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Introduction

Today, mathematical theory of the chaos is a fundamental base of natu-

ral science [65; 74; 77; 32; 53; 71; 72]. It proves that the complexity of

the behavior of the chaotic systems stems from the exponentially unsta-

ble dynamics, rather than from the fluctuations or big degree of freedom.

Classical example of the chaotic behavior are Brownian motion, change of

the weather, behavior of the financial markets, the biological processes in

the living organisms, the fluctuation of the astronomical orbit, etc.

During the past two decades, there has been tremendous interest world-

wide in the possibility of using chaos in communication systems. Many dif-

ferent chaos-based decryption algorithms have been proposed up to date.

They can be classified into two basic categories, namely, coherent and non-

coherent approaches. In the first approach, the chaotic signal has to be

recovered from the received signal by synchronization, while in the sec-

ond one the demodulation is done solely based on the received signal, i.e.

without synchronization [44; 49].

Some researchers have pointed out that there exists close relationship

between chaos and cryptography [4; 31; 38]. Many characteristics of chaos,

such as ergodicity, mixing, randomness, complexity, unpredictably and the

sensitivity to initial conditions, can be connected with the well-known con-

fusion and diffusion properties in the classical cryptography. More pre-

cisely, the diffusion is refereed in the cryptography as the ability of the

variation of a single bit in the plaintext (i.e. the message) to affect practi-

cally all bits of ciphertext (i.e. the encrypted message). At the same time,

the confusion ensures that bits of ciphertext are abusively mixed. The
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analogues of these concepts in chaos theory are those famous chaos prop-

erties: strong sensitivity to initial conditions and topological transitivity.

As a consequence, a natural idea arises: to use the chaos to design new

cryptographical algorithms, hopefully enhancing the existing ones. Notice,

that there is not only conceptual relationship between chaos and cryptog-

raphy, the chaotical and cryptographical systems are very similar on the

practical level, too. The idea of using chaos in cryptography can be traced

back to Shannons masterpiece entitled ”Communication Theory of Secrecy

Systems” published in 1949. He wrote [76]: ”Good mixing transformations

are often formed by repeated products of two simple noncommuting oper-

ations. Hopf has shown, for example, that pastry dough can be mixed by

such a sequence of operations. The dough is first rolled out into a thin slab,

then folded over, then rolled, and then folded again, etc...” Thus, Shan-

non noticed, that expanding and compression mechanisms of the chaos can

be applied to the secure transformation of data. Nevertheless, the more

detailed research in this area was started subsequently together with the

evolution of the modern theory of chaos and computer science. Today,

during the ”information century”, cryptography is more actual than be-

fore. Scientists are still searching a new technology to be applied in the

cryptographical area. Motivation is very simple, it is the dependence of

the existing methods on ”unsolvable” mathematical problems that might

be suddenly solved by scientific community.

Goals of the thesis and methods to achieve them

The main goal of the thesis is to study the novel methods of communica-

tion and encryption using chaotic system in order to improve the existing

communication schemes. In particular, as these methods depend crucially

on chaos synchronization phenomena, some new theoretical properties of

chaotic system synchronization will be developed as well. These properties

will be used to design and systematically analyze the new communication

and encryption scheme, called as the anti-synchronization chaos shift key-

ing (ACSK). Finally, the synchronization and communication aspects in

more complex networks are to be studied.
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These goals will be achieved using both theoretical analysis by exact

mathematical methods as well as by numerical computer simulations and

experiments.

The main contribution of the thesis

The present thesis surveys the different chaotic communication techniques

that can be implemented with and without synchronization. Encryption

methods based on the properties of chaos are reviewed. The main contri-

bution of the thesis is the use of the so-called generalized Lorenz system

(GLS) in encryption and communication, in particular to construct mes-

sage embedded chaotic masking and the novel modulation scheme called

as anti-synchronization chaos shift keying (ACSK). ACSK digital commu-

nication method has potential of introducing a high degree of security at a

low receiver complexity. At the same time, it requires reasonable amount

of data to encrypt a single bit, thereby making revolutionary possibility of

practical and realistic use of continuous time chaotic system for digital data

encryption. As already noticed, the thesis implements the ACSK scheme

by using the so-called generalized Lorenz system (GLS) family. GLS has

been introduced and studied relatively recently, [20; 81; 10], nevertheless,

to use it to ACSK implementation, its further theoretical analysis is per-

formed here. Finally, the ideas about communication using GLS via their

synchronization are generalized to study the synchronization of complex

networks of chaotic systems.

Organization of the thesis

This thesis is organized as follows. Chapter 1 introduces some preliminary

knowledge about chaos and cryptography. Chapter 2 gives a thorough

survey of the field of chaos based communication and encryption. It also

summarizes the existing methods to analyze the security of the chaotic

encryption and possible methods to attack it. These methods will be used

later on to analyze the novel scheme being the main contribution of the

thesis. Chapter 3 presents the encryption and communication schemes
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based on the generalized Lorenz system and describes in detail the anti-

synchronization chaos shift keying scheme, including its security analysis.

The synchronization and communication in more complex networks are

studied in this chapter too. Finally, the thesis results are summarized in

Conclusions at the end of thesis where the outlooks for future research are

set as well.
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Chapter 1

Preliminary knowledge

In this chapter the relationship between cryptographic and chaotic systems

is analyzed. Main definitions about cryptography [59; 37; 75] and chaotic

dynamics [74; 33] are discussed.

1.1 Cryptography

Cryptography is the study of mathematical techniques related to the as-

pects of information security such as confidentiality, data integrity, entity

authentication, and data origin authentication. Practical cryptography is

the study of the methods of the encryption of the information, creation of

the digital signature, the control of the keys and the certificates. Crypt-

analysis is the opposite of the cryptography. Cryptanalysis studies the

decryption of the cipher information without knowledge of the key. Cryp-

tology is a part of the mathematics study about the mathematical footing

of the cryptography and cryptanalysis methods. In the currently section

some preliminary knowledge about cryptography is introduced.

1.1.1 Cryptographical system

From the mathematical point of view, the cryptosystem S = 〈X ,Y ,K, f〉

is the transformation of the information f : X × K → Y , defined on the

spaces X , Y , K, which was the initial states, the final states and the keys

respectively. Condition x ∈ X encode some useful information. In the
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Figure 1.1: The cryptographical system.

computer cryptography spaces X ⊂ {0, 1}∗, Y ⊂ {0, 1}∗, K ⊂ {0, 1}∗,

and the transformation f is given by the algorithm realized with a Turing

machine. The transformation f can be considered as the iteration func-

tion of the cryptographical algorithm (see Fig. 1.1). In this case, the

cryptosystem generates the sequences of states x0, x1, x2, x3, ..., xi, where

xi = f(xi−1, k) = f i(x0, k), x0 ∈ X , k ∈ K. This sequence is called a

trajectory or the orbit of the system. The overall orbit is determined by

the initial state x0 of the system and the parameter k. Such a subsequent

transformation of some state by the application of the same primitive func-

tion can be seen in the block ciphers, stream ciphers, pseudo-random bit

generators, etc. Thus a cryptosystem can be understood as a dynamic

system S = 〈f,X ,K〉 with a nonlinear function f , the state space X , and

the parameter space K. As it will be shown below, the requirements for

cryptosystems are interrelated with the properties of the chaotic systems.

1.1.2 Main definitions related to cryptography

Main definitions related to cryptography are presented below [59]:
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• A denotes a finite set called the alphabet of definition. For exam-

ple, A = {0, 1}, the binary alphabet, is a frequently used alphabet of

definition. Note that any alphabet can be encoded in terms of the

binary alphabet. For example, since there are 64 binary strings of

length six, each letter of the Czech alphabet can be assigned a unique

binary string of length six.

• M denotes a set called the message space. M consists of strings of

symbols from an alphabet of definition. An element of M is called a

plaintext message or simply a plaintext. For example, M may consist

of binary strings, computer code, English text, etc.

• C denotes a set called the ciphertext space. C consists of strings of

symbols from an alphabet of definition, which may differ from the

alphabet of definition for M. An element of C is called a ciphertext.

• K denotes a set called the key space. An element of K is called a key.

• Each element e ∈ K uniquely determines a bijection between M and

C, denoted by Ee. Ee is called an encryption function. Note that Ee

must be a bijection, i.e. one-to-one mapping as the process is to be

reversed and a unique plaintext message recovered for each distinct

ciphertext.

• For each d ∈ K, Dd denotes a bijection from C to M (i.e., Dd : C →

M). Dd is called a decryption function or decryption transformation.

• The process of applying the transformation Ee to a message m ∈ M

is usually referred to as encrypting m or the encryption of m.

• The process of applying the transformation Dd to a ciphertext c is

usually referred to as decrypting c or the decryption of c.

• An encryption scheme consists of a set {Ee : e ∈ K} of encryption

transformations and a corresponding set {Dd : d ∈ K} of decryption

transformations with the property that for each e ∈ K there is a

unique key d ∈ K such that Dd = E−1
e ; that is, Dd(Ee(m)) = m
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Figure 1.2: The classical encryption/decryption scheme.

for all m ∈ M. An encryption scheme is sometimes referred to as a

cipher.

• The keys e and d in the preceding definition are referred to as a key

pair and sometimes denoted by (e, d). Note that e and d could be the

same. If e = d, then the cryptosystem is refereed as the symmetric

one.

• To construct an encryption scheme requires one to select a message

space M, a ciphertext space C, a key space K, a set of encryption

transformations {Ee : e ∈ K}, and a corresponding set of decryption

transformations {Dd : d ∈ K}.

Fig. 1.2 illustrates the classical encryption/decryption scheme.
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1.1.3 Encryption schemes, their classifications and

properties

Encryption scheme can be written in the following form:

S = 〈E, D,M, C,K〉, (1.1)

where, E : M∗ × K → C∗ and D : C∗ × K → M∗, such that for each key

e ∈ K exists a unique key d ∈ K and Dd = E−1
e , thus

∀m ∈ M, e ∈ K, ∃d ∈ K : m = D(E(m, e), d). (1.2)

Practically, scheme is assigned by algorithms E, D and spaces M, C,K (see

Sec. 1.1.2).

Security of some cryptosystems is based on the lack of knowledge of

the encryption (decryption) algorithm of the cryptosystem. Now, this

kind of cryptosystems have only a historical interest and do not have any

practical use. Security of the modern ciphers are depended on the key

only (Kerckhoffs’ principle). Kerckhoffs’ principle was stated by Auguste

Kerckhoffs in the 19th century: ”A cryptosystem should be a secure even

if everything about the system, except the key, is public knowledge” [37].

Kerckhoffs’ principle was reformulated (perhaps independently) by Claude

Shannon as ”The enemy knows the system.” In this form, it is known as the

”Shannon’s maxim”. Now, let us give classifications of encryption schemes

based on the the further two important characteristics.

Symmetric and asymmetric schemes. First, there are symmetric

and asymmetric cryptosystems known. In the symmetric cryptosystems

(secret key cryptosystems) both of keys e and d are equal (see Sec. 1.1.2).

Sender must pass the key by secure channel, for example, with courier.

In the asymmetric cryptosystems keys are different and ∀e ∈ K, ∃d ∈ K′.

The keys e and d are non equal but they are interconnected. The key e

is usually publicly known and is called as the open key, while the key d

is kept in the secret. Nevertheless, from the open key e it is practically

unrealistic to calculate the second key d.
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Figure 1.3: The trajectory of the block cipher. Each block is encrypted by
the separate trajectory. Initial point is a plaintext m, when a final point
is a ciphertext c.

Block and stream ciphers. Secondly, the cryptographic schemes

can be classified as the block and stream ciphers. The block cipher is a

function which maps n-bit plaintext blocks to n-bit ciphertext blocks; n

is called the blocklength. Each n-block encrypts (decrypts) independently

from another one. Identical block of the plaintext will be transformed to

the equal block of the ciphertext. Block ciphers processes the plaintext in

the relatively large blocks (e.g., n ≥ 64 bits). The same function is used to

encrypt the successive blocks; thus (pure) block ciphers are memoryless.

The corresponding function is, in fact bijection of the set with cardinality

264 and should be sufficient complicated, see later on notions of confusion

and diffusion.

In the contrast, stream ciphers process the plaintext in the much smaller

blocks (up to a single bit) and the encryption function may vary as plain-

text is processed; thus stream ciphers are said to have memory. They are

sometimes called as the state ciphers since encryption depends not only on
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the key and the plaintext, but also on the current state. Identical symbols

(blocks) of the plaintext may be transformed to another symbols (blocks)

of the ciphertext.

The cryptography cipher can be interpreted by using the nonlinear

dynamical systems theory concepts as follows:

1. The encryption of the plaintext by block cipher algorithm is realized

by the repeated application of the some iteration function f . Number

of these repeated applications is fixed and not so big, typically equal

to 16 [80]. Each iteration transforms the cryptosystem to the next

state, xi+1 = f(xi). Initial state is a plaintext (x0 = m), when the

final state is a ciphertext (c = xN ). Fig. 1.3 illustrates a trajectory of

the block cipher, which is in fact the trajectory of discrete dynamical

system.

2. Different blocks generate different trajectories of the iteration func-

tion f in the block cipher (provided mutually different initial blocks

of the plaintext are used). Nevertheless, the stream ciphers are quite

different in this respect. Overall the ciphertext of the stream cipher

depends on a single trajectory of the iteration function f only. More

precisely, the encryption of the piece of the plaintext depends on the

current state of the cryptosystem. The number of the iterations n is

not fixed and depends on the size of the plaintext. Fig. 1.4 illustrates

the trajectories of the stream ciphers.

Example: Vernam cipher and the one-time pad cipher. Vernam

cipher is a simple stream cipher [59] where the plaintext is XORed1 with

a random or pseudorandom stream k of data of the same length needed to

generate the ciphertext.

ci = mi ⊕ ki, i = 0, 1, 2, ..., n.

1Application of the logical operation of the exclusive disjunction, also called exclusive
or (symbolized XOR or EOR), is a type of logical disjunction on two operands that
results in a value of true if exactly one of the operands has a value of true.
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Figure 1.4: The trajectories of the stream ciphers. (a) Ciphertext c is the
sum of the plaintext m and the current state x [7]. b) Ciphertext c is a
final state of the system after m iterations [30]. c) Ciphertext c is a number
of iterations n [6].

The decryption of the plaintext is XORed with k:

mi = ci ⊕ ki,

This is clear, because mi ⊕ki ⊕ki = mi. If the keystream k = {ki} is truly

random, then the Vernam cipher is called one-time pad cipher (OTP).

Pseudorandom bit generator (PRBG). Stream ciphers can be

viewed as approximating the action of a proven unbreakable cipher, the

one-time pad (OTP) cipher introduced in the previous paragraph. The

OTP uses a keystream of completely random digits. The keystream is

combined with the plaintext digits, one at a time, to form the ciphertext.

