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Praha, 2015 Autor: Tomáš Ryčl





Prohlášeńı
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Abstrakt

Tato diplomová práce se zabývá návrhem zař́ızeńı, založeném na FPGA, které bude

schopné fungovat jako vzdálené vstupně-výstupńı zař́ızeńı v PROFInet śıti. Zař́ızeńı bude

obsluhovat jeden či v́ıce tř́ıfázových motor̊u. Bude potřeba na FPGA implementovat

PROFInet stack, který umožńı komunikaci v PROFInet śıti. Pro synchronńı ř́ızeńı v́ıce

vzdálených motor̊u je d̊ulělžitá rychlá real-time komunikace, proto je třeba zvolit takovou

implementaci śı̌tového protokolu, která umožňuje komunikaci v režimu Isochronous Real

Time. Pro lokálńı ř́ızeńı samotných motor̊u bude použita dostupná softwarová knihovna

pro ř́ızeńı motor̊u zvaná PXMC, která bude upravena pro náš konkrétńı systém. Nad

komunikačńım protokolem bude implementován PROFIdrive profil pro ř́ızeńı motor̊u a

jejich snadnou integraci do existuj́ıćıch proces̊u. Práce se nezabývá detailńım návrhem

jednotlivých součást́ı, ale využit́ım existuj́ıćıch aplikaćı a knihoven a jejich úpravou a

syntézou k vytvořeńı zař́ızeńı schopného fungovat ve skutečné pr̊umyslové śıti.
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Abstract

This diploma thesis is about designing a device, based on FPGA, that is able to

act as an remote input-output device in PROFInet network. The device will control

one or more three-phase motors. That requires implementing a PROFInet stack on the

device that allows the device to communicate in PROFInet network. For synchronous

motion control, a fast real-time communication is necessary. In order to provide this

type of communication, the stack must be able communicate in Isochronous Real Time

mode. For the control of the drives we use available library called PXMC for motion

control, which will be adjusted to our particular system. On top of the communication

protocol will be implemented PROFIdrive profile for motion control and easy integration

of the device into already existing industrial processes. This diploma thesis doesn’t cover

implementing of each software and hardware part but aims to use already developed

applications and libraries and adjust them to create the device that is able to work in

the real industrial network.
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Chapter 1

Introduction

In manufacturing industry but not only limited to it, the production speed is critical

in order to achieve desired profit for the companies. The production itself is usually

controled by an industrial computer or PLC and the motion itself is caried on by simple

single-axis drives or more complex multi-axis drives. Usually multiple drives need to act

in some kind of synchronized manner in order to create the whole product. But as the

production speed is still increased, the quality of the product could decrease, because

little inaccuracies in synchronization that were permisible at lower speeds are beginning

to turn into significant inaccuracies at higher speeds. A good example of such a process

where production speed is critical and has a direct impact on the profit is a newspaper

printing. Printing press is capable of printing about 10 pages per second which yields

in paper speed about 3 meters per second. There are several stages connected in series

that compose the printing press. First there is storage for a long paper sheet, which

is fed through high speed rollers further into machine. Then there is a series of rollers

touching each other that transfers the ink from the so called plate onto the paper (hence

the method is called the offset printing). This part is repeated 4 times, once for each

basic color and once for black (even though black could be mixed from basic color, it

is cheaper to have a black color separated). Then the paper is folded and chopped to

create the product. All the drives moving the rollers and other parts must be tightly

synchronized to produce the newspaper at such a speed. The synchronization has to be

in order of few miliseconds or submiliseconds since during 1ms the sheet could be 3mm

out of position, which could lead into a blurred image.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Printing Press

For fast and precise motion control in today’s industrial applications, the precise

synchronization of the drives is necessary in order to achieve desired quality and speed of

the control application. Since it is not always possible to connect all the drives directly

into the same controller device (e.g. because the drives might be operating far away

from each other or because of too much computational requirements), the distributed

control network needs to be developed in such a case. The usual way, how to decrease

the computational demands for devices and how to cope with placement requirements, is

to develop a device, that would run the fast closed control loop and that would directly

control the drive (or few drives) according to its dynamics and at the same time would

communicate with other devices and with the process controller. As process controller

we refer to controller that controls the whole industrial process and thus needs to know

the state of each device and in turn provides the reference inputs for the devices. The

devices could be called IO (Input-Output) devices. They act as an interface between the

process and the controller. They measure important process variables (Input) and feed

the system with control signals (Output).

As could be already foreseen, fast, real-time communication between the device and

the process controller (and possibly between the devices as well) must be used. Real-Time

communication ensures that the input process variables that are sent to the controller are

up-to-date and that the output signals will be fed to the process in some kind of timely,

reliable manner. Real-Time communication alone doesn’t imply that the communication

must be fast. It means that there are some well defined time limits in which the data will

be transfered through the network. Since this work aims to develop a device for control-

ling a drives, fast Real-Time communication is necessary. Another important aspect that

has to be considered when designing an industrial network or network devices is the price

of the cabling. The communication protocol that will fulfill the requirements for speed

and its cabling is cheap at the same time is the PROFInet. The protocol will be desribed

more in chapter (Dat referenci). To allow easy incorporation of the developed device into

the already working industrial plant, behavior according some well defined standards will
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be helpful. The standard for motion control built on top of the PROFInet stack is called

PROFIdrive profile and this standard will be implemented in the device. Since the whole

PROFIdrive profile is a huge system with great variability in the sense of used drives,

implement whole profile would be too demanding. Only the neccessary part of the profile,

directly related to our particular drive will be implemented. But since the main mecha-

nism is needed for that, adding the support for broader range of drives will be simplier.

The content of this document is divided as follows. In chapter II (Reference) will be

presented hardware and software configuration that will be used and will be given some

theoretical background about PROFInet in order to justify it’s choice as communication

protocol for our device. The theory will as well bring more light into some implementation

details described later so that they will be understandable to the reader in the scope of

the whole application. In chapter III (Reference) will be provided implementation details

and their role in overall functionality. Some areas in this chapter might be described

step by step in order to allow reader to replicate the developed device functionality. In

chapter IV (Reference) will be described the testbed for testing the functionality of the

device. In chapter V (Reference) will be given conclusion and summary of achieved goals

as well as contemplation about possible changes in the future.
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Chapter 2

System Description

In this chapter will be described our system. In first section a general overview of the

system will be provided from both software and hardware perspective.In the next section

used communicaiton protocol will be described and will be compared to some other pos-

sibilities. That should provide neccessary information in order to understand the desired

device functionality. In the next section will be described used hardware configuration,

including the drive, the IO device and its interface towards the drive,towards the users

and towards the process controller. In the last section used software, including source

code, and toolchain will be described. The particular importance in describing the source

code will have the interfaces between various parts of the application.

2.1 System overview

In this section we will describe the designed system as a whole and try to show the

relations between individual devices and their subsystems. Let us start with the schema

of the system shown on the following figure.

5
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PN IO Device

PN Controller

PN Interface

SDAI

Application

PXMC Library

PROFIdrive

VHDL Quadr

Encoder
VHDL PWM

Generator

Motor Interface

Motor Adaptation

Circuit
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Motor

Cyclic (IO data)

Acyclic (Parameters)

Alarms

Clock Synchronous 

Process Control

Application

SDAI Functions SDAI Callbacks

PD Parameter

Manager

PD Object

Dictionary

PD Axis 

Control

PXMC Functions
Cyclic interrupt service

Figure 2.1: Overall schema

On the figure the hardware parts as well as software parts are shown. As for the

hardware components of the system, in working setup, it consist of system controller,
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PROFInet IO device, motor adaptation circuit and a 3-phase brushless motor. In the

industry there will be typically one PROFInet system controller and multiple PROFInet

IO devices each with 1 or 2 motors connected.

2.1.1 System controller

There are actually two angles of view of how to describe the system controller.

First one is when we consider the functional part and the control logic of the system.

Then the system controller could be described as a device on which the main process

control logic is implemented. This device executes the main control loop in a sense of

processing the process input data, computing new state of the system and providing the

new output data for the actuators. From this point of view there is no difference whether

the inputs are connected directly to the controller or provided by remote devices and

whether the actuators are connected directly or located as well on the remote devices.

Second angle is to consider the device roles from the networking point of view. Then

we would describe the controller as a device capable of acting as a PROFInet master in the

PROFInet topology. The role of PROFInet master is to control the network data cycle

and in the case of Isochronous Real Time to provide the reference clock for other devices.

There are 3 devices capable of acting as a PROFInet controller that are considered in

our system. Each has it’s own qualities which are important in different part of IO device

development.

Simatic PROFInet controller

This standard PROFInet controller is used for basic connection to the IO device. It

is used in order to observe and investigate the communication establishment process be-

tween the IO device and the controller. Then the simple application on the controller

is run to observe the communication and IO data exchange. Another advantage of us-

ing the standard controller is not many restrictions and rules for connected IO devices.

