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veškeré použité informačńı zdroje v souladu s Metodickým pokynem o dodržováńı
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Title: Satellite formation flight: optimal and cooperative control approaches

Author: Daniel Brandtner

Abstract: Satellite formations are a novel concept based on cooperation of mul-
tiple satellites to achieve a common goal, which is difficult or even impossible for
any single satellite to achieve. Thus, a number of smaller, less complex satel-
lites can emulate, or even surpass, the performance of much larger, more com-
plex orbital installations. As a foundation for subsequent control design tasks,
a rigorous analysis of orbital dynamics is presented, serving to describe orbit
trajectories in a restricted three-body problem with the additional perturbations
due to oblateness of the main body included. The goal of the proposed thesis is
to develop and compare two approaches to satellite formation control. The first
uses open-loop optimal control methods to achieve its goal while minimizing the
fuel expended during the manoeuvre. The other merges satellite formations with
cooperative control methods, and thus provides robust, flexible control designs.
The suitability of both controllers to various real-world applications is discussed
and demonstrated in simulations.

Keywords: Satellite Formation Flying; Optimal control; Cooperative control



Název práce: Let formaćı družic: optimálńı a kooperativńı metody ř́ızeńı

Autor: Daniel Brandtner

Abstrakt: Let formaćı družic představuje nový obor kosmického inženýrstv́ı
založený na spolupráci satelit̊u za účelem dosažeńı společného ćıle. Uskupeńı
menš́ıch, méně složitých satelit̊u může vyrovnat nebo dokonce překonat výkon
mnohem větš́ıch, složitěǰśıch orbitálńıch systémů. Důsledná analýza orbitálńı
mechaniky poslouž́ı jako základ pro návrh dvou ř́ıd́ıćıch systémů. Ćılem této
práce je oba př́ıstupy systematicky popsat a mezi sebou porovnat. Prvńı regulátor
využ́ıvá metody optimálńıho ř́ızeńı v otevřené smyčce k dosažeńı ćılového stavu
při minimalizaci spotřeby paliva. Druhý návrh vycháźı z kooperativńıch metod
ř́ızeńı multiagentńıch systémů a poskytuje tak formaci robustńı a flexibilńı ř́ıd́ıćı
systém. Na základě simulaćı se urč́ı vhodnost obou regulátor̊u pro r̊uzné reálné
aplikace.

Kĺıčová slova: Let formaćı družic; Optimálńı ř́ızeńı; Kooperativńı ř́ızeńı
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Introduction

Traditional space engineering views satellites and spacecraft as single-agent
systems, equipped with all the material and resources necessary for completing
their mission. Communication is usually only maintained with a ground station,
with which the satellite can exchange data and receive instructions.

With recent advancements in communication and propulsion technology and
the reducing costs of launchers, more and more satellite installations employ a
formation of simpler spacecraft to work on the assigned task in cooperation. De-
ploying a formation of satellites offers greater flexibility, as individual satellites
can be specialized in a specific subtask of the entire mission. Another advantage
lies in the robustness of this system as spacecraft can be replaced or repurposed in-
dividually if malfunctioning or unnecessary. Numerous applications of this coop-
erative scheme include astronomical and terrestrial observations, communication,
synthetic aperture radar. Examples of various satellite formations currently in or-
bit or in development are Landsat 7, the Callipso&CloudSat tandem, TechSat-21,
Proba-3 and the GPS system. CubeSat are miniaturized satellites that could be
deployed in the hundred. This emerging technology could benefit from improved
distributed control algorithms.

Setting up and maintaining such formations however requires dedicated con-
trol methods. Ideally, these controllers should allow manoeuvres within the for-
mation to be performed autonomously, using only onboard calculations and a
minimum of communication. On the other hand, the efficiency of these control
schemes should also be an important consideration, as fuel supplies of satellites
are limited. In this thesis we explore and compare two alternative controller de-
signs for formation flying, emphasizing their advantages and limitations in solving
various problems.

In the first chapter, we derive the dynamics of a single massless particle in a
gravitational field using the tools of Lagrangian mechanics. These single-particle
dynamics are also relevant for formation flying, as individual satellites are in-
dependent of each other when left uncontrolled, thus obeying the single-particle
equations of motion introduced in this chapter. Lagrangian mechanics is used
to derive the dynamical equations because if offers an elegant way of changing
the coordinate systems in which the dynamics is being considered, as well as be-
cause of its suitability in describing both the uncontrolled and controlled systems
in a similar general way. The simplest model of celestial motion is the Keple-
rian system, which assumes revolution around a single point mass. This model
is expanded to express the gravitational field around an oblate spheroid, as an
approximation for a deformed rigid body. As a second type of perturbation to
the Keplerian model, a second massive body is added to the system. The masses
are no longer fixed in an inertial frame as they revolve around their centre of
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mass. For all the described models, distinct orbital trajectories are simulated to
illustrate the variety of solutions to the non-linear dynamics.

The second chapter builds on the derived models to introduce a design of
an optimal controller, tasked with generating fuel-efficient transfer trajectories
between the orbits presented in Chapter 1. This optimal control scheme is also
applied in the third chapter, in a different context, to solve to solve various
formation reconfiguration tasks. An alternative cooperative control approach is
designed using distributed consensus dynamics and implemented on the dynam-
ical models introduced in the first chapter. We adapted the canonical consensus
problem by constant offsets in one special state to enable convergence toward a
shape-invariant configuration, all in accordance with the general dynamical re-
quirements for consensus. Both control schemes are compared to identify their
advantages and examine potential real-world applications.
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Chapter 1

Orbital mechanics of a single test
body

Celestial mechanics is the branch of astronomy that deals with the motions
of natural celestial objects. It has been studied since the dawn of civilization by
scholars, philosophers and priests from cultures all over the world. In addition
to their religious or philosophical significance, the knowledge of the motion of ce-
lestial bodies had practical uses in agriculture, naval navigation and timekeeping
and management using calendars.

In the early modern period of European history, advances in mathematics
and physics allowed for a more methodical description of celestial dynamics. In
reality, it has been in many cases the study of the motion of celestial bodies that
lead to major scientific breakthroughs. Galileo Galilei, Johannes Kepler and Isaac
Newton are all major figures that helped to lay the foundation of modern science
through the study of, among other things, celestial mechanics.

By the 19th century, classical mechanics allowed for a precise model of the
dynamics of major bodies in the Solar system. At that time, a new field of study
branched from the celestial mechanics field, describing a man-made object, at
that time only hypothetical, in motion around celestial bodies. Orbital mechan-
ics not only treats the effects of gravitational forces on a body but also the design
of appropriate means of controlling of those spacecraft. In the second half 20th of
the century, space missions have been made possible by advancements in many
fields of science and technology. Orbital mechanics remains of prime importance
in space engineering as even-though the principles of celestial mechanics are con-
sidered well understood, spacecraft control remains a complex problem with many
considerations to account for.

In this chapter, the uncontrolled dynamics of a satellite in a gravitational field
are discussed. First, in Section 1.1, we describe the coordinate systems considered
in this thesis. Then, Section 1.2 introduces the mathematical tool of Lagrangian
mechanics allowing for an easy derivation of dynamics in different coordinates.
The derived equations of motion of satellites are presented in Section 1.3, with
the additional effect of the oblateness of the principal massive body and the
presence of a second body successively taken into account. Finally, distinct orbital
trajectories will be displayed and commented in Section 1.4.

Understanding the natural dynamics of bodies in gravitational fields is essen-
tial in the design of control tools treated in subsequent chapters. In the context of
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satellite formation flying, the individual dynamics of formation members are also
important. As the gravitational interactions between satellites in a formation are
negligible compared to the attractions of large celestial bodies, their uncontrolled
dynamics are independent and follow the rules laid out in this chapter.

1.1 Coordinate systems

In all task of mechanics, a suitable coordinate system has to be chosen in
order to express a system’s dynamics. A coordinate system is a set of variables
enabling the full and unique description of a position in the configuration space.
In this thesis, a three-dimensional space will generally be considered, occasionally
reduced to a planar space to simplify or better visualize a situation. Satellites are
also considered as point particles and their orientation and rotational dynamics
are not addressed. As is discussed in the section introducing Lagrangian mechan-
ics (Section 1.2), this method of deriving equations of motion is independent on
the choice of coordinates. We are therefore free to choose a coordinate system
that we feel best describes the system.

Figure 1.1: Three-dimensional spherical and Cartesian coordinates systems. Figure
taken from https://en.wikipedia.org/wiki/Spherical_coordinate_system

A position vector given in the Cartesian coordinate system (x,y,z) denotes
its distance from three planes defined by three mutually perpendicular axis (Fig-
ure 1.1). The Cartesian coordinates are useful as the kinetic energy expressed in
them are not dependent on the position.

Spherical coordinates are defined by the triplet (r,ϑ,ϕ). r is the norm of
the position vector, ϕ the angle between the x-axis and the projection of the
vector on the xy plane and ϑ is the angle between the z-axis and the position
vector. Spherical coordinates are usually more informative than Cartesian ones
as orbital mechanics deal with trajectories of particles subject to central forces.
By placing the origin of the coordinates at the source of the central force field, the
equations of motion become more readable and allow a better understanding of
the motion. The transformations between positions and velocities in the spherical
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and Cartesian coordinates can be written as
x
ẋ
y
ẏ
z
ż

 =



r cosϕ sinϑ

ṙ cosϕ sinϑ− ϕ̇r sinϕ sinϑ+ ϑ̇r cosϕ cosϑ
r sinϕ sinϑ

ṙ sinϕ sinϑ+ ϕ̇r cosϕ sinϑ+ ϑ̇r cosϑ sinϕ
r cosϑ

ṙ cosϑ− ϑ̇r sinϑ

 (1.1a)


r
ṙ
ϑ

ϑ̇
ϕ
ϕ̇

 =



√
x2 + y2 + z2
ẋx+ẏy+żz√
x2+y2+z2

cos−1 z√
x2+y2+z2

z(ẋx+ẏy)−ż(x2+y2)√
x2+y2(x2+y2+z2)

tan−1 y
x

ẏx−ẋy
x2+y2


(1.1b)

In order to model the dynamics of the particle, a state space vector is intro-
duced to combine the position and velocity coordinates:

x =


x1
x2
x3
x4
x5
x6

 =


r
ṙ
ϑ

ϑ̇
ϕ
ϕ̇

 (1.2)

1.1.1 Hill’s system

As we are interested in the relative motion of a massless particle with regards
to massive bodies, it is a good idea to choose a reference frame where the bodies
are fixed. This is trivial in case of a single massive body, where the origin of the
coordinate system is placed at the centre of the body. In this thesis, however, we
also treat the dynamics of a particle in the gravitational field of two mass points.
These principal bodies are assumed to revolve around their common centre of
mass on circular trajectories at a constant angular velocity Ω. By rotation of the
frame around the centre of mass with the same angular velocity, the two bodies
will appear as fixed. In addition, all distances are rescaled by the inverse of the
constant distance between the bodies d so that this distance becomes 1.

x→ x

d
y → y

d
z → z

d
(1.3)

Masses m1 and m2 are also rescaled by introducing a dimensionless reduced mass
µ.

µ =
m2

m1 +m2

m1 → 1− µ
m2 → µ

(1.4)

In the literature [9], such a two-body system described in a co-rotating frame
is referred to as the Hill’s system. The origin of this frame is usually placed at

15



the centre of mass. Its z-axis is set to be aligned to the rotation vector of the
frame, meaning the xy plane coincides with the revolution plane of the bodies.
We call this plane the principal plane of the system. The x-axis is aligned with the
principal axis, the line joining the centre of mass to both bodies. The positions
of the bodies and the centre of mass in Cartesian coordinates in this frame are:

r1 =

 −µ0
0

 rCM =

 0
0
0

 r2 =

 1− µ
0
0

 (1.5)

In this thesis, however, we will mostly be working with spherical coordinates
centred at one of the bodies. The chosen body is called the principal body and is
the one around which most orbits and transfers in this thesis will be performed.
As mentioned above, orbit trajectories in spherical coordinates are generally more
informative than when expressed in Cartesian ones. The bodies and centre of
mass in spherical coordinates centred at the principal body in the co-rotating
frame are located at

r1 =

 0
π/2
0

 rCM =

 µ
π/2
0

 r2 =

 1
π/2
0

 (1.6)

This rotating frame is however not the only useful frame of reference. Because
of its non-inertiallity, it is often not intuitive to interpret the resulting motion.
For this reason, all generated orbits in the Hill’s system will also be displayed it
two other frames Figure 1.2:

• Rotating frame centred at the principal. As explained above, both bodies
remain fixed on the x-axis on positions given by (1.6).

• Non-rotating inertial frame centred at the centre of mass. Both bodies
orbit around it on circular trajectories. This frame allows visualizing the
three-body system from the point of view of an observer immobile with
regards to the centre of mass. In realistic applications, a sidereal frame
fixed by distant stars is used, as their motion can be neglected.

• Non-rotating frame centred around the main body. Second body and
centre of mass orbit around it with constant velocity. This frame allows
visualizing the three-body system from the point of view of an observer
located on the main body.

Problems of celestial mechanics involving two massive bodies usually assume
they orbit their common centre of mass on circular trajectories. Circular orbits
are however only a special case of more general elliptic trajectories. If the elliptic
case is considered, the Hill’s coordinate system such as we defined it would not
be applicable, as both the angular velocity Ω (t) and the distance between bodies
d (t) are time-variant. To overcome this, we can introduce a new elliptic Hill’s
system frame of reference that rotates with both bodies at their immediate an-
gular velocity. The rescaling (1.3) is likewise performed using the instantaneous
value of d (t). In the resulting coordinate system both bodies are still fixed on
their old positions (1.5) and (1.6), but the distance scale varies as a function
of time as the bodies swing away and toward each other in the inertial frame.
Dynamics in this elliptic Hill’s system will be derived in Section 1.3.4.
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Figure 1.2: Frames used in this thesis to depict orbits in the Hill’s system.

1.1.2 LVLH coordinate system

When dealing with satellite formation flying, it is useful to work in a reference
frame centred at one of the satellites. If the formation has a leader, the origin is
most often placed at its position. Placing the reference frame is this way allows
to express the relative dynamics of the formation, which is advantageous if a
certain relative formation is to be achieved or maintained. The standard way to
orient a coordinate system centred at an orbiting particle is the Local Vertical
Local Horizontal method, abbreviated as LVLH. Using this scheme, the z-axis
is directed towards the body, the x-axis is in the direction of the movement and
the y-axis perpendicular to the orbital plane according to the right-hand rule. A
schematic of this coordinate system is displayed on Figure 1.3.

Figure 1.3: Sketch of the LVLH reference frame. Figure taken from http://www.

asi.org/adb/04/02/00/iss-coordinate-systems.pdf

The LVLH coordinate system is used mostly on particles on circular Keplerian
orbits. As the distance to the body is constant and the orientation of one of the
axis is set toward it, the body remains fixed in the LVLH frame. This coordinate
system is similar to the Hill’s system, with two points of interest fixed by the
frame’s rotation, with only the location of the origin and orientation of the axis
being different. As a result, the equations of motion of follower particles in a
leader-centric LVLH frame can be derived in a similar manner as the dynamics
of a particle in the Hill’s system as treated in Section 1.3.3. The only difference
is the fact that the mass of the leader satellite is neglected.

If the particle’s orbit is elliptic, however, the position of the body in this frame
will fluctuate between two extremes on the z-axis. Moreover, the x-axis will no
longer be aligned with the velocity vector. A solution to this issue could be the
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rescaling of all distances by the current body-leader distance. Similarly to the
elliptic Hill’s system, this new pulsating LVLH coordinate system would have the
same properties as in the circular case, the origin at the leader, the body fixed
on the z-axis, but the units of distance would be time-variant. The dynamics in
this pulsating LVLH frame are derived along the same lines as in the case of the
elliptic Hill’s system in Section 1.3.4.

The LVLH coordinate system becomes however less useful as perturbations
to the Keplerian model are introduced. If a non-spherical body is accounted for,
dynamics derived in the particle-centred frame would be time-dependent, as the
shape of the gravitational field would vary throughout the orbit. If solving a
three-body problem, fixing the origin of the coordinate system to the particle
would make the second massive body move on strange trajectories, which would
be impractical.

Because of these reasons, we will not solve the satellite formation problem
in Chapter 3 in the LVLH reference frame. We will however use this leader-
centred coordinate system to display the resulting trajectories of particles, as
motions within a formation are usually more informative in relative rather than
in absolute terms.

1.2 Lagrangian mechanics

Lagrangian mechanics is a reformulation of classical Newtonian mechanics
allowing the derivation of equations of motion of a system from the expressions
for its potential and kinetic energy.

It can be derived from variational principle, which states that the functional
action of a system observed between time ti and tf is at an extrema value.

S =

∫ tf

ti

L (q (t) , q̇ (t)) dt (1.7)

where q (t) is a doubly differentiable time-varying state vector in some arbitrary
coordinates and

L = T − V (1.8)

is the Lagrangian function calculated form the potential V and kinetic energy T .
If the action (1.7) is at an extrema, it hold true for a small deviation δ that

δ

∫ tf

ti

Ldt = 0 (1.9)

Together, q (t) and q̇ (t) specify the trajectory in the configuration space un-
dertaken by the system in the time interval (ti,tf ). A second trajectory between
the initial and final states can be obtained by adding a small deviation from the
original:

q (t) → q (t) + εδq (t)

q̇ (t) → q̇ (t) + εδq̇ (t)
(1.10)

with the initial and final positions conserved:

δq (ti) =0

δq (tf ) =0
(1.11)
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The expression (1.9) can be rewritten as

δ

∫ tf

ti

Ldt =

∫ tf

ti

δLdt =

∫ tf

ti

(
∂L

∂q
δq +

∂L

∂q̇
δq̇

)
dt

=

∫ tf

ti

(
∂L

∂q
δq +

d

dt

(
∂L

∂q̇
δq

)
−
(

d

dt

∂L

∂q̇

)
δq

)
dt

=

∫ tf

ti

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δqdt+

∫ tf

ti

d

dt

(
∂L

∂q̇
δq

)
dt

(1.12)

The second term vanishes as the variations in position are set to zero at the
extremes of the trajectory (1.11):∫ tf

ti

d

dt

(
∂L

∂q̇
δq

)
dt =

∂L

∂q̇
δq (tf )− ∂L

∂q̇
δq (ti) = 0 (1.13)

And for the first term to equal zero, the expression between the parenthesis must
be zero, leading to the well-known formula for the Lagrange equation:

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (1.14)

By solving (1.14) successively for every coordinate qi, the equations motion in
the coordinate system q are obtained. This enables to easily express the dynamics
of a system in different coordinate systems, as it is usually much simpler to convert
the Lagrangian to the new coordinates than the equations of motion themselves.
This is a useful property as, in this chapter, we will derive the dynamics of orbital
systems in different coordinate frames.

1.3 Derivation of the equations of motion

In this section, we will use the tools of Lagrangian mechanics introduced in
Section 1.2 to derive the dynamics for a massless particle in a gravitational field.
First, the motion will be considered only around a single point mass. Then, the
oblateness of the principal body is defined and taken into account. Finally, we
will describe the orbital mechanics of a particle in the three-body Hill’s system.

1.3.1 Two body Keplerian system

The simplest model of orbital motion assumes a massless particle in the grav-
itational field of a single mass point. The only interaction between them that
is considered is the gravitational attractive central force exerted by the massive
body on the particle. Influences of additional bodies or due to the shape of
the primary body as well as collision or atmospheric interference scenarios are
disregarded.

With an inertial coordinate system centred at the mass point, equation motion
of the mass-less particle can be derived from the Lagrange equations (1.14). To
constitute the Lagrangian function (1.8), we need the expressions for the potential
and kinetic energy. This section will successively present the derivations of both
functions, before combining them in the Lagrangian and deriving the particle’s
dynamics from it.
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1.3.1.1 Gravitational potential

Isaac Newton’s second law of motion gives us the effect of an external force
F on a body of mass m:

d2r

dt2
=
F

m
(1.15)

The external force considered in orbital mechanics is the gravitational force,
an attractive force F21 excerted by a point mass m1 position at r1 on a point
mass m2 at r2:

F21 = G
m1m2 (r1 − r2)
|r1 − r2|3

(1.16)

where G = 6.67408·10−11m3kg−1s−2 is the gravitational constant. It is important
to note that the correctness of Newton’s laws of motion is orbital mechanics is
restricted to systems with velocities much smaller than the speed of light and
masses small enough that their gravitational fields are weak and stationary. If
these conditions are not met, corrections from the theory of general relativity
have to be taken into account to accurately model the system.

The motion of the two bodies can then be obtained by inserting (1.16) into
(1.15):

d2r1
dt2

= G
m2 (r2 − r1)
|r2 − r1|3

(1.17a)

d2r2
dt2

= G
m1 (r1 − r2)
|r1 − r2|3

(1.17b)

As the mutual interactions between the two bodies are of interest to us, we
can define the centre of mass R, the total mass M and the relative position r as:

R =
m1r1 +m2r2
m1 +m2

(1.18a)

M = m1 +m2 (1.18b)

r = r1 − r2 (1.18c)

Solving these equations for r1 and r2 yields

r1 = R− m2

M
r (1.19a)

r2 = R+
m2

M
r (1.19b)

By taking the second derivative of these new variables and using (1.17b) we
can decouple the system into the motion of the centre of gravity and the mutual
motion of the two bodies.

d2R

dt2
=
m1

M

d2r1
dt2

+
m2

M

d2r2
dt2

= G
m1m2 (r2 − r1)
M |r2 − r1|3

+G
m2m1 (r1 − r2)
M |r1 − r2|3

= 0
(1.20)
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d2r

dt2
=

d2r2
dt2
− d2r1

dt2
= G

m1 (r1 − r2)
|r1 − r2|3

−Gm2 (r2 − r1)
|r2 − r1|3

= −GM
|r|3

r (1.21)

We see from equation (1.20) that the gravitational forces from the two bodies
always cancel out at their mutual centre of mass, which has a uniform velocity.
The centre of mass is, therefore, an ideal candidate to be the origin of an inertial
coordinate system.

