
Czech Technical University in Prague

&

Luleå University of Technology

Faculty of Electrical Engineering

Department of Cybernetics

MASTER’S THESIS

Semantic Segmentation of Satellite
Images using Deep Learning

Shivaprakash Muruganandham

supervised by
Ing. Michal Reinštein, PhD.

thAugust,2016





Preface

First, I want to thank my thesis supervisor, Ing. Michal Reinštein, Ph.D
for his guidance and feedback, as well as for providing me with the resources
to carry out this work. His advice has been invaluable in helping me gain a
deeper understanding of the subject. I also thank Vladimír Kubelka for his
patience and assistance in answering my questions. Many thanks to Nikita
and Abhishek for helping me proofread the thesis, and for their advise on de-
signing it. Thanks also to Gabriel Blindell for making the document template
used in this work publicly available.

Last but not the least, I thank my parents for their never-ending support
throughout my studies, without which none of this would have been possible.

This project has been funded with support from the European Commission.
This publication reflects the views only of the author, and the Commission cannot
be held responsible for any use which may be made of the information contained
therein.

iii





Abstract

A stark increase in the amount of satellite imagery available in recent years
has made the interpretation of this data a challenging problem at scale. De-
riving useful insights from such images requires a rich understanding of the
information present in them.

This thesis explores the above problem by designing an automated frame-
work for extracting semantic maps of roads and highways to track urban
growth of cities in satellite images. Devising it as a supervised machine
learning problem, a deep neural network is designed, implemented and exper-
imentally evaluated. Publicly available datasets and frameworks are used for
this purpose. The resulting pipeline includes image pre-processing algorithms
that allows it to cope with input images of varying quality, resolution and
channels.

Additionally, we review a computational graph approach to building a
neural network using the TensorFlow [] framework.
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chapter 1

Introduction

This chapter lays the motivation for this thesis work, and the objectives therein.
We then briefly glimpse at a high level overview of the report structure.

 . motivation

In order to make informed decisions pertaining to the environment, we are
equipped with senses that allow us to observe it. This enables us to make
effective changes around us as appropriate or desirable. By taking a step back
and extending this general process to the large scale, we notice a need for
understanding complex phenomena around the world such as urban growth,
climate change, biodiversity studies and socioeconomic trends. This process,
very generally is referred to as earth observation, and has applications in
disaster response, resource management and precision farming among others.

Earth observation data is gathered by a range of techniques, and can be
roughly categorized as remote and proximal (sometimes referred to as in-situ)
sensing. The former is where "the distance between the object and the sensor
far surpasses the linear dimensions of the sensor", while the latter is where
this distance is comparable to the linear sensor dimensions [].

Recent technological advances in microelectronics have also spiraled into
the satellite manufacturing industry. The miniaturization of space grade com-
ponents has resulted in the rise of small satellites, including a great number
of remote sensing satellites. With diminishing launch and manufacturing
costs, this has led to a democratized access to space. In turn, satellite imaging





 chapter  . introduction

(a subset of remote sensing) has experienced an increase in interest and de-
mand over the last few years, with imagery thus far available only to very few
research communities becoming much more publicly available. Adding to
this, the rise of new markets has driven commercial satellite imaging away
from mere pixel pushing to content providing - wherein the strength of the
imagery lies in how insightful it is.

Historically, manual analyses of satellite and aerial imagery was feasible
primarily because the volume of images available was quite low - but that is
not the case now. Relevant information extraction from images thus becomes
a problem with the high volume of data we deal with today. A major compo-
nent of these problems is annotation (or labeling), wherein one identifies the
structures and patterns visible in a satellite image.

Over the years, research in the computer vision community has addressed
this problem of automating the analysis of large scale data in different ways,
briefly touched upon in Chapter . Machine learning techniques have proven
to be strong candidates here, especially in the last few years. At the time of
writing, the state of the art in the automation of visual labeling tasks is seen
in the deep learning research community, and that is where this thesis picks
up at.

Machine learning research stems from the idea that a computer can be
given the ability to learn, as a human would do, without being explicitly
programmed.[] Deep learning is a subset of machine learning, and refers
to the application of a set of algorithms called neural networks, and their
variants. In such methods, one provides the network (or model) with a set
of labeled examples which it learns, or trains on.  Labeling these examples
is done in many ways. Collaborative platforms such as OpenStreetMap and
crowdsourcing marketplaces are ideal for the annotation of images, and this
existing volume can already be leveraged.

 . objectives and scope

Given the above background, the main goal of this thesis is to design, imple-
ment and experimentally evaluate a deep neural network for the semantic

Most prominently in , when the US Geological Survey (USGS) made over  years of
Landsat imagery publicly available
This particular process is called supervised learning. Unsupervised learning, on the

other hand, is characterized by training on unlabeled examples. In such cases, one deploys an
autoencoder, beyond the scope of this work.
Amazon’s Mechanical Turk marketplace, for instance, has been used to identify and

classify objects in satellite images
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segmentation of man-made structures in satellite images. Semantic segmen-
tation is one of different problems in computer vision, and is introduced in
more detail in Chapter .

Understanding that urban growth and infrastructure expansion is highly
correlated with roads and highways, we deal primarily with the segmentation
of roads, as developed in []. The resulting pipeline shall include image pre-
processing algorithms to cope with input images of varying quality, resolution,
and channels. To this end, the objectives can be defined as:
. Undertake a brief study on neural network techniques for computer

vision.
. Build a working deep network pipeline that takes in data to produce

semantically segmented maps on the images.
. Compare different neural network structures specified in existing

literature. Build on existing models and fine tune them to the present
problem (Transfer learning)

. Evaluate the trained network on a different dataset to understand how
well it generalizes.

 . structure of thesis

The project is viewed in three sequential stages:

n Understanding
Chapter  provides an overview of the state of the art in the semantic
segmentation of images, along with a short review of how satellites are
used in remote sensing. Chapter  dives deeper into what deep learn-
ing is, and gives the reader the necessary background for formulating
a computer vision problem using neural networks. Chapter  presents
the data used in this report and also details how annotated maps for
roads were obtained.

n Development and Approach
Chapter  builds on the understanding from Chapter , and reasons
the approach taken to build the neural network models in this work. It
also describes a procedure for assessing the models developed. Chap-
ter  explains the technologies used to implement the models, and
goes over the framework. Chapter  closes this section by presenting
the results, both qualitative and quantitative by using the evaluation
metrics introduced in Chapter .

n Concluding Remarks
Chapter  recommends possible extensions on the present work. Chap-
ter  concludes the thesis, and reviews the objectives set out above in
Section ..





I
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chapter 2

Overview

This chapter takes a top down approach in presenting the current problem. Un-
derstanding the data is crucial in deciding the machine learning techniques to be
used. Hence, the first section summarizes how one obtains satellite imagery today,
and its different use cases. This is followed by a brief introduction to deep learning,
where the most promising results in computer vision are currently being seen.
Finally, a refresher on semantic segmentation and state of the art efforts made in
the segmentation of satellite imagery is presented. A more thorough investigation
of the same can be found in [, ]. In the interest of brevity, an attempt has been
made to not delve into specifics, except where unavoidable. In such cases, revisiting
Section . after a reading of Chapter  is advised.

 . satellites and earth observation

Satellites launched into space are mission specific, among which Earth Ob-
servation is one. The first spacecraft to have taken pictures of the Earth was
Explorer , launched in , and the number of Earth Observation (EO), or
remote sensing satellites has only increased since then.

Figure . shows the number of civilian satellites launched each year,
until , with more and more small satellites going into orbit in the years
following.

Other satellite missions include communications, navigation, exploration etc.
Currently, , operational satellites are estimated to be in orbit.Obtained from []





 chapter  . overview

Figure . – Number of individual near-polar orbiting, land imaging civilian
satellites launched per year. The horizontal dotted lines denote the average
number launched per decade, which are , ., ., . and  respectively.
Note that this graphic does not include private and commercial satellites
launched. Adapted from [].



 . . satellites and earth observation 

Remote sensing satellites abound the Earth in Low Earth Orbit (LEO) and
Medium Earth Orbit(MEO) . EO satellites in most cases are in an application
specific sun-synchronous orbit. A sun-synchronous orbit is one which ensures
that the position of the sun with respect to the satellite and earth remains the
same.

Chapter  introduced remote sensing as characterized by the distance
between the sensor and its target object. The farther back one can go, the
larger the coverage area that can be viewed, at the expense of spatial resolu-
tion. Hence, earth observation by remote sensing is primarily practiced using
aircrafts, (high altitude) balloons or satellites alone or in different combina-
tions, depending on the application. For imaging, a trade-off between spatial
coverage area and spatial resolution can be reached by using both aerial and
satellite imagery.

Earth Observation (EO) satellites have found applications in many fields,
ranging from cartography, urban planning, disaster relief, real estate manage-
ment to econometric/social trend analysis, military intelligence and climate
studies. []

With the move towards automated drone delivery systems and autonomous
vehicles, for instance, there is a greater demand for the use of satellite imagery
that can be used as extraneous information for sensor fusion in the vehicles,
to get clearer context of surroundings. Understanding of urban structures
from images hence becomes important.

Sensors used in remote sensing are called so because they have the ability
to gauge (sense) interactions between earth surface materials and electromagnetic
energy.  These sensors are broadly categorized as active and passive sensors.
Passive sensors use existing energy sources (commonly, the sun), while active
sensors produce their own energy. []

Optical imaging from satellites/aircrafts is a form of passive remote sens-
ing, where electromagnetic energy from the sun in the visible spectrum that
is reflected off the earth is used to capture photographs. The visible spectrum
here refers to electromagnetic radiation with a wavelength in the range of
380nm to 760nm, sometimes also extending to include the near-infrared and
ultraviolet regions.