Simotion controller

Simotion controller is PROFIdrive compliant PROFInet controller. This device is

used in combination with PROFIdrive aware and compliant IO devices. On top of the

PROFIdrive communication it provides the advanced tools for motion control. For exam-

ple trajectory interpolation. It can be used to test and run PROFIdrive applications as a
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whole.

PROFIdrive Tester

PROFIdrive Tester is an PC application in combination with the special network

interface card. The device then acts in PROFInet network as standard controller and

the same set of tools for programming the Simatic controller can be used. It could be

used to test whether the IO device PROFIdrive features are implemented according to

PROFIdrive profile specifications. The advantege is that individual features can be tested

independently and with no need for an running application.

2.1.2 PROFInet IO device

PROFInet IO device is peripheral device to the PROFInet controller. It is capable of

sensing the process data and/or control the actuators/process directly. It reads the output

data provided through the network by the controller and it provides the Input data to the

controller. There are different reasons and situations where it is advantageous or necessary

to use IO device instead of connecting the inputs and outputs to the controller directly.

Localization

In a large processes taking place over the large area, it is necessary to read the data

close to the system that generated them. Over the large distance a signal containing the

data could get polluted by electromagnetic noise from the environment. Reading the sig-

nal close to the source and transfering it into some data representation reduces the impact

of the noise to the signal. It can reduce the cabling costs as well since there will be only one

cable from the IO device to the controller while for the raw signal there might be needed

more cabling.

Computational complexity

Process control can be computationaly complex task. For example computing the

ideal trajectories for series of motors, reacting to the feedback and adjusting the val-

ues accordingly, implementing some advanced feedback control that requires a lot of

memory and processing and so on. It might be then desirable to move some com-

putation from the central controller into the peripheral devices. The tasks that pe-

ripheral IO devices perform usually include some initial Input signal processing (filter-

ing, averaging, scaling, decoding) or some Output signal processing (PWM, scaling).
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Logical decomposition

Developing and maitaining more smaller parts of the application all with its own pur-

pose can be easier than mantaining one central application that takes care for everything

from converting inputs and outputs to some meaningful values to maintaining internal

states of application.

We will now briefly describe the subsystems of the IO Device while their implemen-

tation and functionality will be described in detail in later chapters.

2.1.2.1 PROFInet Stack

PROFInet stack is a subsystem of the application, that takes care of networking. In our

particular case it allows the device to act as a PROFInet slave device in a PROFInet

network, handles the incoming and outgoing messageses and provides the means for the

application to create or read message content to some extent. In terms of ISO/OSI model,

it provides hardware and software components to control the first two/three layers and

provide the programming tools or interface to the networking services for the application.

While for non real-time communication, standard ethernet network interface hardware

would be sufficient, for real-time PROFInet modes, the ethernet switch has to be adjusted

to provide all the services.

2.1.2.2 PROFIdrive Stack

PROFIdrive stack is set of software components that implement PROFIdrive profile on

top of the PROFInet stack. Profile uses PROFInet services and doesn’t require any

changes to the PROFInet stack if all the networking services are available. It defines

certain rules, procedures, module types, alarms and state machines that are typical for

the most of the motion control applications and provides a the instructions on how to

implement them with PROFInet. It can be used with other PROFIdrive IO devices or

controllers.

2.1.2.3 Main Application

As the main application we call a part of our program where the ”main” loop is run-

ning. It actually connects all the other applicaiton subsystems together(PROFInet stack,

PROFIdrive stack, motion control) and takes care of propper initialization of each part. It
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is the application part that is notified about the external events (either through hardware

or stack callbacks) and uses the services provided by modules. Our application initializes

the PROFInet stack, PXMC library for motion control and listens on a callback methods

from PROFInet API and has an access to PXMC data and PXMC functions to change

the drive behavior. It also handles the hardware events from the Altera board.

2.1.2.4 Motion Control

Motion control subsystem takes care of converting the control data provided by the main

application into signals that are fed directly to the drives. On the other hand it handles

converting the raw signal provided by the sensors on the drives into some meaningful

representation for the main applications. It is composed of 3 parts from which one is

PXMC-Portable highly eXtendable Motion Control library. That is a software component

that handles the internal state machine for the motion control and keeps track of motor

state, provides services for computation of speed and position and on the other hand

provides methods to control motor state. It allows programmer to implement some

basic feedback controller. In our case PID controller is used. The other part is a Pulse

Width Modulator, implemented as a FPGA block, that translates the control voltage

into to PWM signal fed into the drive. Last importantant part is Quadratic decoder that

converts signal from quadratic encoder into the pulse counter, that is in the end used for

determining the speed and position of the drive.

2.1.3 Motor and adaptation circuit

Motor and adaptation circuit is the part of the system that directly controls the process.

Motor is connected via the adaptation circuit into the IO device board. Adaptation circuit

solves the power requirements of the drive that cannot be supplied from the boards, it

provides the galvanic isolation of control signal and power signal and it allows the board

to disable any of 3 3-phase control PWMs.



Chapter 3

Components and Technologies Used

In this chapter we will describe what particular hardware and software was used for our

device. What particular software components, what tools and why were they chosen for

our implementation. We will provide more theoretical overview of the system components

in this chapter and in the following chapter we will describe the implementation process

in the detail. This chapter should provide necessary initial knowledge to understand used

components, their capabilities and to make reader familiar with the technology used. This

allow us to follow up with the implementation details and focus on the implementation

without the need to describe the technology and tools in between technological details.

3.1 Communication Protocol - PROFInet

Select the right communication protocol for the device is important decision and has to

be made at the beginning of the design. According to the selected protocol, the hardware

with sufficient peripherals and performance can be chosen.

3.1.1 Industrial Ethernet

Over the last years, Industrial Ethernet is increasing its popularity as a protocol of

choice for process industries. It is estimated that about 45% of all the nodes connected

in process industries is communicating via Industrial Ethernet. Ethernet is widely used

in offices and households, more than 85% of LAN connected devices uses Ethernet [1].

11
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This widespread of Ethernet actually increases the ethernet technology development and

therefore makes it more affordable and suitable to various environments, including in-

dustrial environment. Using ethernet for industrial processes also allows for seamless

information integration from field control layer to management layer. The advantages of

Industrial Ethernet against other protocols often used in field control layer is it’s high

data transfer rate, high reliability, easy to maintenance and quite long range availabil-

ity [2]. It is also possible to use traditional office network elements like routers and

switches if no special requirements like deterministic communication are required. The

disandvantages of ethernet are that it’s not naturally reliable and real-time protocol so

if it is needed, the upper protocol layers need to provide those features. Another ad-

justments that usually needs to be made for industrial ethernet are related to the harsh

environment the devices are in. Therefore the connectors, cables and switches are usually

rugged and can resist higher temperatures. Ethernet cabling has naturally pretty good

resistance against electromagnetic disturbances, which is important in industrial envi-

ronments. Using ethernet switches also allows to separate sets of devices into domains

called sub-networks. It allows for better logical division, for separation of the data flow

from another parts of the network, eg. the devices in subnet manage their own rules for

access to shared resources and does not need to care about the rest of the whole network.

For our project we chose PROFInet as a communicaiton protocol. It provides the

needed functionality in terms of available real-time modes to be able to transfer data

between IO devices and process controller in reasonable low time, that is critical for con-

troling tightly synchronized drives. At the same time, PROFInet belongs to the family of

Industrial Ethernet protocols. That means, that for physical and link layer (according to

ISO/OSI model) could be used the same hardware and the same cabling as for Ethernet.

On top of that, expansion to the PROFInet called PROFIdrive profile provides a set of

rules and description of the interfaces between PROFIdrive conformant devices and con-

troller and therefore stands for the standard for motion control in PROFInet-based net-

work.

PROFInet distingueshes between 3 device types. Those are [23]:

Controller is a PROFInet master device that provides desired output data for devices

and receives from them the input data (cyclic data). It also exchanges acyclic data

with devices.
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Device is a PROFInet slave device in the field that reads inputs and writes outputs to

the controlled process. It exchanges cyclic and acyclic data with controller.

Supervisor is a machine used for configuration and monitoring of the process.

”PROFInet devices are based on a modular device model” [19]. That means that device

can be equiped with various modules, which are plugged into device slots, most of them

usually being I/O modules. Particulary important module is DAP-Device Access Point.

That is module that represents the network interface of the device. Slots can be further

divided into submodules. While modules can represent either real physical device or vir-

tual device, submodules has no physical counterpart and represent only virtual division.

Data interpretation

3.1.2 PROFInet RT/IRT

PROFInet Real-Time modes ensure that IO data are always exchanged in defined time

intervals. This is achieved by diving the available bandwith between real-time cyclic

communication and non real-time acyclic communication. Cyclic data are transfered

with preference over acyclic data using RT/IRT channel. When there is still available

bandwith, then the acyclic data are transfered.

