
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of measurement

Implementation of actual version
of DDSI-RTPS protocol for
distributed control in Ethernet
network

Jiri Hubacek
Open Informatics

January 2016
Supervisor: Ing. Pavel Píša, Ph.D.

Acknowledgement / Declaration
Many thanks to Ing. Pavel Píša,

Ph.D. for patience, comments and dis-
cussions and to Ing. Michal Sojka,
Ph.D. for discussions.

I, Jiri Hubacek, hereby declare that I
am the author of the following text. All
the citations and references are complete
and properly named.

. .

v

Abstrakt / Abstract
Tato práce popisuje proces aktuali-

zace Open Real-Time Ethernet imple-
mentace Real-Time Publish-Subscribe
protokolu za účelem zajištění kom-
patibility s aktuální verzí protokolu.
Je představena aktuální verze proto-
kolu, implementovaná verze protokolu
a aktuální verze jsou porovnány a
jsou diskutovány změny k zajištění
kompatibility. Dále je prezentována
demonstrační aplikace, budoucí vývoj a
možnosti zajištění bezpečnosti.

Klíčová slova: DDS, RTPS, ORTE,
Ethernet, Real-Time

Překlad titulu: Implementace aktu-
ální verze protokolu DDSI-RTPS pro
distribuované řízení v síti Ethernet

This thesis describes process of up-
grading Open Real-Time Ethernet
implementation of Real-Time Publish-
Subscribe protocol in order to be com-
patible with the current protocol ver-
sion. Actual version of the protocol is
introduced, the original ORTE imple-
mentation version of the protocol and
the current version are compared and
changes required for compatibility are
discussed. Also demo application, fu-
ture development and security protocol
extension are presented.

Keywords: DDS, RTPS, ORTE,
Ethernet, Real-Time

vi

Contents /
1 Introduction .1
2 Technology overview2
2.1 DDS .2
2.2 DCPS. .2
2.3 RTPS .2
2.4 ORTE .3

3 Actual RTPS protocol4
3.1 Structure Module4

3.1.1 Participant5
3.1.2 Writer Endpoint5
3.1.3 Reader Endpoint6
3.1.4 History Cache6
3.1.5 Cache Change6
3.1.6 Participant Proxy7
3.1.7 Reader Proxy7
3.1.8 Writer Proxy7

3.2 Messages Module8
3.2.1 Header .9
3.2.2 Submessage Header9
3.2.3 Interpreter Submessages . . .9
3.2.4 Entity Submessages9

3.3 Behavior Module 10
3.3.1 Interoperability 10
3.3.2 State Maintenance 11
3.3.3 Stateless Writer 11
3.3.4 Stateless Reader 11
3.3.5 Stateful Writer 12
3.3.6 Stateful Reader 12

3.4 Discovery Module 12
3.4.1 SPDP. 13
3.4.2 SEDP. 13

3.5 RTPS 1.0 . 13
3.5.1 Structure Module 13
3.5.2 Messages Module 14
3.5.3 Behavior Module 14
3.5.4 Discovery Module 14

4 Required changes in ORTE 15
4.1 ORTE specific 16
4.2 Structure Module 17

4.2.1 Participant 17
4.2.2 Endpoints 19
4.2.3 History Cache 21
4.2.4 Proxy Entities. 22

4.3 Messages Module 22
4.3.1 Header . 22
4.3.2 Submessage Header 22

4.3.3 Message Interpret 23
4.3.4 Data Submessage 23

4.4 Behavior Module 24
4.4.1 Stateless Writer 24
4.4.2 Stateless Reader 24

4.5 Discovery Module 25
4.5.1 SPDP. 25
4.5.2 SEDP. 25

4.6 Shape Demo. 26
5 Testing of implementation 28
5.1 ORTE to OpenDDS 28
5.2 ORTE to ORTE 30

6 Future Development 31
6.1 Stateful Endpoints 31
6.2 Refactoring . 31
6.3 Directory Structure 31
6.4 DDS API . 31
6.5 Backward compatibility 31
6.6 Use Cases . 32

7 Shape for Android 33
7.1 Shape demo . 33
7.2 Familiarization with ORTE . . . 33
7.3 Classes. 34
7.4 Compatibility 34

8 Security for DDS 36
8.1 Threats . 36
8.2 Securing of messages 37
8.3 Plugin architecture 38

8.3.1 Authentication plugin . . . 38
8.3.2 Access Control plugin . . . 38
8.3.3 Cryptographic plugin 38
8.3.4 Logging plugin 39
8.3.5 Data Tagging plugin 39

