasing the number of quantization levels b will not
divide windows into different collision-table bins anymore. Another aspect is that too small
quantization levels may intensify the problem of weak motifs. A weak motif is motif that is
not an exact copy of its template but rather its perturbation. When a symbolic representation
in preprocessing is applied (e.g., SAX), the resolution in values is lowered, but the probability
of weak motifs is lowered too as the neighboring values are likely to be projected to the same
symbol. Weak motifs are less likely to produce an exact hit in the collision table. Suppose x̃i
is a discrete (quantized) value of xi. Also suppose, we have a probability pql of xi not missing
its true quantization level x̃i due to noise, then the probability of the whole window of length
w not missing a single sample is

p(x̃i:i+w−1 = x̃j:j+w−1) =

w−1∏
k=0

p(x̃i+k = x̃j+k) = pwql. (4.11)

For pql = 0.95 and w = 10, the probability is approximately 0.6, whereas for pql = 0.99 and
w = 10, the probability is more than 0.9. This notion underlines the importance of noise-
suppressing preprocessing of the time series.
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We developed a strategy for tuning the parameter b in the following way. First, identify the
noise standard deviation and set the smallest quantization level to be three times bigger than
that. This reduces the probability of missing a correct quantization level due to noise under
0.03. Then, we set the probability h of w consecutive successful hits to an acceptable value, e.g.,
0.9. Formally:

pwql > h = 0.9 (4.12)

The window length w is then upper bound by solving the equation (4.12) for w by:

w ≤ log h

log pql
=

log 0.9

log 0.97
≈ 3.45. (4.13)

The equation (4.13) gives a guidance towards a reasonable choice of w that comes only from an
analysis of noise level contained in the time series data.

Note that when using a sparse data structure of the hash table, the memory complexity
is O(N), independent of the number of the quantization levels while the expected access time
remains O(1).

The collision table have to be sufficiently big, but also the distribution of hits in it have to
be as uniform as possible. We wish to compare more frequently such collisions that originate
from occurrence of a motif. These notions motivate to transform the feature vectors so that they
have multivariate uniform distribution and only statistical outliers – such as frequently repeated
patterns (motifs) – cause local spikes in the concentration of otherwise uniform collision table.
This justifies the application of the whitening transform in (4.2) and the quantile transform
described in Section 4.2.3.

4.2.6 Inflation Phase

When a collision-table bin has more than one window, i.e., a collision occurs, and the new
candidates are passed for further examination. Such examination runs resource-heavy metric to
verify or discard the candidate. To verify a candidate pair, we search for the motif length and
optimal lag. Formally, we define this task as minimizing the length-normalized distance of the
candidate pairs:

mini,L D(xi:i+L−1,xi+∆:i+∆+L−1), (4.14)

s.t.: Lmin < L < Lmax < N/2,

where ∆ is the lag between motif’s occurrences. i is the beginning of the first occurrence,
the other occurrence begins at index i + ∆, and both occurrences end L samples from their
beginnings. As discussed, e.g., in [51], the normalized distance is often unstable for small L
so we limit the examined lengths L to be at least Lmin long. Reasonably small value of Lmax
significantly accelerates the search.

The distance function D can be chosen arbitrarily, and this choice has influence on what kind
of motifs can be discovered. This distance function have to adapt to the variable length of motif
candidates. In [35], the authors propose to normalize the Euclidean distance by the candidate
length square root. Formally, the length-normalized Euclidean distance DE is computed as

DE(y, z) =
1√
L
||y − z||2, (4.15)

where y, z are equally long subsequence vectors, L is the length of the subsequences, and ||.||2
denotes the 2-norm of the vector. This metric can be computed very efficiently by utilizing the
summed-area tables allowing for a fast optimization of (4.14). The details of this optimization
are out of the scope of this paper, which aims to be independent of the selected distance function.

To further accelerate the search, the discovered motif occurrences are immediately removed
from the time series if approved. The motif is approved, if the candidate pair have distance
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smaller than a predefined threshold, which is the average distance of randomly selected combi-
nation of segment pairs from the time series. This approach was studied in [35]. This is a greedy
search, but it accelerates the search significantly and experiments in Section 4.3 show that the
quality metrics of motif discovery are not significantly affected.

4.2.7 Complexity

In the worst case, all N − w + 1 windows have to be visited and placed into the collision table
in the candidate-pairs generation phase. Both the computational and the memory complexity
of this process are O(N). The random access to the collision table has complexity O(1) since
associative array is used as shown in Section 4.2.2. Thanks to the quantile transform, which is
used to balance the occupancy of the collision table, each bin is expected to contain the same
number of windows. That is, each bin contains on average (N − w + 1)/bw windows.

In the inflation phase, all combinations of pairs from each bin have to be evaluated, i.e., in-
flated and approved or disapproved. That represents the computational complexity ofO(N2/b2w).
This step reduces the complexity by a rapidly growing factor. This is where the approved-motifs
removal significantly prunes the search space, especially in the time series, where the motifs are
abundant. The strategy for choosing b and w is designed so that the factor 1/bw is always
growing faster than N2 resulting in the linear time complexity O(N). The linear complexity
then holds as long as the motifs have length at least w, which is met in most cases in practice.
This is a great improvement compared to exact motif-discovery methods, where the lower bound
of the complexity is O(N2) (see [23]).

4.3 Experiments

In the following section, the key properties of our algorithm are experimentally examined. There
are two main algorithmic properties of interest, the qualitative performance and the speed
performance. The qualitative performance measures how similar the occurrences of a discovered
motif are and what portion of input data are covered by the occurrences. The speed performance
describes the practical computational demands of the algorithm. The speed is measured as the
total time of processing benchmark data sets.

All experiments were performed on a 2021 MacBook Pro with an M1 Pro chip (10-core CPU,
16-core GPU) and 16GB of memory.

4.3.1 Applied Methods and Metrics

Assessing the quality of a discovered motif is a complicated task and is sparsely investigated in the
literature. The main reason is that motifs are by definition unknown before they are discovered.
We can compare discovered motifs on artificially composed data sets – the Implanted motifs
data sets [63]. In such data sets, we know which samples belong to the motifs and which lie
outside.

Under these assumptions, we can utilize the classification metric of the false discovery rate
(FDR) defined as:

FDR =
FP

FP + TP
, (4.16)

where TP is the number of true positives, i.e., samples from motifs occurrences correctly labeled
as belonging to a motif, FP is the number of false positives, i.e., samples outside motifs occur-
rences incorrectly labeled as motif samples. The FDR depends on the decision threshold, which
needs to be chosen specifically for the data set under examination. The FDR metric is between
0 and 1, where smaller is better. A value of 0 means that all labeled samples belong to a motif,
and one means that all labeled samples are outside any of the motifs.
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Another well established metric suitable for binary classification tasks is the area under the
receiver operating characteristic (ROC) curve, i.e., AUC metric. For this metric, we labeled
the motif samples by the best achieved similarity. That means when an algorithm proposes
overlapping motifs, the overlapping samples get the best similarity of the propositions. The
AUC metric, which is classification-threshold-invariant, takes values between 0 and 1, where 1
is the best performance and 0 is the worst case. For more details on these metrics, see, e.g.,
[64]. Indeed, to evaluate FDR or AUC, we need to know the ground truth about all samples –
whether they truly belong to a motif or not, and this information is unavailable for most real-life
data sets.

Metrics calculated on simulated data sets bring only limited insights into the performance
of algorithms on real-life data sets. For the real-life data sets, we propose the motif coverage
metric for qualitative comparison of results. It is defined as follows.

cover(T , Lmin, D, γ) =
|M|
N

=
TP + FP

N
, (4.17)

where M is the set of all samples xi that are contained in at least one motif occurrence and
N is the length of the time series T . The cover depends on the given time series T , lower
bound on motif length Lmin, distance function D, and the threshold γ lower-bounding the
distance between motif occurrences. The best value of cover depends on the time series and it
is empirically estimated for the selected real life data sets listed in Table 4.2 in column coverE.
The further the cover from the estimated value is the worse the performance of motif discovery
algorithm. The opposite cannot be said with certainty as the ratio between TP and FP in
(4.17) are unknown. Even exactly the same coverage as the expected one does not guarantee
discovering all the motifs in data set. At the same time, a very different coverage from the
expected one guarantees a lot of false motif discoveries. The problem is in determining the
expected coverage. The values of cover are between 0 and 1. Note that the motif overlaps are
counted only once.

4.3.2 Experiments on Implanted Motifs Data Sets

The ground truth of motifs location is unavailable for most of the real-life data sets. Therefore,
we prepared data sets with motifs implanted into a Wiener-process-generated time series. The
Coffee [65] data set was used as a source of the motifs. We generated four data sets (time series)
with different values of coverE. The motifs in these data sets were also corrupted by additive
noise. Each of the four time series consists of 106 samples with coverE ranging from 0.1 % to
29 %. We call these data sets the Artificial data sets.

The pre-processing pipeline removes trends (by a high-pass filter), and then standardizes the
time series by subtracting its mean value and scaling it by its reciprocal standard deviation.
After performing these steps the time series changes from a Wiener process into a stationary
stochastic process with additive white noise with zero mean and unit variance.

Most of the best-performing motif discovery algorithms utilize the PAA or SAX representa-
tion of the time series to reduce the amount of data to process, as discussed in Section 4.1.2.
We adopt the PAA time-series representation for the results to be comparable with the results
of these algorithms. Note that this step of performing PAA also reduces the motif discovery
resolution in the time axis by aggregating time-series subsequences into single values.

To evaluate the FDR metric, we have to select appropriate threshold for each motif discovery
algorithm. In our case, we randomly select windows from the time series and we inflate them
using equations (4.14) and (4.15) and calculate the mean of their similarity. Then, we generate
first 100 candidates from the collision table and inflate them according to the same equations,
and calculate their mean similarity as well. The threshold is set to the middle between the
mean of the random-subsequences similarity and the mean of the 100-candidates similarity. For
CHIME, we use the threshold provided by its authors in [54]. The SCRIMP++ authors do not
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provide a single similarity threshold to extract motifs. They simply provide the single most
similar pair. To extend the SCRIMP++ to our experimental settings, we provide the optimal
threshold set to the n-th best metric provided by the SCRIMP++ algorithm. The number n
is the number of the implanted motifs in the data set under examination. This step brings
information about the ground truth to the SCRIMP++ algorithm, so its performance metrics
are improved as indicated in 4.1. However, such an improvement is impossible for real-life data
sets, where the ground truth is unavailable.

We use the any-time property of our algorithm to terminate after the first 1/4 of epochs. To
support the idea of early stopping, we examined the evolution of AUC metric depending on the
number of epochs, which is shown in Figure 4.3b. The AUC metric exceeds 0.9 after 38 epochs.
This behavior was observed in every Artificial data set.

Table 4.1 shows performance comparison of the motif discovery algorithms. Our algorithm
and CHIME both perform the discovery of variable-length motifs. Their speed is comparable
and so is the AUC metric but the FDR metric is several orders of magnitude worse than our
algorithm. SCRIMP++ can discover only fixed-lenght motifs. This disadvantage can be solved
by running the algorithm 985 times (motif lengths from 15 to 1000). This fact significantly
prolongs the time needed to obtain the results from SCRIMP++, e.g., for coverE = 0.286 % the
computation time would be 66 438 s instead of 67.45 s show in Table 4.1. SCRIMP++ has almost
perfect AUC, because the algorithm was provided with the exact motif-length information, which
is unavailable for the real-life data sets. We must be aware that our algorithm reflects real-life
situations (variable motif lengths etc.) while SCRIMP++ does not.
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Figure 4.4: Performance of our algorithm on ASTRO [62] data set; batch = 1000, w = 3, b = 70, 10 experiment
repetitions.

Algorithm: Our CHIME SCRIMP++

coverE AUC ↑ FDR ↓ Time ↓ AUC ↑ FDR ↓ Time ↓ AUC ↑ FDR ↓ Time ↓
.00286 .883 .006 148.89 .950 .999 150.39 1.000 .026 67.45
.01001 .738 .011 148.82 .478 .991 137.94 1.000 .016 67.43
.0286 .818 .006 157.50 .973 .973 130.51 1.000 .012 68.39
.286 .934 .008 250.97 .572 .713 269.85 .996 .015 72.79

Table 4.1: Qualitative comparison of algorithms on Artificial data set [63] based on [65]. The arrows in label
row indicate whether a bigger (↑) or smaller (↓) value is desired (batch = 1000, b = 50, w = 3). Our algorithm
terminates after the first 1/4 of epochs. For CHIME and Our algorithm, the motif length search was from 15
to 1000. SCRIMP++ examines only a single motif length, for variable length, repeated restarts are necessary so
that e.g. for coverE = 0.286 % the computation time would be 66 438 s instead of 67.45 s.
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4.3.3 Experiments with Real-Life Data Sets

The experiments on real-life data sets show that the assumptions of normally distributed data
are difficult to hold, which manifests in higher-than-expected number of candidates as shown
in Figure 4.4a. The more a data set differs from normally distributed data, the less effective
the quantile transform is. In turn, the occupancy of the collision table is more concentrated in
clusters of frequent data, as shown in Figure 4.3d. This leads to a faster generation of motif
candidates than estimated by theory in Section 4.2.4, but the divergence of expectations and
observations is not too radical when coverE is low, see Figures 4.4a and 4.4b for ASTRO data
set.

The experiments on the real-life data sets are listed in Table 4.2. The thresholds from
Section 4.3.2 were also used for the real-life data sets. For data sets with a lower motif frequency
corresponding to a lower coverE, our algorithm is faster than the others. The cover metric of our
algorithm closely approaches the estimated coverE. CHIME algorithm shows very high cover
for all data sets, even for the ASTRO data set, in which motifs are very rare. Our algorithm
proposes only very likely motif candidates, which is the desired behavior. This is encouraged by
the smart pre-filtering of candidates, which intensifies the probability of motifs being examined
early. The discovered motifs are then cut out which further reduces the data set length.

Algorithm: Our CHIME SCRIMP++

Data set coverE cover Time [s] ↓ cover Time [s] ↓ cover Time [s] ↓
ECG [66] .97 .986 358.17 .999 132.77 .757 62.167
GAP [67] .95 .95 536.82 .97 124.36 .153 60.145

ASTRO [62] .001 .032 278.31 .98 817.49 .271 58.004
Robot [68] .373 .387 29.12 .99 132.03 .828 58.604
Oven [68] .12 .091 6.77 .995 .50 .113 .153

Table 4.2: Qualitative comparison of the motif-discovery algorithms on real life data sets. Column coverE is the
cover expected in data set. The arrows in label row indicate whether a bigger (↑) or smaller (↓) value is desired
(batch = 1000, b = 70, w = 3). Window length limits were set to Lmin = 15, Lmax = 1000.

4.3.4 Industrial Use Cases

MoDiF was used on power-consumption data collected in a car-manufacturer robotic cell. The
time series consisted of 1 million samples. The robots were performing repetitive operations
to weld and glue parts, and these operations projected to the robots power consumption as
motifs. MoDiF was used to prepare the data to train machine learning models. Thanks to using
MoDiF, the data set preparation process was fully automatic without any manual intervention.
Our framework proved to be well suited for this task as it serves as a whole data-set preparation
pipeline.

Apart from the industrial robot use case, MoDiF was also deployed on another industrial
use case of batch-heating ovens, where the motifs were used for an accurate estimation of the
availability of the oven, which requires a really low FDR. The length of this time series was 35
thousand samples. The results of both these use cases are listed in Table 4.2.