3.1.2.1 Cyclic data exchange

IO data are exchanged between devices as a cyclic data. The base period for cyclic data

exchange is called SendClock which is 31.25µs long and is divided into phases. SendClock-

Factor is integer defining multiple of SendClocks that compose a network SendCycle.

Although it can get more complicated in particular scenarios, the basic division is to Red

phase and Green phase. More precise division would be important if we were to develop

the PROFInet stack, for users, using PROFInet stack services, this division is sufficient.

Red phase

In the red phase all IO data are transmited between devices.

Red phase is defined so that maximum lenght must leave leftover for the Green period so

that [18]

• Must allow transmision of non-fragmentable frames

• Must allow transmision of at least one such a frame
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• Cannot exceed MaxRedPeriodLength defined in GSD metadata

Each IRT device has to know when exactly red period starts and when it ends. De-

vice calculates it for both Rx and Tx directions. Red phase always begins at start

of the SendClock period. Red phase ends when the last IRT frame is transmited.

Green phase

As described in red phase definition, green phase length is a leftover in SendClock period

after all IRT frames has been transmitted. Data transmission uses standard UDP/IP

protocol.

3.1.2.2 Acyclic data exchange

Acyclic data exchange is used for sending all other data than IO. Those contain configura-

tion and diagnostic information, alarms and parameter record data.

Parameter Record Data

• Write Request

• Write Response

• Read Request

• Read Response

Example of SendCycle for SendClockFactor = 2 can be seen on the figure 3.1.

Figure 3.1: SendCycle example
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3.1.3 GSDML

Slot and subslot data exchange is in general done as an exchange of bytes between the

devices. GSDML file stands for General Station Description Markup Language [9]. It is

a XML based device description that supports device description according to PROFInet

device model mentioned in [19][23].

Element top level topology will be now described with emphasis on elements that will

be used in our device description. All the module specific elements will be described for

better readability later.

• ISO15745Profile is the root element of GSDML file.

– ProfileHeader Header must always look like (REF fig gsdml header).

– ProfileBody Includes main parts of device description.

∗ DeviceIdentity Attributes are VendorID and DeviceID.

· InfoText

· VendorName

∗ DeviceFunction

· Family Contains vendor information about what family of devices

this device belongs to.

∗ ApplicationProcess Contains all the information about device modules.

ApplicationProcess

This is the parent element for all the module specific information. This includes module

I/O type, usable slots and subslots, general list of modules and DAP modules. it’s struc-

ture will be now described. Not all the elements will be described, only those with some

siginificance in our application. Whole specification can be found in [9].

• DeviceAccessPointList List of DAP modules.

– DeviceAccessPointItem Describes 1 DAP module. With attributes ID,

PhysicalSlots-telling in which slots the module can be inserted and ModuleI-

dentNumber -the number that is used in exchanged data to identify the module.

∗ ModuleInfo

· Name

· InfoText
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· VendorName

· HardwareRelease

· SoftwareRelease

∗ CertificationInfo Information about certification.

∗ SubslotList List of subslots of the module.

· SubslotItem Contains attributes SubslotNumber and TextId.

∗ IOConfigData Contains attributes like MaxInputLength, MaxOutput-

Length meaning the maximum IO data in octets (CITE GSDML). This is

the sum of all the data that can be exchanged by submodules.

∗ UsableModules List of references to the modules described in GSDML

that can be used with this DAP.

· ModuleItemRef With attributesModuleItemTarget and AllowedInSlots-

telling in which slots the modules can be used.

• ModuleList Contains list of all modules, not all need to be used by application.

– ModuleItem Describes 1 module available in the device with attributes ID

and ModuleIdentNumber -number that is used by application and sent by net-

work. Must match the number assigned in application.

∗ ModuleInfo With attribute CategoryRef -telling from which category of

modules the module is (e.g. Input Module, Output Module ...)

· Name

· InfoText

· OrderNumber

· HarwareRelease

· SoftwareRelease

∗ VirtualSubmoduleList Contains virtual submodules available for each

module. Since submodules aren’t physical devices, all the submodules

available for the device are listed here.

· VirtualSubmoduleItem Contains attributes like VirtualSubmodu-

leNumber -which must much the number assigned by the application

in the device and API -meaning Application Process Identifier in this

context. Defines to which process VirtualSubmoduleItem belongs. For
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example PROFIdrive has its own API number defined. Users can de-

fine their API to distinguish for which process the modules is supposed

to be used.

Again for better readability the most important element for IO data exchange Virtual-

SubmoduleItem will be described in more detail:

• IOData Contains attributes IOPS Length-IO Producer Status and IOCS Length-

IO Consumer Status. Both those lengths cannot exceed 1440 octets (CITE GS-

DML). Child elements contain information about particular input and output data

that the submodule can exchange through network.

– Input Containing child important child element DataItem that contains par-

ticular data information like DataType-e.g. unsinged8, float32 describing the

data representation and UseAsBits flag, telling the engineering tool that the

data should be displayed/represented as individual bits, not being translated

to for example decimal number.

– Output Contains similiar information as Input but for Output module

– InputOutput The bits of this VirtualSubmoduleItem can be represented as

both input or output.

• RecordDataList Contains list of ParameterRecordDataItem

• ModuleInfo

On the next figure is the standard ProfileHeader used in GSDML v2.31.

Figure 3.2: GSDML Header
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3.2 PROFInet Stack

”Softing Protocol IP for PROFINET is a combination of IP cores and Industrial Ethernet

device protocol software designed to offer all required communication capabilities for an

implementation based on the Altera FPGA.” [19] There can be used various industrial

communication protocol with the stack while all use the same programming API called

SDAI-Simple Device Aplication Interface.

According to documentation [3][19] it can be used for:

• Verify the functionality of available protocols.

• To learn about the protocol integration.

• To integrate the protocol into field devices.

• To work as a PROFInet, PROFInet RT/IRT device.

The package contains:

• Documentation

• IP core license

• Real time ethernet switch IP core

• Other utility IP cores

• NIOS II project and source code

• NIOS II software project

• NIOS II demo application

• SDAI code and documentation

There is a 2 hour evaluation period timer, which block the functionality after the timer

expires. This is for the users to test the functionality without buying the product. After

purchase the timer is disabled. For our development we were using this evaluation feature.

According to [19] the stack is compliant with PROFInet version 2.3, GSDML version 2.31

and PROFIdrive version 4.1.



3.2. PROFINET STACK 19

3.2.1 Hardware Components

In this section we will describe hardware components used in the FPGA design. An

overview of the components and their interconnection is on the 3.3

Flash

Controller

SysId Remote

Update

MM-Bridge IRQ-PIO MM-Bridge MM-Bridge Reset-Bridge

NIOS II

Reset-PIO

Timer

Peripherals(LED,

LCD, pushbuttons)

NIOS II

PLL

Timer

Clock-Bridge
RTE Switch

DPRAM

Mutex

MM-Bridge MM-Bridge MM-Bridge
RAM

Controller
IRQ-PIOReset-Bridge

Figure 3.3: FPGA hardware components

”The IE subsystem (Switch subsystem) contains the switch IP core from Softing and

the Nios II core. The Nios II uses a MM Bridge to access Flash and RAM. The mem-

ory provided is transparent for the Nios II. It has to be implemented outside of the

subcomponent. Interaction with the Application subsystem is implemented via a DP

RAM in the IE subsystem. Mutex and IRQ are used to control access to the DP RAM.

The second subcomponent is the Application subsystem. It contains a Nios II on which

the sample application runs. Furthermore various IP cores to interact with the peripherals

are part of this subcomponent” [19].

For users of the stack the most important is the Application subsystem. That is be-

cause unlike RT Switch subsystem, the application subsystem is accessible to user via

standart Altera FPGA tools and can therefore make modifications in the application sub-

system. RT Switch subsystem is unaccessible to the user and is provided as and IP core.

We will be making some modifications in order to connect the motors and to allow some
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supervision through Altera board physical interface.

3.2.2 SDAI

SDAI-Simple Device Application Interface is a programming interface built on top the

hardware system. It is desinged for use of the protocol features, to create initial configu-

ration and receive and send data between device and the controller.

3.3 Altera board

As a hardware for our IO device implementation we decided to use Altera DE2-115. Main

reason was compatibility with the PROFInet stack. There is actually very few vendors

and organisations that developed PROFInet stack as a standalone software/hardware

and defined programming API, giving the users full control over the application using

the stack. For our development we used the stack developed by Softing Industrial Au-

tomation GmbH. They provide the stack for PROFInet slave device with a lot of freedom

for the programmer and with Isochronous Real Time communication mode available.

The stack is distributed as Altera Quartus files describing the hardware and a soft-

ware application written in C on top of that. Altera DE2-115 is amongs the devices on

which the stack was tested so there was lower risk of possible compatibility problems.