This system was proved to be secure by Claude Shannon [75]. However, the
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keystream must be of (at least) the same length as the plaintext, and gen-

erated completely at random. This makes the system very cumbersome

to implement in practice, and as a result the OTP has not been widely

used, except for the most critical applications. In the practice, the so-

called pseudorandom number generators are used. The pseudorandom bit

generator (PRBG) is a deterministic algorithm which, uses a truly random

binary sequence of length k, to generate a pseudorandom binary sequence

of length l ≫ k. The input to the PRBG is called the seed, while the

output of the PRBG is called a pseudorandom bit sequence [59]. A stream

cipher makes use of a much smaller and more convenient key, 128 bits, for

example. Based on this key, it generates a pseudorandom keystream which

can be combined with the plaintext digits in a similar fashion as the one-

time pad. However, this comes at a cost: because the keystream is now

pseudorandom, and not truly random, the proof of security associated with

the one-time pad no longer holds: it is quite possible for a stream cipher

to be completely insecure [83]. According to our approach, let us was con-

sider a PRBG to be a dynamical system. Fig. 1.1 demonstrates a system

which reproduces a number stream. Every number stream, generated by

system, depends on the initial condition x0 and parameter k. The impor-

tant requirement of the dynamical system to be used for the generation of

the keystreams is the so-called pseudo-randomness and unpredictability.

Confusion and diffusion. The truly random keystream fully allows

to eliminate the statistic invariants of cryptographic transformation. Nev-

ertheless, as it was already noticed, one uses the pseudo-random sequences,

therefore some part of information about the plaintext ”leaks” into the ci-

phertext. As the plaintext usually possesses redundancy, cryptanalysis

becomes theoretically possible already, as early as one has the informa-

tion about the statistical properties of the alphabet. Redundancy of the

message can be decreased by means of good compression. Incompressible

message is characterized by following: the change of any single bit leads to

a complete change of the message meaning. If the message can’t be com-

pressed up to the theoretical minimum, then according to Shannon [76] it

is necessary to use two basic technics for redundancy hiding, namely, the
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so-called confusion and so-called diffusion.

Confusion refers to making the relationship between the key and the

ciphertext as complex and involved as possible.

Diffusion refers to the property that redundancy in the statistics of

the plaintext is ”dissipated” in the statistics of the ciphertext. Diffusion is

associated with the dependency of the output bits on the input bits. In a

cipher with good diffusion, flipping an input bit should change each output

bit with a probability of one half.

This concept is realized in the symmetric block ciphers. Iterative func-

tion of the typical block-cipher algorithm includes the phases of substitu-

tion and permutation. In the classical DES algorithm [80] the substitu-

tion and permutation are implemented through lookup tables (s-box and

p-box). Effect of substitution provides the confusion, then effect of per-

mutation provides the diffusion. Ultimately, both properties ensures the

pseudorandom of ciphertext for any key and any text. Permutation is the

effective tool of increasing of the nonlinearity of the iteration function of

cryptosystem.

1.2 Chaos and cryptography

In this section, the definitions of the dynamic and chaotic systems are

introduced. The relationship between the properties of chaotic and cryp-

tographic systems is going to be discussed as well.

1.2.1 Dynamical system

Continuous dynamical system S =< X, K, f >, depending on the param-

eters, can be presents by the following equation:

dx

dt
= f(x, k), x ∈ X ⊆ Rd, k ∈ K ⊆ RdK , (1.3)

where f : X×K −→ Y is smooth vector function, X is a state space and K

is a space of the control parameters. For every initial condition x0 system

satisfies the condition of the existence and uniqueness of solutions x(t, x0),
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where x(0, x0) = x0. Curve φt(t, x0) which corresponds to the solution is

called a trajectory. A discrete-time, dynamical system can be presented

by the following iteration function:

xn+1 = f(xn, k), xn ∈ X ⊆ Rd, k ∈ K ⊆ RdK , n = 0, 1, 2, ... (1.4)

where xi are discrete states of the system. Trajectory φ(i, x0) is a sequence

of x0, x1, x2.... It easy do note, that equation (1.4) resembles a cryptograph-

ical iteration function used in the pseudo-random number generators, block

ciphers, etc. (see Fig. 1.1). Iterative transformation of the information,

depends on the control parameter, used in both of the dynamical and cryp-

tographical systems. Further, the control parameter k in the definitions of

the system < X, f > and iteration function f(x), will be omitted.

1.2.2 Chaotic system

Several conditions for the chaotic behavior of the dynamical system exist.

The topological transitivity and the sensitivity to initial conditions are two

necessary criterions for the chaotic behavior of the dynamical system.

Definition 1.2.1. Dynamical system < X, f > is chaotic when it satis-

fies the following conditions (here, fn stands for multiple iteration of the

function f , i.e. f 0 := f, f i+1 := f ◦ f i := f(f i(·))):

• Function f : X → X is topologically transitive on the bounded subset

X̃ of the space X ⊂ Rd, i.e. for every pair of non-empty open sets

U, V ⊂ X̃, there exists n ≥ 0 such that fn(U) ∩ V 6= ∅.

• A function f has sensitive dependence on initial conditions if there

exists σ > 0 such that, for any x which is an element of X and

any neighborhood N of x, there exist y ∈ N and n ≥ 0, such that

|fn(x) − fn(y)| > σ.

In the other words, the chaotic dynamic system has property that all

trajectories are bounded but rapidly diverge from any point of the state

space. At the same time, each chaotic trajectory visits infinitely many

times arbitrarily closely any point of the attractor.
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Figure 1.5: Definition of the Lyapunov exponent [74].

1.2.3 Lyapunov exponents

A definition of the sensitive dependence on initial conditions was intro-

duced in Sec. 1.2.2. Lyapunov exponent λ(x0) which is defined for any

point x0 ∈ X may be used as quantitative measure for the sensitive depen-

dence on initial conditions. Lyapunov exponent may be readily computed

for a one-dimensional map such as the logistic map [5]. If a system is

allowed to evolve from two slightly differing initial states, x0 and x0 + ε,

then after n iterations their divergence may be characterized as:

|fn(x0 + ε) − fn(x0)| = εenλ(x0), (1.5)

where the Lyapunov exponent λ0 gives the average rate of divergence (see

Fig. 1.5). In general case, λ depends on the initial conditions, therefore

the average value is determined. Practically, the Lyapunov exponent may

be calculated as limit [74]:

λ(x0) = lim
n→∞

lim
ε→0

1

n
log |

fn(x0 + ε) − fn(x0)

ε
| = lim

n→∞

1

n
log |

dfn(x0)

dx0

| (1.6)

or

λ(x0) = lim
n→∞

1

n
log |

d

dx0
fn(x0)| = lim

n→∞

1

n
log

n−1∏

k=0

|f ′(xk)| =

= lim
n→∞

1

n

n−1∑

k=0

log |f ′(xk)|. (1.7)

Derivative f ′(xk) shows the speed of divergence of the function f in re-

lation to the increase of the value x from xk to xk+1. Limit is equal to
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average value of logarithm of the derivative function after n iterations. It

shows the speed of diverge of the nearest trajectories during the discrete

time n. If λ is negative, slightly separated trajectories converge and the

evolution is not chaotic. Otherwise, if λ is positive, nearby trajectories di-

verge; the evolution is sensitive to initial conditions and therefore chaotic.

For higher-dimensional systems, the calculation of Lyapunov exponents is

more challenging than in the one-dimensional case. However, the idea is

the same: the measurement of the average rate of divergence of neighbor-

ing trajectories on the attractor [61]. To account for the accuracy of the

observation more useful information gives the Kolmogorov-Sinai entropy,

which will be discussed later on in Section 1.2.4.

From the cryptographical point of view, the Lyapunov exponent is a

measure of the effectiveness of cryptographic systems. The higher value

of λ the smaller iterations are necessary to achieve the required degree of

diffusion or confusion of information.

1.2.4 Kolmogorov-Sinai entropy

The Lyapunov exponent (see Sec. 1.2.3) gives a first quantitative informa-

tion on how rapidly we loose the ability of predicting the evolution of the

system. In this respect, the Kolmogorov-Sinai (KS) entropy K supplies

a more refined information [42]. The error in the initial state is due to

the maximal resolution when is uses for observing the system. K can is

defined as follows: consider the trajectory x(t) = (x1(t), x2(t), ..., xN (t))

and partition the phase space into n hypercubes of side ǫ. Let Pi0,i1,...,in be

the joint probability that the point x(0) lies in the i0-th cell, x(τ) in the

i1-th cell, ..., and x(nτ) lies in the in-th cell. Then, according to Shannon,

the quantity

Kn = −
∑

i0... in

Pi0... in lnPi0... in (1.8)

is the measure of the amount of information necessary to specify the tra-

jectory to within a precision ǫ, assuming only the probabilities Pi0...in are

known a priory. It follows that Kn+1 − Kn is the additional amount of

information required to specify which cell x(nτ + τ) it will fall in. The
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Figure 1.6: A bifurcation diagram for the Logistic map: xn+1 = rxn(1−xn).
The most unpredictable behavior may occur if r = 4.

K-entropy is defined as the average rate of loss of information [74]:

K = lim
τ→0

lim
ǫ→0

lim
N→∞

1

Nτ

N−1∑

n=0

(Kn+1 − Kn) =

= − lim
τ→0

lim
ǫ→0

lim
N→∞

1

Nτ

∑

i0... iN−1

Pi0... iN ln Pi0... iN . (1.9)

We see that K is the average rate of the information loss. For non-chaotic

systems, K = 0, i.e., there is no loss of information because initially close

points on a trajectory remain close together as time evolves. For chaotic

systems, however, initially close points separate exponentially on average,

and therefore joint probabilities for cell occupations decrease exponentially

with time. Thus, K > 0 for chaotic systems. For truly (non-deterministic)

random systems, initially close points take on a statistical distribution over

all the allowed new cells. Thus if P (i0) ≈ ǫ, then P (i0, i1) ≈ ǫ2, etc., and

so K → ∞ as ǫ → 0 for pure randomness. The K-entropy is therefore

useful not only for distinguishing regular from the chaotic behavior, but

also for distinguishing deterministic chaos from noise [60].
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1.2.5 Bifurcation

Bifurcation is usually referred to as the qualitative transition from regular

to chaotic behavior by changing the control parameter [33]. For example,

Feigenbaum scenario is one of the types of the bifurcations (see Fig. 1.6).

At the bifurcation point the number of stable states is doubling. With

the parameter increasing the doubling happens more and more frequently,

and leads to chaotic behavior of the system. In cryptographic applications

the choice of control parameter value determines the unpredictability of

the system. If the parameter is used as the key, then the whole space of

possible keys must generate the chaotic behavior of the system.

Chaotic property Cryptographic property
Chaotic system: Pseudo-chaotic system:
- nonlinear transformation - nonlinear transformation
- infinite number of state - finite number of state
- infinite number of iterations - finite number of iterations
Initial state Plaintext
Final state Ciphertext
System parameters Key
Ergodicity Confusion
Sensitivity to initial condi-
tions/control parameter

Diffusion with a small change in the
plaintext/secret key

Mixing property (topological
transitivity)

Diffusion with a small change in one
plain-block of the whole plaintext

Structure complexity Algorithm complexity

Table 1.1: Analogy between chaos and cryptography properties [2].

1.3 Summary

This chapter introduced some preliminary knowledge about cryptography

and chaotic dynamics. The main purpose was to show that there is close

relation between cryptography and dynamical systems theory. Therefore,

methods from automatic control theory can be considered for application in
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cryptography. The analogy between dynamical systems theory and cryp-

tography is readily illustrated by Tab. 1.1.
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Chapter 2

Chaos-based communication

During the last two decades many chaos based communication schemes

have been developed: chaos synchronization (additive mixing, active pas-

sive decomposition), chaos shift keying, and more. The security of tra-

ditional encryption schemes based on integer number theory have been

studied for a long time and is considered to be reliable. In contrast, the

security of chaotic communication schemes often relies on a mixture of an-

alytic methods and intuition. Encryption and cryptanalysis using chaotic

dynamics is a relatively new field that has been studied for nearly a decade.

A description of its current state is given by Tao-Yang et. al in [84]:

”In classical cryptology, the cryptography is a system-

atic science with well established analytical and syn-

thetic principles, and the cryptanalysis is rather like

an art depending heavily on intuition and experience

than a science. Also, chaotic cryptography has been

developed rapidly in recent years while chaotic crypt-

analysis is still at its beginning with very few results

littered among a huge ocean of chaotic cryptography

literature.”

In the sequel we aim to give a more detailed picture of the above quoted

situation.
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2.1 Overview of chaos-based communication

schemes

2.1.1 Schemes requiring chaos synchronization

A large number of communication schemes that are based on chaos syn-

chronization have been proposed during the last two decades [64; 8; 41; 82;

22; 63]. In this section, the phenomena of chaos synchronization will be

discussed.

Chaotic synchronization schemes. There are many interpretations

and definitions of the synchronization term [70]. Several forms of syn-

chronization have been proposed for the chaotic systems. A typical and

most widely-used scenario of the chaotic synchronization is identical syn-

chronization, where the state of response system converges asymptotically

to the state of the drive system. Recently, two forms of synchronization,

called phase synchronization [67] and generalized synchronization [1; 73]

have been introduced.

1. Identical synchronization: Two continuous-time chaotical systems

dx

dt
= F(x) (2.1)

and
dx′

dt
= F′(x′) (2.2)

are said to synchronize identically if

lim
t→∞

‖x′(t) − x(t)‖ = 0

for any combination of initial states x(0) and x′(0). From a communi-

cation point of view, we may think of system (2.1) as the transmitter

and system (2.2) as the receiver. If the same initial condition is

chosen for the transmitter and the receiver, i.e. x(0) = x′(0), the

both systems will evolve in a synchrony in the sense that, x′(t) will

continue being equal to x(t) for all t > 0. The signal si(t) which

is transmitted by a communication channel is a linear combination
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of basis functions gj(t). We consider the case when only one basis

function g(t) is used and we assume that si(t) ≡ g(t). At the receiver

side, we must recover the scalar basis function g(t) = H(x(t)) which

has been derived from the state of the drive system (2.1). The ba-

sis function g(t) can be recovered by synchronizing the state of the

response system identically with the drive system and applying the

same function H(·). In particular, if x′(t) can be made to converge

to x(t) then the estimation ĝ(t) = H(x′(t)) will converge to g(t).

2. Phase synchronization: This scenario of the synchronization of two

coupled systems occurs if the difference |φ′(t) − φ(t)| between the

”phases” of the two systems is bounded by a constant [67], where

the ”phase” φ(t) is some monotonically increasing function of time

suitably chosen.

3. Generalized synchronization: This type of synchronization occur mainly

when the coupled chaotic systems are different, although it has also

been used between identical chaotic systems. Chaotic systems (2.1)

and (2.2) are said to exhibit generalized synchronization if there ex-

ists a transformation Φ such that

lim
t→∞

‖x′(t) − Φ(x(t))‖ = 0

where the properties of the transformation Φ are independent of the

initial conditions x(0) and x′(0). If the transformation Φ is invertible,

then

ĝ(t) = H(Φ−1(x′(t)))

approaches g(t). Identical synchronization is the particular case of

generalized synchronization when Φ is the identity [73]. A complete

overview of generalized synchronization is given by K. Pyragas in

[68]. In some cases the unauthorized receiver can use a receiver with

dynamics that is different from the dynamics of the transmitter, and

decode the message using generalized synchronization between trans-

mitter and receiver with different parameters. The use of generalized
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Figure 2.1: Chaotic communication scheme based on chaos synchroniza-
tion and chaotic masking of a message with a chaotic component. The
transmitter state x(t) synchronizes to the receiver state y(t). A scalar
H(x(t)) is calculated from the transmitter state x(t). A message m(t) is
added to the chaotic scalar, and the sum of the two is transmitted. At
the receiver the message m̂(t) is reconstructed by subtracting the chaotic
scalar H(y(t)) from the received signal s(t). The message magnitude |m(t)|
has to be kept small compared to the chaotic scalar H(x(t)) in order to
maintain synchronization between transmitter and receiver.

synchronization for breaking chaotic encryption scheme is described

in [85].

