
Master thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Systems and Control

FPGA-based support for predictable
execution model in multi-core CPU

Bc. Maxim Baryshnikov

Supervisor: Ing. Michal Sojka, Ph.D.
Field of study: Cybernetics and Robotics
Subfield: Common Cybernetics and Robotics
May 2018

ii

Acknowledgements
I would first like to thank my thesis ad-
visor Ing. Michal Sojka, Ph.D., for his
assistance and dedicated involvement in
every step throughout the process. With-
out his great mentorship this work would
have never been accomplished. I would
also like to thank my family and friends
for their great moral support.

Declaration
I hereby declare that I have completed
this thesis with the topic “FPGA-based
support for predictable execution model
in multi-core CPU” independently and
that I have included a full list of used
references.

Prague, May _, 2018

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze, _. května 2018

iii

Abstract
In attempts to make real-time embedded
systems less expensive and more powerful,
researchers in the field are working on
ways to incorporate Commercial-off-the-
shelf (COTS) multicore devices into
safety-critical designs. The Predictable
Execution Model (PREM) is a promising
solution to overcome the problems of
shared resources interferences on such
multicore platforms. One of an existing
implementation of PREM employs
hypervisor-based memory access monitor.
It has overheads, which could be reduced
with the use of FPGA-based PREM
memory access monitor instead. The
aim of this thesis is to implement such
solution and prove the efficiency of it
comparing to the hypervisor-based one.

The stated PREM watchdog was suc-
cessfully implemented on Xilinx Zynq Ul-
trascale+ MPSoC platform using the abil-
ities of ARM’s CoreSight Debug & Trace
system. The results show that in case
of using FPGA-based memory watchdog
maintenance takes 2.88 times less than the
hypervisor-based solution requires in aver-
age (the hypercall time). Hence, the state-
ment that HW-based guard may decrease
the overhead of PREM application when
compared to the software-based guard is
proven.

Keywords: predictable execution,
Xilinx Zynq Ultrascale+, MPSoC,
FPGA, tracing, memory, PREM

Supervisor: Ing. Michal Sojka, Ph.D.

Abstrakt
Z důvodu potřeby snížení nákladů a
zvýšení výkonu embedded real-time
systémů, pracují vědci po celém světě
na způsobech, jak přizpůsobit hotová ko-
merční zařízení bezpečnostně-kritickému
designu. Předvídatelný exekuční model
je slibné řešení k překonání problémů
s interference na sdílených zdrojů na
více jádrových platformách. Jedna z
již existujících implementací PREM
zahrnuje sledování přístupů do paměti
založeny na hypervizoru. Problémy,
které taková implementace vytváří
(overheady v sledovaném softwaru) je
možno minimalizovat využitím FPGA
založeném na PREM. Cílem této práce
je implementace popisovaného řešení
a ověřené efektivnosti v porovnání s
řešením založeném na hypervisoru.

Uvedeny PREM watchdog byl úspěšně
implementován na platformě Xilinx Zynq
Ultrascale+ MPSoC využitím moznosti
trasovacího frameworku CoreSight. Vý-
sledky ukazuji že v případě použiti uve-
deného watchdogu založeného na FPGA,
trvají přístupy 2.88 krát menší dobu než
přístupy k hypervizoru pomoci hypercallu.
Tímto se tvrzeni, ze hardwarová imple-
mentace watchdogu může snížit overhead
potvrdilo.

Klíčová slova: Xilinx Zynq Ultrascale+,
PREM, MPSoC, FPGA, trasování, ARM

iv

Contents
Project Specification 1
1 Introduction 3
2 Theoretical Background 5
2.1 Predictable Execution Model
(PREM) . 5
2.2 State of the Art 6
2.3 The Problem Statement 8
3 Hardware Platform Overview 11
3.1 Zynq MPSoC’s capabilities 11
3.1.1 Zynq MPSoC Overview 11
3.1.2 Tracing capabilities 13

3.2 ARM’s CoreSight Framework . . 14
3.2.1 Trace Sources 16
3.2.2 Trace Links and Sinks 20
3.2.3 Embedded Cross-Trigger 21

3.3 ARM’s Performance Monitoring
Unit . 23

4 PREM Watchdog
Implementation 25
4.1 Concept . 25
4.2 CoreSight System Configuration 26
4.3 Programmable Logic Design 28
4.4 Event Masking Problem 30
4.5 PL Logic Driver API 32
5 Performance Evaluation 33
5.1 Precision evaluation 33
5.2 Comparison with software-only
watchdog . 34

6 Conclusion 37
A Bibliography 39

v

Figures
2.1 An example of PREM schedule.
Source: [PBB+11] 6

2.2 Real-Time I/O Management
System proposed by R. Pellizzoni et
al. Source: [PBB+11] 7

2.3 An ADAS-like scenario schedule
presented as direct acyclic graph. In
green: compatible intervals. In white:
computation phases. In read:
memory access phases. Source:
[MFS+18] . 7

2.4 Gantt diagram of schedule depicted
in Figure 2.3 of PREM intervals
among multiple CPUs. The green
ones depict computation phases. The
read ones are memory access phases.
Source: [MFS+18] 7

2.5 HERCULES Memory access
scheduling & supervision. Source:
[MSH17] . 8

3.1 Zynq UltraScale+ MPSoC
Top-Level Block Diagram. Source:
[Incc] . 12

3.2 Zynq UltraScale+ MPSoC
Top-Level AXI Interconnect
Architecture. Source: [Incc] 13

3.3 Zynq UltraScale+ MPSoC Debug
Block Diagram. Source: [Incc] 15

3.4 ETM’s resource selection overview.
Source: [Lime] 18

3.5 The necessary option setup in
FreeRTOS BSP for enabling STM
tracing in Xilinx SDK IDE. 19

3.6 FreeRTOS tracing in Xilinx SDK
IDE. 20

3.7 Funnel block diagram. Source:
[Limc] . 20

3.8 ECT block diagram. “The CTI at
the top is configured to propagate
the trigger event on Trigger Input 0
to Channel 0.” Source: [UXSCT] . . 21

3.9 CTI internal logic overview.
Source: [Lima] 22

4.1 The implementation concept
overview. 26

4.2 ETM’s configuration. 28
4.3 The measured time of the Trigger
acknowledgment. The sampling
period is 10 ns. 31

4.4 The modified ETM’s configuration
concept overview. 31

5.1 . 34

A.1 The complete PL design. 42
A.2 The PL logic concept. 43

vi

Tables
4.1 PREM Watchdog registers
overview. All are 32-bit wide 30

5.1 The comparison of PL Watchdog
with hypervisor watchdog. 35

vii

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

420064Osobní číslo:MaximJméno:BaryshnikovPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra řídicí techniky

Kybernetika a robotikaStudijní program:

Kybernetika a robotikaStudijní obor:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Hardwarová podpora předvídatelné exekuce na vícejádrových procesorech

Název diplomové práce anglicky:

FPGA-based support for predictable execution model in multi-core CPU

Pokyny pro vypracování:

Seznam doporučené literatury:
[1] Xilinx, Zynq UltraScale+ MPSoC, Technical Reference Manual
[2] R. Pellizzoni et al., 'A Predictable Execution Model for COTS-Based Embedded Systems,' 2011 17th IEEE Real-Time
and Embedded Technology and Applications Symposium, Chicago, IL, 2011, pp. 269-279.

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Michal Sojka, Ph.D., katedra řídicí techniky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 25.05.2018Datum zadání diplomové práce: 30.01.2018

Platnost zadání diplomové práce: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
prof. Ing. Michael Šebek, DrSc.

podpis vedoucí(ho) ústavu/katedry
Ing. Michal Sojka, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

2

Chapter 1
Introduction

Today’s Automotive and Avionics industrial demands are suffering from the
need for high-performance hardware to be incorporated in safety-critical
systems. For example, Advanced Driver Assistant and Autopilot systems
require powerful Graphics Processing Units for real-time environment tracking
algorithms. Generally, the use of parallel algorithms in that field introduces
many benefits in the sense of performance.