8.4 Interoperability 40
8.4.1 Requirements 40
8.4.2 Considerations 40

8.5 Implementation 41
8.5.1 Builtin Endpoints 41
8.5.2 Builtin Plugins 41

9 Conclusion . 42
References . 43

A Symbols . 45
B OpenDDS testing 46
C ORTE testing . 49
D Attached Material 50

vii

Tables / Figures
4.1. EntityKind octet 20
4.2. Port computation constants . . . 25

2.1. DCPS application model.2
3.1. Structure Module diagram.4
3.2. Structure of RTPS message.8
7.1. Shape demo . 33
7.2. Shape for Android 35
8.1. Plugin Architecture Model 39
C.1. Wireshark capture 49

viii

Chapter 1
Introduction

The Real-Time Publish-Subscribe (RTPS)[1] is the protocol of Data Distribution Ser-
vice (DDS)[2] family. It supports Data-Centric Publish-Subscribe communication for
real-time applications in a decentralized network. Specification of protocol is maintained
by Object Management Group[3] - international, open membership, not-for-profit tech-
nology standards consortium, since version 1.0 on February 2002 till version 2.2 on
September 2014. The first RTPS protocol version was standardized after ORTE release,
ORTE was used as proof of concept. Also some interesting projects as aerodynamic
wind tunel, networked vehicle systems and Eurobot2008 [4] implemented ORTE.

This thesis aims on upgrading ORTE implementation of RTPS protocol in order
to achieve compatibility with the latest standard version 2.2. Good understanding of
RTPS standard nad actual ORTE implementation is required. In Chapter 1, there is
an introduction to RTPS and ORTE. Chapter 3 provides overview of the latest RTPS
protocol version 2.2 with the section dedicated to comparison with version 1.0 of the
protocol. Changes to achieve the compatibility with version 2.2 of the RTPS protocol
are covered in chapter 4, chapter 5 documents results of updated ORTE implementation
testing and possible future development is disussed in 6. In chapter 7, demo application
of ORTE called Shape for Android is introduced. Demonstration application based on
the original ORTE implementation has been developed as part of the preparation for
main work to gain experience with the RTPS protocol and its implementation. Security
considerations and proposal for security protocol extension is discussed in chapter 8.

1

Chapter 2
Technology overview

2.1 DDS
There are two main models used in Data Distribution Services. Centralized model with
the single point of failure via which all the communication goes is vulnerable. When
the central server is unreachable, the whole network is non-functional. By contrast,
decentralized approach has no central server, single point of failure. When one node of
the network is non-functional, the rest of the network can continue in data transfers.

2.2 DCPS
In the Data-Centric Publish-Subscribe network, data are sent by Publishers and received
by Subscribers. It depends on application what kind of data is Published, Subscribed,
how are data sent and if at all. Data-Centric Publish-Subscribe network is responsible
for delivery of right data between right nodes with right parameters.

Figure 2.1. Example of DCPS application model ([5]).

2.3 RTPS
Real-Time Publish-Subscribe is wire protocol developed to ensure interoperability be-
tween DDS implementations. It’s fault tolerant (decentralized), scalable, tunable, with
plug-and-play connectivity and ability of best-effort and reliable communication in real
time applications.

2

. 2.4 ORTE

2.4 ORTE
Open Real-Time Ethernet (ORTE)[6] is the implementation of RTPS 1.0. It’s library
implemented in Application layer of UDP/IP stack, written in C, with own API, under
open source license and therefore it’s easy to port ORTE to many platforms, where
UDP/IP stack is implemented.

3

Chapter 3
Actual RTPS protocol

When the User Application needs to exchange Data Object beetween multiple nodes
in the network (Entities in the Domain in terms of RTPS), the RTPS protocol suits
perfectly.

This chapter follows Platform Independent Model (PIM) of the RTPS protocol in-
troduced in [1]. PIM is divided in four modules: basic objects are discussed in section
3.1, messages used for communication are described in 3.2 and behavior - messages
exchange between objects - is discussed in 3.3. The last module of discovering Domain
is convered in section 3.4. In the last section 3.5, versions 2.2 and 1.0 of RTPS protocol
are compared.