4.4 Discussion and Results

This chapter explores the impact of a collision table utilized as a motif-candidates pre-filtering
technique. To our best knowledge, it is the first work that investigates thoroughly the elemen-
tal phenomena driving the effectiveness of the collision-table pre-filtering and its intentional
application for motif discovery.
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The problem of quadratic time complexity with most of the current motif discovery algo-
rithms is usually tackled from two distinctive viewpoints. The first viewpoint is a deep analysis
of the similarity metrics. By bounding a chosen similarity metric, using an early-abandoning
technique or a dynamic-programming technique, it is possible to achieve linear time complexity.
The other viewpoint examines the length of data. By careful dimensionality-reduction methods
(e.g., by symbolic aggregation), the length of the data is greatly reduced, however, at the cost
of a resolution loss.

Our work brings up a third viewpoint, which is the pre-filtering of candidate pairs before they
are compared for similarity. This approach is independent of both the dimensionality reduction
and the similarity metric. It can be easily combined with most of the popular motif discovery
algorithms to significantly reduce the number of similarity comparisons. Thus, the proposed
method has the time-complexity of O(N) in expectation. The linear time complexity holds for
the time series having tens of millions of samples, which is true for most real-life applications.

Also, we proposed the inflation technique to solve the problem of unknown motif length and
we experimentally showed how it affects the quality of the discovered motifs. Our algorithm
works in the any-time regime and requires only the minimum and maximum lengths of motifs,
and optionally also the batch size, to be set. All the remaining parameters are tuned auto-
matically. The discovered motifs are presented to the user, ranked and ordered according to
length-normalized similarity.

To evaluate the quality we chose two different quality metrics. The results on artificial data
sets show an excellent performance of the Motif Discovery Framework (MoDiF) presented in
this chapter. The performance was further validated on real-life data sets and on data sets from
two industrial use cases. The results confirmed the expectations gained from the experiments
on the artificial data sets.

The supporting software code is available on GitHub [69], the data sets created for this
chapter are available online at [63], [68].
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Chapter 5

Clustering of Patterns

Previous chapters described methods for manual and automatic segmenting timeseries – motif
discovery. The resulting segments (alias patterns) make a non-homogeneous set of objects that
must be carefully partitioned to form a training data set for the target machine learning tasks.
The repetitive robotic operations produce similar patterns. This property leads to the idea of
clustering the patterns according to their similarity. However, this idea brings challenges, such
as measuring the similarity of sequences of unequal lengths or how many clusters should be
expected. We tackled these issues in paper [3], where we contributed with a similarity measure
for sequences of unequal lengths. This chapter concludes the data-set preparatory phase of this
dissertation. Note that we return to using the more general term pattern instead of motif in
this chapter for clarity.

5.1 Introduction

A sustainable production as a part of a larger picture of Industry 4.0 begins to require energy
effectiveness. Especially robotic applications have been getting higher attention recently because
the robots consume about 25 % of electrical energy in highly robotized industries such as car
production. There have been approaches that focus on decreasing the energy consumption of
the robotic lines such as [1], [70] or [71]. The latter relies on the knowledge of the robotic
operations in terms of the electrical energy that is consumed by each robot in the production
cell during a specific movement. Based on the measurement of the energy consumed by each
robot it is necessary to separate the time series of the sampled values into smaller segments
that correspond to the robotic operations. In paper [10] an approach to identify the robotic
operations was introduced which was based on the correlation with the series that were used
for teaching the model. This task was similar to the non-intrusive load monitoring (NILM) in
smart buildings such as in [72] except for much higher dynamics in robotic applications.

Another area of application is the diagnostics of robots based on the knowledge of their
electrical energy consumption during the executed operations. If a suitable diagnostics model
is created it can be taught on the measured time series of energy consumption values and then
the model can be used for the robot diagnosis. Paper [3] shows a way how to create a Markov
model of an industrial robot and identify the robotic operations based on their probability of
resemblance to the learned trajectories.

The chapter describes an improved method to identify the robotic operations with respect to
the previous work in [3] and [10], which is needed for the above described applications of energy
optimization and robotic cell diagnostics. In [3] models to estimate the energy consumption
of industrial articulated robots were developed. For an unsupervised learning of the models,
preprocessing steps on data are required. When the robotic operation non-intrusive monitoring
task was first approached in [10], an external approach for measuring similarity was used. This
idea is revisited in this paper, and a modification of Pearson’s correlation coefficient is used

39
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as a basis for measuring a distance between sequences. It still relies on measuring the energy
consumption of the robot in a production cell.

5.1.1 Objectives

The basic problem formulation goes as follows. A robotic cell consisting of multiple robotic
manipulators is non-intrusively monitored. Monitoring is done by measuring the power con-
sumption time series of each robot, which is sampled with 40 ms sampling period and time series
covering weeks of data have to be processed. Long one-dimensional data contains repeating
segments, which correspond to the robotic operations. There are various operations in the data.
In this chapter, we develop an unsupervised data preprocessing which segments-out repeat-
ing patterns and prepares a set of training examples for subsequent unsupervised CS-HGMM
training.

In [10], the data were preprocessed manually, and a trained supervisor had to extract re-
peating patterns by eye. After templates had been prepared a search in the data was run and
statistical analyses were conducted. These analyses are used for example for an evaluation of
the actual impact of optimization of robotic operations.

In this chapter, we focus primarily on a robust training data set preparation. The segmenting
step described here can be replaced by a smarter segmentation solution such as motif discovery
described in Chapter 4. However, various segmentation approaches appear in practice. We want
our solution to be modular and adaptable to a wide range of segmentation results. For that
reason, we investigate a use-case dependent segmentation by signal-plateau detection. The goal
is to cluster segments robustly considering the variability in segment boundaries.

5.1.2 Related Work

Interest in NILM has risen only in last few years in industry as the power consumption of the
automated production increases. NILM methods usually rely on load signatures of the devices.
A load signature is some characteristic feature of the appliance which manifests in the measured
data. The signature vastly reduces the dimension of the descriptor of the power consumption of
the appliance and thus makes distance measuring methods feasible in real applications. In [73]
the signatures of voltage-current trajectories were used followed by their hierarchical clustering.
In the work of [74] a disaggregation of load signatures based on active and reactive power
consumption and then cluster them using k-means clustering method. The disadvantage of k-
means is that it detects noise signatures based on their distance from its cluster centroid. The
other drawback is the need to estimate the number of cluster before the k-means run.

The work of [72] targets the varying load signatures by exploiting the fact that the power
to the different classes of appliances loads the power line asymmetrically. The asymmetry aids
in distinction and disaggregation of the appliance signatures. The robotic cells studied in this
paper are not wired this way and such requirement is difficult to fulfill in practice due to power
grid balancing demands.

The authors of [75] use on-off load edges for detection of events in a monitored grid. Then
they apply wavelet and Fourier analysis to extract features from data in the vicinity of the
switching edge to classify active appliances. The frequency analysis showed to be unsuitable for
the robotic operation detection as discussed in [10].

As for the clustering of time series data, the current trend is to adopt a particular cluster
analysis for timeseries segments. In [76] authors use Gaussian mixture models to cluster the
feature vectors of hundreds of elements using EM algorithm for unsupervised estimating the
GMM.

An adaptation of DBSCAN with dynamic time warping as a distance function is used in [77]
inspired by timeseries mining. The DTW distance assigns the same weight to each sample, but
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certain samples carry more information than others. Our proposed similarity measure takes this
notion into account and weights each sample by its estimated information content.

5.1.3 Chapter Specific Notation

This chapter studies similarity of measurement sequences. Navigation by indexing within data
sets have to be carefully considered. For a quick orientation, see Figure 5.1. Each data sequence
consists of one-dimensional measurement samples. The following notation is used:

• Single measurement at time instance t within k-th sequence is a scalar ykt .

• k-th sequence of measurements of length Tk is Yk
Tk

=
(
yk1 , y

k
2 , ..., y

k
Tk

)
, in this chapter, it

is a 1× Tk row vector.

• Set of all segment candidates is denoted as Y = {Y1
T1
,Y2

T2
, ...Yk

Tk
, ...,YK

TK
}.

sequence

ykt ykTkyk1

yKTK

y1
T1

...

· · ·

...

· · ·

y1
1

yK1

Kt

yk+1
Tk

y1
2 · · ·

· · ·

Figure 5.1: Sequence data set illustration

The measured sequence is considered to be a stochastic process. In this chapter, superscripting
by a variable always means indexing of segment candidate unless explicitly stated otherwise.

Note that in this chapter, we deal with only scalar measurements ykt , thus the sequence of
measurement Yk

Tk
is a flat matrix. We keep this notation to remain more or less consistent

between chapters.

5.2 Clustering for Data Set Preparation

5.2.1 Problem Definition

The problem is decomposed into following three steps.

• Generate candidates for segments,

• Construct a suitable distance function,

• Classify similar candidates into the same class of operations.

A typical time series is depicted in Figure 5.2. A notable plateau divides the two candidates
for segmented operations. There are also artifacts in data which do not present any robotic
operation. For example, transition peak in power caused by robot waking up from power-saving
mode. Other non-functional segments of activity in power consumption are caused by homing
the robot before its shutdown. These artifacts have to be filtered out as noise in data.

Another issue with the segment candidates is that candidates do not have the same length.
Not even within the same class of operation and they still must be clustered together. This issue
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Figure 5.2: Data example and its CUSUM segmentation.

puts demands on the similarity measure computed for any pair of candidates. Some robotic
operations can even be paused in the middle for an extended time period before its execution is
resumed. Such fragments are difficult to cluster.

5.2.2 Generation of Candidate Segments

The initial segmentation is based on the observed property of power data which indicates that
robotic operations are separated from each other by considerably long plateaus of low power
consumption. The measured signal is rather steady during a plateau. A simple thresholding of
data yields a lot of faulty separation points within valid operations. A near-zero value detection
of noise-filtered differentiation of data fails due to the presence of short plateaus within valid
operations. Such plateaus happen for example when the robot is spot welding.

The CUSUM algorithm for a detection of a change of a fundamental mode of the measured
signal is implemented. The CUSUM algorithm operates over the ratio of the likelihoods of the
hypothesis that robot is operating over the likelihood of the hypothesis robot rests. Those likeli-
hoods are evaluated based on the difference signal and are expected to be normally distributed.
The prior distribution was estimated based on manually chosen short sequences of both mode
types mentioned above.

Supposing we have the likelihood of each sample in the sequence for both hypothesis as
l(θ0|yt), l(θ1|yt), where θ0 represents the hypothesis that yt belongs to a plateau (i.e., robot
rests) and θ1 represents the hypothesis that yt belongs to operation sequence (i.e., robot is
operating). The observed statistic St for CUSUM takes form of

st = log
l(θ0|yt)
l(θ1|yt)

, (5.1)

St = St−1 + st. (5.2)
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The adaptive threshold for statistic St is introduced as

mint = min
i∈T

Si, (5.3)

maxt = max
i∈T

Si, (5.4)

where T represents the set of time indices since the last mode-change detection.

The decision that the mode of signal has changed is based on the following expression.

Rests ⇔ Sk −mint > λRests→Operates, (5.5)

Operates ⇔ Sk −maxt < −λOperates→Rests, (5.6)

where λRests→Operates is a tuning constant for change in the direction from the resting mode to
the operating mode of the robot and the λOperates→Rests vice versa.

In Figure 5.2 is an example of CUSUM segmentation. By tuning the lambdas, the lag in the
mode change detection can be tuned.

5.2.3 Distance of Candidate Segments

Both connectivity and density based clustering methods depend heavily on the distance defini-
tion used. The previous work in [10] with robotic power consumption type of data in showed
that Pearson’s coefficient is successful measure of similarity. In this work the Pearson’s cor-
relation coefficient is used as a basis of semimetric distance measure between segments. It is
advantageous to express the computations in a form of vector-matrix operations as vectorization
can significantly boost computational performance on modern computers.

Pearson’s correlation coefficient for a pair of sequences Yj
Tj

, Yk
Tk

of the same length T =
Tj = Tk is defined as

ρ(Yj
T ,Y

k
T ) =

∑T
t=1(yjt − µj)(ykt − µk)√∑T

t=1(yjt − µj)2
∑T

t=1(ykt − µk)2

(5.7)

=

∑T
t=1(yjt y

k
t )− Tµjµk

Tσjσk
, (5.8)

=
Yj
TYk

T
> − T ȳj ȳk

Tσjσk
(5.9)

σk =

√√√√ Tk∑
t=1

(
ykt
)2 −( Tk∑

t=1

ykt

)2

(5.10)

=

√
Yk
Tk

Yk
Tk

> −
(
Yk
Tk

1k
)2

(5.11)

where µk is the mean of k-th candidate segment Yk
Tk

and σk is the standard deviation of k-th

candidate segment Yk
Tk

and 1 is a T k × 1 column vector of ones.

The candidate sequences can differ in lengths and also in time lag with respect to each other.
This issue can be addressed by extracting features from sequence such that the number of features
is equal for any length of segment. Frequency analysis provides such feature generation but as
discussed in [10] it does not yields satisfying similarity measure. Computing numerous statistical
moments would also be almost independent of the length of the sequence but noise makes such
statistic inconclusive.

In this work a distance is defined as a maximum correlation in sliding window normalized by
the convolution of the information content of the overlapping regions of the compared candidate
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segments. Let I(ykt ) be an information content of sample ykt and let I(Yk
Tk

) be a sequence of

information contents of the sequence Yk
Tk

defined as

I(ykt ) = − log p(ykt ), (5.12)

I(Yk
Tk

) =
[
I(yk1 ), I(yk2 ), ..., I(ykTk)

]>
, (5.13)

Ik = I(Yk
Tk

), (5.14)

where p(ykt ) is the probability density function of the random variable Y and ykt is its realization
at time t. To define the correlation vector, following functions need to be defined first.

Ỹk
Tk

= Yk
Tk
− µk, (5.15)

where µk is the mean value of the sequence Yk
Tk

and the Ỹk
Tk

is the centered sequence. Using the
discrete convolution (∗) and the swap of ordering (prime sign) following variables are defined as

qjk = Ỹj
Tj
∗ Ỹk

Tk

′
, (5.16)

σj = 1k ∗
(
Ỹj
Tj

)2
, (5.17)

σk = 1j ∗
(
Ỹk
Tk

)2
, (5.18)

where 1k represents Tk × 1 vector of ones and
(
Ỹk
Tk

)2
means element-wise square of elements

of the vector Ỹk
Tk

.

The normalization vector rjk is defined as

rjk =

(
1j ∗ Ik

)
+
(
1k ∗ Ij

)
1jIj + 1kIk

. (5.19)

Finally using the element-wise product � and the element-wise right-division �, the corre-
lation vector ρ(Yj

Tj
,Yk

Tk
) is defined.

ρ(Yj
Tj
,Yk

Tk
) = rjk � qjk �

√
σj � σk, (5.20)

where the square root is also calculated element-wise. All the vectors have exactly the same
dimensions and none of the elements of the expression

√
σj � σk is zero, so that all the element-

wise operations are well-defined.
The elements of the resulting vector ρ(Yj

Tj
,Yk

Tk
) are in fact the correlation functions (5.7) of

the overlapping regions as the sequences Yj
Tj
,Yk

Tk
slide over each other weighted by the fraction

of information contained in both overlapped regions over the total information contained in both
entire sequences. In Figure 5.3 is depicted an example of a correlation vector of two sequences
with its maximum at the shift of 394 between them.

The final distance is defined as

D
(
Yj
Tj
,Yk

Tk

)
=

1

2

(
1−max

ρ
ρ
(
Yj
Tj
,Yk

Tk

))
. (5.21)

TheD
(
Yj
Tj
,Yk

Tk

)
denotes the distance between two candidate segments Yj

Tj
,Yk

Tk
. The distance

defined as (5.21) does not obey the triangle inequality but it is always greater or equal to zero,
it is a symmetric measure and it is zero only when the candidate segments Yj

Tj
,Yk

Tk
are equal.