In our chaos-based decryption method, that will be introduced later, in the

Chapter 3, we are concerned with recovering the basis functions exactly,

so we focus only on the identical synchronization.

Chaotic masking. Communication schemes that are based on chaos

synchronization and chaotic masking of the chaotic signal with a message

are described in [22] and illustrated in Fig. 2.1. In chaotic masking com-

munication schemes a message signal is added to a chaotic signal generated

by the transmitter dynamics and the sum of the two is transmitted. At the

receiver which is synchronized to the transmitter the chaotic component

is subtracted from the received signal to recover the original transmitted

message. In Fig. 2.1 the transmitter state evolution is given by the chaotic

dynamics

dx

dt
= F(x(t)). (2.3)

A chaotic scalar H(x(t)) which is a function of the transmitter state x(t)

is added to the message m(t). The transmitted signal s(t) is governed by
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s(t) = H(x(t)) + m(t). (2.4)

The evolution of the receiver state y(t) dynamics is given by the dynamics

dy

dt
= F(y(t), s(t)). (2.5)

The transmitter state x(t) synchronizes to the receiver state y(t) at the

rate of the largest Lyapunov exponent λ, so that

|y(t) − x(t)| ≈ e−λt.

At the receiver, the estimation m̂(t) for the message m(t) is calculated by

subtracting the estimation H(y(t)) of the chaotic component H(x(t)) that

was added to the message at the transmitter:

m̂(t) = s(t) − H(y(t)). (2.6)

The addition of a message signal m(t) to the chaotic scalar H(x(t)) at the

transmitter can degrade the quality of the synchronization between the

transmitter and the receiver. It is assumed that for masking, the power

level of massage m(t) is significantly lower than that of H(x(t)) added to

the message:

|m(t)| ≪ |H(x(t))|. (2.7)

2.1.2 Chaos Shift Keying

Chaos shift keying (CSK) was first proposed in [62; 24]. The idea is to

encode digital symbols with chaotic basis signals.

Modulation and Demodulation. Chaos shift keying communica-

tion scheme, often termed as parameter modulation scheme, is described

in [44] and illustrated in Fig. 2.2. In CSK the transmitter dynamics is

dissipative and chaotic and the transmitter state trajectory converges to

a strange attractor. A message is transmitted by changing one or more

parameters of the transmitter dynamics which results in a change of the

attractor dynamics. At the receiver the message is decoded by estimating
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Figure 2.2: Binary chaos shift keying digital communication system.

to which message the received chaotic attractor corresponds. The funda-

mental principle of the CSK can be described in a more detail as follows.

The transmitter consists of M chaos generators. In the case, when we

uses a binary alphabet, only two chaos generators are needed. In the Fig.

2.2, the transmitter consists of two chaos generators a and b, producing

signals g0(t) and g1(t), respectively. If a binary symbol ”0” is to be sent

during the interval [(l − 1)Tb, lTb], g0 is transmitted by the communica-

tion channel, and if the binary symbol ”1” is to be sent, g1 is transmitted.

Here, Tb is the bit duration and l is a number of the transmitted symbol.

In [62], the CSK scheme is based on the self-synchronization property of

the chaotic systems. In the Fig. 2.3 the receiver structure based on the
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Figure 2.3: Synchronization-error-based CSK demodulator.

self-synchronization property is shown. The incoming signal r(t) is used

for drive two self-synchronization subsystems â and b̂, which are matched

to a and b chaos generators, respectively. When the transmitted signal is

go(t), the subsystem â will be synchronized with the incoming signal while

b̂ is not, and when the transmitted signal is g1(t), the subsystem b̂ will be

synchronized with the incoming signal. Therefore, by measuring the error

between the incoming signal and the output of the self-synchronization

subsystems, the transmitted symbol can be recovered.

In other words, the receiver needs to determine to which of the allowed

attractors the transmitter dynamics converged, based on the received signal

r(t). The transmitted signal s(t) is typically a scalar, while the transmitter

dynamics can be of high dimension. The transmitter can use coherent or

non-coherent detection techniques [44].

Coherent detection. In communication the term coherent detection

implies that the shape of the transmitted waveforms is known to the re-

ceiver which can correlate the noisy received signal with its expected wave-

form, to maximize the signal to noise ratio at the output of the correlator.

Coherent detection of the chaotic signals using correlator-based receivers

was studied in detail in [43; 44]. Receivers in which exact copies of all basis

functions are known are called coherent receivers. The block diagram of

a correlator-based receiver using binary chaos shift keying modulation is

shown in the Fig. 2.4.
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Figure 2.4: Block diagram of coherent correlation CSK receiver.

The two synchronizable chaotic circuits in the receiver attempt to re-

produce the two basis functions, given the received noisy sample function

r(t). An acuasition time Ts is assumed for the synchronization circuits to

lock to the incoming signal. The recovered basis functions are then cor-

related with the received signal for the remainder of the bit duration Tb.

Then, the outputs of the correlators are sampled and compared.

Non-coherent detection. In the case of non-coherent demodulation

the receiver does not know the shape of the transmitted chaotic basis

signals. Detection has to be done based on some distinguishable property of

the basis signals. Different attractors may differ in variance, meaning of the

absolute value, dynamic range, and many other statistical properties [44].

The main advantage in the using of the non-coherent decoding methods is

that the receiver is not required to synchronize with the transmitter. It only

needs to determine to which one of the allowed attractors the trajectory has

converged. In addition, the non-coherent receivers are often simpler than

their coherent counterparts. Suppose chaotic basis signals with different

bit energies are used to transmit the binary information. If a binary ”0” is

to be sent during the interval Tb, a chaotic basis signal g0(t) with mean bit

energy E0 is transmitted, and if binary ”1” is to be sent, a chaotic basis

signal g1(t) with mean bit energy E1 is transmitted. The required chaotic
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Figure 2.5: CSK receiver based on bit energy estimator.

signals can be generated by two chaos generators with different average bit

energies. As alternative, the same chaos generator can be used to produce

two signals of different bit energies by using two amplifiers of different

gain. In both cases, the bit energy can be estimated by a correlator at the

receiver, as shown in Fig. 2.5. Assume that only additive noise corrupts

the transmitted signal and the noise power limited by the receiving filter,

i.e.,

r(t) = s(t) + n′(t), (2.8)

where, s(t) denotes the transmitted signal and n′(t) is the noise component

at the output of the receiving filter. For the lth received symbol, the energy

bit Es(lTb), is defined by

Es(lTb) =

∫ lTb

(l−1)Tb

r2(t)dt =

=

∫ lTb

(l−1)Tb

s2(t)dt + 2

∫ lTb

(l−1)Tb

s(t)n′(t)dt +

∫ lTb

(l−1)Tb

[n′(t)]2dt. (2.9)

In the noise-free case, the second and third integrals in (2.9) are zero.

Therefore, Es(lTb) is equal to either one of the following two bit energies:

E0
s (lTb) =

∫ lTb

(l−1)Tb

g2
0(t)dt

E1
s (lTb) =

∫ lTb

(l−1)Tb

g2
1(t)dt. (2.10)

In convectional modulation schemes, the bit energy is fixed for a given

symbol.
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Figure 2.6: Block diagram of non-coherent COOK modulation scheme.

2.1.3 Chaos-On-Off-Keying

Chaos-on-off-keying (COOK) is only a special case of the chaos shift key-

ing scheme (CSK) with non-coherent demodulator [46]. It uses one chaos

generator, which is switched ”on” or ”off” to transmit symbols ”1” and

”0”, respectively, as shown in Fig. 2.6. The major disadvantage of the

CSK system is that the threshold value of the decision circuit depends on

the noise level, also appears in COOK. This means that using COOK we

can maximize the distance between the elements of the signal set, but the

threshold level required by the decision circuit depends on the noise level.

The threshold can be kept constant by applying the differential chaos shift

keying method.

2.1.4 Differential Chaos Shift Keying

The differential chaos shift keying (DCSK) modulation was proposed in

[48]. In differential chaos shift keying scheme, every bit to be transmitted

is represented by two chaotic sample functions. The first sample function

serves as a reference while the second one carries the information. Bit

”1” is sent by a chaos generator twice in succession, while for bit ”0”, the

reference chaotic signal is transmitted, followed by an inverted copy of the

same signal [36]. Thus for the lth symbol period, we have

s(t) =

{
g(t), for (l − 1)Tb ≤ t < (l − 1/2)Tb

g(t− Tb/2), for(l − 1/2)Tb ≤ t < lTb

(2.11)

if ”1” is to be transmitted, and
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Figure 2.7: Block diagram of differential chaos shift keying modulator.

s(t) =

{
g(t), for (l − 1)Tb ≤ t < (l − 1/2)Tb

−g(t − Tb/2), for(l − 1/2)Tb ≤ t < lTb

(2.12)

if ”0” is to be sent [49].

Fig. 2.7 shows a block diagram of a DCSK transmitter. Since each

bit is mapped to the correlation between successive segments of the trans-

mitted signal of length Tb/2, the information signal can be recovered by a

correlator. A block diagram of a DCSK receiver is shown in Fig. 2.8. The

output of the correlator at the and of the lth symbol duration is given by

y(lTb) =

∫ lTb

(l−1/2)Tb

r(t)r(t − Tb/2) dt =

=

∫ lTb

(l−1/2)Tb

[s(t) + n′(t)][s(t − Tb/2) + n′(t − Tb/2)] dt =

=

∫ lTb

(l−1/2)Tb

[s(t)s(t − Tb/2)] dt +

∫ lTb

(l−1/2)Tb

[s(t)n′(t − Tb/2)] dt+

+

∫ lTb

(l−1/2)Tb

[n′(t)s(t − Tb/2)] dt+

+

∫ lTb

(l−1/2)Tb

[n′(t)n′(t − Tb/2)] dt (2.13)

where n′(t) is the noise component at the output of the receiving filter. The

second term in (2.13) can be positive or negative, depending on whether

a ”1” or ”0” has been transmitted. Also, all the other integral terms
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Figure 2.8: Block diagram of differential chaos shift keying demodulator.

have a zero meaning. Thus, the threshold detector can be set optimally

at zero, the decision threshold is zero independently of the noise spectral

density (Es/N0) [49]. By contrast with the CSK and COOK schemes dis-

cussed in Section 2.1.2 and Section 2.1.3, DCSK is an antipodal modulation

scheme. The main advantage results from the fact that the reference and

information-bearing sample functions pass through the same channel so

they undergo the same channel distortion. DCSK can also operate over

a time-varying channel if the parameters of the channel remain constant

for the bit duration Tb. The main drawback of DCSK, however, is that it

can only transmit at half of the data rate of the other systems because it

spends half of the time transmitting the non-information-bearing reference

samples [49]. One way to improve the data rate is to use a multilevel mod-

ulation scheme [45]. Alternatively, one may solve the estimation problem

directly by modifying the modulation scheme such that the transmitted en-

ergy is kept constant. Frequency-modulated differential chaos shift keying

scheme is an example of the latter approach.

2.1.5 Frequency-Modulated Differential Chaos Shift

Keying

The objective of frequency-modulated differential chaos shift keying (FM-

DCSK) is to produce a wideband chaotic signal with constant Es. The

FM-DCSK was proposed by Kolumban et. al. [47]. In this scheme, a

chaotic frequency modulated signal generator is needed. The chaotic signal
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Figure 2.9: Chaos frequency-modulated signal generator.

to be input of an FM modulator. A block diagram of a FM-DCSK gen-

erator is shown in Fig. 2.9. The output of this FM modulator is chaotic,

bandlimited, and its power spectral density is uniform. The operation of

the demodulator is the same as in DCSK, the only difference being that

not the chaotic, but the FM modulated signal is the input to the DCSK

modulator [49].

2.1.6 Quadrature Chaos Shift Keying

In [29] authors proposed a multilevel version of the differential chaos shift

keying (DCSK), the so-called quadrature chaos shift keying (QCSK) com-

munication scheme with double data and higher spectral efficiency. In

QCSK a two-bit symbol is encoded as a linear combination of two orthog-

onal waveforms, sine and cosine. Fig. 2.10 and Fig. 2.11 shows a block

diagram of the modulator and demodulator of the QCSK communication

system, respectively. In this diagrams, each transmitted symbol consists

of two bits of the information. Here, the bit duration is Tb and the symbol

duration is Ts = 2Tb. The modulation scheme can be described as follows.

Let c(t) be a chaotic reference signal defined for t ∈ [0, Ts/2]. This reference

signal has a zero mean value. Next, for producing of d(t) we use the Ts/2-

delayed version of reference signal c(t). Further, we construct the comple-

mentary signal e(t) by shifting the phase of all frequency components in

d(t) by π/2, which is accomplished by standard digital signal processing

(DSP) techniques. In the QCSK modulation scheme, c(t) is sent during

the first half symbol period, i.e., [0, Ts/2) while the information-bearing

signal s(t) is sent during the second half symbol period, i.e., [Ts/2, Ts).
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Figure 2.10: Block diagram of the quadrature chaos shift keying scheme.
Modulator.

Here, s(t) is a linear combination of two orthogonal waveforms d(t) and

s(t).

s(t) = qcd(t) + qss(t), (2.14)

where qc and qs are two bits of information to be sent within the symbol

period Ts. At the demodulator, d(t) and e(t) are the first estimated from

the noise version of the reference signal ĉ(t). Suppose the estimated d(t)

and e(t) are d̂(t) and ê(t) respectively. Then, demodulation can be done

by correlating the signal received in the second half symbol period, i.e.,

[Ts/2, T2), with d̂(t) and ê(t) [49]. Based on the correlation results a de-

cision on the symbol si (two bits of information) received is taken by a

decision circuit according to estimated value qc + iqs. The QCSK scheme

has the advantage over DCSK of double data rate for a given bandwidth

with the same bit error rate performance.

2.2 Chaos-based cryptosystems and possi-

ble attacks of them

Recent years more attention has been paid to the development of crypto-

graphic systems with chaotic dynamics. As already underline in Chapter
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Figure 2.11: Block diagram of the quadrature chaos shift keying scheme.
Demodulator.

1, these is the close relationship between chaos and cryptography (see Tab.

1.1). Many cryptographic systems have been proposed by researchers but

most of these systems were broken later on. Developers of these systems

did not face the cryptography before the invention of their cryptographic

systems based on chaotic dynamics. Most of these researchers writing the

new cryptographic algorithms have relied on their intuition, but not on the

exact methods adopted in the cryptographic community. Such an approach

resulted in cryptographically unreliable and slow algorithms.

These original thesis is devoted to the attempt of building of a stream

cipher based on synchronization and implemented as a digital cryptosys-

tem. It is an endeavor to use the original properties of chaos in the dig-

ital system. Before presenting our novel results on developing continuous

time chaos-based digital cryptosystems later on, in Chapter 3, some digital

cryptosystems based on chaos and some methods of cryptanalysis will be

reviewed here.

2.2.1 Chaos-based encryption systems

Cryptographic systems can be divided into the analog and digital ones.

Analog cryptosystems are based, as a rule, on synchronization and can be

used in the analog channels with noise [64]. Synchronization details and
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its types have been described by us earlier in the Section 2.1.1.