LEO ranges from 160 to 2000km altitude, while MEO ranges from 2000km to below the
geostationary orbit.
The term earth surface materials here is used loosely, since applications also see the

sensing of artificial environments. The energy is also not limited to the electromagnetic
spectrum. A thorough investigation can be found in [].
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Figure . – A visualization of the different atmospheric electromagnetic
windows. Adapted from [].

Sensors are also capable of capturing other specific regions  in the elec-
tromagnetic spectrum. [] Examples of prominent EO satellite programs
include the LANDSAT program [] from National Aeronautics and Space
Administration (NASA), and the Indian Remote Sensing (IRS) [] program,
from the Indian Space Research Organization (ISRO).

Radar sensing is an example of active sensing, where the sensor includes
a microwave emitter that emits radiation onto the target. The backscattered
waves are then measured by the sensor to produce an image. The RADARSAT-
 satellite [], launched by the Canadian Space Agency in  is a prime
example.

The reason for using the electromagnetic (EM) spectrum lies in the fact
that each and every object reflects, transmits and absorbs light differently, de-
pending on its chemical composition. [] This property of an object is referred
to as it’s spectral signature, and is what makes remote sensing is possible.
It is also important to take note of interference by the earth’s atmosphere,
which absorbs certain wavelengths in the EM spectrum. Hence, sensors are
designed to measure specific ranges of wavelengths alone. These are termed
atmospheric windows, as depicted in Figure ..

The three channel (RGB) images used in this work are only a small subset
of the imagery available from such satellites. Images obtained can also be
hyperspectral or multispectral. Hyperspectral data contains a large number

Also known as spectral bands, these include: microwaves(Radar), Infra-Red (IR), Near
and Mid-IR, Visible light, Ultra-Violet. These regions span wavelengths 0.1cm− 0.4µm.
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of very narrow EM bands of 10 − 20nm. [] NASA’s Hyperion imaging
spectrometer is one such example, producing 30m resolution images in 220
spectral bands. Multispectral imagery is similar, but contains fewer and wider
bands, as obtained from the Landsat- sensors.

The quality of information in an image provided by EO satellites is char-
acterized by its resolution. These are defined as the spatial resolution, i.e., the
visible details in pixel space, spectral resolution, i.e., depending on the width
of EM bands available in the image, and temporal resolution, which depends
on the revisit time period of the particular satellite.[]

Figure . – Landsat imagery, depicting urban expansion in Shenyang, China,
spanning  years from  to . Images reproduced at a lower resolu-
tion. Accessed at [].

Most private imaging corporations provide very high resolution imagery,
at less than 0.5m/pixel, made possible by state of the art technologies. Digital
Globe’s WorldView-, a commercial EO satellite launched in  currently
provides a very-high resolution (VHR) of 0.31m.

 . deep learning

Neural networks, despite having been around for decades, have garnered
much attention only in the last few years in the computer vision and machine
learning communities. While the topic is covered in detail in Chapter , a
brief introduction is provided here to make Section . readable.

One definition for an artificial neural network was provided first in [],
where the author stated that "a neural network is a computing system made up
of a number of simple, highly interconnected processing elements, which process
information by their dynamic state response to external inputs."

https://eo1.usgs.gov/sensors/hyperion
https://www.digitalglobe.com/resources/satellite-information

https://eo1.usgs.gov/sensors/hyperion
https://www.digitalglobe.com/resources/satellite-information
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Figure . – Visualizing a  layer neural network architecture. Reproduced
from [].

In a very rough manner, neural network algorithms can be thought of to
be modeled on the structure of neurons present in the brain. These networks
are generally visualized as layers of neurons stacked on top of one another.
Each layer consists of a number of units (or neurons), followed by an acti-
vation function. A very basic -layered neural network is shown in Figure ..

Neural networks can be thought of as classifiers that extract hierarchical
features from raw data, (which in our case, is pixel values) and learn models
for various vision related tasks, such as object recognition and semantic seg-
mentation, among others.

The parameters of the model, i.e., intermediate neurons in the hidden
layer in Figure . for instance, are trained and learned (i.e., updated) via
classical optimization methods. The user defines a cost or loss function to

These are modeled after the electrical stimulations at synapses present in a brain, where
dendrites convey information from one neuron to another.
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Figure . – Architecture of a convolutional neural network. Depicts the
deconvolution network proposed in []. One can see the gradual progress
of (de)convolutional layers and (un)pooling functions across the network.
Adapted from [].

be optimized for. This cost function encodes the probability of the neural
network output being as close to the desired output (ground truth) as pos-
sible. The parameters of the neural network are then updated accordingly,
to minimize/maximize the cost function. This process of updating is done
via gradient methods, by "propagating" the error (mismatch between desired
output and neural network output) back through the network units to the
input. This algorithm is formally known as the backpropagation algorithm.

The layers in a neural network are of different types: convolutions, which
consist of filters, pooling layers which introduce a translational invariance
to the network, and more. These are dealt with in more detail in Chapter .
Figure . shows a visualization of one such convolutional neural network.

 . semantic segmentation

The interpretation of visual information has been approached in several ways
over the years, but the underlying process remains the same: examining im-
ages for the purpose of identifying objects and judging their significance.[]
The problem of learning from visual information is generally classified into
image classification [], object localization and detection [], semantic seg-
mentation and instance segmentation [], among others.[]

Semantic segmentation for images then, can be defined as the process of
grouping parts of images so that each pixel in a group corresponds to the
object class of the group as a whole. In the present work, the object classes cor-
respond to roads and the background. In a multi-class setting, the classes can
be further grouped into buildings, meadows, parking lots etc. The remainder
of this section details recent advances in dealing with the semantic segmen-
tation problem, along with literature on the same applied to satellite/aerial
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imagery.

State-of-the-art networks (or models) in this space are obtained by evalu-
ating performance on large scale benchmark datasets, such as the Microsoft
Common Objects in Context(MSCOCO) [], ImageNet[] and PASCAL VOC
[]. MSCOCO is an image recognition, segmentation and captioning dataset
with more than 300,000 images and 80 object categories, while ImageNet  is
a large scale dataset with more than 14,000,000 images and more than 1000
categories, with different subsets used for each benchmark task.

With deep neural networks currently enjoying a wave of success years
on image recognition tasks, the rest of this work approaches the problem of
segmenting satellite imagery with deep nets. Transfer learning, a technique
wherein knowledge learned by a deep network in one context is used to im-
prove its performance in a related but different context will be explored. []

Image interpretation includes as a subset the process of image examination
with a specific purpose of identifying discriminative characteristics of objects
of interest. In order to obtain total scene understanding from an aerial image
several steps are needed. Given an image, a segmentation step is applied in
order to divide the scene into regions of specific categories (such as residential
areas, farmland, forest, roads etc.), i.e., to see the entire visual environment as
an interconnected image of all categories.

Most state-of-the-art results were designed for the image classification
task, wherein an object class is assigned to an image as a whole. [] presented
a modified version of VGGNet [] - which originally took in images of a
constant shape to classify them amongst a large group of classes. The VGGNet
model itself improved upon previous image classification networks, notably
AlexNet [], by getting rid of local response normalization layers. The power
of VGGNet also lay in its simplicity, with a very homogeneous structure as
compared to previous models. The models introduced in [], referred to as
Fully Convolutional Networks (FCN) modified the original VGGNet designed
for an image classification task, for the image segmentation task. Noting that
spatial information in an image is paramount in semantic segmentation, the
fully connected layers generally found in the final layers of a neural network
were discarded in [] and replaced by their equivalent convolutional layers.

Another recent semantic segmentation algorithm was introduced in [],
wherein a deconvolution network was stacked on top of the usual convolu-
tional network. By deconvolution, we refer to taking the convolutional trans-

ImageNet is the dataset behind the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC)
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pose of the input. The models developed thus improved upon the FCNs in
[] by integrating the deconvolution network. A network ensemble approach
was also proposed, combining the knowledge learned from the deconvolution
network and the FCN methods in [], to further improve performance. The
models in [] proved to be state-of-the-art when evaluated on the PASCAL
VOC   segmentation benchmark dataset.

State-of-the-art results in aerial image labeling were given by [] in ,
along with benchmark datasets for the evaluation of deep networks dealing
with satellite imagery. This followed a detailed study of previous works, rang-
ing between both neural network (NN) methods and non-NN methods. One
of the datasets released along with [], the Massachussetts Roads dataset is
used in the present work, and described in detail in Chapter . [] detailed a
study on the effect of tuning different parameters in a NN model, and thus
provides a strong foundation for the current work. [] used a patch-based
labeling framework, and presented an end-to-end framework for learning to
label aerial imagery, by addressing three key issues: learning from noisy data,
learning discriminative features, and performing structured predictions to
improve the quality of predictions.

In [], multiple objects were extracted from aerial imagery by building
upon the work of [], and proposed additional models that performed better.
While [] dealt with binary classification (roads vs. background, or buildings
vs. background), [] combined the benchmark roads and buildings data
sets to predict three labels on each image (road, building, background). In
particular, they proposed a new function, the channel-wise inhibited softmax
(CIS) to effectively train a neural net. State-of-the-art results were improved
upon in [] by introducing a model averaging technique, a type of ensemble
learning  method.

