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Abstrakt:

Tato bakalářská práce je zaměřena na změnu vstupńıho signálu řidiče z volantu

pro źıskáńı žádoućıch ř́ıd́ıćıch úhl̊u na předńı a zadńı kola ke zlepšeńı manévrovatelnosti

auta. Jsou zde diskutovány dvě implementované metody z automobilového pr̊umyslu a

vědy. Následně jsou obě otestovány na nedotáčivých a přetáčivých autech stejně jako

na nově navržených řešeńıch, které jsou odvozeny na jedno stopém modelu během této

práce. Veškeré testováńı j́ızdy je provedeno na dvou stopém modelu.

Kĺıčová slova: Regulátor, Pacejka Magic Formula, Jednostopý model, Dvoustopý

model, Steer-by-wire, Přetáčivé a nedotáčivé auto, Sledováńı stáčivé rychlosti, Čtyř-

kolový ř́ıd́ıćı systém, Poloměr otáčeńı, Střed otáčeńı.

Abstract:

This bachelor thesis is focused on altering the driver’s input from the steering

wheel to get desired steering angles on both front and rear wheels to increase the

vehicle’s maneuverability. It is discussing two already implemented methods from the

automotive industry and automotive science. Then, both are tested on understeering

and oversteering car’s setups as well as new proposed solutions that are derived on a

single-track model during this work. All ride-tests are done on provided twin-track

model.

Keywords: Controller, Pacejka Magic Formula, Single-track, Twin-track, Steer-by-

wire, Oversteering and understeering car, Yaw rate tracking, Four-wheel steering sys-

tem, Turning radius and center.
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1. Introduction

Nowadays, many cars are made with Steer-by-wire technology, meaning that ve-

hicle can be controlled only by electric or electric-mechanical systems instead of just

conventional mechanical systems. As a result, it is possible to alter drivers steering

wheel input completely and change it to one that is the best in a given situation and

thus benefits both driver and car.

Furthermore, such technology can be used for the implementation of a four-wheel

steering system. The immediate benefits are:

• Stability - The four-wheel steering system is more stable to changes of weather

conditions or terrain where rear wheels are capable of compensating such insta-

bilities.

• Smaller Turns – If rear wheels are pointed in the opposite direction than front

wheels, vehicles turning radius is smaller and such capable of making the same

turns with less effort and less considerable space requirements.

• Double Lane Change – Vehicles with four-wheel steering system are capable of

”crab walk” between lanes when both steering angles are pointed in the same

direction in front and rear wheels, thus making maneuver faster and smoother.

• Smoother Steering – Due to rear wheels helping in cornering maneuvers, cars

have better and faster response to drivers input from the steering wheel.

• Redundancy - When front axle of the car is inresponsive due to failure, vehicle

can be still controlled by wheels on rear axle.

• Better Terrain Performance – When front wheels are stuck, rear wheels are capa-

ble of forcing car out and helping it to climb steeper terrain.

On the other hand, disadvantages are almost none. Some are expressed in the

higher vulnerability of a system because of complicated installments and increased

manufacturing cost due to the increased number of components needed. The main

problem is developing control algorithms, which must exist as a layer between driver’s

controllers (pedals and steering wheel) and real actuators (motors and servos). The

idea of the considered system that is completely stable and safe, which is possible with

the right controller, can help in the development of better self-driving cars and finally

put down any dangers of car accidents.

Even though, some solutions of four-wheel steering cars already exist, there is still

no final solution. That is why some of them are going to be discussed with new proposed

concepts. See outline below.
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1.1 Outline

The thesis is dived into eleven parts.

Firstly, the [Introduction] introduces the reader to the topic and outlines the

whole work.

Secondly, the [Objectives] highlights assigments.

Next, [State of the art] and history of the four-wheel steering system will be dis-

cussed and already implemented solutions mentioned.

In the chapter [Used modeling approaches], the model of a car is derived, and

it’s difference to twin-track mentioned.

In the chapter [Robust decouplind] and [Rear wheel steer angle control sys-

tem], already proposed concepts are evaluated and derived for the used model in [Used

modeling approaches].

Additionally, the chapter [Influence of Pacejka coefficients on behavior of a

vehicle] is discussing the dependency of Pacejka coefficients on oversteering and un-

dersteering tendency of a car.

Chapter [Proposed solutions] shows proposed control systems with controller and

their derivation.

Simulation results are shown in [Simlutation ride tests], simulated on the twin-

track model and compared to each other.

Fullfilled objectives are listed in [Results].

Results of tests and work are summarized in chapter [Conclusion].
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2. Objectives

The objectives of this work are:

1. Adopt a single-track model.

2. Discuss the pros and cons of 4WS cars in comparison to conventional 2WS vehi-

cles.

3. Review control solutions of yaw stabilization applied in the automotive indus-

try (Audi, Porsche, Mazda, etc.) and yaw control algorithms published in the

literature.

4. Implement suitable hierarchical control approaches from the literature.

5. Suggest control methods improvements based on outcomes from point 3 and im-

plement such augmentations.

6. Provide validation and comparison of developed control systems.
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3. State of the art

The beginnings of an ideology of four-wheel steering vehicle can be traced back to

the year 1903 when first steam cars with the steered rear axle were produced. However,

at that time, technology has not been able to support such systems yet. Then, the army

took over and started implementing it during the First and the Second World Wars.

The system was used for supply trucks improving their maneuverability and stability

in difficult terrains and weather conditions. The renascence of 4WS came after the

war in the 1960s where first road cars with that technology were manufactured. Many

4WS vehicles were sold in the U.S., Europe, and Australia because of their superior

steering capabilities. Nevertheless, 4WS was almost entirely made of mechanical or

semi-mechanical parts, which make a steering system very complicated and make cars

even heavier and thus increasing their fuel consumption, leading to a decline in de-

mand. However, with the arrival of new technologies, mainly Steer-by-wire technology,

implementation of 4WS weights less and can be implemented into a conventional car

without any difficulty.

There are already many companies like Audi, BMW, Nissan, and Toyota interested

in such systems. Nowadays, the focus is on developing a 4WS car with a feedback

control capable of steering a car along a predefined by driver’s steering wheel path in

such a way that the primary objective of the control law is focusing on tracking the

driver’s intended vehicle behavior and keep a car in the stable states of the system.

Some solutions are already published. For instance, a predefined gain transformation

between the rotation of rear wheels in the opposite or in the same direction as front

wheels can be seen in [11]. Here, a desired rear wheel’s steering angle is determined

through state machine with a set of rules dependent on velocity and front wheels steer-

ing angle. Another implementation is logical switching mechanism between 2WS and

4WS discussed in [12], where the switching itself may be made by the driver or a con-

troller with predefined values or based on outer parameters. Nissan company has made

rear wheel steering in addition to the front without feedback where scaling is dependent

only on velocity and front steering angle and is discussed in [Rear wheel steer an-

gle control system]. In addition, the driving envelope, which defines stability state

boundaries between maximum and minimum peaks of lateral forces dependent on tyre

slip angles and thus providing one solution to the problem of spinning of the car, is

depicted in [13]. The envelop itself is numerically calculated from tyre slip angles. In

picture [3.1] is observed that driving envelop bounds are significantly increased with

bigger rotational limits of δr angle.

In comparison to the industrial solutions, there were science teams which were trying

to implement solutions based on the understanding of the vehicle dynamics and control

theory. One of the group was headed by Jürgen Ackermann. One of their solutions will

be discussed in chapter [Robust decoupling] and chapter [Simlutation ride tests].

More about Steer-by-wire and advantages and disadvantages of 4WS can be found in

chapter [Introduction].
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Figure 3.1: Comparison of the driving envelope for 2WS and 4WS vehicle from [13]
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4. Used modeling approaches

4.1 Single-track

In this chapter, the model that is used throughout this work is derived, and it’s

linearized form is written down.

4.1.1 Forces and moments

First of all, the following assumptions are made:

• The forces and angles are the same on both front wheels and rear wheels of a

vehicle.

• The position of a car can be described with one point named center of gravity

(CG) which has no roll or pitch moment.

• The yaw moment direction is upwards (e.g., from the road to a car).