In attempts to make real-time embedded systems less expensive and more
computationally powerful, a majority of researchers in the field are work-
ing on ways to incorporate Commercial-off-the-shelf (COTS) devices into
safety-critical designs. One of the significant problems arising, while us-
ing a multi-core COTS hardware in real-time applications is the enormous
unpredictability of shared resources competition. For instance, a common
System-on-Chip (SoC) could contain CPUs, GPUs, and FPGAs all sharing
the same interconnect and memory hierarchy, which leads to unwanted in-
terferences. Thus, COTS devices cannot be used in systems with tightly
deterministic time constraints without applying some third-party arbiters to
the parts of a system where those shared resources present.

The European Project HERCULES1, where CTU participates, uses Pre-
dictable Execution Model (PREM) [PBB+11] in their automotive software
stack. Their solution also includes a software-based guard that monitors the
program execution in order to limit potential interference to other parts of the
system. The monitoring ensures that the given time and memory budgets do
not overrun but also introduces some overhead. The use of hardware-based
guard instead may reduce the overheads that the software-based solution
have. This thesis aims to prove that concept of hardware-based execution
monitoring.

The thesis is structured as follows: Chapter 2 of this work is dedicated to
the theoretical introduction into PREM’s problematic. The main concepts
and terms, which are used in the rest of this thesis are defined there.

1http://hercules2020.eu/

3

http://hercules2020.eu/

1. Introduction
Chapter 3 introduces the reader to Xilinx Zynq Ultrascale+ platform and

its abilities, focusing on hardware tracing capabilities. Xilinx Zynq Ultra-
Scale+ MPSoC ZCU102 Evaluation Kit was given as a hardware platform
for this work. Due to the general complexity and vast variety of features
this platform provides, the investigation of it has taken the vast majority of
the time spent on this project. This is the reason why Chapter 2 provides
the information about features that were not applied in the final solution.
However, those unemployed findings may serve well for future work purposes,
and that is why they are kept there.

Chapter 4 explains the PREM Watchdog’s implementation in details both
from software part and hardware (FPGA) part points of view. The chapter
aims to reason about the decisions that were made and about an implementa-
tion concept. Furthermore, it discusses the problems that were met on the way.

Finally, Chapter 5 describes the tests of developed functionality and over-
head comparison with the software-based solution. The results are discussed
in Conclusion.

4

Chapter 2
Theoretical Background

The following chapter provides some general explanation of the terms and
concepts about the stated topic (Section 2.1). In Section 2.2, there is an
overview of already implemented solutions. Finally, the part of the problem
which this work aims to solve is discussed (Section 2.3).

2.1 Predictable Execution Model (PREM)

Predictable Execution model (PREM), proposed by Pellizzoni et al. [PBB+11],
is a way to execute safety-critical software in deterministic time on multicore
systems. The primary target of struggle on such systems is cache misses while
their amount strongly affects the worst-case execution time (WCET) with
its indeterminism. PREM solves the mentioned issues by applying resource
access scheduling on a given program. A program should have execution
intervals which are stated either as predictable or compatible. Predictable
intervals “are executed predictably and without cache misses”[PBB+11], and
cannot be preempted until the end of scheduling interval. Predictable intervals
are then divided into sub-phases which are the following:. Cache Prefetch. Computations. Cache Write-Back

During the cache prefetch phase, all the instructions and data needed
for the computing stage are loaded into the cache which is shared among all
cores. It is essential to avoid self-eviction of the cache, i.e., prefetching of
the cache line does not rewrite the data fetched in the same phase. Then
follows the computation phase where no cache misses could occur because
all needed data are already there. Finally, after the computation is done the
CPU posts the results back to the cache during the write-back phase.

Compatible intervals may follow after a sequence of predictable intervals.
The task running in it is allowed to be preempted and have cache misses. It

5

2. Theoretical Background
can not, however, block the execution indefinitely. For that reason, communi-
cation with peripheral devices should be restricted as much as possible during
this phase.

The transformation of legacy code to PREM-compatible program requires
a programmer to put pragmas (e.g., predictable code blocks, as stated in
[PBB+11]) which define single predictable intervals of a program and its
limitations (e.g., time and memory budget). PREM real-time compiler should
then put prefetch and write-back instructions at the beginning and the end
of a predictable interval.

The intervals are then scheduled either on-line or off-line such that the mem-
ory access resource is shared between CPU and I/O peripherals exclusively
during the non-preemptive intervals.

2.2 State of the Art

In the original paper ([PBB+11]) which introduced PREM, the authors
implement the single-core approach that is primarily focused on efficient and
safe I/O peripherals distribution among tasks that are executed on CPU
periodically. Figure 2.1 depicts an example of such schedule where memory
access resource is shared exclusively between tasks τ1 and τ2 that do some
computations and tasks τ

I/O
1 and τ

I/O
2 that work with I/O flows.

Figure 2.1: An example of PREM schedule. Source: [PBB+11]

To achieve the PREM synchronization of I/O devices, R. Pellizzoni et al.
introduce FPGA-based real-time bridge and peripheral scheduler. Figure 2.2
shows the hardware layout they used. It does not, however, cover multiple
CPU setups. The further research focused more on incorporating PREM
with multicore systems without the need of hardware-based arbiter, intro-
ducing the concept of multithreaded PREM scheduling based on fork-join
principle [AP14]. Based on this and other works, J. Matějka et al. introduced

6

................................... 2.2. State of the Art

Figure 2.2: Real-Time I/O Management System proposed by R. Pellizzoni et al.
Source: [PBB+11]

a complete PREM toolchain [MFS+18] consisting of a compiler for ARM
and scheduling model which was successfully evaluated on Advanced-Driver
Assistant-System (ADAS) scenarios (refer to Figure 2.3 and Figure 2.4).

Figure 2.3: An ADAS-like scenario schedule presented as direct acyclic graph.
In green: compatible intervals. In white: computation phases. In read: memory
access phases. Source: [MFS+18]

Figure 2.4: Gantt diagram of schedule depicted in Figure 2.3 of PREM intervals
among multiple CPUs. The green ones depict computation phases. The read
ones are memory access phases. Source: [MFS+18]

HERCULES project [Pro] also considers applying PREM in similar manner
as proposed in [MFS+18] to achieve predictive execution of their ADAS
framework on multicore systems. However, instead of using real-time bridges
as [PBB+11] proposes they run that logic in a software arbiter such as VM
or hypervisor, so they do not need to integrate additional hardware on a SoC.

7

2. Theoretical Background
[BBC+17]

2.3 The Problem Statement

As it was mentioned in the section, the HERCULES framework solution uses
a hypervisor to drive PREM application’s execution. In particular, it must
be in charge of two tasks:. Scheduling of execution intervals and phases. Detecting misbehaving applications

The detection of the faulty behavior for a safety-critical program is uncon-
ditionally required. Not only due to an axiom that every software may have a
bug but also because of safety-related certification process which every piece
of control system’s software should pass.

Figure 2.5: HERCULES Memory access scheduling & supervision. Source:
[MSH17]

The system setup consists of a PREMized application which runs in user-
space of Linux/Erika OS and Jailhouse hypervisor[BBC+17] . The whole
execution process goes as follows[MSH17] (See Figure 2.5):..1. At the beginning of every non-preempted interval phase or compatible

interval the application issues a hypercall...2. When the hypervisor receives the call, it becomes aware of:..a. the end of the previous phase..b. the start of the current phase..c. the memory and time budget that the current phase requests to
have...3. if the hypervisor detects the memory budget overrun during the applica-

tion’s execution, it signals about it and then acts as predefined in case
of a critical fault.

8

................................2.3. The Problem Statement

Unfortunately, this solution has a drawback that affects the whole system
performance. Experiments with that setup show (available here [Gai17]) that
the hypercall lasts 21.72 µs in average and up to 58.42 µs in the worst
case. That time could be improved with the use of some hardware instead of
the hypervisor. Minimally, the watchdog functionality may be implemented
in FPGA. Thus, the remainder of that thesis will discuss the ways how to
achieve it.

9

10

Chapter 3
Hardware Platform Overview

This Chapter describes the capabilities of hardware given for the experiments
with PREM. In attempts to mitigate the overhead mentioned at the end of
Section 2.3, one should determine the right tools to achieve that, and this
is the purpose of existence of this Chapter. In particular, the investigation
here focuses on abilities of non-invasive tracing of DRAM access events for
multiple CPU cores.