Another promising work in this direction includes [], which combined
very-high-resolution (VHR) images with publicly accessible geocodes of spe-
cific locations to generate new ground truth labels for effective neural network
training. Similar to [] in that the author dealt with  class labeling (building,
road, background), this work built on the FCN architecture introduced in
[] by modifying the base architectures described there, and introduced
additional models with marginal performance improvement. [] proved the
notion that publicly available perspectival imagery can be used to train neural
networks to produce semantic maps.

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
Ensemble learning is the method of strategically using multiple models to improve the

performance of a model (a specific metric)

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/




chapter 3

Convolutional Neural

Networks

This chapter provides a short conceptual introduction to neural networks. It
presents an overview of the different layers of a Convolutional Neural Network
(CNN), and specifies its relationship to the Fully Convolutional Network (FCN).
Following this, the backpropagation training algorithm is reviewed.

 . architecture

A neural network fundamentally consists of learnable parameters like in a
single linear classifier - termed weights and biases.

Consider a simple linear function of the form shown in Equation .. An
input tensor (the data input, a flattened image vector  when dealing with
images) is multiplied with an appropriately sized variable weight matrix, and
added with a bias vector. If xi denotes the input vector and Wi denotes the
corresponding weight matrix, bi its bias vector, the linear function returns a
score, yi as:

yi =Wixi + bi (.)

This function essentially mapped the data xi from image space into a score, yi
for that particular image. In an image classification task, yi can be understood
to encode the classifier’s confidence that the image xi belongs to a particular
label. For image segmentation, on the other hand, the problem is formulated

Images can be represented as a matrix of numbers, specifying real values across different
channels/bands. For an RGB image of size a× b, this would mean a matrix of size a× b × c.


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as a per-pixel classification. Hence, yi would represent the score given to a
particular pixel in the image, xi as belonging to a particular class. 

This linear mapping can sometimes be followed by a non-linear activation
function as in Figure ., inserted to activate only for inputs of a specific range
of input values. This is what is contained in a single layer of a neural network.

The same process is repeated multiple times, for each layer of a network,
to obtain the final class scores. Scores thus obtained are fed into a final
classifier layer, which converts them to class probabilities, i.e., a probabil-
ity distribution for each input as belonging to different classes. The sum
of all probability values across classes for a single input is always equal to
1. The entire network can thus be thought of as one differentiable function,
mapping the raw image from the input to predicted class scores at the output.

Convolutional neural networks take advantage of the underlying struc-
ture in images. Topological information, i.e., spatial information about the
structure in an image, such as adjacency and rotations are also taken into
account. We shall now look into the details of how the different layers of a
neural network interact with each other.

A neural network consists of several layers defining different operations
each of which are explained in the following subsections: convolutional layers
in Section .., pooling layers in Section .., activation layers in Section
.., regularization layers in Section .., fully connected layers in Section
.., and the final classification layer in Section ...

A classifier is always the final layer, with the purpose of producing class
probabilities as an output. A predefined cost function, defined in Section
. is calculated out of the classifier outputs. Optimization techniques, most
commonly, stochastic gradient descent, are then applied on the cost function
to compute gradients of the constituent variables backwards in the network,
and these parameters are accordingly updated.

.. Convolutions

Applied to RGB images (which is what we deal with in this work), convolu-
tional networks take note of the fact that an image is a -dimensional matrix
, and each of the layers are arranged similarly. This is depicted in Figure ..
Each such layer of a CNN consists of kernels (or filters) of a certain volume,

A detailed visualization can be found at http://cs231n.github.io/linear-classify/
http://csn.github.io/
In the case of hyperspectral/multispectral images, this can be generalized to being an

n-dimensional matrix.

http://cs231n.github.io/linear-classify/
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viewed as a volume of units (also called neurons), sized h×w × d, with h and
w being its spatial dimensions, and d the number of feature channels of the
kernel. Every one of these filter is convolved with a corresponding volume
of the input image, and slid through the entire image (of size Hi ×Wi ×Di
with H,Wi being its spatial dimensions and Di being the number of channels)
across its spatial dimensions Hi ,Wi .

Convolution here refers to a summation of the element-wise dot prod-
uct of the neurons in each filter with the corresponding values in the input.
Thus, the input image can be considered to be the first layer in a CNN. Based
on this notion, a convolution with a single filter at each layer results in a
2-dimensional output, of a certain spatial size (decided by parameters such
as stride and padding, defined below, used in the convolution step). This is
the activation map for one filter on the input. At each layer of a CNN, N such
filters are used, each one resulting in an activation map. These are stacked to-
gether across the 3rd dimension to obtain the output of a single convolutional
layer that consists of N filters. Figure . describes this procedure visually,
showcasing a 2× 2 filter applied on the input volume.

A single neuron in one filter of a certain layer can be mapped to its con-
nected neurons in all preceding layers by following such convolutions. This
is termed as the effective receptive field of that neuron. It is easy to see that
convolutions result in very local connections, with the neurons in lower layers
(closer to the input) having a smaller receptive field than those in higher layers.
Lower layers learn to represent small areas of the input, while higher layers
learn more specific semantics, since they respond to a larger subregion of the
input image.In this way, a feature hierarchy is built from the local to the global.

The stride s of a filter is defined as the intervals the filter moves in each
spatial dimension, and padding ph,pw refers to the number of pixels added
at the outer edges of the input. The stride can hence be considered a means
of subsampling [] the input. These hyperparameters, along with N (the
number of filters) and h,w (the spatial extent of the filter) help define the
size of the output volume at each layer. Generally, square filters are used, i.e.,
h = w = f . The output volume of such a layer is given by

Ho =
Hi − f + 2p

s+ 1

Wo =
Wi − f + 2p

s+ 1
Do =N

It is important to note that filters need not always be of the same size at
different layers, nor be homogeneous. In [], we learn that the Inception
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Figure . – An illustration of a single convolutional layer. The red and
blue areas signify two positions of the same filter of size h×w × d which is
convolved across the input volume by sliding it across. Output volume is
obtained by using N such filters. Considering the filter to be a 2×2 filter, we
see that the stride parameter here, s = 2. For an RGB image input, Di = d = 3.

architecture, designed for computational efficiency, used filters of varying
sizes at different layers. 1× 1 convolutions were used as dimension reduction
modules to get rid of computational bottlenecks.

.. Non-Linearity Functions

Neural networks initially stemmed from biological theory on how neurons
in a brain are connected, and allow for the processing of information. Non-
linearity functions are used to model the firing (or activations) of specific
neurons in a network layer, and are hence also referred to as activation func-
tions.

In general, the outputs of a convolution step are fed into activation func-
tions at each layer. A variety of such proposed non-linearity layers exist,
notably the Sigmoid function, Tanh, Rectified Linear Unit (ReLU)[nair and
hinton] or Maxout, among others. For most purposes, ReLU units have been
found to be effective and are the preferred choice.[] A ReLU unit activates
by thresholding the negative inputs at zero, and passing the positive inputs
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unchanged, as in:
f (z) =max(0, z)

where z is the input to the ReLU unit.

Sigmoids, for instance, tend to saturate when initialized weights are too
large. On the other hand, if the gradient is negligibly small, it might as well
not exist, thereby being killed. This is the vanishing gradient problem. [].
Another issue with the sigmoid is that outputs of the sigmoid function are not
zero-centered. As seen in Figure ., the tanh function is quite similar to the
sigmoid, except in that it is zero-centered. Finally, ReLU units, proven to be
computationally efficient [], are also not as hindered as tanh and sigmoid
functions by vanishing or exploding gradients.For these reasons, ReLU is the
recommended activation function [].

Figure . – Sample activation functions. On the left is a sigmoid function,
that squeezes real numbers into the range [,]. In the middle, the tanh
non-linearity and on the right, a ReLU function. Adapted from [].

.. Pooling layers

Convolutional layers are commonly interspersed with pooling layers, which
aid in down-sampling the input features spatially. The input information is
aggregated by sliding a window across it, and feeding the output to a (non-
linear) pooling function, so as to reduce its spatial resolution.

In a pooling operation, the input image is partitioned into (usually non-
overlapping) sub-areas, and a single value from each sub-area is returned
for each activation map in the depth-dimension. In the case of max-pooling,
which is used throughout this work, the maximum value from each sub-area is
returned. Pooling layers also have a stride specification that allows for control
over the output dimensions. An alternative is the average pooling function,
where the average value of the sub-area is returned instead.

Pooling provides a form of robustness to the network, by reducing the
quantity of translational variance in the image.[] Additionally, it also de-
creases the computational cost of the network by discarding redundant (or
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Figure . – Illustration of a 2 × 2 pooling layer. Note the reduction in
spatial resolution in the output layer, thereby making it invariant to local
transformations in the input. Image reproduced from [].

unnecessary) information, decided by the particular use case, thereby making
the network more efficient. Other forms of the pooling layer include the
average pooling function, the L2 norm of a rectangular neighborhood, or a
weighted average based on distance to the central pixel. []

.. Fully Connected Layers

Once higher level features are detected from the preceding convolution and
pooling layers, a fully connected layer is usually attached at the end of the
network. Each neuron in this layer is connected to the entire input volume
(from the preceding convolution, activation or pooling layer) that it receives.
The intuition here is that by taking into account all the activations received,
the neurons in this layer can determine which features correspond with which
class the most. The activations of these neurons are computed via Equation
..

Since a neuron in a fully connected layer receives activations from all
input neurons, spatial information is lost. This is undesirable in a semantic
segmentation problem, where spatial context is key in effective learning.

One way to overcome this is by looking at the fully connected layer as its
equivalent convolutional layer representation. They can be viewed as 1× 1
convolutions applied over the entire input (either in image space, or feature
space) - with a full-connection mapping. The filters here can also be viewed
as having spatial extent equal to that of the input layer. Thus, one can proceed
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Figure . – Illustration of fully connected layers converted into 1× 1 con-
volutions, depicted as the long, narrow convolution filters just before the
output layer.

as in the convolutional layers .. This is the basic intuition behind Fully
Convolutional Networks, introduced in [].