• The front wheels are lumped together into one which is in the center line of a car

(e.g., the new wheel has the same distance between the left and right wheel and

so is in the center). Same for rear wheels.

• The mass distribution is solid and that implies m = mf +mr where m is mass of a

car concentrated at CG, mf and mr are masses of front and rear axle respectively.

x y

z

ψ
.

Figure 4.1: Vehicle coordinates system of a car with yaw motion ψ̇
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Fyf

Fxf

Fy

Fx

vf

vr

→ →

→

lr lf

CG ψ
.

Figure 4.2: Single-track model of coordinates system in [4.1]

Now, the basic equations describing modeled system are derived. From picture [4.2] is

clear that velocity

v2 = v2x + v2y , (4.1)

vx = v · cos(β) , (4.2)

vy = v · sin(β) , (4.3)

where v is velocity of car, β is the side slip angle and vx and vy are velocities in given

axis. From the second fundamental law of motion by Sir Issac Newton also goes

Fx = ax ·m , (4.4)

Fy = ay ·m , (4.5)

where m is mass of vehicle, ax and ay are accelerations and Fx and Fy are forces in

given axis. The formula v̇ = a is valid. Once (4.4) and (4.5) are fit and with usage of

(4.2) and (4.3) respectively the derivation derives following:

Fx = m · v̇ · cos(β)−m · v · sin(β) · (β̇ + ψ̇) , (4.6)

Fy = m · v̇ · sin(β) +m · v · cos(β) · (β̇ + ψ̇) , (4.7)

where ψ̇ = r is derivation of yaw angle that was not negleted (via assumptions above)

and so needs to be included.

The last equation is for self-aligning torque around vertical z -axis:

J · ψ̈ = Mz , (4.8)

where J is moment of inertia and Mz is moment acting around the z -axis. To get forces

acting on the front and rear wheel, the coordinate tranformation was used. From picture

[4.2] is clear that forces Fx and Fy are sum of forces acting on the rear and front wheels

9



(e.g., Fxf , Fxr and Fyf , Fyr respectively) where forces on the wheels are rotated by

steering angles δf and δr using rotational matrices as:[
Fx

Fy

]
=

[
cos(δf ) − sin(δf )

sin(δf ) cos(δf )

]
·

[
Fxf

Fyf

]

+

[
cos(δr) − sin(δr)

sin(δr) cos(δr)

]
·

[
Fxr

Fyr

]
. (4.9)

The moment Mz is dependent on Fy where the front wheel has δf angle aligned with

the direction of ψ̇ and the rear wheel has δr not because it’s direction is opposite to ψ̇

as seen in [4.2].

Mz = lf · sin(δf ) · Fxf + lf · cos(δf ) · Fyf − lr · sin(δr) · Fxr − lr · cos(δr) · Fyr , (4.10)

where lf is distance between front axle and CG and lr is distance between rear axle

and CG.

4.1.2 Tyre slip angles

Tyre slip angles are defined as angle between velocity vector to given axle coordi-

nate system of Fxf and Fyf for the front wheel as

αf = arctan

(
vyf
vxf

)
, (4.11)

where vxf and vyf are components of velocity vector vf which is indicating direction and

velocity of the front wheel. These components can be translated to vehicles coordinate

system using the following coordinate transformation[
vx

vy

]
=

[
cos(δf ) − sin(δf )

sin(δf ) cos(δf )

]
·

[
vxf

vyf

]
. (4.12)

Rotational matrix is orthogonal and so it’s inverse is it’s transpose and with

vx = v · cos(β) , (4.13)

vy = v · sin(β) + lf · ψ̇ , (4.14)

where a member lf · ψ̇ is on account of yaw rate influence on lateral velocity, implying[
vxf

vyf

]
=

[
cos(δf ) sin(δf )

− sin(δf ) cos(δf )

]
·

[
v · cos(β)

v · sin(β) + lf · ψ̇

]
. (4.15)
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The same process applies for the rear tyre slip angle αr but member lr · ψ̇ has to be

subtracted (via picture [4.2]). Finally, the following equations are derived

αf = − arctan

(
(v · sin(β) + lf · ψ̇) · cos(δf )− v · cos(β) · sin(δf )

|(v · sin(β) + lf · ψ̇) · sin(δf ) + v · cos(β) · cos(δf ))|

)
, (4.16)

αr = − arctan

(
(v · sin(β)− lr · ψ̇) · cos(δr)− v · cos(β) · sin(δr)

|(v · sin(β)− lr · ψ̇) · sin(δr) + v · cos(β) · cos(δr))|

)
, (4.17)

where absolute value in the denominator is present to handle singularities. Now, with

(4.16) and (4.17) lateral forces acting on the wheels can be calculated using Pacejka

Magic Formula.

4.1.3 Slip ratios

The formula for slip ratios is adopted from [7]. Slip ratios are depicted as difference

between vxf (defined above) of the vehicle and circumferential velocity vcf of a tyre for

the front axle. Circumferential velocity is calculated as

vcf = ωf ·Rf , (4.18)

where ωf is angular velocity of a given wheel and Ri is its radius. The same goes for

the rear wheel. With that, slip ratios are defined as follows

λf =
vcf − vxf

max(|vcf |, |vxf |)
, (4.19)

λr =
vcr − vxr

max(|vcr|, |vxr|)
, (4.20)

−1 ≤ λi ≤ 1 , (4.21)

where absolute value is present to ensure that denominator will normalize numerator.

Also, λi cannot be smaller than −1 or bigger than 1 (via condition (4.21)).

4.1.4 Wheel angular velocity

For enumeration of angular velocities ωf and ωr, the formula of it’s angular accel-

eration from [2] is chosen

Jf · ω̇f = τf −Rf · Fxf − sign(ωf ) · τBf − kf · vxf , (4.22)

Jr · ω̇r = τr −Rr · Fxr − sign(ωr) · τBr − kr · vxr , (4.23)

where Jf and Jr are moments of inertia of respected wheel around its y-axis, kf and kr

are coefficients of road drag for the given wheel, τf and τr are drive torques applied by

drivetrain on the given wheel and τBf and τBr are brake torques applied by brakes on

the given wheel. Member ki · vxi has been added for account of dissipative force acting

on the wheel.
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4.1.5 Tyre dynamics

This section is going throught calculation of Fxf , Fxr, Fyf and Fyr. It is one of the

most important aspects of the model and so there are many kinds of calculations. The

comparison of such techniques can be found in [7]. Pacejka Magic Formula is taken

from [6] and calculates all torques and forces acting on the tyre. For simplification,

the simplified Pacejka Magic Formula is used which has less coefficients and is easier

to understand and manage.

4.1.5.1 Simplified Pacejka Magic Formula

Simplified Pacejka Magic Formula has only one formula

Fxi,yi(θi) = Fzi ·D · sin(C · arctan(B · θi − E · (B · θi − arctan(B · θi)))) , (4.24)

where i represents both front and rear, θi is αi, when computing lateral forces Fyf

and Fyr, and λi, when calculating longitudinal forces Fxf and Fxr, and Fzi is force of

the load acting on given wheel. The form of Fxi,yi curve across different θi values is

dependent on coefficients:

• D = peak value of the curve,

• C = shape of peak value,

• B = stiffness,

• E = curvature.

The values, that were used, are in table [4.2] and [4.1] for angles θi in radians where

i stands for rear and front. The reason for slightly different coefficients between cal-

culating of the rear and front wheel lateral forces is for change of understeering and

oversteering behavior of the car (see more in chapter [Influence of Pacejka coeffi-

cients on behavior of a vehicle]). The curves of individual lateral and longitudinal

forces for the front and the rear are depicted below for given vertical load forces Fzi

where wheel load force Fzf = 5297 N and Fzr = 6377 N is used in the model.