For these reasons this distance is only a semi-metric. Note that we agree on that the segments
are similar when they have a constant offset from each other. The distance can be zero also
in the case when one segment is just an affine transformation of the other segment. A very
slow drift was observed in the data and it is desirable feature of the distance function that it is
insensitive to the linearly expressed drift. There are also special cases some segment is just an
affine transformation of another one and yet they do not belong into the same class. But such
events were not observed in the data.
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Figure 5.3: Correlation vector of two sequences.

5.2.4 Density Based Clustering

By terminology of clustering theory, the candidate segment is denoted as a point. An agglom-
erative linkage and also density-based clustering methods were investigated for an unsupervised
clustering of the segment candidates. The clustering methods were selected so that a minimum
number of tuning parameters were necessary. First, connectivity-based hierarchical clustering
was tested, a single-linkage clustering in particular. Its advantage is that it can find even
very irregularly shaped clusters whereas other popular clustering methods such as Gaussian
distribution based clustering struggle with data distributed other than within a range of some
hypersphere.

Next, more complicated clustering methods were investigated. First, the popular DBSCAN
method showed successful clustering after carefully tuning the control parameters. DBSCAN
behavior is determined by two parameters,

• ε - neighborhood range,

• minPts - minimum number of neighbors in ε range.

The parameter ε determines what is the maximal distance between the closest neighbors so that
they are considered to be connected. The parameter minPts determines minimum connected
neighbors that some point needs to be considered a member of a cluster. This way, points
which do not fit those rules are classified as noise, which is the desired behavior as discussed
earlier. To overcome issues of uncertainty in the choice of parameter ε a generalized DBSCAN
method called OPTICS (see [78] [79]) was utilized. OPTICS does not need initialization of
ε. It is run for the maximal sensible setting of ε and the algorithm shows in its reachability
plot how the clustering is affected by the choice of ε. This way, ε is determined flexibly after
the computationally expensive phase of the clustering. Let N be the number of points. The
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theoretic time complexity of the OPTICS algorithm is O(N2) due to the computation of the
nearest neighbors of each point in the dataset. For completely ordered spaces, the complexity
can be reduced to O(N logN).

The pseudocode for the OPTICS algorithm is depicted in Algorithm 1. Two distances are
used in the OPTICS.

• Core distance

• Reachability distance

Core distance of the point is the distance to its minPts-th closest neighbor in ε range. If there
is not that many neighbors in range, the core distance is undefined.

The reachability distance of a pair of points can be defined only when there is defined core
distance of the first point. If there is enough neighbors in ε range, core distance is defined and
the reachability distance is max{CoreDist(point1), Dist(point1, point2)}.

Algorithm 1: OPTICS clustering algorithm.

Data: DB, ε, minPts
Result: Reachability distance order queue
foreach point in DB do

point.reachDist ← ∅;
foreach unprocessed point in DB do

N ← GetNeighbors(point, ε);
mark point as processed ;
append point to output ordered queue;
if CoreDistance(point, ε, minPts) 6= ∅ then

Seeds.Init();
Update(N, point, Seeds, ε, minPts);
foreach next point’ in Seeds do

N’ ← GetNeighbors(point’, ε);
mark point’ as processed ;
append point’ to output ordered queue;
if CoreDistance(point’, ε, minPts) 6= ∅ then

Update(N’, point’, Seeds, ε, minPts);

The update function’s pseudocode is showed in Algorithm 2. The ordered set Seeds holds
the list of unprocessed points ordered by their reachability distance to the point which included
them as neighbors. When a new reachability distance is assigned to the point, it must be put
into correct place in Seeds i. e. Seeds must be sorted according to the reachability distances.
When taking the next point from Seeds, next is the point with the smallest reachability distance
available. After a point is taken as next point, it is excluded from Seeds. The OPTICS run
ends by producing an ordered queue of distance labeled points. The ordering is visualized by
reachability plot as in Figure 5.4. Each bar in Figure 5.4 corresponds to a point, and the height
of the bar shows the largest distance at which the point will still be included in some cluster.
Each point is traced back from its representation within the reachability plot.

The valleys in the reachability plot correspond to the clusters. The peaks divide the data
points into separate clusters. The reader can see that the clustering depends on the choice of
the threshold for cutting the reachability plot. The threshold represents the ε choice which had
to be done before the clustering in the case of DBSCAN. For OPTICS supervisor can quickly
iterate through many different settings of ε at negligible additional computational cost. One
can see that as the threshold is lowered the number of clusters will rise and vice versa. After
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Algorithm 2: Update method of the OPTICS.

Input: N, point, Seeds, ε, minPts
coreDist ← CoreDistance(point, ε, minPts);
foreach unprocessed neighbor in N do

newReachDist ← Max(coreDist, Distance(point, neighbor));
if neighbor.reachDist = ∅ then

neighbor.reachDist ← newReachDist;
Seeds.Insert(neighbor);

else
if newReachDist < neighbor.reachDist then

neighbor.reachDist ← newReachDist;
Seeds.Sort(neighbor);

setting the threshold, the points with reachability distance above the threshold are discarded as
noise except for the most-right one in each peak. Also, the clusters counting less than minPts
are filtered out as noise.

The peaks in Figure 5.4 are very distinctive, which is caused by a presence of points on the
edge of clusters. It means that the given candidate segments contain outlying segments which
are not similar to more than minPts−1 other candidate segments. That is caused by imperfect
preliminary segmentation of the data into candidate segments. It can also be caused by the
occurrence of events in the robotic cell that happens rarely and are captured in the data at most
minPts− 1 times.

5.3 Experiments

In Figure 5.2, there is an example of the performance of the candidate segment generation
algorithm. The segments framed by the 1-valued red-dashed criterion function are considered
to be data generated by an operation of the robot. The mode-detection CUSUM algorithm is
able to segment measured data with sufficient lag after the robot mode switches into the resting
mode. As there are two tuning parameters λ, the algorithm is shown to be more sensitive to the
transition from the resting mode into the operating mode. This was necessary due to the fact
that the segmentation evaluated the plateaus during the spot-welding phases as resting mode of
the robot. This can be hardly overcome by such simple signal filtering and in this work an effort
was focused on reducing the impact of imperfections of segmentation phase. Measurement data
of one day of production were processed by the whole chain of the preprocessing tools described
above. The data contain 459 operation executions.

In Figure 5.5, there is an example of resulting clustering. Only three representative examples
from each cluster are plotted. It can be seen that shifts and scaling in the time domain of the
operation candidates cause growth in overall dissimilarity of the candidate segments. It leads to
the creation of multiple classes which can be identified as equal by eye. This issue is caused by
two main reasons. One is that the distance function to marks the unshifted segments as closer
than the shifted ones. The second and lesser reason is simple thresholding of the reachability
plot. More complicated methods for the valley detection could improve the clustering.

5.4 Conclusion

In this chapter, we have shown how clustering can be used to prepare training data sets. We
examined approaches requiring minimum manual tuning from a human user. The essential
contribution is the similarity measure that can compare a pair of unequal-length vectors and
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Figure 5.4: Reachability plot of OPTICS clustering with minPts = 6.

return a percentage-like result, which is easy to interpret. The OPTICS algorithm proved to
be a valuable tool in tuning the algorithm parameters. It also brings a better insight into
the processed data. Additionally, we introduced a signal segmentation strategy based on its
information content.

Both the segmentation step and the similarity measure are modular. They can be replaced
by different methods, but regarding the clustering algorithms, OPTICS showed the most suit-
able set of features compared to other density-based clustering techniques. The segmentation
performance was negatively affected by behavior-agnostic signal processing. How to improve
the segmentation is the topic we focus on in the next chapter.
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Figure 5.5: Example of clustered segments with allowed distance 0.25.
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Chapter 6

Pattern Modeling

The pattern model described in Chapter 3 relies on the correlation between the manually dis-
covered pattern and the sliding window going through the time series. Such an approach can
be viewed as a KNN classification task, where each window is viewed as a point in a high-
dimensional space. However, one of the objectives of this dissertation is to provide classifications
together with an estimate of the prediction uncertainty. Even though there exist methods to ex-
press the confidence (complement of uncertainty) in predictions of the KNN classifier, stochastic
models provide a well-established implicit toolset for uncertainty, making them better suited for
the main goals of this dissertation work. This chapter investigates a particular stochastic model
– the Hidden Markov model. We present an idea to include the exogenous control input into
the hidden state of the HMM. To our best knowledge, such an approach is not widely used in
the industry despite its modeling strength. This chapter is based on our original work in [3].

6.1 Introduction

This chapter deals with the identification of robotic operations for industrial robots that are
used in robotic manufacturing cells such as welding or assembling ones. In such cases the
robotic operations are planned in advance and executed as robotic programs that run in the
robot controller and make the robot move and perform various tasks such as manipulation,
welding, glueing etc. The planning procedure specifies the expected duration of the operations
as well as their dependencies. The actual shape of the trajectories belonging to the individual
operations and their duration are specified later during offline or online robot programming. If
offline programs are done in a simulation tool such as Robcad or Tecnomatix Process Simulate
the entire cell may be simulated in a time-based or event-based manner. The latter one allows
modelling and simulating actual robot dependencies too but a more important fact is that the
simulation allows measuring the actual duration of the robot operations, the production cycle
of the cell and other qualities.

The motivation is the requirement to recognise the individual robotic operations based on
various measurements during the actual operation of the robots. There may be various reasons
for this, we name just a few: (a) to watch the individual operations and compare them to
the expected behaviour, (b) to watch the current state of the production cell and check if it
operates correctly, or (c) to predict the behaviour of the production cell in terms of e.g. pauses
that are not planned in advance and that may be caused by a coincidence of various (unwanted)
events. All the above mentioned situations relate to the diagnostics of the robots or of the whole
production cell. The measurements that provide values for the identification may be of different
nature. It is useful if the dynamic behaviour of the robots is taken into account but it is only
rarely the case. It turns out that the most achievable way how to measure the robot behaviour
is to get its power consumption. Such a measurement can be achieved by adding specialised
power measurement cards that measure the voltage and current consumed by the robot at its
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power inlet. Its disadvantage is that it does not take account of the internal robot dynamics
since it measures the consumed power of the whole robot but not of its individual axes. One
possible way of overcoming this disadvantage is to obtain internal operational indicators from
the robot controller such as axis position, acceleration etc. However this is not always possible.
Another possible way is to have a model of the robot that represents its structure and that is
able to compute or to estimate the robot state and the inputs that lead to the state.

We propose a model of a robot based on time-varying hidden Markov chains that are used
to classify the output sequences into classes of input sequences that have generated the outputs.
The output sequences are obtained as sampled measurements of the robot energy consumption
and the input sequences correspond to the robot trajectories that represent the robot operations.
The robot is described by a stochastic state space model and the input sequence is assumed to
be independent of the robot state in terms of its state space model. The input sequence is
modelled as a discrete time-varying Markov model.

Unlike other approaches (see e.g. [10] or [80]) it allows recognising the input sequences even
with a system that is not observable (due to the hidden inputs). If the model of the system is
known, more insight into its internal behaviour can be obtained based on the Markov modeling.
This may be useful not only for the identification of the robot operations but also for diagnosis
of changes of the robot behavior with respect to the expectation.

6.1.1 Related Work

Previous work [10] dealing with the identification of robotic operations provided an algorithm
suitable for online and thus fast recognition of the patterns that correspond to the individual
robotic operations. It was based on the feature extraction whereas the features are the peaks in
the measured power consumption data. The results of the algorithm have been strongly depen-
dent on the correct selection of the master patterns which had to be done manually by adding
marks into the input data that signal the borders between consecutive operations. Additionally,
if the number of peaks changes during the robot operation or the threshold does not suit any
more because of various possible offsets then the hit ratio of the pattern-recognition algorithm
decreases.

This work focuses on estimating the inputs and system states based on the measurement of
the outputs. For observable systems there have been several works such as [80], which extends
the work of [81], to estimate the unknown inputs and the system state using an adapted Kalman
filter.

The hidden Markov models are widely used for pattern recognition in the fields like speech
and image processing. There are also numerous publications devoted to using Markov models
for mobile robot orientation and navigation, human-robot interaction, etc. Regarding industrial
manipulators there have been approaches using Markov models to teach a robot how to mimic
human behaviour such as in [82], to design a feedback controller such as in [83] etc.

The specifics of the work presented in this paper lie in the fact that the robot is modeled
as a system that is not observable. This corresponds to real-life cases occurring in robotic
manufacturing facilities. Still it is an important requirement to teach the underlying Markov
models properly. This process is typically application-specific while using general methods such
as maximum likelihood optimisation. In theoretical or in-laboratory situations it may be possible
to perform various experiments to obtain the robot dynamic parameters by dynamic model
identification. There have been numerous publications in this field that take into account the
dynamic model of the whole robot such as in [84], [85], [86] or [87]. In existing robotic cells it may
be infeasible to perform various experiments with the robots simply due to spacial constraints
not allowing to perform arbitrary robotic movements. In such cases an useful method is to
construct the dynamic model analytically by physical modeling of the robot as described in
[9] or [88]. It is also possible to use a simulation environment that supports Realistic Robotic
Simulations (see [89]). For the purpose of this paper we utilise a simplified model of one robotic
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axis and perform in-lab experiments with a 6-DOF robot to demonstrate the usability of our
approach.

6.1.2 Chapter-Specific Notation

The following specific notation is used in this chapter.

• Lower index t is used as a discrete-time sample index.

• pm(x) = p(x|m) is the conditional probability of x given m.

• XT = (x1,x2, ...,xT ) is a sequence of X a-valued random vectors, where a is the dimension
of the vector xt and X is the set of possible values for each element of vector xt.

• p(x1,x2, ...,xT ) = p(XT ) is the joint probability of sequence of vectors xt.

In this chapter, probabilities p(.) are pmf of discrete random vectors. It is a function assigning a
scalar value to a point from its domain. For example p(x,y),x ∈ X a,y ∈ Yb is a joint-probability
function p(x,y) : X a × Yb → [0, 1] ⊂ R.

6.2 Pattern-Classification Model

6.2.1 Problem Definition

Let us suppose we have an industrial robotic manipulator with a predefined set of robotic oper-
ations and we measure the power consumption of the robot. These operations are in general the
desired trajectories of the robot which are meant in terms of the robotic effector. Each trajec-
tory is executed by the robot controller which generates necessary torques for each of the robot
axes according to its internal trajectory planning and interpolation algorithms. These torques
correspond to the robot internal states that are not known because the power consumption of
the whole robot and not of the individual axes is measured.

Suppose that the dynamic system of the robot can be described using a discrete state-space
model

xt+1 = f (xt,ut) + vt, (6.1)

yt = g(xt,ut) + et, (6.2)

where f is a vector-valued state-transition function, x is a state variable representing the angle
and angular velocity for each axis, u is an input variable representing the torque applied on
an axis. v and e are Gaussian white noise variables and y represents the measured power
consumption. Particularly v and e are a process noise and a measurement noise respectively.
The stochastic description of the system comes from the transformation of the random variables.

p (xt+1|xt,ut) = pv (xt+1 − f (xt,ut)) , (6.3)

p (yt|xt,ut) = pe (yt − g (xt,ut)) . (6.4)

The evolution of the model from (6.3) and (6.4) can be described as a Hidden Markov Model
with structure depicted in Figure 6.1, where the hidden input sample ut together with the hidden
state-space variable xt form a hidden superstate st.

This superstate st produces an output sample yt which is observed. The structure depicted
here emphasizes that ut is independent of xt. Due to that the Markov model of input sequences
UT and the transition model of states xt can be constructed separately. Markov model is
described in terms of superstate st by transition probabilities pm(st|st−1) defined as

pm(st|st−1) = pm(xt,ut|xt−1,ut−1), (6.5)

ut ∈ Uq, xt ∈ X a, st ∈ K = X a × Uq,m ∈M,
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Figure 6.1: Proposed HMM structure in the form of dependency Bayes net

where q, a are the numbers of inputs and state variables of the dynamic system, respectively.
Sets U , X and K represent the set of possible input values, the set of possible state values and
the set of all combinations of input and state values, respectively. M is the set of all distinctive
Markov models of the input sequence classes.