.. Classifier

A classifier is chosen by taking into account the problem at hand and the data
being used. The softmax function is used in this work, since it allows for the
prediction of one class out of mutually exclusive classes. For the binary class
problem, this reduces to being a logistic regression. Here, the scores from the
network are interpreted as unnormalized log probabilities [], and the loss
metric is defined as the negative log-likelihood of the softmax function, and
is a cross-entropy loss. Here, the softmax function gives a probability value
for a certain input, xi belonging to a certain class, k as:

p(y = k|x̄ = xi) =
e(sk)∑
j e

(sj )
(.)

where s is the score obtained for the particular class from the previous layers
of the CNN.

Apart from the softmax function, it is (albeit less) common to see the
SVM classifier, where the loss is defined as a hinge loss. The SVM classifier
computes uncalibrated scores for each class, as opposed to the softmax above
which returns interpretable results akin to probabilities. It is generally seen
that SVM and Softmax return comparable results [].

.. Regularization

Overfitting on training data is a major problem, especially when dealing
with deep neural networks where the network is powerful enough to fit itself
extremely well on the training set alone, at the cost of generalization ability.
Overfitting is best avoided. Techniques developed to do just this are termed
regularization techniques.
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Dropout is a simple and effective regularization strategy that is included
in the training phase. First introduced in [], it is implemented as dropout
layers, characterized by a probability value. Each neuron in a training step
is kept active with a specified probability, p. Thus, the neural network is
sampled iteratively by dropping out certain neurons or not. All edges con-
nected to the dropped out neuron are removed at each training iteration, and
restored before the next. Figure . showcases this step for a -layer neural
network.

Figure . – An example of dropout in a network. On the left is a standard
neural net, and on the right, the network after applying dropout. Adapted
from [].

In the prediction phase, all neurons are kept active. To account for the
subsampled dropout networks during training, an approximation is done via
scaling each neuron activation by p on the full network.

Another commonly seen regularization method is L regularization. The
squared magnitude of all parameters) are added directly into the loss function
defined in Section .., and this "total loss" function is minimized as in the
usual case. The intuition here is that this results in a preference for certain
weights over others[]. Termed the regularization penalty (R(W )), this L
norm is calculated as:

R(W ) =
∑
i

∑
j

w2
i,j

where i, j span the size of the weight matrix W whose elements are wi,j .
This term is scaled by λ, the regularization strength, and added into the loss
function, defined in ...
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 . training

The learning process in a neural network can be broken down into four foun-
dational steps:

. Forward computation
. Error/loss optimization
. Backpropagation and parameter updates

.. Forward Computation

The input image is first fed through a pre-processing pipeline, which generally
includes a mean subtraction and normalization step.

xi = xi − xmean (.)
xi = xi/σ (.)

where the input is xi , with i = 1,2...N and σ is the standard deviation of the
input vector.

This is then fed through the neural network architecture, which generally
consists of the layers described in . in different combinations. It is usually
the case that lower layers consist of alternative convolution and pooling
layers, followed by fully connected layers higher up. The network returns the
class score for the input, encoding its probability of belonging to a certain
class. To note here is the fact that the scores returned from the network
can be unscaled, as in the case of SVM classifier, or negative log likelihood
confidences, as defined by the softmax classifier. As discussed previously, the
former is less interpretable, while also being dependent on the margin. For
semantic segmentation, a class score is provided for each pixel in the image.
The kernels learned across the different convolution layers can be visualized
to understand what a network might be learning to recognize, or segment.
For this work, these are presented in Chapter .

.. Loss Optimization

The set of scores provided by the network need to be optimized by adjusting
the values of the parameters being learned in the network, i.e., weight filters
and biases. Such an uncertainty in determining which set of parameters
are ideal is quantified by the loss function, which can be formulated as an
optimization problem. For the softmax classifier, this turns out to be the
cross-entropy loss for each vector of class scores s:

Li = −log
(
e(sk)∑
j e

(sj )

)
(.)
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with cross entropy:

H(p,q) = −
n∑
i=1

p(x) logq(x)

where q represents the softmax function defined above. The final loss is hence
defined to be:

L =
N∑
n

Li +λR(W ) (.)

where λ is the regularization strength, and L, the total loss. The loss optimiza-
tion step is then defined as a minimization of L. Note that in the case of an
SVM classifier, a hinge loss function is used instead, defined as:

L =
1
N

N∑
i

∑
j,yi

max(0, f (xi ,W )j − f (xi ,W )yi + 1) +λR(W ) (.)

where xi is the input, j is the correctly predicted label, and yi , the incorrect
labels. In the ideal scenario, the predicted label from the network is the same
as the training label for each pixel, i.e., 0 loss is computed. For minimizing
the calculated loss thus, the problem is formulated as an optimization step,
and the loss function is minimized.

.. Backpropagation

Backpropagation is a fundamental concept in learning with neural networks.
The objective here is to periodically update the initialized weight parameters.
It is observed that the problem backpropagation helps solve is that of opti-
mizing a cost function. This is exactly what is done in optimal control theory,
where the problems are variational with constraints where a function that
optimizes a loss function is sought out.

In the machine learning paradigm, this approach towards optimization is
different primarily in that the functions are imagined to be a graph of inter-
connected units of computation []. A function is thought of as a dynamical
object being evaluated by a graph of discrete elements. This interpretation
lets us see that the backpropagation algorithm is akin to the chain rule in
differentiation. Figure . provides a simple example of the backpropagation
algorithm in action.

In the forward pass, the usual values at each node are calculated to be 3
and −12 respectively. During the backward pass, gradients are calculated as
specified by the chain rule of differentiation:

∂f

∂x
=
∂f

∂q

∂q

∂x
(.)
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Figure . – Illustration of a simple computational graph for the equation
(x + y) × z where x = −2, y = 5, z = 4 depicting backpropagation. Forward
pass,values in blue, computes from left to right, while backward pass, values
in green, iteratively applies chain rule to calculate gradients first for the
output, and flows back to the input. This example has been completely
reproduced from [].

This backpropagation algorithm can be extended by formulating an up-
date rule for a single neuron, as in Equation ., where wij , the weight value
between two neurons i, j in two proximal layers, ε is the learning rate, and L,
the loss function.

wij = wij − ε.
∂L
∂wij

(.)

The optimization algorithm is generally understood to be gradient descent
and its variants. In the present work, we use the ADAM optimization algo-
rithm. A simple implementation of gradient descent might not work very
well in a deep network, since it faces issues with navigating around local
optima. This is rectified by introducing another parameter, the momentum,
which helps to aid the gradient descent (GD) update process as necessary
to reach an optimal point. Adam optimizer is one such implementation,
short for Adaptive Moment Estimation,[] where adaptive learning rates
are calculated for each parameter. In the case of a noisy gradient parameter
as occurs near a local optima, the x value is updated using an estimation of
the first and second moments of the gradients.[] These values correspond to
the mean and variance of the gradients respectively. These are shown below as:
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m = β1m+ (1− β1)dx (.)

v = β2v + (1− β2)d2
x (.)

x = x − ε m√
v

(.)

where β1 and β2 are constants used to specify the decay rate, m is the mean,
and v, the variance of the gradients. ε is suggested to be set at 10−8 []

 . hyperparameters

An important part of developing a NN architecture is the selection of hyper-
parameters. Hyperparameters are variables set to specific values before the
actual training (optimization) process. Different methods exist in choosing
these values:
. Manual: Hyperparameters are set by hand, usually by leveraging ex-

isting knowledge about the problem and guessing parameter values.
Parameters are then modified as necessary, until a usable set of param-
eters are found.

. Search algorithms: A grid search, or random search algorithm can be
deployed to identify feasible ranges for the hyperparameters. The net-
work is then trained on multiple models by using all combinations of
parameters made available in these ranges. A random search algorithm
is recommended here, as it has been shown to generally work better
than other methods. [].

. "Hyper" Optimization: The idea here is to create an automated ap-
proach which can optimize the performance of the model according
to the task. The generalization performance of a network is modelled
in such a way that the choice of parameters chosen by the search
algorithm following an experiment is optimized. []

One of three methods is usually followed to feed the neural network with
data in the training phase:
. Batch Gradient Descent : The cost function gradient is calculated over

the entire dataset.
. Mini-Batch Gradient Descent : A subset of the training dataset (called

a mini-batch) is fed into the network and updates are made for each
such mini-batch.

. Stochastic Gradient Descent : Parameter updates are performed for
each training example.

A list of best practices that is followed across the community was proposed
in [], and the same is listed below for completeness.
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.. Learning Rate

The learning rate can be understood as the rate at which the gradient updates
to the parameters occur in the gradient direction. When this rate, ε is too
small, model convergence takes a long time. On the other hand, if ε is too
large, the model diverges, and the loss might fluctuate indefinitely. To ensure
optimal learning, an initial learning rate ε0 is first defined (0.01 is a generally
accepted standard here), following which the rate is updated by scaling with
a decay factor periodically, depending on the mini-batch size and number of
iterations. This updation of the learning rate can be formulated as:

εt = ε0∀t < τ (.)
εt = ε0t

α (.)

where τ and α are ideally set to adapt depending on preset thresholds
based on the loss function.

.. Mini-batch size

Mini-batch is chosen over batch or stochastic gradient descent updation rules,
because it offers the advantages of both other options, while minimizing
the disadvantages. (not as noisy as stochastic gradient descent, and not as
inefficient as batch gradient descent). Following this, the size of mini-batch to
be used is set based on the computational power available.