The gravitational potential per unit mass of the gravitational field is derived
from (1.21)

V (r) =

∫
−GM
|r|3

rdr = −GM
|r|

(1.22)

The problem can be simplified in case the mass of one body m2 is negligible
to the mass of the other m1. This is a justified assumption when studying the
motion of small bodies (i.e. man-made satellites or small asteroids) in the vicinity
of a planet or a star. We can then approximate the above equations as follows:

R = r1 (1.23a)

M = m1 (1.23b)

r = r2 (1.23c)

The principal body m1 is chosen as origin of the coordinate system, r is the
location of massless particle in this coordinate system. |r|, the distance from
the particle to the body, can be expressed in spherical or Cartesian coordinates
described in Section 1.1:

|r| =
√
x2 + y2 + z2 = r (1.24)

Before deriving the particle dynamics, it is useful to normalize the system so
that certain quantities become dimensionless:

G = 1 M = 1 (1.25)

The final expression in Cartesian and spherical coordinates is obtained by
inserting (1.25) and (1.24) into (1.22):

V = − 1√
x2 + y2 + z2

= −1

r
(1.26)

1.3.1.2 Kinetic energy

The equation for the kinetic energy per unit mass in spherical coordinates
can easily be derived from the expression in Cartesian coordinates using the
transformation (1.1).

T =
1

2
|v̇|2 =

1

2

(
ẋ2 + ẏ2 + ż2

)
=

1

2

(
ṙ2 + r2ϑ̇2 + r2 sin2 ϑϕ̇2

)
(1.27)
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1.3.1.3 Particle dynamics

The Lagrangian function is obtained by combining the expressions for the
potential (1.26) and kinetic (1.27) energy per unit mass.

L = T − V =
1

2

(
ṙ2 + r2ϑ̇2 + r2 sin2 ϑϕ̇2

)
+

1

r
(1.28)

The equations of motion of a particle in a gravitational central force field
can be derived from the Lagrange equation (1.14) using the above Lagrangian.
Successively solving the Lagrange equation for all three spherical coordinates
gives the expression for their accelerations:

r̈ = rϑ̇2 − 1

r2
+ r sin2 ϑϕ̇2 (1.29a)

ϑ̈ = −2
ṙ

r
ϑ̇+ cosϑ sinϑϕ̇2 (1.29b)

ϕ̈ = −2

(
ṙ

r
+ ϑ̇

cosϑ

sinϑ

)
ϕ̇ (1.29c)

These dynamics can be also expressed by the derivative of the state vector
(1.2):

ẋ =


ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

 =



x2
x1x

2
4 − 1

x2
1

+ x1 sin2 x3x
2
6

x4
−2x2

x1
x4 + cosx3 sinx3x

2
6

x6

−2
(

x2

x1
+ x4

cosx3

sinx3

)
x6


(1.30)

1.3.2 Oblateness of the main body

The model proposed in Section 1.3.1 describes the motion of a massless particle
in the gravitational field of a point mass. If the orbit of the particle is far enough
from the body to ensure no collision or atmospheric perturbation occur, the point
mass is equivalent to a spherical body with a uniform distribution of density (or a
density of radial variation). In reality, celestial bodies are never perfect spheres. A
wide array of internal and external forces deform them into irregular rigid bodies
of uneven mass distribution and their gravitational field is impacted by it. In this
section, we will include the oblateness of the body into the equations of motion of
a particle in orbit around it. For most large rotating celestial bodies, oblateness,
the flattening of the body at the poles, describes the principal deviation from a
spherical shape.

1.3.2.1 Gravitational potential

The mutual gravitational potential between two bodies has been derived in
Section 1.3.1. If we consider the principal body represented by a distribution
of mass points mi and the second by a single mass point M (Figure 1.4), the
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potential can be rewritten:

V = −
∑
i

GMmi

ri
= −

∑
i

GMmi

r

√
1 +

(
r′i
r

)2
− 2

r′i
r

cosψi

(1.31)

where ri is the distance from the mass point mi to M , r′i is the distance from
mi to the centre of mass of all mass points mi, r is the distance between this
centre of mass and the point M and ψi is the angle between r and r′i according
to Figure 1.4.

Figure 1.4: Sketch of a two body system where one body is represented by multiple
mass points mi. Figure from [2].

As the reciprocal of the square root term in (1.31) is a generating function
for Legendre polynomials, we can expand the above expression in terms of its
Legendre polynomials:

V = −GM
r

∑
i

∑
n=0

mi

(
r′i
r

)n

Pn (cosψi) (1.32)

where Pn (cosψi) are Legendre polynomials of cosψi. For reference, the first three
Legendre polynomials are:

P0 (x) = 1 P1 (x) = x P2 (x) =
1

2

(
3x2 − 1

)
(1.33)

In the case of a perfectly spherical principal body with a radial variation of
density, all but the zero-order Legendre polynomial P0 cancel out and vanish. The
contribution of this lowest-order term polynomial to the potential corresponds to
the formula (1.22) derived in the previous section.

V0 = −GM
r

∑
i

mi (1.34)

With deviations of a body from a sphere, some of the terms corresponding
to higher polynomials of (1.32) become non-zero. Their amplitude decreases

however with increasing order because of
(

r′i
r

)n
and r′i << r. In this thesis,

we consider the first non-zero higher Legendre polynomial order as a sufficient
approximation.
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The first-order term P1 is skipped since it is always zero.

V1 = −GM
r2

∑
i

∑
n=0

mir
′
i cosψi = −GM

r3
r
∑
i

∑
n=0

mir
′
i = 0 (1.35)

by definition of the centre of mass.
The second-order term P2 is retained as the first non-vanishing higher order

Legendre polynomial, its contribution is given by

V2 = −GM
r

∑
i

mi

(
r′i
r

)2

P2 (cosψi) = −GM
2r3

∑
i

mir
′2
i

(
3 cos2 ψi − 1

)
(1.36)

The potential function (1.31) expanded to the second order Legendre poly-
nomial is obtained by combining (1.34), (1.35) and (1.36) and then rewritten in
terms of moments of inertia using tensor manipulation.

V =− GM

r

∑
i

mi −
GM

2r3

∑
i

mir
′2
i

(
3 cos2 ψi − 1

)
=− GMm

r
+
GM

2r3
(3Ir − TrI)

(1.37)

where m =
∑

imi is the mass of the principal body, I is the moment of inertia
tensor and Ir represents the moment of inertia about the vector r.

As stated above, the body is assumed oblate, thus with a rotational symmetry
along the third, polar, axis, so that I1 = I2. With α, β and γ the direction cosines
of r relative to this principal axis of the body, the moment of inertia Ir becomes

Ir = I1α
2 + I2β

2 + I3γ
2 = I1 + (I3 − I1) γ2 (1.38)

Additionally, if the polar axis of the oblate body is aligned with the zenith direc-
tion of a spherical coordinate systems

γ = cosϑ (1.39)

which can be established without loss of generality by choosing the appropriate
coordinate system.

Inserting Equations (1.38) and (1.39) into (1.37) gives the mutual gravitational
potential between a point mass m and an oblate body located at the origin of a
spherical coordinate system aligned with its polar axis.

V = −GMm

r
+
GM (I3 − I1)

2r3
(3 cosϑ− 1) (1.40)

A new oblateness parameter a is introduced:

a =
I3 − I1
m

(1.41)

Equation (1.40) can be divided by M to express the gravitational potential
per unit mass, then the parameter G and m are substituted according to (1.25)
to normalize it. The result is the equation in spherical coordinates for the gravi-
tational potential per unit mass for a particle in the vicinity of an oblate body.

V = −1

r
+

a

2r3
(3 cosϑ− 1) (1.42)
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1.3.2.2 Particle dynamics

As the oblateness of the main body affects only the potential of a particle
in its gravitational field, the formula for its kinetic energy is carried over from
Section 1.3.1, Equation (1.27). It is combined with the potential per unit mass
derived above in (1.42) into the Lagrangian function

L = T − V =
1

2

(
ṙ2 + r2ϑ̇2 + r2 sin2 ϑϕ̇2

)
+

1

r
− a

2r3
(
3 cos2 ϑ− 1

)
(1.43)

The perturbation terms arising from the oblateness of the main body are empha-
sized in green.

Similarly as in (1.3.1.3), the equations of motion of the particle are obtained
by solving the Lagrange equation (1.14):

r̈ = rϑ̇2 − 1

r2
+ r sin2 ϑϕ̇2 +

3

2

a

r4
(
3 cos2 ϑ− 1

)
(1.44a)

ϑ̈ = −2
ṙ

r
ϑ̇+ cosϑ sinϑϕ̇2 +

3a

r5
sinϑ cosϑ (1.44b)

ϕ̈ = −2

(
ṙ

r
+ ϑ̇

cosϑ

sinϑ

)
ϕ̇ (1.44c)

As the oblate body is still symmetric around its polar axis and the spherical
coordinate system is aligned with this axis, the dynamics in the ϕ coordinate
remain unperturbed. Likewise, none of the additional perturbing terms contains
ϕ or its derivative.

The same relations can be expressed in terms of the state vector defined by
(1.2):

ẋ =


ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

 =



x2
x1x

2
4 − 1

x2
1

+ x1 sin2 x3x
2
6 + 3

2
a
x4
1

(3 cos2 x3 − 1)

x4
−2x2

x1
x4 + cosx3 sinx3x

2
6 + 3a

x5
1

sinx3 cosx3

x6

−2
(

x2

x1
+ x4

cosx3

sinx3

)
x6


(1.45)

1.3.3 Circular restricted three-body problem

In Section 1.3.1, the equations of motion of a particle in the gravitational
field of a point mass were derived. The influence of the body’s oblateness was
then added to the dynamics in Section 1.3.2. As orbital mechanics do not deal
in general with orbits around isolated celestial objects but with bodies within
the Solar system, the gravitational pull of these bodies also represents a force
perturbing the particle’s orbit. For trajectories close to the main mass, this effect
is often approximated as a constant perturbation [8]. If we want to investigate
orbits with a radius of a similar order of magnitude as the distance between
the bodies, these perturbations must be described more exactly. This thesis will
restrict itself to the effect of only a single additional massive body.
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The two bodies are assumed rotating around their common centre of mass
with a constant angular velocity Ω. It is helpful to treat such a system in a
coordinate frame that rotates along with the bodies, such as the Hill’s system
introduced in Section 1.1.1.

Similarly, as in the previous sections, the equations of motion in the Hill’s sys-
tem will be derived using the Lagrangian method (Section 1.2). The Lagrangian
function (1.8) is composed from the kinetic energy and potential. In the Hill’s
system, the gravitational potential will have to account for the additional gravi-
tational pull from the second body, while the kinetic energy will have additional
centrifugal and Coriolis terms emerging from the frame’s rotation.

1.3.3.1 Kinetic energy

The kinetic energy of a particle in the Hill’s system is easiest obtained from
the expression for the kinetic energy in inertial cylindrical coordinates [ρ,ϕ,z]
centred at the centre of mass.

T =
1

2
|v̇|2 =

1

2

(
ẋ2 + ẏ2 + ż2

)
=

1

2

(
ρ̇2 + ρ2ϕ̇2 + ż2

)
(1.46)

As the coordinate system is transformed from an inertial to one rotating with
angular velocity Ω, this constant is added to the angular velocity term in the
following coordinates transformation:

ρ→ ρ

ρ̇→ ρ̇

ϕ→ ϕ+ tΩ

ϕ̇→ ϕ̇+ Ω

z → z

ż → ż
(1.47)

The kinetic energy from (1.46) can be now expressed in these new rotating
cylindrical coordinates:

T =
1

2

(
ρ̇2 + ρ2 (ϕ̇+ Ω) 2 + ż2

)
=

1

2

(
ρ̇2 + ρ2ϕ̇2 + ż2 + 2ρ2Ωϕ̇+ ρ2Ω2

)
(1.48)

Compared with the expression for the kinetic energy in the inertial frame
(1.46), the equation in the rotating frame (1.48) contains two additional artefacts
of the frame rotation. ρ2Ω2 represents the energy generated by centrifugal forces,
−2ρ2Ωϕ̇ corresponds to Coriolis forces.

The coordinate system is transformed into Cartesian coordinates in order to
shift its origin from the centre of mass to the principal body.

T =
1

2

(
ẋ2 + ẏ2 + ż2 + 2 (xẏ + yẋ) Ω +

(
x2 + y2

)
Ω2
)

(1.49)

This allows the shift to be performed by adjusting only a single position coordi-
nate:

x→ x+ µ

ẋ→ ẋ

y → y

ẏ → ẏ

z → z

ż → ż
(1.50)

Leading to the expression for the kinetic energy in Cartesian coordinates rotating
centred at the principal body:

T =
1

2

(
ẋ2 + ẏ2 + ż2 + 2 ((x+ µ) ẏ + yẋ) Ω +

(
(x+ µ) 2 + y2

)
Ω2
)

=
1

2

(
ẋ2 + ẏ2 + ż2 + 2 (xẏ + yẋ) Ω +

(
x2 + y2

)
Ω2 + 2µΩẏ + 2µΩ2x+ µ2Ω2

)
(1.51)
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Three new terms were added to the formula by shifting the origin, all emerging
from the centrifugal and Coriolis terms (the kinetic energy in an inertial frame
does not depend on the position (1.46)).

As a final step, the coordinate system is transformed once again, expressing
the kinetic energy of a particle in a spherical coordinate system centred at the
principal body and co-rotating with the two massive bodies.

T =
1

2

(
ṙ2 + r2ϕ̇2 sin2 ϑr2ϑ̇2 (1.52a)

+ 2r2Ωϕ̇ sin2 ϑ− 2µΩ
(
ṙ sinϑ sinϕ+ rϑ̇ cosϑ sinϕ+ rϕ̇ sinϑ cosϕ

)
+ r2Ω2 sin2 ϑ+ 2µΩ2r sinϑ cosϕ+ µ2Ω2

)
=

1

2

(
ṙ2 + r2ϑ̇2 + r2 sin2 ϑ (ϕ̇+ Ω)2 − 2µΩ sinϕ

(
ṙ sinϑ+ rϑ̇ cosϑ

)
(1.52b)

−2µΩr sinϑ cosϕ (ϕ̇+ Ω) + µ2Ω2
)

The first line of Equation (1.52a) describe the kinetic energy of a particle moving
in an inertial frame. The second line is comprised of terms representing Coriolis
forces and the third assembles the contribution of centrifugal forces. Terms con-
taining the reduced mass µ emerged from the shift of the origin of the coordinate
system from the centre of mass to the principal body. In subsequent sections, the
simplified equation (1.52b) will be used.

1.3.3.2 Gravitational potential

The potential in the restricted three body system is obtained by combining
the potential energies (1.22) of both mass points m1 and m2, normalized in terms
of reduced mass to 1− µ and µ according to (1.4).

V (r) = −1− µ
|r1|

− µ

|r2|
(1.53)

where |r1| and |r2| are the distances from the particle to m1 and m2 respectively.
The location of both bodies in the Hills system is given by or (1.6).

In Cartesian coordinates centred at the centre of mass and co-rotating with
the two bodies located at (1.5), the distances from them is calculated as

|r1| =
√

(x+ µ)2 + y2 + z2 |r2| =
√

(x− 1 + µ)2 + y2 + z2 (1.54)

Inserting (1.54) into (1.53) gives the value of the potential in the Hill’s system in
Cartesian coordinates.

V =− 1− µ√
x2 + y2 + z2

− µ√
(x− 1)2 + y2 + z2

(1.55)

If the coordinates are chosen as spherical centred at one of the bodies, the
distances to them become

|r1| = r |r2| =
√

1 + r2 − 2r sinϑ cosϕ (1.56)
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And the corresponding potential

V = −1− µ
r
− µ√

1 + r2 − 2r sinϑ cosϕ
(1.57)

If the oblateness of the principal body m1 is taken into account, an addi-
tional term from (1.42) is added to (1.57), multiplied by the appropriate weight
rescaling.

V = −1− µ
r
− µ√

1 + r2 − 2r sinϑ cosϕ
+
a (1− µ)

2r3
(3 cosϑ− 1) (1.58)

This holds however only in the case when the polar axis of the oblate body is
perpendicular to the principal plane of the Hill’s system.

1.3.3.3 Particle dynamics

In the literature ([9, 2]) equations of motion in the Hill’s system are usually
given in rotating Cartesian coordinates with the centre of mass as origin. They
are obtained solving the Lagrange equations (1.14) with the potential (1.55) and
kinetic energy (1.49).

L = T − V =
1

2

(
ẋ2 + ẏ2 + ż2 + 2 (xẏ + yẋ) Ω +

(
x2 + y2

)
Ω2
)
− V (1.59)

ẍ− 2ẏΩ =− ∂V

∂x
(1.60a)

ÿ + 2ẋΩ =− ∂V

∂y
(1.60b)

z̈ =− ∂V

∂z
(1.60c)

In this thesis however, we will mostly be working with spherical coordinates
centred at the principal body. These correspond better to the orbital motions
and allow an easier expression of the oblateness of the main body. We combine
expressions in spherical coordinates for the kinetic (1.52) and potential (1.57) per
unit mass in the Hill’s system into the Lagrangian function.

L =T − V =
1

2

(
ṙ2 + r2ϑ̇2 + r2 sin2 ϑ (ϕ̇+ Ω)2

−2µΩ sinϕ
(
ṙ sinϑ+ rϑ̇ cosϑ

)
− 2µΩr sinϑ cosϕ (ϕ̇+ Ω) + µ2Ω2

)
+

1− µ
r

+
µ√

1 + r2 − 2r sinϑ cosϕ
− (1− µ)

a

2r3
(
3 cos2 ϑ− 1

) (1.61)

By solving the Lagrange equation (1.14), the dynamics of a particle in the Hill’s
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system can be derived using the Lagrangian (1.61):

r̈ =rϑ̇2 − 1− µ
r2
− µr√

1 + r2 − 2r sinϑ cosϕ
3 + r sin2 ϑ (ϕ̇+ Ω)2 (1.62a)

+ µ sinϑ cosϕ

(
1√

1 + r2 − 2r sinϑ cosϕ
3 − Ω2

)
+ (1− µ)

3

2

a

r4
(
3 cos2 ϑ− 1

)
ϑ̈ =− 2

ṙ

r
ϑ̇+ cosϑ sinϑ (ϕ̇+ Ω)2 + (1− µ)

3a

r5
sinϑ cosϑ (1.62b)

+
µ

r
cosϑ cosϕ

(
1√

1 + r2 − 2r sinϑ cosϕ
3 − Ω2

)

ϕ̈ =− 2

(
ṙ

r
+ ϑ̇

cosϑ

sinϑ

)
(ϕ̇+ Ω) (1.62c)

− µ

r

sinϕ

sinϑ

(
1√

1 + r2 − 2r sinϑ cosϕ
3 − Ω2

)
These equations can also be expressed in terms of the first order state space

dynamics, using the state vector (1.2):

ẋ1 =x2

ẋ2 =x1x
2
4 −

1− µ
x21
− µx1√

1 + x21 − 2x1 sinx3 cosx5
3 + x1 sin2 x3 (x6 + Ω)2

+ µ sinx3 cosx5

(
1√

1 + x21 − 2x1 sinx3 cosx5
3 − Ω2

)
+ (1− µ)

3

2

a

x41

(
3 cos2 x3 − 1

)
ẋ3 =x4

ẋ4 =− 2
x2
x1
x4 + cosx3 sinx3 (x6 + Ω)2 + (1− µ)

3a

x51
sinx3 cosx3

+
µ

x1
cosx3 cosx5

(
1√

1 + x21 − 2x1 sinx3 cosx5
3 − Ω2

)
ẋ5 =x6

ẋ6 =− 2

(
x2
x1

+ x4
cosx3
sinx3

)
(x6 + Ω)

− µ

x1

sinx5
sinx3

(
1√

1 + x21 − 2x1 sinx3 cosx5
3 − Ω2

)

(1.63)

1.3.3.4 Jacobi integral

Let us revisit the Lagrangian function in Cartesian coordinates (1.59):

L =
1

2

(
ẋ2 + ẏ2 + ż2

)
+ (xẏ + yẋ) Ω +

1

2

(
x2 + y2

)
Ω2 +

µ

r1
+

1− µ
r2

(1.64)

29



The canonical coordinates p corresponding to the Cartesian generalized coor-
dinates q can be derived from the above Lagrangian.

p =
∂L

∂q̇
=

 ẋ+ yΩ
ẏ + xΩ
ż

 (1.65)

The Hamiltonian function can now be introduced:

H =
∑
k

pkq̇k − L (q,q̇)

=
1

2

(
ẋ2 + ẏ2 + ż2

)
− 1

2

(
x2 + y2

)
Ω2 − µ

r1
− 1− µ

r2
= Tef + Vef

(1.66)

where

Tef =
1

2

(
ẋ2 + ẏ2 + ż2

)
(1.67a)

Vef =− 1

2

(
x2 + y2

)
Ω2 − µ

r1
− 1− µ

r2
(1.67b)

are the effective kinetic energy and effective potential respectively. The effective
potential can be further divided into the centrifugal potential (first term) and the
gravitational potential of both bodies (last two terms).

The Jacobi integral is a function commonly defined as twice the value of the
Hamiltonian:

J = 2H = ẋ2 + ẏ2 + ż2 −
(
x2 + y2

)
Ω2 − 2

µ

r1
− 2

1− µ
r2

(1.68)

The Jacobi integral describes the total energy of the system and, as no dissipative
force is applied, is constant. It allows the characterization of the energy level of
an orbit.

1.3.3.5 Lagrange points

In the last section, we introduced the Jacobi integral, a value that denotes
the energy of an orbit in the Hill’s system. The Jacobi integral remains constant
for the entire duration of an uncontrolled orbit. Figure 1.5 plots the effective
potential (1.67b) in the principal plane of the Hill’s system. It also represents
the values of the Jacobi integral if Tef = 0. As the effective potential contains
three terms, we can see that the graph on Figure 1.5 is obtained by combining
three shapes, one rotational paraboloid centred at the centre of mass and two
hyperboloids centred at the two mass points. If a particle with zero velocity
is inserted in the Hill’s system, its orbit will be confined to the area inside the
zero-velocity curve on which it lies.