Fxi Fyf Fyr

D 1 1 1

C 1.4 1.45 1.35

B 4 10 9

E 0.1 0.1 0.1

Table 4.1: Used coefficients for simplified Pacejka Magic Formula for the oversteering
behavior of the car
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Fxi Fyf Fyr

D 1 1 1

C 1.4 1.45 1.55

B 4 10 12

E 0.1 0.1 0.15

Table 4.2: Used coefficients for simplified Pacejka Magic Formula for the understeering
behavior of the car
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Figure 4.4: Longitudinal force Fxr dependent on slip ratio λr computed by simplified
Pacejka Magic formula with coefficients from [4.2]

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−6,000

−4,000

−2,000

0

2,000

4,000

6,000

Tyre slip angle αf [-]

L
at

er
al

fo
rc

e
F
y
f

[N
]

Graph of front lateral force

Fz = 5297 N
Fz = 5000 N
Fz = 4000 N
Fz = 3000 N
Fz = 2000 N
Fz = 1000 N

Figure 4.5: Lateral force Fyf dependent on tyre slip angle αr computed by simplified
Pacejka Magic formula with coefficients from [4.2]
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Figure 4.6: Lateral force Fyr dependent on tyre slip angle αr computed by simplified
Pacejka Magic formula with coefficients from [4.2] and [4.1]
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4.1.5.2 Traction ellipse

Forces Fx and Fy should not be greater than wheel-load force Fzi acting on the

given wheel. However, Pacejka Magic Formula has not got such condition and so

traction ellipse is used (also friction ellipse) to scale computed forces. This idea is

explained in formula √
F 2
xf

D2
x

+
F 2
yf

D2
y

= µ · Fzf , (4.25)√
F 2
xr

D2
x

+
F 2
yr

D2
y

= µ · Fzr , (4.26)

where Dx is coeffient for calculating force Fxi and Dy is coeffient for calculating force Fyi

in simplified Pacejka Magic Formula in table [4.2] and µ is friction coefficient between

road and tyre, and in picture [4.7] below.

Fx

Fy

Fz

Fx,max

Fy,max

TractionBraking

Figure 4.7: Graphical interpretation of traction ellipse

The scaling method is adopted from [7]

γ = arccos

 |λi|√
λ2i + sin(αi)2

 , (4.27)

µxi,act =
Fxi,max
Fzi

, µyi,act =
Fyi,max
Fzi

, (4.28)

µxi,max = Dx , µyi,max = Dy , (4.29)

µx =
1√

µ−2x,act +
(

tan(γ)
µy,max

)2 , Fxi =

∣∣∣∣ µx
µx,act

∣∣∣∣ · Fxi,max , (4.30)

µy =
tan(γ)√

µ−2x,max +
(
tan(γ)
µy,act

)2 , Fyi =

∣∣∣∣ µy
µy,act

∣∣∣∣ · Fyi,max , (4.31)
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where i stands for front and rear, λi are slip ratios and αi are tyre slip angles from

respected wheel. The forces Fxi,max and Fyi,max are directly taken from formula (4.24).

4.1.6 Linearized model

Here, linerarized form of nonlinear equations above is derived. First, angles δf , δr

and β are assumed to be small which entail following

sin(x) ≈ x , cos(x) ≈ 1 , (4.32)

where their linear approximation around 0 is used. Then, the usage on (4.6), (4.7) and

(4.8) is implying

Fx = m · v̇ −m · v · β · (β̇ + ψ̇) , (4.33)

Fy = m · v̇ · β −m · v · (β̇ + ψ̇) , (4.34)

Mz = J · ψ̈ . (4.35)

Next, the velocity is assumed to be constant v̇ = 0. With that, formulas (4.33) and

(4.34) imply Fx = −β · Fy. Moreover, with condition β2 � 1:

Fy = m · v · (β̇ + ψ̇) , (4.36)

Mz = J · ψ̈ . (4.37)

With linearization of tyre slip angles (4.16) and (4.17) is derived as in [7]

αf = δf − β −
lf
v
· r , (4.38)

αr = δr − β +
lr
v
· r , (4.39)

where r = ψ̇. Now, force Fy and torque Mz is going to be derived. Nonlinear forces of

Fyf and Fyr can be linearized by constant named cornering stiffness cr and cf respec-

tively

Fyf = cf · αf , (4.40)

Fyr = cr · αr , (4.41)

where Fy = Fyf + Fyr. Because of the fact that the car goes with constant velocity

with small steering angles, the following simplifications can be applied

Fxf · δf ≈ 0 , (4.42)

Fxr · δr ≈ 0 , (4.43)

what with (4.9) and (4.10) gives following

Fy = cf · αf + cr · αr = cf · δf − cf · β − cf ·
lf
v
· r + cr · δr − cr · β + cr ·

lr
v
· r , (4.44)
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which equals to Fy = Fyf + Fyr. The same goes for torque

Mz = lf · cf · αf − lr · cr · αr . (4.45)

Finally, the final differential equations are written down as:

β̇ = −
cf + cr
m · v

· β +

(
lr · cr − lf · cf

m · v2
− 1

)
· r +

cf
m · v

· δf +
cr
m · v

· δr , (4.46)

ṙ =
lr · cr − lf · cf

J
· β −

l2f · cf + l2r · cr
J · v

· r +
lf · cf
J
· δf −

lr · cr
J
· δr , (4.47)

which in state-space form is equal to:

[
β̇

ṙ

]
=

 −
cf + cr
m · v

lr · cr − lf · cf
m · v2

− 1

lr · cr − lf · cf
J

−
l2f · cf + l2r · cr

J · v

 ·
[
β

r

]
+


cf
m · v

cr
m · v

lf · cf
J

− lr · cr
J

 ·[δf
δr

]
. (4.48)

4.2 Twin-track

All controllers are modeled on single-track system above. However, testing was done

mainly on the twin-track model provided by Bc. Vı́t Cibulka and Ing. Denis Efremov

from Faculty of Electrical Enegineering and so here only the differences with a single-

track model are listed.

4.2.1 States

The model is based on [2]. System itself have mainly 6 coordinate systems (CS). Inertial

earth-fixed and body-fixed in CG coordinate systems with 4 more for each wheel. There

are 16 states that include 3 for position of vehicle s in earth-fixed CS, 3 for velocity of

the car v in body fixed CS, 3 angular velocities of body of the vehicle ω in body-fixed

CS, 3 Euler angles φ, θ, ψ of earth-fixed CS and 4 wheel’s angular velocities in each

wheel’s CS respectively.

4.2.2 Tyre dynamics

Tyre dynamics were used the same as in [4.1.5].

4.2.3 Slip angles and ratios

Slip ratios are enumerated using the same equations but input velocities and tyre slip

angles are calculated in slightly different manner. For more detail see [2].

4.2.4 Wheel angular velocity

Wheel angular velocity is calculated like in [4.1.4] but the motor power and maximum

torque are limited.
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5. Robust decoupling

5.1 Model

This method is taken from [1] and was written by Jürger Ackermann. Presented

system is diveded into two: controller and steering dymamics. For steering dynamics

single-track model derived above is used. The controller is formed by three control

laws:

δ̇f = wf − r , (5.1)

wf = kS · (afref − af ) +
1

v
· af , (5.2)

δr =

(
kD −

l

v

)
· r + wr , (5.3)

where δf is steering angle for the front wheel and δr for the rear wheel, l = lf + lr

where lf is a distance of CG to the front axle and lr is s distance of CG to the rear

axle, r = ψ̇ is yaw rate, v is velocity, af is lateral accleration of the front axle and afref

is referenced lateral accleration for the front axle, kS and kD are tunable constants and

wf and wr are residual variables.

5.1.1 First control law

Formula (5.1) removes dependency of side slip angle β and of αf = δf −β−
lf ·r
v on

yaw rate r. With that, the controller is robust. Variable afref is chosen as reference.

It is possible to calculate it directly from angle δS from steering wheel with velocity

dependent gain kf (v) as

afref (t) = kf (v) · δS(t) , (5.4)

where

kf (v) =
l · cf · cr · v2

cf · cr · l2 +m · v2 · (cr · lr − cf · lf )
, (5.5)

where cf and cr are linerized cornernering stiffness coefficients of given wheels.