.. Weight Initialization

The local minimum reached by the training algorithm is highly dependent
on the initialization scheme used for the weight matrices. []. While biases
can be set to 0, oftentimes, weights are initialized to vary in a random 0 mean
distribution, by taking into account the fan-in of a particular neuron.

.. Regularization

A validation set can come in handy in setting regularization strength λ and p
for the dropout probability. The regularization strength is set by evaluating
the model on the validation set during training. λ is usually dependent on
the loss function, and ranges anywhere from 10−3 to 104 []. Dropout is kept
to a sensible default of 0.5, which has proven to be sufficiently effective [].





chapter 4

Data Review

This chapter presents the datasets used in this work, and briefly describes possi-
ble techniques of obtaining annotated ground truth data from publicly available
sources.

 . description

The advent of open sourced collaborative projects such as OpenStreetMap
has made it possible for the computer vision and machine learning research
community to get access to high quality ground truth data for training on
satellite imagery. In [], the authors released high quality publicly available
datasets for this purpose. The current work makes use of one of these datasets
- the Massachussetts roads dataset.

.. Massachussetts Roads Data

This dataset included x pixel images of the city of Massachusetts
released by the state, at a resolution of meter per pixel. Target maps used on
these images were also readily available, in rasterized format. A description
of how these were prepared is given in Section ..

This work makes use of the Roads Dataset, from Chapter . of []. Each
image in the original dataset comes at a x resolution, and split ran-
domly into training, validation and test datasets as in table below.

http://www.mass.gov/anf/research-and-tech/it-serv-and-support/
application-serv/office-of-geographic-information-massgis/



http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/
http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/
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Training Testing Validation
  

Table . – Table presenting randomly split sets of the Massachusetts Roads
dataset in [].

Training Testing Validation
  

Table . – Table presenting randomly split sets of the Massachusetts Roads
dataset prepared from images in Table ..

Hard binary labels were used in the original generation of this data. One
point of note here is that the original labels downloaded for Massachusetts
were three channeled RGB images with only two classes throughout. This was
hence first converted into a sparse label representation and tested. Marked
improvement in performance was noticed when a dense matrix of one-hot
encoded vectors were used for the labels instead.

Due to computational constraints, the 1500× 1500 images from Table .
were cropped into non-overlapping segments of size 500 × 500, across the
train, test and validation splits, and a random subset of 4440 images thus
generated were chosen from the training set, while the number of examples
in the test and validation sets were left untouched. This training included
a wide range of urban, suburban and coastal regions. During training, the
images were fed into the models in a minibatch of size 3. The training set
size, is unfortunately not large enough to guarantee good production level
performance. This was set with the constraint of limited computational bud-
get available during the initial phases of the project. Representative samples
from the Massachusetts Roads dataset can be seen in Figure .. Thereby, the
Massachussetts roads dataset, modified as above, is presented in ..

No further randomized scheme was used, apart from the selection of the
training set of 4440 images for the training set.

In the Massachusetts dataset, a wide range of urban areas were seen to
include parking lots, usually at big box stores, thereby resulting in compar-
atively large gray areas, of the same RGB values as for roads. Additionally,
a quick qualitative overview over randomized subsets of the 4400 images
showed that tree cover in many areas resulted in blocking out of roads from
the vantage point of the viewer. This was also observed in the final results,
where predicted roads in suburban regions with a dense population of trees
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Figure . – Images from the Massachusetts Roads dataset, showing an urban,
suburban and coastal region. Bottom right shows a region with waterways
that could, in theory, be mistaken for roads in the case of simpler models.

near roads were broken lines, with many of them being discontinuous. This is
discussed in detail in Chapter .

The testing set and validation set are distinguished by the purpose for
which they are used. In a normal machine learning task, a model is trained
on a training set, and evaluated by testing it on the test set. A validation set
is used to ensure that the best possible model is obtained. This is done by
using the validation set to tune the parameters of the model during training,
by periodically evaluating on the validation set. For instance, observing the
trends in training set accuracy and validation set accuracy together can tell
us if the model is overfitting onto the training set, or underfitting. This can
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then lead to an informed tuning of the regularization strength and other
hyperparameters presented in Section ..

 . dataset preparation

While training and testing on one dataset, it is also imperative to understand
how well the model performs on a completely different one. This section
describes the procedure used to create a second, much smaller dataset used
for evaluating the models in this work.

One major gap to overcome here is the generation of ground truth data.
Labels in previous works related to learning from satellite/aerial imagery,
including [], [] relied on using OpenStreetMap, an initiative to create
and provide free geographic data (including street maps, among others), to
anyone.[].

In [], per-pixel labels were generated by rasterizing vector graphic maps
extracted from OpenStreetMap. It was noted that this conversion procedure
used (thereby also in this work) was an arbitrary choice, also affecting the
quality of predictions. The rasterization process used is beyond the scope of
this work, and a detailed description can be found in Section .. of []. A
fairly similar procedure is used in [], with target maps being generated by
using highway tags provided for most roads in the OSM database.

To this end, the second dataset was prepared using the Google Maps static
API []. Satellite images for different regions across the city of Prague were
obtained from the SPOT satellites, made available via Google Maps.

For the ground truth, annotated label maps were prepared. A label image
is an n-channel image, wherein each pixel on it is an n-dimensional vector. For
each such pixel, the sum over all n elements is one, indicating the probability
(soft, or hard) of its semantic group - buildings, roads, or background. In our
case, the problem is a hard binary classification, and hence, each label pixel
is mapped as a 1 dimensional vector, with a value of 0 or 1, indicating its
classification as a road, or not.

Two possibilities of annotating the dataset were available - obtain the
ground truths from OpenStreetMaps and extract per-pixel labels, or label
them manually. Considering the small size of this second dataset, and ease
of use of MapBox Studio[], a mapping platform built on top of Open-
StreetMaps data, MapBox Studio, a screenshot of which is shown in Figure
., was used to extract a high quality ground truth dataset.
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Figure . – A screengrab of MapBox Studio, an online platform from Map-
Box [] for the creation of customized maps. On the left, we see a space for
different annotated layers that can be added onto the map. Here, it contains
one such layer: roads, for the road segmentation task.

This was done by first ensuring that the latitude-longitude centering and
zoom level of each satellite image from the Google Maps API was replicated
using MapBox Studio, which runs on top of OpenStreetMaps.

In addition, a point of concern in the preparation of this dataset was the
scale and pixel resolution of the imagery itself. The Google Maps Static API
provides a user the option to obtain either satellite imagery, or aerial imagery,
depending on the zoom level that one specifies to access the image.

It is a general standard that the  zoom levels used by these platforms,
[, , ] correspond to different pixel resolutions of the earth’s surface.
Google Maps and OSM/MapBox present mosaics of 256× 256 pixel sized tiles
of the earth’s surface at different zoom levels. The pixel resolution for the
Prague dataset, while needing to be matched to the Massachusetts Roads
dataset, presents a problem in that such a resolution is not readily available
off the Google Maps API. Additionally, maps taken off these platforms use
the Mercator projection [], and the scaling/pixel resolution is latitude
dependent. For this, one resorts to calculating the actual pixel resolution in
m/pixel for an image, given by:

resolution =
156543.03392× cos(θ)

2z
(.)

where θ is defined as the Latitude of the location in radians, and z is the zoom
level set on the API, calculated with the assumption that the radius of Earth is
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6378.137km. This provides a fairly accurate estimate of the pixel resolution
of the images obtained from the Static Maps API, and the appropriate zoom
level (found to be 15) can be calculated.

Figure . – Suburban sample of images and labels prepared for the Prague
dataset. To note here is the variance in mean color value to the Massachusetts
dataset, also visible qualitatively on comparison with the images in Figure
..

Figure . – Urban sample of images and labels prepared for the Prague
dataset.

Following this procedure, a second dataset for the purpose of model evalu-
ation was prepared. The image size was rescaled to 500×500 for convenience,
but images of other pixel sizes may also be used in evaluation, so long as
the resolution of the earth’s surface is kept within an acceptable range of the
original training set resolution. 25 such images from across regions in and
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around the city of Prague, Czech Republic were thus put together to create
the second dataset.

In this Prague dataset, one key indicator of a difference was the color
of roofs on buildings. Most of the urban structures in the Prague images
were roofed with tiles, with a red/brown tinge, noticeably different from the
white/gray roofs prevalent in the Massachusetts dataset. This did not play
a major role in the model’s performance, except for the fact that this could
explain a reduced difference in accuracy of predictions between the Prague
and Massachusetts test sets.

 . pre-processing

The above described datasets were augmented by introducing random flips
and jitter shifts. By exploiting the invariant features in the dataset, we can
artificially expand it. For instance, in the case of road segmentation from satel-
lite imagery, it does not matter which way the image is oriented. Introducing
flips and rotations can only help expand the training set, with no possible
downside.

Further augmentations can also be done by taking into consideration the
orbital parameters of the particular satellite image provider, for instance. In
the present case, the training set of 4440 images from Table .were randomly
flipped and jittered to increase the training set size to 9000 instances.

The dataset obtained thus is fed through a pre-processing pipeline to
remove unnecessary information. This involved a simple mean-centering,
and normalization of the training set, wherein R-G-B image mean values were
subtracted from across the entire training set, and divided by the standard
deviation before being fed into the pipeline.
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chapter 5

Methodology

A primer on the current approach is provided here. The first section presents a
naive CNN implementation, followed by a description of the Fully Convolutional
Network architecture, a part of which was used to extract features from a pre-
trained model.