Assuming that the input samples are independent of the states of the system and that the
state evolution depends only on the previous sample xt−1 and ut−1, then from conditional input
independence described in Figure 6.1 and from (6.5) using the chain rule we derive

pm(xt,ut|xt−1,ut−1) = pm(ut|xt,xt−1,ut−1)p(xt|xt−1,ut−1)

= pm(ut|ut−1)p(xt|xt−1,ut−1).

Here term p(xt|xt−1,ut−1) represents the stochastic model of the dynamic system. Notice
that this probability is not dependent on the (Markov) model of any input sequence classm ∈M.

Term pm(ut|ut−1) describes the Markov model of a m-th input sequence class corresponding
to a m-th trajectory. For this assignment set M of the models is considered to be given.

The probability of observing sample yt of observed feature sequence YT is

p(yt|st) = p(yt|xt,ut). (6.6)

The probability of observing a sequence of outputs YT for a given input model m ∈M is

pm(YT ) =
∑

{s1∈K,s2∈K,...,sT∈K}

pm(YT ,ST ), (6.7)

pm(YT ,ST ) =
T∏
t=1

pm(st|st−1)p(yt|st), (6.8)

pm(s1|s0) , pm(s1).

The observed sequence YT is then decided to be generated by the input sequence from class m
with the highest probability pm(YT ).

6.2.2 Parameters Inference

To classify a sequence, we need to calculate marginal probability pm(YT ) from equation (6.7)
for each model m ∈M and select m∗ ∈M such that pm(YT ) is maximal:

m∗ = arg max
m∈M

pm(YT ). (6.9)
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The following definition and substitution are introduced

pm(s1|s0)p(y1|s1) , pm(s1)p(y1|s1), (6.10)

hm(yt, st, st−1) , pm(st|st−1)p(yt|st). (6.11)

Substituting (6.8) into (6.7) and then using (6.11) the resulting likelihood can be expressed
as

pm(YT ) =
∑

sT∈K
· · ·
∑
s1∈K

T∏
t=1

pm(st|st−1)p(yt|st) = (6.12)

∑
sT∈K

∑
sT−1∈K

· · ·
∑
s1∈K

T∏
t=1

hm(yt, st, st−1). (6.13)

Expression (6.13) can be rearranged by factoring out to the front of the sums as shown in
equation (6.14).

∑
sT∈K

∑
sT−1∈K

· · ·
∑

s1∈K

T∏
t=1

hm(yt, st, st−1) =

∑
sT∈K

∑
sT−1∈K

hm(yT , sT , sT−1) · · ·
∑

s1∈K

T−1∏
t=1

hm(yt, st, st−1) =∑
sT∈K

∑
sT−1∈K

hm(yT , sT , sT−1) · · ·
∑

s2∈K
hm(y2, s2, s1)

∑
s1∈K

hm(y1, s1, s0) (6.14)

In this factorisation it can be seen that the summation can be performed in parallel for each
of the models. More importantly the summation can also be done recurrently. A statistics ϕ(st)
is introduced

ϕ(st) =
∑

st−1∈K
ϕ(st−1)pm(st|st−1)p(yt|st) (6.15)

=
∑

st−1∈K
ϕ(st−1)hm(yt, st, st−1), (6.16)

ϕ(s1) = pm(s1|s0)p(y1|s1) = pm(s1)p(y1|s1). (6.17)

Using this consecutive summing, the likelihood is evaluated as

pm(YT ) =
∑

sT∈K
ϕ(sT ). (6.18)

Let us break the superstate st into two pieces according to expressions (6.5)-(6.6). Note that from
the nature of the task there will always be one particular observed output sequence examined
at a time so there is no need to evaluate probabilities p(yt|st) for all possible values of yt as it
is needed for state variable st. Instead only the probability of a particular realisation of yt for
each possible value of st will be needed. This fact is used to further simplify the calculations
and will be emphasised by using y†t . Statistic ϕ can be understood as a table assigning some

probability to each possible combination of variable xt ∈ X a and ut ∈ Uq while value y†t is fixed.
Therefore this simplification in notation will be used

ϕ(xt,ut,y
†
t ) , ϕ(xt,ut). (6.19)

Expression (6.20) shows how ϕ(xt,ut) is evaluated recursively in an efficient way.

ϕ(xt,ut) = p(y†t |xt,ut)
∑

xt−1∈Xa,ut−1∈Uq

ϕ(xt−1,ut−1)pm(ut|ut−1)p(xt|xt−1,ut−1) (6.20)
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The probabilistic meaning of intermediate result ϕ(xt,ut) is

ϕ(xt,ut) = p(y1,y2, ...,yt,xt,ut).

The likelihood evaluation can be done sequentially (online) as the samples from the observed
sequence come. This likelihood can be used even for an intermediate classification with an
increasing level of confidence as more samples are processed.

Assume that the observed output sequence is surely generated by one of the known input
sequence classes. Supposing that each class of input sequences has the same prior probability
p(m), then the probability of the class for the given sequence can be expressed as

p(m|YT ) =
p(YT |m)p(m)∑

m∈M
p(YT |m)p(m)

∝ pm(YT ).

For the proof of concept, a simplified example of a dynamic system is measured. The example
system, which represents a single axis of a robotic manipulator, is depicted in Figure 6.2. For
the purpose of system modelling we initially used measurements of axial speed, position and
driving torque of the robot’s axis together with a power consumption. After having modelled
the system, we restricted ourselves to measuring only the power consumption. The system is
approached as non-linear. It can generally be described as a driven pendulum with friction
which has 2 dynamic states (the angular speed and position) and 1 input (driving torque). The
output of this system is then a quadratic function of torque driving the axis.

Here we present an experiment with 4 different robotic trajectories, each of them correspond-
ing to its generating input sequence class. Each trajectory consists of the same number of points
with the same ordering. The only difference is the position of the points which varies in a range
of 1 cm. Each trajectory was measured 200 times creating data corpus of 800 sequences. The
corpus was divided into a training set (75% of the corpus) and a testing set (25%).

Figure 6.2: Simplified system

The discrete-states model is able to model any complicated pmf for transitions p(st|st−1),
but as it requires a complete enumeration of possible state values, it becomes infeasible to train
it for a larger set of possible values of states S. Training the HMMs is studied in, e.g., [90]. It is
straightforward to transform the discrete-state HMM into continuous-state version denoted as
continuous-state hidden Gauss-Markov model (CS-HGMM). It requires to assume (multidimen-
sional) Gaussian distribution of transition probability p(st|st−1), but the computational burden
shrinks significantly. All the theoretical analysis provided above holds for the CS-HGMM as
well and shows how it suits to the use case of robot modeling. For the experiments, we adopt
these assumptions and we transform the discrete-state HMM into CS-HGMM. More details on
this transformation is in the next Chapter 7 and appendix.
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Figure 6.3: Angular position of axis for each measured trajectory.

6.3 Use Case Evaluation

Provided we have a CS-HGMM of the robotic robotic axis, we evaluate the classification per-
formance and properties of the TSC framework proposed in this chapter.

Four different trajectories were measured to test the algorithm. As mentioned above 150
exemplary runs were measured for each trajectory to get a training set and then 50 runs to get
a testing set. An example of the evolution of the axis angular position for each trajectory is
shown on Figure 6.3.

A time-varying Markov model is trained from the training set using the frequency of occur-
rences of transitions as an approximate probability of transition. For computational advantages
we assume Gaussian distributions in the model. For each of the four trajectories one Markov
model is trained. The testing set is then used for evaluating the performance of the algorithm.
This process is in fact a supervised learning from fully annotated data.

For the testing only the measurement of the power consumption is used. An example of
consumption for the Trajectory 1 is given in Figure 6.5.

In each example the probability of one trajectory overgrows the rest. The probability of
corresponding trajectories stabilises as more samples of measured sequence are taken in account.

The algorithm classifies correctly even such sequences that are very similar to each other.
It can happen that a sequence from a certain class is distorted by noise so much that it is in
fact more similar to a different class. In such a case it can be misclassified by the algorithm.
To reduce these cases we introduced an additional criterion for classification. A given sequence
can be classified only when its probability offset is bigger than a certain margin. Otherwise it is
marked as undecided. These margins are subject to tuning for a particular set of trajectories.
This way the risk of misclassification is drastically reduced.

In such a way we are not only able to classify the sequences but it is also possible to determine
that a sequence cannot be classified reliably. This fact is worth pointing out because in such
a case a further inspection (either manual or automatic by another algorithm) can be done
(and recommended) based on the classification results. This may also be taken as a sign that
something wrong has happened either in the system itself or in the measurement.
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Figure 6.4: Evolution of probabilities of trajectories given measurements of Trajectory 1.

6.4 Conclusion

We have shown the capabilities of the stochastic models of dynamic systems. The reasoning
about the likelihood of a model based on the observations and the structuring of the model into
conditionally independent circuits justify the choice of this branch of models for this dissertation.

The structural approach we described in this chapter brings two important benefits. In
contrast to the non-structural approach in Chapter 3, we obtain the implicit probability of the
model. The probability is easy to interpret and normalization is done within the probabilistic
framework. In the non-structural approach, additional calibration layers would have to be
developed to bring the same level of interpretability.

The other benefit is that by having the Markov model of an input sequence separated, we
can identify the robot dynamics independently in a separate experimental setup. A practical
approach would be to identify the robot from experiments with known inputs and then use
this part to identify tasks where inputs are unavailable. The input part of the model is fully
stochastic and can be modeled separately.

We showed a general approach for probabilistic modeling of robot dynamics using discrete
probabilities because to model is easier to set up. However, keeping the probabilities discrete
leads to a high computational burden limiting the applications to relatively simple dynamics.
To step up to the whole 6-DOF robotic manipulator, we have to use the continuous-state hid-
den Gauss-Markov models CS-HGMM. We elaborate more on this kind of models in the next
chapter.
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Figure 6.5: Example of a power consumption measurement used for classification.
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Figure 6.6: Worst case example of highly similar trajectories. Evolution of probabilities of trajectories given
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Chapter 7

Continuity Preference in Parameters

In Chapter 6, we explored the path for modeling a 6-DOF industrial robotic manipulator as an
example of a complex system. We laid down a basis in the form of analysis and experimental
tests of HMM as a tool for modeling robotic operations. Both experiments and analysis are
further deepened in this chapter, and a novel idea of continuity in parameters is presented. It
turns out that the continuity preference significantly improves learning performance when only a
limited amount of pattern examples are available. Additionally, the Expectation-Maximization
EM algorithm (a classic learning algorithm) needs only a small augmentation to adopt the
continuity preference. This is one of the main contributions of this dissertation work. The
following text is based on our original work in [91].

7.1 Introduction

Smart manufacturing benefits from continuous monitoring of manufacturing operations. Such
information provides essential knowledge to fine-tune the process control and to detect deviations
in time. With flexible production, the scalability of a monitoring solution is one of the main
concerns.

This chapter aims at detecting the current operational state of the robotic manipulators
in the robotic line only from their power consumption. The monitoring system acts as a non-
intrusive independent module, whose deployment requires only adding sensors at the power inlet
of the robot. This way, deploying the monitoring system into running robotic cells is allowed
without modifying the existing control systems.

Hidden Gauss-Markov models (HGMM) have been used extensively for the identification
of systems, which possess the Markov property. That means no older states are considered
given the state in the last time step [92]. Numerous examples can be found in the fields of
natural language processing [93], [94], modeling of dynamic systems [95], image processing [96]
and others. Unlike neural networks, the Gauss-Markov models are computationally favorable
because the dynamic programming can be used. Standard industrial frameworks are available
to run them in real-time. Moreover, the Gauss-Markov models inherently provide confidence in
their estimates.

The idea of consistency proved useful in convolutional neural networks in the space domain,
such as in [97], where the reconstruction of a depth map from a one-view video recording was
solved without using a ground-truth depth map. In the case of HGMM, the consistency, which
we define as the continuity preference, refers to the time domain.

The continuity preference can model a physical system continuous in its parameters. An
example of such a system is an industrial manipulator (robot), a nonlinear continuous system
that can be approximated with the Taylor series as a sequence of first-order linear systems. A
resulting time-variant linear system can be modeled as a continuous-state time-varying hidden
Gauss-Markov model (TV-HGMM).
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An industrial robot executes multiple robotic programs, which we refer to as operations.
Each operation consists of a sequence of trajectories that can follow instantly one after another
or can be separated with an idle interval of an unknown length. Each trajectory is recorded
as a sequence of power consumption measurements collected at the robot’s power inlet. Each
measurement can be either 1-dimensional, representing a single 3-phase power measurement, or
multidimensional, where each dimension may represent a single measured quantity such as power
at each phase of the inlet. The robotic programs are executed repeatedly during production.
The time-varying parameters of the system capture the changing robot dynamics throughout
the movement and the control inputs. Thus, the robot is viewed as an autonomous dynamic
system whose total power consumption is measured at its inlet.

7.1.1 Objectives

The objective is to design a machine-learning algorithm for HGMM that allows for scalable, easy
deployment in industrial systems. High discriminative power and capability to be generalized to
various dataset types are the main requirements for the model to be used on various industrial
systems. Another important aspect is learning from small datasets, which elevates the scalability
of the solution. In the traditional learning of HGMM, the model robustness cannot be increased
without increasing the dataset size. Requiring an extensive dataset negatively affects the ease
of applicability. The continuity preference in HGMM utilizes the information from the time-
adjacent samples, significantly increasing data utilization. A crucial part of the new algorithm
is adapting the HGMM to consider the continuity in parameters. This approach can be applied
to any other dynamic system that exhibits continuity in its parameters and shows repetitive
behavior. Thanks to the HGMM discriminative power, even subtle and gradual changes in the
system behavior are recognizable.

Another objective is to perform extensive testing both on benchmark and our use case data
sets. Particular focus was given to the applicability in the industrial environment, especially
for robotic manipulators. Their trajectories can be viewed as repetitive processes with un-
known inputs and system parameters, observed only through fast-sampled power consumption
measurements.

The final objective is to classify robotic operations in an online manner. This requirement dis-
qualifies some highly accurate classifiers that are computationally too demanding. The HGMM
satisfies this objective well.

7.1.2 Related Work

This chapter builds on the results published in [3], [10], [98]. Paper [10] approaches the identi-
fication of robotic operations using an external model of the direct measurement of individual
robot power consumption. This approach has its limitations in automating the learning process,
which highly reduces its usability in the industry to a bigger extent. Paper [3] models the robotic
manipulator dynamics, making it possible to construct a practical method for semi-automatic
learning of power consumption patterns. The topic has been further extended in [98], which
deals with time series segmentation based on signal information contents, and presents unsuper-
vised clustering of the acquired segments. The segmentation of robot trajectories was used as
a prerequisite in the optimization tasks as described in [99], and [100], where the minimization
of energy consumption of a robotic cell with two or more robots was achieved by changing the
movement speeds of the individual robots.

The monitoring and prediction of manufacturing processes based only on non-intrusive meth-
ods have gained interest in smart buildings and smart electrical grids. In that field, it is called
non-intrusive load monitoring (NILM). NILM aims to segregate the power consumption of partic-
ular electrical appliances from their aggregated power consumption. NILM offers to understand
and predict the consumption based only on a single sensor measurement at the power inlet
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[101], [102]. NILM assumes that each appliance model is represented by a simple on-off state
(or possibly multiple states) with the mean power consumption of each state. Only inter-state
transitions are allowed. These assumptions are not met in the case of continuously operating
robotic manipulators, whose power consumption highly varies along the executed trajectory.