Section 3.1 presents the general overview of the given hardware. It also
describes Trace subsystems available on the chip. Section 3.2 scopes out the
ARM’s CoreSight framework, its building blocks, and their roles. This section
also provides a short overview of software tools available for working with
that toolset. The last Section (3.3) describes ARM’s Performance Monitoring
Unit.

3.1 Zynq MPSoC’s capabilities

The thesis specification suggests using Xilinx Zynq MPSoC Ultrascale+ plat-
form for the PREM’s experiments. It is reasonable proposition because the
platform is cost-efficient, powerful, and it covers a broad range of applications.
Moreover, Xilinx claims that Zynq MPSoC Ultrascale+ EG devices will find
their use in Aerospace application and Zynq MPSoC Ultrascale+ EV are
ideal for automotive tasks such as ADAS. In this work, however, the EG SoC
is used, but the difference between them is only the fact that EV chips have
an integrated H.264 / H.265 video codec.[bADASA]

3.1.1 Zynq MPSoC Overview

The top architecture overview of Zynq MPSoC Ultrascale+ is presented in
Figure 3.1. That Figure shows all available processing units, I/O devices,
platform controllers, etc. The points of interest, however, are Application
Processing Unit (APU) and Programmable Logic (PL) and their interconnect
with DRR4-type memory. APU consists of 64-bit Quad-core Cortex-A53
ARMv8 multiprocessing CPU, 1MB of L2 cache and Snooping Control Unit

11

3. Hardware Platform Overview
(SPU) which cares about direct transfers between per-CPU L1 caches on
purpose of maintaining cache coherence.The L2 cache is 16-way set-associative;
Also, SPU supports Accelerator Coherency Port (ACP) port, which one could
use to have I/O coherency of PL design, or even to have own L2 caches in
PL coherent with the rest of the system (full-coherency mode). [Incc]

Figure 3.1: Zynq UltraScale+ MPSoC Top-Level Block Diagram. Source: [Incc]

All components are interconnected with AMBA-compliant network through
Advanced eXtensible Interfaces (AXI). This is a Network-On-Chip which
consists of peer-to-peer connected devices in a master-slave manner; some
of them are switches and bridges, which not only provide many-to-many
connectivity but also synchronize signals coming from the different clock and
power domains [Limf]. Figure 3.2 shows the interconnect in details.

Certain parts of the memory interconnect (especially the Cache Coher-
ent Interconnect (CCI), DDR controller and QoS-400 Regulator) support
Quality-of-Service (QoS) which could provide memory bandwidth throttling
for the selected paths in the system. The master ports of these devices may
be configured to give Low Latency (High Priority), High Throughput (Best

12

.............................. 3.1. Zynq MPSoC’s capabilities

Figure 3.2: Zynq UltraScale+ MPSoC Top-Level AXI Interconnect Architecture.
Source: [Incc]

Effort) or Isochronous access. This could be programmed either statically, or
be controlled dynamically from PL.[Incc] The feature may be used to bound
DRAM memory accesses in a manner of, e.g., MemGuard project ([YYP+13]),
or in the collaboration of MemGuard and PREM where the throttling was
applied on compatible phases of PREM model ([HSH17]).

PL could use several master and slave AXI ports to access the memory
shared with Processing System (PS). The communication is also possible
through multiplexed I/O interface (MIO) and extended multiplexed I/O
interface (EMIO), PS-to-PL, and PL-to-PS interrupts.

3.1.2 Tracing capabilities

Zynq Ultrascale+ provides wide abilities to trace the whole SoC. For example,
integrated AXI Performance Monitors (APM) could monitor some of those
connections. There are 4 APMs, and they could count the metrics at nine
points of memory interconnect (See Figure 3.2). They could be used for
the use-cases as obtaining latency metrics, read/write throughputs, count
AXI bus events, debug AXI peripherals. (citation). APM is also available

13

3. Hardware Platform Overview
as an Intelectual Property (IP) block for FPGA to analyze an AXI traffic of
implemented logic.[Inca]

There are three mods in which APM may operate. In the mode called
Advanced APM can do Event Logging, where the specified events are stored
in FIFO and then exported via AXI-Stream interface, and Event Counting,
where the integrated metric counters are set on some event type. In Profile
Mode, APM works similarly as in Advanced - Counting mode, but the
metrics are predefined. The Trace Mode of APM shares the same idea
as Profile Mode does: This is a simplified easy-to-use version of Advanced
feature, in this case that is Event Logging. APM IP could emit an interrupt
which may be set up on the overflow of metric counters or to signalize if the
tracing FIFO is full.[Inca]

The important note about APM placed in SoC is “The PS-based APMs
implement the advanced mode without error logging or the AXI Stream
features.”[Incc]

Xilinx also introduces the Fabric Trace Macrocell (FTM) (placed on the
scheme in Figure 3.3) that allows cross-triggering between PS and PL. It has
32-bit GPIO from/to PL and four input/output trigger channels. The typical
use-case of it is to start capturing in Integrated Logic Analyzer IP[Incb]
placed in PL after some hardware event occurred at PS. The other option is
to stimulate trace events with a trigger from PL. FTM is CoreSight-compliant
device. For CoreSight description see the following Section 3.2.

3.2 ARM’s CoreSight Framework

Zynq Ultrascale+ MPSoC platform implements the ARM CoreSight SOC-
400 Trace & Debug components. This system provides an opportunity for
non-invasive tracking of events coming from various devices on the chip.
Figure 3.3 shows the complete layout of all CoreSight components available
on Zynq Ultrascale+ MPSoC. This work heavily uses the features of Core-
Sight to follow the memory access events due to non-intrusiveness of those
tools and ability to export the needed information at runtime (See Chapter 4).

CoreSight devices are memory-mapped, and every such device must contain
a set of specification-defined identification registers. It allows either software
or hardware trace analyzer to detect the topology. A trace analyzer should
know a physical address of CoreSight ROM table, where it should find the
offsets of either devices or other ROM tables.[Lim13]

The trace data transfer consists of the following stages. Trace units (i. e.
trace sources) emit a trace packet that contains trace unit’s ID and encapsu-
lated data. Then, the packet flows through trace links (which are connected
by AMBA Advanced Trace Bus (ATB)) to trace sinks. The trace is then read

14

..............................3.2. ARM’s CoreSight Framework

from the sink by trace analyzer and decoded.

Those software libraries and drivers may be useful when working with
CoreSight:

. CoreSight Access Library (CSAL) [GCAL]. Linux CoreSight driver - already in kernel’s mainline.OpenCSD - An OpenSource CoreSight Decoding library [GOAosCTDl]

CSAL provides C API for programming of almost all CoreSight components
available on the market both from bare metal and Linux environment. This
work uses that tool for CoreSight components configuration.

Linux CoreSight driver integrates the CoreSight system with standard
performance evaluation tool - perf. Linaro’s OpenCSD is able then to work
together with perf to get a human-readable tracing of the kernel and user-space
program execution.[GOAosCTDl]

Figure 3.3: Zynq UltraScale+ MPSoC Debug Block Diagram. Source: [Incc]

15

3. Hardware Platform Overview
3.2.1 Trace Sources

Embedded Trace Macrocell

Embedded Trace Macrocell (ETM) is a trace system element which targets on
producing program traces. Those traces are generated at program’s run-time.
However, on purpose not to overload trace streams, ETM may be configured
to notice only particular trace elements (i.e., events or event sequences). That
filtering is highly customizable.

ETM is tightly coupled with CPU’s core. Thus, every CPU core has a sep-
arate ETM. The hardware platform used in this work employs 4 Cortex-A53
cores and 2 Cortex-R5 cores (See overview in Figure 3.3), and R5’s ETMs
differ from the other ones in provided options. For instance, A53’s ETMs do
not support Data tracing. The remaining of the section focuses mainly on
abilities of A53’s ETM which implement the ETMv4 architecture.