Cyclone IV is the heart of the Altera DE2-115 board. The FPGA contains 114480

LEs(Logical elements, LUTs-LookUp Tables or Slices) and 439 M9K memory blocks.

Those two attributes are important in FPGA design since they represent how ”big” de-

sign can fit onto the board. Hardware components and their interconnections use the LEs

and memory blocks to create the desired functionality. FPGA pins can be connected di-

rectly to the peripherals. The most important peripherals in our design will be described.

Slide switches and Push buttons

Those will be used for direct user control over the application. For example they can

switch the information shown on LCD display between the stack information and drive in-

formation. They can directly disable the signal going to the drive by exciting the disabling

pins on the motor adaptation circuit. Motor disable through switches on the board have
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actually priority over the software wanting to enable it. They can be as well used to con-

trol the speed of the drive.

LCD display and LED diodes

Are used to display various information for the user. We use it to display PROFInet

stack state, motor state and values fed into the motor.

GPIO

GPIO pins on the board are General Peripheral IO pins allowing the FPGA to drive

the singal out of the board. We use those to control the motor. There are 2 connectors

available for that purpose. Both allowing the user to chose the High level between 2.5V,

3.3V or 5V. The GPIO connector provides as well the ground and limited power supply

with 5V voltage and up to a 1A current [14].

3.4 Altera tools

As a development environment we have chosen a toolchain from Altera providing a tools

for graphical hardware design, hardware and software programming environment and

compilation, build and deployment tools to load the application onto the board. It is

possible to develop an application without those tools, using only compilers for Alteras

FPGAs, but the toolchain is a kind of waranty that application developed with Altera

toolchain will run on Altera FPGA. Another important argument to use Altera toolchain

is that a lot of PROFInet stack components is available as a file to be used with Altera

toolchain and then we can modify or observe the design with those tools.

3.4.1 Quartus II

Quartus II is a software for designing and compiling an FPGA design. It allows smooth

integration of 3rd party IP cores and design and validation of the FPGA components on

various levels, for example meeting timing constraints, whether the design can fit into

the FPGA, allows to easily create and interconnect IP cores with Qsys builder tool. This

tool is important when designing a processor, network switch and peripherals into the

FPGA, therefore we will use this tool a lot. Then it provides a basic editor for VHDL
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files. Quartus II as well allows users to configure the compilation preferences. Between

many configurable parameters the most important is tradeoff between the speed of the

circuits and designs size. When the FPGA is driven by a fast clock source, the time

to propagate the signal in the circuit cannot be neglected anymore. For our design we

instructed the synthetizer to use timing-driven synthesis so the emphasis was placed

on meeting the timing constraints, which is important for real-time PROFInet switch.

After compilation many of files are generated. From the the most imporant are the

ones with ”.sof”, ”.jdi” and ”.sopcinfo” extensions. ”.sof” stands for SRAM Object File

and it contains the information about the FPGA design. ”.jdi” stands for JTAG Debug

Information and it contains the information for the device about the JTAG debugging

interface. It is used by the application to see the application print on the console win-

dow of the connected PC through the programming interface of the device. ”.sopcinfo”

contains the Qsys generated information about the application address space, settings

and preferences. It is used by other compliers in the toolchain to build the BSP-Board

Specific Package which is something like Hardware Abstraction Layer. It provides the

constant, defines and macros specific for the particular design and therefore hides the

board implementation details from the software programmer.

3.4.2 Eclipse IDE for NIOS II

Eclipse development environment was used for the software development onto the NIOS

II processor, that is part of our design. Except text editor it provides the tools to compile

and dowload the design to the board and see the console output and write the input. We

used it mainly as a text editor and for the purposes of compilation used the command

shell.

3.4.3 NIOS II Command Shell

NIOS II command shell provides posix-like command shell environment for program-

ming the altera device. It allows to run various tools from the console terminal. For

example ”nios2-configure-sof” command to download the .sof desing to the device or

”nios2-terminal” to watch the printouts of the application running on the board. It also

allows to compile whole HW/SW desing for the nios II processor using GCC compiler

for NIOS. For the latest version of our design, the 14.0 Altera toolchain was used, which

comes with version 4.5.3.
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3.4.4 NIOS II Processor

Software part of our application - written in C - will be running on the NIOS II soft

processor implemented on the FPGA (CITE NIOS II software developer’s handbook,

NII exception handling, NII cpu manual). Since there is a thin line between what is

processed in hardware and what in software, it is important to understand capabili-

ties of NIOS II processor and to be able to adjust it’s functionality when necessary.

NIOS II is a general-purpose RISC processor [8] with 32-bit instruction set, registers and

address space. Between important features belongs 32 interrupt sources, access to va-

riety on chip peripherals, hardware-assisted debug module, software development based

on GNU C/C++ toolchain, interfaces to on-chip and off-chip memory. User can decide

what features the processor will implement and therefore customize it to his needs. For

example NIOS II offers floating point arithmetic instructions, but for the cost of ad-

ditional resources. User can decide what side of trade-off to take, wheter the speed is

more important than resource usage or the other way around. Then the functionality

can be implemented directly by the processor, emulated in software or omitted entirely.

On the next figure we can se the interconnections between the processor and peripherals.

Figure 3.4: Altera interconnection schema

NIOS II offers to customize the processor core attributes (such as speed, creat-
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ing custom registers, ...) and allows to easy interconnect the processor with standard

peripherals such as SDRAM, general puprose I/O, ethernet interface, debug module

and with custom peripherals or hardware blocks(We will later connect the processor

to motion control hardware blocks, in order to reduce processor load and to achieve

high enough speed) as well. Access to peripherals is implemented by memory map-

ping of peripherals to the data bus address space. Registers can be configured to

support single-bit write/read operations as well as full byte write/read (by default).

NIOS II processor provides simple non-vectored exception controller. When an interrupt

occurs, exception controller controller passes the control to appropriate exception handler

[8]. This functionality will be used to invoke motion control library in regular short inter-

vals. Generated board support package and hardware abstraction layer provides the the

software with methods to define timers that trigger processor interrupt and methods to

define respective exception handlers. NIOS II Internal Interrupt controller can distinguish

between 32 interrupt requests. Interrupt requests can be disabled/enabled by modifying

the processors control registers. This can be done at runtime and will be important for our

application.

NIOS II supports separate data and instruction space, there classifying it as Hardware ar-

chitecture [8]. Instruction and data busses are implemented as Avalon-Memory Mapped

master ports. While the data master port connects to both memory and peripheral

components, instruction master port connects only to memory.

3.5 PXMC

PXMC is a software library project for motion control. It is a multi platform code

designed to be easily run on different platforms and with different motors [16]. There

is actually one flaw to the portability and that is that there must exist C/C++ com-

piler for target platform. It is software library and a system core, meaning it has some

strict requirments on some services provided by hardware that must be met for flawless

operation. Those requirments include execption handling, operation atomicity and avail-

ability of some hardware components. Particular requirements will be described later.

Variants of the code have been succesfully used on many targets for robotics, laboratory

and medical projects [24]. On the following figure we can see PXMC data flow schematic.
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Implementation

In this chapter we will describe how the implementation was done. At first we will

described the protocol in 4.1. What is the provided files structure, what is and what

is not part of the PROFInet stack. We will describe how we deployed the applica-

tion on the device, what changes have been made and how the design was verified.

Next we will describe how the PXMC was adjusted in order to be ported onto NIOS II ar-

chitecture in section 4.2. What files have been used, what important functions and object

PXMC provides, what hardware adjustment needed to be done and how the motor is con-

nected to the device.

After that we describe obtained PROFIdrive stack implementation and it’s integration

into our device in order to create PROFIdrive IRT application. This process is described

in 4.4.2.

Before diving deep into implementation details we will remind what is the planned func-

tionality of the device on the figure 4.1. Most important parts of the implementation are

as well described in 2.1

25
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Figure 4.1: Top level functionality

4.1 PROFInet stack

As already mentioned in 3.2, PROFInet stack includes both hardware and software desing.

For non real-time communication, standard ethernet switch could be used, but real-time

modes require some functionality on the hardware side because of strict timing require-

ments.

Hardware is distributed as a Quartus II project and a set of IP core files and licences that

are needed for succesfull compilation of hardware design. The files contained in the distri-

bution, process of hardware design and compilation and important generated files will be

described in 4.1.1.

When the hardware is compiled and all the necessary files generated, software develop-

ment can start (actually it can start independently when the interface is well known in ad-

vance). In section 4.1.2 will be described the software files used for the C application, im-

portant methods, design features and objects.
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4.1.1 Hardware design

In this section we will describe how the initial hardware looks like and what changes

and adjustments were made, how they were made and what do they affect. We will

put some emphasis on the interface between the hardware and software design. That

is set of generated files called BSP-Board Support Package and HAL-Hardware Abstrac-

tion Layer. Those software subsystems are created as a result of hardware compila-

tion and provides a layer for the software application to access hardware components.