Another approach in robotics is described in [70], where the authors optimize power con-
sumption of the robot movements without knowing the robot’s precise internal structure. Their
objective is to smooth out the robot motors’ jerk based on knowing the existing trajectory ob-
tained by gathering the position data from the robot joints during their movements in real-time.

Authors in [103] focus on fault detection and isolation in the industrial robotic manipulator
based on its power consumption. They utilize the Bode Equations Vector Fitting to prepare
healthy reference signatures of power consumption. Using a shallow neural network fed with
data from joint positional encoders and total power consumption, the authors can detect and
isolate faults in particular robot joints. This approach is promising, but it requires data from
more sensors. We aim to be able to rely on a single sensor.

In the field of uncertain dynamics estimation for control, a classical form of neural networks
showed to be useful in the adaptive estimation of uncertainties in models. In [104], authors
employed the artificial neural network control technique for a flapping wing micro aerial vehicle.
The neural network adapts the model uncertainties online during the flight based on the state
estimate errors. Work of [105] derived a fuzzy neural network control for impedance control
with constraints both in observed output and internal states of a robotic manipulator. The
neural network fulfilled the role of an uncertain dynamics estimator. A simulation study on a
3-DOF manipulator was carried out, showing a promising tracking performance even when the
simulated robot interacted with its environment. Paper [106] applies neural networks on fault
detection in a 6-axis robot based on error prediction, but their approach requires accessibility of
all joints to give predictions. All these approaches use the control input knowledge and require
specific sensory data of the robot, which we aim to avoid.

A more general approach using the time-varying linear model of the process can solve a
common problem of linear repetitive processes (LRP). Exploiting the repeating property of LRP,
papers [107], [108] derive automatic learning of time-varying Kalman gain and noise covariances
during the process execution. On the other hand, the classical approach of LRP assumes to have
system matrices available for the learning phase. This assumption is rather demanding and is
not necessary for our approach. Work of [109] investigates a repetitive process of a mobile robot
operating along a typical trajectory using the Gaussian Process (GP) to estimate the locally
constant dynamic parameters. In continuation [110], a different approach of Bayesian Linear
Regression is chosen for estimating a part of unknown dynamics given a noisy input and a known
model of the repeated process. The authors exploit the repetitiveness of the executed trajectory
and estimate the hidden model across the repeated passes of the trajectory. In our approach,
the repetitiveness is exploited too, but we do not assume to know any dynamics parameters.

Noteworthy is the approach of an unbiased minimum variance (MVU) estimation of state
variables. This approach picks optimal state estimates so that the unbiased variance of simul-
taneously estimated input is minimal [111], [112]. However, this approach also requires the
complete model of the system to be known.

From the works mentioned above, each solves only a part of the goal stated in Section 7.1.1.
None of them solves the problem as a whole.

The work presented in this paper is based on the theoretical basis of unsupervised learning
of HMMs as established, e.g., in [5], and on [113], which tackles the intricacies of constrained
Expectation-Maximization learning. The results from these papers are extended to deal with
the additional relaxed continuity constraint. The results from [98] are used for time-series
segmentation to prepare the training datasets.
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7.1.3 Chapter-Specific Notation

The topics from machine learning and dynamic system control fields overlap in this chapter, and
consequently, some of the notation conventions differ. Special attention deserves notation for
observations, dynamic state variables, and time series class labels. The following list describes
the notation used in this chapter.

• Single measurement (observation) at a time instance t ∈ R within k-th sequence is a vector
ykt ∈ Rm, corresponding hidden (latent) variable is a vector xkt ∈ Rn.

• k-th sequence of measurements (observations) from the first time instance to the final time
instance Tk is

Yk
Tk

=
(
yk1 ,y

k
2 , ...,y

k
Tk

)
,

corresponding hidden (latent) variable sequence is

Xk
Tk

=
(
xk1,x

k
2, ...,x

k
Tk

)
.

• Set of all measurement sequences is denoted as

Y = {Y1
T1 ,Y

2
T2 , ...Y

k
Tk
, ...,YK

TK
},

set of all corresponding hidden variables sequences is

X = {X1
T1 ,X

2
T2 , ...X

k
Tk
, ...,XK

TK
}.

• Hidden (latent) variables xkt used for statistical inference are equivalent to the state vari-
ables of the dynamic system.

• C denotes a set of all classes corresponding to distinctive robotic operations (programs).

• Whenever the superscript i is used, it denotes the i-th iteration of the Expectation Maxi-
mization (EM) algorithm run.

• A derivative of a (possibly matrix-valued) function F(At) with respect to matrix At is
denoted as

DAt {F(At)} =
∂F(At)

∂At
.

• Vectorization of matrix denoted as vec(A) means stacking the columns of matrix A ver-
tically forming a single-column vector.

• The Kronecker’s product of matrices is denoted by the operator ⊗, e.g., A⊗B.

• Operator E stands for the expected value. Subscript describes the respective probability
distribution. E.g., expectation of some function q(X ) w.r.t. a distribution p(X|Y) is
denoted as

EX|Y [q(X )] =

∫
p(X|Y)q(X )dX .
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7.2 Learning of Structured Model

7.2.1 Dynamic Model of Robotic Manipulator

For gray-box modeling, analysis of the dynamic model of the system is needed. In the case of
robotic manipulators, there is a well-founded basis for modeling their dynamics in the form of
an actuated serial chain such as shown, e.g., in [6]–[8]. Robot KUKA KR5 being used in this
project was modeled in [9]. For details on the structured model, see the Chapter 2.

The dynamics of a serial chain manipulator with nr links can be described as:

τ = H(q)q̈ + C(q, q̇)q̇ + g(q), (7.1)

where q ∈ Rnr is the vector of joints displacements, τ ∈ Rnr is a vector of joints’ torques, H(q) ∈
Rnr×nr is the inertia matrix, C(q, q̇) ∈ Rnr×nr is a matrix of Coriolis and centrifugal forces and
g(q) ∈ Rnr is representing gravity force and other external forces exerted on the manipulator.
The elements of matrices H(q), C(q, q̇), and vector g(q) are composed of continuous functions
[7].

The manipulator dynamics is a non-linear function. The EM algorithm searches for a piece-
wise linear approximation of equation (7.1) along a repetitive trajectory. This can be viewed as
a first-order Taylor series approximation. The linearization may cause a residual error here, but
experiments in Section 7.4 show that this error is acceptable.

The system is assumed to be autonomous so that the control inputs are modeled as a part
of the system’s dynamics. This way, state-space feedback control is assumed, but the robot
may also be controlled via separate motor feedback loops (e.g., proportional-integral controller).
The control parameters are not known to a robot’s user, which generates uncertainty. This
uncertainty is learned during training. Using model (7.1), the formal expression of a discrete
state-space model that is being searched for is

xt = Atxt−1 + vt,vt ∼ N (0,Qt), (7.2)

yt = Bxt + et, et ∼ N (0,R), (7.3)

where xt+1,xt ∈ Rn are vectors of states of the system in respective time instances. At ∈ Rn×n
is a state evolution matrix of the piecewise linearly approximated system at time instance t.
Vectors vt ∈ Rn, et ∈ Rm are process and measurement noise respectively, which are both
assumed here to be normal i.i.d random variables. This assumption is usually used in theory as
deterministic correlations within the noise can be modeled as an additional dynamics in the At

matrix practically lowering the effect of potentially neglecting correlations in the noise. yt ∈ Rm
is an output measurement vector and B ∈ Rm×n is an observation matrix.

The need for automatic estimation of the Markov model parameters emerges from the high
complexity of the modeled system. In practice, the first three axes of the robot are the primary
power consumers and given only the power consumption measurement, the analysis of the dy-
namics suggests using six hidden states. It turns out from our experiments that three hidden
states perform sufficiently well.

Markov models parameters are known to be successfully estimated by the Baum-Welch
algorithm, which belongs to the EM algorithms family. Alternatively, the problem of selecting
the number of hidden states or generally the model selection can be approached using the Akaike
or Bayesian information criterion (AIC, BIC) as shown, e.g., in [114]–[116]. This article uses a
continuous-state time-varying version of the hidden Gauss-Markov model (abbreviated here as
TV-HGMM). A modification of the EM algorithm is applied for unsupervised learning of the
model and enhanced to reflect the continuity in parameters which is suggested by the analysis of
parameters in equation (7.1) describing the physical system. The continuity property naturally
occurs in many kinds of physical systems.
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7.2.2 Formal Definition

Let the physical system from (7.2), (7.3) be described in the form of a stochastic model:

p(x1; Θ1) = N (x1;µ1,P1),

p(xt|xt−1; ΘX) = N (xt; Atxt−1,Qt),

p(yt|xt; ΘY ) = N (yt; Bxt,R),

where Θ represents the respective sets of parameters of distributions, N (.) denotes a multivariate
normal distribution. Covariance matrices P1, Qt ∈ Rn×n and R ∈ Rm×m are assumed to be
symmetric positive definite. At is a system time-evolution (transition) matrix, B is an output
measurement matrix, µ1 and P1 are the mean and covariance of the initial state x1, respectively.
Qt and R are covariance matrices of the system noise vt and measurement noise et, respectively.
Standard Kalman-filter subscripts are used further in the paper.

Note that the output measurement model represented by the matrix B is assumed to be time-
invariant because the measurement model’s temporal changes are negligible. All the temporal
system variations are captured by the system matrix At, which is time-varying. Nevertheless,
it is straightforward to generalize our approach for a time-varying output model too.

The objective function J for learning is the marginal likelihood of the parameters Θ given
the observed data Y. Formally,

J(X ,Y,Θ) = p(Y; Θ) =

∫
p(X ,Y; Θ)dX .

Optimizing the objective in this form analytically is intractable. The formula can be lower-
bounded by a proxy objective as

ln p(Y; Θ) = ln

∫
p(X ,Y; Θ)dX

= ln

∫
p(X ,Y; Θ)

p(X|Y; Θ)

p(X|Y; Θ)
dX

= ln

(
EX|Y;Θ

[
p(X ,Y; Θ)

p(X|Y; Θ)

])
(7.4)

≥ EX|Y;Θ [ln p(Y,X ; Θ)]

−EX|Y;Θ [ln p(X|Y; Θ)] , (7.5)

where Jensen’s inequality was applied in transition from step (7.4) to (7.5). It can be shown,
that maximizing only the expectation term

EX|Y;Θ [ln p(Y,X ; Θ)] (7.6)

from (7.5) leads to maximizing the original lower bound (7.5) [117], leading to the optimization
task:

Θ∗ = arg max
Θ

EX|Y;Θ [ln p(Y,X ; Θ)] . (7.7)

By maximizing the lower bound (7.6), a close approximation of the optimum is attained.
However, the closed-form solution for (7.7) becomes intractable quickly with the growing number
of training samples. Numerical optimization techniques can be applied, and in the field of
dynamic system control, the EM algorithm is often the choice for this task. It is well studied
in its application on exponential families of distribution (e.g., [5], [117]). Its extension in this
paper turns out to be relatively easy to implement.
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7.2.3 EM Learning

We will call the term (7.6) the auxiliary function Q(Θ,Θi) as in [5]. Note that its parameter
set is explicitly partitioned for alternating steps. Formally,

Q(Θ,Θi) = EX|Y;Θi [ln p(Y,X ; Θ)] . (7.8)

The EM algorithm estimates parameters of a probability distribution function (pdf) iteratively
in two steps. The expectation step (E-step) calculates the hidden states’ expected values given
the last estimate of the pdf parameters and the measurement sequence. The Maximization step
(M-step) follows, which estimates the pdf parameters given the freshly inferred hidden states
from the E-step. That is done by maximizing the likelihood of the parameters given the data.
These two steps alternate until convergence into the local optimum. A detailed description and
complete formulas can be found in A.2.

7.2.4 Parameter Continuity Preference

It is often the case that a huge amount of training data is required, even for the time-invariant
HGMM. This data necessity amplifies significantly in the case of the time-varying HGMM.
Another issue with time-varying models is that the input data must be timed appropriately.
The starts of the training sequences must be consistently and precisely repeated. Both of these
issues discourage practitioners from using these models. However, the time-varying models show
a better performance in regression tasks and classification tasks, as shown in the experimental
Subsection 7.4.3.

This article proposes a solution to these issues. Assume that the system matrices At are
random matrices generated from a multivariate Wiener process. In other words, the system
matrices At are sampled from a continuous stochastic process with normally distributed incre-
ments between samples. The continuity condition reflects the expected properties of dynamic
parameters of a serial robotic manipulator described, e.g., in [118], and in Subsection 7.2.1. The
continuity assumption results in a significant improvement in training the time-varying HGMM
and reduces the overfitting. The intuition behind that is visualized in Figure 7.1. It is an ex-
tension of the idea of dependency of time-adjacent hidden states. Similarly, the time-adjacent
parameters should also be dependent on each other. Moreover, since we encourage the model to
tolerate more significant deviations from the expected observation, most deviations accumulate
only in system noise and measurement noise covariances Qt and R.

A3

y3

x3

AT

yT

xT. . .

A2

y2y1

x2x1

(a) Plain HMM

x1 x2

y1 y2

A2

. . . xT

yT

AT

x3

y3

A3
. . .

(b) Continuity preference HMM

Figure 7.1: HMM structures. Comparison between the plain structure of HMM and the continuity constrained
HMM in the form of dependency Bayes net. The difference is in the additional dependence between the nodes At.

To formalize, let the difference of the system matrices be defined as

Ãt = At −At−1.

Suppose that the vectorized difference of the system matrices is a normally distributed random
variable with zero mean and a diagonal covariance forming pdf

vec(Ãt) ∼ N
(

vec(Ãt); 0,
1

κ
I

)
, vec(Ãt) ∈ Rn

2
, κ ∈ R+.
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The auxiliary function Q(Θ,Θi) from (7.8) can be extended by the term QA forming the aug-
mented auxiliary function Qa(Θ,Θi) formally defined as

Qa(Θ,Θi) = EX|Y;Θi

[
ln p(Y,X , Ãt; Θ)

]
. (7.9)

The optimization task becomes

Θi+1 = arg max
Θ

Qa(Θ,Θi), (7.10)

and the auxiliary function can be decomposed as

Qa(Θ,Θi) = Q(Θ,Θi) +QA

= Q1 +QX +QY +QA, (7.11)

and each term is maximized separately. Q1, QX and QY are defined in (A.23)-(A.25). Given
that vec(Ãt) is a random variable independent of X and by using lemma (3), the augmentation
part QA is defined as

QA = −1

2

(
Z(κ) + κ

T∑
t=3

Ψt

)
,

Z(κ) = (T − 1)(n2 ln(2π)− lnκ),

where Ψt is the squared Frobenius norm of the matrix difference Ãt defined as

Ψt = ||Ãt||2F = tr(Ã>t Ãt) = vec(Ãt)
> vec(Ãt).

From this substitution, one can view the augmentation also as a demand that the distance of
consecutive matrices At, At−1 is penalized. This penalty keeps the matrices close to each other.
The κ coefficient controls the amount of penalization.

In a sense, the parameter κ represents a mixing of the TV-HGMM and TI-HGMM. As κ
goes to zero, the resulting model becomes the pure TV-HGMM. On the other hand, as the κ
goes to infinity, the resulting model becomes the pure TI-HGMM or Kalman filter. The effect
of this idea is visualized in Figure 7.2.

0 50 100 150 200 250 300
Sample t

1

0
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a 1
1 [

-]

Without continuity preference
With continuity preference

Figure 7.2: Continuity preference effect. Example of evolution of a single element a11 of the time-varying system
matrix At. The continuity preference induces a significantly smoother evolution as the time-adjacent matrices
are similar. This evolution comes from the model of KR210 dataset.

7.2.5 M-step Augmented by Continuity Preference

The continuity preference can be incorporated into the model by any optimization technique that
solves task (7.10), and the interpretation will hold. In this subsection, we derive the M-step’s
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augmentation from the EM algorithm with respect to the specifics of the continuity preference.
It turns out that only a simple additional modification of the EM algorithm is needed.