Trace elements could be ([Incc]):. Instruction address match. Indirect branches and direct branches. Instruction barrier instructions. Exceptions. Changes in processor instruction set state. Changes in the processor security state. Context-ID register changes. Entering to debug state. Cycle count during the traced parts.Global system timestamps. Target addresses for taken direct branches. Trace control events such as:
Trace synchronization packets
Indicators of speculative execution for some instruction, if such event

occurs

Those events are generated by so-called trace resources. They are config-
urable subsystems of ETM. Here is an overview of what resources Cortex-A53’s
ETM has. ([Limd],[Lime])

16

..............................3.2. ARM’s CoreSight Framework

. External inputs
These are input signals that other resources (Counters and resource

selectors) may process to generate a trace event. Cortex-A53’s ETM has
30 inputs: 4 Cross-Trigger inputs + 26 events from PMU. 4 of them can
be selected.. External outputs

There are 4 of them. All are wired to Cross-Trigger interface. Any
event from other resources may signal on an output; this is configured
through Resource selectors (see below).. Address comparators

4 address comparators are available on Cortex-A53’s ETM. They
may be used to signal on a single preset address of the instruction which
processor executed, or they may be used in pairs to create trace events
when the address of the instruction is in (or out of) the preset range.
The important notice here is that an address comparator also reacts on
instructions executed speculatively.. Single-shot comparator

To mitigate the problem of noticing speculatively executed instruc-
tions in case of Address Comparator’s use, the single-shot comparator is
introduced. The examined ETM provides only one such trace resource.
A Single-shot comparator chooses a single address or range address com-
parators to follow. When an instruction noticed by them is actually
(non-speculatively) executed by a processor, the Signal-shot comparator
fires. There is also a possibility to set that unit to reset after every fire
so that it will be a “multiple-shot” one.. Context identifier and Virtual context identifier comparators

They may be associated with Address comparators or used on its own.
They react on a particular Context or Virtual Context IDs respectively.. Counters

Two decrementing counters are available. They may be used to count
events on other resource units. A user may set initial and reset value
for them, so every time a counter reaches zero it fires. The self-reload
mode is also possible: counter resets with the provided value every time
it reaches zero.. Sequencer

Provides a programmable 4-state machine to react on sertian se-
quence of events preprogrammed as state machine transitions.. ViewInst unit provides the functionality of filtering of instruction trace
events.

17

3. Hardware Platform Overview
Resource selector units are used to interconnect the resources between each

other. Figure 3.4 explains the concept. The example of resources configuration
is provided in Chapter 4.

Figure 3.4: ETM’s resource selection overview. Source: [Lime]

System Trace Macrocell

The System Trace Macrocell provides an opportunity to trace HW events,
and a printf-style debug/trace option. On Zynq MPSoC, only PL events (60
of them) are connected to the HW event interface.[Incc]

Printf-style tracing means that STM can generate trace packets when
software writes a message to STM registers. Combination of address and
data in that message activate some “stimulus” port in STM, so STM bursts
a packet associated with that port.

The example of STM use is presented in FreeRTOS board support pack-
age (see Listing 3.1). When the operating system enters in some function
representing a system call (such as a task switch), the event’s ID is written
to STM’s address. A developer could then analyze those events along with
timestamps using a software (e.g., Xilinx SDK IDE, see screenshot in Figure
3.6 and the necessary setup option in Figure 3.5) that knows which trace IDs
are defined for which syscalls. Some guides are provided at [UXSFAuS]

18

..............................3.2. ARM’s CoreSight Framework

Listing 3.1: The parts of FreeRTOSSTMTrace.h which presents how FreeRTOS
uses STM for tracing

#define STM_BASE 0xf8000000

#define FREERTOS_EMIT_EVENT(id) Xil_Out8(STM_BASE +
(FREERTOS_STM_CHAN * 0x100), id)

#ifdef EXEC_MODE32
#define FREERTOS_EMIT_DATA(data) Xil_Out32((u32) (STM_BASE +

(FREERTOS_STM_CHAN * 0x100) + 0x18), (u32) data)
#else
#define FREERTOS_EMIT_DATA(data) Xil_Out64((u64) (STM_BASE +

(FREERTOS_STM_CHAN * 0x100) + 0x18), (u64) data)
#endif

...

#ifndef traceINCREASE_TICK_COUNT
/* Called before stepping the tick count after waking from

tickless idle sleep. */
#define traceINCREASE_TICK_COUNT(x) { \
FREERTOS_EMIT_EVENT(FREERTOS_INCREASE_TICK_COUNT); \
FREERTOS_EMIT_DATA(x); \

}
#endif
...

Figure 3.5: The necessary option setup in FreeRTOS BSP for enabling STM
tracing in Xilinx SDK IDE.

19

3. Hardware Platform Overview

Figure 3.6: FreeRTOS tracing in Xilinx SDK IDE.

3.2.2 Trace Links and Sinks

Funnels & Replicators

Replicators are non-programmable elements of the trace system which simply
transfer the input trace on outputs. Funnels, however, are a little bit more
sophisticated. They combine trace from multiple inputs into one output trace.
One can configure input ports of a funnel to be enabled/disabled and to have
a priority. The fixed priority scheme is then applied on inputs [Limc]. Block
scheme of its principle is in Figure 3.7.

Figure 3.7: Funnel block diagram. Source: [Limc]

Trace Memory Controller

This CoreSight IP may present in one of three types:

20

..............................3.2. ARM’s CoreSight Framework

. Embedded Trace Buffer (ETB) - stores trace in a circular buffer on
SRAM. Embedded Trace FIFO (ETF) - functions as a queue for trace packets
for a reason of trace bandwidth normalization. Embedded Trace Router (ETR) - is a trace sink (endpoint of a trace
bus). It sends trace packets to main memory through AXI.

Zynq MPSoC has 2 ETFs (8 KB) and 1 ETR. All these elements have
programmable interfaces and are connected to CTI in purpose to start/stop
trace or signal about buffer overflows etc.

Trace Port Interface Unit

This is also a final point of trace bus. It outputs trace data to an external
device which decodes and stores/analyses the trace. Its outputs signals are
TRACEDATA(32-bit width, could be reduced), TRACECTL (service sig-
nals), TRACECLK(250 MHz by default, may be provided externally). Before
delivering the trace out, TPIU reformats it “re-associates trace sources’ IDs
with trace data”[Limc], to provide better bandwidth and an “ability for a
trace decoder to resynchronize on frame boundary”[Limc]. To enable PL
output (16-bit width data at MIO and 32-bit data at EMIO ports): “The
TPIU.EXTCTL_OUT_Port register must be set to output trace into the
PL.”[Incc]

3.2.3 Embedded Cross-Trigger

Figure 3.8: ECT block diagram. “The CTI at the top is configured to propagate
the trigger event on Trigger Input 0 to Channel 0.” Source: [UXSCT]

21

3. Hardware Platform Overview
The Embedded Cross-Trigger (ECT) system distributes trigger signals

between all trace and debug elements. Two main elements are presented here:
Cross-Trigger Interface (CTI) and Cross-Trigger Matrix (CTM).

CTI is in charge of mapping signals between input/output ports and in-
put/output channels. The mapping is configured through CTI’s registers
(internal logic is presented in Figure 3.9). To propagate the signal from
internal channel outside, CTIGATE register bits should be set. There is
also an opportunity to set some channels active from software, or, to send
a trigger (channel pulse) through CTIAPPSET/CTIAPPCLEAR, which is
sometimes helpful for debug purposes. Every Zynq MPSoC’s CTI has 8 input
and 8 output trigger signals (but some are reserved).

CTM broadcasts signals to other CTIs. The channels coming from CTI
are combined in OR manner. Figure 3.8 illustrates the example of trigger
propagation. Zynq MPSoC’s CTMs have 4 channels.

Figure 3.9: CTI internal logic overview. Source: [Lima]

Channel interface consists of two pairs of input and output wires (CHIN/-
CHOUT, CHINACK/CHOUTACK) when acknowledge is asynchronous, and
contains additional wire CHCLK when the interface implemented as syn-
chronous. An “asynchronous interface uses a basic 4-phase handshaking
protocol”[Limb].

There are 8 CTIs on Zynq MPSoC: 2 are for cores of RPU unit, other 4
are connected to Cortex-A53 cores (each on its own core), and the last 2

22

.......................... 3.3. ARM’s Performance Monitoring Unit

are for the whole SoC. Every Cortex A53 CTI accepts signals from ETMs
(External outputs), PMU (PMUIRQ), and the debug request from CPU. For
out triggers, it has the ETM’s external inputs wired, may send an interrupt,
and debug halt command to CPU. The next CTI, SoC’s one, handles FTM
and STM triggers (in and out). The other SoC’s CTI triggers ETFs and
TPIU. More precise information on ECT wiring for Zynq MPSoC is provided
here - [UXSCTiZUM].