The main tool used in this part of design is Quartus II.

Obtained hardware design for Altera DE2-115 board is located under hardware/fpga/profinet/al-

tera ink switch/.

Most important files for hardware design are altera ink pn.vhd which is top level hardware

description file and three Qsys files altera ink appl subsystem.qsys, qsys profinet system.qsys

and softing profinet device subsystem.qsys. First it was necessary to add motor related

IOs into the hardware design.

4.1.1.1 Inputs/Outputs for motor

For motion control with PXMC, following inputs and outputs must be provided by the

system:

• Output

– 3x PWM - PWM signal to control each phase of the motor

• Input

– IRC counter - Value of IRC counter

– IRC index - Value of IRC index

– HAL sensor value

• InputOutput

– Status - Contains e.g. Enable/Disable

Those were added into Qsys application subsystem and ”wired” through the top level

system to the memory-mapped area accessible by software application. Memory address

in the NIOS II system is relative to the subsystem. We chose free address range between

0x00000010 and 0x00000070. Created IO and their wiring is shown on 4.2.
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Figure 4.2: Qsys application subsystem IO

pio axis0 hal defined as 3-bit input, pio axis0 irc cnt and pio axis0 irc index as 32-bit

inputs, pio axis0 irc status as 8-bit bidirectional signal and pio axis0 pwm(1,2,3) as 16-bit

output.

Signal clk clock is being connected to master clk system clk signal, reset to the clk system

clk reset signal and s1 to the cpu data master port. By setting the Conduit to exter-

nal connection value, we mean that the signal will be read/written outside of the sub-

system. In this case we need first to export the signal from the application subsystem into

qsys system.

When the Qsys files gets generated, there are two important files that we will need

to locate and use. First is qsys profinet system.qip that needs to be added as a source

file in the quartus project in order to compile the project right. The other one being

qsys profine system inst.vhd containig vhdl component description of the qsys profinet system.

In this file we need to find the names which have been assigned to our new signals in

order to use them in top level vhdl file. How the components are connected together in

the top level hardware description file will be described in 4.1.1.4. It is necessary first to

introduce other developed hardware components.

4.1.1.2 PWM generator

Since our motion control library provides only means to compute the numeric value for

the motor and since software interrupt periods cannot achieve short enough time, it is nec-

essary to develop a PWM generator block in hardware and connect it between memory-

mapped area used by PXMC for output data and real physical output pins of the board.

PWM generator hardware block is block that takes a numeric value as an input (can be
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absolute or scaled) and outputs a signal that oscilates between High and Low levels. The

oscilation must be fast enough compared to the system that receives the signal in order

for the receiver of the PWM not to react to individal signal changes. The effect is that

slower system is capable of sensing only mean value of the signal, not reacting to individual

pulses.

On the figure 4.3 can be seen simulation results for our vhdl pwm generator. All the

input and output ports and internal signals will be described then.

Figure 4.3: Modelsim pwm simulation

From the input/output point of view, the entity pwm generator was designed with

clk - Input port for 50MHz clock signal.

duty cycle - 15-bit input signal controlling pwm duty cycle. We decided to accept values

between 0 and 1000 (000001111101000).

pwm out - Output pwm signal.

It is important to design PWM generator to achieve a compromise between the frequency

and resolution of the output pwm signal. The rule that applies is

fclock = fpwmṙpwm

where fclock is frequency of the driving clock signal, fpwm is a frequency of the pwm

signal and rpwm represents the number of descrete pwm output levels. There is a trade-

off between pwm frequency and pwm granularity. The higher the frequency of pwm

signal is, the lower is the granularity of the signal and vice versa. For example if

fpwm =
1

100
fclock we can achive only 100 pwm levels with range between output sig-

nal LOW and HIGH and granularity
1

100
(HIGH − LOW ). Therefore we must choose

the values in order for pwm signal to be ”fast enough” compared to the motor and

with granularity being lower than the required lowest speed step. For example if our
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motor is running with speedmax = 1000 revolutions per second with 24V driving sig-

nal and we want the precision of the set speed to be at least step = 0.1 revolutions

per second, than our PWM has to support at least
speedmax

step
=

1000

0.1
= 10000 levels.

In our design we decided that reasonable pwm frequency is 50KHz leaving the PWM

granularity to be 1000 levels. Hence the input duty cycle is required to be 0-1000.

On the 4.3 we can see that with duty cycle = 256, the pwm out duty cycle is approxi-

mately 25%.

4.1.1.3 Quadrature Counter

IRC decoder is a hardware block that takes IRC quadrature encoder signals as an input

and outputs a single value representing the absolute position of the motor. Signals that

are received from the encoder are Channel A, Channel B and Index channel. Signals

comming from Channel A and Channel B are pulses shifted by 90 deg to each other.

Edge detection is used to count the changes and phase shift allows to determine the

way of the rotation. Combination of rising/falling edge of either channel and respective

LOW/HIGH value of the other channel then uniquelly identifies whether to increment or

decrement the counter. If channel A leads channel B, then the counter is incremented,

if channel B leads then the counter is decremented. Index channel pulse signals 1 full

rotation of the motor. There are 3 modes how the quadratic counter signal can be decoded

X1 - Counter is changed only on falling or rising edge of one channel.

X2 - Counter is changed on both edges of one channel.

X4 - Counter is changed on both edges of both channels.

We will use X4 mode for better resolution of position.

Input/Output ports of quad count are

clk

chan A in - Input Channel A from encoder.

chan B in - Input Channel B from encoder.

irc index in - Input Index channel.

cnt out - Output 32-bit counter value.

irc index out - Output 32-bit offset of index pulse to counter value.
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irc index cnt out - Output 4-bit index counter value.

cnt ovrflw - Output pulse when counter wraps around.

cnt way - Output 1-”UP”, 2-”DOWN”

Simulation results of the designed quadrature counter for the positive increment are on

figure 4.4

Figure 4.4: Quadratic counter simulation

After testing the quad count hardware block in the design on the real motor, it turned

out that we need to solve some practical problems first because the value of the counter

started to drift away from the real position of the motor. That is because real physical en-

coders encounters problems like signal bouncing and also it was necessary to synchronize

the timing of the ”outer world” with the FPGA timing.

The first issue was solved by introducing the debounce filter hardware component in

between the quadrature encoder signals and quad count logic. The debounce filter logic

is to wait for some time after the edge is detected on the signal and output the new signal

only after the wait delay ends. This removes some possible counter miscalculation due

to bouncing. Simulation of designed debounce filter for the threshold of 5 clock period is

shown on figure 4.5. On the figure we can see that bouncing does not affect the output

signal of the hardware block and only after the delay when the level is steady is the new

value fed to the output.

Figure 4.5: Debounce filter

For the timing synchronization of ”outer world” and internal clock-driven world of

FPGA, the series of 3 D flip-flop circuits was used. It ensures that the value is preserved

for exactly 3 master clock periods until it gets into the quadrature counture logic and
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therefore making it synchronized to the internal clock, instead of feeding the counter logic

with new data whenever they are available.

4.1.1.4 Complete Design

All the designed hardware components are put together in the top level vhdl file and port-

mapped to the right input/output ports of the top-level design 4.6 and/or to the ports

of qsys profinet system component as described in 4.1.1.1. As mentioned in 4.1.1, top-

level file for the vhdl hardware design is altera ink pn.vhd with the altera ink pn entity.

It’s input/output ports are meant to be assigned to the physical pins of the FPGA and

provides the access point between FPGA design and physical I/O.

Figure 4.6: Top-level IO for motion control

4.1.2 Software Application Design

In this section we will describe how the design application works and how the functionality

was evaluated. We will show the implementation in detail, provide the description of

the most important data structures and functions. Everything in this section revolves

around SDAI programming API which provides functions, processes and callbacks for

programmers to use the PROFInet stack in the device. It also implements necessary

data structures to send/receive the data through the network and to configure the device.

The initial application skeleton provided together with the stack is used, because it defines

some usefull data structures that simplyfies the coding and readability of the code. Most

important files used in the design are:

demo.c Initialization, main loop, callbacks and finalization.
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profinet.c Important data structures related to PROFInet are filled and defined here,

configuration functions are implemented here.

platform.c Board specific functions and interfaces are defined here such as writing to

LED display, reading button values.

pxmc nios ink.c Altera board specific PXMC, ported to NIOS II architecture.

It is important to note, that during implementation we encountered some bugs and

some functionality not being fully working so we had to actually implement everything

again from the scratch when the new version 1.20 of the stack was released, since it

implemented some features that are critical for our application. When speaking about

implementation, we will refer to implementation in the later 1.20 version but we will men-

tion the features that are not working in the previous stack version on respective places.