The shape of the effective potential displayed on Figure 1.5, shows to have 5
local minima. These correspond to 5 equilibrium points, position where∇Eef = 0
. The equilibrium points in the Hill’s system are called Lagrange points and are
important locations for orbit placement. A particle placed in these equilibria
will remain motionless in the rotating frame, while performing a circular motion
around the centre of mass with the same velocity as the two bodies in the inertial
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Figure 1.5: Zero-velocity curves representing the effective potential of in the principal
plane of the Hill’s system for µ = 0.1. The yellow dot represents the principal body,
the blue dot the second body, × the barycentre. Figure taken from http://leancrew.

com/all-this/2016/08/lagrange-points-redux/.

x01 x02 x03 x04 x05 x06 J
L1 0.6697405 0 π/2 0 0 0 −3.7168
L2 1.4203341 0 π/2 0 0 0 −3.5244
L3 0.9123 0 π/2 0 π 0 −3.1488
L4 1 0 π/2 0 π/3 0 −2.8725
L5 1 0 π/2 0 −π/3 0 −2.8725

Table 1.1: Table of Lagrange points locations for µ = 0.15

frame, as will be seen on Figure 1.29, in Section 1.4.5.1. The formal proof of
existence and the stability of Lagrange points is discussed in [9].

Points L4 and L5 are stable and located on the vertices of equilateral trian-
gles formed by these Lagrange points and the two bodies. Their specification in
spherical coordinates and corresponding value of the Jacobi integral is given in
Table 1.1. Their stability signifies natural celestial bodies might be trapped on
them or in the region around them. These are called Trojan and are a common
sight in the solar system. The most famous and numerous group of Trojan as-
teroids is located at Sun-Jupiter Lagrange point L4 (the Greek camp) and L5
(the Trojan camp). To date, Earth has a single observed natural Trojan called
2010-TK7 and orbiting in a tadpole orbit around L4.

Contrary to L4 and L5, the first three are located on saddle-nodes of the
potential curve and thus are unstable. They are collinear with both bodies but
their exact position depends on µ and cannot be numerically calculated. Their
unstable manifolds coincide with the principal axis between the two bodies. To
locate them, we simulated the system numerous times along this axis with zero
velocity. We observed the value of the initial radial acceleration and recorded it
on Figure 1.6. Where the acceleration is zero, centrifugal and gravitational forces
cancel out and the system is in equilibrium. Exact locations of Lagrange points
L1-3 for µ = 0.15 are given by Table 1.1. Because of their instability, natural
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satellites are not found on or around these equilibria and artificial ones need to
be kept there with control.
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Figure 1.6: Radial acceleration along the principal axis with Lagrange points L1-3
for µ = 0.15. Values close to the bodies are not included as they go to infinity.

L1 is a saddle equilibrium located on the segment between the two bodies,
close to the smaller one. Artificial satellites are not placed precisely at this
equilibrium point in the Sun-Earth system, because solar radiation would foil
any communication with the satellite from Earth. It is however possible to place
a satellite in orbits around L1 that maintain their shape in the rotating frame,
at least until they are overcome by their instability. These orbits are called halo
orbits and a more profound analysis will be given in Section 1.4.5.2. An example
of a man-made satellite in halo orbit around L1 is the SOHO satellite, responsible
for solar observation and detection of space weather before it reaches the Earth.

Similarly to L1, the L2 Lagrangian point is a saddle equilibrium with unstable
manifolds on the axis of the masses. It is located a little beyond the smaller
body. In the case of the Sun-Earth system, it is used for space observation, as
it is partially shielded from solar radiation by the planet. This means however
that L2 is also partially shaded. For this reason, halo orbits at L2 are useful
as they allow to escape the Earth’s shadow for better solar panel efficiency. The
developed James Webb Space Telescope is planned to orbit on a halo orbit around
L2.

The last Lagrange point L3 is located opposite of the smaller body at a dis-
tance from the barycentre similar to the distance from the centre of mass to the
small mass. Though no natural satellite can remain at this unstable equilibrium,
the possibility of a Counter-Earth, a twin planet located on the other opposite
side of the Sun, has long captured the imagination of classical philosophers and
science-fiction writers alike. In the Sun-Earth system, artificial satellite at L3
would be unable to communicate with the Earth because of the strong interfer-
ences from the Sun in between.

1.3.4 Elliptic restricted three-body problem

In Section 1.3.3, we derived the equations of motion of a massless test body
in the gravitational field of two bodies. The two masses are orbiting around a
motionless centre of mass on circular orbits. Their relative motion as it follows
from Equation (1.21) does not require the bodies to revolve on circular trajectories
and maintain a constant distance. In fact, two masses subjected to only their
mutual gravitational attraction will follow a Keplerian orbit in the shape of a
conic section: a circle, an ellipse, a parabola or a hyperbola. The different types
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of Keplerian orbits will be discussed and compared in Section 1.4.1. Particles on
parabolic or hyperbolic orbits have a kinetic energy large enough to overcome the
gravitational potential and a move apart from each other indefinitely. On the
other hand, particles on elliptic and circular orbits remain bound to each other
in a periodic motion. Circular orbits can be considered a special case of elliptic
orbits with eccentricity e = 0.

Most applications for the Hill’s system involve either the Earth-Moon or Sun-
Earth systems. In those cases the eccentricity of the bodies orbit is low, and
dynamics derived in the circular Hill’s system are usually a sufficient approxima-
tion. When dealing with bodies orbiting on more pronouncedly elliptic orbits a
more general formulation of the equations of motion is required. For example
the dynamics or potential exoplanets in solar systems with pulsating binary stars
are governed by the equations of motion derived in this section. Even when the
system has a low eccentricity, it might be worthwhile not to neglect it if a highly
precise solution is required. Finally, the elliptic Hill’s system can be applied
to express the dynamics of a formation of satellites in a LHLV reference frame
centred at a leader on an elliptic orbit, as described in 1.1.2.

In this section, we will generalise the equations of motion derived in Sec-
tion 1.3.3 to express the dynamics of a massless particle in the vicinity of two
massive bodies mutually describing elliptic orbits around their centre of mass. In
the circular case, we expressed the equations of motion in a frame co-rotating
with the two bodies around their centre of mass. This allowed for both bodies
to remain fixed with regard to this reference frame. In addition, all distances
are rescaled in order to normalize the distance between the bodies to 1. If the
same is to be accomplished for an elliptical Hill’s system, the frame’s rotation
and rescaling have to be time-variant, as both the mutual distance and angular
velocity of the bodies are not constant.

For two bodies on elliptic trajectories around each other, their mutual distance
is expressed as

r =
a (1− e2)
1 + e cosh

(1.69)

where a is the ellipse’s semi-major axis and h is the true anomaly, the angle from
the periapsis indicating the position on the orbit. The periapsis is the point where
the two bodies are the closest to each other.

The conserved angular momentum is expressed as

r2Ω =
√
a (1− e2) (1.70)

In the case of the standard circular Hill’s system, both r and Ω are constants.
Here are r is given by (1.69) and Ω indicates the time derivative of the true
anomaly:

Ω =
dh

dt
(1.71)

1.3.4.1 Kinetic energy

We start with the expression (1.49) for the kinetic energy of a particle in a
coordinate frame rotating with angular velocity Ω (t), corresponding to the time-
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dependent angular velocity of revolution of the two primary bodies.

T =
1

2

(
ẋ2 + ẏ2 + ż2 + 2 (xẏ + yẋ) Ω +

(
x2 + y2

)
Ω2
)

(1.72)

In this rotating frame, the bodies lie on one axis, but their position still fluc-
tuate. In order to rescale the distances and fix the bodies, pulsating Cartesian
coordinates are introduced

ξ =
x

r
η =

y

r
ζ =

z

r
(1.73)

By introducing them into the expression (1.72) , the kinetic energy in pulsating
rotating coordinates is obtained:

T =
1

2

[(
ṙξ + rξ̇

)2
+ (ṙη + rη̇)2 +

(
ṙζ + rζ̇

)2
+ 2Ω

(
rξ (ṙη + rη̇)− rη

(
ṙξ + rξ̇

))
+ r2

(
ξ2 + η2

)
Ω2
]

=
1

2

[
r2
(
ξ̇2 + η̇2 + ζ̇2

)
+ ṙ2

(
ξ2 + η2 + ζ2

)
+2rṙ

(
ξξ̇ + ηη̇ + ζζ̇

)
+ 2Ωr2

(
ξη̇ − ηξ̇

)
+ r2Ω2

(
ξ2 + η2

)]
(1.74)

The expression above contains time derivatives. We can transform the system
to be a function of true anomaly instead of time with

d

dt
=

dh

dt

d

dh
= Ω

d

dh
(1.75a)

dt =
dt

dh
dh =

1

Ω
dh (1.75b)

The action S becomes anomaly-dependent from time-dependent by the following
transformation:

S =

∫
L (q,q̇,t) dt→ S =

∫
L̃ (q,q′,h) dh (1.76)

where q′ = dq
dh

is the derivative of coordinate q with regards to the true anomaly

and L̃ is the anomaly dependent Lagrangian, which can be expressed using (1.75)
as

L̃ (q,q′,h) =
1

Ω
L (q,Ωq′,t (h)) (1.77)

The expression for the kinetic energy in anomaly-variant pulsating coordinate
becomes:

T̃ =
1

2

[
r2Ω

(
ξ′2 + η′2 + ζ ′2

)
+ r′2Ω

(
ξ2 + η2 + ζ2

)
+2rr′Ω (ξξ′ + ηη′ + ζζ ′) + 2r2Ω (ξη′ − ηξ′) + r2Ω

(
ξ2 + η2

)] (1.78)

With the angular momentum of the primary bodies r2Ω multiplying the first,
fourth and fifth element of (1.78) being constant, we need to further investigate
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terms r′2Ω and 2rr′Ω multiplying the second and third term of the expression for
the kinetic energy respectively.

r =
a (1− e2)
1 + e cosh

r′ =
a (1− e2)

(1 + e cosh)2
e sinh → r′

r
=

e sinh

1 + e cosh
(1.79)

r′2Ω =r2Ω

(
r′

r

)2

=
√
a (1− e2) e2 sin2 h

(1 + e cosh)2
(1.80a)

2rr′Ω =2r2Ω
r′

r
= 2
√
a (1− e2) e sinh

1 + e cosh
(1.80b)

The above expressions are substituted into (1.78).

T̃ =
1

2

[
r2Ω

(
ξ′2 + η′2 + ζ ′2

)
+ 2r2Ω (ξη′ − ηξ′) + r2Ω

(
ξ2 + η2

)
+ 2
√
a (1− e2) e sinh

1 + e cosh
(ξξ′ + ηη′ + ζζ ′)

+
√
a (1− e2) e2 sin2 h

(1 + e cosh)2
(
ξ2 + η2 + ζ2

)]
=

1

2

√
a (1− e2)

[(
ξ′2 + η′2 + ζ ′2

)
+ 2 (ξη′ − ηξ′) +

(
ξ2 + η2

)
+2

e sinh

1 + e cosh
(ξξ′ + ηη′ + ζζ ′) +

e2 sin2 h

(1 + e cosh)2
(
ξ2 + η2 + ζ2

)]
(1.81)

We remark that, in the previous equation, the next-to-last term is close from
being the derivative of the last, as

d

dh

(
ξ2 + η2 + ζ2

)
= 2 (ξξ′ + ηη′ + ζζ ′) (1.82)

Knowing that the Lagrangian is determined up to a total derivative, a simplified
equivalent Lagrangian can be found by subtracting a derivative term from its
kinetic energy.

d

dh

[
e sinh

1 + e cosh

(
ξ2 + η2 + ζ2

)]
=

d

dh

(
e sinh

1 + e cosh

)(
ξ2 + η2 + ζ2

)
+

e sinh

1 + e cosh

d

dh

(
ξ2 + η2 + ζ2

)
=

e2 sin2 h

(1 + e cosh)2
(
ξ2 + η2 + ζ2

)
+

e sinh

1 + e cosh

(
ξ2 + η2 + ζ2

)
+ 2

e sinh

1 + e cosh
(ξξ′ + ηη′ + ζζ ′)

(1.83)

This allows us to substitute the last two terms of (1.81) with one derivative and
one additional term.

e2 sin2 h

(1 + e cosh)2
(
ξ2 + η2 + ζ2

)
+ 2

e sinh

1 + e cosh
(ξξ′ + ηη′ + ζζ ′)

=
d

dh

[
e sinh

1 + e cosh

(
ξ2 + η2 + ζ2

)]
− e sinh

1 + e cosh

(
ξ2 + η2 + ζ2

) (1.84)
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The derivative term can be omitted to write a simplified expression for an
equivalent kinetic energy

T̃eq =
1

2

√
a (1− e2)

[(
ξ′2 + η′2 + ζ ′2

)
+ 2 (ξη′ − ηξ′) +

(
ξ2 + η2

)
− e sinh

1 + e cosh

(
ξ2 + η2 + ζ2

)] (1.85)

1.3.4.2 Potential

In the previous section, an expression for the kinetic energy of a particle
in pulsating rotating coordinates has been derived. In order to calculate the La-
grangian, the gravitational potential has to be expressed as well in this coordinate
system. The gravitational potential in the rotating Cartesian coordinates of the
circular Hill’s system is given by (1.53):

V (r) = −1− µ
R1

− µ

R2

(1.86)

where R1 and R2 is the distance to the two bodies.
We can find the equivalent potential Ṽ in a pulsating coordinate system by

rescaling all distances by the distance between the bodies r.

R1 (x,y,z,µ) =rR̃1 (ξ,η,ζ,µ)

R2 (x,y,z,1− µ) =rR̃1 (ξ,η,ζ,1− µ)
(1.87)

As we switch to true anomaly-dependent pulsating coordinates, the Lagrangian
is scaled by the inverse of Ω (Equation (1.77)). This term is carried over to the
expression for the potential in pulsating rotating coordinates:

1

Ω
V =

1

rΩ
Ṽ =

1

r2Ω
rṼ =

1√
a (1− e2)

a (1− e2)
1 + e cosh

Ṽ

=

√
a (1− e2)

1 + e cosh
Ṽ =

√
a (1− e2)

1 + e cosh

(
−1− µ

R̃1

− µ

R̃2

) (1.88)

where substitutions for r from (1.79) and for the angular momentum r2Ω from
(1.70) are used.

1.3.4.3 Particle dynamics

The true anomaly-dependent Lagrangian in pulsating rotating coordinates is
obtained by combining Equation (1.85) for the kinetic energy and (1.88) for the
gravitational potential.

L̃ =
√
a (1− e2)

(
T̃eq −

1

1 + e cosh
Ṽ

)
(1.89)

The irrelevant constant angular momentum multiplier can be removed from
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the equation above to give an equivalent expression for the Lagrangian

L̃eq =T̃eq −
1

1 + e cosh
Ṽ

=
1

2

[(
ξ′2 + η′2 + ζ ′2

)
+ 2 (ξη′ − ηξ′) +

(
ξ2 + η2

)
− e sinh

1 + e cosh

(
ξ2 + η2 + ζ2

)]
− 1

1 + e cosh
Ṽ

(1.90)

Rearrangements are made in the formula in order to merge the (ξ2 + η2 + ζ2) and
(ξ2 + η2) terms and simplify the expression.

L̃eq =
1

2

[(
ξ′2 + η′2 + ζ ′2

)
+ 2 (ξη′ − ηξ′)− ζ2

]
− 1

1 + e cosh

[
1

2

(
ξ2 + η2 + ζ2

)
− Ṽ

] (1.91)

The equations of motion in of a particle in the gravitational field of two bodies
orbiting each other on elliptic orbits can be obtained by solving the Lagrange
equations

d

dh

∂L

∂q′
− ∂L

∂q
= 0 (1.92)

The particle dynamics are given in derivative with respect to the true anomaly
of the two bodies orbits, in Cartesian coordinates of a frame co-rotating and
pulsating such that the bodies maintain fixed positions.

ξ′′ − 2η′ =
1

1 + e cosh

(
ξ − ∂Ṽ

∂ξ

)
(1.93a)

η′′ − 2ξ′ =
1

1 + e cosh

(
η − ∂Ṽ

∂η

)
(1.93b)

ζ ′′ =
1

1 + e cosh

(
−e coshξ − ∂Ṽ

∂ξ

)
(1.93c)

If Ω an r are constant in time, the coordinates [ξ,η,ζ] are no longer pulsating,
e = 0 and the equations of motion above become equivalent to those in the
circular Hill’s system (1.60c), with h = Ωt being only a rescaled time.

The analysis of orbits and derivation of control tools in the elliptic Hill’s
system are out of the scope of this thesis. As Chapter 3 will mainly treat shape-
invariant formations, these would no longer maintain their mutual distances if
described in a pulsating coordinate system.

1.4 Demonstration of orbits

As the models derived in Section 1.3 are highly non-linear, qualitatively dif-
ferent types of orbits are expected to appear This is why, in this section, we will
simulate the dynamics with various parameter configurations and initial condi-
tions to present distinct classes of orbital trajectories. These orbits will serve as
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initial or final states of orbit transfers in Chapter 2. As the uncontrolled dynam-
ics of members of satellite formations also follow the equations derived in the
previous section, their trajectories are described by the orbits presented in this
section.

1.4.1 Keplerian orbits

In the Kepler two-body problem, a massless particle moves in the gravita-
tional field of a point mass in one of four qualitatively different types of orbit
corresponding to different conic sections.

As the gravitational field is symmetric with regards to the origin of coordinate
system centred at the massive body, all orbital planes are equivalent. We decided
in this section, without loss of generality, to execute simulations of Keplerian
orbits in the equatorial plane of the principal body.

The equation for the radial motion of such a particle is given by (1.29a):

r̈ = rϕ̇2 − 1

r2
(1.94)

We can introduce the angular momentum h, which is constant for each orbit

h = r2ϕ̇ (1.95)

If substituted into (1.94), the resulting expression for the radial acceleration be-
comes dependent only on the radius r and the constant h, thus forming a one-
dimensional oscillator.

r̈ =
h2

r3
− 1

r2
= −∂Vef

∂r
(1.96)

The effective potential is obtained by integrating the above expression and is
plotted on Figure 1.7.

Vef (r) =
1

2

h2

r2
− 1

r
(1.97)
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Figure 1.7: Effective potential energy curve for h = 0.4472.

Orbits can be distinguished into 4 qualitatively different orbit shapes accord-
ing to their energy. This section will successively present all four Keplerian orbits
with initial conditions according to Table 1.2. The total energy will be repre-
sented by J = 2E = 2T + 2U , equivalent to the Jacobi integral (1.68). As there
are no dissipative forces at play in orbital mechanics if atmospheric drags are
neglected, the total energy remains constant.
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x01 x02 x03 x04 x05 x06 J
Circular 0.2 0 π/2 0 0 10.1803 −5.0
Elliptic 0.2 0 π/2 0 0 13.4164 −2.8
Parabolic 0.2 0 π/2 0 0 15.8114 0
Hyperbolic 0.2 0 π/2 0 0 17.8885 2.8

Table 1.2: Table of initial states for Keplerian orbits

1.4.1.1 Circular orbit

With a chosen orbital plane (the equatorial) and initial radius, the radial
velocity is set to zero and the only state left to specify is the angular velocity.
We know that in order to maintain a radial acceleration of zero, the centripetal
force must equal the gravitational:

mv2t
r

=
GMm

r2
(1.98)

The tangential velocity is obtained by rearranging the above equation.

vt =

√
GM

r
(1.99)

Using normalizing substitutions from (1.25) and the general formula ϕ̇ = vt
r

, the
angular velocity of a circular orbit of radius r is obtained.

ϕ̇c =
1√
r3

(1.100)

Circular orbits have the lowest energy of all Keplerian orbits of the same
angular momentum. This signifies they occupy the minimum of the potential
curve on Figure 1.8, meaning only a single radius is available to them. This has
been confirmed experimentally by simulating the Keplerian motion of a particle
according to (1.30) with initial conditions given by Table 1.2 according to (1.100).
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Figure 1.8: Effective potential energy curve for h = 0.4472.

Indeed, it can be seen on Figure 1.9 that a Keplerian orbit of circular shape
maintains all its states constant (except the angular state, which grows linearly).
Its kinetic and potential energy, hence also the total, are therefore also constant.

Optimal transfers between Keplerian circular orbits will be presented in Sec-
tion 2.3.1. Trailing formations on circular trajectories will be reconfigured using
an optimal controller in Section 3.2.1 and a close-loop cooperative one in Sec-
tion 3.3.2.
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Figure 1.9: Circular orbit around a single body with no perturbation. r = 0.2.

1.4.1.2 Elliptic orbit

By maintaining the same initial radius as in the circular case and increasing
its angular velocity, an elliptic orbit can be obtained. Its initial condition (listed
in Table 1.2) are given by:

ϕ̇ep =
1.2
√
rp

3 = 1.2ϕ̇c (1.101)

With ϕep being the angular velocity at the periapsis of the ellipse. The periapsis is
the point of the orbit, where the radius is minimal and angular velocity maximal.
The apoapsis is the opposite of the periapsis, the radius is maximal there and the
velocity minimal.

An uncontrolled orbit with those initial conditions (Table 1.2) is displayed on
Figure 1.11. Both the trajectory, state and energy graph (Figure 1.10) show that
the particle oscillates between a high-velocity periapsis position close to the body
and a low-velocity apoapsis further from it on the other side. In accordance with
Kepler’s first law of planetary motion, the body is located at one of the focal
points of the ellipse.
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Figure 1.10: Effective potential energy curve for h = 0.5367.

1.4.1.3 Parabolic orbit

If the initial angular velocity is increased even further, the orbiting particle
will escape the gravitational sphere of influence of the body. The critical case
when this happens corresponds to the effective potential (1.97) equalling zero.
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Figure 1.11: Elliptic orbit around a single body with no perturbation. rp = 0.2.