3.3 ARM’s Performance Monitoring Unit

Performance monitoring unit enables a user to count selected processor events
such as memory bus accesses, cache accesses, exceptions and so on. Every
core of APU has its own PMU so that one could have information about such
events per every core separately. It is useful especially in case of trying to
implement per-processor memory access monitoring.

PMU available at Cortex A53 has one 64-bit wide clock counter, which
is often used for measuring the execution time of a program part, and six
event counters (32-bit wide). Event counters may be configured on a specific
event type (the full list is available). The counters count up and could be
set to emit an interrupt (PMUIRQ) on overflow, meaning – when the counter
becomes equal to zero.

22 events from PMU are wired to ETM’s external inputs so that the ETM
may use these as trace events. This facility is used in this work as described
in Chapter 4.

23

24

Chapter 4
PREM Watchdog Implementation

4.1 Concept

The aim of creating the PL Watchdog system is to non-invasively monitor
the number of memory accesses made by APU cores per every PREM phase
execution. The two possible on-chip hardware provide such functionality:
APM (See Section 3.1.2) and PMU (See Section 3.3). APM, however, does
not fit as a tool because of its inability to differentiate the initiators of a
memory request. It can measure the overall traffic, e.g ., for read/write byte
count coming from CCI master, but it has no tracing points which are closer
to cores than that.

From the variety of memory access events that PMU provides (cite armv8),
L2_CACHE_REFILL was chosen to be followed. L2_CACHE_REFILL defined as
“Each read from or write to the cache that causes a refill from outside the
Level 1 and Level 2 caches”[Lima], what is a result of the L2 cache miss.
In PREM, it is essential to reduce cache misses on a shared resource to a
minimum, because it influences other users (CPU) of that shared resource.
So the mentioned memory budget for PREM phase may be represented as
the number of permitted cache misses.

The next problem to solve is how to deliver the event from PMU to PL.
The investigation done in Section 3.3 narrows the following possibilities:..1. Software or hardware could directly read the event counter value. This

option does not fit due to the possible influence on the system being
watched...2. Catch PMUIRQ routed through the Generic Interrupt Controller to the
PL. A breaking of the rule of non-invasiveness is also possible here...3. The other option is to route PMUIRQ using core’s CTI directly into
PL. Even though the PL has an interface to deliver the CTIINT signal
directly, writing to CTIACK (check the name) register should be done

25

4. PREM Watchdog Implementation............................
to acknowledge it. A trigger would not fall without the acknowledgment
so that the next event will be missed...4. Use ETM to react on the preset PMU event and then propagate it
through ECT all the way up to FTM’s interface. Refer to the CoreSight
System overview in Figure 3.3.

Also, the watchdog logic should be aware of a memory limit for the cur-
rently monitored PREM phase. The only possibility to send the limit value
to the PL is to use AXI memory interconnect, so the PL logic will appear
as a memory mapped device. This information may then be delivered with
a PREMized program, i.e., instructions that will write that value into PL’s
memory are called at the beginning of every PREM interval.

The Figure 4.1 provides an overview of the final concept. The Figure 4.1
illustrates that every APU’s core has its Counter in PL (X denotes the CPU
ID: e.g., the CPU3 is connected to ETM3, and CTI3 is connected to CTM at
the third channel and so on). Counter X counts and acknowledges triggers
through FTM’s Trigger interface. Counter X is an AXI slave, so the message
about Limit for processor X is delivered from SW through memory mapped
interface. Finally, every Counter sends an interrupt through the provided PL
to PS interrupt delivery interface in case of the given limit is overflown.

PS PL

FTM

Counter X

AXI

PL-toPS-IRQs

Trigger X

Limit X

Limit Overflow IRQ X

CPU X PMU X

ETM X

CTM

PM
U

BU
S

CTI X

Channel X

CTI SOC

Channel X

X = [0 .. 3] is the processor number

Figure 4.1: The implementation concept overview.

4.2 CoreSight System Configuration

To configure all the CoreSight devices mentioned in Section 4.1, CSAL is
used. It adds some abstraction above the memory mapped registers to make
the programmer’s work easier. Moreover, the support of both Linux and bare

26

............................ 4.2. CoreSight System Configuration

metal environment makes the configuration code portable.

The CSAL workflow starts with calling cs_init() function which ini-
tializes internals of the framework. Then, a device should be registered
using the cs_device_register(cs_phys_addr_t addr), where physical de-
vice address must be provided as an argument. That function unlocks the
device and saves a handle into library’s internal structure. CoreSight device
unlocking must involve several writes to ARM’s registers; the exact algorithm
is provided here [Limb]; without the unlocking, the device does not accept
writes.

The following sections describe the configuration of single CoreSight blocks
to make the modeled concept work.

PMU

The only configuration which every PMUmust have is calling cs_pmu_bus_export()
function. This sets the fifth bit in PMCR register of PMU to allow the event
export to ETM.

ETM

The diagram showing the combination of ETM’s resources used is provided
in Figure 4.2. Firstly, ETM device must be cleared from any previous
settings by calling cs_etm_clean(). Then, the new configuration structure
(cs_etmv4_config_t) is created, which consists of register values that soon
will be set on ETM. Those registers are configured as follows (refer to ETM
register description in [cite]):..1. External Input Select Register bits [4:0] are set with L2D_CACHE_REFILL

event number + 4 because the first four event numbers mean ETM input
triggers. This opens external input 0...2. Resource Selector 2 Register (may be any from 2nd to 8th because the
first two are reserved for other use) is set with the number of external
input (0) and the type of resource to select (external input group is set
to 0). This selects the External Input 0...3. Then, one must configure the Event Control 0 Register to connect
Resource Selector 2 with External Output 0. Bits [3:0] are set with
Resource Selector number.

After all the configuration is done, it must be written to ETM by calling
cs_etm_config_put(), and ETMmust be enabled with cs_etm_disable_programming().

27

4. PREM Watchdog Implementation............................

Resource
Selector 2

External
Input

Selector

External
Output

Selector

PMUBUS

ETM

TRIGIN

Figure 4.2: ETM’s configuration.

ECT configuration

Near-to-CPU CTI is configured to send a signal from Trigger input 4 (which
comes from ETM) to channel X, where X denotes the number of CPU.
Thus, every CPU occupies its own channel in CTM matrix. The CTI which
is connected to FTM maps channels 0-3 to trigger outputs 0-3 which are
connected to FTM. And, FTM does not require any configuration.

4.3 Programmable Logic Design

The main idea behind the logic that is placed in FPGA is to count triggers
and signal if the preset limit exceeded. However, to make the solution more
effective from a software point of view, it was decided that PREM Watchdog
logic should contain three counters for three phases and an ability to switch
between phases. This might reduce the maintenance overhead between them.
Thus, it should be possible to set all limits at the beginning of PREM com-
patible interval, and then simply signal to the logic about the current phase
(with a write into phase register).

Figure A.2 depicts the whole three-counter logic. PHASE register bits [1:0]
chooses the current phase, i.e., which counter is currently enabled. Counters
counts up, incrementing every time the trigger is high and have not yet been
acknowledged. Their values are compared with LIMIT_PREF, LIMIT_COMP,
and LIMIT_WB registers. If some value is greater than the limit, the interrupt
is set high. Listing 4.1 presents the part of VHDL code implementing this logic.