 . preview

Understanding an image and classifying its content into semantic groups
translates into formulating a per-pixel classifier, where we predict a class for
each pixel in the image, and extract a semantic map of the entire image.[]
The same idea can be extrapolated into serving for a multi-class classification,
where one would consider semantic groups such as buildings, meadows and
rivers.[]

For the present work, we deal with the problem of road segmentation. On
one level, there are two primarily different approaches in segmentation: patch-
wise labeling [], or whole image learning []. In the former, predictions
are made on a central patch of smaller spatial size than the actual image, and
many such predicted patches are stitched together to obtain the predictions
for the entire image. This is done away with in whole image learning, where
no such patches are used, and instead, predictions are made for the entire
input image size. In [], it is shown that whole image learning is akin to a
patch-based approach with each batch using its effective receptive field. As
it is observed there that whole image training is just as effective as a patch


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based approach in the segmentation task, it is the preferred method here.

For the present dataset, using images smaller than 500×500 pixels images
does not lend itself well for effective training. When smaller image sizes were
experimented with on a small scale, a 13% reduction in the accuracy for a ba-
sic  layer architecture (on the same images) was observed. The performance
was drastically lower when tested with images in suburban areas, where
roads are sparse and farther apart. On the other hand, computation time in
such cases also saw a 3% decrease in this case, due to the change in spatial
size. Despite this, images of size 500×500 were eventually chosen for training.

 . naive approach

The initial model developed was a simple  layer architecture, with the pri-
mary aim of understanding how to implement a NN and get it running. For
this, the model was first used on a subset of the roads dataset, and later trained
on the entire 9000 strong training set.

It is common to increase the number of feature maps produced in each
layer as we go higher and higher.[] The network architecture hence consists
of 4 convolutional layers with 32, 32, 64 and 64 feature maps respectively at
each layer, followed by a dropout of 0.5. ReLU activations were used in all
the models. These feature maps here were finally passed through a softmax
function to obtain our probability heatmaps. All filters sizes followed the
simplest possible structure: 3× 3 sized kernels at each layer, at a stride and
padding of 1 throughout. A graph visualization of this network is provided
in Figure ..

 . transfer learning

Many recent developments in the machine learning/computer vision circles
have been driven primarily by the use of common benchmarks - models
trained and tested on standard datasets of high variance, that generally lend
themselves well to powerful features. [] The use of transfer learning allows
one to use an existing model that has learned fairly generalizable weights
trained on a large dataset such as ImageNet [], and fine tune the network
to suit the particular use case. Convolutional networks learn features hier-
archically. The generic descriptors that are obtained from a ConvNet hence
provide a powerful starting point for fine-tuning existing models to a more
specific task.
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Figure . – Architecture for the  layer neural network. Dotted arrows
indicate backpropagation pathways, stemming from the Adam optimizer
module. Labels were modified to -hot vectors depending on the usage of
sparse/dense matrices for the loss function.

For this work, the VGGmodel was chosen as the baseline fixed feature
extractor. Specifically, the FCNs and FCNs architecture, presented in []
one of which was based on the VGG-D variant, introduced in []. The
advantage of the VGG over other networks (that had marginally better perfor-
mances in some cases []), is its simplistic architecture, with homogeneous
x convolution kernels and xmax pooling throughout the pipeline, shown
in Figure ..

With an error of 8.5% on ImageNet data from the ImageNet Large Scale
Visual Recognition Competition (ILSVRC), it is among the stronger candidates
from the different architectures in vgg paper. At this time, the state-of-the-art
performance was obtained by the Resnet model [], with an error of 3.5%.
Despite this clear difference, VGG is chosen for the simplicity in structure as
outlined above.

The  layers of the network are divided into  convolution stages, grouped



 chapter  . methodology

Figure . – The base VGG- architecture used in this work. The figure
shows the original  layer VGG pipeline for images of size 224 × 224 × 3,
classified into 1000 classes, as seen in the last softmax layer on the right. The
five stages in the layer are seen as convolution and pooling layers grouped
together. These are followed by fully connected final layers, before the
classifier is applied. Adapted from [].

in pairs of  or  convolution layers, followed by  final fully connected layers
before the softmax classifier. Figure . shows interpolated weights from the
first layer of the VGG network in our case. We see here that the first layer
primarily encodes color and direction information. In fact, the same is true
for much of the lower layers, all the way up to the 10th or 13th layers.

Figure . – A sample of the first layer weights for the VGG- model,
pretrained on ImageNet. Adapted from [].

The FCN networks modified the VGG by converting the fully connected
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layers to their equivalent x convolutional layers. A novel feature of these
models was the introduction of skip connections, which resulted in the 
models described in []. The motivation here is that at higher layers (layers
on the right side of Figure .) the network learns from a very sparse feature
input, due to the multiple pooling steps through the network. To hint the
network in the right direction, features extracted from lower pool layers with
a denser structure are added to the final layer features, and the classifier
makes predictions on these aggregated features. The use of skip connections
resulted in model architectures proposed in []: FCN-s which included
skip connections from the P ool3 and P ool4 layers, FCN-s which included
skip connections from P ool4 alone, and FCN-s, without the use of any skip
connections. These are shown at a high level overview, in Figure ..

Figure . – A visualization of the VGG-FCN architectures. Showcased here
is the skip connection architecture introduced in []. The image depicts
 models: the FCN-s (without skip connections) on top, FCN-s and
FCN-s variants in the middle and bottom. Convolution layers are indicated
by straight lines between the pooling layers, which show spatial density.
Adapted from [].

The advantage with this approach, of discarding the fully connected final
layers is that the spatial information - crucial in our context, is retained. In
fully connected layers, each neuron is pairwise mapped to every single neu-
ron of its preceding layer, regardless of spatial position. In stark contrast, a
convolutional layer connects only to the neurons in its effective receptive field
in a deep network.

Most of the parameters of the estimated  million for the VGG are
found in the final fully connected layers. For the purpose of this work, these
final layers will be discarded, by simply tapping into the features at the higher
intermediate pooling layers. Additional convolutions are applied for each
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Layer Layer output grid (feature maps)
7 125,125(256)

10 63,63(512)
13 32,32(512)

Table . – Layer output shapes at the features extracted and used for the
skip connections in FCN-s.

of the Pool, Pool and Pool features, before feeding them into the final
classifier. This results in a variant of the FCN-s model, shown in Figure ..

Also to note here is the use of deconvolution layers , which resizes the
final scores predicted in a small feature space back to the input image spatial
size. This step allows the FCN architecture to take in images of any input
dimensions.

Feature maps at three stages from the VGG network are used for the FCN-
s model. For our purposes, we focus on extracting at the pooling layer of the
rd, th and th convolution stage (Layer ,  and  respectively), with the
outputs shown in Table ..

 . evaluation

Given any input, a binary classifier predicts either of two outcomes : positive,
or negative. For the pixel classification problem here, road pixels are consid-
ered positive, and background pixels, negative. The classifier output can be
listed as:

n True Positives (TP) : Road pixels are classified correctly.
n True Negatives (TN) : Background pixels are classified correctly.
n False Positives (FP) : Background pixels are mistakenly classified as

roads.
n False Negatives (FN) : Road pixels are mistakenly classified as the

background.

These numbers are generally represented in a confusion matrix, as shown
below, and the standard metrics used to evaluate a classifier are derived as
different ratios from it. The models are then evaluated with these metrics on
the initially isolated test data. This gives us a proxy measure of how well the
model is able to generalize.

Sometimes better known as a convolution transpose, which describes the operation that
takes place here
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Two metrics relevant here are Precision and Recall, which are defined as:

P recision =
T P

T P +FP
(.)

Recall =
T P

T P +FN
(.)

These were chosen as the primary metrics due to the high class imbalance
present in the data: roads are generally sparse compared to the background,
which covers a far greater spatial area per image. Metrics such as the True
Positive Rate (TPR) and False Positive Rate (FPR) tend to be misleading in such
cases, but are provided along with the results in Chapter  for a comparison
anyway. Their definitions are as below:

FPR =
FP

FP + TN
(.)

T PR =
T P

T P +FN
(.)

In the case of roads segmentation, precision (correctness) can be under-
stood as the fraction of predicted road pixels that are true roads, while recall
(sensitivity) is the fraction of true road pixel predicted.[] In [], [] which
deal with road segmentation, the evaluation of these metrics were relaxed
to a certain degree. The model predictions were given a leeway of 3 pixels,
wherein pixels within that range of a correctly classified road were also con-
sidered to be true positives.

The performance of a classifier that produces decision values (i.e., prob-
abilities of a pixel value belonging to either class) can be interpreted more
intuitively with the Precision-Recall (Pre-Rec) and Receiver Operating Char-
acteristic (ROC) curves.
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Depending on the use case of the problem, one specifies a threshold value
between 0 and 1, and this quantifies how cautious or liberal the classifier is in
predicting the labels. Too high or low a threshold value, and we increase our
risk of mis-classification, resulting in a high number of false positives and/or
false negatives in the predictions. A Pre-Rec curve is then a plot of precision
vs. recall of the model at a range of such thresholds.

An indication of which threshold value is the best for our model is given
by the Break-Even Point (BEP), defined as that threshold value where the
precision equals recall. In the current problem, this would be the threshold
value to be chosen for the final classifier deployed, unless the problem at hand
demands otherwise.

An ROC curve on the other hand, plots the TPR with respect to the FPR.
The TPR is the fraction of actual road pixels that are correctly predicted as
roads, while the FPR is the fraction of actual background pixels incorrectly
predicted as roads.