Another note worth to mention is that application running on board configured with

JTAG debug module and connected to PC via USB can use terminal running on PC

for its standard input and output. To do this, host PC has to have USB Blaster driver

installed and then by running nios2terminal.exe command from the console, the console

starts to act as a terminal for the board. This was used for the debug of the board and

can be used as well for some runtime adjustments on the board.

4.1.2.1 Note about Debugging

SDAI comes with defined debugging macros that are defined in platform.h. There are 3

main debugging levels that could be used and can be enabled in the file:

Debug This macro is used as a highest debugging level. We use it in application to

notify about various events like callback calls, SDAI initialized ...

Error Use in application to notify about errors.

Trace This debug macro is used throughout the application to trace the call hierarchy.

We enhanced macros to display the file and the line of the print as well to make tracking

the bugs and problems easier. Trace can be used to track the call hierarchy deep into

the SDAI driver, but it is not recommended though. Because the nature of JTAG Debug

chain using JTAG UART is serial connection connecting stdin, stderr and stdout of device

to user console [8]. Serial connection with high traffic can be performance demanding

on the system resources. According to nios2 documentation ”the debug module gains
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control of the processor either by asserting a hardware break signal, or by writing a break

instruction into program memory to be executed. In both cases, the processor transfers

execution to the routine located at the break address” [8]. Therefore debugging with

high rate of printouts can lead into application being slowed by the prints or (what we

observed) the output or the whole application freezes.

4.1.2.2 SDAI Initialization

Before the PROFInet Application Relation can be established between the device and the

controller, the device has to be configured first, which is programmed locally on the device.

Although there is possibility to tell the device to take some configuration from the con-

troller during connection establishment, we went with aproach when the configuration is

coded in the device.

Initialization Let us first describe how the stack and SDAI are initialized. The

process is ilustrated on the figure 4.7.

Figure 4.7: SDAI and stack initialization

The initialization process is started by calling

U8 sdai_init (struct SDAI_INIT* pApplicationInitData)

Before we can do that, we must first assign some configuration data to the pApplica-

tionInitData pointer. Mapping of the structure to the PROFInet IO is described in [3].
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The structure and its fields will be now described.

struct SDAI_INIT

{

U8 BackEnd;

U8 Alignment [3];

struct SDAI_IDENT_DATA Ident;

struct SDAI_DEVICE_DATA Info;

struct SDAI_CALLBACKS Callback;

};

First we start with description of the SDAI CALLBACKS. This structure is filled with

functions to be called on various SDAI callbacks to notify the application about stack

events. The functionality of each callback is described in [3].

IdentDataCbk is called when the network parameter(e.g. ip address) is changed. When

the callback is called, application stores new identification data like device name,

ip address, connection status into the internal structure for holding those data and

prints new data on the LED.

ExceptionCbk is called when fatal error occurs. Exception information is printed. No

automatic recovery was implemented.

DataCbk is called when the cyclic output data change.

WriteReqCbk is called when Write Request is received. This is used to process the

asynchronous data exchange between devices.

ReadReqCbk is called when Read Request is received

ControlReqCbk is called when a control command is received

SyncSignalCbk is called when a synchronization signal is received (IRT) (in the initial

version of the stack we used this callback was not implemented yet and should have

always been set to NULL.

What particular function was assinged to which function pointer can be easily found in

the code so we will not write here the assignments. The important is what actually hap-

pens when the callback is invoked so we will try to describe that for important callbacks.

IdentDataCbk
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After IdentDataCbk is invoked, new device name, ip address, network mask and gate-

way are stored internally and new data are printed on the led and to the console.

DataCbk

After the output data are changed by the controller, the modules for which were the

data changed (resp. their data representation in the main appliation) is updated by

calling

U8 sdai_get_data (U32 Id, U8* pStatus, U8* pData)

This function read the input/output data from the stack data space. We will describe

this function more in . Now we just wanted to emphasize the relation between Dat-

aCbk and function for reading the data from the stack space. Using them in this

connection allows the reading of new output data to be event driven instead of peri-

odical checks (pooling) and therefore lowers some perfomance demands of the application.

WriteReqCbk/ReadReqCbk

These two callback notify the application about the controller requesting to read or write

some record data. These requests belongs to the acyclic communication part of network

data exchange. This communication type is used in PROFIdrive profile for parameter ac-

cess and will be described in more detail in 4.4.2. The request should be always answered

with respective write/read response.

U8 sdai_write_response (const struct SDAI_WRITE_RES* pWrite)

U8 sdai_read_response (const struct SDAI_READ_RES* pRead)

Since the functions belongs into data exchange part of application, they will be described

more in 4.1.2.3

Now another part of initialization structure, SDAI DEVICE DATA will be de-

scribed.

struct SDAI_DEVICE_DATA

{

U32 SerialNumber;

U32 VendorID;

U32 Type;

U32 ProductCode;

U32 Flags;
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union

{

struct SDAI_PN_DEVICE_DATA Pn;

struct SDAI_EIP_DEVICE_DATA Eip;

struct SDAI_PBDP_DEVICE_DATA PbDp;

struct SDAI_ECAT_DEVICE_DATA Ecat;

struct SDAI_MB_DEVICE_DATA Mb;

struct SDAI_EPL_DEVICE_DATA Epl;

} UseAs;

char ProductName [SDAI_PRODUCTNAME_MAX_LEN]; /**< The product name of the

device */

char OrderId [SDAI_ORDERID_MAX_LEN]; /**< The order ID of the device

*/

};

Important parts of the structure will be described. For those usually the data from the

skeleton provided with the code are used and their name is pretty self descripted, we will

focus on those that need more explanation. It is important to note, that lot of those data

must match the data filled in GSDML file, whose creation will be covered in 4.4.2 and

theoretical overview is provided in 3.1.3.

Flags - Flags allows to adjust some features of the stack.

UseAs - This illustrates that the SDAI API is designed to be used with many commu-

nication protocols. We use Pn for our PROFInet application.

Flags

Flags allow the programmer to specify or adjust some features of the stack to be used in

the application. For the PROFInet protocol the only important flag is SDAI DYNAMIC IO CONFIGURA

Enabling this flag allow the device to plug/unplug modules and change IO data layout by

the controller during runtime [3]. The change is triggered by ControlReqCbk() with the

control code SDAI CONTROL CODE CFG DATA INFO received from the controller.

After receiving the the request, the application is responsible to plug in or pull out the

modules to match the configuration of the controller.

SDAI PN DEVICE DATA
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This structure holds PROFInet specific initialization data. Those are mainly network

configuration data for ethernet interface.

struct SDAI_PN_IDENT_DATA

{

U8 Address [4];

U8 Netmask [4];

U8 Gateway [4];

U8 MacAddressDevice [6];

U8 MacAddressPort1 [6];

U8 MacAddressPort2 [6];

U8 StorePermanent;

U8 Alignment;

};

Although the device name and ip address are configured in controller project and stored to

the device from the network, it is important to initialize the device so that it can commu-

nicate with the controller, in case they are not connected directly and there is some eth-

ernet switch between. In that case we must choose the ip address, netmask and gateway

in the same subnet so the devices can communicate before new configuration is applied.

SDAI IDENT DATA

Stores currently used device and interface name.

BackEnd

Is set to SDAI BACKEND PN to indicate use of PROFInet.

All the fields for initialization are now filled in so that sdai init can be called. After that

we can start with plugging of IO modules.

Module plugging

After the initialization structure is filled, we can start to plug in modules to configure IO

data layout for cyclic and acyclic data exchange with controller. It’s position in the initial-

ization process is shown in 4.7. Basically we first define modules to use according to SDAI

rules, then plug them using SDAI API and in the end call SDAI function to notify the

stack that plugging of the modules is done.

Plugging of modules by the SDAI implements the modular device design feature of
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PROFInet IO. It can be imagined as a physically plugging the IO units into the rack

4.8.

Figure 4.8: SDAI units plugging

There are some rules and more consideration to take into account while plugging the

units and those will be discused

First let us desribe the SDAI function for plugging the units.

U8 sdai_plug_unit (U8 UnitType, U8 InputSize, U8 OutputSize, U32* pId,

const struct SDAI_CFG_DATA* pCfgData)

UnitType defines whether the module is INPUT, OUTPUT, INPUTOUTPUT or HEAD

module

InputSize is the size of input data of the module in bytes

OutputSize is the size of output data of the module in bytes

pId is 4-byte id of the module. SDAI composes id that 2 first bytes are the subslot of

the module and next 2 bytes are slot number of the module

pCfgData contains moduleIdentNumber and submoduleIdentNumber and this number

must match the number defined in GSDML for the module
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AFter the modules are plugged in, appropriate memory space is created to store the

IO data for modules. The created memory space and access to it is illustrated on 4.9.

Figure 4.9: IO application memory

When the modules are succesfully initialized, we can see 4.10 on the output console.