5.1.2 Second control law

Formula (5.2) removes dependency of tyre slip angle αf on velocity v. The non-

linear influence of Fyf and m can be tuned by high enough gain of kS . Ackermann

suggests value

kS = 30 · m · lr
cf · l

, (5.6)

because of limitations that human driver is restricted by, where m is mass of the vehicle

and cf is cornering stiffness coefficient of linerized system for front wheel.
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5.1.3 Third control law

Formula (5.3) defines yaw rate damper dependent on velocity v. Constant kD is

varying yaw rate damping variable. The wr variable is chosen to make the side slip

angle β the smallest and so it helps maneuverability of the car:

wr(s) = Fr(s, v) · afref (s) , (5.7)

where Fr(s, v) is transfer function described below

Fr(s, v) = kr(v) · 1 + T0(s) · s
[1 + T1(s) · s] · [1 + T2(s) · s]

, (5.8)

where

kr(v) =
m · lf · v2 − kD · l · cr · v + l · lf · cr

cr · v2 · l
, (5.9)

T0(v) =
−m · lr · lf · v

m · lf · v2 − kD · l · cr · v + l · lf · cr
, (5.10)

T1(w) =
m · lr

kS · cf · l
, (5.11)

T2(v) =
lf
v
. (5.12)

5.2 Method derivation

Now, the controller with equations from [Robust decoupling] by approach used

in [1] shall be derived. Firstly, the first control law in (5.1) is proven. By derivation of

αf = δf − β −
lf
v
· r (5.13)

with assumption that velocity is not time-variant and thus constant

α̇f = δ̇f− β̇−
lf
v
· ṙ = wf−r−

cf
m · v

·αf−
cr
m · v

·αr−
l2f · cf
v · J

·αf +
lf · cr · lr
v · J

·αr , (5.14)

which with simplification of J = m · lf · lr equals to

α̇f = wf −
cf
m · v

·
(
lf
lr

+ 1

)
· αf , (5.15)

where 1
lr

is extracted from brackets and simplifying (5.15) with l = lf + lr gives

α̇f = wf −
cf · l

m · v · lr
· αf , (5.16)

which is not directly dependent on yaw rate r or steering angles δf and δr.

Next, the second control law in (5.2) is proven. The front axle lateral acceleration
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is by second Newton law equals to

af =
1

mf
· Fyf (αf ) =

l

m · lr
· Fyf =

l · cf
m · lr

· αf . (5.17)

The substituting of (5.17) into formula (5.2) implies

wf = kS · afref −
kS · l · cf
m · lr

· αf +
l · cf

v ·m · lr
· αf (5.18)

and by substituting it into (5.16)

α̇f = kS · afref −
kS · cf · l
m · lr

· αf +
cf · l

v ·m · lr
· αf −

cf · l
m · v · lr

· αf , (5.19)

which is velocity independent.

Lastly, the controller and model is described by differential equations with non-

linerized tyre slip angles as

 β̇ṙ
δ̇f

 =



cf
m · v

cr
m · v

−1

cf · lf
J

−cr · lr
J

0

(1/v − kS) · l
m · lr

0 −1

 ·
αfαr
r

+

 0

0

kS

 · afref , (5.20)

where formulas (4.36), (4.37), (4.44) and (4.45) and J = m · lf · lr were used. The

rotational dynamics is subsystem of (5.20) formed by ṙ and δ̇f . The tyre slip angle αf is

expressed by (5.19) and so only αr has been linearized by formula αr = δr−δf+αf+ l
v ·r

to obtain

[
ṙ

δ̇f

]
=

− cr · l
v ·m · lr

cr
m · lf

−1 0

 · [ r
δf

]
−

 cr
m · lf

0

 · δr + ds(αf ) , (5.21)

where ds is the remainder (input from the subsystem)

ds =


− cr
m · lf

+
cf

m · lr
cf · (1/v − kS) · l

m · lr

 · αf +

[
0

kS

]
· afref . (5.22)

The damping can be computed from (5.21) with characteristic polynomial to be velocity

dependent as

D =
l

2 · v
. (5.23)

Therefore, the third control law (5.3) swaps l
v to kD by substracting it. The effect can

be seen in (5.21) where δr was substituded with (5.3).

Finally, the whole linearized system can be described by 5 differential equations in
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a state-space form as


β̇

ṙ

δ̇f

δ̇x

δ̇r

 =



−
cf + cr
m · v

lr · cr − lf · cf
m · v2

− 1 ...

lr · cr − lf · cf
J

−
l2f · cf + l2r · cr

v · J
...

cf · (lf + lr) · (−kS + 1/v)

m · v
cf · (lf + lr) · lf · (−kS + 1/v)

m · v2
− 1 ...

0 0 ...

0 0 ...
cf
m · v

0
cr
m · v

lf · cf
J

0 − lr · cr
J

cf · (lf + lr) · (−kS + 1/v)

m · v
0 0

0 −T3(v)/T4(v) −1

0 1/T4(v) 0


·


β

r

δf

δx

δr



+


0

0

kS

kr(v)− kr(v) · T0(v) · T3(v)/T4(v)

T0(v) · kr(v)/T4(v)

 · afref

, (5.24)

where

T3(v) = T1 + T2(v) , (5.25)

T4(v) = T1 · T2(v) , (5.26)

δx = T4(v) · δ̇r − T0(v) · kr(v) · afref (5.27)

are defined in equations (5.9), (5.10), (5.11) and (5.12).
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6. Rear wheel steer angle control

system

6.1 Model

This method is taken from [4]. It uses imaginary position of a point X on the car

axis to maneuver vehicle around. The front steering angle δf is unchanged. The focus

is on computation of δr from δf . The controller is derived with the same approach as

in [4] but using linearized equations of single-track model derived above. When l3 is

the distance from CG to point X then lateral velocity in X is equal to:

vXy = vy − l3 · r . (6.1)

The feedforward works in such a way that keeps condition vXy = 0 m·s−1 which implies

that vy of CG can be defined as:

vy = l3 · r . (6.2)

The form of the final transfer function is

G(s) =
δr
δf

=
K(v) + T1(v) · s

1 + T2(v) · s
, (6.3)

where

K(v) =
cf · (m · v2 · lf + cr · l · (l3 − lr))
cr · (m · v2 · lr + cf · l · (l3 + lf ))

, (6.4)

T1(v) =
cf · v · (m · lf · l3 − J)

cr · (m · v2 · lr + cf · l · (l3 + lf ))
, (6.5)

T2(v) =
v · (m · lr · l3 + J)

m · v2 · lr + cf · l · (l3 + lf )
. (6.6)

6.2 Method derivation

Formula (6.2) is inserted into (4.36), (4.44) and (4.45) where linearized form of

side slip angle β = sin
(vy
v

)
≈ vy

v and assumption that v̇ = 0 are used, which [4] did not

include, to get

Fy = m · v · (β̇ + r) , (6.7)

Fy = cf · δf − cf ·
l3
v
· r − cf ·

lf
v
· r + cr · δr − cr ·

l3
v
· r + cr ·

lr
v
· r , (6.8)

J · ṙ = lf · cf · δf − lf · cf ·
l3
v
· r − lf · cf ·

lf
v
· r

+ lr · cr · δr − lr · cr ·
l3
v
· r + lr · cr ·

lr
v
· r . (6.9)
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Here, δr is assumed that it can be described as δr = G(s)·δf and using Laplace tranform

the following simplifications can be obtained: β̇ ≈ s · β and ṙ ≈ s · r. Simple algebraic

adjustments give

r ·
(
s ·m · l3 +m · v + cf ·

l3
v

+ cf ·
lf
v

+ cr ·
l3
v
− cr ·

lr
v

)
= (cf + cr ·G(s)) · δf ,

(6.10)

r ·
(
s · J +m · v + cf · lf ·

l3
v

+ cf · lf ·
lf
v

+ cr · lr ·
l3
v
− cr · lr ·

lr
v

)
= (cf · lf

+ cr · lr ·G(s)) · δf
(6.11)

and put more simply:

A · r = (cf + cr ·G(s)) · δf , (6.12)

B · r = (cf · lf + cr · lr ·G(s)) · δf . (6.13)

Now, formula (6.12) has to be equal to (6.13) which can be evalueted with usage of

math logic as follows

A · (cf · lf + cr · lr ·G(s)) = B · (cf + cr ·G(s)) . (6.14)

The solution is

G(s) =
lf · cf ·A− cf ·B
lr · cr ·A+ cr ·B

, (6.15)

which is equal to result in [4] but with new assumption that acceleration of vehicle is

v̇ = 0.