For a chosen radius, the corresponding angular velocity is obtained as:

ϕ̇pp =

√
2

√
rp

3 =
√

2ϕ̇c (1.102)

The particle simulated with such initial conditions moves on a parabolic curve.
It reaches a global maximum in kinetic energy (and minimum in radius) at its
single periapsis (Figure 1.13). After that, it moves away from the body with
ever decreasing velocity. At infinity, the particle is infinitely far away with a zero
velocity. The energy graph from Figure 1.13 and Figure 1.12 testify the parabolic
orbit is an orbit with zero total energy.
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Figure 1.12: Effective potential energy curve for h = 0.6325.
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Figure 1.13: Parabolic orbit around a single body with no perturbation. rp = 0.2.
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1.4.1.4 Hyperbolic orbit

If a particle is given enough initial energy, it successively escaped the gravi-
tational field of the body, achieving a constant final velocity as the gravitational
pull goes to zero. With the parabolic orbit described above being the threshold
case with zero total energy, a particle with a positive total energy should be able
to escape (Figure 1.14). Such an orbit was simulated with initial conditions given
in Table 1.2, where the angular velocity was determined by

ϕ̇hp =
1.6
√
rp

3 = 1.6ϕ̇c > ϕ̇pp (1.103)
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Figure 1.14: Effective potential energy curve for h = 0.7155.

Contrary to the parabolic orbit, a particle on this trajectory does not see its
velocity decrease to zero as it moves away from the body but settles on a non-zero
constant. In fact, it follows a hyperbolic curve (Figure 1.15).
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Figure 1.15: Hyperbolic orbit around a single body with no perturbation. rp = 0.2.

1.4.2 Perturbations due to oblateness of the principal body

In Section 1.3.2, the effect of deformations of the massive body on the gravita-
tional field around it was discussed. The oblateness of the body, its flattening at
the poles, has been identified as its primary deviation from a perfect sphere. In
this section, orbits of a massless particle around an oblate body will be simulated
according to the state equations (1.45) and the results are discussed. The origin
of the coordinate system is placed to the centre of the body and the xy plane is
aligned with its equatorial plane.
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As the body is no longer spherical, its gravitational field is not spherically
symmetric any-more. This means that, contrary to the Keplerian system from
the last section, orbital planes are no longer equivalent. In this section, we will
simulate orbits perturbed by the oblateness of the body in its equatorial plane
and in a plane inclined with regard to the equatorial. The value for the oblatness
parameter is set to a = 0.0001. As in the previous section, locations where the
kinetic energy is minimal and maximal are useful for inferring the general char-
acter or an orbit. However, they can only be called apoapsides and periapsides
for Keplerian orbits. We therefore define TPP a turning point where the kinetic
energy reaches a local maximum and TPA in case of minimum, regardless of the
shape of the orbit.

x01 x02 x03 x04 x05 x06 J
Circular 0.2 0 π/2 0 0 11.1803 −5.0125
Circular inclined 0.2 0 3π/4 0 0 15.8114 −4.9895

Table 1.3: Table of initial states for orbits perturbed by the oblateness of the central
body

1.4.2.1 Perturbed circular orbit in the equatorial plane

In 1.4.1.1, initial conditions were derived for a circular Keplerian orbit. Using
the same initial states (Table 1.3) for a particle in the gravitational field of an
oblate body will uncover the perturbing effect of the oblateness on the shape of
the orbit. The equations of motion (1.44) inform us that, if the initial position
and velocity vectors both lie in the equatorial plane, the only perturbing term
from the oblateness of the body is a positive radial acceleration proportional to
the oblateness parameter and inversely proportional to the fourth power of the
radius:

r̈ = r − 1

r2
+ rϕ̇2 +

3a

r4

ϕ̈ = −2
ṙ

r
ϕ̇

(1.104)

As ϑ = π/2 and ϑ̇0 = 0, the equation for the angular acceleration in the polar
direction can be crossed out. This is confirmed by Figure 1.16, where all states
related to ϑ stay constant and the perturbation does not take the orbit away from
its initial, equatorial, plane.

Due to the oblateness of the body, the intended circular shape of the orbit
is deformed into an ellipse. In addition, the periapsides and apoapsides of the
elliptic orbit are precessing with a constant rate in the direction of the revolution.
Precession is the rotation of the axis joining the periapsis and apoapsis between
each consecutive revolution.

1.4.2.2 Perturbed circular orbit inclined to the equatorial plane

As mentioned earlier, the gravitational field around an oblate body is not a
central force field. We therefore expect a qualitatively different trajectory if the
initial orbit is set to be inclined with regards to the equatorial plane. The initial
angular speed is maintained so that a circular orbit would have been obtained in
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Figure 1.16: Perturbed circular orbit around a single oblate body in its equatorial
plane.

an unperturbed Keplerian system. The initial states for this orbit inclined by 45◦

from the equator are listed in Table 1.3.
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Figure 1.17: Perturbed circular orbit around a single oblate body inclined to its
equatorial plane.

The perturbations to the inclined orbit appear more significant than in the
case of orbits in the equatorial plane. Not only are the orbit’s periapsides and
apoapsides precessing, the orbital plane is also shifting. The energy graph of
Figure 1.17 show the fluctuation of potential and kinetic energy increases with
time, indicating the orbit becomes more and more elliptical. On Figure 1.18,
we increased the simulation time to investigate the long-term behaviour of this
perturbed orbit.

Figure 1.18: Long term behaviour of a perturbed circular orbit around a single
oblate body inclined to its equatorial plane. The color scale indicate the evolution of
the trajectory in time.

It appears that the orbital plane rotates around the polar axis of the oblate
body, while the eccentricity of the orbit successively increases and decreases. The
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initial circular shape is elongated into an ellipse of maximum eccentricity attained
when the orbital plane rotated by π/2. The eccentricity then decreases until, after
another π/2 rotation of the plane, a nearly circular shaped is reached again. This
behaviour is repeated periodically.

1.4.3 Perturbations due to the second body

As introduced in Section 1.3.3 the Hill’s problem consists in deriving the
dynamics of a massless particle in the gravitational field of two massive bodies
revolving on circular orbits around their mutual centre of mass. The simulations
are performed in the co-rotating frame of reference described in Section 1.1.1
according to state equations (1.63). In addition to the rotating frame, the results
are also displayed in the inertial centred at the barycentre and non-rotating frame
centred at the main body, all three displayed in Figure 1.2. These offer additional
insight in cases the motion in the co-rotating frame is not very readable.

This section will present the deformation of Keplerian orbits by the presence
of the second body. Unless stated otherwise, the considered reduced mass defined
by (1.4) is exaggerated to µ = 0.15 for the disturbances to be clearly visible. In
the solar system, only the Pluto-Charon pair have a similar mass ratio, while
µEM = 0.01215 of the Earth-Moon system is a degree of magnitude lower.

x01 x02 x03 x04 x05 x06 J
Circular 0.2 0 π/2 0 0 9.1803 −5.4121
Circular inclined 0.2 0 3π/4 0 0 13.1632 −5.3795
Elliptic 0.2 0 π/2 0 0 11.3693 −3.7070
Elliptic inclined 0.2 0 3π/4 0 0 16.0786 −3.6744
Chaotic 0.8424 0 π/2 0 0 0.1187 −3.1788

Table 1.4: Table of initial states for orbits in the Hill’s system

1.4.3.1 Perturbed circular orbit in the principal plane

A Keplerian circular orbit in the equatorial plane was described is Section 1.4.1.1.
A similar orbit is simulated in the Hill’s system to reveal the influence of the sec-
ond body on a circular orbit in the plane of revolution of the two bodies. The
initial angular velocity (1.100) have to be modified though, as it must take into
account the mass of the principal body in terms of reduced mass as well as the
rotation of the frame:

ϕ̇c0 =
1− µ√
r30
− Ω (1.105)

The full set of initial states is given in Table 1.4.
At first glance, the orbits displayed on Figure 1.19 appear as unperturbed

circles. But closer inspection of Figure 1.20 reveal periodic fluctuations in the
velocity states as well as in the energies. When the corresponding turning points
are indicated on the trajectory graphs, it is apparent the orbit exhibits an almost
regular pear-shaped deformation in the rotating frame. Indeed, the trajectory
is elongated in both directions on the principal axis, while flattened at around
ϕ = ±π/3. Higher values of µ and larger radii of the circular orbit (where
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Figure 1.19: Trajectory of a perturbed circular orbit in the principal plane of the
Hill’s system

the particle pass closer to the second body) make this deformation even more
noticeable.
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Figure 1.20: States and energy of a perturbed circular orbit in the principal plane of
the Hill’s system

It is also noteworthy that such an orbit does not leave the plane of revolution
of the two bodies. As the initial state vector lies inside this plane and both
bodies exerting gravitational pull are by definition bound to it, the force vector
component perpendicular to the plane has always zero amplitude.

1.4.3.2 Perturbed circular orbit inclined to the principal plane

Similarly to perturbations due to the oblateness of the main body, orbital
planes are not equivalent. Figures 1.21 and 1.22 present the trajectory, states
and energy of a deformed circular orbit inclined by 45◦ with regards to the plane
of revolution of the bodies. The orbit radius and initial speed is maintained
(Table 1.4).
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Figure 1.21: Trajectory of a perturbed circular orbit inclined to the principal plane
of the Hill’s system
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As with the orbit in the principal plane described above, the deformation of
the circular trajectory is quite small. Contrary to the previous case though, the
orbital plane is not constant, as the force vector from the second body is generally
not aligned with it. As observable on the trajectory graph in the non-rotating
frame, the orbital plane deviate only slightly from its initial position though.
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Figure 1.22: States and energy of a perturbed circular orbit inclined to the principal
plane of the Hill’s system

1.4.3.3 Perturbed elliptic orbit in the principal plane

Circular orbits have been shown to be susceptible to deformation from the
gravitational effect or the second body, but their trajectories still maintained an
almost circular shape in a plane closer to the initial. The same experiments will
be now conducted for elliptic orbit, both in the rotation plane and outside of it.

An elliptic orbit in the bodies plane is simulated with initial specifications
equivalent to (1.101) in the Hill’s system:

ϕ̇e0 = 1.2
1− µ√
r30
− Ω (1.106)

The full set of initial conditions is given in Table 1.4.
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Figure 1.23: Trajectory of a perturbed elliptic orbit in the principal plane of the Hill’s
system

Results (Figure 1.23) show a strongly deformed elliptic orbit. Two major
effects are noticeable. The periapsides and apoapsides or the ellipse precess in
the direction of the frame rotation. Meaning particles orbiting in the opposite
direction will precess the same way.

A purely precessing elliptic orbit would still maintain some of its regularity.
However, it is clear from the trajectory graphs as well as from Figure 1.24 that
this is not the case here. As orbits are more subject to perturbation from the
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Figure 1.24: States and energy of a perturbed elliptic orbit in the principal plane of
the Hill’s system

second point mass when they are closer to it, an ellipse feels this effect the most
when their apoapsis is directed towards the body. This causes the perturbations
to vary in intensity based on the orientation of the ellipse and its shape becoming
irregular.

1.4.3.4 Perturbed elliptic orbit inclined to the principal plane

Elliptic orbits in the Hill’s system in an inclined plane are subject to the same
deformation effect as the ellipse in the plane treated above. In addition to the
precession and ellipse deformation, the orbital plane is not constant any-more.
The perturbation to this orbital plane is more significant in this case compared
to the circular orbit, due once again to the fact its apoapsis brings it closer to
the second body, where it is influenced the most.
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Figure 1.25: Trajectory of a perturbed elliptic orbit inclined to the principal plane of
the Hill’s system
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Figure 1.26: States and energy of a perturbed elliptic orbit inclined to the principal
plane of the Hill’s system
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1.4.4 Chaotic orbit

In addition to the second body acting as a mere source of perturbation to
an otherwise almost Keplerian orbit, trajectories in the restricted three-body
problem can have more exotic shape and characteristics. One category of such
orbits are chaotic orbits. The precise definition of chaotic orbits is still under
debate, so for the purposes of this thesis, we will present an orbit introduced as
chaotic in [10]. Its specification in terms of initial conditions and Jacobi integral
is given in Table 1.4. As this orbit is said to be chaotic in the Earth-Moon system,
the reduced mass is set to µ = 0.01215.
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Figure 1.27: Trajectory of a chaotic orbit in the principal plane of the Hill’s system

Figure 1.27 shows a complex trajectory, orbiting alternatively one body before
jumping into an orbit of the another. Around the main body, it appears to follow
successively three different elliptic orbits before being pulled away from them.
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Figure 1.28: States and energy of a chaotic in the principal plane of the Hill’s system

A property of chaotic orbits is sensitivity to initial conditions. A trajectory
starting arbitrarily close to a chaotic orbit will quickly diverge. This makes
tracking bodies on chaotic orbits difficult, as even small errors in measurement
will result in large errors in their predicted trajectories. In the solar system, there
exists a number of asteroids on chaotic orbits. As their long-time trajectory is not
easily predictable and some of them might cross the Earth’s orbits, their study
is of prime importance.

In Section 2.3.5, we will present an orbit transfer simulating an attempt to
intercept such an asteroid by a spacecraft.

1.4.5 Lagrange points

In Section 1.3.3.5, the term Lagrange point was introduced as a set of five
equilibrium positions in the Hill’s system. This section will present the trajecto-
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ries of Lagrange point orbits as well as bring illustrative examples of halo orbits
around those Lagrange points.

1.4.5.1 Orbits at Lagrange points

Using the method describe in Section 1.3.3, all Lagrange points for µ = 0.15
are found and recorded in Section 1.3.3.5, Table 1.1. Their status as equilibria
is confirmed experimentally by simulating the system (1.63) for initial conditions
at the Lagrange points.
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Figure 1.29: Trajectory of particles at Lagrange points

Indeed, trajectories of particles starting at Lagrange points (Figure 1.29) will
stay fixed in the rotating frame. Due to the nature of the rotating frame, this will
translate to a circular motion around the barycentre at the same angular speed
as the bodies in the inertial frame. Transfers from circular orbits to Lagrange
points will be the topic of Section 2.3.3.

1.4.5.2 Halo orbits

Placing a satellite at Lagrange point equilibria is a useful energy efficient
strategy to achieve a fixed position in the rotating frame of the Hill’s problem. It
has its drawback however, beyond the obvious reason that each equilibrium can
hold only a single satellite. It was discussed in Section 1.3.3.5 that satellite placed
at the unstable Lagrange points L1-3 of a star-planet system suffer from either
shading from the star by the planet (L3) or strong stellar radiation interference
preventing efficient communication with the planet (L1 and L2).

It is however possible to find trajectory solutions that orbit the Lagrange
points, possibly solving the above-mentioned issues. These orbits forming pe-
riodic trajectories in the rotating frame are called halo orbits. As halo orbits
around unstable equilibriums are themselves unstable, they require station keep-
ing to maintain their shapes. A comprehensive classification of halo orbits, their
properties and stability, is offered by [3]. In this thesis, we will use initials condi-
tions of various types of halo orbits introduced in [3] (and recorded in Table 1.5)
to present a selection of distinct halo orbits. As with the chaotic orbit, the initial
specifications are given in the Earth-Moon system (µ = 0.01215).

In Section 2.3.4, orbit transfers to some of the following halo orbits will be
discussed, indicating possible cost-optimal trajectories a spacecraft might take to
reach them.
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x01 x02 x03 x04 x05 x06 J
L1 - Lyapunov 0.8356 0 π/2 0 0 0.1512 −3.1744
L1 - Vertical 0.9075 0 1.3583 0 0 0.2621 −2.9979
L2 - Butterfly 1.0386 0 1.4026 0 0 −0.0780 −3.0580
L3 - Vertical 0.9935 0 0.9020 0 π 0.2731 −2.5829
L3 - Lyapunov 1.3030 0 π/2 0 π −0.4536 −2.9071

Table 1.5: Table of initial conditions for halo orbits around Lagrange points for
µ = 0.01215

A Lyapunov class orbit around L1 is presented on Figure 1.30 and 1.31. Halo
orbits of the Lyapunov type are bean-shaped regular orbits inside the principal
plane of the Hill’s system. This particular orbit is very unstable, lasting only a
few periods before breaking off from its Lagrange point.
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Figure 1.30: Trajectory of a Lyapunov halo orbit around L1

Even though we say the particle orbits around L1, this is not exactly correct,
as L1 is a virtual mass-less point. In reality, all particles on halo orbits orbit the
centre of mass of both bodies on various deformed quasi-circular orbits, as can be
seen of figures in the inertial frame. However, in the rotating frame, they appear
to orbit around equilibrium points.
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Figure 1.31: States and energy of a Lyapunov halo orbit around L1

Halo orbits are not exclusively located in the principal plane. Figures 1.32 and
1.33 show an example of a vertical halo orbit at L1. Such orbits are vertical or
diagonal loops between L1 and the second body. An orbit transfer to the vertical
orbit at L1 shown on Figure 1.32 will be presented in Section 2.3.4.2.

Halo orbits of the butterfly class are 8-shaped loops with both ends lifted,
resembling butterfly wings. The An example of this type of orbit at L2 is depicted
on Figures 1.34 and 1.35.
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Figure 1.32: Trajectory of a vertical halo orbit around L1
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Figure 1.33: States and energy of a vertical halo orbit around L1
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Figure 1.34: Trajectory of a butterfly halo orbit around L2
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Figure 1.35: States and energy of a butterfly halo orbit around L2

Halo orbits around the Lagrange point L3 are usually more stable than their
counterparts at L1 and L2 [3]. This allows them to remain longer in their original
shape or, alternatively, require less orbit maintenance energy to be kept there.
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Figures 1.36 and 1.37 describe a Lyapunov orbit at L3. Just like the previous
Lyapunov orbit, it stays in the principal plane.
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Figure 1.36: Trajectory of a Lyapunov halo orbit around L3
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Figure 1.37: States and energy of a Lyapunov halo orbit around L3

Vertical orbits around L3 form vertical 8-shaped figures in the rotating frame
with the extremities bent towards the bodies and the intersections of both loops
located at L3. In the inertial frame, they are quasi-circular inclined trajectories
around the barycentre.
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Figure 1.38: Trajectory of a vertical halo orbit around L3
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Figure 1.39: States and energy of a vertical halo orbit around L3

1.5 Conclusion

Orbital mechanics describe the motion of celestial bodies and man-made satel-
lites in their gravitational fields. This chapter has treated the dynamics of mass-
less particles subjected to gravitational forces.

Section 1.1 has presented the various coordinate systems used in this theses.
Lagrangian mechanics, introduced in Section 1.2, presents a good methodical
tool for deriving equations of motion in arbitrary coordinates. In Section 1.3, the
dynamics for a massless particle in a gravitational field were obtained. Various
orbital trajectories were then presented in Section 1.4 by simulating the acquired
equations of motion This allowed visualizing distinct orbital shapes and the effects
of perturbing elements, such as the oblateness of one of the bodies or the presence
of a second mass point.

In the next chapter, an optimal controller will be designed and applied to
obtain transfer trajectories between the orbits presented above. Chapter 3 will
place formations of satellites on some of these orbits and perform formation re-
configuration and maintenance manoeuvre on them.
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Chapter 2

Optimal control for orbit
placement

The Apollo program was a successful NASA mission in the 60’ aiming at taking
a manned spacecraft to the Moon and back. Designing a control system to achieve
this goal was no easy task. Available fuel reserves were severely limited by the size
of the module and the payload capacity of the launcher. A trajectory had to be
designed that was as fuel-efficient as possible. Limitations in various systems of
the spacecraft also had to be taken into account, such as the limited computation
power of onboard computers as well as restricted communication capabilities.
Having humans on board also presented a number of considerable constraints.
The cockpit, oxygen tanks and other support modules had to be accommodated
in the spacecraft. The limited supplies of oxygen and sustenance signified the
mission time was also an important consideration. Manned spacecraft are also
constrained in their maximal acceleration so that it remains in bounds tolerable
to the human body. Solving this complex task was beyond the scope of the control
theory discipline at that time. Keeping fuel expenditure low while limited by time
and a multitude of other constraints required the development of new tools for
control. Although they built on the early works of Rudolf E. Kálmán and others,
the efforts of space agencies to find solutions to complex constrained problems
spearheaded the advent of the optimal control field.

Optimal control theory is a field of control engineering studying methods for
finding control laws for a possibly constrained system such that a certain opti-
mality criterion is achieved[6]. The output of an optimal controller is a sequence
of control inputs that steers a system from its initial state to a desired final state
while satisfying all constraints and minimizing an optimality criterion (called
Performance index in this thesis). In order to minimize the criterion, the entire
trajectory has to be designed as a whole, which signifies it is an open-loop process.

In the celestial mechanics context, optimal control is applied to find transfer
trajectories between two orbits. This chapter will discuss the development of a
method of optimal control for single particle transfers. Although the designed
controller is applied on individual particles, it has its uses in satellite formation
flying as well. Formation installation manoeuvres, where the bodies are put on
the formation orbits from the launch site, or large reconfigurations are costly
and usually require only the end state to form a coordinated configuration. It
therefore might be a good idea to use optimal control tools to plan a large part
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of the transfer trajectory before involving close-loop controllers to ensure the
formation fall into place.

In Section 2.1, we will introduce the method used to derive the optimally
controlled model, presented in Section 2.2. We will then perform simulation
experiments to verify the designed controller by generating transfer trajectories
between some of the orbits described in the previous chapter.

2.1 Theory

Even the simplest Keplerian model of orbital motion introduced in 1.3.1 is
highly non-linear, thus ruling out the possibility of using standard tools of optimal
control of linear dynamical systems, such as the Linear-Quadratic Regulator [5],
for solving optimal transfers between two orbits. It is possible to devise a non-
optimal controller linearised around a particular orbit. Its usability is however
restricted to mostly small maintenance manoeuvres around the orbit. Such a
regulator is derived and compared with the optimal controller introduced in this
chapter in Section 3.3.

This chapter applies tools of optimal control presented in [6] in order to design
a fixed-time optimal controller for minimum-fuel orbit transfer in both the Kep-
lerian system and the more complex Hill’s system with the oblateness of the prin-
cipal body included. The rotating coordinate frame introduced in Section 1.1.1
facilitates the three-body task by making the system dynamics time-invariant.
The equations of motion of a controlled time-invariant system can be written as

ẋ (t) = g (x (t) ,u (t)) = f (x (t)) +Bu (t) (2.1)

where x is the state vector, f (x) are the uncontrolled dynamics of the system
(in case of the motion of a particle in the Hill’s system, these equations are given
by (1.63)), u is the control input vector and B is the input matrix.