Figure 4.10: Plugging of IO modules

4.1.2.3 SDAI Data Exchange

After all the modules are succesfully plugged in, we call plugging for a special type of

module, by which we are telling the stack that we are done plugging modules

sdai_plug_unit (SDAI_UNIT_TYPE_PLUGGING_COMPLETE ,0, 0, &DummyId, NULL);
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Figure 4.11: SDAI data exchange

Now the device is ready to exchange cyclic and acyclic data, alarms and PROFInet

data through the network. There are 4 important functions from SDAI API that provide

access to the IO data exchange:

U8 sdai_get_data (U32 Id, U8* pStatus, U8* pData)

U8 sdai_set_data (U32 Id, U8 Status, const U8* pData)

WriteReqCbk

ReadReqCbk

While the first two are called by the application, the other two being pointers to funtions

called by stack when respective event occurs. The functions are assigned to pointers dur-

ing SDAI initialization 4.1.2.2.

In the demo application when controller changes the value of the output (which represents

setpoint for the motor speed), callback function DataCbk signals the application that the

output data value has changed. The application reacts by reading respective data from the

sdai data space (by calling sdai get data) and stores them as a setpoint for the PXMC mo-

tor position (in the testing application).

On the other hand when the value of the input data changes, in our case the quadrature

encoder position, the testing application calls sdai set data to write the input data to the

stack data space, from where it is cyclicaly transfered to the controller.

Write request and read request are callbacks for acyclic data exchange, it allows the

controller to read and write various parameters stored in the device. Those parameteres

are application specific and are standardized for devices compliant with PROFIdrive

profile specification.
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4.1.2.4 Main Application

Main application is initialized and started in demo platform.c, where main() function is

located. The main loop implementation itself is the in the demo.c file. As the base for the

application was used the application provided with SDAI stack [20], as it provides a lot

of useful structures and sdai function wrappers which can be easily tailored to the applica-

tions needs.

In the demo platform.c the LCD access is initialized, the fieldbus processor is restarted

and two periodic timers are started to trigger NIOS II interrupts. One of them is period-

ical interrupt timer, this is used for application to detect some external events (buttons

pressed and so on). The second one is timer for PXMC motion control. Since both doesn’t

require less then 1ms interval, they can be started using Altera HAL API, without the

need to trigger the interrupts by harware interrupt generator. 1ms is one tick of the Altera

HAL clock. For periodic application interrupt we choose 10ms and for PXMC 1ms. If the

motion control needed lower step size, it would require us employ interrupt generator in

the hardware.

Internal Communication

Internal communication is preserved from the demo application delivered with [20]. That

is the events like callbacks are detected in the demo.c and stored as a particular event

into shared variable between demo.c and demo platform.c. In the main loop the shared

variable is examined for various events and appropriate actions are taken. Events that

can occur are:

EVENT OUTPUT DATA CHANGED is set in callback function for output data

change.

EVENT IDENT DATA CHANGED is set in callback function for identification

data change.

EVENT WRITE IND RECEIVED is set when write request from controller is re-

ceived.

EVENT READ IND RECEIVED is set when read request from controller is re-

ceived.

EVENT CONTROL IND RECEIVED is set when control request is received from

controller.
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EVENT CYCLIC TIMER is triggered every 10ms to allow processing of other than

stack information.

Motor control from board

Mainly for the testing purposes there was created interface to control and observe the mo-

tor from the Altera board. This required some changes in both hardware and software de-

sign.

All 3 PWM outputs can be enabled or disabled using the switch buttons on the al-

tera board. The LCD printout can switch between the stack information (ip address,

connection status) and the motor information (encoder value, PXMC status). The but-

tons can be used to increase/decrease speed of the motor or to move the motor position.

Speed of the motor (values fed into PXMC functions) is shown on 7-segment display.

4.2 PXMC

PXMC was used as a library for motion control. It’s succesful deployment to various hard-

ware platforms is described in [12][13][16]. Now we needed to port the library onto NIOS II

processor.

Overview of the PXMC functionality is provided on the figure 4.12.

C core DC motor

IRC

Figure 4.12: PXMC schema

pxmc do inp is a pointer to a function that is responsible for update of pxmc ap-pxmc

actual positon and pxmc as-pxmc actual speed values.

pxmc do gen is a trajectory generator. We don’t use it in our application.

pxmc do con is a pointer to a position controller which computes pxmc ene.
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pxmc do out is an output generator that translates pxmc ene into PWM signal.

In general scenario there is a feedback loop, where inputs are the date from IRC-

Incrementary Rotary Encoder and motor and output is the PWM-Pulse Width Modu-

lated signal to control the motor. The other parts of the schema are PXMC specific ob-

jects

Discrete control should be run with step intervals around 1ms or less. The execution

of PXMC control loop is then handled by pxmc sfr isr which must be regist as an in-

terrupt handler for an interrupt timer. This is started after pxmc initialization and

it handles the execution of pxmc do inp, pxmc do out and other necessary functions.

It is important to note, that during running of pxmc sfr isr the process shouldn’t be in-

terrupted since it can influence the functionality greatly. This can be achieved either by

defining atomic operation on a processor level or by disabling interrupts during PXMC

execution. This will be described in 4.2.2.

4.2.1 Hardware design

In this section we will describe how the hardware had to be adjusted in order for the device

to be used with a motor. For the motion control application we had a motor adaptation

circuit made. This circuit was created during the application development, therefore we

could discuss the solution with circuit designers during development on Altera board.

After considering the interface available on the board, we decided to use 40-pin GPIO

connector on the board. Assigned signals to GPIO ports as described in [14] are shown

in the following table:

The pinout on the circuit between the board and the motor was designed in a way

that it allow connecting 2 motors to 1 Altera board. It would be done by connecting

another adaptation circuit into series to the first one and each adaptation board would

have 1 motor connected. On the side of altera board, only minor change would be needed

by adding the second set of the signals to the FPGA design and wire them to appropriate

pins. Circuit wiring to allow connect adaptation boards into series is shown on the 4.13
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Pin Name Purpose Direction

GPIO2 axis0 pwm0 Output

GPIO6 axis0 pwm1 Output

GPIO6 axis0 pwm2 Output

GPIO0 axis0 pwm0En Output

GPIO4 axis0 pwm1En Output

GPIO8 axis0 pwm2En Output

GPIO12 axis0 pwm0St Input

GPIO14 axis0 pwm1St Input

GPIO16 axis0 pwm2St Input

GPIO30 axis0 hal0 Input

GPIO32 axis0 hal1 Input

GPIO34 axis0 hal2 Input

GPIO24 axis0 irc cnt chA Input

GPIO26 axis0 irc cnt chB Input

GPIO28 axis0 irc index Input

Table 4.1: Pin assignment for PXMC motion control

Figure 4.13: Wire crossing to connect boards into series
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4.2.2 Software design

As for the software design for PXMC integration, the following steps were necessary. First

to chose the functions from PXMC we need to use and get the source files for them. After

that create pxmc nios ink.c where the board specific PXMC top level calls are imple-

mented. That is mainly to use address space that was created after compilation of hard-

ware from 4.1.1.

As a base was used the source code from the LX ROCON project developed by PiKRON

for motion control. We used hardware independent PXMC files for initialization, input

reading, output generation and HAL sensor align to the motor position. In the hardware

specific file we put the addresses to read the inputs from the quadrature decode hardware

block and write outputs to the PWM generator block.

It was necessary to ensure that during every call to the PXMC routine, all reads and

writes will be atomic processor calls. Since the NIOS II processor doesn’t support atomic

operations [8], we ensured atomicity by disabling all interupts before PXMC routine

started and allowing them again after routine ended. For this we used Altera HAL API

function

InterruptContext = alt_irq_disable_all ();

alt_irq_enable_all (InterruptContext);

4.3 PROFIdrive

PROFIdrive profile specification defines set of rules, modules and objects that take part

in a motion control via PROFInet network. Those are implemented on top of the

stack, using it’s functions and therefore don’t require intervention to networking stack.

Specification of the PROFIdrive is in [11] and as a code base was used the PROFIdrive

community project from Hilscher [22]. Main ares into which the PROFIdrive can be

decomposed are

Base model Describes the devices in a PROFIdrive application

Cyclic data exchange

Acyclic data exchange
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Mapping of the both communication types from PROFInet to PROFIdrive model is

shown on 4.15.

PN Controller

Peri

Alarms

Response

Parameter 

Access

Input Output 

IO Data

Space

Setpoin

Application

IO Data

ControlIndication

Peri ntrol

Parameter

Manager

Figure 4.14: PROFIdrive mapping to profinet IO

Base model distingueshes between 3 types of devices: Controller, P-Device, Supervi-

sor.

Controller is a host for the overall automation. It is controlling device connected to 1

or more axis.

PDevice is a field peripheral device.

Supervisor is engineering device for supervision.

The P-Device, which is most important for us is composed from 1 or more Drive Units,

each composed of 1 or more Drive Objects. Each object is using PROFInet networking
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services independently of other DOs.