28

.............................. 4.3. Programmable Logic Design

Listing 4.1: The PREM Watchdog logic.
-- Add user logic here
ctr_rst <= ’1’ when phase = "00" else ’0’;

-- enable counter for one clock cycle on HIGH level of trigger;
ADDER_EN: for ph in 0 to N_CNTRS -1 generate
process(S_AXI_ACLK) is
variable trigack_pending : std_logic := ’0’;
begin
if (ctr_rst = ’1’) then
ctr(ph) <= (others => ’0’);

else
if rising_edge(S_AXI_ACLK) then
if (unsigned(phase) = (ph + 1)) and (U_PMU_TRIGIN = ’1’) and

(trigack_pending = ’0’) then
ctr(ph) <= ctr(ph) + 1;
trigack_pending := ’1’;

else
trigack_pending := U_PMU_TRIGIN;

end if;
end if;

end if;
end process;

end generate ADDER_EN;

U_LIMIT_IRQ <= ’1’ when (nor_reduce(phase) = ’0’) and
(ctr(PREF_CNTR) > pref_limit or
ctr(COMP_CNTR) > comp_limit or
ctr(WB_CNTR) > wb_limit) else ’0’;

pref_ctr <= ctr(PREF_CNTR);
comp_ctr <= ctr(COMP_CNTR);
wb_ctr <= ctr(WB_CNTR);

U_PMU_TRIGOUT <= U_PMU_TRIGIN;
-- User logic ends

The memory mapped registers require the logic to have AXI interface
implemented. Xilinx Vivado IDE has the feature to generate AXI peripheral
IP source template: Create and Package new IP > Create AXI4 pe-
ripheral. Due to the simplicity of the device, AXI-Lite interface was chosen.
After the generation, the template was successfully integrated with the logic
presented in Listing 4.1.

The register for PREM counters are documented in Table 4.1. The whole
FPGA design is provided in Figure A.1. The sources of the Vivado project
are provided in attachments: (vivado-and-xsdk/prem_watchdog/).All the
logic works at 100MHz clock.

29

4. PREM Watchdog Implementation............................
Name Offset Access Description

PHASE 0x0 RW

Bits [1:0] represents the current phase,
i.e., which counter is enabled.
"00" – configuration phase:
Counters are zeroed and stopped,
IRQ is cleared.
"01" – prefetch phase:
CNTR_PREF is active,
all others do not count.
"10" – compute phase:
CNTR_COMP is active,
all others do not count.
"11" – writeback phase:
WB_COMP is active,
all others do not count.

LIMIT_PREF 0x4 RW Sets limit for CNTR_PREF.
LIMIT_COMP 0x8 RW Sets limit for CNTR_COMP.
LIMIT_WB 0x10 RW Sets limit for CNTR_WB.

CNTR_PREF 0x14 RO Gives the current value of
prefetch phase counter.

CNTR_COMP 0x18 RO Gives the current value of
compute phase counter.

CNTR_WB 0x1C RO Gives the current value of
writeback phase counter.

Table 4.1: PREM Watchdog registers overview. All are 32-bit wide

4.4 Event Masking Problem

FTM trigger interface is asynchronous, and the accepted trigger must be
acknowledged. Otherwise, it remains HIGH, so next trigger signal will not be
noticed. For the reason of counting events as fast as it is possible, the instan-
taneous acknowledgment was realized by connecting TRIGIN signal directly
to TRIGACK (see Listing 4.1). However, the signal propagation itself through
ECT system lasts some time. The time of the trigger acknowledgment was
measure using Vivado IDE and Integrated Logic Analyzer IP (ILA) [?]. The
ILA was connected to the net between FTM’s TRIGIN and TRIGOUT port, and
it had the sampling frequency equaled 100 MHz (as the rest of the system has).
Then, the trigger signal was stimulated from software. Figure4.3 presents the
appeared waveform.

The measurement shows that it takes at least 30 ns (three samples of ILA
at 100 MHz) for the acknowledged trigger to go LOW. Experiments showed,
that reporting once on 8 events almost mitigate the mentioned problem.

The following modification was introduced to reduce the number of lost

30

................................4.4. Event Masking Problem

Figure 4.3: The measured time of the Trigger acknowledgment. The sampling
period is 10 ns.

events. The counter in ETM is used as an event buffer. 8 events are buffered
before sending one signal to trigger system which means that 8 events are
occurred. Further two resources were added to ETM’s configuration to achieve
this (see Figure 4.4 and refer to register reference in [Lime]) – Counter and
another Resource Selector 4. In this configuration, Counter 0 is set to decre-
ment when an event on Resource Selector 2 occurs (bits [7:0] of Counter
Control Register) and to self-reload when reaching zero (bit 16 of Counter
Control Register). The both Counter Reload Value Register and Counter
Value Register are set to (8 - 1). Then, Resource Selector 4 selects Counter
0 (the same manner as described in Section 4.2, but the group is different
– 0b0010). And, finally, Resource Selector 4 is added to fire at the output
through Event Control 0 Register.

This modification obviously requires the software developer to be aware of
it when he sets or reads the limit values or counter values. But all of that is
easily mitigated by simply multiplication/division on a predefined constant
(e.g., in sources attached to that work ETM_EVENTS_BUFF_NUM constant is
used for that purpose).

Resource
Selector 2

External
Input

Selector

External
Output

Selector

PMUBUS

ETM

TRIGINResource
Selector 2

Counter 0
Self-Reload

Figure 4.4: The modified ETM’s configuration concept overview.

31

4. PREM Watchdog Implementation............................
4.5 PL Logic Driver API

Listing 4.2: The header file of the software driver for the implemented PL logic.
#ifndef SRC_PREM_COUNTER_H_
#define SRC_PREM_COUNTER_H_

#include <stdint.h>

#define PHASE_WHEN_USED_AS_COUNTER 1
#define PMUBUS_EVENT (21U + 4U)

#define PREM_PHASE_CONF 0b00
#define PREM_PHASE_PREF 0b01
#define PREM_PHASE_COMP 0b10
#define PREM_PHASE_WB 0b11

#define ETM_EVENTS_BUFF_NUM 8U

typedef uint32_t prem_phase_t;

typedef struct prem_conf {
uint32_t lim_prefetch;
uint32_t lim_compute;
uint32_t lim_writeback;
} prem_conf_s;

void prem_configure(uint32_t cpu, prem_conf_s * config);
void prem_set_phase(uint32_t cpu, prem_phase_t phase);
void prem_print_state(uint32_t cpu);

void cs_prem_count_init();
void cs_prem_count_percpu_init(uint32_t cpu);
void _deprecated_pl_count_reset(uint32_t cpu);
uint32_t _deprecated_pl_count_read(uint32_t cpu);

#endif /* SRC_PREM_COUNTER_H_ */

The driver interface for the proposed hardware is simple (See Listing 4.2).

To employ that logic in a PREM application, one should place the function
calls at the beginning of PREM phases, e.g. prem_set_phase(1, PREM_PHASE_WB)
to let the PREM watchdog know that write-back phase counter for CPU1
should count now. At the very beginning of program execution, CoreSight
logic should be initialized with call firstly cs_init() to init CSAL, then
cs_prem_count_init() and then cs_prem_count_percpu_init() for every
CPU that should be monitored. The prem_configure() function must be
called at the beginning of PREM interval: counters will be reseted and limits
are set for the next three phases.

32

Chapter 5
Performance Evaluation

5.1 Precision evaluation

Regardless of problems, mentioned in Section 4.4, the PREM Watchdog must
work correctly with a reasonable and determinable tolerance. The simple
testbench was proposed to evaluate that. It simulates random-write memory
accesses of various working set size (WSS), including the single and multi-
threaded use-case. The test goes as follows:..1. The CoreSight system is set up as stated in Section 4.2 with modifications

proposed in Section 4.4 ...2. The PMU units (for every processor) are set up to count the same event
that PREM watchdog counter monitors...3. Set PREM watchdog at some phase, does not matter which one. The cor-
rectness of phase switching is not tested here, only the counter precision
matters...4. At the start of every benchmark session, meaning – for every WSS tested,
reset both PMU counter and PREM watchdog (by setting its phase at
"00", and then back at predefined phase)...5. At the end of benchmark session, read the both PMU and PREM
watchdog’s counters value and calculate the absolute difference...6. Present the results.

The source code of the proposed tests is provided in attachments to this work
(vivado-and-xsdk/prem_watchdog/prem_watchdog.sdk/test-Membench-linux).

Tests were launched in one-, two-, three- and four-thread configurations
inside Linux OS, every thread accessed the memory of WSS from 1KB up to
18MB. The results are presented in Figure 5.1, where the absolute difference
of PMU value from PREM value is denoted as an “Error”. The absolute

33

5. Performance Evaluation
frequencies of appearing of Error calculated across every launch measure-
ments are the values at Y-axis. The error generally grows with the frequency
of counted events (cache misses), and this could be seen from the Figure
5.1: Involving more threads leads to more cache misses. Thus, bigger Error
values occur more frequently. With the number of cache misses measured the
maximum error frequency grows also.