In the chaos-synchronization-based cryptosystems information is trans-

mitted through one or more of random signals. There are several classes of

analog systems based on chaotic dynamics: chaos masking [23; 39], chaos

switching [62; 24], chaotic modulation [22], chaos control methods [35],

inverse system approach [27]. In turn, digital chaos-based cryptosystems

are adjusted for use in the computer cryptography. There are some of the

methods proposed by researchers for use in the computer cryptography:

chaotic stream ciphers via inverse system approach [28], stream ciphers

based on chaos-based pseudo random bit generators (PRBG) [58], block

ciphers based on chaotic round function or S -boxes [40], block ciphers

based on forward/backward chaotic iterations [34], chaotic ciphers based

on searching plain-bits in a chaotic pseudorandom sequence [6]. It should

be noted that digital cryptosystems, in general, do not depend on synchro-

nization. For more information about digital cryptosystems see [50]. All

the computer models of chaos are the approximation of the mathemati-

cal chaos. Approximation to some extent transmits the properties of the

original system only in the initial iterations, but in the limit (n → ∞)

gives the incorrect asymptotic approximation. Therefore, a more suitable

terminology for the chaos implemented by computer approximation is the

so-called pseudochaos.

2.2.2 Advantages and disadvantages of chaos-based

encryption schemes

Comparing to the traditional encryption schemes, chaos based encryption

schemes have several advantages [79]:

• Traditional encryption schemes are limited to integer number fields,

while chaos based encryption schemes can be defined over contin-

uous number field. More variety of functions that can be used for

encryption is provided by this and can be used for encryption . It

is possible to use chaos based encryption schemes that do not re-

quire digitization of the message as well (the traditional encryption
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schemes require digitization of the data as they are defined over in-

teger number fields).

• Traditional encryption schemes can be implemented only by using

digital hardware, while chaos based encryption can be implemented

directly using high speed analog component (optical or electrical)

such as lasers, etc.

• In traditional encryption two circuits are needed: A digital circuit

for encryption, and an analog circuit for broadband modulation. En-

coding and broadband modulation in chaos based encryption schemes

can be implemented using a single circuit.

• Non-periodic pseudo random waveforms that can be used to mask a

message continuous waveform can be generated by chaotic dynam-

ics. Pseudo-random sequences generated by traditional encryption

schemes end up being periodic as they are implemented using digi-

tal hardware: a period that depends on the number of bits used to

represent the state of the pseudo number sequence generator.

Chaotic encryption schemes disadvantages are following:

• Its security is not proven. Both claims form security and proposed

cryptanalysis attacks are typically a mixture of mathematical rea-

soning with intuition. Chaotic encryption is a relatively new field

of research, and it will take some time for its security analysis to

mature.

• Typically the power efficiency, bandwidth efficiency, and bit error

rate performance of chaos based communication schemes is inferior

to that of traditional communication schemes.

2.2.3 Message signal extraction

Different methods have been proposed to attack chaos-cased encryption

schemes. In some cases it is possible to break a chaos cryptosystem without
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Figure 2.12: Lorenz attractor with different parameter values: (a) σ1 = 7.5;
(b) σ1 = 12.5; (c) σ1 is switched between 7.5 and 12.5 by the plaintext.

searching for the secret key k that was used to encrypt the message. This

kind of attack is generally possible if m(t) is a periodic signal or if it

consists of periodic frames within a sufficiently long duration. This can

be accomplished using different methods [2]: autocorrelation and cross-

correlation analysis power spectral analysis and filtering technique (both

linear and nonlinear), return map analysis, etc.

Power spectral and return map attack methods. As was men-

tioned in Chapter 2, the security is an important problem in the chaos-

based communication systems. Power spectral analysis and return map are

two powerful attack methods which permit to brake a chaos based commu-

nication schemes without knowing its parameter values and even without

knowing the structure of the transmitter. In the sequel, these two methods

are illustrated to attack a symmetric secure communication system based

on the parameter modulation scheme.

In [26] author proposed a secure communication method based on the

parameter modulation of a chaotic system and adaptive observer-based

synchronization scheme. The transmitter of secure communication is rep-

resented through a Lorenz system generalization described by the following

equations:

ẋ1 = −σ1x1 + σ2x2

ẋ2 = rx1 − x2−x1x3

ẋ3 = x1x2 − bx3.

(2.15)

In this example the system is implemented with the following standard
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parameters (σ1, σ2, r, b) = (10, 10, 28, 8/3). Author supposed that σ1 is

known with an uncertainty θ = ∆σ1 = 2.5. The signal used for synchro-

nization is x1. The parameter σ1 is modulated by a digital informational

signal, so that it is σ1 − 2.5 if the plaintext bit is ”0”, and σ1 + 2.5 if the

plaintext bit is ”1”. The bit duration Tb must be much larger than the

convergence time of the adaptation law. The bit rate in the example is

0.2 bits/sec. The uncertain system (2.15) can be rewritten in a following

compact form:




ẋ1

ẋ2

ẋ3


 =




−σ1 σ2 0

r −1 0

0 0 −b







x1

x2

x3


 +

+




0

−x1x3

x1x2


 +




1

0

0


 (−y)θ. (2.16)

An adaptive observer-based receiver to the above system can be con-

structed as follows

C = [ 1 0 0 ]

y = C · x = x1

θ = ∆σ1 = ±2.5



ˆ̇x1

ˆ̇x2

ˆ̇x3


 =




−σ1 σ2 0

r −1 0

0 0 −b







x̂1

x̂2

x̂3


 +




0

−x̂1x̂3

x̂1x̂2


 + L(x1 − x̂1) (2.17)

L = [0 38 0 ]T .

The plaintext can be decrypted from the first derivative of the receiver

uncertainty defined as:
ˆ̇
θ = −5y(x1 − x̂1). (2.18)

The dynamics above transmitter and receiver were simulated1 with the

1Here, the MATLAB-SIMULINK ode4 Runge-Kutta procedure with a fixed step size
0.001 is used.
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Figure 2.13: The return maps corresponding to σ=10 and σ=12.5.

following initial conditions:

x1(0), x2(0), x3(0) = (10, 15, 10)

x̂1(0), x̂2(0), x̂3(0), θ̂(0) = (0, 0, 0, 0).

Proposed method has a low degree of security and such analysis of security

was not included in the original work [26]. Making use of the power analy-

sis attack and return map attack, the transmitted signal can be encrypted

without knowing its parameter values and even without knowing the trans-

mitter precise structure. Fig. 2.12 shows the Lorenz chaotic attractor for

the different values of σ1 proposed by the author, strong dependence of

the attractor behaviour of the parameter σ1 is observed. In Fig. 2.12(a)

and Fig. 2.12(b) the attractor corresponding to σ1 = 7.5 to σ1 = 12.5

are shown, respectively. Both of the attractors are quite different and to

recover the plaintext from the transmitted signal y(t) the power analysis

attack was used, firstly in [3]. This procedure consists of the three steps.

First, the transmitted signal y(t) is squared. Secondly, a low pass filter

to y2(t) is employed. Finally, the low-pass filtered y2(t) is binary quan-

tized. Fig. 2.14 illustrates the power analysis method. The low-pass filter
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employed is a four pole Butterworth with a frequency cut-off of 0.5 Hz.

The result is a good estimation of the plaintext, with small delays in some

transitions. In comparing Fig. 2.14(a) with Fig. 2.14(e), it is obvious

that power analysis exhibits good performance in the recovering of the

plaintext.

Now consider the return map analysis method. The return map attack

method was first proposed by [66] to break chaotic switching and chaotic

masking schemes based on the Lorenz system. Later on, this method was

studied by [86] and [51]. However, the chaotic scheme proposed in [26]

can be easily broken with the return map constructed from y1 ciphertext

as pointed out in [66]. Assuming that Xn and Yn are the n-th maxima

and n-th minima of y1, respectively. As described by [66], the return maps

Xn+1 vs Xn and Yn+1 vs Yn are not used directly, the linear combinations

An = (Xn + Yn)/2 and Bn = Xn − Yn are used to get better results. The

return map An vs Bn has a very simple attractor, which is shown in Fig.

2.13. Note that there are three segments in the return map, and each

segment is splits further into two strips. A small change of the bifurca-

tion parameter σ1 in the transmitter influences the attractor of the chaotic

system. The result of the switching between two parameters value is the

switching between two parallel strips of each segment. According to the

line in which the point (An, Bn) falls on, one can easily unmask the current

value of the plaintext. Later on, in the Section 3.5, both of the cryptanal-

ysis methods will be used for security analysis of the anti-synchronization

chaos shift keying method.

2.3 Summary

In this chapter, a survey of chaos-based communications has been pre-

sented. In particular, the properties of chaotic communication schemes

41



summarized and different aspects of using a chaotic dynamics in the com-

munications are discussed: chaos synchronization, chaos shift keying, chaos-

on-off-keying, differential chaos shift keying, frequency-modulated differen-

tial chaos shift keying etc.

The history of chaotic secure communication is short and while its fu-

ture uncertain. Despite their problematic security (the level of rigorously

prover security is not very high), the chaotic encryption schemes already

provide privacy, so required by a large range of applications. A clear ad-

vantage in using a chaotic encryption scheme is that it is the only type

of encryption that does not require digitization of data and can be imple-

mented using analog (electrical/optical) components. The rapid growth

in wireless communications may create a new type of applications that

will require cheap encryption of undigitized continuous waveforms using a

simple analog hardware.
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Figure 2.14: Time histories related with the decryption of the plaintext
“000011001010101110101101” using power analysis attack. From up to
down: the plaintext; the ciphertext, x1; squared ciphertext signal, x2

1; low
pass filtered squared ciphertext signal; the reconstructed plaintext.
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Chapter 3

Generalized Lorenz system in

communication and encryption

This chapter introduces the so-called generalized Lorenz system (GLS) and

investigates various encryption and communication schemes based on the

GLS. Previously, in the Chapter 1, the relationship between cryptographic

and chaotic systems was analyzed, while in the Chapter 2 the chaos-based

communication schemes was introduced. The current chapter will present

the original contribution of the thesis which is the study of the so-called

generalized Lorenz chaotic system and its use for secure encryption and

communication. Namely, the message embedded synchronization scheme

for generalized Lorenz system will be introduced in Section 3.2. Section 3.4

then provides a novel modification of the general chaos shift keying scheme

described in the previous chapter, the so-called anti-synchronization chaos

shift keying (ACSK) based on Section 3.3 introducing the thorough theoret-

ical original analysis of anti-synchronization phenomena in GLS. Section

3.5 provides security analysis of ACSK by using return map attack and

power analysis, as well as by key analysis. Section 3.6 derives the syn-

chronization results for GLS within dynamical complex networks, useful

for possible application in communication. Results are briefly summarized

in the final section.
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3.1 Generalized Lorenz system and its syn-

chronization

First, let us recall some previously published results on generalized Lorenz

system classification and synchronization. Further details may be found in

[11; 14; 18; 19].

Definition 3.1.1. The following general nonlinear system of ordinary dif-

ferential equations in R3 is called a generalized Lorenz system (GLS):

ẋ =

[
A 0

0 λ3

]
x +




0

−x1x3

x1x2


 , A =

[
a11 a12

a21 a22

]
(3.1)

where x = [x1 x2 x3]
⊤, λ3 ∈ R, and A has eigenvalues λ1, λ2 ∈ R, such

that

−λ2 > λ1 > −λ3 > 0. (3.2)

The inequality (3.2) goes back to the well-known Shilnikov’s chaos anal-

ysis near the homoclinicity and can be viewed as the necessary condition

for the chaos existence, see more detailed discussion in [10; 44]. GLS is said

to be nontrivial if it has at least one solution that goes neither to zero nor

to infinity nor to a limit cycle. The following result, enabling the efficient

synthesis of a rich variety of chaotic behaviors for GLS, has been obtained

in [10]:

Theorem 3.1.2. For the nontrivial generalized Lorenz system (3.1)−(3.2),

there exists a nonsingular linear change of coordinates, z = Tx, which takes

(3.1) into the following generalized Lorenz canonical form:

ż =




λ1 0 0

0 λ2 0

0 0 λ3


 z + cz




0 0 −1

0 0 −1

1 τ 0


 z , (3.3)

where z = [z1, z2, z3]
⊤, c = [1,−1, 0] and parameter τ ∈ (−1,∞).

Actually, the parameter τ plays important role of single scalar bifurca-

tion parameter, while remaining parameters has only qualitative influence
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being eigenvalues of the approximate linearization of GLS at the origin.

These qualitative parameters are just required to satisfy robust condition

(3.2), so that fine tuning may be done using the single scalar parameter

τ only. In [9] GLS is further extended to the so-called hyperbolic-type

generalized Lorenz systems (HGLS) which has the same canonical form

as (3.4) but with τ ∈ (∞,−1). In such a way, the parameter range to

be used in the encryption later on is further extended. In [11] complete

and nice classification of all related systems is given showing that many

recently introduced in the literature classes are actually particular cases of

the GLS or the HGLS.

Synchronization of GLS is based on yet another canonical form, the

so-called observer canonical form of GLS provided by the following

Theorem 3.1.3. Both nontrivial GLS (3.1) and its canonical form (3.3)

are state equivalent to the following form:

dη

dt
=




(λ1 + λ2)η1 + η2

−η1[λ1λ2 + (λ1 − λ2)η3 +
(τ+1)η2

1

2
]

λ3η3 + K1(τ)η2
1


 (3.4)

K1(τ) =
λ3(τ + 1) − 2τλ1 − 2λ2

2(λ1 − λ2)
, (3.5)

where η = [η1, η2, η3]
⊤, which is referred to as the observer canonical form.

The corresponding smooth coordinate change and its inverse are

η =




z1 − z2

λ1z2 − λ2z1

z3 −
(τ+1)(z1−z2)2

2(λ1−λ2)


 (3.6)

z =




λ1η1+η2

λ1−λ2

λ2η1+η2

λ1−λ2

η3 +
(τ+1)η2

1

2(λ1−λ2)


 . (3.7)

Indeed, the above observer canonical form, when viewing η1 = x1 =

z1−z2 as the output, is almost in the form linearizable by output injection.

This leads to the following observer-based synchronization of two copies of

GLS.
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Theorem 3.1.4. Consider system (3.4-3.5) with the output η1 and its

uniformly bounded trajectory η(t), t ≥ t0. Further, consider the following

system having input ηm
1 and state η̂ = (η̂1, η̂2, η̂3)

⊤:

dη̂

dt
=




l1 1 0

l2 0 0

0 0 λ3


 η̂ +




λ1 + λ2 − l1

−λ1λ2 − l2

0


 ηm

1 +

+




0

−(λ1 − λ2)η
m
1 η̂3 − (1/2)(τ + 1)(ηm

1 )3

K1(τ)(ηm
1 )2


 , (3.8)

where l1,2 < 0. For all ε ≥ 0, assume |η1(t) − ηm
1 (t)| ≤ ε. Then, it holds

exponentially in time that

limt→∞‖η(t) − η̂(t)‖ ≤ Cε,

for a constant C > 0. In particular, for ηm
1 ≡ η1, system (3.8) is a global

exponential observer for system (3.4)-(3.5).

Proofs of the Theorems (3.1.3)-(3.1.4) may be found in [12]. In the

sequel, the system (3.4)-(3.5) will be often called as the master while (3.8)

as the slave.

3.2 Message embedded synchronization for

generalized Lorenz system and its use

for chaotic masking

In this section we propose the so-called message embedded synchronization

scheme. Such a synchronization may be used for chaotic masking scheme

using single channel only. This method was discussed by Lian K.-Y. et. al.

in [52] for a particular class of systems. As one of the theoretical results of

this thesis let us characterize more general class where message embedded

synchronization is possible.