6.3 Evaluation

Because there is no feedback from states of the model, controller does not change

dynamics of the system but only turning point and so the turning radius stays the

same. Therefore, there is no steering but only change up of steering angles according

to a given distance l3 and velocity v. The influence on sign of δr can be calculated from

δf =
K(v) + T1(v) · s

1 + T2(v) · s
· δf , (6.16)

where limit lims→0G(s) = K(v, l3) is taken. The graph of K(v, l3) is shown below
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Figure 6.1: Dependency of sign of δr on different velocities v and distance l3 where
negative δr is in cyan and positive in red for the understeering behavior of the car
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Figure 6.2: Dependency of sign of δr on different velocities v and distance l3 where
negative δr is in cyan and positive in red for the oversteering behavior of the car

where the distance l3 is limited from −lf to lr. As seen for turning point at front part
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of the car, the steering angle δr is negative to positive δf even for velocities around

20 m · s−1 and at back part is only around 6 m · s−1. When the turning point is in the

back section of the vehicle, the car tends to oversteer, meaning vehicle steers less than

an angle commanded by the driver within the steering wheel range. Because of that,

it is desirable only on low velocities. Moreover, the car with negative δr to positive

δf is capable of turning even more than a regular car with only δf steering. On the

other hand, when the turning point is in the front section, the car tends to understeer,

meaning vehicle steers less than angle commanded by the driver within the steering

wheel range, and so δr can be still negative to positive δf on higher velocities helping

to turn the car in sharp turns. However, for example, in double lane change maneuver,

the positive δr is better because it practically enables the car to perform ”crab walk”

between lanes.

There are several possibilities for feedback control. One is that the controller would

change distance l3 according to a deviation between critical velocity and velocity of the

car that would be shifted upward to the desired margin that would be between critical

velocity and real velocity of the car. Critical velocity is a value of the velocity in which

oversteering vehicle becomes unstable. It can be computed by a formula

vcrit = (lf + lr) ·
√

cf · cr
m · (cf · lf − lr · cr)

, (6.17)

which is derived in [10].

Understeering cars are already stable and so have no critical velocity in compare to

oversteering cars. Problem is that the rotational dynamics of the car are not changed,

as was mentioned above, and so the critical velocity is independent on a distance l3.

That can be achieved by manually subtracting and adding l3 to lf and lr in controller

to calculate new critical velocity. However, the stability of such a system is in question.

More in detail is discussed in [Simlutation ride tests].

6.4 Proposed control augmentation

The new system has the same transfer function (6.4) but individual parts have a time-

variant distance l3 that is computed using I-controller where I = 1 and which reference

is critical velocity calculated from the equation det(A(v) − λ) = 0 which is solved

for Re(λ) = 0 to find stability limit. Here, A3×3 is a state matrix, where the third

state is obtained from the transfer function (6.4), and has lr subtracted from l3 and lf

increased by l3. The solution of the equation det(A(v)) = 0 is critical velocity which is

the reference for I-controller. The control variable is v∗(t). It is calculated by equation

v∗ = v + s(v) where it is desirable to have value of s(v) low on lower velocities and as

high as possible on higher velocities. That is why, an exponential function is used

s(v) = 100− 100 · e−
v
10 . (6.18)
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The yaw rate tracking by PI-controller with coefficients P = 1 and I = 3 is used for the

front wheel steering angle. More about yaw rate tracking by PI-controller is described

in section [Yaw-rate tracking] and diagram for calculation of l3 distance is shown in

[6.3].

I-controller

1
L3	[m]

v
s

Velocity	Shift

I

Integral	Gain

v v_crit

Critical	Velocity
Calculation

SaturationDistance

20

Back-calculation	coefficient

1
Velocity	[m/s]

1
s

v_star

Figure 6.3: Diagram for calculation of l3 distance with I-controller
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7. Influence of Pacejka

coefficients on behavior of a

vehicle

Most of the vehicles do not have the same Pacejka coefficients for both front and

rear wheels. The definition of oversteering and understeering vehicles and their deriva-

tion according to the position of CG is evaluated in [10] where it is said that understeer-

ing cars have at higher velocities stable complex poles, on the other hand, oversteering

cars do not have complex poles and can become unstable. In section [Parameters]

can be observed, that due to CG in the backside of a vehicle, considered model is an

oversteering car. However, it is possible to change oversteering behavior to understeer-

ing and vice verse within Pacejka coefficients as well. As an example, the variation

of understeering and oversteering behavior dependent on Pacejka coefficient B of pa-

rameterized rear wheel with different CG offsets is shown below in figure [7.1], where

CG offset is the distance to CG from the middle point of the wheelbase of the car

where positive value means shifting to the front and negative to the rear part of the

vehicle. The CG offset changes both lf and lr. For front wheel all Pacejka coefficients

remain the same, meaning D = 1, B = 10, C = 1.45, E = 0.1. For the rear wheel other

Pacejka coefficients remain the same as well, meaning D = 1, C = 1.45, E = 0.1. All

vehicle parameters stay invariant during this calculation and are taken from section

[Parameters]. The decision of understeering and oversteering behavior is based on

the position of open loop poles.

4 6 8 10 12 14 16

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 7.1: Dependency of oversteer (in yellow) and understeer behavior (in blue) on
Pacejka coefficient B for lateral force in rear wheel and CG offset
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7.1 Change of behavior

In this section, the change of behavior from oversteer to understeer and vice verse is

shown.
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Figure 7.2: Oversteering vehicle with parametres from section [Parameters] and same
Pacejka coefficients on both wheels as for the front wheels in [4.1], D = 1, C = 1.45, B
= 10, E = 0.15.
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Figure 7.3: Oversteering vehicle shifted to pass stable plane in 44.561 m · s−1 from
section [Parameters] and Pacejka coefficients from [4.1].
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8. Proposed solutions

8.1 Front tyre slip control

This idea is founded on calculation of the front tyre slip angle αfref straight from

wheel input that is regulated by P-controller within feedback of αf to compute δf :

αfref = δS − β −
lf
v
· r . (8.1)

The rear wheels are used to minimize side-slip angle β as is done in [1]. It is done

to stabilize lateral dynamics of the vehicle otherwise the car can get to spin. From

equations (4.48) is seen that negative change of value of δr have the same effect on β̇

and opposite on ṙ. That is why, side slip angle β is assumed to be close to zero for

reference calculation of tyre slip angle:

αfref = δS −
lf
v
· r . (8.2)

Additionally, αfref is limited to keep tyre slip angle between minimum and maximum

peeks seen in [4.5]. Therefore, αfref is saturated on the interval −0.15 rad < αfref <

0.15 rad and so the steering wheel input δS needs to be scaled down to accommodate

that. It is demonstrated with ’scale’ gain in Simulink example [8.3]. Zeros and poles

of the system is shown in figures [8.1] below. Transfer function of the understeering

behavior of the car is:

H(s) =
r(s)

δS(s)
= 42.989 · s+ 120.4

(s+ 52.02) · (s+ 24.79)
(8.3)

and of the oversteering behavior of the car:

H(s) =
r(s)

δS(s)
= 42.989 · s+ 78.67

s2 + 52.08 · s+ 840.7
, (8.4)

where δS is input from the steering wheel and r is yaw rate. Gains of P-constrollers

are P1 = 10 and P2 = 10.