To find the optimal At as a part of task (7.10), one must solve the differential equation

DAt

{
Qa(Θ,Θi)

}
= DAt

{
Q(Θ,Θi)

}
+DAt {QA} = 0

for At, where the individual terms are

DAt

{
Q(Θ,Θi)

}
= Q−1

t AtCxt−1xt−1 −Q−1
t Cxtxt−1 , (7.12)

DAt {QA} =
κ

2
DAt

{
T∑
t=3

Ψt

}
, (7.13)

where the correlation statistics are defined as

Cxtxt =
1

Kt

Kt∑
k=1

(
Pt|Tk + µkt|Tkµ

k>

t|Tk

)
, (7.14)

Cxtxt−1 =
1

Kt

Kt∑
k=1

(
Pt|TkHt + µkt|Tkµ

k>

t−1|Tk

)
, (7.15)

where Ht comes from Equation (A.18) of the E-step.

DAt

{
T−1∑
t=3

Ψt

}
= DAt{tr(A>t At)− 2 tr(A>t−1At)

+ tr(A>t−1At−1) + tr(A>t+1At+1)

−2 tr(A>t+1At) + tr(A>t At)}
= 4At − 2At+1 − 2At−1. (7.16)

The auxiliary function Ψt depends on At in two consequent time-steps in the entire sum, while
the edge cases A2,AT are expressed separately as

DA2{Ψ3} = DA2{tr(A>3 A3)− 2 tr(A>2 A3)

+ tr(A>2 A2)}
= 2A2 − 2A3, (7.17)

DAT
{ΨT } = DAT

{tr(A>TAT )− 2 tr(A>T−1AT )

+ tr(A>T−1AT−1)}
= 2AT − 2AT−1. (7.18)

Plugging expressions (7.16), (7.17), (7.18) into (7.13) and equaling the derivative to zero, we get

0 = Q−1
t AtCxt−1xt−1 −Q−1

t Cxtxt−1

+κ (2At −At+1 −At−1) , (7.19)

0 = Q−1
2 A2Cx1x1 −Q−1

2 Cx2x1

+κ (A1 −A2) , (7.20)

0 = Q−1
T ATCxT−1xT−1 −Q−1

T CxT xT−1

+κ (AT −AT−1) . (7.21)

We want to solve these equations for At. Rearranging and using formula

vec(AXB)> = vec(X)>(B⊗A>), (7.22)
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where ⊗ stands for the Kronecker’s product, we get the final analytical expression

vec(At)
> = vec(Cxtxt−1 + κQt(At−1 + At+1))>

×
[
(Cxt−1xt−1 ⊗ In) + 2κ(In ⊗Qt)

]−1
. (7.23)

From vec(At), the desired matrix At is obtained by reshaping in the column-major manner into
an n × n matrix. Solving (7.23) directly is prone to numerical issues. An alternative approach
is to rearrange (7.19), (7.20), and (7.21) into Sylvester equations

2κQtAt + AtCxt−1xt−1 = Cxtxt−1 + κQt(At−1 + At+1), (7.24)

κQ2A2 + A2Cx1x0 = Cx2x1 + κQ2A3, (7.25)

κQTAT + ATCxT−1xT−1 = CxT xT−1 + κQTAT−1, (7.26)

and solve (7.24) for At, (7.25) for A2, and (7.26) for AT . Numerically robust solvers for Sylvester
equations are available.

Since matrix At depends not only on preceding matrix At−1, but also on next matrix At+1,
which is not available during the forward pass of the estimation, we need an expression to get
the estimate of At+1 at time t. We use solution (A.40) obtained by optimizing the original
Q(Θ,Θi) function.

At+1 = Cxt+1xtC
−1
xtxt

. (7.27)

The parameters for the density of the first sample remain the same as in (A.44)-(A.45) and are
expressed as

µi+1
1 =

1

K

K∑
k=1

µk1|Tk , (7.28)

εk,i+1
1 = µk1|Tk − µ

i+1
1 , (7.29)

Pi+1
1 =

1

K

K∑
k=1

(
P1|Tk + εk,i+1

1 εk,i+1>

1

)
. (7.30)

Note that superscript k denotes an index of the particular k-th training sequence while super-
script i denotes i-th iteration of the EM algorithm. K is the total number of training sequences.
For details about standard EM algorithm derivation, see A.2.

As the reader can see, the Equations (7.24), (7.25), (7.26) are the only modification to the
standard EM algorithm that is needed to impose continuity preference on the parameters of the
model.

The continuity preference demands an additional computational load of each EM itera-
tion. For a standard EM, each iteration has computational complexity O(Tn3) and solving the
Sylvester equations has complexity O(Tn3), see [119], [120]. Thus, the overall computational
complexity remains O(Tn3) per EM iteration, which is linear in the number of data samples.
Note that the value of κ does not further affect the computational load.

7.2.6 Initialization of EM algorithm

The EM algorithm ends up in a local optimum as it optimizes the lower bound (7.6). That
means it is sensitive to the initialization of model parameters. Another issue is the numerical
stability of steps during the matrix inversions when an ill-conditioned matrix arises.

The numerical issues are mitigated here using approaches for parameter initialization de-
scribed in [121]. Initialization issues are subjected to a detailed discussion in the literature,
e.g., [122]. The local optimum issue can be tackled either by some system identification task,
white-box, gray-box identification, or repeated trials with random initialization.
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The random initialization performed best during our experiments. It is sufficient to initialize
the hidden states with bounded values and begin learning with the M-step. Immediately in the
first M-step, the parameters are numerically stable. This approach is highly recommended for
practitioners as it minimizes the workload required for initialization.

7.3 Classification of Operations

The classification of operations is the practical outcome of this paper, built on the models
trained with the continuity preference as described in Section 7.2. Thus, once the hidden Gauss-
Markov model (HGMM) is trained for each distinctive robotic operation, it is used to evaluate
the likelihood of an operation given a series of measurements. The likelihood can be calculated
either offline using the realization of the whole run of the E-step described in A.2.1 or online
using only the forward recursion. The overview of the classification pipeline is depicted in Figure
7.3

Yk
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M2

M|C|

...
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o
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A
rgm

ax

c∗

Figure 7.3: Classification pipeline design. The measurement is copied into each of the models Mc.

Suppose superscript c ∈ C denotes a distinctive robotic operation, which can also be called
a class from the classification point of view. Such an operation can be, e.g., pick-and-place of a
manufactured part or a movement when the robot holds a part and applies glue on it at a gluing
station. Also, let Yk =

(
yk1 ,y

k
2 , ...,y

k
T

)
denote the k-th measured sequence to be classified. The

predictive density of the model Mc of a class c is evaluated at each measurement sample ykt ,
where:

ykt ∼ p(ykt |Mc) = N (ykt ; Bcµct|t−1,Σ
c
t), (7.31)

where Σc
t is expressed in (A.14) and µct|t−1 in (A.13).

For classification, we use the log point-wise predictive density of the model Mc evaluated
for the whole sequence Yk as [123]:

lpd(Yk|Mc) = ln p(Yk|Mc)

=
1

T

T∑
t=1

lnN (ykt ; Bcµct|t−1,Σ
c
t). (7.32)

The resulting lpds are fed into the weighted log-softmax calibration layer to yield appropriate
estimates of class probabilities. The dataset Y was stratified by respective classes forming a
total of |C| datasets Yc. The stratified datasets Yc were partitioned into the training sets Yctr,
and the validation sets Ycv . 30 % of samples were held in the validation sets Ycv .

The weighted log-softmax function follows the expression (because of the numerical stability,
the logarithmic transformation is used):

σlog(zc,w) = log

(
exp(wczc)∑
i∈C exp(wizi)

)
,

zc = zc(Y
k) = lpd(Yk|Mc),
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where w = [w1, w2, ..., w|C|]
> is the calibration weighting vector obtained by minimizing the

cross-entropy:

w∗ = arg min
w

∑
c∈C

∑
Yk∈Yc

tr

σlog

(
lpd(Yk|Mc),w

)
.

The class’ score lpd(Yk|Mc) is evaluated for each of the models. The classification task is
then defined as selecting the class with the highest probability, formally as:

c∗ = arg max
c
σlog(zc,w), (7.33)

where c∗ represents the maximum probability class.

The classification task can be carried out online in a recurrent manner. In such a case, the
recurrent evaluation of (7.33) can be viewed as an any-time algorithm improving its accuracy
with each consecutive measurement.

7.4 Experiments and Results

The learning algorithm was tested on three types of datasets. These datasets are published online
[124]. The first type is a public benchmark dataset preprocessed for the time series classification
task. The second type is the power consumption of a real robot in laboratory conditions, whose
trajectories are very similar to each other. The third type is the power consumption measured
on a real robot in a production line in the car body shop in Skoda Auto during live production,
where the trajectories differ a lot, but the number of training examples in classes is imbalanced.
The power consumption was measured at the inlet of the robot.

As a baseline for comparing performance, the standard versions of TI-HGMM and TV-
HGMM are trained and evaluated. In the classification task, we also enlist the performance of
the three common benchmark time series classifiers KNN (k nearest neighbors with Euclidean
distance measure), KNN-DTW (KNN with the dynamic time-warping distance measure), and
the BOSSE (Bag of SFA Symbols Ensemble).

We propose two metrics based on predictive density to compare performance and add them
to the standard accuracy and cross-entropy loss classification metrics. A detailed description of
those metrics is in the following section.

The experiments emphasize the main advantage of the continuity preference approach, which
is the capability of the algorithm to learn from only a few training examples. The main interest
resides in showing the effect of different settings of the continuity parameter κ. We applied the
method of Bayesian optimization [125] to search the space of κ for the optimal values instead
of a less efficient random search. In the Pareto-optimization types of experiments, we run ten
trials of each experiment, applying the leave-one-out cross-validation scheme per trial. Averaged
results are depicted in Figures 7.5a, 7.5c, and 7.5b.

7.4.1 Applied Methods and Metrics

The parameter κ scales quadratically with its effect of smoothing the evolution matrix At as
it is a variation of a probability distribution. Therefore, we write it as a squared number to
improve readability.

For the model performance metric, the expected log point-wise predictive density êlpd from
[123] was used. This metric indicates the predictive accuracy of the regression model and
considers the confidence in its predictions: the higher elpd, the better performance of the model.
The true elpd can only be approximated. Here it was estimated using the leave-one-out cross-
validation. For each fold, each class dataset is partitioned into a training set and a validation



7.4. EXPERIMENTS AND RESULTS 73

set, i.e., Yc = Yctr ∪ Ycv , disjoint so that Yctr ∩ Ycv = ∅. The estimate êlpd for model Mc of class
c trained on the subset Yctr is then defined as:

êlpd(Ycv ,Mc) =
1

|Ycv |
∑

Yk∈Yc
v

ln p(Yk|Mc), (7.34)

where ln p(Yk|Mc) = lpd(Yk|Mc) defined in (7.32).
For classification purposes, a good model has to explain the data of its class well but must

fail to explain the other classes’ data. To express the discriminative capabilities of a model, the
metric gelpd is defined. It is the gap (difference) between êlpd for the matching model-data pairs
(e.g., Trajectory 0 model with Trajectory 0 data) and for the mismatching model-data pairs
(e.g., Trajectory 0 model with Trajectory 1 data):

gelpd = êlpd(Ycv ,Mc)− êlpd(Y¬cv ,Mc), (7.35)

where Y¬cv represents the dataset of classes other than c, i.e., Y¬cv are the mismatching model-
data pairs. The models with higher gelpd have better discriminative performance and are more
suitable for the classification task. The results are indicated in Table 7.1.

Another undesired aspect is a high model variance (overfitting), leading to a poor model
generalization. To measure the model variance, we compare the performance on the training
data with the performance on the validation data. Formally, we define the training-validation
elpd gap gvar as:

gvar = êlpd(Yctr,Mc)− êlpd(Ycv ,Mc). (7.36)

The discriminative power and the variance are coupled attributes of the model. They move in
opposite directions with the change of the continuity parameter κ. We need a high discriminative
power gelpd and a low variance gvar at the same time. Therefore, we conducted a series of
experiments to find the empiric optimal choice of κ. The effect of the value of κ is dependent
on the data, as can be seen in Figures 7.5a, 7.5c, and 7.5b.

The zero or near-zero values of κ correspond to the classic-trained TV-HGMM. The results
show that even small values of κ lower the variance while maintaining the discriminative power.
Overall, the application of the continuity preference results in better classification performance.

7.4.2 UCR & UEA Sony AIBO Surface Dataset

First tests were conducted on a public benchmark dataset from the UEA & UCR dataset repos-
itory [126]. Dataset Sony AIBO Surface1 [127] was used, as it is taken from the internal
accelerometer from the quadruped mobile robot Sony AIBO, for which the assumption of the
continuous evolution of dynamics parameters is reasonable. In this paper, we refer to this dataset
in short as SonyAIBO. We took the whole dataset of 621 examples and partitioned it into 6
training and 615 testing examples. The dataset is visualized in Figure 7.4a.

The results of the experiments are in Figure 7.5a. The color encodes the value of
√
κ. The

darkest point in the top-left corner corresponds to the classic training of the model without
the continuity preference. The SonyAIBO dataset contains a lot of noise, and the similarity of
the examples is much lower than in the case of the industrial robot datasets in the following
sections. However, the continuity preference lowers the gvar by half while also increasing the
discriminative power gelpd twice compared to the time-varying (TV) model. To compare with
benchmark methods for the regression task, we selected

√
κ = 69 as this value shows the best

trade-off between gvar and gelpd, i.e., gvar as low as possible and gelpd as high as possible at the
same time. The values of gvar, gelpd and

√
κ are listed in Table 7.1.

For the classification task, the comparison of the performance is in Table 7.2. The best
performing models are the TV-HGMM in its classic variant and in our continuity preferring
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Figure 7.4: Datasets used in experiments. Mean and ±1σ range of the measured values in the dataset.

variant. The accuracy of our model is 2 % higher than the classic TV-HGMM, while the cross-
entropy (CE) remains very similar. The difference between 88 % for TV-HGMM and 90 %
accuracy for our approach is significant. It is getting closer to the best achievable accuracy for
the SonyAIBO dataset, which is reported [127] to be 91.84 % achieved by the Fast Shapelet
Forest algorithm that trained on a training dataset that was three times bigger than ours.

7.4.3 KUKA KR5 in Laboratory Conditions

The laboratory experiments on a robotic manipulator KUKA KR5 were conducted, creating
dataset KR5. In this experiment, the robot trajectories were designed to resemble one another
very much to demonstrate the power of the continuity-preference algorithm. Three similar
trajectories (classes) that are difficult to distinguish were generated. Each makes the robot
move in all six axes on the route through 20 points in Cartesian space. The trajectories differ
only a bit in Cartesian points positions, and in Trajectory 2, some points are left out entirely, as
depicted exaggeratedly in Figure 7.6. The power consumption of the designed trajectories is our
input data. Their shape is depicted in Figure 7.4b. The data corpus consists of 900 sequences,
evenly divided into three classes. Six sequences from each class were selected for training. The
rest was used for testing.

The Pareto-optimization search is depicted in Figure 7.5c. The performance shows a shift
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Figure 7.5: Regression Pareto experiments with training using different values for continuity parameter κ. gvar
represents variance, gelpd discriminative power. Values towards the right-bottom of the plane are the best trade-off
in performance.

towards the bottom-right corner with
√
κ close to 24. The top-left point represents the classic

TV-HGMM. By applying the continuity preference, discriminative power gelpd becomes roughly
twice higher and variance gvar roughly half than the classically trained TV-HGMM. We selected
the value of

√
κ = 24 for comparison in Table 7.1.