Consider a nonlinear system of the form
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[
ẋ1

ẋ2

]
=

[
F1 0

0 F2

] [
x1

x2

]
+

[
ϕ1(Hx1, x2)

ϕ2(Hx1)

]
, (3.9)

where

[
x1

x2

]
= x ∈ Rn, x1 ∈ Rn1, x2 ∈ Rn2 , n1 + n2 = n, F is (n × n)

matrix, H is (n1×1) matrix, F1 is (n1×n1) matrix, F2 is (n2×n2) matrix.

Suppose (F1, H) is detectable pair and F2 is Hurwitz. Further, let nonlinear

functions ϕ1, ϕ2 be such that

ϕ1 : Rn2+1 → Rn1 , ϕ2 : R → Rn2 .

Then, the synchronized copy of (3.9) can be obtained using the scalar

synchronizing signal Hx(t) as follows

[
ẏ1

ẏ2

]
=

[
F1 0

0 F2

] [
y1

y2

]
+

+

[
ϕ1(Hx1, y2)

ϕ2(Hx1)

]
+

[
L1H(y1 − x1)

0

]
. (3.10)

Here L1 is (1× n1) matrix such that F1 + L1H is Hurwitz. Namely, define

e = (e1, e2)⊤ = (y1−x1, y2−x2). Then, subtracting (3.9) from (3.10) gives

[
ė1

ė2

]
=

[
F1 + L1H 0

0 F2

] [
e1

e2

]
+

+

[
ϕ1(Hx1, y2) − ϕ1(Hx1, x2)

0

]
. (3.11)

Notice, that e2 → 0 exponentially since F2 is Hurwitz. Assuming that the

synchronization signal Hx(t) of (3.9) is bounded guarantees that

ϕ1(H(x(t)), y2(t)) − ϕ1(H(x(t)), x2(t)) → 0

exponentially as t → ∞ as well. Therefore, e1 → 0 exponentially as t → ∞,

since F1 + L1H is Hurwitz. That is, e → 0 exponentially as t → ∞ and

therefore (3.9) and (3.10) are synchronized.
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Chaotic masking via precise message embedded synchroniza-

tion

Consider system
[

ẋ1

ẋ2

]
=

[
F1 0

0 F2

][
x1

x2

]
+

+

[
ϕ1(Hx1 + m̃(t), x2)

ϕ2(Hx1 + m̃(t))

]
+

[
L1m̃(t)

0

]
(3.12)

and its copy to be synchronized
[

ẏ1

ẏ2

]
=

[
F1 0

0 F2

][
y1

y2

]
+

[
ϕ1(Hx1 + m̃(t), x2)

ϕ2(Hx1 + m̃(t))

]
+

+

[
L1H

0

]
y1 −

[
L1(Hx1 + m̃(t))

0

]
. (3.13)

Then |y − x| → 0 as t → ∞ exponentially. Namely, define e = (e1, e2)⊤ =

(y1 − x1, y2 − x2). Then subtracting (3.12) from (3.13) gives

[
ė1

ė2

]
=

[
F1 + L1H 0

0 F2

][
e1

e2

]
+

+

[
ϕ1(Hx1 + m̃(t), y2) − ϕ2(Hx1 + m̃(t), x2)

0

]
. (3.14)

Now, assuming synchronization signal Hx + m̃(t) is bounded, one has

again that e → 0 exponentially as t → ∞. The message embedded scheme

with precise synchronization can be implemented as follows: Let m(t) be

the message to be sent. Let m̃(t) = m(t) + M(x(t)) be the embedded

message. Here, M(x(t)) is arbitrary bounded function of the state x(t),

which should be independent of scalar synchronizing signal Hx1 as much

as possible. Then using (3.12) one generates transmitted signal as

s(t) = m̃(t) + Hx1(t) = m(t) + Hx1 + M(x(t)).

Recovered message m̂(t) would be m̂(t) = s(t)−Hy1(t)−M(y(t)). There-

fore m̂(t)−m(t) = H(x1(t)−y1(t))+M(x(t))−M(y(t)), i.e. m̂(t)−m(t) →

0 as t → ∞ exponentially.
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This explain the term ”precise” chaotic masking scheme synchroniza-

tion: in contrast to synchronization and chaotic masking described in the

literature (see Chapter 2, Section 2.1.1) where message corrupts synchro-

nization, the method just presented completely filters out the influence of

the modulated message on the synchronization.

Remark 3.2.1. Notice that, observer canonical form of GLS (3.4) is the

system exactly in the form (3.9), where F1 =

[
0 1

0 0

]
, F2 = λ3, H = [1, 0],

x1 =

[
η1

η2

]
, x2 = [η3], ϕ1 =

[
(λ1 + λ2)η1

−λ1λ2η1 − (λ1 − λ2)η1η3 −
(τ+1)η3

1

2

]
, ϕ2 =

K(τ)η2
1. Therefore, GLS in its canonical form can be used for chaotic

masking using precise message embedded synchronization.

3.3 Parameter mismatch influence on the

generalized Lorenz system synchroniza-

tion

This section presents the main theoretical prerequisites, being a novel the-

sis contribution. More specifically, the analysis of properties of the special

class of ordinary differential equation - the so-called generalized Lorenz

system (GLS) will be presented. In particular, both the synchronization

and the anti-synchronization effects for the GLS system will be studied in

detail and the estimates for the synchronization level of two GLS’s with

mismatched parameters will be obtained in this section. Without piling

up formal definitions, by anti-synchronization we will mean loosing syn-

chronization due to sudden parameter mismatch in master and slave. On

the other hand, the estimates, how quickly initially mutually perfectly syn-

chronized systems reach such an error level, will be derived as well. More

specifically, the following proposition analyzes the influence of mismatching

the parameter τ in the master and slave when the master (3.4)-(3.5) with

chaotic behavior is considered. Moreover, with a slight abuse of terminol-

ogy, we assume here that “parameter” τ may be time dependent what will
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be used in the sequel when analyzing security of our encryption method.

Proposition 3.3.1. Consider system (3.8) with η1 = ηm
1 , τ = τsl(t)

and system (3.4-3.5) with τ = τmast(t), where τsl(t), τm(t) are uniformly

bounded measurable functions. Further, suppose that for the corresponding

state trajectories of (3.8) and (3.4-3.5), the Euclidean norm of both η1(t)

and η̂1(t) is uniformly bounded by a constant R. Then, for sufficiently

small

Θ := max
τ∈R+

|τmast(t) − τsl(t)|

it holds

limt→∞‖η(t) − η̂(t)‖ ≤ CΘ,

where C > 0 is a suitable constant. Moreover, for all values of l1,2, it holds

that
d(η3 − η̂3)

dt
= λ3(η3 − η̂3) +

λ3 − 2λ1

2(λ1 − λ2)
Θ(t)η2

1, (3.15)

Θ(t) := (τmast(t) − τsl(t)). (3.16)

Proof Denoting e = (e1, e2, e3)
⊤ = η − η̂, one can easily obtain sub-

tracting (3.8) with η1 = ηm
1 , τ = τsl(t) from (3.4-3.5) with τ = τmast(t)

ė =




l1 1 0

l2 0 (λ2 − λ1)η1

0 0 λ3


 e +




0

(−Θ(t))η3
1/2

λ3−2λ1

2(λ1−λ2)
Θ(t)η2

1


 , (3.17)

so that the relation (3.15) follows immediately. To prove the remaining

estimates, let us realize first that the matrix

[
l1 1

l2 0

]
, l1 < 0, l2 < 0,

is the Hurwitz one and therefore there exists a suitable (2 × 2) matrix S

solving the following Lyapunov matrix equation

[
l1 1

l2 0

]⊤

S + S

[
l1 1

l2 0

]
= −I2,
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I2 being the (2×2) identity matrix. Now, consider the following Lyapunov

function candidate

V (e) = [e1, e2]S

[
e1

e2

]
+

1

2
e2
3,

then by straightforward computations

dV

dt
= −e2

1 − e2
2 + λ3e

2
3 + e3

λ3 − 2λ1

2(λ1 − λ2)
Θ(t)η2

1+

+ 2[e1, e2]S

[
0

e3(λ2 − λ1)η1 + Θ(t)η3
1/2

]
.

Notice, that by (3.15)

d(e2
3/2)

dt
= −λ3e

2
3 + e3

λ3 − 2λ1

2(λ1 − λ2)
Θ(t)η2

1

and therefore there exists T > 0, such that

|e3| ≤
λ3 − 2λ1

2(λ1 − λ2)
Θη2

1/λ3 ≤
λ3 − 2λ1

2(λ1 − λ2)
ΘR2/λ3, ∀t ≥ T.

Therefore, straightforward computations give ∀t ≥ T that

‖
dV

dt
‖ ≤ −e2

1 − e2
2 + λ3e

2
3 +

(
λ3 − 2λ1

2(λ1 − λ2)

)2

ΘR4/λ3+

+ 2(|s11|e1| + |s21|e2|)

[
(λ2 − λ1)

λ3−2λ1

2(λ1−λ2)
ΘR3

λ3
+

ΘR3

2

]
:=

:= −e2
1 − e2

2 + λ3e
2
3 + α(Θ)|e1| + β(Θ)|e2| + γ(Θ), i.e.

‖
dV

dt
‖ ≤ −(e1 − α/2)2 − (e2 − β/2)2 + λ3e

2
3 + γ +

α2 + β2

4
.

The last inequality means that the Lyapunov-like function V (e) strictly

decreases along any trajectory e(t) until this trajectory enters ellipsoid E

given by (recall that by (3.2) λ3 < 0)

(e1 − α/2)2 + (e2 − β/2)2 − λ3e
2
3 ≤ γ +

α2 + β2

4
.

As a consequence, any trajectory enters the set where

V (e) ≤ max
e∈E

V (e)
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and stays within it forever. Now, the crucial observation is that for suffi-

ciently small Θ it holds

|α(Θ)| < δΘ, |β(Θ)| < δΘ, |γ(Θ)| < δΘ,

where δ > 0 is a suitable fixed real number. Therefore, the above ellipsoid E

is fully located inside the ball of radius C̃Θ, where C̃ > 0 is a real constant.

In other words, e(t) should ultimately stay within the set where V (e) ≤

max‖e‖≤C̃Θ V (e) which ensures the existence of constant C > 0 required by

the formulation of Proposition 3.3.1. The proof is now complete.

Remark 3.3.2. Using the technique of the above proof, one can obtain

more specific estimate for the constant C given in the formulation of Propo-

sition 3.3.1. This constant would be bigger if the mentioned bound R on

the first component of the chaotic master system is bigger1 and smaller,

when observer gains l1,2 and eigenvalue λ3 have bigger absolute values.

Important security feature of GLS is that λ3 can not be affected, so that

parameter mismatch would always have certain minimal influence despite

choosing high gains l1, l2 in the observer (3.8). Moreover, equality (3.15)

shows that for mismatched constant parameters τmast, τsl the absolute value

of the third error component e3(t), even with e3(0) = 0, becomes quickly

strictly positive, with rate of increase being proportional to constant param-

eter mismatch Θ. As a matter of fact, (3.15) is the simple one dimensional

asymptotically stable linear system forced by sign-preserving signal of mag-

nitude proportional to constant parameter mismatch Θ. This feature is also

crucial for our anti-synchronization chaos shift keying (ACSK) method pre-

sented later on since it provides the mentioned anti-synchronization effect.

Proposition 3.3.1, as well as this remark, are supported and illustrated by

numerous simulations experiments later on.

The following proposition will provide the estimate from bellow of the

anti-synchronization effect mentioned at the end of the previous remark.

That means, it ensures that synchronization error is not less that certain

1Actually, one can see that there is even dependence on R3, so that the influence of

the attractor size is crucial.
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threshold, depending on parameter mismatch. This property will be used

later on for ACSK receiver.

Proposition 3.3.3. Consider system (3.8), with η1 = ηm
1 , τ = τsl and

system (3.4-3.5) with τ = τmast, where τsl, τm are constants and some

gains l1 ≤ −1, l2 ≤ −1 are fixed. Further, let it holds for some state

trajectory η(t) = [η1(t), η2(t), η3(t)]
⊤ of (3.4-3.5)

0 < E < |η1(t)| < R, ∀t ∈ [0, T ∗], T ∗ := min

(
E2

3R2(2λ1 − λ3)
, |

1

2l1
|, |

1

2l2
|

)
.

Then it holds for all t ∈ [0, T ∗]

|η1(t) − η̂1(t)| ≥
E3

12
Θt2, |η2(t) − η̂2(t)| ≥

E3

6
Θt,

where

Θ := |τmast − τsl|

and η̂(t) is any trajectory of (3.8) with η̂(0) = η(0).

Proof Obviously, the error dynamics (3.17) holds again with Θ(t) :≡

Θ = τmast − τsl, namely

ė =




l1 1 0

l2 0 (λ2 − λ1)η1

0 0 λ3


 e +




0

(−Θ)η3
1/2

λ3−2λ1

2(λ1−λ2)
Θη2

1


 ,

where e(t) :≡ η̂(t) − η(t). Denote

Ã =

[
l1 1

l2 0

]
(3.18)

and recall that by the assumption of the proposition being proved it holds

e(0) = η̂(0) − η(0) = 0. Then

e3(t) =
λ3 − 2λ1

2(λ1 − λ2)
Θ

∫ t

0

exp(λ3(t − s))η2
1(s)ds,

[
e1(t)

e2(t)

]
=

∫ t

0

exp(Ã(t − s))

[
0

(λ2 − λ1)η1(s)e3(s) − Θη3
1(s)/2

]
ds.
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Recall, that λ2 < 0, λ3 < 0, λ1 > 0, therefore it holds

|e3(t)| =
2λ1 − λ3

2(λ1 − λ2)
Θ

∫ t

0

exp(λ3(t − s))η2
1(s)ds,

as a consequence

|e3(t)| ≤
2λ1 − λ3

2(λ1 − λ2)
ΘR2

∫ t

0

exp(λ3(t − s))ds ≤
2λ1 − λ3

2(λ1 − λ2)
ΘR2t.

Further,
[

e1(t)

e2(t)

]
=

∫ t

0

exp(Ã(t − s))

[
0

α(s)

]
ds ,

α(s) = (λ2 − λ1)η1(s)e3(s) − Θη3
1(s)/2,

|α(s)| =

∣∣∣∣(λ2 − λ1)e3(s) − Θη2
1(s)/2

∣∣∣∣|η1(s)| ≥

≥

∣∣∣∣Θη2
1(s)/2 − (λ1 − λ2)|e3(s)|

∣∣∣∣|η1(s)| ≥

≥

∣∣∣∣E
2/2 − R2(2λ1 − λ3)s

∣∣∣∣EΘ/2, ∀s ∈ [0, T ∗].

Actually, one can easily check that ∀s ∈ [0, T ∗] it holds

E2/2 − R2(2λ1 − λ3)s ≥ 0

i.e. one can use

|A + B| ≥ ||A| − |B|| ≥ |C − D|

for all real numbers A, B, C, D, such that |A| ≥ C, |B| ≤ D, C ≥ D.