PN Controller
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Figure 4.15: PROFIdrive mapping to profinet IO

Applications are sorted into Application Classes according to needed functionality

and complexity. PROFIdrive classes are:

AP1 - Standard drive

AP2 - Standard drive with distributed controller technology

AP3 - Single axis positioning drive with local motion control

AP4 - Motion control with central interpoaltion and speed setpoint interface

For the simple application in our setup, we might use AP1 or AP3. For using central

interpolation, provided by some PROFIdrive controllers, we would need to use AP4 and



4.3. PROFIDRIVE 49

PROFInet IRT mode since the interpolation on multiple axis requires tight synchroniza-

tion of the drives.

For the time synchronization will be used the network clock as a base. PROFInet IRT

specification and Precision Time Control Protocol(PTCP) used to sychronize the device

clocks with master clock ensure tight synchronization of the devices. PTCP takes care

of synchronizing the clock in the mean of jitter and deviation, that those cannot rise too

high. PROFInet IRT phases computation that ensures that IRT Red phase ends and

starts at exaclty the same time. On the 4.16 we can se how this is used in order to

synchronize the axis in multiaxis application with tight synchronization demands.

PD Param Manager P��C D���� �����f	
�

Application

D���
 P����
	� D����

Send Clock

Red Phase Red Phase

TimeToOutput

TimeToInput

RedPhaseEndDetection

NewSetpoints

O����� �� �� ���
��

G����	��O����t

ReadOutputReq

ReadOutputRsp

ReadInput

D�
��� �	�ues

Proce��s	���s

����������

Figure 4.16: PROFIdrive cyclic communication

After the red phase ends, it is certain that all the devices has aquired new data. After

some delay called Time To Output all the devices should apply the values to the axis.

Time To Output is the time that takes the slowest device to write it’s outputs and each

device should modify the value according to it’s own Time To Output. At least Time To

Input time before the next Red phase starts, all the devices should write their inputs to the

stack for transmission in order to ensure the data will be delivered in the next network cy-

cle.

In our application the detection of the Red phase start could by done by wiring the
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signals from the FPGA to the application respectively creating a callback functions for

the signal. The signal switch signal 31 25us base clk is reset according to the Send cycle

of the network and can be use for the purpose, but we didn’t implement the functionality

in the current state of the application.

Profile describes some standard data sets that are being exchanged between devices

for particular appliation purposes. Those data sets are called Standard Telegrams.

4.3.1 Module specifications

The profile defines some values for the PROFInet modules that must be used. For example

every module used as PROFIdrive module must provide parameter access to the controller

and this must be done via Parameter Access Point (PAP) being as submodule 0 of each

module (This made impossible to use the first version of SDAI stack we had, as there only

subslot 0 could be used. There we would have only all PAP modules, or vialoate this rule).

Then the IO specific submodules are plugged.

Profile defines as well the API=14848 to be used with the devices and defines the module

and submodule identification numbers. In our application we used Standard Telegram 6

as it defines IO for single axis 1 setpoint write and read. The module that we created is

therefore composed of:

submodule0 : PAP with submodule number being 0x0000FFFF as defined by specifi-

cation.

submodule1 : Telegram 6 module with 28 bits input and 20 bits output and submodule

number 0x10000006 as defined by the specification for telegram 6 submodule.

We can see succesfull plugging of the IO module for Parameter access and Standard

telegram 6 on the 4.17.
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Figure 4.17: Debug output telegram 6 modules

4.3.2 Parameter model

A parameter represents an information memory that stores parameter value, parameter

description and text as described in [11].

value contains simplified data representation of a value.

description contains information such as identifier, number of array elements, standard-

ization factor.

text additional text.

Mapping of parameter read and parameter write to the PROFInet stack is described on

4.18 and 4.19. As a base for PROFIdrive source code was used [22].
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Figure 4.18: PROFIdrive read parameter request

First the application receives the callback from the stack, signalizing parameter read

or parameter write request. The data are taken from the stack memory space and passed

to the PROFIdrive Parameter Manager who then passes it to the PROFIdrive Object Dic-

tionary. Dictionary serves as a memory space for the data while the parameter manager

provides services to access the data.
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Figure 4.19: PROFIdrive write parameter request

4.4 Testing

At the first stages of development, we tried to test the functionality as isolated as pos-

sible. That is to isolate the PXMC, SDAI and PROFIdrive. When we verified the

individual application parts we could move to test the whole PROFIdrive application

with PROFIdrive profile tester.

4.4.1 PLC

For the testing of connection between the device and the controller, we created simple

PROFInet IO network project in Step7 and modified/monitor the remote IO modules.

Simple network with our device and Simatic CPU 315 is on the figure 4.20.
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Figure 4.20: Step7 network configuration

We used this setup with 16bit input and 16bit output modules plugged in to see

wheter the values get updated on the device side and on the controller side respectively.

When this proved to be working, we considered the stack working.

4.4.2 PROFIdrive Profile Tester

For the more complex testing we intended to use PROFIdrive profile tester with CP1616

PCI ethernet card from Siemens. The card can be used as a controller device in a

PROFInet IO network. After connecting the device to the card and running the profile

tester we were unable to establish connection though. Therefore we connected the packet

sniffer in between to observe the communication with the Wireshark.

First let’s see how succesful connection establishment looks in 4.21
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Figure 4.21: Application Relation establishment with 8bit input module

The controller sends Connect Request message with expected modules listed in the

message. The device compares that with own internal module configuration and sends the

Connect Response. When the modules match, no ModuleDiffBlock is part of the response.

In our application though, using PROFIdrive API 14848, ModuleDiffBlock is part of

the response and therefore making the connection unable to establish. On the figures

4.22 and 4.23 we can see that the device replies with ModuleDiffBlock saying that

for the required API and respective modules and submodules there are no modules.

This was later recognized as a bug from Softing and was being fixed for the new release.

But the bug made the testing with PROFIdrive profile tester impossible with the current

release.
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Figure 4.22: Expected modules from PLC

Figure 4.23: Expected modules response from board
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Conclusion

We developed a device for the motion control capable of communication in the PROFInet

IO network. The device is based on Altera FPGA board DE2-115. In order to achieve

this, we had ported PXMC library onto the NIOS II hardware platform. Porting PXMC

onto new hardware platform required to create necessary FPGA hardware blocks for mo-

tion control which were PWM generator and quadrature decoder. Then the software layer

between PXMC generic functions and board specific functions was implemented. Using

PXMC for local motion control was part of a solution in [12][13][16]. We continued in their

work by implementing the library to new hardware platform and using it for a remote mo-

tion control via industrial ethernet network.

To implement PROFInet IO functionality, we used the SDAI PROFInet stack for Altera

FPGA. We did the enhancements to the hardware design to allow motion control and to

connect the motor. Than we connected the stack software functions with the motion con-

trol library in the demo application to test the basic functionality. We implemented part

of the PROFIdrive profile specification, namely Parameter Manager on top of the stack.

As a basis we used PROFIdrive community source code from Hilscher, did modifications

in order to use it in a new hardware platform and integrated it into our design. For the

basic motion control with PROFIdrive controller we created new IO module based on

PROFIdrive standard Telegram 6 for simple 1 axis motor. As a necessary part of that we

developed a GSDML description of the module for integration with standard PROFInet

IO tools.

During the development we encountered few bugs in the PROFInet stack like unavail-

ability to use arbitrary slots and subslots for the modules or the unavailability to use

PROFIdrive API (Application Process Identifier) for the data exchange.

This together with waiting for the bug fixes and consecutive implementing of the func-
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tionality for the new PROFInet stack version greatly slowed the development. We were

not able to test any of the PROFIdrive functionality because this unavailability was in a

oposition with PROFIdrive profile specification requirements. There were as well trou-

bles with the firmware and driver version of the CP1616 card and the version of the

PROFIdrive profile tester. This incompatibility between versions we managed to over-

come but the results of the testing couldn’t be taken as a prove of function/disfunction.

Therefore in the end we mapped the way how to use the respective PROFIdrive functions

in our application in order to finish the PROFIdrive compliant IRT application but were

not able to test it ourselves. Except for module specification for standard telegram 6 we

weren’t able to implement any of the cyclic data exchange specification from PROFIdrive

such as application or controller state machine. The main benefit of the work is in the

combining the motion control with PROFInet IRT stack and mapping the PROFIdrive

profile to this particular PROFInet device with partial development of the PROFIdrive

functionality. Since such a projects for PROFIdrive and industrial ethernet motion con-

trol in general are usually proprietary solutions with fixed functionality, this can serve as

a starting platform for custom PROFIdrive/PROFInet IRT motion control applications.

,
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APPENDIX A

Contents of the CD

To the thesis is enclosed the CD with the following items.

• DP.pdf - Diploma thesis in PDF format.

• project.zip - Compressed project source files.
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