A minimum-fuel system is such a control system that uses as little control
input as possible to achieve a goal state. This can be formally described as a
minimization of the performance index P

P =

∫ T

t0

L (x,u,t) dt (2.2a)

L = u (t)T Ru (t) =
∑
i

Riui (t)2 (2.2b)

where [t0,T ] is the time interval allocated to the transfer, u (t) the control ap-
plied and R the weight vector of the controls. The weighting function L (x,u,t)
represents the immediate fuel consumption at time t. Sometimes, |ui| is used
in (2.2) instead of ui (t)2. We decided to square the control input to make the
equation easily differentiable in (2.6). Another effect of this is that an optimal
solution according to this performance index will prefer smaller amplitudes of
control input delivered over a longer time to shorter, more powerful bursts.

The optimal control problem consists in finding the input sequence u∗(t) on
the time interval [t0,T ] that drives the system (2.1) along a trajectory x∗(t) such
that the performance index (2.2) is minimized, and such that the final state
function

ψ (x (T )) = 0 (2.3)
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is satisfied. This is done by finding the Lagrange multipliers λ (t) enabling the
system satisfy (2.3) at a specified time T . The multipliers form a time-varying
vector of costates in with every element representing the Lagrange multiplier
associated with a corresponding state from x (t).

We define the Hamiltonian function as

H (x,λ,u,t) = L (x,u,t) + λTg (x,u) (2.4)

We can then describe the entire controlled system in terms of state and costate
dynamics:

ẋ =
∂H

∂λ
= g (x,u) (2.5a)

λ̇ =− ∂H

∂x
= − ∂g

∂x

T

λ− ∂L

∂x
= − ∂g

∂x

T

λ (2.5b)

with the input vector given by the solution of

∂H

∂u
= 0 (2.6)

An important property of the Hamiltonian function of a time-invariant system
is that it is constant throughout the transfer time interval [t0,T ].

dH

dt
=
∂H

∂x
ẋ+

∂H

∂λ
λ̇+

∂H

∂u
u̇+

∂H

∂t
(2.7)

By inserting equations (2.5) and (2.6) into (2.7):

dH

dt
=
∂H

∂x

∂H

∂λ
− ∂H

∂λ

∂H

∂x
+ 0u̇+

∂H

∂t
=
∂H

∂t
= 0 (2.8)

∂H
∂t

= 0 holds true because our system is time-invariant, H does not depend
directly on t. We can conclude that the Hamiltonian is a value that stays constant
for the duration of the transfer.

2.1.1 Optimization of initial costates

As stated above, finding a solution to the optimal control problem consists in
finding the costate vector λ∗ (t) that drives the system optimally from its initial
state to a final state satisfying the final state function (2.3). As variations to
costates at any given time are entirely given by the current states and costates
according to (2.5), only the initial set of costates is free to be chosen. This greatly
simplifies the task, as the entire control sequence is defined by tuning N initial
conditions for the Lagrange multipliers, where N is the number of states of the
system.

There are numerous techniques available for such a parameter optimization.
We opted for a gradient descent method because the gravitational field in which
the controlled particle moves is largely monotonic, thus following the steepest
gradient should converge to a good, if not always globally optimal, solution. There
is however still a danger of falling into a local minimum. In order to minimize
this risk, it is advised to run the method multiple time with various initializations
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of the initial costate vector and choose the best alternative. From the performed
experiments, we discovered that varying the initial costates makes the system
converge to only a handful of locally optimal solutions, differing in general in the
number of times the particle revolves around the body before reaching its target
state. The used technique is described by Algorithm 1.

Result: Find a set of initial costates λopt such that the final state
function is satisfied.

simulate model with λinit;
pk = p (T );
λk = λinit;
while ψ (pk) 6= 0 do

for i := 1 : N do
simulate model with δλk (i);
J (: ,i) = p (T )− pk;

end
λk = λk + αJ+ (pg − pk);
simulate model with λk;
pk = p (T );

end
λopt = λk

Algorithm 1: Gradient descent algorithms to find an optimal set of initial
costates. Costate vectors of sizeN are represented by λ, modified state vectors
are p. α is the approach step size parameter, δλk (i) is the costate vector λk

with a slight deviation at the ith position, J is the Jacobi matrix.

The gradient descent algorithm produces an initial costate vector λopt that
ensures that the end state satisfies 2.3. We call such a goal state xg. For some
applications, xg represents a unique solution of 2.3, as is the case for transfers
to Lagrange points (Section 2.3.3) or formation reconfiguration problems (Sec-
tion 3.2 of the chapter of formation flying). In other cases however, the final state
function can be less specific and the goal state is not unique. An example of this
situation might be a transfer to a different orbit (Section 2.3.1), where we usually
don’t care about the value of the true anomaly at the and of the manoeuvre.

We need however to define the goal state in some way to be able to build
a gradient and stir the system towards it. The introduction of a modified state
vector p (t) solves this issue. The modified state is obtained by transforming the
actual state x (t) to be able to express a unique goal state pg. A simple example
of this might be the modified state describing a circular orbit in the equatorial
plane:

p =


x1
x2
x3
x4
x6

 (2.9)

where the modified state adopts every element of the actual state except x5
(x5 = ϕ). By omitting this state, the desired orbit can be exactly specified and
the system will be steered toward any point of that circle. Introducing a modified
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state also permits to define orbits inclined with regards to the equatorial plane or
centred around a point different from the origin of the coordinate system (when
transferring to orbits around the second body for example, as will be done in
Section 2.3.2). The coordinates of the actual state might be transformed so that
the target orbit is located in the principal plane of the new coordinate system
and centred around its origin.

The final state function (2.3) indicating whether the goal state has been
reached can then be uniquely expressed in terms of modified states:

ψ (p (T )) = p− pg = 0 (2.10)

2.2 Derivation of control laws

In the previous section, we introduced a method for generating control se-
quences that bring the system into a desired state while satisfying some optimal-
ity criterion. We will now apply this method to design a controlled model from
the model of uncontrolled particles in a gravitational field introduced in Chap-
ter 1, Section 1.3. These models will be used in Section 2.3 to study concrete
orbit transfers.

2.2.1 Control input

Starting from the Newton’s laws one has that in any Galilean system the total
change of the linear momentum equals the effect of the total external force acting
on the system. The idea is that the external forces come from the gravitating
bodies, and are modelled through the potential. This would include the thrust
force and gravity in a single consideration; allowing to join them seamlessly.

dptot = Fe totdt = (m− dm) (v + dv) + dm (v − ve)−mv
= (m− dm) (v + dv) + dm (v − ve)−mv
=mv − vdm+mdv + dmdv + vdm+ vedm−mv
=mdv + vedm

m
dv

dt
=Fe tot − ve

dm

dt
dv

dt
=fe tot − ve

1

m

dm

dt

(2.11)

Now if one models the total external force per unit mass fe tot as coming from
the potential, or describes it completely using the Lagrangian one ends up with
the extra force coming from thrust.

dv

dt
− fe tot = −ve

1

m

dm

dt
(2.12)

Hence the additional force per unit mass from the thrust is

fthrust = −ve
1

m

dm

dt
= −ve

ṁ

m
(2.13)
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or in Cartesian components

fthrustx = −vex
ṁ

m
fthrusty = −vey

ṁ

m
fthrustz = −vez

ṁ

m
(2.14)

depending directly on the components of exhaust gas velocity.
All these relations are derived in Cartesian coordinates; switching to the La-

grangian framework, using the generalized coordinates, qi (x,t), one has the La-
grange equations with additional generalized force terms Qi

d

dt

∂L

∂q̇
− ∂L

∂q
= Qi (2.15)

where the expression for the generalized force, per unit mass, components in
terms of the original force components are

Qi =
∑
j

fj
∂xj
∂qi

(2.16)

So, in case of spherical coordinates, the generalized forces become:

Qr =fx
∂x

∂r
+ fy

∂y

∂r
+ fz

∂z

∂r
= fx sinϑ cosϕ+ fy sinϑ sinϕ+ fz cosϑ

Qϑ =fx
∂x

∂ϑ
+ fy

∂y

∂ϑ
+ fz

∂z

∂ϑ
= fxr cosϑ cosϕ+ fyr cosϑ sinϕ− fz sinϑ

Qϕ =fx
∂x

∂ϕ
+ fy

∂y

∂ϕ
+ fz

∂z

∂ϕ
= fxr sinϑ sinϕ+ fyr sinϑ cosϕ+ fz · 0

(2.17)

according to the coordinate transformation (1.1).
After appropriate divisions, used in obtaining the original second order differ-

ential equations from the spherical polar coordinates, these generalized force per
unit mass components express the control inputs labelled simply as u1, u2 and
u3.

2.2.2 Optimal control in the two-body Keplerian system

The state-space model of a controlled particle in the Keplerian system de-
scribed in Section 1.3.1 is obtained by combining the uncontrolled dynamics (1.30)
and the control input vector into the general relation (2.1)

ẋ =


ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

 =



x2
x1x

2
4 − 1

x2
1

+ x1 sin2 x3x
2
6

x4
−2x2

x1
x4 + cosx3 sinx3x

2
6

x6

−2
(

x2

x1
+ x4

cosx3

sinx3

)
x6


+


0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1


 u1
u2
u3

 (2.18)

The Hamiltonian function of this model is derived by inserting the above state
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equation into (2.4):

H =R1u
2
1 +R2u

2
2 +R3u

2
3

+λ1x2

+λ2

(
x1x

2
4 −

1

x21
+ x1 sin2 x3x

2
6

)
+λ3x4

+λ4

(
−2

x2
x1
x4 + cosx3 sinx3x

2
6

)
+λ5x6

+λ6

(
−2

(
x2
x1

+ x4
cosx3
sinx3

)
x6

)
(2.19)

The expression for the costate dynamics of a controlled particle in a Keplerian
system is obtained from (2.5)



λ̇1
λ̇2
λ̇3
λ̇4
λ̇5
λ̇6


=



−λ2
(

2
x3
1
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x2x4
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1
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1
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x1
+ 2λ6

x6

x1

−λ2x1x26 sin 2x3 − λ4x26 cos 2x3 + λ6
4x4x6

cos 2x3−1

−2λ2x1x4 − λ3 + 2λ4
x2

x1
+ 2λ6x6

cos x3

sin x3

0
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(2.20)

The control input vector in spherical coordinates, as described in Section 2.2.1,
is calculated by solving (2.6) u1

u2
u3

 =

 −λ2 1
2R1

−λ4 1
2R2

−λ6 1
2R3

 (2.21)

2.2.3 Optimal control in the three-body Hill’s system

The model of a controlled particle in the Hill’s system is derived using the
same procedure as in the previous section. Compared to the Keplerian case
however, the expressions below are longer and more complicated, which is why
we computed them using Matlab’s Symbolic Math Toolbox and present them
below in their unsimplified form.

The space-state equations are obtained by insertion of the uncontrolled model
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(1.63) into Equation (2.1)

ẋ1 =x2

ẋ2 =x1x
2
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3 cos2 x3 − 1

)
+ u1
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ẋ5 =x6
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(2.22)

The Hamiltonian function, a value that remains constant for the duration
of the transfer, is calculated with the above state-space expression according to
(2.4):
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(2.23)

The costate vector is an auxiliary state vector describing the applied optimal
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control. It is calculated from (2.5):
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(2.25)

The control input vector specifies the sequence of control input applied to
achieve the optimal transfer trajectory. It is computed by solving (2.6), giving
the same result as in the Keplerian case. u1

u2
u3

 =

 −λ2 1
2R1

−λ4 1
2R2

−λ6 1
2R3

 (2.26)
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2.3 Demonstration of optimal orbit transfers

In this section, tools for optimal control derived in 2.2 using the principles
described in 2.1 will be applied to demonstrate a various single particle orbit
transfers. Unless specified otherwise, the initial state of the controlled particle
lies on a circular trajectory (or approximately circular if its orbit is perturbed)
around the principal body. The goal state is specified in terms of modified states
to correspond to some of the orbits presented in Section 1.4.

First, orbit transfers around the main body are discussed. Then, transfers to
various orbits specific to the three-body Hill’s system, such as orbits around the
second body or one of the Lagrange points, are presented.

All figures of orbits include uncontrolled trajectories of the particle depicting
its motion before and after the transfer takes place. This improves the compre-
hensibility but also serves to confirm the precision of the transfer. The shape of
the final orbit is greatly susceptible to deviations of the final state of the transfer
from its goal state. If controls are interrupted upon completion of the trans-
fer, the resultant motion should match the desired final orbit if the transfer was
performed successfully and precisely.

2.3.1 Transfers around the main body

In this first part, orbits around the principal body are treated. First, the
second body is ignored to introduce the optimization method in the simpler Ke-
plerian system derived in Section 2.2.2. Then, orbits transfers are performed in
the Hill’s system to take into account the perturbations from the second body.

Initial states x01 x02 x03 x04 x05 x06 J0
Circular r = 0.2 0.2 0 π/2 0 0 11.1803 −5.0
Circular inclined r = 0.2 0.2 0 3π/4 0 0 15.8114 −5.0

Table 2.1: Table of initial states for transfers between Keplerian orbits

2.3.1.1 Transfer between two circular Keplerain orbits of different
radii

The simplest example of orbit transfer is a transfer between two circular orbits
of different radii in the same plane. As explained in Section 2.1, the initial state
is chosen arbitrarily on the initial orbit (Table 2.1). Just like in Section 1.4.1 of
the previous chapter, the xy plane of the coordinate system is chosen to coincide
with the orbital plane. As it is done by the example given in Section 2.9, the
modified state is chosen such as to disregard the angular state, which should be
linearly growing in a circular orbit.

p =


x1
x2
x3
x4
x6

 (2.27)
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Goal modified state pg1 pg2 pg3 pg4 pg5 Jg
Circular r = 0.3 0.3 0 π/2 0 6.0858 −3.3333
Circular r = 0.2 0.3 0 π/2 0 11.1803 −5.0

Table 2.2: Table of goal costates for transfers between Keplerian orbits

The second orbit is expressed in terms of modified states given in Table 2.2
Figures 2.1, 2.2 and 2.3 display a transfer between two circular orbits opti-

mized with the method described in Section 2.1. On Figure 2.1, the trajectory in
the inertial frame is plotted. Figure 2.3 present the states of the particle through-
out the transfer, its modified states (including their target values), and values of
costates. Finally Figure 2.3 displays the applied control vector components, the
performance index evolution during the transfer and the changes to the Jacobi
integral.

The success of a transfer is determined by the satisfaction of the final state
function (2.10), which occurs when all modified states converge to their goal
value. It can also be verified by assessing whether the final trajectory and Jacobi
integral correspond to the desired orbit.

The control input graph informs us of how this transfer was performed. The
angular control grows roughly linearly to increase the particle’s angular momen-
tum. At the beginning of the manoeuvre, radial thrust is exerting a negative
(towards the body) radial force to gain kinetic energy by approaching the body.
In the intermediate part of the transfer, the particle’s velocity is maximal as it
bridges the gap between the two orbits. Finally, at the end of the manoeuvre,
negative radial control is applied once more to decelerate the particle and allow
it to gain its final circular orbit. It is important to note that the entire transfer
between two orbits in the same plane is also performed in that plane.
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Figure 2.1: Trajectory of a transfer orbit between two Cartesian circular orbits of
different radii. T = 0.7

In the previous introductory example, the time interval length of the transfer
was set to T = 0.7. The transfer time can be seen as a parameter of the fixed-time
optimization. In some applications, T is set and fixed by the problem to solve.
For example, in case of a rendezvous problem, the goal state is time-dependent,
hence the transfer has to be performed within a specified time window. In other
cases however, the task can be to reach a certain orbit without time specification.
In order to find an acceptable trade-off between the time of transfer and fuel
consumed, the transfer between to circular orbits in the same plane is performed
multiple times with a varying T . The resulting dependence of the performance
index on transfer time is captured on Figure 2.4.
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Figure 2.2: States, modified states and costates of a transfer orbit between two
Cartesian circular orbits of different radii. T = 0.7
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Figure 2.3: Control input, performance index and energy during a transfer orbit
between two Cartesian circular orbits of different radii. T = 0.7
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Figure 2.4: Performance index as a function of transfer time T for a transfer between
two Keplerian circular orbits of different radii, displayed in both a linear an logarithmic
scale

According to Figure 2.4, the performance index assigned to a transfer between
two circular Keplerian orbits of different radii decreases roughly exponentially
with increasing transfer time. This curve allows us to find a trade-off that satisfies
our mission specifications.

Three orbit transfers of varying length for the same transfer task are compared
to illustrate options available in the trade-off, a short, long and intermediate
one. The intermediate time transfer was chosen with T = 0.7 and presented on
Figures 2.1, 2.2 and 2.3 above.

Figures 2.5, 2.6 and 2.7 illustrate a short costly transfer between two circular
orbits. A large amount of radial control thrust has to be expended in order to
first quickly gather enough momentum to approach the target orbit and second
to decelerate the particle not to overshoot it. A good indication of the fact
this transfer might not be energy efficient is the fact that the Jacobi integral
(representing the total energy) overshoots its final value and has to be decreased.
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The extra kinetic energy gained during the acceleration phase of the transfer is
so great it is not entirely converted into potential, and the particle has to be
decelerated to lose some of its total energy.

In orbital mechanics, control is seldom considered cheap as fuel capacities of
real satellites are always limited. For this reason, short manoeuvres using a lot
of energy are generally not advised.
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Figure 2.5: Trajectory of a transfer orbit between two Cartesian circular orbits of
different radii. T = 0.3
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Figure 2.6: States, modified states and costates of a transfer orbit between two
Cartesian circular orbits of different radii. T = 0.3
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Figure 2.7: Control input, performance index and energy during a transfer orbit
between two Cartesian circular orbits of different radii. T = 0.3

The other extreme offered by Figure 2.4 is a long transfer performed with only
minimal fuel expenditure. If setting T = 5.0, the particle spirals away from the
initial orbit, gradually increasing its distance to the body until the target orbit
is reached (Figure 2.8). The control input graph of Figure 2.10 indicates this
movement is conducted by progressively, roughly linearly, increasing the angular
thrust. The use of radial control is very limited, as it is applied only in small
amplitudes and does almost not contribute to the overall performance index.
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Such long and cheap in fuel orbit transfers are in practice more useful than the
very short ones. In some cases, thrusters capacities or fuel supplies of satellites is
very limited, these kinds of transfers might be the only available. In fact, propul-
sion technologies such as ion thrusters are intended for these types of transfers
as they are suited for short in amplitude but sustained control action.
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Figure 2.8: Trajectory of a transfer orbit between two Cartesian circular orbits of
different radii. T = 5.0
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Figure 2.9: States, modified states and costates of a transfer orbit between two
Cartesian circular orbits of different radii. T = 5.0
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Figure 2.10: Control input, performance index and energy during a transfer orbit
between two Cartesian circular orbits of different radii. T = 5.0

The orbit transfer problem between two circular orbits of radii rc1 and rc2 in
the same plane has, in fact, a known globally optimal solution in terms of fuel
efficiency, called the Hohmann transfer. It is performed with two large instan-
taneous bursts of thrust, both in the direction of the velocity vector. The first
serves to put the controlled particle from the initial circular orbit into an elliptic
one with periapsis and apoapsis radii rep = rc1 and rea = rc2 respectively. Once
the apoapsis is reached, located on the target circular orbit and opposite to the
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initial position, the second burst is fired. This second push redresses the ellipse
into the final circular orbit.

We tried to recreate the Hohmann transfer using our method of optimal con-
trol. In order to do that, only the angular control input is considered. Disregard-
ing the radial control is done by reassigning weights in the performance index
equation (2.2) such as

R1 >> R3 (2.28)

Then, the correct transfer time has to be determined such as to find the transfer
that reaches the goal orbit at the point opposite to its initial.

The resulting transfer orbit lasting T = 0.377 is presented on Figures 2.11,
2.12 and 2.13. The general elliptic shape of the orbit is maintained and there
are similarities between the controls bursts of the Hohmann transfer described
above and those plotted on Figure 2.13. Although not in instantaneous impulses,
the angular control is applied in the direction of revolution at the beginning and
end of the transfer. We assess that the reason why the control is diluted to
a longer interval is that the control input is squared in the expression for the
performance index (2.2), meaning high amplitude impulses are penalized. In
reality, the Hohmann transfer remains a theoretical manoeuvre as instantaneous
impulses are not realizable. In addition, even if the instantaneous burst is replaced
by a short one with the same energy, restrictions on maximal instantaneous thrust
can represent another issue, depending on the used propulsion technology.
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Figure 2.11: Trajectory of a Hohmann-like transfer orbit between two Cartesian
circular orbits of different radii. T = 0.377
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Figure 2.12: States, modified states and costates of a Hohmann-like transfer orbit
between two Cartesian circular orbits of different radii. T = 0.377
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Figure 2.13: Control input, performance index and energy during a Hohmann-like
transfer orbit between two Cartesian circular orbits of different radii. T = 0.377

2.3.1.2 Transfer between two mutually inclined circular Keplerian or-
bits

In the examples above, we treated transfers between a pair of circular Keple-
rian orbit with distinct radii in the same plane. As seen, for the transfer to be
optimal, it must itself lie entirely in this plane. We will now present an example
of optimal orbit transfer between two orbits of the same radii but with orbital
planes inclined by 45◦ with respect to each other. The initial orbit inclined to the
equatorial plane is defined using initial conditions given in Table 2.1. By virtue
or all orbital planes in a Keplerian system being equivalent, the target orbit set
to be equatorial, using the same modified states as above (2.27) and goal states
given by the entry for a circular orbit with r = 0.2 in Table 2.2

Figure 2.14 displays the trajectory of such an orbit transfer. The transfer is
performed in two phase. In the beginning, the particle stays approximately in
the original plane and approaches the body to gain kinetic energy (Figure 2.16),
similarly as in previous examples. Once it is carried by its extra energy beyond
its initial radius, angular control input in the polar direction is fired to redress the
orbit and regain the equatorial plane. Although the total energies of the initial
and final orbit are equal, a transfer manoeuvre between them is costly compared
to transfers in a plane. For comparison, this transfer between two inclined orbits
of radius r = 0.2 is about 10 times more expensive in terms of performance index
than a manoeuvre between two orbits in the same plane of r = 0.2 and r = 0.3
respectively, assuming the same transfer time T was considered (Figure 2.4)
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Figure 2.15: States, modified states and costates of a transfer orbit between two
Cartesian circular orbits mutually inclined. T = 1.0
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Figure 2.16: Control input, performance index and energy during a transfer orbit
between two Cartesian circular orbits mutually inclined. T = 1.0

2.3.1.3 Transfer between two circular orbits of different radii in the
Hill’s system

Basic orbit transfers in the Kepler system were explored in the last section.
We will now use the model derived in Section 2.2.3 to compare them to manoeu-
vres attempting to solve a similar task in the Hill’s system, taking into account
perturbations from the second body. As in Section 1.4.3, the reduced mass con-
sidered is set to µ = 0.15. This value exaggerated with regards to most real-world
applications allows for a better visualization of the perturbing effects of the second
body.