Because of the reason, that it is desirable for the car at higher velocities to fol-

low steering wheel input as much as possible, the PI-controller is used instead of P-

controller. New positions of zeros and poles are shown in figures [8.2] below. The

transfer function of the understeering behavior of the car changes to following:

H(s) =
r(s)

δS(s)
= 42.989 · (s+ 120.4) · (s+ 2.5)

(s+ 52.05) · (s+ 24.76) · (s+ 2.274)
(8.5)

and of the oversteering behavior of the car to:

H(s) =
r(s)

δS(s)
= 42.989 · (s+ 78.67) · (s+ 2.5)

(s+ 2.28) · (s2 + 52.08s+ 839.6)
, (8.6)
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where the gains of PI-constroller are P1 = 10 and I = 25 and P-controller for δr is

P2 = 10. Controller modeled in Simulink is shown below [8.3] where Lf = lf and P1, I

and P2 are coefficients of mentioned controllers respectively and side slip angle β, yaw

rate r, velocity v and front tyre slip angle αf are inputs from system [Used modeling

approaches]. Saturations on each wheel are defined in [Simlutation ride tests].
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Figure 8.1: Ilustration of shifting of poles and zeros using P-controller of tyre slip angle
for v = 15 m · s−1 where in red is system with regulator and in blue the base model
and arrows from complex poles indicate their movement to the real axis
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Figure 8.2: Ilustration of shifting of poles and zeros using PI-controller of tyre slip
angle for v = 15 m · s−1 where in red is system with regulator and in blue the base
model and arrows from complex poles indicate their movement to the real axis
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Figure 8.3: Diagram of the front tyre slip PI-controller

8.2 Yaw-rate tracking

The estimation of δf is taken from [8]. Used approach for calculating δr is regu-

lation around precomputed reference βr which is the angle between vxr and vr on the

rear wheel. Assuming that β = 0 then βr can be defined as:

βr = β − lr
v
· r = − lr

v
· r , (8.7)

where r is taken as rref yaw rate reference. The idea is to control βr what perfectly

damp side slip angle β. The angle δr can be then computed from

δr = βr + αr , (8.8)

but it is not required and in simulations had no effect on maneuverability of the car

and so was not used. Zeros and poles of this systems are shown in figures [8.4] below.

The transfer function of the understeering behavior of the car is:

H(s) =
r(s)

rref (s)
= 138.62 · (s+ 68.49) · (s+ 2.434) · (s+ 1.12)

(s+ 2.22) · (s+ 1.119) · (s2 + 203.6 · s+ 1.042e04)
, (8.9)

where rref is reference for yaw rate and r is an output and coefficients of PI-controller

for δf are P1 = 2 and I = 5 and PI-controller for δr is P2 = 8 and I2 = 10, and of the

oversteering behavior of the car:

H(s) =
r(s)

rref (s)
= 76.057 · (s+ 38.62) · (s+ 10.19) · (s+ 1.13)

(s+ 8.929) · (s+ 1.129) · (s2 + 113.8 · s+ 3355)
, (8.10)

where coefficients of PI-controller for δf are P1 = 1 and I = 10 and PI-controller

for δr is P2 = 8 and I2 = 10. In picture [8.5], the modeled diagram is shown in
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Simulink where side slip angle β, velocity v and yaw rate r are inputs from system

[Used modeling approaches] and because of the saturations on steering angles the

back calculation for prevention of wind-up effect has been employed. Saturations on

each wheel are defined in [Simlutation ride tests].
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Figure 8.4: Ilustration of shifting of poles and zeros within PI-controller of tyre slip
angle for v = 15 m · s−1 where in red is system with regulator and in blue the base
model and arrows from complex poles indicate their movement to the real axis
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8.3 Difference of tyre slip angles

This method is based on following equations of tyre slip angles:

αf = δf − β −
lf
v
· r , (8.11)

αr = δr − β +
lr
v
· r (8.12)

and taking the difference of (8.11) and (8.12), the following holds

αf − αr = δf − δr −
lf + lr
v
· r . (8.13)

Thus, the equation is free of β influence and with assumption αf −αr = 0 also relation

between steer angles δf , δr and yaw rate r has been derived. With simple algebraitic

steps applies following formula

δf = δr +
lf + lr
v
· r , (8.14)

where yaw rate r can be taken as reference rref and so the definition of δf is derived.

Nevertheless, a given system has big deviation of referenced input and so there was

added PI-controller to rref

δf = δr +
l

v
· rref , (8.15)

where l = lf + lr. The steer angle δr is computed with P-controller that minizes side

slip angle β. Shifting of poles and zeros is shown in figures [8.4] below.
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The transfer function of the understeering behavior of the car is:

H(s) =
r(s)

rref (s)
= 136.61 · (s+ 36.49) · (s+ 2.769)

(s+ 140.9) · (s+ 37.82) · (s+ 2.591)
(8.16)

and of the oversteering behavior of the car:

H(s) =
r(s)

rref (s)
= 136.61 · (s+ 23.84) · (s+ 2.769)

(s+ 146.3) · (s+ 23.31) · (s+ 2.644)
, (8.17)

where rref is referenced for yaw rate and r is an output and coefficients of PI-

controller are P1 = 13 and I = 36 and P-controller for δr is P2 = 2. In picture [8.7],

the controller diagram in Simulink is shown where side slip angle β and yaw rate r are

inputs from system in chapter [Used modeling approaches], L = lf + lr and because

of saturations on steering angles there is a back calculation preventing wind-up effect.

Saturations on each wheel are defined in [Simlutation ride tests].

−140 −120 −100 −80 −60 −40 −20 0
−4

−2

0

2

4

Real axis [-]

Im
ag

in
ar

y
ax

is
[-

]

(a) The understeering behavior of the car

−150 −100 −50 0
−1

−0.5

0

0.5

1

Real axis [-]

Im
ag

in
ar

y
ax

is
[-

]

−20 −10 0
−1

−0.5

0

0.5

1

Real axis [-]

Im
a
gi

n
ar

y
a
x
is

[-
]

(b) The oversteering behavior of the car

Figure 8.6: Ilustration of shifting of poles and zeros within PI-controller of tyre slip
angle for v = 15 m · s−1 where in red is system with regulator and in blue the base
model and arrows from complex poles indicate their movement to the real axis
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9. Simlutation ride tests

The controllers proposed in chapter [Proposed solutions] are derived on single-

track model described in chapter [Used modeling approaches]. However, their

testing will be carried out on twin-track model, succesfully comparing their usability

and functionality on more realistic and high-fidelity models. The test will reference

double lane change maneuver as steering wheel input from the driver shown in graph

[9.1] for velocity v = 15 m ·s−1 and v = 35 m ·s−1 and will have two parts. Firstly, as an

example of the effect of an enviroment, the reaction on wind blowing to the side of the

car is tested. For instance, the real life example can be invisioned by a car on a highway

entering an open area like a bridge. It is realized by sinus-like step-change in side slip

angle β for 0.2 rad shown below in [9.2]. Secondly, change of friction between surface

of road for wheels on right side of the vehicle will be realized via changing of Pacejka

coefficient D by step-change to 0.4, implementing an entry on grass-rock surface. Only

graphs demonstrating reference following and steer angles inputs will be shown. Lastly,

the wheels in vehicle’s chassis are limited by maximal angle to which they can rotate to

and that was modeled by saturation blocks from −π
6 < δi <

π
6 for both steering angles.

This causes nonlinear behavior and results in wind-up. Used solution of anti-wind up

is back calculation algorithm.
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Figure 9.1: Steering wheel input δS for double lane change maneuver
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9.1 Input conversions

Because each of proposed controllers do not have the same input variable, the

nessesary conversion was derived as in [1] like

afref (t) = kf (v) · δS(t) =
l · cf · cr · v(t)2

cf · cr · l2 +m · v(t)2 · (cr · lr − cf · lf )
· δS(t) , (9.1)

where afref (t) is referenced lateral acceleration of the front axle, δS(t) steering wheel

input, cf and cr front and rear cornering stiffness coefficients respectively, m mass of

the vehicle and l = lf + lr where lf and lr are distance from CG to front and rear axle

respectively.

Next, the reference for yaw rate rref can be derived in stationary cornering along

a circular path with radius R and it’s centripetal acceleration af . The yaw rate equals

r = v/R with af = v2/R and so conversion is

rref (t) =
afref (t)

v(t)
=

l · cf · cr · v(t)

cf · cr · l2 +m · v(t)2 · (cr · lr − cf · lf )
· δS(t) . (9.2)

The member (cr · lr − cf · lf ) equals almost zero when the same Pacejka coefficients are

used for both front and rear wheel, making rref (t) = v(t)/l and gain kf (v) too large, and

so different coefficients were used effectively making vehicle more realistic. However,

the gain kf (v) is getting higher with higher velocity, making lateral acceleration in
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hundreds when steering wheel input around 30o degrees and velocity 30 m · s−1. One

solution is to divide δS by steering gear ration N as derived in [4] but there are no

definitions of how exactly is the value of N changed between different velocities. That

is why, reference was calculated differently.