It could be seen from the Figure 5.1 that worst-case error measured in
tests is 38 lost events. Most likely, only two events are lost. The average
value of error from all measurements is 10 events, which is explainable. 8
events are buffered, so it is expected to lost 8 events in the worst case. From
the measurements, it is also follows, that the error value is negletable due
to WSS at that the error occurs. For instance, WSS=16MB and error in 38
cache misses events. Assuming, that 1 cache miss means fetching, e.g. 512B,
the uncertainty is only (512 * 38) / (16 * 1024 * 1024) ≈ 0.1 % of WSS.

The observational error also influences the results of the benchmark (e.g.,
it is not possible to refresh all counters at once, so during the refresh of one
counter other may increment.).

Figure 5.1:

5.2 Comparison with software-only watchdog

The primary source of overhead what the introduced implementation should
compete with is a hypercall from Jailhouse hypervisor. Hypercall is an expen-
sive operation. It was mentioned in Section 2.2 that Paolo Gai demonstrated
[Gai17] the hypercall jitter on their full-loaded setup as the following: 5.47 µs
minimum, 21.72 µs in average and up to 58.42 µs maximum. Those values,
however, are quite pessimistic, because author of the experiment mentioned
that their setup does not yet run PREM model, and, obviously their setup is
loaded with ADAS-like task.

34

........................ 5.2. Comparison with software-only watchdog

In case of FPGA-based watchdog implementation, the overheads are the
writes to phase register at the beginning of every phase and writes of limits
at the beginning of the predictable interval. Thus, it should be measured how
long does it take for software in Linux to write to four registers at PL, to write
to one register at PL, and, possibly, to read four registers at once or the only
one. The source code of the simple application that does so is provided in at-
tachments (vivado-and-xsdk/prem_watchdog/prem_watchdog.sdk/test-regs-app).
The application runs in Linux user-space.

In this test, much lower values of hypercall time are received. Jailhouse
hypervisor cell contains a bare metal program, which measures the hypercall
time. That program is presented in Listing 5.1. The rest of the system (Linux
OS) has not been specifically loaded in any way.

The results are presented in Table 5.1. As it could be seen, even in the
case of pure hypercall time (without any side load nor work done into actual
hypercall) the PL register writes are much faster (2.88 times in average).
Hence, the software overhead is much less in case of HW implemented watch-
dog.

Read 1 reg [ns] Write 1 reg [ns] Read 4 reg [ns] Write 4 reg [ns] Hypercall [ns]
min 330 100 1040 140 369
average 373.4 101.4 1231.3 143.8 415
max 380 110 1250 520 719

Table 5.1: The comparison of PL Watchdog with hypervisor watchdog.

Listing 5.1: The hypercall measurement code.
#define REPEAT 100
void inmate_main(void)
{

int i;
printk("Initializing the timer...\n");
u64 sum=0,min = 9999, max = 0;
for (i = 0; i < REPEAT; i++)
{

before = timer_get_ticks();
jailhouse_call_arg2(9,99999,1);
after = timer_get_ticks();
long actual = timer_ticks_to_ns(after-before);
sum += actual;
if(actual > max)max = actual;
if(actual < min)min = actual;
printk("time was %6ld ns\n",actual);

}
printk("min -> %6ld ns\n",min);
printk("max -> %6ld ns\n",max);
printk("avg -> %6ld ns\n",sum/REPEAT);

35

5. Performance Evaluation
while (1)

asm volatile("wfi" : : : "memory");
}

36

Chapter 6
Conclusion

This thesis has studied the problem of implementing execution monitoring
mechanism on using Xilinx Zynq Ultrascale+ platform. The mechanism sup-
ports application of Predictable Execution Model (PREM) on that platform.
Based on this investigation, the FPGA logic behaving as PREM memory bud-
get monitor was successfully implemented. The implemented hardware logic
in pair with specifically configured on-SoC subsystems can non-invasively
count cache misses which occur at individual cores of the multiprocessor
system.

The overheads that the proposed solution brings to the system were evalu-
ated. The results show that in case of using FPGA-based memory watchdog
maintenance takes 2.88 times less than the hypervisor-based solution requires
in average (the hypercall time). Hence, the statement that HW-based guard
may decrease the overhead of PREM application when compared to the
software-based guard is proven.

The presented implementation solves the problem of missing some moni-
tored events when their frequency is too high. This was caused by propagation
delays in the SoC’s debug system. The solution to this problem was imple-
mented and tested, however, reliability of the solution needs to be further
investigated due to limitations of available measurement methods.

As for the future work, it might be worth investigating an alternative
approach of using CoreSight Trace Port Interface connected to the Pro-
grammable Logic (FPGA). This would require implementing trace stream
decoder in the FPGA, but it will allow to count multiple types of memory
events at once. Also beginning of PREM phases could be detected using
Embedded Trace Macrocell’s Address comparators instead of register writes,
which might (or might not) have even less overhead.

37

38

Appendix A
Bibliography

[AP14] A. Alhammad and R. Pellizzoni, Time-predictable execution
of multithreaded applications on multicore systems, 2014
Design, Automation Test in Europe Conference Exhibition
(DATE), March 2014, pp. 1–6.

[bADASA] Xilinx Camera based Advanced Driver Assistance
Systems (ADAS), [online]https://www.xilinx.com/
applications/automotive/adas.html, Accessed: 2018-05-
17.

[BBC+17] Paolo Burgio, Marko Bertogna, Nicola Capodieci, Roberto
Cavicchioli, Michal Sojka, Přemysl Houdek, Andrea
Marongiu, Paolo Gai, Claudio Scordino, and Bruno Morelli,
A software stack for next-generation automotive systems on
many-core heterogeneous platforms, Microprocessors and Mi-
crosystems 52 (2017), 299 – 311.

[Gai17] Paolo Gai, Multi-os demo on nvidia jetson tx1 with jailhouse
hypervisor, erika enterprise 3 and linux, [online]https://
www.youtube.com/watch?v=skIcAkXfNWQ, 2017, Accessed:
2018-05-16.

[GCAL] GitHub - CoreSight Access Library, [online]https://github.
com/ARM-software/CSAL, Accessed: 2018-05-16.

[GOAosCTDl] GitHub - OpenCSD - An open source CoreSight(tm)
Trace Decode library, [online]https://github.com/Linaro/
OpenCSD, Accessed: 2018-05-16.

[HSH17] P. Houdek, M. Sojka, and Z. Hanzálek, Towards predictable
execution model on arm-based heterogeneous platforms,
2017 IEEE 26th International Symposium on Industrial Elec-
tronics (ISIE), June 2017, pp. 1297–1302.

[Inca] Xilinx Inc, AXI Performance Monitor v5.0 LogiCORE IP,
Product Guide (PG037).

39

https://www.xilinx.com/applications/automotive/adas.html
https://www.xilinx.com/applications/automotive/adas.html
https://www.youtube.com/watch?v=skIcAkXfNWQ
https://www.youtube.com/watch?v=skIcAkXfNWQ
https://github.com/ARM-software/CSAL
https://github.com/ARM-software/CSAL
https://github.com/Linaro/OpenCSD
https://github.com/Linaro/OpenCSD

A. Bibliography.....................................
[Incb] , Integrated Logic Analyzer v6.1 LogiCORE IP, Prod-

uct Guide (PG172).

[Incc] Xilinx Inc., Zynq MPSoC Ultrascale+, Technical Reference
Manual v1.7.

[Lima] ARM Limited, ARM Architecture Reference Manual
ARMv8, for ARMv8-A architecture profile, howpublished
= Technical Reference Manual.

[Limb] , ARM coresight Architecture specification v2.0,
(IHI0029D).

[Limc] , ARM Coresight Components Technical Reference
Manual, Technical Reference Manual.

[Limd] , ARM Cortex-A53 MPCore Processor Technical
Reference Manual, Technical Reference Manual.

[Lime] , ARM Embedded Trace Macrocell Architecture
Specification ETMv4.0 to ETMv4.3, 2017.