The area under an ROC curve provides a means of measuring the classi-
fier’s ability to discriminate between classes in the dataset. By this definition,
maximizing the area (ROC-AUC) leads to a better classification accuracy. This
metric is provided for comparison, and care must be taken to note that the
datasets we deal with are highly imbalanced.

Finally, the best performing models on each dataset are assessed with
the F-score and Intersection Over Union (IOU), that consolidate the above
results into fewer metrics. These are defined as follows:

F1 =
2× P recision×Recall
P recision+Recall

(.)

IOU =
T P

T P +FP +FN
(.)

The F score is the harmonic mean of Precision and Recall, while IOU is
interpreted as the name suggests: the intersection of the actual and predicted
values, divided by the union of this set for a specific class.
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Figure . – Fully convolutional network architecture used presently. Grayed
out layers indicate frozen layers (lower layers of the VGG), where parame-
ters are not learned.
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Implementation

This chapter presents details on the segmentation pipeline developed as introduced
in Chapter . The first section describes the idea of computational graphs, and the
second delves into TensorFlow as a deep learning framework.

 . computational graph

One way of visualizing mathematical equations is to represent them as graph
networks, with each computation forming a node in the graph. An example
of this was introduced along with backpropagation in Chapter ...

A core concept in functional programming, the backpropagation algo-
rithm can be intuitively understood with this representation. For a deep
neural network, computational graphs can get notoriously complex, with
a few million parameters atleast. Building a NN from scratch is a daunt-
ing task, with many mathematical and implementation specific subtleties
to be addressed. For this reason, we generally make use of openly available
frameworks that abstract most of the computations away from the user.

 . tensorflow

The experiments carried out in this work are for the most part built on top
of TensorFlow [], in Python. TensorFlow is a recently open sourced deep

A major portion of the work in this thesis was implemented using TensorFlow version ..
https://www.tensorflow.org



https://www.tensorflow.org
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Framework Caffe Torch Theano TensorFlow
Language C++, Python Lua Python Python
Pre-trained Yes Yes Yes(Lasagne) Inception
Multi-GPU: (Data) Yes Yes Yes Yes
Multi-GPU: (Model) No Yes Experimental Yes (best)
Readable source code Yes(C++) Yes(Lua) No No

Table . – A comparison of currently popular deep learning frameworks.
It compares the four major deep learning frameworks on availabity of pre-
trained models and possibility of extending the network across a GPU cluster.
Reproduced from [].

learning framework developed at Google, allowing a user to quickly and effi-
ciently implement various algorithms fundamental to neural networks. Given
the wide range of functions already made available, as well as the community
support, TensorFlow was chosen over other well known frameworks at this
time, for reasons made clear in Table ..

TensorFlow is developed for efficient parallelized computations on mul-
tiple devices. This makes the framework useful for further investigation
even after the thesis, where different architectures can be implemented with
very little change across multiple devices. This makes it extremely useful in
multi-GPU training, where different devices can be used to store variables for
hyperparameter optimization schemes.

Tensors here are defined as multi-linear maps from vector spaces to real
numbers, thereby making all scalars, vectors and matrices different instantia-
tions of a tensor. In this sense, they can be thought of as multi-dimensional
arrays.

What makes TensorFlow, and most other deep learning frameworks dif-
ferent is that an "operation" only defines a node representing the particular
operation in a graph structure, and does not execute sequentially. Work-flow
is hence divided into two separate phases: the graph construction and an
explicit execution phase.

. Construction : Here, one declares symbolic operations that represent
equations and functions of the chosen architecture. This includes con-
volutions, loss and cross entropy calculation, dropout probabilities,
pooling, their constituent operations and more.

. Execution : Data is fed into the graph, and the above defined model is
run in an executable environment, referred to as sessions.
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TensorFlow ships with a convenient web-based visualization tool, Tensor-
Board. Hyperparameter statistics and parameter distributions were visualized
throughout the learning process, whenever necessary. This allowed for a much
richer understanding of how the network responded to subtle changes, fol-
lowing which the architecture was reviewed iteratively until acceptable. The
data flow graph for each model used was also be visualized, as in Figure ..

 . network architecture

TensorBoard provided easy visualizations of the graphs developed in this
work, with each implementation run. This allowed for rapid iteration over
different model architectures, and in getting to grips with understanding the
computational data flow in a neural network.

.. Basic architecture

The TensorBoard visualization for the model described in Chapter . is
provided in .. The using of customized name scopes in TensorFlow also
allows one to efficiently track the many components in a neural network. This
becomes important when dealing with larger and larger models.

Figure . – Computational graph for the  layer neural network. Note how
TensorBoard visualizes layer output shapes at different levels, displayed in
the greyed connections.
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.. FCN architecture

A portion of the TensorBoard visualization for one of the FCN model is
provided here in Figure . The different colors indicate the type of layer,
with each of them connected to input and output nodes on the side.

Figure . – Computational graph for a few of the higher layers in the FCN
architecture with skip connection.

 . hyperparameters and tuning

With millions of parameters at any given time, neural networks are notorious
for causing poor convergence, and hyperparameters need to be tuned method-
ically. The experiments conducted were always tested by scaling down the
dataset to a simpler use case, and the networks were built to overfit on the
same. The hyperparameters discussed in the following sections were first
introduced in Chapter ., and the procedures laid out there was adhered to
as much as possible.

.. Learning Rate

When the network has too high of a learning rate, it is expected that the
network blows up. With a high learning rate, exponentials in our softmax
function used for the loss calculation caused the network to diverge com-
pletely. A general rule of thumb: the lower the learning rate is, better is the
performance, with the trade off of a longer training time.[]

To counter this trade off, the learning rate was decayed by scaling it
down periodically. This is to ensure that the optimizer does not diverge
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Figure . – Exponentially decaying learning rate over multiple runs of the
 layer network on a subset of training data. For the FCN architecture, the
decay was found to be optimal when activated at around . epochs.

by fluctuating around the minimum. An exponential decay rate scheduling
was chosen here, shown in Figure .. While grid search or random search
algorithms exist that allow one to choose a finely tuned initial learning rate
with a decay, the learning rate in this work was iterated upon until best
performances in terms of loss convergence at a rate of a few hundred iterations
was obtained.

.. Initialization

The recommended procedure for parameter initialization is to extract them
from a normal distribution of a standard deviation of

√
2/n, [] with n being

the number of inputs to the unit. 

Network parameter distributions at different layers can also be visualized
for a better understanding of how the network behaves. In tensorboard, these
visualizations are called histograms. 

The histogram contour plot shows  lines, representing the mean and the
first three standard deviations away from it. The area between the darkest
contours closest to the mean, as in Figure . represent the fraction of weights
in that particular matrix that are within one standard deviation from the
mean, in other words, the 68th percentile. The next lines show the 95th per-

A quick sanity check here is to see that upon initialization, loss (without any regulariza-
tion) should be −log(1/k) where k is the number of classes. This, in our case turned out to be
0.6947
Histograms here are a misnomer - what the graph represents is a distribution of values in

the weight matrices or bias values over time, shown as contour plots for different standard
deviations from the mean.
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Figure . – Sample of parameter distribution over time for a higher layer in
the FCN architecture.

centile. The palest regions extend beyond four standard deviations show the
maxima and minima.

Very peaky histograms can be interpreted as meaning that at the particular
train step, data fed into the network could have been of a higher variance as
compared to other time stamps.

The central line follows fluctuations in the mean. Lower line indicates
how the least values in the distribution have changed, and the highest contour
indicates the same for the maximum values. This gives us an interpretable
visualization for understanding how the network responds online to different
data batches. Figure . depicts the growth in the bias values of one of the
final layer convolutions in the FCN-s model.

These plot regions grow and shrink in vertical width as the variation of the
monitored values increases or decreases. The plots may also shift up or down
as the mean of the monitored values increases or decreases. For instance, in
Figure ., we notice that the weights have stopped growing and plateaued
over hundreds of iterations, indicating saturation, wherein overfitting might
have occurred either because too many images fed in batches during that
period were of similar quality, or the network is simply not learning anymore,
due to a low rate of change in the loss function. This was indeed found to be
the case, and a decay in the learning rate introduced in this region rectified
the same.
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Figure . – Sample of parameter distribution over time for the final layer in
our -layer network.

The rate of growth of the network over time, visible qualitatively as the
vertical width of the contours represents the time taken for weights in differ-
ent layers to grow. This becomes important especially in the higher layers,
where this can be attributed to a saturation of the logistic function. []

Another way to track growth of the network is to count the fraction of
non-zero elements in the non-linearity activations of each layer, referred to as
ReLU sparsity here.

.. Data feed

A minibatch of 3 images was chosen for training, based on computational
constraints. The order of these training examples was shuffled after each
epoch, to speed up convergence.

.. Training and Classifier

Multiple runs were performed for each model, since hyperparameters were
tuned by a manual search in most cases. Figure . shows the loss function
variations for one such training run on the FCN-s model. Training times var-
ied for each model, especially during the initial hyperparameter exploration
phase, when the models were trained on a subset ( instances, chosen as
an arbitrary fraction of the training set size) of the training set. The classifier
chosen was the softmax classifier for all models, introduced in Chapter ...
Initial experiments also included a variation by using the SVM classifier with
a hinge loss, but the softmax was preferred for ease of interpretation.
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Figure . – Portion of the cross entropy loss function based on the softmax
classifier for the FCN-s architecture, over approximately . epochs.