First, yaw rate r was recorded with maximal steering wheel input 35o during dif-

ferent velocities and with formula

R =
v

r
(9.3)

was turning radius calculated and it’s dependence on velocity v approximated as quadrat-

ic function for the understeering behavior of used car:

R = 0.1367 · v2 − 0.3450 · v + 2.5719 (9.4)

and of used oversteering car:

R = 0.1430 · v2 − 0.2334 · v + 2.3140 . (9.5)

With that, reference for yaw rate rref is calculated and scaled by steering wheel input

δS as:

r =
v

R
· δ∗S , (9.6)

where δ∗S is δS divided by maximal steering wheel input. Then, the front lateral accel-

eration of the front axle af can by computed by

af = r · v (9.7)

as derived in [1].

9.2 Parameters

Here, all the coeffiecients and parametres of test vehicle are listed.
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Symbol Value Describtion

m 1190 kg mass of vehicle

lf 1.6387 m distance between CG and front axle

lr 1.3613 m distance between CG and rear axle

cuf 76812 N · rad−1
front cornering stiffness coefficient

for the understeering behavior

cur 118603 N · rad−1
rear cornering stiffness coefficient

for the understeering behavior

cof 76812 N · rad−1
front cornering stiffness coefficient

for the oversteering behavior

cor 77474 N · rad−1
rear cornering stiffness coefficient

for the oversteering behavior

Fzf 5297 N front wheel load force

Fzr 6377 N rear wheel load force

v 15 m · s−1 velocity (not in simulator)

Rf 0.33 m front wheel radius

Rr 0.33 m rear wheel radius

Jf 1 kg ·m2 moment of inertia along y-axis of front wheel

Jr 1 kg ·m2 moment of inertia along y-axis of rear wheel

J 2396 kg ·m2 moment of inertia along z -axis of CG

kf 2 N · s front coefficient of road drag

kr 2 N · s rear coefficient of road drag

T 140 deg · s−1 slew rate of steering angles

Table 9.1: Parametres and coefficients used in test vehicle

The Pacejka Magic Formula coefficients are listed in chapter [Robust decoupling]

in [4.2] and [4.1]. The cornering stiffness coefficients were calculated from equation

ci = B · C · D · Fzi that is approximation of derivation of formula ci =
dFyi
dαi

in zero

where i stands for front and rear and B,C,D are Pacejka coefficients from [4.2] and

[4.1]. Because of the position of center of gravity on the backside, the vehicle tends to

oversteer, meaning that car curves more than neutral steering car during cornering and

can become unstable when critical velocity is reached. However, this tendency can be

changed by different Pacejka coefficients as was mentioned in [Influence of Pacejka

coefficients on behavior of a vehicle]. As can be observed in table [9.1], testing

vehicle is a sport car.

9.3 Front tyre slip control test

The referenced steering wheel input in [9.1] is scaled by proportional gain to have

maximum of 0.1 rad. This controller does not follow yaw rate reference because it’s

feedback loop is on front tyre slip angle αf . Hovewer, the graphs will be shown for
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comparison and influence of deviations on it. The coefficients for PI-controller are from

[Front tyre slip control]. The start of deviations is indicated by black dashed line:
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Figure 9.3: Front tyre slip control reference following for double lane change maneuver
for v = 15 m · s−1 where Pacejka coefficient D of rightside wheels is set to 0.4 in 8 s.
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Figure 9.4: Front tyre slip control reference following for double lane change maneuver
for v = 15 m · s−1 where Pacejka coefficient D of rightside wheels is set to 0.4 in 8 s.
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Figure 9.5: Front tyre slip control reference following for double lane change maneuver
for v = 35 m · s−1 where Pacejka coefficient D of rightside wheels is set to 0.4 in 8 s.
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Figure 9.6: Front tyre slip control reference following for double lane change maneuver
for v = 35 m · s−1 where Pacejka coefficient D of rightside wheels is set to 0.4 in 8 s.
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Figure 9.7: Front tyre slip control reference following for double lane change maneuver
for v = 15 m · s−1 for step-change of β as in [9.2].
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Figure 9.8: Front tyre slip control reference following for double lane change maneuver
for v = 15 m · s−1 for step-change of β as in [9.2].
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Figure 9.9: Front tyre slip control reference following for double lane change maneuver
for v = 35 m · s−1 for step-change of β as in [9.2].
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Figure 9.10: Front tyre slip control reference following for double lane change maneuver
for v = 35 m · s−1 for step-change of β as in [9.2].

From figures [9.3] and [9.4] can be observed that change of terrain on right vehicle

wheels does lower yaw rate r because the steering is following δfref reference. Next,

steering angle δr is changing sign for the understeering behavior of the car according

to speed of the vehicle which is desired because in higher velocities are even sign for

δf and δr better for double lane change maneuvers and for lower velocities different for

sharper cornering. Step-change of side slip angle β has little effect on behavior of car

besides produced backspike in yaw rate r in [9.9] which is expected. Moreover, car is

capable of sharper turns than with yaw rate reference rref due to direct control from δS

which can be seen in [9.9]. However, testing has shown that car is still not completely
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stable and can get to spin. Mainly during sharp cornering with high acceleration and

so more testing and changes are needed.

9.4 Yaw-rate tracking test

The referenced steering wheel input in [9.1] is converted to yaw rate rref by [Input

conversions] with equation [9.6] and is followed with PI-controller with coefficients

from [Yaw-rate tracking]. The start of deviations is indicated by black dashed line:
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Figure 9.11: Yaw rate tracking reference following for double lane change maneuver for
v = 15 m · s−1 for step-change of Pacejka coefficient D of rightside wheels to 0.4 in 8 s.
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Figure 9.12: Yaw rate tracking steer angle inputs for double lane change maneuver for
v = 15 m · s−1 for step-change of Pacejka coefficient D of rightside wheels to 0.4 in 8 s.
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Figure 9.13: Yaw rate tracking reference following for double lane change maneuver for
v = 35 m · s−1 for step-change of Pacejka coefficient D of rightside wheels to 0.4 in 8 s.
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Figure 9.14: Yaw rate tracking steer angle inputs for double lane change maneuver for
v = 35 m · s−1 for step-change of Pacejka coefficient D of rightside wheels to 0.4 in 8 s.
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Figure 9.15: Yaw rate tracking reference following for double lane change maneuver for
v = 15 m · s−1 for step-change of β as in [9.2].
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Figure 9.16: Yaw rate tracking steer angle inputs for double lane change maneuver for
v = 15 m · s−1 for step-change of β as in [9.2].
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Figure 9.17: Yaw rate tracking reference following for double lane change maneuver for
v = 35 m · s−1 for step-change of β as in [9.2].
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Figure 9.18: Yaw rate tracking steer angle inputs for double lane change maneuver for
v = 35 m · s−1 for step-change of β as in [9.2].

From figures [9.11] and [9.16] can be evalueted that entry of right vehicles wheels on

grass-rock surface has low or zero effect on regulation. Next, steering angle δr is chang-

ing sign according to speed of vehicle aswel. The problem can be seen in [9.15] and

[9.17] where due to step-change of side slip angle β is produced spike which is getting

bigger with higher velocity. The βr steering allows rear wheels on low velocities to con-

trol spin in a such a way that they steer into manuever rather than be perpendicularly

to it and so car is capable of turning very easily.
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9.5 Difference of tyre slip angles test

The referenced steering wheel input in [9.1] is converted to yaw rate rref by [Input

conversions] using equation [9.6] and is followed with PI-controller with coefficients

from [Difference of tyre slip angles]. The start of deviations is indicated by black

dashed line:
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Figure 9.19: Difference αi control reference following for double lane change maneuver
for v = 15 m · s−1 where Pacejka coefficient D of rightside wheels is set to 0.4 in 8 s.
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Figure 9.20: Difference αi control steer angle inputs for double lane change maneuver
for v = 15 m · s−1 where Pacejka coefficient D of rightside wheels is set to 0.4 in 8 s.
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Figure 9.21: Difference αi control reference following for double lane change maneuver
for v = 35 m · s−1 where Pacejka coefficient D of rightside wheels is set to 0.4 in 8 s.
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Figure 9.22: Difference αi control steer angle inputs for double lane change maneuver
for v = 35 m · s−1 where Pacejka coefficient D of rightside wheels is set to 0.4 in 8 s.
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Figure 9.23: Difference of tyre slip angles control reference following for double lane
change maneuver for v = 15 m · s−1 for step-change of β as in [9.2].
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Figure 9.24: Difference of tyre slip angles control steer angle inputs for double lane
change maneuver for v = 15 m · s−1 for step-change of β as in [9.2].
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Figure 9.25: Difference of tyre slip angles control reference following for double lane
change maneuver for v = 35 m · s−1 for step-change of β as in [9.2].
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Figure 9.26: Difference of tyre slip angles control steer angle inputs for double lane
change maneuver for v = 35 m · s−1 for step-change of β as in [9.2].