Further, the straightforward computations show that for all s ∈ [0, T ∗]

|α(s)| ≥

∣∣∣∣1− (R/E)2(2λ1 − λ3)s

∣∣∣∣ΘE3/2 ≥ |E3/2−E3/6|Θ = ΘE3/3, i.e.

|α(s)| ≥ ΘE3/3, ∀s ∈ [0, T ∗]. (3.19)

Summarizing, to obtain the desired lower estimate for e1(t) and e2(t) one

can use
[

e1(t)

e2(t)

]
=

∫ t

0

exp(Ã(t − s))

[
0

α(s)

]
ds =

=

∫ t

0

exp(Ã(s))

[
0

α(t − s)

]
ds, (3.20)
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∀t ∈ [0, T ∗], where Ã is given by (3.18), while α(t) by (3.19). This implies

easily

e1(t) =

∫ t

0

α(t − s)
[
s + l1s

2/2 + (l21 + l2)s
3/6 + · · ·

]
ds,

e2(t) =

∫ t

0

α(t − s)
[
1 + l2s

2/2 + (l1l2)s
3/6 + · · ·

]
ds,

|e1(t)| = (1/3)ΘE3
[
t2/2 + l1t

3/6 + (l21 + l2)t
4/24 + · · ·

]
ds ≥

≥ (1/6)ΘE3t2
[
1 + l1t/3 + (l21 + l2)t

2/12 + · · ·
]
≥ (1/12)ΘE3t2,

|e2(t)| = (1/3)ΘE3
[
t + l2t

3/6 + (l1l2)t
4/24 + · · ·

]
ds ≥

≥ (1/3)ΘE3t
[
1 + l2t

2/6 + (l1l2)t
3/24 + · · ·

]
≥ (1/6)ΘE3t2,

so that the claim to be proved follows.

Remark 3.3.4. The essence of the anti-synchronization method to be de-

scribed later on is to detect the anti-synchronization as soon as possible.

Therefore, one can actually limit the previously proved proposition to a very

small time interval. It is also intuitively clear, as well as rigorously shown

during the above proof by the exact arguments, that smaller time interval,

the faster anti-synchronization effect. Actually, following the above proof,

infinitesimally for t → 0, the above estimates provided by Proposition 3.3.3

may be replaced by the following ones:

|η1(t) − η̂1(t)| ≥
E3

4
Θt2 + o(t3), |η2(t) − η̂2(t)| ≥

E3

2
Θt + o(t3).

Moreover, the estimates of time T ∗ for the any reasonable system parame-

ters and gains are much bigger that actually used in our algorithm later on.

These time estimates were chosen to facilitate the proposition formulation.

Notice also, that on a very short time interval the values E and R are close

each to other (recall, that E is the minimal while R is the maximal abso-

lute value of η1 on some time interval.). The important quantity is E, see

Tab. 3.1 later on where distribution of E is studied. Actually, the speed of

anti-synchronization depends on E3! It also depends, though linearly only
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on parameter τ mismatch Θ. Finally, the most important observation here

is that anti-synchronization is much better visible on e2, rather than on e1.

Our algorithm later on will therefore use numerical derivation of e1 com-

bined with equation (3.17) to achieve e2 (recall, that only η1 is transmitted

through the communication channel).

Proposition 3.3.5. Let (3.2) holds. Consider system (3.8) with τ =

τsl, l1 < l2 ≤ −1 and system (3.4-3.5) with τ = τmast, where τsl, τm are

constants. Further, let it holds for some state trajectory η(t) = [η1(t), η2(t), η3(t)]
⊤

of (3.4-3.5) that

0 < E < |η1(t)| < R, ∀t ∈ [0, T ∗],

T ∗ := min

(
1

2λ1 − λ3
,
∣∣ 1

2l1

∣∣,
∣∣ 1

2l2

∣∣
)

.

Then it holds for all t ∈ [0, T ∗]

|ë1(t)| ≥
|Θ|

2

[
E3 − R3

[
2(l21 + l2)t

2 + (2λ1 − λ3 − 4l1)t
]]

where Θ := τmast − τsl, e1(t) := η̂1(t) − η1(t) and η̂(t) is any trajectory of

(3.8) with η̂(0) = η(0).

Proof Obviously, the following error dynamics holds:

ė =




l1 1 0

l2 0 (λ2 − λ1)η1

0 0 λ3


 e +




0

Θη3
1/2

− λ3−2λ1

2(λ1−λ2)
Θη2

1


 ,

where e(t) :≡ η̂(t)−η(t). Recall that by the assumption of the proposition

being proved it holds e(0) = η̂(0) − η(0) = 0. Then

e3(t) =
λ3 − 2λ1

2(λ1 − λ2)
Θ

∫ t

0

exp(λ3(t − s))η2
1(s)ds,

Recall, that λ2 < 0, λ3 < 0, λ1 > 0, therefore it holds

|e3(t)| =
2λ1 − λ3

2(λ1 − λ2)
Θ

∫ t

0

exp(λ3(t − s))η2
1(s)ds,

and by virtue of the assumption |η1(t)| < R, ∀t ∈ [0, T ∗]

|e3(t)| ≤
2λ1 − λ3

2(λ1 − λ2)
ΘR2

∫ t

0

exp(λ3(t − s))ds ≤
2λ1 − λ3

2(λ1 − λ2)
ΘR2t.
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Further, let

Ã =

[
l1 1

l2 0
,

]
(3.21)

then [
e1(t)

e2(t)

]
=

∫ t

0

exp(Ã(t − s))

[
0

α(s)

]
ds,

α(s) = (λ2 − λ1)η1(s)e3(s) − Θη3
1(s)/2,

|α(s)| =

∣∣∣∣(λ2 − λ1)e3(s) − Θη2
1(s)/2

∣∣∣∣|η1(s)| ≤

ΘR3

2
+ |(λ1 − λ2)e3(s)|R ≤ R3Θ

1 +
(
2λ1 − λ3

)
s

2
,

i.e.

|α(s)| ≤ ΘR3, ∀s ∈ [0,
(
2λ1 − λ3

)−1
],

e1(t) =

∫ t

0

α(t − s)
[
s + l1s

2/2 + (l21 + l2)s
3/6 + · · ·

]
ds,

e2(t) =

∫ t

0

α(t − s)
[
1 + l2s

2/2 + (l1l2)s
3/6 + · · ·

]
ds,

|e1(t)| = ΘR3
[
t2/2 + l1t

3/6 + (l21 + l2)t
4/24 + · · ·

]
ds ≤

≤
1

2
ΘR3t2

[
1 + l1t/6 + (l21 + l2)t

2/24 + · · ·
]
≤ ΘR3t2,

|e2(t)| = ΘR3
[
t + l1t

3/6 + (l1l2)t
4/24 + · · ·

]
ds ≤

≤ ΘR3t
[
1 + l2t

2/6 + (l1l2)t
3/24 + · · ·

]
≤ 2ΘR3t,

t ∈ [0, T ∗], T ∗ := min

[(
2λ1 − λ3

)−1
,
−1

l1
,
−1

l2

]
.

In other words, it holds

|e1(t)| ≤ R3Θt2, |e2(t)| ≤ 2R3Θt, ∀t ∈ [0, T ∗].

Now, using the derived upper estimates of |e1,2,3(t)| and both the lower

and upper estimates of |η1(t)|, assumed in the proposition statement, one

can finish this proof as follows

ë1 = l1ė1 + ė2 = (l21 + l2)e1 + l1e2 + (λ2 − λ1)η1(t)e3(t) − Θη3
1(t)/2,
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|ë1(t)| ≥ |Θη3
1(t)/2| − |(l21 + l2)e1 + l1e2 + (λ2 − λ1)η1(t)e3(t)|.

Therefore, taking into the account all those previously derived estimates

of e1,2,3(t) ∀t ∈ [0, T ∗] and l1 ≤ l2 ≤ −1, − λ2 > λ1 > −λ3 > 0 from the

proposition assumption, it holds

|ë1(t)| ≥ ΘE3/2 − (l21 + l2)R
3Θt2 + 2l1R

3Θt−

− (λ2 − λ1)R
2λ1 − λ3

2(λ1 − λ2)
ΘR2t,

|ë1(t)| ≥
Θ

2

[
E3 − R3

[
2(l21 + l2)t

2 + (2λ1 − λ3 − 4l1)t
]]

,

which completes the proof.

Remark 3.3.6. Typical length of the single iteration used during anti-

synchronization detection is 0.001. Therefore, practically, the anti-synchronization

speed of the second derivative of the synchronizing signal error may be taken

as

|ë1(t)| ≥
ΘE3

2
. (3.22)

As a matter of fact, during this very short time interval one can assume

that R/E ≈ 1 (i.e. minimum and maximum value of synchronizing sig-

nal are practically the same). Therefore, the claim of the current remark

follows from the fact that

1 − 2(l21 + l2)t
2 − (2λ1 − λ3 − 4l1)t ≈ 1 for t = 0.001.

3.4 Anti-synchronization Chaos Shift Key-

ing scheme

As already mentioned, the anti-synchronization detection analyzed in the

previous section will be used to design the realistic encryption and de-

cryption algorithms. Namely, the well known CSK scheme will be modi-

fied. The classical CSK was first proposed by [62; 24] and its basic idea

is to encode digital symbols with chaotic basis signals. Therefore, switch-

ing of chaotic modes provides quite simple configuration of the transmit-

ter/receiver. However, as noted already in [24], synchronization is lost
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Figure 3.1: ACSK digital communication system with anti-
synchronization-error-based demodulator.

and recovered every time the transmitted symbol is changed. In the other

words, the classical CSK receiver method needs during switching quite

a time for an establishment of synchronization between the transmitter

and the receiver, therefore speed of data transmission is rather poor while

amount of data to encrypt a single bit quite huge. On the contrary, our

novel approach that sharply improves these vital characteristics consists

in using anti-synchronization rather than synchronization and will be fur-

ther referred as the anti-synchronization CSK (ACSK) scheme. Its chart is

shown on Fig. 3.1 where public channel is used to send encrypted messages

while secure channel a secret key.
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On the transmitter side, there is the signal generator being the GLS

(3.4)-(3.5) depending on crucial bifurcation parameter τ [10; 81; 20]. To

encrypt digital information, one chooses ”for a while” τ = τ0 for bit ”0”

while for the bit ”1” one chooses τ = τ1, where τ0, τ1 are suitable selected

GLS bifurcation parameters from its known chaotic range, cf. [10; 11; 81;

20]. Then, only the first component of a chaotic signal η1 = x1 = z1 − z2

is being transmitted through the public communication channel.

On the receiver side, signal η1 = x1 = z1 − z2 is feeded into two

synchronized copies of GLS (the so-called slaves), the first one, with pa-

rameter τ0, while the second one with parameter τ1. Now, the crucial idea

of anti-synchronization based decryption uses the fact that both slaves

are kept synchronized to the numerically best possible level (the so-called

numerical zero, in most simulations2 equal to 10−4). Therefore, one can

detect almost immediately ”the wrong” slave due to the fact that it pro-

duces fast increasing error of its first component comparing to the slowly

varying error in ”the correct” slave. In such a way, the bit value is de-

crypted, moreover, the state value of the ”wrong” slave is overwritten by

the value from the ”correct” slave, so that prior receiving the next piece

of cipher text (i.e., the synchronizing signal η1(t)) both slaves are again

synchronized to the same best possible level of the ”numerical zero” 10−4.

As a matter of fact, as shown by Propositions 3.3.1, 3.3.3, 3.3.5 for

the fixed parameter mismatch Θ = |τmast − τsl| the anti-synchronization

effect crucially depends on the absolute value of the synchronizing signal

η1, namely, on E3, where E is minimal value of η1(t) over the time interval

where anti-synchronization is to be detected. This crucial value has been

experimentally thoroughly analyzed and their percentual summary is given

in Tab. 3.1.

The receiver or demodulator structure of the ACSK scheme is shown

in Fig. 3.2 in a more detail. It detects the correct bit via identifying the

2MATLAB-SIMULINK ode4 Runge-Kutta procedure with the fixed step size equal
to 0.001 is being used throughout the thesis.
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Figure 3.2: Anti-synchronization-error-based ACSK demodulator.

E P (E) E P (E) E P (E)
4.0 19.92 1 64.76 0.4 84.44
3.0 28.14 0.8 71.45 0.3 87.44
2.0 38.18 0.6 78.32 0.25 89.08
1.5 47.51 0.5 81.25 0.1 95.07

Table 3.1: Here, P (E) = meas (A(E))
Tmax

· 100, where A(E) = {t ∈ [0, Tmax :
|η1(t)| ≥ E} and Tmax is the maximal time available during simulation.

correct synchronization signal and then rewrites its value into both self-

synchronization circuits (see the back arrows r0, r1 in Fig. 3.2). Such a

detection in the receiver is based on the effect of the anti-synchronization,

namely, three methods of the detection of the binary symbols are possible.

3.4.1 Detection based on the comparison of the syn-

chronization errors

This method that was proposed and studied in [19; 56; 18; 13] is based

on the comparison of the absolute value of the first component of the

synchronizing error e1 in the receiver and the threshold value of the error.

The threshold value is well-known and depends on the control parameters
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Figure 3.3: Time histories related with the encryption and decryption of
the plaintext “0001110001110” using ACSK method and receiver based on
detection of e2 . From up to down: plaintext time signal; ciphertext; e1(t);
e2(t) and the reconstructed plaintext.
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τ1 and τ0, gains, step size and solver. Depending on the |τ1 − τ0| and

the absolute value of the synchronizing signal η1, various quantities of the

iterations are needed to detect the binary symbol exactly. Sections with

higher absolute value of the synchronizing signal η1 is more convenient. The

higher absolute value of η1, the fewer iterations for the anti-synchronization

effect are needed, and vice versa. It was shown in [19] that for quite

close each to other chaotic generators with difference in τ0 and τ1 equal

to 0.01 13 iterations were needed to distinguish the right slave subsystem

from the wrong one. Nevertheless, those 13 iterations were needed for

the detection of the single bit only when |η1(t)| ≥ 4. Otherwise, the

correct detection requires even more iterations. The section of η1(t) signal

where one can effectively decode the information using 13 iterations only

equals to 19.9 percent of the total length of the ciphertext (see Table 3.1).

Data rate of this method is therefore 15 bits/1000 iterations only provided

only section with |η1(t)| ≥ 4 is being used. Such a drawback suggests

the necessity to look for a more precise analysis of the synchronization

error, thereby further minimizing the iteration number needed for 1 bit

encryption/decryption.

3.4.2 Detection based on the analysis of the second

components of the synchronizing errors

This method of the detection of the binary symbols in the receiver is based

on the comparison of the value of the second component of the error e2 and

was first briefly introduced in [14; 57]. Now, this method is justified by

the theoretical analysis presented in the previous section. Actually, Propo-

sition 3.3.3 shows that, while the first component of the synchronization

error peak triggered by the parameter mismatch is of order O(t2), the peak

of its second component is of the order O(t). For very small t (note, that

one iteration is typically per time equal to 0.001) this is a really signifi-

cant difference. As all data are transferred precisely in the digital form,

they don’t contain any noise and we can use simple derivative observer to

predict the second component of the error. In such a way, the parameter
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Figure 3.4: Time histories related with the encryption and decryption of
the plaintext “0001110001110” using ACSK method. From up to down:
plaintext time signal; ciphertext; e1(t); zoom of e1(t); ë1(t) and the recon-
structed plaintext.
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mismatch can be detected almost immediately, looking on a single sub-

sequent iteration only (for |η1(t)| ≥ 3.5). As a consequence, this second

method can decrypt/encrypt efficiently 240 bits/1000 iterations. Let us

note here, that in [14] it was reported that for the correct detection of

the wrong slave synchronization circuit in the receiver only one iteration

is needed for |η1(t)| ≥ 2. Nevertheless, a recent and more careful exper-

imental analysis shows that the threshold of the safe detection should be

increased to |η1(t)| ≥ 3.5. The reason is that the number of the iterations

needed for the correct bit identification depends on the speed of the change

of the synchronization signal η1(t), too. When the synchronization signal

is increasing/decreasing very fast, one iteration for the correct detection

is insufficient. Nevertheless, bit rate can be yet further improved as other

signal η1(t) sections can be used subsequently with 2 and 3 iterations (the

last one even for |η1(t)| ≥ 1.6), thereby using up to 46% of this signal,

cf. Tab. 3.1. Simple calculation shows then the bit rate of the current

method is 346 bits/ 1000 iterations, as in the section with |η1(t)| ≥ 2.1,

only 2 iterations are needed for correct decoding the 1 bit of information.