[Limf] , Corelink NIC-400 Network Interconnect, Technical
Reference Manual.

[Lim13] , CoreSight Technical Introduction, Tech. report,
2013.

[MFS+18] Joel Matějka, Björn Forsberg, Michal Sojka, Zdeněk
Hanzálek, Luca Benini, and Andrea Marongiu, Combining
prem compilation and ilp scheduling for high-performance
and predictable mpsoc execution, Proceedings of the 9th
International Workshop on Programming Models and Appli-
cations for Multicores and Manycores (New York, NY, USA),
PMAM’18, ACM, 2018, pp. 11–20.

[MSH17] Joel Matějka, Michal Sojka, and Zdeněk Hanzálek,
Hypervisor structure & predictable application scheduling,
Retrieved form Michal Sojka, 2017.

[PBB+11] Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang
Yao, John Criswell, Marco Caccamo, and Russell Keg-
ley, A predictable execution model for cots-based embedded
systems, Proceedings of the 2011 17th IEEE Real-Time and
Embedded Technology and Applications Symposium (Wash-
ington, DC, USA), RTAS ’11, IEEE Computer Society, 2011,
pp. 269–279.

[Pro] Hercules Project, [online]https://hercules2020.eu/, Ac-
cessed: 2018-05-16.

40

https://hercules2020.eu/

..................................... A. Bibliography

[UXSCT] Using Xilinx SDK - Cross Triggering, [online]https:
//www.xilinx.com/html_docs/xilinx2017_4/SDK_Doc/
SDK_concepts/concept_cross_triggering.html, Ac-
cessed: 2018-05-16.

[UXSCTiZUM] Using Xilinx SDK - Cross-Triggering in Zynq UltraScale+
MPSoC, [online]https://www.xilinx.com/html_docs/
xilinx2017_4/SDK_Doc/SDK_references/reference_
cross-trigerring-zynqmp.html, Accessed: 2018-05-16.

[UXSFAuS] Using Xilinx SDK - FreeRTOS Analysis using STM, [on-
line]https://www.xilinx.com/html_docs/xilinx2017_
4/SDK_Doc/SDK_tasks/sdk_freertos_analysis.html,
Accessed: 2018-05-16.

[YYP+13] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha,
Memguard: Memory bandwidth reservation system for
efficient performance isolation in multi-core platforms, 2013
IEEE 19th Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS), April 2013, pp. 55–64.

41

https://www.xilinx.com/html_docs/xilinx2017_4/SDK_Doc/SDK_concepts/concept_cross_triggering.html
https://www.xilinx.com/html_docs/xilinx2017_4/SDK_Doc/SDK_concepts/concept_cross_triggering.html
https://www.xilinx.com/html_docs/xilinx2017_4/SDK_Doc/SDK_concepts/concept_cross_triggering.html
https://www.xilinx.com/html_docs/xilinx2017_4/SDK_Doc/SDK_references/reference_cross-trigerring-zynqmp.html
https://www.xilinx.com/html_docs/xilinx2017_4/SDK_Doc/SDK_references/reference_cross-trigerring-zynqmp.html
https://www.xilinx.com/html_docs/xilinx2017_4/SDK_Doc/SDK_references/reference_cross-trigerring-zynqmp.html
https://www.xilinx.com/html_docs/xilinx2017_4/SDK_Doc/SDK_tasks/sdk_freertos_analysis.html
https://www.xilinx.com/html_docs/xilinx2017_4/SDK_Doc/SDK_tasks/sdk_freertos_analysis.html

A. Bibliography.....................................

G
P

IO
_L

E
D

1

pr
em

_m
em

_c
ou

nt
er

_a
xi

_0

pr
em

_m
em

_c
ou

nt
er

_a
xi

_v
1.

0
(P

re
-P

ro
du

ct
io

n)

S
00

_A
X

I

pm
u_

tr
ig

in

pm
u_

tr
ig

ou
t

lim
it_

irq

s0
0_

ax
i_

ac
lk

s0
0_

ax
i_

ar
es

et
n

pr
em

_m
em

_c
ou

nt
er

_a
xi

_1

pr
em

_m
em

_c
ou

nt
er

_a
xi

_v
1.

0
(P

re
-P

ro
du

ct
io

n)

S
00

_A
X

I

pm
u_

tr
ig

in

pm
u_

tr
ig

ou
t

lim
it_

irq

s0
0_

ax
i_

ac
lk

s0
0_

ax
i_

ar
es

et
n

pr
em

_m
em

_c
ou

nt
er

_a
xi

_2

pr
em

_m
em

_c
ou

nt
er

_a
xi

_v
1.

0
(P

re
-P

ro
du

ct
io

n)

S
00

_A
X

I

pm
u_

tr
ig

in

pm
u_

tr
ig

ou
t

lim
it_

irq

s0
0_

ax
i_

ac
lk

s0
0_

ax
i_

ar
es

et
n

pr
em

_m
em

_c
ou

nt
er

_a
xi

_3

pr
em

_m
em

_c
ou

nt
er

_a
xi

_v
1.

0
(P

re
-P

ro
du

ct
io

n)

S
00

_A
X

I

pm
u_

tr
ig

in

pm
u_

tr
ig

ou
t

lim
it_

irq

s0
0_

ax
i_

ac
lk

s0
0_

ax
i_

ar
es

et
n

ps
8_

0_
ax

i_
pe

rip
h

A
X

I I
nt

er
co

nn
ec

t (
P

re
-P

ro
du

ct
io

n)

S
00

_A
X

I

M
00

_A
X

I

M
01

_A
X

I

M
02

_A
X

I

M
03

_A
X

I

A
C

LK

A
R

E
S

E
T

N

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N

M
01

_A
C

LK

M
01

_A
R

E
S

E
T

N

M
02

_A
C

LK

M
02

_A
R

E
S

E
T

N

M
03

_A
C

LK

M
03

_A
R

E
S

E
T

N

rs
t_

ps
8_

0_
99

M

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

 (
P

re
-P

ro
du

ct
io

n)

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

xl
co

nc
at

_0

C
on

ca
t (

P
re

-P
ro

du
ct

io
n)

In
0[

0:
0]

In
1[

0:
0]

In
2[

0:
0]

In
3[

0:
0]

do
ut

[3
:0

]

zy
nq

_u
ltr

a_
ps

_e
_0

Z
yn

q
U

ltr
aS

ca
le

+
 M

P
S

oC
 (

P
re

-P
ro

du
ct

io
n)

M
_A

X
I_

H
P

M
0_

F
P

D

P
S

_P
L_

T
R

IG
G

E
R

_0

pl
_p

s_
tr

ig
ac

k_
0

ps
_p

l_
tr

ig
ge

r_
0

P
S

_P
L_

T
R

IG
G

E
R

_1

pl
_p

s_
tr

ig
ac

k_
1

ps
_p

l_
tr

ig
ge

r_
1

P
S

_P
L_

T
R

IG
G

E
R

_2

pl
_p

s_
tr

ig
ac

k_
2

ps
_p

l_
tr

ig
ge

r_
2

P
S

_P
L_

T
R

IG
G

E
R

_3

pl
_p

s_
tr

ig
ac

k_
3

ps
_p

l_
tr

ig
ge

r_
3

m
ax

ih
pm

0_
fp

d_
ac

lk

pl
_p

s_
irq

0[
3:

0]

pl
_r

es
et

n0

pl
_c

lk
0

Figure A.1: The complete PL design.

42

..................................... A. Bibliography

Figure A.2: The PL logic concept.

43

	Project Specification
	Introduction
	Theoretical Background
	Predictable Execution Model (PREM)
	State of the Art
	The Problem Statement

	Hardware Platform Overview
	Zynq MPSoC's capabilities
	Zynq MPSoC Overview
	Tracing capabilities

	ARM's CoreSight Framework
	Trace Sources
	Trace Links and Sinks
	Embedded Cross-Trigger

	ARM's Performance Monitoring Unit

	PREM Watchdog Implementation
	Concept
	CoreSight System Configuration
	Programmable Logic Design
	Event Masking Problem
	PL Logic Driver API

	Performance Evaluation
	Precision evaluation
	Comparison with software-only watchdog

	Conclusion
	Bibliography