For the classification task, the achieved accuracy and cross-entropy loss (CE) are listed for
comparison in Table 7.2. The time-invariant (TI) version shows poor accuracy as the complexity
of such a model is too low to capture the subtle differences that we wish to distinguish. The
classic time-varying (TV) model achieves an accuracy of 97 %, one percent less than the con-
tinuity preferring model. Still, its cross-entropy loss is almost two times higher than the loss
of our continuity preferring model. This is expected according to the observed values of gelpd
and gvar in Table 7.1. The BOSSE result is nearly perfect, but its computational demands are
prohibitive for the method to be used in an online fashion. We keep it for reference that it is
possible to achieve nearly perfect classification if online evaluation is not required.
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Figure 7.6: An exaggerated example of two trajectories difference in 1 point in Cartesian space.

7.4.4 KUKA KR210 R2700 in Production Line

The data were measured on a live production line in a car body shop in Skoda Auto, which uses
the KR210 robots that are of a similar type as the KR5 robot used in Section 7.4.3. We call this
dataset KR210. The dataset consists of 3 distinct operations depicted in Figure 7.4c. The data
corpus consists of 178 sequences divided into a training and a test set. The training examples
are stratified by class as 10, 6, and 2 examples, i.e., the minimum of 2 training examples per
class is maintained. The rest of the examples was used for the performance evaluation.

The discriminative performance in terms of gelpd and the overfitting in terms of gvar are
listed in Table 7.1. The classification performance is in Table 7.2. Almost all of the methods
can classify this dataset perfectly as the classes are well distinguishable. It is important that
TV-HGMM is one of the lowest complexity models that are able to classify this dataset perfectly.
Additionally, our approach does not deteriorate the performance and slightly improves the cross-
entropy loss (CE). From the regression metrics perspective, our method significantly improves
margin gelpd for discriminating between classes, see Table 7.1.

Dataset: SonyAIBO KR5 KR210

Model gelpd ↑ gvar ↓ gelpd ↑ gvar ↓ gelpd ↑ gvar ↓
TI-HGMM 3.18 1.51 0.21 0.06 43.18 0.72

TV-HGMM 3.26 2.00 4.02 0.50 45.89 0.15
Ours 3.2 1.02 6.12 0.31 871.77 0.90√

κ 69 24 116

Table 7.1: Regression performance of the best performing training runs of models for the three selected datasets.
Continuity preference was set for respective datasets as

√
κSonyAIBO = 69,

√
κKR5 = 24, and

√
κKR210 = 116.

The arrows in label row indicate whether a bigger (↑) or smaller (↓) value is desired.
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Dataset: SonyAIBO KR5 KR210

Model Acc. ↑ CE ↓ Acc. ↑ CE ↓ Acc. ↑ CE ↓
KNN 0.74 9.100 0.82 6.16 1.00 0.000

KNN-DTW 0.70 10.330 0.74 8.88 1.00 0.000
TI-HGMM 0.60 1.187 0.29 38.438 0.31 20.324

TV-HGMM 0.88 0.339 0.97 1.011 1.00 0.002
BOSSE 0.82 0.51 0.9988 0.02 1.00 0.000

Ours 0.90 0.333 0.98 0.519 1.00 0.000√
κ 69 24 116

Table 7.2: Mean classification performance of the models for the three selected datasets. Continuity preference
was set for respective datasets as

√
κSonyAIBO = 69,

√
κKR5 = 24, and

√
κKR210 = 116. The Acc. stands for

accuracy, the CE stands for cross-entropy loss. The arrows in label row indicate whether a bigger (↑) or smaller
(↓) value is desired. BOSSE algorithm runs only offline.

7.5 Discussion and Conclusion

The presented novel approach of the continuity preference in training the time-varying hidden
Gauss-Markov models (HGMM) balances the advantages of the great explanatory power of
the time-varying HGMM with robustness and fast learning rate of time-invariant HGMM. The
resulting continuity-preferring EM algorithm can train TV-HGMM on minuscule datasets of
only a few examples yielding a model that generalizes outside its training data better than its
classically trained version.

The amount of data required for training the TV-HGMM models is enormous. Our ap-
proach’s significance resides in enabling the TV-HGMM models to be applied in practice on
repetitive processes by significantly reducing the data requirements for the training.

The TV-HGMM can boost modeling by spreading the time-varying parameters across the
time dimension. In turn, a much lower number of states is required resulting in more stable
learning performance. Each time-step is treated independently in the classical EM algorithm
with no temporal co-dependence of parameter transitions (continuity preference). Consequently,
each time-step can converge after a different number of EM iterations. This effect leads to a
model that has some parts under-fitted and some parts over-fitted. Our approach suppresses
such an undesired behavior, resulting in a better numerical stability during the training and
online classification.

By introducing the preference of continuity in transition matrices, we amplified the direct
influence of the neighboring time-steps. It is not just a variant of the standard Tikhonov regu-
larization. We are not pulling the parameters towards some particular value but instead pulling
parameters closer to each other while maintaining their freedom to drift as a whole. The resulting
solution is biased towards a model, which is smooth in its parameters.

Our approach increases the discriminative power of the trained models, as demonstrated
through experiments on real robots that exhibit the continuity property. Although the primary
use case was the industrial six-axis robot [124], there are many kinds of other machines that
exhibit the continuity property too. We demonstrated the generalization of our approach on the
UEA & UCR public dataset Sony AIBO Surface 1 [127].

The ability to tightly model multivariate signals also opens other possible applications of
such models. For example, the deviation detection task requires a model as tight as possible,
and the training examples of the deviations are available in only a few instances. Such a task
can be applied, e.g., in fault detection, monitoring of conditions deterioration, or predictive
maintenance. The continuity-preference method learns more accurate TV-HGMM parameters
from less data, which allows the TV-HGMM to be deployed in practical applications.

The software is available on GitHub [128], the datasets created for this paper are available
online at [124].
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Chapter 8

Final Conclusions

This dissertation goals require to cover multiple domains of computer science, namely machine
learning, control theory, signal processing, and statistical modeling. Each chapter of the disser-
tation describes the best fitting approach to its cross-functional requirements. Moreover, each
chapter contributed with something new to the studied problematics, which is demonstrated by
published works [3], [10], [11], [22], [91], [98] and one more submitted work about motif discovery.

We started with a bottom-up analysis of structured model of a 6-DOF robot dynamics
which was used as a test case of this work. The basis of the expected structure of the models
was developed in Chapter 2. We have shown, that due to a high complexity of such a model,
it is advantageous to apply techniques of machine learning to identify the parameters of the
structured model instead of a first-principle-based identification. Machine learning techniques
prove to bring better scalability while keeping high accuracy of identified parameters.

In Chapter 3, we investigated the manual segmentation of time series. The simple case of
well distinguishable operations that can be segmented by signal plateaus is hardly guaranteed
in practice. Pattern recognition on the other hand is a robust approach that can be applied on
various kinds of time series. For that reason, we decided to follow the path of distinguishing
operations using pattern recognition. This approach assumed that the pattern is manually
selected and we need to automatically locate it within the time series. We focused on two cases.
First, the brute force sliding window approach, and second, the feature-extraction preprocessing
method which is suitable when computational resources are limited. The feature extraction
based on peak detection proves to be well suited for 6-DOF robots as experimentally verified.
The time series classification accuracy was in range of 0.7− 0.9, but a lot of manual tuning for
detection was required, which is slow, expensive and prone to errors.

Thus, in Chapter 4 we investigated the topic of motif discovery – a problem that we showed
to be adaptable for segmenting the time series. We augmented the formulation of a typical motif
discovery task. We also presented a data processing pipeline that builds a loosely structured
pattern collection – an automatically collected basis for a training data set.

Next, we shifted our focus to structuring the pattern collection into a proper training data
set. That brings a requirement of an unsupervised machine learning technique – clustering of
time series segments by their pair-wise similarity. Chapter 5 discusses the topic of clustering and
proposes a similarity measure that considers the information content of the samples and com-
pares unequal-length sequences. The best suited clustering algorithm is OPTICS, a type of an
agglomerative clustering that can discover even very irregular clusters in the high-dimensional
space of time-series subsequences. The time complexity of the similarity measure is quite de-
manding, but it can be parallelized, which improves its performance significantly. This presents
an advantage compared to the popular DTW measure, which cannot be parallelized.

Our next step was to investigate other method of pattern modeling that takes into account
the known system structure and models its behavior stochastically. In Chapter 6, we explored
the HMM pattern modeling approach, which is a well established model for time series. We laid
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down the basis for probabilistic analysis of structured HMM model of a 6-DOF robot and we ran
a preliminary proof-of-concept experiments on a single axis of a robot. In the experiments, we
verified that our proposed modeling methods are suitable for a sequential classification of time
series. This means that methods of HMM can be used for an online segmentation of time series
based on a set of known patterns. At the same time, we found out that the method requires a
lot of training data to classify the sequences reliably.

In Chapter 7, we enhanced the results from 6 by reducing the amount of training data re-
quired by TV-HGMM. The main problem in training the TV-HGMM is the high variance in the
time-neighboring parameters. We interpret this observation in terms of machine learning as a
high variance of model, i.e., overfitting, and we introduced an advanced regularization technique
denoted as continuity preference. This technique enforces the time-neighboring parameters of
TV-HGMM to differ only a little. We also derived theoretical optimization formulas resulting
in an elegant augmentation of a standard EM learning algorithm. The continuity preference
significantly improved the classification performance of the model when only few training ex-
amples are available. Extensive experiments on real-life data sets have shown the classification
accuracy to be above 0.98.

8.1 Main Contributions

We summarize the main contributions that were published in the author’s original work in [3],
[10], [11], [22], [91], [98]. To explicitly spell them out in the following list:

• Collision table strategy for accelerating motif discovery algorithms. We intro-
duced a novel view of collision table in motif discovery enabling it to be modularly applied
to boost performance of a wide class of motif discovery algorithms. We analyzed the com-
putational complexity reduction impact of the method and presented it on real life data.
For details, see Chapter 4. The results were submitted for publishing.

• Information weighted similarity measure for unequal length sequences. We
proposed a novel parallelizable similarity measure that yields easily interpretable results.
It is a binary symmetric operation that highlights samples of high estimated information
and lowers weight of low information samples. This measure allows us to cluster sequences
of different lengths. Details are provided in Chapter 5. Results were published in [98].

• Time series feature extraction effective for 6-DOF robot power consumption
data. We proposed a particularly effective feature extraction method for 6-DOF robot
power consumption data which shows very convincing detection rates while reducing the
computational load significantly. Details are described in Chapter 3. The results were
published in [10], [11].

• HMM based modeling of 6-DOF robots with hidden control inputs. We showed
how HMM can be applied on industrial robot provided only the power consumption data
are available and the control inputs of the robot are hidden. This contribution enables
a non-intrusive modeling of robots that are already deployed in production without in-
terrupting the manufacturing process. This property allows for easier deployment of the
proposed methods to industry. For details, see Chapter 6. The results were published in
[3].

• Continuity preference for few-shot learning of TV-HGMM. We introduced an as-
sumption of parameter continuity for TV-HGMM and demonstrated how this assumption
improves the generalization performance of models trained on data sets counting less than
six training examples. By theoretical analysis, we derived a minimalistic augmentation of
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EM learning algorithm that is typically used to train TV-HGMM making it easily adopt-
able for current software frameworks. Details are provided in Chapter 7 and published in
[91].

• Integrated framework for pattern detection in time series – MOD tool. All the
parts presented in this dissertation were integrated into the MOD tool – an integrated
pattern detection application that can be deployed to a wide range of domains in industry,
where repetitive processes play a key role in production. The MOD tool components are
researched under the European research project BRAINE [129]. The MOD tool has been
tested at real-life production at industrial use case of batch-heating ovens. Dissemination
of the framework, e.g, at the Summer School on Cyber-Physical Systems and Internet-of-
Things [130].

8.2 Fulfillment of Dissertation Goals

Here, all the dissertation goals as defined in Section 1.1 are stated again and for each of them
an explanation is provided to show how the goal was fulfilled.

• Design methods for automatic search of apriori-unknown patterns in time se-
ries. We formulated and solved the problem of finding unknown patterns as Motif Dis-
covery problem in Chapter 4. The solution was tested both on synthetic benchmark data
sets and on real-life data sets obtained from industrial use cases. Then in Chapter 3, the
discovered motifs were searched for in time series and, based on that, the data were seg-
mented. The segmentation was evaluated on energy-consumption data from an industrial
robotic cell running in Škoda Auto plant. The results were published in [10] and submitted
as [22].

• Propose a solution to cluster the variable-length sequences to reduce the num-
ber of the unsorted patterns into groups containing only patterns which are
similar. Solution to this task is presented in Chapter 5, where we proposed an original
similarity measure utilizing the information content of the samples. This similarity mea-
sure was used with clustering algorithm OPTICS to automatically determine the number
of clusters in the time-series data. The performance was tested on the data from the
robotic cell in Škoda Auto. The results were published in [98].

• Develop machine-learning methods for the identification of the model parame-
ters. We investigated the HMM stochastic models in Chapter 6 as a means for time-series
classification. We showed the time-varying HMM provide good prediction accuracy and
are suitable for the time-series classification task. We published our findings in [3]. Further
focus on the time-varying hidden Gauss-Markov models TV-HGMM led us to inventing
the parameter-continuity-preference method for learning accurate model parameters from
very small training data sets as described in Chapter 7. We published this method in [91].

• Apply the invented methods for an online detection of repetitive behavior ob-
served in time series. The detection of repetitive behavior was formulated as an iterated
time-series-classification task (TSC) and it was used to demonstrate the performance of
the entire developed framework in Chapter 7. The findings were published in [91].

• Validate the results on real-life use cases from industrial robotics. The modular
nature of this dissertation allows validating the results module by module. The individual
modules correspond to the individual chapters of the dissertation. Each module was tested
on the use cases from industrial robotics. Chapter 7 and our paper [91] present the
extensive validation experiments of the integrated solution using the real-life data sets
measured on industrial robots.
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We methodically proceeded towards the defined goals, we developed the Motif Discovery and
Detection Framework and we successfully demonstrated how it automates the task of repetitive-
behavior discovery, learning and detection. The efforts resulted in a software application that
was deployed in industrial batch-heating ovens. Thus, all the goals of this dissertation were
successfully achieved.

8.3 Future Work

To further scale up the proposed methods, future work should focus on accelerating the compu-
tations by parallelizing the presented algorithms. The emerging quantum computing deserves
special attention as it shows promising directions for accelerating the statistical inference utilized
in this dissertation.

The approximation motif discovery algorithms should be further improved especially with
respect to their speed to allow for deployment in online applications.

We demonstrated how the parameter-continuity preference in TV-HGMM improves the
learning from small data sets. This contribution addresses the practical requirement to pro-
vide only a minimal sufficient data set for machine learning tasks. As the continuity in param-
eters proved to be beneficial for TV-HGMM classification performance, other methods yield-
ing smoother parameters should be investigated. A close relative of HGMM are the Gaussian
processes (GP) which do not require the Markov property assumption and exhibit interesting
smoothing properties. However, the GP has the time complexity of O(N3) for predictions.
Future work should investigate GP approximations that show time complexity of O(N).

All the presented methods are integrated in the Motif Discovery tool developed within the
European research project BRAINE [129]. The final goal is to use the stochastic models to
automatically detect deviations in the modeled behavior of machines.



Appendix A

Continuous State Hidden
Gauss-Markov Models

A.1 Theorems and Useful Expressions

Theorem 1 (Jensen’s inequality) Let f(x) is a concave function of a real-valued random
variable X : Ω→ R then,

f(E {X}) ≥ E {f(X)} .

For proof, see, e.g., [52].
Lemma about a linear transformation of normally distributed random vector found, e.g., in

[131] are used in following derivations.