3.4.3 Detection based on the analysis of the second

derivative of the first component of the syn-

chronization errors

This method of the detection uses Proposition 3.3.5 and computes nu-

merically the second derivative ë1 in both slaves. This method was first

introduced in [15]. As expected by Proposition 3.3.5 and confirmed by

the simulations presented in detail later on, it is possible to detect the

wrong slave immediately for the higher percentage of synchronizing signal

- being, in fact, the cipher text carrier. This method is very useful and

better than another proposed methods that we are described before. Only

one iteration is needed for the correct detection the information bit in the

receiver. As a matter of fact, this method uses a fact that the direction of

the error in ”wrong” slave changes immediately. Proposed method requires

single iteration for E > 0.25 (i.e. for 89.08% of signal carrier), and four
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iterations for E > 0.2 (90.82%). Summarizing, the current method can

encrypt/decrypt efficiently 905 bits/1000 iterations, comparing to just 15

bits/1000 iterations for the first method and only 346 bits/1000 iterations

for the second method.

3.4.4 Further comparison of detection methods

Examples of the application of the current anti-synchronization chaos shift

keying (ACSK) method are shown on Fig. 3.3 and Fig. 3.4. Fig. 3.3 illus-

trates ACSK communication scheme with receiver based on the detection of

the change of the second component of errors. Fig. 3.4 illustrates another

method of detection in the receiver based on the calculation the second

derivative of the e1. Both figures use an example of a transmitted base-

band signal for the message “0001110001110” encoded by means of two

different, but close each to other chaotic GLS generators with different

parameters τ0 = 0 and τ1 = 0.1. Only ciphertext is available to potential

intruder with no clue of encrypted signal. This ciphertext is the synchro-

nizing signal η1(t) sent by GLS either with τ0 = 0 or τ1 = 0.1, depending

on an encrypted value of the current bit. For easy mutual comparison of all

scopes on Fig. 3.3 and Fig. 3.4, their time axes are identical and indicate

number of iterations3, not a real time. It can be seen that the error imme-

diately (during one iteration only) rises (change the direction)in one of the

slaves, while in the other one it remains within declared “numerical zero”

∼ 10−4. Though each symbol on Fig. 3.3 and Fig. 3.4 require two iterations,

the methods work perfectly even with a single iteration only (the second

iteration is needed just to reset the initial conditions in ”the wrong” slave

to the initial conditions in ”the true” slave.). The ciphertext obviously

does not indicate change of bits in any way. There are two reasons: first,

the parameterization with respect to τ makes it possible to have signals of

both chaotic systems close to each other. Secondly and most importantly,

as we use 1-2 bits only, it is impossible to estimate any statistical or other

tendency to decrypt the information. The decryption is possible only by

3Recall, that the ”iteration” is one step of the Runge-Kutta 4th order scheme with
the fixed step 10−3.
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feeding the ciphertext into slave systems producing peaking error picture

shown on Fig. 3.3 and Fig. 3.4, which clearly decrypts the corresponding

digital information.

Notice that the previously presented Chaos Shift Keying method [62;

24] typically needs up to one second piece of synchronizing signal to encrypt

and decrypt a single bit which corresponds usually to thousands of real

numbers (iterations). So, the message expansion and speed of encryption-

decryption for CSK method are simply unrealistic. For our ACSK, the

message expansion is still much bigger than in methods based on discrete

time chaos, nevertheless, it is becoming realistic and might be justified if

it provides some extra security.

3.5 Security analysis of ACSK method

3.5.1 Power analysis and return map attack

In order to investigate the security of the ACSK scheme, two famous at-

tacks proposed in [66; 3] are considered, that is, return map attack and

power analysis attack. Recall, that in Section 2.2.3 we analyzed chaos se-

cure communication scheme proposed in [26] by both of above mentioned

methods. Here, Fig. 2.14 and Fig. 2.13 illustrates the effectiveness of

return map attack and power analysis attack against our newly proposed

ACSK scheme. Fig. 3.5.2 plots the result of power analysis attack to ACSK

scheme. This attack first filters the transmitted signal η1 (ciphertext) by

a low-pass filter, and then recovers the plaintext utilizing a binary quan-

tizer. Fig. 3.5.2(c) plots the result of the power analysis attack for ACSK

scheme. Compared with Fig. 2.14(d), it is obvious that the intruder can-

not recover the binary sequence from Fig. 3.5.2(c). As described in [66],

a small change of the parameters of the transmitter affects the attractor

of the chaotic system. Assuming that Xn and Yn are the n-th maxima

and n-minima of the transmitted signal, respectively, define the following

modified return maps by An = Xn+Yn

2
, and Bn = Xn − Yn. In Fig. 3.5,

the plot of the return map shows that all segments are merge together
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for the different values of the bifurcation parameter. Then the intruder

cannot decrypt the plaintext by return map analysis. Thus, the above two

crystallizing tools are ineffective in the ACSK scheme [16].
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Figure 3.5: Return map analysis of ACSK scheme.

3.5.2 Key analysis

The above described decryption scheme in the ACSK method requires

initial synchronization of the master on the transmitter side and both slaves

on the receiver side, up to the best available numerical precision, called in

the sequel as the “numerical zero”. Therefore, the initial condition is the

immediate candidate for the secret key. As our “numerical zero” is 10−4,

this key space is naturally discretized in the sense that two initial conditions

closer each other than numerical zero should be represented by the same

key. Assuming the size of the initial conditions interval of η3(t) being 10

gives 105 different keys, as only the third component η3(t) is unknown,
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while the first one η1(t) is transmitted through the public channel and the

second one η2(t) easily obtained by from the first component η1(t) using

the first equation in (3.4).

To analyze the security of the key based on the initial condition, assume

for simplicity at first that both τ0 and τ1 are publicly known. Proposition

3.3.1 implies that at least 10 thousands of iterations of the correct signal

are needed to synchronize the slaves if the initial conditions of the master

are unknown. Therefore, the initial condition key can be broken only in

three ways:

• Attack based on the known plain text and the corresponding cipher

text, but both should be at least as of 10 000 bits. Moreover, such

a knowledge should be used only for the attack to decrypt some un-

known ciphertext following right after the above known sequence

of both plaintext and the corresponding ciphertext.

• Trying 210000 possible combinations of all 10 000 bits long plaintexts

and comparing them with ciphertext at hand.

• Trying all possible keys - 105 initial conditions.

Furthermore, the parameters τ0, τ1 can be considered as an additional

source for the secret keys. In this case, the current method presents impor-

tant improvement due to the fact that changes of the parameter may occur

during a single iteration. Therefore, one can not see any clue of changing

parameter when analyzing signal η1. Nevertheless, the difference |τ0 − τ1|

can not be arbitrarily small, as the anti-synchronization effect depends on

this difference as well, see Propositions 3.3.1, 3.3.3, 3.3.5. Still, this differ-

ence was experimentally shown to be possible up to 10−3. Therefore, there

are 106 possibilities, if values τ ∈ [−0.5, 0.5] are considered. As a matter

of fact, chaotic range for τ is even broader that the previous interval, see

[9]. Finally, notice that secret key based on parameter τ is equally resis-

tant even in case of the known plaintext and the corresponding sequence

of ciphertext. In all kinds of attacks, one has to check all 106 possibilities

of pairs τ0, τ1 and one needs to know the initial condition, treated before.
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Figure 3.6: Time histories related with the decryption of the plaintext
“0011011100010001110001101100” using power analysis attack. From up
to down: the ciphertext, η1; squared ciphertext signal, η2

1 ; low pass filtered
squared ciphertext signal.
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Therefore, combining both the initial condition and parameter τ , one

has up to 1011 possibilities for the secret key. When checking all possibilities

for the secret key trying to perform the brute force attack, one has to take

into the account that the amount of computing efforts to be done for each

key choice is far from being negligible. Basically, one needs to evaluate error

in both slaves during several iterations and compute its second derivative

to see if it stays significantly smaller in one of the slaves than in the other

one. This leads to a conclusion that brute force attack is unrealistic as

well.

Here, an independent use of the τ based key and the initial condition

η3(0) based key is guaranteed by the second equation in (3.17). Indeed, τ

mismatch level Θ and initial error e3(0) influence are mixed on the right

hand side there, and nonzero value of any of them spoils a possible detec-

tion.

3.6 Synchronization of the generalized Lorenz

system in dynamical complex networks

The aim of this section is to study synchronization of a dynamical complex

network consisting of nodes being generalized Lorenz chaotic systems and

connections created with transmitted synchronizing signals. Focus is on

the robustness of the network synchronization with respect to its connec-

tional structure. This robustness is analyzed theoretically for the case of

two nodes with two-sided (bidirectional connections), and numerically for

various cases with many nodes. It is shown that unless a certain minimal

coherent connectional structure is present in the network, synchronization

is always preserved. While for a minimal connectional configuration where

synchronization is global, the resulting synchronization reduces to semi-

global if some redundant connections are added. The result of this section

first studied in [17].

The research topic of complex networks has revoked considerable inter-

est in the past few years. Examples of complex networks in interest include
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the Internet, World Wide Web, food webs, electric power grids, metabolic

networks, and biological neural networks, among many others [78; 69].

Traditionally, complex networks were studied by random graph theory, in-

troduced by Erdös and Renýı [25]. In this section, the synchronization

phenomenon of dynamical complex networks (DCN), where all nodes are

identical chaotic systems (but usually with different parameters and/or

initial conditions), is studied. Compared to existing results, there are two

novel features in our new approach. First, nonlinear synchronizing connec-

tions between nodes are allowed; secondly, an oriented graph as a model

for DCN is considered, in contrast to the general studies where only linear

coupling and un-oriented networks are discussed [55; 54; 21]. The objec-

tive here is to study the synchronizability of the network when some nodes

establish some new connections or lose some old connections. This no-

tion is referred to as structural robustness of DCN synchronization.

The motivation comes from the consideration that in a network numer-

ous participants try to synchronize to each other for some reason (e.g. for

chaotic secure communication), but then some participants may connect to

or disconnect from some of their partners under certain conditions, while

these should not damage the overall synchrony of the network. It will be

shown that with an increasing number of connections, synchronization is

only semi-global, and this semi-global performance becomes more difficult

as the number of connections continue to increase, so it will become even

worse in the sense that very high gains (coupling strengths) are needed to

maintain the synchrony of the whole network subject to the same initial

synchronization errors. All the findings were obtained for a DCN consist-

ing of the generalized Lorenz systems (GLS) [11; 12]. It will be shown

that global synchronization can be achieved for two coupled systems in the

master-slave configuration [12]. This result will then be extended to the

case of any DCN having the so-called minimal connections structure. For

more complicated DCN, however, only semi-global synchronization may

be achieved. This new synchronization method is simple in the sense that

one same communication signal is used for all connections. A theoretical
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proof for the case of two coupled nodes with two-sided master-slave con-

nections will be provided, leaving the more complicated cases to be verified

by numerical simulations.
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Figure 3.7: Some possible structures of a three-node network with oriented
connections among nodes.

Consider a DCN of N identical nonlinear nodes, with each node being

a chaotic system, described by

η̇i = f(ηi) +

N∑

j=1

cjiφ(ηi, h(ηj), L), (3.23)

where ηi = (η1, η2, ..., ηn, )⊤ ∈ Rn is the state vector of node i, i = 1, . . . , N ,

L = (l1, l2, ..., ln)
⊤ is the vector of coupling gains, h(·) is scalar synchro-

nizing output of each system, φ is nonlinear coupling with φ(η, h(η), L) ≡
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0 ∀η, L and C = (cij)i,j=1,...,n is a constant {0, 1}-valued matrix of linking

coupling variables. Namely, there is a connection going from node i to

node j, i 6= j, if and only if cij = 1. Here, cij is not always equal to cji,

because the graph is oriented, but if cij = cji = 1, then the connection

between node i and node j is called as the coupled or duplex coupling.

Without loss of generality one can set cii = 0 ∀i ∈ {1, 2, . . . , N}, due to the

above assumption that φ(η, h(η), L) ≡ 0 ∀η, L. Network (3.23) is called

(asymptotically) synchronized if ∀i, j ∈ {1, 2, . . . , N}, i 6= j, it holds

lim
t→∞

(ηi(t) − ηj(t)) = 0. (3.24)

A network, with cij = 1 ∀i, j ∈ {1, 2, . . . , N}, i 6= j, is called as the full

N-nodes DCN. A network, where C is a cyclic matrix (i.e., each its

row and column has precisely one nonzero entry), is called as the cyclic

DCN. Finally, a network is called as a disconnected one, if there is re-

numbering of the nodes making C block diagonal, while the opposite case

is called connected. One can easily see that all the previous notions have

clear interpretation, e.g. a full network contains all possible connections,

see e.g. the network h) in Fig. 3.7, while in a cyclic network each node

has exactly one inbound and one outbound connection, so it creates an

oriented cyclic chain of connections, see e.g. b) in Fig. 3.7, or network in

Fig. 3.13. Finally, disconnected network would obviously consist of two

independent subnetworks.

Obviously, a disconnected network can not be synchronized in general.

Nevertheless, being connected is only necessary for a network to be syn-

chronizable. This leads to the following definition.

Definition 3.6.1. The DCN (3.23) is said to be synchronizable if there

exists an integer µ ∈ {1, 2, . . . , N}, such that for every σ ∈ {1, 2, . . . , N}

there exists a sequence of integers {κ1, . . . , κl} satisfying

κ1 = µ, κl = σ, cκ1,κ2
= · · · = cκl−1,κl

= 1.

If the above integer µ is unique, then the node with number µ is called as the

master of DCN (3.23). Synchronizable network is called as a minimal
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Figure 3.8: Lack of synchronizability of a dynamical three-node network,
with λ1 = 8, λ2 = −16, λ3 = −1; cij = 1 (i 6= j); l1, l2 = −35 and τ = 0.5.
The node oscillators dynamics: a) node 1, b) node 2, d) node 3. Structure
of the network - see c).

one, if removing any connection makes it not being synchronizable.

Note that the above synchronizability definition makes sense for net-

works being oriented graphs only. For un-oriented graphs, it is sufficient

to replace it by the simple property of being connected. The following

properties obviously hold:

1. A minimal synchronizable network always has a master.

2. A cyclic network is always synchronizable, but never mini-

mal.

An example of a connected network, which is not synchronizable, is shown

in Fig. 3.8. In Fig. 3.7, networks a) and c) are minimal ones having node 1
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Figure 3.9: List of all four-node minimal synchronizable oriented networks.

as their master. Finally, Fig. 3.9 gives a full list of all four-nodes minimal

synchronizable DCN.