Initial states x01 x02 x03 x04 x05 x06 J0
Circular r = 0.2 0.2 0 π/2 0 0 9.3078 −5.4121
Circular inclined r = 0.2 0.2 0 3π/4 0 0 13.1632 −5.3795

Table 2.3: Table of initial states for transfers between orbits in the Hill’s system

Goal modified state pg1 pg2 pg3 pg4 pg5 Jg
Circular r = 0.2 0.3 0 π/2 0 9.3078 −5.4121
Circular r = 0.3 0.3 0 π/2 0 4.6108 −4.2044

Table 2.4: Table of goal modified states for transfers between orbits in the Hill’s
system

The first orbit transfer task requires the particle to reach a circular orbit in
the principal plane of the Hill’s system from another circular orbit in that same
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plane. The initial states for a circular orbit of radius r = 0.2 are given in Table 2.3.
The target orbit of radius r = 0.3 is defined using modified states (2.27) listed
in Table 2.4. Note that the orbits we refer to as circular are perturbed by the
second body and hence their shape is irregular, when treating trajectories close to
the principal, larger, body these orbits maintain an approximately circular shape
however (as explained in Section 1.4.3).

As in the case of transfers in the Keplerian system, we perform an analysis
of the dependency of the performance index on the final time T of the executed
transfer. Compared to the almost perfectly exponential curve on Figure 2.4, the
relation appears to be more complex in the Hill’s system (Figure 2.17). Apart
from the exponentially decreasing tendency of the performance index with in-
creasing transfer time, regular deviations from an exponential curve are observ-
able. Indeed, there can be a significant difference in cost between two transfer
of similar time. This is due to the second body being in a position where it
can either facilitate the manoeuvre by pulling the particle towards the desired
higher orbit, or alternatively pulling it in the other direction, forcing it to apply
additional control input to counteract it.
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Figure 2.17: Performance index as a function of transfer time T for a transfer between
two circular orbits of different radii in the Hill’s system, displayed in both a linear an
logarithmic scale

The non-monotonic relation of the performance index on transfer time in the
Hill’s system (Figure 2.17) indicates one has to be careful while setting transfer
parameters, as better solutions might be available in the immediate neighbour-
hood of a chosen time T . Alternatively, the optimization of the transfer over
multiple positions on the initial orbit might also improve the solution.

To demonstrate an optimal transfer in the Hill’s system between two circular
orbits in the principal plane, a transfer time T = 1.0 lying in a local minimum
on Figure 2.17 is chosen. Its trajectory is depicted in rotating and non-rotating
coordinates centred at the principal body as well as in inertial coordinates centred
at the barycentre on Figure 2.18. The transfer is performed along similar lines as
its counterpart in the Keplerian system. We can best see the favourable influence
of the second body on the graph of control inputs on 2.20. When the particle
passes between the two bodies (x5 = 0 at around t = 0.0 and t = 0.65), the
radial control is maximal and the otherwise linear increase of angular control is
halted to ensure a maximal acceleration away from the principal mass as a result
of exposure to the pull of the second body.
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Figure 2.18: Trajectory of a transfer orbit between two circular orbits of different
radii in the Hill’s system. T = 1.0
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Figure 2.19: States, modified states and costates of a transfer orbit between two
circular orbits of different radii in the Hill’s system. T = 1.0
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Figure 2.20: Control input, performance index and energy during a transfer orbit
between two circular orbits of different radii in the Hill’s system. T = 1.0

2.3.1.4 Transfer between two mutually inclined circular orbits in the
Hill’s system

An assignment for an orbit transfer between to circular orbits of the same
radius (r = 0.2) whose plane are mutually inclined can also be given in the
Hill’s system. The initial states and goal costates of defining both ends of the
transfer are given in Table 2.3 and 2.4 respectively. It is important to note that,
in general, inclined orbits in the rotating frame see their orbital plane rotate due
to the frame rotation, as explained in Section 1.4.3.2. If a specific line of nodes
(the direction of the axis of intersection of the orbital plane with the principal) is
desired, it should be specified in the non-rotating frame, as it is fixed there unless
the perturbations from the second body are too significant.

Figures 2.21, 2.22 and 2.23 display the specifications of an orbit transfer of
final time T = 1.0 between two mutually inclined orbits.
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Figure 2.21: Trajectory of a transfer orbit between two circular orbits mutually
inclined in the Hill’s system. T = 1.0
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Figure 2.22: States, modified states and costates of a transfer orbit between two
circular orbits mutually inclined in the Hill’s system. T = 1.0
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Figure 2.23: Control input, performance index and energy during a transfer orbit
between two circular orbits mutually inclined in the Hill’s system. T = 1.0

2.3.2 Transfers to orbits around the second body

In this section, the transfer between an orbit around the principal body and
an orbit of the same radius around the second body is discussed. The primal
motivation for orbit transfer from a large body to an orbit around a smaller one
are lunar missions, where these transfers are called lunar orbit insertions. There
are no simply theoretical solutions to transfers to a different body as the Hohmann
method is to transfers between orbits around the same body. As mentioned at
the beginning of this chapter, it was precisely the solving of this problem by the
space agencies during the Space Race that led to the establishment of the optimal
control field. Examples of such transfers effectuated by the Apollo mission and a
recent Indian lunar mission are depicted on Figure 2.24

In Section 2.3.1, the gravitational pull from the second body has been consid-
ered only as a source of perturbation for the transfer orbit, sometimes beneficial,
sometimes detrimental as seen on Figure 2.17. The use of the orbit placement
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Figure 2.24: Sketches of Lunar orbit insertion manoeuvres performed
during real mission. The first figure shows the orbit transfer trajec-
tory used during the Apollo mission (source: https://www.space.com/

26572-how-it-worked-the-apollo-spacecraft-infographic.html). The graphic
on the right depicts the Lunar orbit insertion performed by the Chandrayaan 1
spacecraft during the first successful lunar mission of the Indian Space Research
Organisation in 2008 (source: http://news.bbc.co.uk/2/hi/7679818.stm)

optimization tools introduced in Section 2.1 is however not limited to transfers
between orbits around the principal body.

The initial conditions are chosen similarly as in the previous sections, a circular
orbit around the principal mass, given in terms of initial states in Table 2.5. The
modified states in this case are chosen as

p =


x1
x2
x3
x4
x6


M2

(2.29)

equivalently to (2.27) but is spherical coordinates centred at the second body
instead of the first. The target orbit is defined in terms of these modified states
is given in Table 2.6.

Initial states x01 x02 x03 x04 x05 x06 J0
Circular 0.2 0 π/2 0 3π/4 9.3078 −5.4004

Table 2.5: Table of initial states for transfers between orbits in the Hill’s system
around different bodies

Goal modified state pg1 pg2 pg3 pg4 pg5 Jg
Circular 0.2 0 π/2 0 −5.3301 −2.8828
Circular inclined 0.2 0 π/2 0 −5.3301 −2.8000

Table 2.6: Table of goal modified states for transfers between orbits in the Hill’s
system around different bodies

An orbit transfer obtain with our optimization method according to the spec-
ifications stated above if described on Figures 2.25, 2.26 and 2.27. We can im-
mediately see that the transfer orbit is very similar in shape to the lunar orbit
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insertion manoeuvres on Figure 2.24. The particle first increases its altitude with
respect to the first body, then uses a swing by to gather kinetic energy and is
propulsed to a position in front of the second body. It lets itself get caught up
by the body and smoothly enters the desired circular orbit around it.
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Figure 2.25: Trajectory of a transfer orbit between circular orbits around different
bodies in the Hill’s system. T = 2.0

The Jacobi integral is not monotonic during this transfer (Figure 2.27). This
is to be expected as it is a phenomenon that could not be altered by choosing a
greater transfer time T as it is done in case of transfers between orbits around
the same body in Section 2.3.1.1. The initial and final orbit both lie in distinct
valleys of the level set plot 1.5 representing the effective potential in the Hill’s
system. This signifies the controlled particle has to increase its energy in order
to reach the desired region around the second orbit, then decrease it to regain
the circular orbit lying inside that potential valley.
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Figure 2.26: States, modified states and costates of a transfer orbit between circular
orbits around different bodies in the Hill’s system. T = 2.0

It has been seen in Section 2.3.1.2 that transfers between two mutually inclined
orbits of the same radius around the same body is expensive. If a specific orbit
around the second body inclined with regards to the principal plane is targeted,
it will be more cost-effective to try to reach this orbit directly from the initial
position at the first body. This is the case for example if equatorial lunar orbits
are targeted during a lunar orbit insertion task, as the Moon’s polar axis is not
perpendicular to its revolution plane.

A circular orbit around the second body inclined by 45◦ with respect to the
principal plane is set as the goal of the transfer described by Figure 2.28, 2.29 and
2.30. The modified states are defined in this case are obtained from the original
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Figure 2.27: Control input, performance index and energy during a transfer orbit
between circular orbits around different bodies in the Hill’s system. T = 2.0

states by not only translating the origin of the coordinate system to the second
body but also inclining it by the appropriate angle.

p =


x1
x2
x3
x4
x6


M2,i=45◦

(2.30)
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Figure 2.28: Trajectory of a transfer orbit between mutually inclined circular orbits
around different bodies in the Hill’s system. T = 2.0
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Figure 2.29: States, modified states and costates of a transfer orbit between mutually
inclined circular orbits around different bodies in the Hill’s system. T = 2.0

2.3.3 Transfers to Lagrange points

It was explained in Section 1.3.3.5 that Lagrange points are equilibria in the
two-body Hill’s system. As such placing a satellite in one of them has many
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Figure 2.30: Control input, performance index and energy during a transfer orbit
between mutually inclined circular orbits around different bodies in the Hill’s system.
T = 2.0

practical applications, as it would place it in a fixed position with regards to the
two bodies. This section treats orbit transfers to those Lagrange points from
a circular parking orbit around the principal body. As Lagrange points in the
rotating coordinates are exact positions, its modified states correspond to the
actual states.

p = x =


x1
x2
x3
x4
x5
x6

 (2.31)

As the initial orbit is located at the larger body of the pair, the following
transfer will be most relevant to applications in the Earth-Moon system. Transfers
to Lagrange points in the Sun-Earth system could similarly be treated just by
placing the initial orbit at the smaller body.

2.3.3.1 Transfer to L1

As seen in Section 1.3.3.5, the unstable equilibrium at L1 is located on the seg-
ment between the two bodies, closer to the second one. The transfer manoeuvre
to it (Figures 2.31, 2.32 and 2.33) is performed along similar lines as the transfer
to an orbit around the second body above, with the particle gathering energy
around the principal body before being propulsed by a swing by towards L1. As
L1 is an unstable equilibrium, a particle only slightly misplaced will eventually
drift apart from it. The study of relative stability of Lagrange points is out of the
scope of this thesis, but [3] argues L1 is the most unstable of all Lagrange points.
This is confirmed in 2.31, as the particle placed by our orbit transfer to L1 stays
only about half a period of revolution of the bodies before diverging from it and
falling into an elliptic orbit around the second body.

Finding appropriate trajectories for transfers to L1 is relevant in the Earth-
Moon system as this equilibrium position could be used as a half-way station for
lunar missions.
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Figure 2.31: Trajectory of a transfer orbit to L1. T = 2.0
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Figure 2.32: States, modified states and costates of a transfer orbit to L1. T = 2.0
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Figure 2.33: Control input, performance index and energy during a transfer orbit to
L1. T = 2.0

2.3.3.2 Transfer to L2

The Lagrange point L2 lies on the axis of the bodies as well, but this time
beyond the second body. The transfer to this location (Figures 2.34, 2.35 and
2.36) uses a close swing by around the second body to give it additional energy
in order to reach it.

In the Earth-Moon system, a satellite placed at L2 could be a good observation
post or communication relay for the dark side of the moon.

2.3.3.3 Transfer to L3

Like L1 and L2, the Lagrange point L4 lies on the principal axis of the Hill’s
system. Unlike the previous two however, it is located in the direction opposite
to the second body. A transfer orbit to this equilibrium position is displayed on
Figures 2.37, 2.38 and 2.39
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Figure 2.34: Trajectory of a transfer orbit to L2. T = 2.0
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Figure 2.35: States, modified states and costates of a transfer orbit to L2. T = 2.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time

-4

-3

-2

-1

0

1

2

3

4

u

Control inputs

u
1

u
2

u
3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time

0

1000

2000

3000

4000

5000

6000

7000

8000

P

Performance index

P

P
u1

P
u2

P
u3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time

-8

-6

-4

-2

0

2

4

6
E

Energy

J

T
ef

V
ef

Figure 2.36: Control input, performance index and energy during a transfer orbit to
L2. T = 2.0
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Figure 2.37: Trajectory of a transfer orbit to L3. T = 2.0
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Figure 2.38: States, modified states and costates of a transfer orbit to L3. T = 2.0
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Figure 2.39: Control input, performance index and energy during a transfer orbit to
L3. T = 2.0

2.3.3.4 Transfer to L4

Lagrange points L4 and L5 are located at the extremities of equilateral tri-
angles formed by themselves and the two bodies. Figures 2.40, 2.41 and 2.42
depicts a transfer to the L4 equilibrium from a circular initial orbit around the
main body. A manoeuvre to L5 is not displayed as it is performed along similar
lines.

The natural stability of these Lagrange points allows for only minimal station
keeping requirement for satellites placed there.
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Figure 2.40: Trajectory of a transfer orbit to L4. T = 2.0

2.3.4 Transfers to Halo orbits

Halo orbits are defined in Section 1.4.5.2 as orbits that maintain their shape
in the rotating frame of the Hill’s system. Unfortunately, as their shape is not
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Figure 2.41: States, modified states and costates of a transfer orbit to L4. T = 2.0
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Figure 2.42: Control input, performance index and energy during a transfer orbit to
L4. T = 2.0

regular, it is difficult to parametrize these orbits in terms of modified states in
order to stir the particle to any point laying on them. We therefore use modified
state similarly as in the previous section to mirror the actual states.

p = x =


x1
x2
x3
x4
x5
x6

 (2.32)

This allows to express the goal state as a single target point in the rotating frame
giving the initial conditions for halo orbits shown in Section 1.4.5.2. This method
might lead to suboptimal solutions however, as the particle is allowed to enter
the orbit at only a single point.

2.3.4.1 Transfer to a Lyapunov orbit around L3

The first halo orbit chosen as target of an optimal transfer is a Lyapunov
orbit at L3. Halo orbits of the Lyapunov type lie in the principal plane of the
Hill’s system. The transfer orbit is performed similarly as the transfer to L3 (Sec-
tion 2.3.3.3), which lies nearby. Figures 2.43, 2.44 and 2.45 show the trajectory
of this manoeuvre as well as information about the evolution of its states and the
control applied.
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Figure 2.43: Trajectory of a transfer orbit to a L3 Lyapunov orbit. T = 2.0
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Figure 2.44: States, modified states and costates of a transfer orbit to a L3 Lyapunov
orbit. T = 2.0
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Figure 2.45: Control input, performance index and energy during a transfer orbit to
a L3 Lyapunov orbit. T = 2.0

2.3.4.2 Transfer to a vertical orbit around L1

The previous section showed a transfer manoeuvre to a halo orbit in the
revolution plane of the two bodies. As discussed in Section 1.4.5.2, there are
however other classes of orbits that are periodic around a Lagrange point and
lie outside the principal plane. On Figures 2.46, 2.47 and 2.48 an example of a
transfer to a vertical halo orbit at L1 is presented.

2.3.5 Transfer to a chaotic orbit

As discussed in Section 1.4.4, chaotic orbits are a special class of orbits whose
trajectories are highly unpredictable. This makes intercepting a body on a chaotic
orbit very challenging, especially with open-loop methods. The chaotic trajec-
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Figure 2.46: Trajectory of a transfer orbit to a L1 vertical halo orbit. T = 2.0
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Figure 2.47: States, modified states and costates of a transfer orbit to a L1 vertical
halo orbit. T = 2.0
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Figure 2.48: Control input, performance index and energy during a transfer orbit to
a L1 vertical halo orbit. T = 2.0

tory must be known with enough confidence to ensure the final error will stay
within a reasonable bound during the transfer time T . For this type of task, just
as for the formation reconfiguration manoeuvres in Chapter 3, the optimal con-
troller can serve as a first stage of approach to the desired position. Close-loop
methods should take over once the optimal transfer has taken the spacecraft to a
location close to the goal. With a feedback controller, modelling or measurement
imprecision can be overcome and the satellite can be made to converge on its
target.

The chaotic orbit used in this example is the same presented in Section 1.4.4.
The initial orbit of the controlled particle is the same circular orbit as the one
used it the section 2.3.1 on transfers between circular orbits (Table 2.3). The
chaotic orbit is specified in terms of modified states in Table 2.7. The transfer
manoeuvre is described by Figures 2.49, 2.50 and 2.51.

85



Goal modified state pg1 pg2 pg3 pg4 pg5 Jg
Chaotic 0.8424 0 π/2 0 0.1187 −3.1788

Table 2.7: Table of goal modified states for a transfer to a chaotic orbit
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Figure 2.49: Trajectory of a transfer orbit to a chaotic orbit. T = 0.5
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Figure 2.50: States, modified states and costates of a transfer orbit to a chaotic orbit.
T = 0.5
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Figure 2.51: Control input, performance index and energy during a transfer orbit to
a chaotic orbit. T = 0.5
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2.4 Conclusion

In the previous chapter, the dynamics of a single particle in a gravitational
field were derived. This chapter builds on the obtained model to design an optimal
controller allowing for cost-effective transfers between different orbits.

The theory behind this technique as well as a description of the optimization
algorithm was described in Section 2.1. This theory was then applied in Sec-
tion 2.2 to derive the controlled models in a two-body Keplerian and three-body
Hill’s setup. In Section 2.3, we presented solutions for orbit transfer problems be-
tween pairs of orbits described in the last chapter. Our optimal controller proved
to be an effective tool for generating efficient transfer trajectories.

In the next chapter, satellite formation flying problems will be introduced.
The optimal control approach designed in this chapter will be applied to them
and its strengths and weaknesses will be assessed in comparison to a close-loop
cooperative controller.
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Chapter 3

Formation dynamics and control

Distributed control of multi-agent systems is a rapidly developing field of con-
trol engineering, with many applications in both science and industry. Deploying
an array of agents solving a task cooperatively has many potential advantages
over using only a single agent working independently. Some assignments, such as
mapping an unknown terrain or completing a multitude of simple tasks, are per-
formed with greater efficiency when done in parallel, with assignments and results
shared among nodes of the network of agents. Moreover, multi-agent systems of-
fer new possibilities, such as complex behaviour emerging from the interactions
of simple individuals, and enables to solving problems unmanageable by single-
agent systems, such as distributed sensing tasks. Among the primary advantages
of distributed systems are their flexibility, robustness to agent failure and reduced
complexity of individual agents. These perks come at a price of requiring reliable
communication and cooperation between agents.

Communication capacities of spacecraft are severely constrained by a re-
stricted power supply and antenna size while still being required to deliver com-
munication over hundreds to millions of kilometres. Recent developments in this
field, along with advancements in other areas, have made communication cheaper
and more reliable. This has in turn opened new possibilities in satellite formation
flying. A satellite formation is a group of satellites working together to achieve a
common goal through cooperation. They are often required to maintain a partic-
ular spatial configuration, as one of the main purposes of a multi-satellite system
is its ability to simulate a larger installation with a network of agents.

A simple example of satellite formation is a trailing formation, describing
multiple satellites on a single orbit successively separated by a, usually small,
trailing angle. An example of a system in a trailing formation is the A-train [12],
a formation of heterogeneous Earth-observing satellites in Low Earth orbit. As
they observe a given area at the same time each from a slightly different position,
their observations can be merged into high-definition three-dimensional images
of the Earth’s atmosphere and surface. A schematic view of the A-train and its
member satellites is displayed on Figure 3.1

Another well-known type of satellite formation is the constellation. Satellite
constellations are orbiting a body on multiple planes and try to achieve a maximal
ground coverage. Global navigation satellite system, such as the Global Position-
ing System, GLONASS, Galileo or BeiDou-2, all use constellation formations to
provide geospatial positioning at all times across the entire globe.
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Figure 3.1: On the left: A-train system formation with its member satellites. Figure
taken from https://atrain.nasa.gov/taking.php. On the right: Constellation for-
mation of the GPS system. Figure taken from https://www.gps.gov/systems/gps/

space/.

In Chapter 1, the dynamics of a single test particle in the gravitational field
of two bodies were derived. The reciprocal gravitational effect of the particle
on the bodies was neglected. Likewise, it is a common assumption in satellite
formation flying that satellites are considered massless particles that do not exert
any gravitational pull on each other. This is a reasonable assumption, as the mass
of man-made satellites is much smaller than that of celestial bodies they orbit.
This means that all members of a satellite formation are governed by the same
set of equations of motion discussed in Chapter 1, independent of each other.