Lemma 1 Let x ∈ Rn is a realization of a normally distributed real-valued random vector
X : Ω → Rn, i.e., x ∼ N (µ,P), with mean value and covariance µ,P respectively, and let
matrix A ∈ Rm×n then,

Ax ∼ N (Aµ,APA>),

additionally, if a random vector v ∼ N (ν,Q) is independent of x, i.e., x ⊥⊥ v, then,

(Ax + v) ∼ N (Aµ+ ν,APA> + Q).

For proof, see, e.g., [131].
For conditioning joint normal distributions, we need the following lemma from [5].

Lemma 2 (Gaussian refactorization lemma) Given the vectors x,µ ∈ Rq, the symmetric
positive definite (PD) matrix P ∈ Rq×q, the vector y ∈ Rp, the symmetric PD matrix S ∈ Rp×p,
and the matrix F ∈ Rp×q, then

N (y; Fx,S)N (x;µ,P) = N (y;ω,Ω)N (x;λ,Λ), (A.1)

where the variables on the right-hand side are defined by

Ω = S + FPF> (A.2)

ω = Fµ (A.3)

H = PF>Ω−1 (A.4)

Λ = (I−HF)P (A.5)

λ = (I−HF)Pµ+ Hy. (A.6)

Remark 1 When allowing for degenerative case of Gaussian distribution, the covariance matrix
can be positive semi-definite (PSD). In case of PSD matrix Ω, the calculation of (A.5) becomes

H = PF>Ω†, (A.7)

where Ω† denotes the pseudo-inverse (ΩΩ†Ω = Ω).
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For proof on both see [5].
Note that the equation (A.1) is Gaussian form of Bayes rule p(y|x)p(x) = p(y)p(x|y). This

lemma is used later in this paper for derivation of E-step to express conditioning on observation.

A.2 Detailed Derivation of EM Algorithm

A.2.1 E-step

The E-step calculates the mean values and covariances of the conditional density of the hidden
states based on the current data Y and parameters Θi. Formally:

xt ∼ N (xt;µt|t,Pt|t) (A.8)

x̂t = Ext|Y;Θi {xt} = µt|t. (A.9)

This conditional density is possible to be computed either based on forward or backward recur-
sion. Both of these recursions combined give the most accurate result as both the information
accumulated from the future samples and the information accumulated from the past samples
are merged together. To compute the backward recursion, a sequence of the future samples must
be available to evaluate the likelihood density for current hidden state vector xt. This requires
the entire example sequence of training data to be available during the training process.

For the sake of clarity, we omit the upper indexing in this section, keeping in mind that all
measured sequences share the same set of parameters µ1, P1, At, B, Qt and R. The forward
recursion algorithm estimates mean and covariance of density N (xt;µt|t,Pt|t) for each time
instance. The algorithm consists of two steps – time update and data update step. First, the
initial values are set for time t = 1 acting as time update as

µ1|0 = µ1 (A.10)

P1|0 = P1. (A.11)

Then the data update is calculated for t = 1 based on Equations (A.14)–(A.17) that follow. Al-
ternating between the time and the data update step the parameters of the conditional densities
are calculated for each time instance t. The time update step

Pt|t−1 = Qt + AtPt−1|t−1A
>
t , (A.12)

µt|t−1 = Atµt−1|t−1, (A.13)

and the data update step is computed as

Σt = R + BPt|t−1B
>, (A.14)

Gt = Pt|t−1B
>Σ−1

t , (A.15)

Pt|t = (I−GtB)Pt|t−1, (A.16)

µt|t = (I−GtB)µt|t−1 + Gtyt. (A.17)

µt|t is the best estimate of the hidden state x̂t using only the forward recursion with the past
data up to time t. Finally, the statistics Ht for cross-covariance of the time-adjacent states is
calculated at this point as

Ht = Pt−1|t−1A
>
t P−1

t|t−1. (A.18)

(A.18) is used later in the M-step of the EM algorithm.
The Equations (A.12)–(A.17) represent the standard Kalman filtering principle in a slightly

rearranged manner adopted from [5]. By applying the algebraic association rule, we get the
exact form of Kalman filtering equations as shown, e.g., in [132].
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A.2.2 M-step

In the M-phase, the EM algorithm forgets the parameters µ1, P1, At, B, Qt and R used in the
preceding E-step and estimates new values for them based on the original measurement example
sequences Y and their corresponding annotations X .

For the derivation of maximization we will need following lemma from [[133], Ch. 10].

Lemma 3 Let x be normally distributed random vector, then∫
N (x;µ,P)(x>Fx + x>f + f0)dx =

= tr(F(P + µµ>)) + µ>f + f0. (A.19)

Formally, the i-th M-step iteration of the algorithm maximizes the lower bound (7.6) by solving

Θi+1 = arg max
Θ

Q(Θ,Θi), (A.20)

Q(Θ,Θi) = EX|Y;Θi {ln p(Y,X ; Θ)} . (A.21)

This auxiliary function Q(Θ,Θi) is decomposed into three sub-functions and optimized sepa-
rately as follows.

Q(Θ,Θi) = Q1 +QX +QY , (A.22)

Q1 =
K∑
k=1

∫
p(x1|Yk

Tk
) ln p(xk1)dxk1, (A.23)

QX =

Nmax∑
t=2

Kt∑
k=1

∫∫
p(xkt ,x

k
t−1|Y

Nk
1 )

× ln p(xkt |xkt−1)dxkt−1dx
k
t

=

Nmax∑
t=2

Kt∑
k=1

Itk, (A.24)

QY =

Nmax∑
t=1

Kt∑
k=1

∫
p(xkt |Yk

Tk
)

× ln p(ykt |xkt )dxkt . (A.25)

By substituting Gaussian distributions in place of pdfs, and using lemma (3), we obtain
expressions for each Equation (A.23)-(A.25).

Q1 =
K∑
k=1

∫
N (xk1;µk1|Tk ,P

k
1|Tk) lnN (xk1;µ1,P1) (A.26)

= −KL
2

ln(2π) +
K

2
ln |P1|−1

−1

2

K∑
k=1

tr
{

P−1
1

(
Pk

1|Tk + εk1ε
k
1
>)}

, (A.27)

where L is the state-space model dimension and εk1 = µk1|Tk − µ1.

For the component QX the integral (i.e., the expectation) is evaluated as:

Itk = −1

2

{
L ln(2π)− ln |Q−1

t |+ I
(1)
tk − I

(2)
tk + I

(3)
tk

}
,
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where

I
(1)
tk =

∫
N (xkt ;µ

k
t|Tk ,P

k
t|Tk)xk

>
t Q−1

t xkt dx
k
t

= tr(Q−1
t Ck

xtxt
)

I
(2)
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∫∫
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{
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A>t Q−1

t xkt
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t

= 2 tr
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Q−1

t AtC
k
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(3)
tk =

∫
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k
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t−1A

>
t Q−1

t Atx
k
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k
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= tr
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A>t Q−1

t AtC
k
xt−1xt−1

)
,

where we used the cyclic property of the trace operator and the substitution of

Ck
xtxt

= Pt|Tk + µkt|Tkµ
k>

t|Tk ,

Cxtxt =
1

Kt

Kt∑
k=1

Ck
xtxt

, (A.28)

Ck
xtxt−1

= Pt,t−1|Tk + µkt|Tkµ
k>

t−1|Tk
Pt,t−1|Tk = Pt|TkHt

Cxtxt−1 =
1

Kt

Kt∑
k=1

Ck
xtxt−1

. (A.29)

Putting all the expressions together, the term QX can be expressed as

QX = −1

2

Tmax∑
t=2

Kt∑
k=1

{
L ln(2π)− ln |Q−1

t |

+ tr(Q−1
t Ck
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−2 tr
(
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t AtC
k
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+ tr
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. (A.30)

As for the term QY , the procedure is similar.

QY = −1

2

Nmax∑
t=2

Kt∑
k=1

{
L ln(2π)− ln |R−1

t |+ Itk
}
, (A.31)

Itk =

∫
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= tr(R−1
t Cytyt − 2R−1

t CytxtB
>
t )

+ tr(B>t R−1
t BtCxtxt), (A.33)



A.2. DETAILED DERIVATION OF EM ALGORITHM 87

where we applied substitution by correlation matrices of the form

Cytyt =
1

Kt

Kt∑
k=1

ykt y
k>
t , (A.34)

Cytxt =
1

Kt

Kt∑
k=1

yktµ
k>

t|Tk . (A.35)

Note that the Equations (7.14), (7.15), (A.34), and (A.35) assume the mean value to be exact
and known at the time of calculations. In practice, the mean is estimated as a sample mean,
so the correlation (covariance) matrices should be normalized by the factor 1/(Kt − 1) instead
of 1/Kt to obtain an unbiased estimate. This is called Bessel’s correction [134]. We keep the
theoretical form here for readability.

Since time-invariant B and, R are calculated, time indices t in (A.31)-(A.33) can be dropped
and the correlation matrices are averaged as

Cyy =
1

Tmax

Tmax∑
t=1

Cytyt , (A.36)

Cyx =
1

Tmax

Tmax∑
t=1

Cytxt , (A.37)

Cxx =
1

Tmax

Tmax∑
t=1

Cxtxt . (A.38)

To get optimal estimates of parameters At,B,Qt,R,µ1,P1, the optimization task from (A.21) is
ready to be solved by parts now. Solve DAt{QX} = 0 for At, DQt{QX} = 0 for Qt, DB{QY } = 0
for B, and DR{QY } = 0 for R. For that, standard matrix calculus is used, and additionally, we
point out the identity:

DF{tr(F>S1FS2)} = S1FS2 + S>1 FS>2 . (A.39)

Solving these equations we obtain following optimums.

Ai+1
t = Cxtxt−1C

−1
xt−1xt−1

, (A.40)

Qi+1
t = Cxtxt −Cxtxt−1C

−1
xt−1xt−1

C>xtxt−1
, (A.41)

Bi+1 = CyxC−1
xx , (A.42)

Ri+1 = Cyy −CyxC−1
xxC>yx. (A.43)

For the parameters µ1,P1, solve Dµ1
{Q1} = 0 for µ1 yielding

µi+1
1 =

1

K

Kt∑
k=1

µk1|Tk (A.44)

Defining εk,i+1
1 = µk1|Tk − µ

i+1
1 and then solving DP−1

1
{Q1} = 0 for P1 yields

Pi+1
1 =

1

K1

K1∑
k=1

{P1|Tk + εk,i+1
1 εk,i+1>

1 }. (A.45)

These results are then used for parameters update in the (i+ 1)-th M-step.
It is worth mentioning that the autocorrelation matrices Cytyt , Cyy, Cxtxt , Cyy and also

the covariances Qt and R are all symmetric positive semi-definite matrices. In other words, all
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its eigenvalues are real-valued non-negative numbers. This condition may not be met due to the
numerical realization of the algorithm. In such a case, some kind of regularization is necessary.
In our experimental setup, we used eigenvalue regularization, replacing the negative eigenvalues
with small positive values. This procedure can be viewed as artificially induced uncertainty in
the corresponding random variable.



List of Candidate’s Work Related to
the Thesis

Published Journals (Impact)
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[71] L. Bukata, P. Š̊ucha, Z. Hanzálek, and P. Burget, “Energy optimization of robotic cells”,
IEEE Transactions on Industrial Informatics, vol. 13, no. 1, pp. 92–102, Feb. 2017, issn:
1551-3203. doi: 10.1109/TII.2016.2626472.

[72] H.-Y. Chen, Y.-C. Fan, C.-L. Lai, and H. Chen, “Identifying variable-power appliances
in non-intrusive load monitoring systems”, 2016 10th International Conference on Inno-
vative Mobile and Internet Services in Ubiquitous Computing (IMIS), pp. 452–457, 2016.
doi: 10.1109/IMIS.2016.124.

[73] H. Y. Lam, G. S. K. Fung, and W. K. Lee, “A novel method to construct taxonomy elec-
trical appliances based on load signatures”, IEEE Transactions on Consumer Electronics,
vol. 53, no. 2, pp. 653–660, 2007, issn: 00983063. doi: 10.1109/TCE.2007.381742.

[74] S. K. K. Ng, J. Liang, and J. W. M. Cheng, “Automatic appliance load signature identi-
fication by statistical clustering”, Apscom, pp. 1–6, 2009. doi: 10.1049/cp.2009.1749.

https://www.aanda.org/articles/aa/abs/2014/03/aa22653-13/aa22653-13.html
https://www.aanda.org/articles/aa/abs/2014/03/aa22653-13/aa22653-13.html
https://www.ciirc.cvut.cz/wp-content/uploads/2022/06/Dataset_implanted_motifs.zip
https://www.ciirc.cvut.cz/wp-content/uploads/2022/06/Dataset_implanted_motifs.zip
https://doi.org/10.1016/S0031-3203(96)00142-2
https://linkinghub.elsevier.com/retrieve/pii/S0031320396001422
https://linkinghub.elsevier.com/retrieve/pii/S0031320396001422
https://doi.org/10.1021/jf950305a
https://doi.org/10.1109/TITS.2005.848368
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption#
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption#
https://www.ciirc.cvut.cz/wp-content/uploads/2022/06/Dataset_industrial_motifs.zip
https://www.ciirc.cvut.cz/wp-content/uploads/2022/06/Dataset_industrial_motifs.zip
https://github.com/ronmarti/continuity-preference-hgmm
https://github.com/ronmarti/continuity-preference-hgmm
https://doi.org/10.1109/TASE.2016.2641743
https://doi.org/10.1109/TII.2016.2626472
https://doi.org/10.1109/IMIS.2016.124
https://doi.org/10.1109/TCE.2007.381742
https://doi.org/10.1049/cp.2009.1749


BIBLIOGRAPHY 99

[75] S. Mostafavi, B. Futrell, J. Troxler, and R. W. Cox, “Leveraging cloud computing to
convert the non-intrusive load monitor into a powerful framework for grid-responsive
buildings”, in 2016 IEEE International Conference on Big Data (Big Data), IEEE, Dec.
2016, pp. 3107–3114, isbn: 978-1-4673-9005-7. doi: 10.1109/BigData.2016.7840965.

[76] K. Michalak, A. Lancucki, and P. Lipinski, “Multiobjective optimization of frequent pat-
tern models in ultra-high frequency time series: Stability versus universality”, in 2016
IEEE Congress on Evolutionary Computation (CEC), Jul. 2016, pp. 3491–3498. doi:
10.1109/CEC.2016.7744232.

[77] J. Shao, K. Hahn, Q. Yang, C. Bohm, A. Wohlschlager, N. Myers, and C. Plant, “Com-
bining time series similarity with density-based clustering to identify fiber bundles in the
human brain”, Proceedings - IEEE International Conference on Data Mining, ICDM,
pp. 747–754, 2010, issn: 15504786. doi: 10.1109/ICDMW.2010.15.

[78] M. Ester, H. P. Krigel, J. Sander, and X. Xu, “A density-based algorithm for discov-
ering clusters in large spatial databases with noise”, in Proc. of the 2nd International
Conference on Knowledge Discorvery and Data Mining, 1996, pp. 226–231.

[79] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS: Ordering points
to identify the clustering structure”, in ACM SIGMOD’99 Int. Conf. on Management of
Data, 1999.

[80] C.-S. Hsieh, “Extension of unbiased minimum-variance input and state estimation for
systems with unknown inputs”, Automatica, vol. 45, no. 9, pp. 2149 –2153, 2009, issn:
0005-1098. doi: http://dx.doi.org/10.1016/j.automatica.2009.05.004.

[81] S. Gillijns and B. D. Moor, “Unbiased minimum-variance input and state estimation for
linear discrete-time systems with direct feedthrough”, Automatica, vol. 43, no. 5, pp. 934
–937, 2007, issn: 0005-1098. doi: http://dx.doi.org/10.1016/j.automatica.2006.
11.016.
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