3.6.1 Theoretical analysis of the synchronization in

dynamical complex networks

In this section, a dynamical complex network (DCN) with nodes being the

so-called generalized Lorenz system (GLS) is studied. GLS is a generaliza-

tion of the classical Lorenz system containing it as a particular case. Full

details about GLS may be found in Section 3.1, in particular, the so-called

generalized Lorenz canonical form. The so-called observer canonical form

of GLS were introduced there, see Theorems 3.1.2, 3.1.3.

Moreover, this observer canonical form of GLS provided a possibility

to synchronize master-slave configuration of two GLS’s using scalar signal

η1 only, call Theorem 3.6.2. The main theoretical result of this section is

the following theorem that generalizes the mentioned result to the case of

the symmetric (or duplex) synchronizing connection between two GLS’s.

Theorem 3.6.2. Consider a DCN consisting of two GLS in the canoni-

cal form (3.4)−(3.5) with the states η, η̂, outputs η1, η̂1 and its uniformly
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Figure 3.10: Synchronization of a two-node network, with λ1 = 8,
λ2 = −16, λ3 = −1, cij = 1 (i 6= j), l1, l2 = −40 and τ = 0.5. Initial
condition 0 ≤ [ηi

1, η
i
2, η

i
3]
⊤ ≤ 1. From left to right: the node oscillators;

bottom: structures of a two-node network, synchronization error of a two-
node network.

bounded trajectory η(t), t ≥ t0, coupled as follows:

dη̂

dt
=




l1 1 0

l2 0 0

0 0 λ3


 η̂ +




λ1 + λ2 − l1

−λ1λ2 − l2

0


 η1+

+ c12




0

−(λ1 − λ2)η1η̂3 − (1/2)(τ + 1)(η1)
3

K1(τ)(η1)
2


 , (3.25)
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Figure 3.11: Synchronization of a network with λ1 = 8, λ2 = −16, λ3 = −1;
cij = 1 (i 6= j); l1, l2 = −40 and τ = 0.5. From left to right: the node
oscillators; bottom: structures of a four-node network, synchronization
error of a four-node network.

80



dη

dt
=




l1 1 0

l2 0 0

0 0 λ3


 η +




λ1 + λ2 − l1

−λ1λ2 − l2

0


 η̂1+

+ c21




0

−(λ1 − λ2)η̂1η3 − (1/2)(τ + 1)(η̂1)
3

K1(τ)(η̂1)
2


 , (3.26)

where l1,2 < 0 are gains to be designed. Then,

1. for c12 = 0, c21 = 1 or c21 = 0, c12 = 1, and for all gains l1,2 < 0,

one has limt→∞(η(t) − η̂(t)) = 0 globally and exponentially;

2. for c12 = 1, c21 = 1, and for every bounded region of initial conditions

of system (3.25)−(3.26), there exist sufficiently large gains l1,2 < 0

such that limt→∞(η(t) − η̂(t)) = 0.

Proof. The first claim is a straightforward consequence of a result in

[12], where global synchronization of the master-slave configuration of two

GLS was proved. To prove the second claim, denoting e = (e1, e2, e3)
⊤ =

η − η̂, and deducing (3.26) from (3.25), one obtains

ė = Ãe +




0

αe1 + β1e
2
1 + β2e

3
1 + γe3

−K1(τ) (2η1(t)e1 + e2
1)


 (3.27)

α(t) :=
3(τ + 1)η2

1(t)

2
+ (λ1 − λ2)η3(t), β2 :=

τ + 1

2
,

β1(t) :=
3(τ + 1)η1(t)

2
, γ(t) := (λ1 − λ2)η1,

Ã = diag{A(l1, l2), λ3}, Â =

[
2l1 − (λ1 + λ2) 1

2l2 + λ1λ2 0

]
.

Notice that Â(θ) is Hurwitz ∀ θ > 0, where

Â(θ) := A(l1 (θ), l2(θ)) =

[
θ 1

θ2 0

]
,

l1(θ) =
θ + λ1 + λ2

2
, l2(θ) =

θ2 − λ1λ2

2
. (3.28)
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Figure 3.12: Synchronization of a network with λ1 = 8, λ2 = −16, λ3 = −1;
cij = 1 (i 6= j); l1, l2 = −35 and τ = 0.5. From left to right: the node
oscillators; bottom: synchronization error between first node and second
node of a four-node network. Other error dynamics are analogous.
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In particular, there exists a matrix S such that

SÂ(1) + Â(1)⊤S = −I2, S > 0, S⊤ = S,

and, moreover, S is a constant matrix independent of θ. Further, consider

Lyapunov’s function candidate

V (e) = [e1, θ
−1e2]S[e1, θ

−1e2]
⊤ +

(θ−1e3)
2

2
,

and compute its full derivative along trajectories of the system (3.27)-(3.28)

to obtain:

V̇ = −θ
(
ǫ2
1 + ǫ2

2

)
+ λ3ǫ

2
3 + K1ǫ3

(
2η1(t)ǫ1 + ǫ2

1

)
+

+ 2 [ǫ1, ǫ2] S
[
0, αǫ1 + β1ǫ

2
1 + β2ǫ

3
1 + γǫ3

]⊤
,

where

ǫ1 := e1, ǫ2 := θ−1e2, ǫ3 := θ−1e3.

Notice that α, β1,2, γ are dependent only on system parameters and η(t),

which is bounded by assumption of the theorem. Therefore, there exist a

constant R2 and a smooth function R1(·) such that

V̇ ≤ −θ
(
ǫ2
1 + ǫ2

2

)
+ λ3ǫ

2
3 + |R1(ǫ1)ǫ1(ǫ1 + ǫ3) + |R2ǫ2(ǫ1 + ǫ2 + ǫ3)|.

Notice that R1,2 do not depend on θ. As a consequence, selecting

θ = θ(e1) := max{|R1(e1(t))|, |R2|} + R,

where R > 0 is a suitable constant big enough, guarantees that V̇ ≤

−R3‖ǫ‖
2, R3 > 0. By definition of V (e) there exist real constants c2 >

c1 > 0 such that

c1

[
e2
1 + [θ−1e2]

2
]
+ [θ−1e3]

2/2 ≤ ‖V (e)‖ ≤ c2

[
e2
1 + [θ−1e2]

2
]
+ [θ−1e3]

2/2.

As a consequence, it holds obviously that ∀s > 0,

‖e‖ ≤ s ⇒ ‖V (e)‖ ≤ c2s, ‖V (e)‖ ≤ s ⇒ |e1| ≤
s

c1
.

Now, semi-global exponential synchronization is achieved in the following

way: consider any s > 0, then taking gains (3.28) with

θ = max
|e1|≤s(c2/c1)

θ(e1)
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guarantees exponential convergence on the region of initial errors ‖e(0)‖ ≤

s. Indeed, such a selection of gains guarantees that V̇ ≤ −R3‖ǫ‖
2, R3 > 0

for all ‖e(t)‖ ≤ s, as the above inequalities will assure that ‖V (e(t))‖ ≤

c2s which, in turn, guarantees |e1| ≤ s(c2/c1). As a consequence, V (e)

decreases along trajectories, which guarantees that inequality ‖V (e(t))‖ ≤

c2s holds and consequently |e1(t)| ≤ s(c2/c1). In other words, for any e(t)

with ‖e(0)‖ ≤ s, it holds that for all t ≥ 0, V̇ ≤ −R3‖ǫ‖
2, R3 > 0, and

therefore e(t) goes to zero exponentially as t → ∞.

Now, consider a DCN consisting of N nodes, each of them being a GLS,

defined as




η̇i
1

η̇i
2

η̇i
3


 =




(λ1 + λ2)η
i
1 + ηi

2

−ηi
1(λ1λ2 + (λ1 + λ2)η

i
3+

(τ + 1)(ηi
1)

2/2)

λ3η
i
3 + K1(τ)(ηi

1)
2




+

+

N∑

j=1

cji




(λ1 + λ2 − l1)(η
j
1 − ηi

1)





(−λ1λ2 − l2)(η
j
1 − ηi

1)−

(λ1 − λ2)(η
j
1 − ηi

1)η
i
3−

(1/2)(τ + 1)(ηj
1)

3 − (ηi
1)

3





K1(τ)((ηj
1)

2 − (ηi
1)

2)




, (3.29)

with the possible non-symmetric 0-1 coupling matrix

C =




c11 c12 · · · c1(N−1) c1N

c21 c22 c23 · · · c2N

c31 c32
. . .

. . .
...

...
...

... c(N−1)(N−1) c(N−1)N

cN1 cN2 · · · cN(N−1) cNN




.

As a matter of fact, Theorem 3.6.2 verifies that synchronization of the 2-

node DCN (3.29), at least semi-globally, does not depend on the topology

of its connections, as long as the corresponding DCN remains synchroniz-

able. For DCN with N nodes, the following result is a straightforward
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consequence of claim 1 of Theorem 3.6.2.

 

 

N1

N3N4

N2

 

Figure 3.13: Synchronization of a network with λ1 = 8, λ2 = −16, λ3 = −1;
cij = 1 (i 6= j); l1, l2 = −40 and τ = 0.5. From left to right: the node oscillators;
bottom: structures of a four-nodes network (cycle topology), synchronization
error of a four-node network.

Theorem 3.6.3. Consider DCN (3.29) which is synchronizable and min-

imal. Then, it is globally exponentially synchronized.

85



3.6.2 Numerical analysis of the synchronization in

dynamical complex networks

As indicated by Theorem 3.6.2 for non-minimal synchronizable DCN’s,

only semi-global synchronization is possible in general. This theorem, nev-

ertheless, considers all cases of a two-node network only. In this section,

it is shown experimentally that this property holds even for networks with

a larger number of nodes. More specifically, consider several four-node

DCN of GLS of the form (3.29). The first example is presented by Fig.

3.8, which is not synchronizable in the sense of Definition 3.6.1. Simula-

tions confirm that the network is indeed not synchronized. In Fig. 3.10,

Theorem 3.6.2 is illustrated. One can see that two nodes with a duplex

connection (i.e., neither is master or slave) are synchronized; but for initial

synchronization errors up to 1, quite strong gains are needed. In Fig. 3.13,

a fully connected DCN with four nodes is synchronized, i.e., information is

transmitted from any node to all other nodes. Again, strong synchronizing

gains are needed. Fig. 3.12 shows the complicated error convergence when

gains are taken weaker; further weakening the gains will eventually destroy

the synchronization. Some “structural perturbation” of the full four-nodes

network are shown on the remaining figures. Fig. 3.13 shows the special

case of a cyclic network, indicating that synchronization persists with the

same parameters as in the case of Fig. 3.11. Actually, many more exper-

iments have been carried out, showing that such a nice robust structural

property always holds, where the only clear limit is that the network should

not lose its synchronizability (see Definition 3.6.1). Regarding semi-global

versus global performance, an interesting observation is that for particu-

lar initial conditions and gains, a synchronizable network is always either

synchronized or diverging to infinity. This was actually predicted during

the proof of Theorem 3.6.2.
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3.7 Conclusion

In this chapter several possibilities to use generalized Lorenz chaotic sys-

tems in communication and encryption have been investigated. Among

them, chaotic masking via message embedded precise synchronization and

modified chaos shift keying scheme have been proposed to improve security

and minimize the redundance of the information content. In particular, it

was shown that ACSK digital communication method has the potential of

introducing a high degree of security at a low receiver complexity. At the

same time, it requires reasonable amount of data to encrypt a single bit,

thereby making revolutionary possibility of practical and realistic use of

continuous time chaotic system for digital data encryption. Further, net-

work synchronization of GLS has been studied as well for possible future

application in secure network communication. Important conclusions here

is that generally one can only guarantee semi-global network synchroniza-

tion while minimal synchronizable configuration is always globally expo-

nentially synchronized. At the same time, both synchronizability and its

minimality are merely properties of the network topology. In other words,

synchronization may be determined from some graph-theoretic properties

of the network, once we know how to synchronize the simple master-slave

configuration of two nodes, which therefore is of fundamental importance

in the present investigations.
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Figure 3.14: Synchronization of a network with λ1 = 8, λ2 = −16, λ3 = −1;
cij = 1 (i 6= j); l1, l2 = −40 and τ = 0.5. From left to right: the node oscillators;
bottom: structures of a four-node network, synchronization error of a four-node
network.
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Figure 3.15: Synchronization of a network with λ1 = 8, λ2 = −16, λ3 = −1;
cij = 1 (i 6= j); l1, l2 = −40 and τ = 0.5. From left to right: the node
oscillators; bottom: structures of a four-node network, synchronization
error of a four-node network.
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Chapter 4

Conclusions

4.1 Summary

This thesis was devoted to the study of the novel methods of communica-

tion and encryption using chaotic system in order to improve the existing

communication schemes. Some new theoretical properties of chaotic sys-

tem synchronization was developed, as these methods depend crucially on

chaos synchronization phenomena. In particular, new theoretical proper-

ties of the so-called generalized Lorenz system has been described. These

properties was used to design and systematically analyze the new com-

munication and encryption scheme, called the anti-synchronization chaos

shift keying (ACSK) implemented via the generalized Lorenz system. Fur-

ther, analysis of dynamical properties of generalized Lorenz system enabled

study of its synchronization within dynamical complex networks for pos-

sible communication. More specifically, different chaotic communication

techniques that can be implemented with and without synchronization

have been studied in the present thesis. Encryption methods based on the

properties of chaos are reviewed. The main contribution of the thesis is

the novel modulation scheme called the anti-synchronization chaos shift

keying. ACSK digital communication method has potential of introduc-

ing a high degree of security at a low receiver complexity. At the same

time, it requires reasonable amount of data to encrypt a single bit, thereby

making revolutionary possibility of practical and realistic use of continuous
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time chaotic system for digital data encryption. The thesis implements the

ACSK scheme by using the so-called generalized Lorenz system (GLS) fam-

ily. GLS has been introduced and studied relatively recently, [20; 81; 10],

nevertheless, its using to ACSK implementation, and further theoretical

analysis was performed in this thesis.

The ideas about the communication using generalized Lorenz system

via their synchronization are generalized to study the synchronization of

complex networks of chaotic systems. Namely, interesting theoretical proof

of the exponential synchronization of two generalized Lorenz systems with

bi-directional connection has been presented and more complicated net-

works structure studied numerically. Basic observation here is that the

increasing complexity of connections can destabilize the network, stability

is maintained by high synchronizing gains and locally only, with decreasing

size of stability region.

4.2 Future research outlooks

On the basis of this thesis several perspective investigations can be per-

formed in the future:

1. The detailed theoretical study of the generalize Lorenz system prop-

erties and its application for a data transmission system building

based on the properties of chaotic dynamics were conducted in this

thesis. The first goal we set in the future, is to bring the theoreti-

cal results of research to the practical implementation, namely, the

development of the user friendly encoding/decoding data software

based on the tested anti-synchronization chaos shift keying method.

2. Further development of often chaos-based encryption approaches us-

ing the generalized Lorenz system and its favorable properties. Among

them, the inverse system approach resulting in block cipher and pseu-

dorandom bit generator resulting into the stream cipher.

3. Message-embedded synchronization of networks of nodes being gen-

eralized Lorenz system with different messages sent between nodes.
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This would enable to construct networks communicating securely us-

ing chaos masking scheme with message embedded synchronization.
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