In this chapter, shape-invariant formations are discussed, along with relevant
formation reconfiguration and formation keeping tasks. First, the mathematical
condition indicating a pair of particles on circular orbits maintains a constant
distance is derived. Then, the general methods for optimal control presented
in Chapter 2 are applied to formation flying tasks and their potential uses and
drawbacks are discussed. Two approaches in applying the optimal controller are
described, one fully decentralized treating each particle individually and the other
centralized, attempting to optimize the formation jointly as a whole. Finally, an
alternative linear feedback controller is designed and compared to the open-loop
optimal control strategy.

3.1 Shape invariant formations in circular orbits

In a circular Keplerian orbit, a particle follows a circular trajectory around a
massive body with a constant angular velocity, as confirmed by the simulations
in Section 1.4.1.1. The following properties hold for circular trajectories:

ṙ = ω × r ω · r = 0 (3.1)

where r is the position vector of the particle relative to the body and ω is its
angular velocity vector around that body.

If a formation of two particle i and j is to be shape-invariant, meaning the
distance between the two is constant, the scalar product of their two position
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vectors is also constant in time. This means their spacial angle is constant in
time, as the magnitude of both radius vectors is the same, which is necessary for
the same period, or angular velocity Ω, of the circular orbit.

ri · rj = const (3.2)

In other words, the derivative of the expression above equals zero.

d

dt
(ri · rj) =ṙi · rj + ri · ṙj

= (ωi × ri) · rj + ri · (ωj × rj)
=ωi · (ri × rj) + ωj · (rj × ri)
= (ωi − ωj) · (ri × rj) = 0

(3.3)

To assure (3.3) holds at all times, all higher degree derivatives of (3.2) must
also equal zero.

d2

dt2
(ri · rj) = (ωi − ωj) ·

d

dt
(ri × rj)

= (ωi − ωj) · (ṙi × rj + ri × ṙj)
= (ωi − ωj) · (ωi − ωj)× (ri × rj) = 0

(3.4)

If (3.3) is true, the expression above is identically zero, due to the properties
of the triple product. The equation (3.4) also indicates all higher derivatives are
likewise zero, as the cross product term ri × rj will be repeated with only the
constant term ωi − ωj popping up at each derivative.

3.2 Optimal control

As the dynamics of every particle in the gravitational field are independent of
each other, problems of formation control can be also treated by controlling each
particle independently to place or maintain it in a position within the formation.
As such, techniques of single body orbit placement like the ones derived in Chap-
ter 2 can be applied. If we know the desired formation configuration at a future
time T , we can set for each particle as target its goal position and let the entire
formation converge. This strategy, however, has a number of downsides.

For example, in formation flying, relative distances are often more important
than absolute ones. By controlling each particle individually, absolute distances
are used. The problem with this approach is that in the context of celestial
mechanics, absolute distances are often orders of magnitude larger than relative
ones. Any imprecision in the absolute coordinate will translate to large errors
in the relative coordinates. This is especially relevant if the model used is not
precise, which is always the case in realistic applications, with the gravitational
effects of other bodies, time-varying space weather or satellite system defects are
all sources of additional perturbations. As our optimal control method is an
open-loop one, it is sensitive to these unexpected effects.

In formation flying, maintaining a formation is a task equally important as
forming one. The optimal control method introduced in Chapter 2 allows to
ensure the formation has the correct shape at time T , but not before or after. It
is unable to continually manage perturbations to the formation with sustained
control.
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3.2.1 Trailing formation

The equations (3.3) offer a trivial solution where ωi = ωj, meaning the revo-
lution of both particles around the massive body is performed in the same plane
with the same angular velocity. If this equality holds at all time, this signifies
they share the same circular orbit, trailing one behind the other. This section
will treat task of optimal formation reconfiguration and formation keeping for
two particles in trailing formation on a circular orbit.

3.2.1.1 Change in trailing angle in the Kepler system

As a simple but practically important example of formation reconfiguration,
two particles on the same circular orbit in the equatorial plane of a single body
are tasked with changing the angle that separates them. Particle A is considered
to be the leader and remains uncontrolled for now. Particle B is the follower and
must use optimal control to reduce its trailing angle relative to the leader from
an initial ∆ϕ0 = −π/2 to a final ∆ϕT = −π/4. In order to perform this transfer,
the uncontrolled leader’s dynamics are simulated for the time of the transfer T ,
and its final position offset by the desired trailing angle is fed to the follower as
goal state.

The orbits of both the leader and the follower during this reconfiguration are
shown on Figure 3.2. The orbits are displayed both in inertial coordinates centred
at the body and in the pulsating LHLV coordinates introduced in Section 1.1
centred at the leader A. In the leader frame, all distances are rescaled so that
the distance from the leader to the body is always 1. Note that as the leader is
uncontrolled on a circular orbit, the proportions stay constant in this case.
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Figure 3.2: Trajectories of an optimal formation reconfiguration manoeuvre changing
the trailing angle

Figure 3.3 represent the difference in states between the two particles. For
greater clarity, the difference in the radius and radial velocity has been separated
from the angular states. Also the states x3 and x4 are disregarded here, as it has
been shown on multiple occasions in Section 2.3 that an optimal transfer between
two Keplerian orbits in the same plane also lies in that plane.

On Figure 3.4 the control input component of both particles is displayed, as
well as the plot of the performance index. The performance index is calculated for
both particles according to Equation (2.2). Then, a combined performance index
Ptotal = PA + PB is computed to depict the total cost of the reconfiguration. As
in this case only the follower is controlled, the control input vector for the leader
is null, as well as its performance index.
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Figure 3.3: Differences in states between the leader and follower particles during an
optimal formation reconfiguration manoeuvre changing the trailing angle
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Figure 3.4: Applied control inputs and performance indices during an optimal forma-
tion reconfiguration manoeuvre changing the trailing angle

To reconfigure the formation, the follower particle descends to an orbit with a
smaller radius, which boosts its angular velocity and allows it to catch up to the
leader. This is done, counter-intuitively, by applying a negative angular thrust.
By doing so, the particles absolute velocity decreases, allowing it to approach the
body. Indeed, close inspection of the orbit in the leader frame (Figure 3.2) as
well as the angular difference (Figure 3.3) reveals that the initial motion of the
controlled particle is opposite to the direction of its final destination. Likewise,
in order to reach the leader’s orbit on the appropriate position, positive angular
acceleration is applied in order to bring the particle back to the higher orbit and
decrease its angular velocity to its initial cruising value.

3.2.1.2 Swap leader and follower position in the Kepler system

A similar manoeuvre as in the previous section can be used to swap the
relative position of the leader and the follower on a circular Keplerian orbit. If
the leader is still uncontrolled, it remains the task of the follower to perform this
reconfiguration. Its goal state is set to lay on the leader’s orbit, with an angular
offset opposite to its initial value. Such a transfer is described by Figures 3.2, 3.3
and 3.4. The task is similar to the reducing trailing angle transfer above, except
the angular difference to bridge is twice as large. The manoeuvre is compared
with the previous one in terms of performance index cost per amplitude of the
angle difference between the initial and final formation in Table 3.1. We can
see that the relative cost of the reconfiguration is twice as higher in this case
compared to the trailing angle reduction treated above.

In order to mitigate the increased cost of the swapping reconfiguration ma-
noeuvre described above, a longer time frame can be allocated to the transfer. As
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Figure 3.5: Trajectories of an optimal formation reconfiguration manoeuvre swapping
the leader and the follower
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Figure 3.6: Differences in states between the leader and follower particles during an
optimal formation reconfiguration manoeuvre swapping the leader and the follower
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Figure 3.7: Applied control inputs and performance indices during optimal formation
reconfiguration manoeuvre swapping the leader and the follower

Reconfiguration task Angle Cost Cost per Angle
B reduces trailing angle π/4 730 929
Swap performed by B π/2 3160 2012
Swap in coordination by A and B π/2 1247 794

Table 3.1: Cost comparison for different optimal reconfiguration manoeuvres

seen in Section 2.3.1.1 Figure 2.4, there is an approximately exponential relation
between the transfer time T and the performance index P .

Another solution might be controlling both particles in a more coordinated
reconfiguration manoeuvre. In order to do that, we slightly modified the optimal
control method from Chapter 2 to be able to control both particles at the same
time. The modified state vectors of the leader and follower particles are defined
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as

pA =


xA1

xA2

xA3

xA4

xA5 − xB5

xA6

 pB =


xB1

xB2

xB3

xB4

xB5 − xA5

xB6

 (3.5)

The angular modified state is set in relative rather than absolute terms. This
system becomes centralize, as both particles are controlled together and not in-
dependently as before. With the leader particle being controlled, we displayed
the reconfiguration orbits in an additional, virtual leader centred frame in Fig-
ure 3.8. This frame is an LVLH frame following a virtual particle on an orbit
corresponding to the leader’s if it had remained uncontrolled. It allows visualizing
the motion of both particles in a rotating frame.
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Figure 3.8: Trajectories of a jointly optimal formation reconfiguration manoeuvre
swapping the leader and the follower

In the coordinated manoeuvre found according to the joined optimal control
technique described above, the overall amplitude of the control assigned to the
leader particle A is much greater than for the follower B (Figure 3.10). We suspect
this is due to the fact that decreasing a leading angle is cheaper than reducing
the trailing angle, because of the smaller force required for performing a desired
motion in higher orbits compared to orbits closer to the body. The reduction of
a leading angle involve a manoeuvre mirroring the one used to increase it. The
particle is first angularly accelerated to gain energy and a higher radius, where
its angular velocity is lower. When the follower particle passes under it (on a
trajectory similar to the one in both of the previous examples), angular thrust in
the opposite direction is applied to decrease it and realign it to the original orbit.

By controlling both particles using their relative angular difference, the overall
cost of the swapping manoeuvre is much smaller than by only letting the follower
be controlled (Table 3.1).

The leader and follower satellites can be heterogeneous, with different masses
and propulsion systems, this can be taken into account by assigning appropriate
weights to the controls of both particles, usually to model a higher manoeuvra-
bility of the follower compared to the leader. This allows to prioritize the control
of one particle over the other.
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Figure 3.9: Differences in states between the leader and follower particles during
a jointly optimal formation reconfiguration manoeuvre swapping the leader and the
follower
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Figure 3.10: Applied control inputs and performance indices during a jointly optimal
formation reconfiguration manoeuvre swapping the leader and the follower

3.2.1.3 Compensate for perturbations in the Hill’s system

The optimal control tool presented in Chapter 2 is an open-loop method that
allows to steer the system into a desired state at a fixed final time T . As mentioned
earlier, this method is not well suited for coping with unexpected perturbations
and imprecisions of the model. On the other hand, if the perturbations are known
and precisely modelled, it can take them into account in its control scheme,
potentially even taking advantage of them.

If a formation flying on a circular orbit is subjected to perturbations from a
second massive body or the oblateness of the first one it soon becomes deformed
or breaks apart completely. This is depicted on Figure 3.11, where the formation
is shown to grow apart over time due to these perturbations. Large values of both
the oblateness parameter a = 0.002 and the reduced mass µ = 0.15 are used in
order for the deformation to be noticeable within a short time span.

-1 -0.5 0 0.5 1

x

-2

-1.5

-1

-0.5

0

y

Orbits in the Leader frame

A

B trajectory

B start

B end

Body

Orbit

0 1 2 3 4 5 6 7 8 9 10

Time

-0.15

-0.1

-0.05

0

0.05

0.1

 x

State difference

 x1

 x2

0 1 2 3 4 5 6 7 8 9 10

Time

-1

-0.5

0

0.5

1

1.5

2

 x

State difference

 x5

 x6

Figure 3.11: Drift caused by perturbations to the Keplerian model

If the formation is to maintain its shape and size continuously, feedback solu-
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tions reacting to immediate deviations from the desired configuration are better
suited. In some applications however, satellites might only be required to come
together into formation at discrete moments, for example to carry out a measure-
ment that is possible or sufficient to be performed only once in a time interval. In
this case, the joined optimal control method presented in the previous example
can be used to ensure the formation is reassembled at the required time, before
letting it drift freely. On Figures 3.12, 3.13 and 3.14, both particles are allowed
to be perturbed from their initial formation, but are continuously controlled in
order to ensure the formation is reassembled at time T .
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Figure 3.12: Trajectories of an optimal formation maintenance manoeuvre
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Figure 3.13: Differences in states between the leader and follower particles during an
optimal formation maintenance manoeuvre
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Figure 3.14: Applied control inputs and performance indices during an optimal for-
mation maintenance manoeuvre

3.2.2 LISA formation

There exist solutions to Equation (3.3) where ωi 6= ωj, indicating formations
where particles maintain a constant mutual distance without sharing the same
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orbit. Maintaining constant distances between more than two particles orbiting
a body on different planes allows a formation to maintain a certain geometric
shape. An example of such a formation is the planned Laser Interferometer Space
Antenna (or LISA) mission of the European Space Agency. The LISA formation
is composed of three satellites in mutually inclined quasi-circular heliocentric
orbits. The satellites form an equilateral triangle whose shape is time-invariant
with arm lengths measured in millions of kilometres. The goal of the mission is to
create an interferometer sensor to measure gravitational waves from distant black
holes. As the wavelength of gravitational waves is very large, an appropriately
large measuring instrument is required for their measurement, or, as in this case,
a formation of satellites mimicking a single instrument. An artistic rendering of
the LISA formation orbiting the Sun is displayed on 3.15.

Figure 3.15: Schematic of the LISA formation orbiting around the Sun. Figure taken
from https://hepl.stanford.edu/news_stories/uv-led/index.html

To faithfully recreate formation reconfiguration of the LISA multi-satellite
system, initial conditions for the formation are taken from [13], where multiple
configuration specifications are given in terms of initial states of each satellite.
The initial states of satellites A, B and C corresponding to triangular configura-
tions of arm length 1Gm and 6Gm is given in Table 3.2. These initial conditions
are converted into the position and velocity vectors in Cartesian coordinates and
inserted into Equation 3.3 to check if each pair of particles of the formation is
shape-invariant. We consider the results listed in Table 3.3 sufficiently close to
zero to conclude a formation of particles placed on orbits defined by their initial
states from Table 3.2 will remain in a formation in the shape of an equilateral
triangle.

The trajectory of particles A, B and C forming the triangular LISA formation
with arm length 6Gm during one of its revolution in the inertial body-centred
frame is shown on Figure 3.16.

For a better visualization of the relative motion of the three particles, Fig-
ure 3.17 displays their motion in a frame centred at the immediate centre of the
formation. In this frame, the particles move on recurved 8-shape trajectories
while maintaining a triangular configuration.

Illustrative reconfiguration manoeuvres for the LISA formation will now be
discussed. First, the transfer from a trailing formation on a circular orbit into a
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x01 x02 x03 x04 x05 x06
A1 0.9978 0.0005 1.4316 0.3802 2.8145 0.9353
B1 0.9989 0.0036 1.4323 0.3751 2.8211 0.9348
C1 0.9956 0.0030 1.4371 0.3782 2.8178 0.9401
A6 0.9996 −0.0090 1.4211 0.3916 2.7980 0.9279
B6 1.0063 0.0098 1.4251 0.3620 2.8376 0.9254
C6 0.9866 0.0063 1.4541 0.3800 2.8180 0.9576

Table 3.2: Initial conditions for LISA formations of arm lengths 1AU and 6AU [13]

A1B1 (ωA1 − ωB1) · (rA1 × rB1) −1.0274 · 10−5

B1C1 (ωB1 − ωC1) · (rB1 × rC1) −6.0426 · 10−6

C1A1 (ωC1 − ωA1) · (rC1 × rA1) 1.6367 · 10−5

A6B6 (ωA6 − ωB6) · (rA6 × rB6) −3.7007 · 10−4

B6C6 (ωB6 − ωC6) · (rB6 × rC6) −2.0656 · 10−4

C6A6 (ωC6 − ωA6) · (rC6 × rA6) 5.8585 · 10−4

Table 3.3: Check for the shape-invariance condition (3.3) for the values from Table 3.2
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Figure 3.16: Trajectory of an unperturbed LISA formation of arm length 6AU in an
inertial frame

triangular one to simulate the initial placement of the LISA system from a circular
parking orbit. Second, the rescaling of the formation to modify the length of the
triangle’s arms.

3.2.2.1 Transfer from trailing to triangle formation

We have seen in the previous section that particles sharing the same Keplerian
circular orbit maintain identically a shape-invariant trailing formation. When
setting up the LISA satellite system, it might be a good idea to first place all
three spacecraft on a single circular orbit close to the intended orbit before placing
them in the triangular formation.
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Figure 3.17: Evolution of the trajectory of an unperturbed LISA formation of arm
length 6AU in the formation frame
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Figure 3.18: Trajectory of an optimal transfer form a circular trailing formation to a
LISA formation of arm length 6AU in an inertial frame

Initially, particles are placed in a trailing formation on a circular orbit, suc-
cessively offset by a constant angle. Figure 3.18 shows the reconfiguration of a
three-particle formation from its initial state into a shape-invariant triangular
configuration. Figure 3.19 shows this transfer in the formation frame.

3.2.2.2 Triangle reconfiguration

The sensitivity of the LISA sensor to gravitational waves of various wavelength
is dependent on the arm length of its triangular formation. It is therefore useful
to develop a controller enabling the reconfiguration of the formation between
triangles of different scales. In this example, we reconfigure the LISA formation
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Figure 3.19: Evolution of the trajectory of an optimal transfer form a circular trailing
formation to LISA formation of arm length 6AU in the formation frame
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Figure 3.20: Evolution of the distances between satellites and performance indices
during an optimal transfer form a circular trailing formation to LISA formation of arm
length 6AU

in order to achieve a triangular configuration six times larger than the initial.
Figure 3.22 shows the transfer of each particle from its initial 8-shaped orbit to
the larger final one in the formation frame. The same reconfiguration is displayed
in an inertial frame on Figure 3.21.

Figure 3.23 informs us that the triangular formation is not maintained through-
out the reconfiguration manoeuvre, as the distances between the particles are
equal at the beginning and end of the transfer, but not in between. This is not
surprising, as every particle is controlled independently on a trajectory that min-
imizes its cost in terms of fuel spent, only the initial and final positions can be
specified.
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arm lengths in an inertial frame
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Figure 3.22: Evolution of the trajectory of an optimal transfer between LISA forma-
tions of different arm lengths in the formation frame
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Figure 3.23: Evolution of the distances between satellites and performance indices
during an optimal transfer between LISA formations of different arm lengths
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3.3 Cooperative control

The optimal control scheme introduced in Chapter 2 has a number of disad-
vantages when applied to formation flying problems. Common features of dis-
tributed systems include simple reactive behaviour and robustness to unexpected
perturbations. We have seen in Section 3.2 that using an optimal controller on a
formation reconfiguration task involves either controlling each particle indepen-
dently in a fully decentralized way or the entire formation jointly. Either way, the
control is applied in open-loop, so errors in the final state are likely to appear in
realistic applications. Moreover, the optimization process described in Section 2.1
is computationally expensive and would likely have to be performed on a ground
station and the resulting control sequence communicated to the satellite.

In this section, we will introduce an alternative autonomous feedback con-
troller that, though suboptimal in terms of fuel costs, is robust, cooperative and
scalable. We will first present the theoretical background and design method
for this cooperative controller. Then, the task of formation reconfiguration and
maintenance similar to the ones in Section 3.2.1 will be solved to compare it to
the optimal controller.

3.3.1 Theory

Consensus dynamics is a discipline at the intersection of systems theory and
graph theory [7]. It involves nodes of a network exchanging information with their
neighbours to reach an agreement in their states. The formation is represented
by a directed graph, where nodes represent satellites and edges are communica-
tion links between them. In order for the method to be scalable, the formation
graph should not be complete. This is especially true for satellite systems, where
maintaining a communication link between every pair of satellites in a large for-
mation would constitute a significant load on the limited communication capacity
of individual satellites. The adjacency matrix E of the formation graph assigns
connections between members of the network. For large formations, the adjacency
matrix is usually sparse, as every satellite is generally assigned only a handful
of neighbours, with every particle tasked with reaching consensus only with its
immediate neighbourhood. With the adjacency matrix and the degree matrix D
(diagonal matrix indicating the number of connections of each node), the graph
Laplacian matrix can be calculated:

L = D − E (3.6)

The dynamics of particle i of the formation generally can be written as

ẋi = f (xi) + g (xi)ui (3.7)

where f (xi) is its uncontrolled dynamics and ui the control input vector. The
above dynamics can be simplified by assuming the control-state coupling inde-
pendent on the current state g (xi) = B.

As we only consider linear distributed control, the design of which is based
mainly on linear time-invariant dynamics, we linearize the dynamics:

f (xi) = Axi + h (xi) (3.8)
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where h (xi) are the higher order non-linear terms that are omitted for purposes
of design. The system matrix is obtained from the Jacobian of the dynamics

A = ∂f(x)
∂x

. For the equations of motion (1.30) in the Keplerian system (derived
in Section 1.3.1), the state matrix is as follows:

A =



0 1 0 0 0 0
x6

2sin2 x3 + 2
x3
1

+ x24 0 x1x
2
6 sin (2x3) 2x1x4 0 2x1x6 sin2 x3

0 0 0 1 0 0
2x2x4

x2
1

− 2x4

x1
x26 cos (2x3) − 2x2

x1
0 x6 sin (2x3)

0 0 0 0 0 1
2x2x6

x2
1

− 2x6

x1

2x4x6

sin2 x3
− 2x6 cos x3

sin x3
0 − 2x2

x1
− 2x4 cos x3

sin x3


(3.9)

By aligning the frame of reference with the orbital plane, we can simplify the
relation:

A =



0 1 0 0 0 0
2
x3
1

+ x26 0 0 0 0 2x1x6

0 0 0 1 0 0
0 0 −x26 −2x2

x1
0 0

0 0 0 0 0 1
2x2x6

x2
1

−2x6

x1
0 0 0 −2x2

x1


(3.10)

As has been seen in Section 1.4.1, in a circular orbit states x1, x2 and x6 remain
constant, while only x5 grows linearly. As A is independent of x5, by linearising
at a Keplerian circular orbit the system matrix is time-invariant.

State consensus can only be posed on homogeneous networks, where all nodes
are governed by the same equations of motion. This is indeed true for all objects,
natural and man-made, of negligible mass in a gravitational field, as the dynamics
derived in Chapter 1 depends on the properties of massive bodies and states of the
particles. Alternatively , in the case of heterogeneous networks, other techniques,
such as output synchronization, can be applied.