From figures [9.19] and [9.24] can be evalueted that entry of only half of vehicles

wheels on grass-rock surface has low or zero effect on regulation as well. Next, for the

understeering behavior the sign of δr is changing according to velocity as in section

[Yaw-rate tracking test] and mainly, there are no spikes due to step-change of side

slip angle β. However, double lane change maneuver is better executed on the the

oversteering behavior of the car. It is possible to choose bigger P constant for feedback

of side slip angle β but testing has shown that steering angle δr then gets to saturation in

more sharp manuevers and car can then lose stability on the road because it is unable to

compensate given manuever more. Moreover, in provided simulator controller manage
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to cut almost all too high yaw rate references for the understeering car that would lead

to unstability, effectively lowering the posibility of human error.

9.6 Robust decoupling

The referenced steering wheel input in [9.1] is converted to front lateral acceleration

afref by [Input conversions] using equation [9.7]. The controller is the same as in

[Robust decoupling] with parametres from section [Parameters] and where kD = 1.
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Figure 9.27: Double lane change reference following of the oversteering behavior of
the car with parametres from section [Parameters] without any deviation for v =
15 m · s−1.
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Figure 9.28: Stability on road with no reference following for step-change of β as in [9.2]
for the oversteering behavior of the car with parametres from section [Parameters]
for v = 15 m · s−1.

As seen in [9.27], car is not following reference input and even when the reference

becomes stable, system is still executing previous maneuver. Graph in [9.28] shows

reaction of vehicle on a deviation caused by wind blowing to the side of the car where

response of the controller is very slow and oscilatting. Even though, the kS and kD

variables can be altered, the overall effect is still the same.

9.7 Rear wheel steering control

The referenced steering wheel input in [9.1] is converted to yaw rate rref by [Input

conversions] using equation [9.6] and is followed by PI-controller with coefficients

from [Proposed control augmentation] where the rear wheel control is from [4] and

parametr l3 is changed by I-controller.
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Figure 9.29: Double lane change reference following of the oversteering behavior of the
car with parametres from section [Parameters] without any deviation for v = 15 m·s−1
where on the left side are yaw rates and on the right side steering angles of the vehicle.
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Figure 9.30: Double lane change reference following of the oversteering behavior of the
car with parametres from [Parameters] without any deviation for v = 35 m ·s−1 where
on the left side are yaw rates and on the right side steering angles of the vehicle.

As seen in [9.29], vehicle is capable of following double lane change reference. How-

ever, from figure [9.30], when car is driving close to critical velocity. Which can be

computed by formula [6.17] and equals to vcrit = 46.9714 m · s−1 for the the over-

steering behavior of the car. Vehicle becomes unstable and because of no feedback to

transfer function from company Nissan, car can become unpredictable and start spin-

ing which is not suitable for road car driving. Note that the same applies for system

proposed by company Nissan, meaning no front steering control with only rear wheel

feedforward as transfer function (6.15).
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10. Results

All objectives of this work have been fulfilled:

• Non-linear single-track model has been adopted and disscussed in chapter [Used

modeling approaches].

• Advantages and disdvantages of four-wheel steering car are listed in [Introduction].

• Review of state of the art is wrote down in chapter [State of the art].

• Imlementation of already published approaches are in chapters [Robust decou-

pling] and [Rear wheel steer angle control system].

• Control method improvements are listed in chapter [Proposed solutions] and

in [Rear wheel steer angle control system] in section [6.4].

• Validation and testing is in chapter [Simlutation ride tests].
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11. Conclusion

One of the main concerns of four-wheel steering systems is the connection of steer-

ing wheel to both car’s axles. This work observed some of the already published so-

lutions from industry and science, and proposed their alternations and new concepts

that could be used.

The yaw stabilization is a very complex topic and can be achieved by many different

solutions. The yaw rate tracking concept is highly efficient at low speeds, helping the

car in cornering maneuvers. However, with higher velocity, poles of the system are

shifted closer to the stability boundary. One of the approaches was to use control law

mentioned in section [First control law] and even though, the integrator made zero

deviation at low speeds, PI-controller was still required at a higher velocity, making car

oscillate and eventually unstable (double integrator problem).

The feedback of side slip angle β is very useful because it keeps the car in a stable

state and due to the capability of altering yaw rate r indirectly to β. Moreover, at

a higher velocity, it is helping to system stability and reducing oscillations. During

testing, feedback of referenced βr was developed, which turned out to be very active

in slip maneuvers, negating many chances of the car getting to spin, but it is main

purpose is to stabilize the car and so it’s usage in turn maneuvering is minimal.

Another possibility for δr control is to choose the same approach as in [1]. That is

to calculate transfer function from input rref to δr with assumption of β = 0 and so

β̇ = 0. It was not used here because during ride tests, the feedback of β has shown

to be more effective. However, side slip angle β has to be estimated because it could

not be directly measured. That is why, the transfer function could prove to be more

trustworthy in real life car control if no direct measurement of β is provided.

The solution of Nissan company has no feedback control, and so it does not change

vehicle dynamics. It is not suited for any oversteering vehicle, and even though, it is

possible to improve this concept, for instance, using the proposed solution in [Proposed

control augmentation], it is still not able to stabilize the car.

The standout concept is control based on the regulation of αf with reference input

that is calculated from the steering wheel. Because of the vehicle’s tendency to actively

try to minimize this angle, the control of the car is possible. Moreover, due to control

of tyre slip angles, the ability of the car to slip is highly reduced and thus possible

spinning as well.

The very promising solution is controller derived in chapter 4 in [Difference of

tyre slip angles]. The poles are moving from the stable boundary with higher speeds,

making it more stable. Moreover, the system can withstand very high environment

deviations, shown in [Difference of tyre slip angles test]. Also, ride tests have

shown that for understeering vehicle with CG in the front of the car, the controller is

capable of cutting driver’s input for infeasible cornering maneuvers, effectively lowering

the possibility of human error.

Proposed controllers are tested on the single-track and twin-track models derived
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in chapter [Used modeling approaches] and so further testing on real platforms will

be needed. In the future work, the proposed concepts are very promising but their

designs could be built upon and improved. The rear wheel steering is used mainly

for stabilizing the oversteer tendency that used car has, but could be used to enhance

performance in regular maneuvers as well.

60



12. Bibliography

[1] Ackermann, J. (1994). Robust decoupling, ideal steering dynamics and yaw
stabilization of 4WS cars. Automatica, 30(11), 1761-1768.

[2] Schramm, D. and Hiller, M. and Bardini, R. (2014). Vehicle dynamics. Modeling
and Simulation. Berlin, Heidelberg, 237-243, 255-298.

[3] Franklin, G. F. and Powell, J. D., Emami-Naeini, A., Powell, J. D. (1994). Feed-
back control of dynamic systems (Vol. 3). Reading, MA: Addison-Wesley.

[4] Mori, K. and Irie, N. (1990). U.S. Patent No. 4,947,326. Washington, DC: U.S.
Patent and Trademark Office.

[5] Documentation of Adams/Tire, available on http://mech.unibg.it/~lorenzi/

VD&S/Matlab/Tire/tire_models_pac2002.pdf

[6] Pacejka, H. (2005). Tire and vehicle dynamics. Elsevier.

[7] Haffner L. (2008) Real-time tire models for lateral vehicle state estimation (Doc-
toral dissertation). Retrived from Universitätsbibliothek der TU Wien.
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