.. Adaptive Moment Estimation

The Adaptive Moment Estimator (Adam) described in Chapter .. was
chosen for the training process. Similar to most other optimizers, it calculates
an adaptive learning rate for all parameters in the network. By storing an
exponentially decaying average of past gradients, it has been shown that
Adam performs better than other algorithms such as RMSProp. []

.. Regularization

A dropout of keep probability 0.5 was used in all models, set as a default value
at the higher layers of the FCN models, and for the final layer in the basic 
layer architecture. An L2 regularization term, also described in Chapter ..,
was added to the cross-entropy loss function.

 . device

For the initial experiments, a low-tier CPU with GB memory was used,
resulting in impractical timelines for the training process. Eventually, a single
NVIDIA GeForce GTX  became the machine of choice, resulting in a
x speed increase. With massive parallelization in GPUs being key, using
TensorFlow on a cluster can speed up the learning process manifold. Final
training time for the FCNs (no skip connections) and FCN-s architecture
were approximately  hours.



chapter 7

Results and Evaluation

This chapter presents the final results on the models developed over the course of
this work. The quantitative metrics introduced in Section . are given, followed
by a discussion. In addition, samples of the predicted images are shown with a
qualitative discussion.

 . metrics

To get a sense of scale for the numbers we are dealing with, a confusion matrix
both normalized and in pixel space, is provided in Table .. The normalized
matrix is obtained by normalizing with the actual positive and negative val-
ues (roads and background respectively). An example of these matrices is
shown in Table . for the -layer basic model evaluated on the Prague dataset.

We can see from these matrices the high class imbalance in the chosen
dataset. Out of 6250000 pixels, about 97.79% are representative of back-
ground, and only about 2.21% represent actual roads.

The Pre-Rec curves and ROC curves for the three models are shown in
Figure . and Figure . as evaluated on the Massachusetts test set.

The high Pre-Rec values in Figure . indicate that the Massachusetts
test set is too close to the training set, which also necessitates the need for
evaluation on a completely different dataset.


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Table . – Confusion matrix for the Prague dataset when evaluated on
the  layer basic-model. On the left is the matrix shown in pixel space,
with number of pixels, and on the right is the matrix, normalized by actual
positive and negative values.

Figure . – Pre-Rec curves for the Massachusetts test set.

This is done by evaluating on the Prague dataset, and the respectives
curves are shown in Figure . and Figure .. Here, we see a more realistic
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Figure . – ROC curves for the Massachusetts test set.

representation of the models’ generalizability on unseen datasets.
Finally, Table . and Table . present a summary of the metrics calcu-

lated on the three models for the two test datasets.

Model ROC-AUC BEP Threshold Precision Recall F-Score

basic-model 0.849 0.274 0.657 0.657 0.657
FCN-no-skip 0.82 0.415 0.742 0.742 0.742
FCN-s 0.85 0.523 0.762 0.762 0.762

Table . – Evaluation metrics calculated on the Massachusetts test set. IOU
on the FCN-s model on this dataset was found to be 61%.

For the Massachusetts test set, the FCN-s model was seen to have the
best performance, dominating in both the Pre-Rec and ROC curves. With an
F-score of 0.76, this model yielded an IoU of 61%.

Surprisingly, the FCN-no-skip model, which was similar to the FCN-s
model from this work except for the skip connections inspired by [], per-
formed better than the FCN-s on the Prague dataset, with an F-score of
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Figure . – Pre-Rec curves for the Prague dataset.

Model ROC-AUC BEP Threshold Precision Recall F-Score

basic-model 0.7456 0.340 0.233 0.233 0.23
FCN-no-skip 0.7486 0.396 0.319 0.325 0.322
FCN-s 0.7683 0.487 0.319 0.283 0.30

Table . – Evaluation metrics calculated on the Prague test set.

0.322. The IoU in this case was found to be 20%.

These low values suggest the need for further improvements to be made
in the training pipeline, and the same are discussed in Chapter .

 . qualitative discussion

One way to intuitively understand what a neural network learns is to visu-
alize the first layer filters. In Figure ., we see the weights from the  layer
architecture to consist of mostly straight line descriptors of crosses and edges,
and a few central blobs. The visualization here is interpolated for better visual
understanding.
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Figure . – ROC curves for the Prague dataset.

Figure . – First layer weights for the  layer network.

Figure . provides a sample output from the first experiments with the
 layer architecture. It is easy to see that the network fails to distinguish
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between roads and buildings with roofs of a similar pixel structure. Notable
here is the fact that despite ground truth labels not providing complete infor-
mation such as the existence of a parking lot, we see the network has already
learnt to classify tar as roads, regardless of shape. This already gives us a
hint of the advantage of using a machine learned model: especially in cases
where manually annotated labels are of extremely poor quality, or error-prone.

Figure . – Initial results from the  layer architecture, indicating poor
discrimination between roads and buildings.

Figure . – Learning the road segmentation on the Massachusetts validation
set.

The noticeably good prediction on the Massachusetts validation set in
Figure . indicates one of two possibilities: the validation set examples are
very close to the training set, or the model has learnt to predict urban roads
extremely well.

We see in Figure . that the model is unable to handle road regions
covered by trees, resulting in discontinuous predictions. The FCN-s model
reached a surprisingly good test accuracy of 93%. A matter of concern here
might be that the images from the Massachusetts test and training set are
similar to each other in pixel space, thereby making the test set a particularly
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Figure . – Predictions on a Massachusetts test set example.

easy one. These are shown in Figure ..

The performance in Figure . is the only one of  images that is as
expected in the use of skip connections, agreeing with the results of []. In
Figure ., we see that the FCN-s model surpasses predictions (visually)
of the basic-model on the bottom right, only to our disadvantage. Dark grey-
scale roofs are understandably activated as roads. On the other hand, actual
roads are more or less well defined in the predictions, with a TPR of 79% in
this case.
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Figure . – Predicted labels for Massachusetts test data from the  layer
architecture, which are not much worse off.



 . . qualitative discussion 

Figure . – Predicted labels for sample from the Prague dataset. Bottom
left shows predictions map by the FCN-no-skip model, while bottom right
shows predictions from the FCN-s model, with a marginal improvement.
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Figure . – Predicted labels for sample from the Prague dataset. Bottom
left shows predictions map by the FCN-s model, while bottom right shows
predictions from the basic-model.



III
Concluding Remarks
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chapter 8

Future Work

Suggestions for future work to expand upon the work done in this thesis so far are
presented here.

The results presented in Chapter  have much scope for improvement,
with more possible scenarios to be explored. Foremost is the fact that the
dataset used in training is fairly small, and better and more varied augmenta-
tion schemes can be used. Publicly available resources as described in Section
. can also be leveraged at a larger scale, to obtain more satellite imagery to
train the networks on. Care must be taken to ensure appropriate corrections
for the Mercator projection, and scaling of images.

Moreover, context in an image is paramount: labels of adjacent pixels
are known to be highly dependent deriving from the spatial structure of the
images, and this needs to be incorporated into the classifier.

It was observed that discriminating between areas of similar composition
required more than just pixel level information - tapping into features de-
scribing shapes (polygons for buildings, for instance) so as to clearly identify
roads alone. A common workaround for this is be to extract predictions for a
smaller region from a given input size, as presented in [], and []. These
methods have the advantage of incorporating the context around a pixel into
the predictions it makes.

A manual approach was used for hyperparameter fine-tuning in most
cases. An algorithmic approach to exploring the hyperparameter space can


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ensure that the best hyperparameters are selected.

Tying in with the above observation, the problem can also be formulated
as a multiclass segmentation problem, dealing with the detection of buildings
and roads. Buildings are another important indicator of urban growth and
change, and accurately annotated labels for most regions are already publicly
available, in the resources listed in Chapter .

Varying channels is another important aspect: the images obtained for the
Prague dataset included resolutions approximately calculated to be similar
to that in the Massachusetts dataset, and were all RGB () channeled images.
Future research will also have to include more channels, or bands, as discussed
in Chapter .



chapter 9

Conclusions

The thesis is summarized in this chapter, by briefly reviewing the results and states
what has been achieved with regard to the primary objectives specified in Chapter .

A major motivation for undertaking this work was to gain an understand-
ing for designing, implementing and evaluating a deep learning pipeline with
the focus on satellite image data. This was defined as a semantic segmentation
problem, to identify roads in urban areas, in the objectives in Chapter . The
same are reiterated here:

. Undertake a brief study on neural network techniques for computer
vision.
Chapters  and  presented the outcome of this study, with an under-
standing of how remote sensing techniques are used in earth obser-
vation. We also went over state-of-the-art implementations in deep
learning techniques along with an introduction to developing a deep
learning pipeline for satellite imagery.

. Build a working deep network pipeline that takes in data to produce
semantically segmented maps on the images.
Chapters  and  presented in sequence the preprocessing steps taken
to create a usable dataset and reasoned a methodology for building the
deep learning models in this work. Chapters  and  showed the im-
plementation details on how the models were built using existing deep
learning frameworks, and how segmented maps could be obtained.


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. Compare different neural network structures specified in existing lit-
erature. Build on existing models and fine tune them to the present
problem (Transfer learning)
In Chapters , , a neural network model was built by using the VG-
GNet [] model, and extended to the FCN-s model proposed in [].
A pre-trained VGGNet model was used to transfer learning outcomes
to the satellite imagery problem, on this model.

. Evaluate the trained network on a different dataset to understand how
well it generalizes.
The models developed were evaluated using standard classifier evalua-
tion techniques, on the unseen Prague dataset, as well as test samples
from the Massachusetts dataset. These were compared to provide final
assessments on the models.

In addition to the above, taking inspiration from [], ground truth labels
for the Prague dataset were prepared using publicly available resources and
frameworks, shown in Chapter .
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