As we explained above, we simplified the system to a linear time-invariant
problem

ẋi = Axi +Bui (3.11)

The control input sufficient to achieve state consensus is

ui = cKei (3.12)

with c being a scalar gain, K a gain matrix and the local neighbourhood error

ei =
∑
j

eij (xj − xi) (3.13)

where eij is the element of the adjacency matrix indicating the presence of a
communication link from i to j. The total controlled dynamics for the entire
formation can be written in vector form:

ẋ = (IN ⊗ A)x+ (IN ⊗B)u = (IN ⊗ A− cL⊗BK)x (3.14)

where IN is an identity matrix of size N - the number of nodes in the network,
and ⊗ denotes the Kronecker product.

With the above-described control, all members of the formation will converge
to a single, time-varying position, given by their share orbital dynamics. The
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shape of this final orbit is however not specified and depends in general on initial
conditions. To ensure the formation’s final trajectory lies on the circular orbit
around which we have linearised, we introduce a leader particle. This leader
remains uncontrolled and serves to pin the formation to its orbit. Pinning is
the action of letting information about the uncontrolled leader available to some
nodes of the network [7]. A leader can be chosen among nodes of the network
or it can be another object, real or virtual, the formation should converge to,
like an asteroid we want to intercept. The only constraint with the choice of a
leader is that it should have the same dynamics as the satellites of the formation.
As we mentioned earlier, this holds true for all bodies in the gravitational field.
If the leader is another spacecraft, it can be controlled by any other method.
We can imagine a formation performing a coordinated orbit transfer with the
leader deriving an optimal control sequence according to the method presented
in Chapter 2 and the remaining satellites following autonomously. In order for
the formation to converge to the leader, not all of its members have to be pinned
by it, as long as this information propagates through the entire graph. We can
introduce the diagonal pinning matrix G indicating which nodes of the network
are attracted toward the leader. Just like with the adjacency matrix, the pinning
matrix can be sparse. It is enough for only a few satellites to know the location of
the leader for the whole formation to be pinned. The control of particles toward
the leader is accomplished by adding a pinning term in the local neighbourhood
error equation:

ei =
∑
j

eij (xj − xi) + gi (x0 − xi) (3.15)

where x0 is the state vector of the leader and gi indicate diagonal elements of the
pinning matrix G.

The leader pinning can be added by shifting the states:

δ = x− 1⊗ x0 δi = xi − x0 (3.16)

The relation (3.14) can now include the pinning of the leader

δ̇ = (IN ⊗ A− c (L+G)⊗BK) δ (3.17)

We apply on (3.17) above the transformation T such that

T−1 (L+G)T = Λ (3.18)

is upper triangular, with the eigenvalues of (L+G) on its main diagonal. Then(
T−1 ⊗ IN

)
(IN ⊗ A− c (L+G)⊗BK) (T ⊗ IN) = IN ⊗ A− cΛ⊗BK (3.19)

The stability of the total system is determined by the stability of the diagonal
blocks in (3.19) having the form

A− cλj (L+G)⊗BK (3.20)

If all eigenvalues of (L+G) are such that all such diagonal blocks are stable
then the entire system is stable in a sense that it reaches synchronization to the
leader’s trajectory ẋ0 = Ax0.
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To ensure this, the matrix K is chosen as

K = R−1BTP (3.21)

with P satisfying the Algebraic Riccati Equation:

ATP + PA+Q− PBR−1BTP = 0 (3.22)

where Q = QT > 0 and R = RT > 0 are design parameters. With K chosen in
this manner, the synchronizing region, the area of stability of the complex matrix
pencil A−σBK, is an unbounded right half-plane. The coupling gain c is chosen
so as to push the eigenvalues λj (L+G) into the synchronizing region:

< (cλi) >
1

2
(3.23)

A cooperative controller for formation state consensus linearised around a
circular leader trajectory designed according to the instructions above should
make the entire formation converge toward the moving leader. The non-linearities
of the system should be overcome by the feedback gain provided the particles’
initial states are not too far from the linearised orbit. Particles approaching too
close to a massive body might see their non-linear dynamics grow too large for
the controller to handle and the cooperative stability might become compromised.
On the other hand, particles moving too far from the body and the linearisation
orbit are guaranteed not to fail.

A consensus controller such as described above is useful when contact or col-
lision with the leader is desired. Often however, the required behaviour of a
formation is maintaining a particular rigid shape, with stable distances between
satellites, as explained in Section 3.1. In that section, particles sharing a common
circular Keplerian orbit were proven to maintain such a shape-invariant forma-
tion. Indeed, when the reference frame is correctly aligned with the orbital plane,
the Keplerian dynamics (1.30) become independent of the angular position x5,
meaning

f (xi) = f (xi + δxϕ) (3.24)

where δxϕ is an offset in the ϕ angle

δxϕ =


0
0
0
0

∆ϕ
0

 (3.25)

The local neighbourhood error vector (3.15) with the above offset becomes

ei =
∑
j

eij


xj1 − xi1
xj2 − xi2
xj3 − xi3
xj4 − xi4
xj5 − xi5 + ∆ϕij

xj6 − xi6

+ gi


x01 − xi1
x02 − xi2
x03 − xi3
x04 − xi4
x05 − xi5 + ∆ϕi0

x06 − xi6

 (3.26)
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This allows to set arbitrary offsets between the nodes of the network as well
as between them and the leader. The formation cooperatively controlled in this
manner will converge toward the leader’s orbit, on positions defined by their
mutual offsets.

3.3.2 Trailing formation

3.3.2.1 Change in trailing angle in the Kepler system

In Section 3.2.1.1, a simple example of formation reconfiguration was intro-
duced. Two particles, one leader and one follower, orbit a massive body on a
shared circular orbit in a trailing formation. The reconfiguration manoeuvre in-
volves the follower reducing its trailing angle with respect to the leader from an
initial π/2 to π/4.

On Figures 3.24, 3.25 and 3.26 the same task is performed using the feedback
controller described in Section 3.3.1. With only one follower, its control input is
calculated only from the leader’s pinning, with adjacency and pinning matrices

A = [0] G = [1] (3.27)
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Figure 3.24: Trajectory of a cooperative formation reconfiguration manoeuvre chang-
ing the trailing angle

The shape of the transfer orbit employed by the follower particle in order to
perform the desired reconfiguration is similar as in the case where the optimal
controller was used (Figure 3.2). The particle plunges towards the body in order
to gain angular velocity and catch up to the leader, before regaining its goal
position on the formation orbit.
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Figure 3.25: Differences in states between the leader and follower particles during a
cooperative formation reconfiguration manoeuvre changing the trailing angle

Inspection of the figures comparing the states of the two particles (Figure 3.25)
reveal the follower approaches its goal state asymptotically, as it is the case with
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continuous feedback controllers. Another feature of proportional feedback control
is that the controlled input applied is proportional to the difference in states from
a goal position, given by Equation (3.15). As a result, the control amplitude is
maximal at the beginning of the manoeuvre and diminishes to zero as the particle
approaches its final position in the formation (Figure 3.26). This causes the
performance index, calculated according to Equation (2.2), to increase rapidly at
the beginning before settling as control is attenuated. In the optimally controlled
scenario, the control input was applied more evenly (Figure 3.4), as a result the
performance index grew gradually.

It is also notable that if the initial states of the follower are in the leader’s
orbital plane, the entire transfer will be performed in this plane due to the differ-
ences in states x4 and x5 (the polar angular states) being zero. We will therefore
not display any more the values of those states in the subsequent examples.
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Figure 3.26: Applied control inputs and performance indices during a cooperative
formation reconfiguration manoeuvre changing the trailing angle

Comparing the cost of the reconfiguration manoeuvre in terms of the perfor-
mance index for both types of controllers solving the same task reveals the optimal
open-loop method is about 13 times cheaper. This difference is attributed in part
to the fact the performance index (2.2) is calculated using the square of control in-
puts, thus penalizing short peaks in amplitude such as those seen on Figure 3.26.
Mostly however, it is due to the fact that optimal control is designed to find
trajectories that minimize the control applied. The used feedback controllers, on
the other hand, do not make any effort in this direction.

3.3.2.2 Cooperative reconfiguration

As explained in Section 3.3.1, the cooperative controller introduced enables
the convergence of a numerous formation of satellites while keeping communi-
cation costs low. In this example, we will show a coordinated reconfiguration
manoeuvre, where a network of four satellites in a trailing circular formation is
tasked with changing their mutual trailing angles. To maintain as few communi-
cations links as possible, the formation is set up in such a way that every member
synchronizes with only one other, or expressed in terms of adjacency and pinning
matrices

A =

 0 0 0
1 0 0
0 1 0

 G =

 1
0
0

 (3.28)
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Figure 3.27: Trajectory of a cooperative formation reconfiguration manoeuvre chang-
ing the trailing angle

meaning the first follower is only pinned by the leader as in the previous example,
the second tries to achieve consensus with the first and the third with the second.

Figure 3.27 and 3.28 show that in the initial state, the formation is shape-
invariant on a shared circular orbit with the leader, trailing mutually by π/2.
During the reconfiguration, all three particles move closer to the body to get
closer to the leader, as explained in the previous examples, before returning to
the leader’s orbit on positions determined by the desired final offset π/4.
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Figure 3.28: Differences in states between the leader and follower particles during a
cooperative formation reconfiguration manoeuvre changing the trailing angle

The last follower clearly spends the most fuel in its manoeuvre (Figure 3.29),
as the distance between its initial and final state relative is the greatest, as con-
firmed by the orbit trajectory graph in the leader frame. Because of the structure
of the communication network, all followers must wait for their neighbours to sta-
bilize first before being able to reach their steady states. This causes the third
follower to attain its finals state as last.

3.3.2.3 Swap follower positions

In Section 3.2.1.2, the trajectories of two particles were jointly optimized to
exchange their mutual positions on a circular orbit. The same manoeuvre can be
performed in the cooperative scheme. Starting with the final configuration from
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Figure 3.29: Applied control inputs and performance indices during a cooperative
formation reconfiguration manoeuvre changing the trailing angle

the last example, four satellites on the same circular orbit mutually offset by π/2,
the two last followers are tasked with exchanging positions.

This reconfiguration cast is performed very easily by swapping reassigning
the satellite’s indices in the adjacency and pinning matrices (3.28). The third
follower’s steady state position will be offset with regard to the first follower F1,
not F2. Similarly, the second follower will try to reach a position offset from F3
instead of F1. This swap manoeuvre is depicted on Figures 3.30, 3.31 and 3.32.
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Figure 3.30: Trajectory of a cooperative formation reconfiguration manoeuvre swap-
ping two follower positions

In the case the optimal controller is used, we noticed how the increasing the
trailing angle is cheaper in terms of performance index than decreasing it. Using
cooperative control, the opposite is true, as indicated by Figure 3.32. As we
explained earlier, the control input magnitude is proportional to the error in
states and decreases as the goal state is approached. For the follower F2, the
initial angular error is π/4. For F3, it is π/2 however, leading to a stronger initial
control thrust. If additional communication links were added to the network, the
transition might be smoother, as the satellite at the tail of the formation would
be less sensitive to initial errors in the formation configuration.

3.3.2.4 Compensate for perturbations in the Hill’s system

One of the perks of feedback control systems is their robustness to unmodelled
perturbations. And, contrary to the optimal controller (Section 3.2.1.3), it should
be able to track a desired state continuously, instead of just ensuring it is reached
after some time T . The result of a formation maintenance task using a cooperative
controller on the above described trailing formation is shown on Figures 3.33,
3.34 and 3.35. As in Section 3.2.1.3, perturbations from the presence of the
second body and the oblateness of the principal are included with the same values
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Figure 3.31: Differences in states between the leader and follower particles during a
cooperative formation reconfiguration manoeuvre swapping two follower positions
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Figure 3.32: Applied control inputs and performance indices during a cooperative
formation reconfiguration manoeuvre swapping two follower positions

of parameters (reduced mass µ = 0.15 and oblateness parameter a = 0.002).
The controller however remains linearised around a Keplerian circular orbit to
demonstrate it can deal with precisions of the model. It is important to note that
in the Hill’s system, the shape-invariance condition (3.4) does not hold any more.
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Figure 3.33: Trajectory of a cooperative formation maintenance manoeuvre

Contrary to the Keplerian model, dynamics in the Hill’s system do not satisfy
(3.24), as even if the orbit lies in the frame’s principal plane

f (xi) 6= f (xi + δxϕ) (3.29)
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This signifies that a trailing formation on a circular orbit is no longer stable. This
is confirmed in this experiment, with follower satellites oscillating around their
target positions. However, we consider the oscillations of low amplitude and the
controller successful in maintaining the formation in place with an on average
constant control input applied, as testified by the linearly growing performance
index.
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Figure 3.34: Differences in states between the leader and follower particles during a
cooperative formation maintenance manoeuvre

Similarly to the last example, the last link in the trailing formation F4 is
perturbed the most, as deviations of all other particles accumulate. Indeed, the
last follower’s deviations from the target state have the highest amplitude, leading
to more control input being spent on its maintenance.

0 1 2 3 4 5 6 7 8 9 10

Time

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

u

Control inputs

0 1 2 3 4 5 6 7 8 9 10

Time

0

50

100

150

200

250

300

P

Perfomance index

P
F1

P
F2

P
F3

P
total

Figure 3.35: Applied control inputs and performance indices during a cooperative
formation maintenance manoeuvre

3.3.2.5 Interception of a chaotic orbit

Section 1.4.4 presented the notion of chaotic orbits in the Hill’s system. In
Section 2.3.5, a transfer to one such orbit using an open-loop optimal control
scheme was discussed. Chaotic trajectories are inherently difficult to predict,
as arbitrary small errors in state measurement grow exponentially. This makes
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open-loop techniques ill-suited for interception tasks, as they rely on their initial
estimation of the future states of an object on a chaotic orbit. closed-loop methods
however can continuously update their estimations of the target’s position.

This experiment also serves to confirm if the controller derived in Section 3.3.1
is capable to make a formation converge to a leader position that does not lie on
a circular orbit. The controller’s parameters were however linearised around a
Keplerian circular orbit. The linearization of the uncontrolled dynamics with the
Jacobian (3.10) around the chaotic leader would result in a time-varying linear
system. As the states of the chaotic orbit are heavily oscillating but bounded, we
insert their average value (Figure 3.36) in the system matrix (3.10) to obtain an
LTI system.
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Figure 3.36: Variations in states x1, x2 and x6 in a chaotic orbit

The communication graph of the formation has the same topology as before
(3.28)

A =

 0 0 0
1 0 0
0 1 0

 G =

 1
0
0

 (3.30)

with only the first satellite being pinned by the chaotic leader, and the other
followers successively following it. As seen of Figure 3.37 and 3.38, the chaotic
particle is cooperatively converged to by the formation.
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Figure 3.37: Trajectory of a cooperative interception manoeuvre

This example also shows the limits of the linearised control scheme. As the
formation passes close to a massive body (around t = 1.7), the omitted non-
linear terms of the uncontrolled dynamics grow in significance and perturb the
converging particles. These non-linearities have to be compensated by a feedback
control of higher amplitude than is necessary for reaching the chaotic leader
itself (especially for the last follower F3 that passes the closest to the body -
Figure 3.39). Choosing a lower coupling gain c during the controller design might
result in these non-linearities overcoming the linear controller and compromising
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Figure 3.38: Differences in states between the leader and follower particles during a
cooperative interception manoeuvre

the system’s stability. On the other hand, a higher gain increases the system’s
robustness to these perturbations and enables a faster convergence toward the
target, at a cost of higher amplitudes in the control inputs.
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Figure 3.39: Applied control inputs and performance indices during a cooperative
interception manoeuvre

The cooperative intercept of the asteroid on the chaotic orbit is also of par-
ticular practical importance. The close-Earth passing asteroid usually orbit on
chaotic trajectories and the developments presented in this section relate to any
formation mission that would involve such a body as its target. We showed the
capability of the autonomous system of space-borne crafts to cooperatively con-
verge to the position of such an object even if it is being tracked by only some of
the crafts.
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3.4 Conclusion

Satellite formation flying is a new field of space engineering studying multi-
agent formations of satellites working in cooperation to achieve a given task. It
has many potential advantages over single-satellite solutions but comes at the
price of having to design a control scheme for formation setup, maintenance and
reconfiguration.

In this chapter, two alternative controller solutions were discussed. The first
applied the principles of optimal control introduced in Chapter 2 to solve various
reconfiguration problems in a trailing and LISA formation (in in Section 3.2). It
achieved its goal efficiently but has shown to be sensitive to unmodelled pertur-
bations and not well scalable.

An alternative closed-loop cooperative controller was designed in Section 3.3.
With the design linearised around a certain circular orbit, it had to compensate
for known non-linearities instead of fully embracing them. With an increased
control cost compared to the optimal controller, this cooperative one has how-
ever significant advantages. Using feedback enables to compensate for unexpected
perturbations and allows to continuously track a goal state position. Its reduced
complexity and robustness to incomplete information indicates it could more eas-
ily be performed onboard, without relying on ground stations. Plus, by limiting
the communications links between members of the formation, scalability can be
ensured and large groups of satellites can be controlled autonomously.
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Conclusion

The design of controller of satellites is a crucial aspect of space engineering
since the very beginning of this field. Constraints in fuel supply, communication
and computation capacities together with the impossibility of resupply or main-
tenance of most satellite systems leads to the need for highly robust and efficient
controllers.

Before designing the controllers, the dynamics of uncontrolled bodies in a
gravitational field were thoroughly analysed in Chapter 1. Using the tools of
Lagrangian mechanics introduced in Section 1.2, perturbation from the oblateness
of the central body and the presence of a second mass where added to the basic
Keplerian model in Section 1.3. Orbital trajectories were presented in Section 1.4
to demonstrate the variety of solutions to the non-linear equations of motion.

This thesis aimed at comparing two control approaches for satellite forma-
tion reconfiguration and maintenance task. The optimal controller presented in
Chapter 2 is an open-loop method attempting to minimize the control input ap-
plied during the manoeuvre. It can serve as a benchmark for other approaches,
giving an idea of a lower bound on the required control input cost of a trans-
fer. Open-loop approaches are however sensitive to unmodelled disturbances and
cannot be used on continuous formation keeping tasks. The cooperative control
approach introduced in Section 3.3, on the other hand uses, feedback to com-
pensate for perturbations and maintain a desired formation configuration. The
simplicity of this close-loop control scheme indicates it could be more easily per-
formed autonomously on-board using only local information. Its inability to make
predictions based on its of knowledge of the dynamics model makes it inefficient,
especially if the goal state is far from the initial.

A combination of both techniques would allow to make use of strengths of both
while bypassing their weaknesses. In an initial phase, the formation is approached
to its target position with a precomputed cost-efficient optimal manoeuvre. The
inevitable unexpected perturbations will accumulate and introduce an error in
the end state. This deviation can be autonomously corrected by the cooperative
feedback controller, which might also take care of subsequently maintaining the
final formation in place or perform any small reconfiguration task.

Future work

Throughout this thesis, a few issues and experiments have been omitted or
only hinted at due to scope restrictions. We will summarise below what we think
are the most interesting problems related to this thesis that are worth a deeper
examination.
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• Dynamics in elliptic Hill’s system.

In Section 1.3.4, we derived the equations of motion of a particle in the
gravitational field of two masses revolving around each other on elliptic
trajectories. We did not expand on this problem by performing simulations
in this system or designing a controller as was done for the circular Hill’s
model.

• Deformation of bodies.

The perturbations arising from the oblateness of the central body were
discussed in Section 1.3.2. The inclusion of higher terms of the Legendre
polynomial expansion (1.32) could increase the accurateness of modelling
particular celestial bodies.

When merging the perturbation model for an oblate body with the Hill’s
system, a simplifying assumption was made that the polar axis of the body
is perpendicular to the principal plane. In reality, the tilt of planets of the
Solar system is not specified in this way [11]. Reconciling this inclination
with the rotating frame would also allow to more precisely model known
celestial objects.

On the other hand, small bodies orbiting close to larger ones often ex-
perience tidal locking. When tidally locked, the body’s rotation speed is
synchronized with its revolution, meaning it always faces the large mass
with the same hemisphere. Often, those bodies are deformed by prolate-
ness, the stretching of a sphere at its poles. This deformation can easily be
modelled in the Hill’s system, as its orientation is aligned with the principal
axis. In the Solar system, most major moons, including the Earth’s, are
tidally locked to their planets, as well as Mercury with regard to the Sun
[4].

• Free-time optimal control

The optimal controller introduced in Chapter 2 used a fixed-time control
scheme, meaning the total time T of the transfer is set in advance as a
parameter of the controller. If the control is designed as free-time, the final
time is not set in advance any-more. The performance index (2.2) does
not only include the control inputs but also a time component, such as to
optimize jointly a trade-off between the time of transfer and control costs.

• Cooperative and optimal control in orbital parameters

The coordinate system used in our models was chosen spherical, as it allows
to express circular orbits in the frame’s principal plane with five constant
and only one varying state. Expressing the dynamics in terms of orbital
elements [1] would enable to express any Keplerian orbit with five stable pa-
rameters and the varying true anomaly. The disadvantage of this approach
would be a more complicated, possible time-variant, set of equations of
motion, making the controller design also harder

116



Appendix

CD Content

In table 3.4 are listed names of all root directories on the enclosed CD.

Directory name Description
Satellite formation flight: optimal
and cooperative control approaches.pdf

Master thesis in pdf format

Matlab Scripts Matlab scripts used in this thesis
Simulink Models Simulink models used in this thesis
readme.txt text file with additional instructions

Table 3.4: Enclosed CD content

117



Bibliography

[1] J.M.A. Danby. Fundamentals of celestial mechanics. Macmillan, 1962.

[2] H. Goldstein, C.P. Poole, and J.L. Safko. Classical Mechanics. Addison
Wesley, 2002.

[3] Daniel Grebow. Generating periodic orbits in the circular restricted three-
body problem with applications to lunar South Pole coverage. Master’s
thesis, Purdue University, West Lafayette, Ind, USA, 2006.
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