3.1 Structure Module
The communication take place in the RTPS Domain, consisting of multiple Entities.
Each Entity can be either Participant or Endpoint, where Endpoints can be specialized
as Writer or Reader. Each Endpoint has it’s own database of Cache Changes called
History Cache. The whole structure is shown in figure 3.1.

Figure 3.1. Structure Module diagram (chapter 7.1 in [1]).

It should be mentioned that there is also proxy Participant - Participant Proxy
and another two proxy Endpoints - Reader Proxy and Writer Proxy. These objects
represents remote Participants and their Writers and Readers and are introduced in
chapter 8.4 in [1]. The local Participant maintains the topology of the Domain and
needs to store information about remote Participants. For this purpose, Participant
Proxy is used. Sometimes, local Writer needs to store information about remote Reader
and therefore, Reader Proxy is used. Also local Readers are sometimes in need of storing
information about remote Writers and then Writer Proxy is used.

4

. 3.1 Structure Module

3.1.1 Participant
Domain Participant is container for Endpoints within the same application. It has the
following attributes:.GUID.Protocol Version.Vendor Id.Default Unicast Locator List.Default Multicast Locator List

Where the GUID is globally-unique RTPS-entity identifier consisting of GUID Pre-
fix and EntityId, Protocol Version is version of actual implementation and vendor of
implementation is represented by Vendor Id.

Default Unicast Locator List and Default Multicast Locator List are lists of IP address
and port combinations used to send user data traffic to, when there is no such an
information contained in Writers of the Participant.

Each Endpoint within the same Participant has to have the same GUID Prefix.

3.1.2 Writer Endpoint
Writer is the source of Cache Changes which are sent to Readers. It has the following
attributes:.GUID.Topic Kind.Reliability Level.Unicast Locator List.Multicast Locator List.Push Mode.Heartbeat Period.Nack Response Delay.Nack Suppression Duration.Last Change Sequence Number.Writer Cache

Where Topic Kind can be either NO KEY or WITH KEY. WITH KEY is used,
when the topic consists of more than one data instances identified by key. Reliability
Level can be either BEST EFFORT or RELIABLE, saying if it should be verified that
Cache Change reached the Reader.

Unicast Locator List and Multicast Locator List are lists of IP address and port
combinations on which is the Writer listening. If lists are empty, it’s presumed that
Writer is listening on Default Unicast Locator List respective Default Multicast Locator
List of the Participant.

Push Mode defines if data are sent (Push Mode is set to TRUE) or Heartbeats with
Sequence Numbers of available Cache Changes (Push Mode is set to FALSE). In the
second case, Reader has to ask for Cache Change delivery.

Heartbeat Period, Nack Response Delay and Nack Suppression Duration are protocol
tunning parameters, which defines announce interval of available data, how long the
response to data request should be delayed respective how long can be request for just
sent data ignored.

Last Change Sequence Number is the highest Sequence Number in History Cache
and the Writer Cache is the History Cache of the Writer containing Cache Changes
associated with the Writer itself.

5

3. Actual RTPS protocol .
3.1.3 Reader Endpoint

Reader is the destination of Cache Changes which are sent by Writers. It has the
following attributes:.GUID.Topic Kind.Reliability Level.Unicast Locator List.Multicast Locator List.Expects Inline Qos.Heartbeat Response Delay.Heartbeat Suppression Duration.Reader Cache

Where Unicast Locator List and Multicast Locator List are lists of IP address and
port combinations on which is the Reader listening. If there is no IP address and port
combination in list, it’s presumed that Reader is listening on Default Unicast Locator
List respective Default Multicast Locator List of the Participant.

The value of Expects Inline Qos is set to TRUE if the Reader expects in-line Qos to
be sent along with data.

Heartbeat Response Delay and Heartbeat Suppression Duration are time parameters
used for protocol tunning, which defines how long the acknowledgement of data should
be delayed respective how long can be Heartbeat announces ignored after just received
Heartbeat.

Reader Cache is the History Cache of the Reader containing Cache Changes associted
with the Reader itself.

3.1.4 History Cache
History Cache is the database of Cache Changes serving as the API for Writer and
Reader Endpoints. It has the following attributes:.Changes

Where Changes are Cache Changes stored in the History Cache.

3.1.5 Cache Change
Is the change of the data object that should be propagated from the Writer to the
matching Readers. It has the following attributes:.Change Kind.Writer GUID. Instance Handle.Sequence Number.Data value

Where Change Kind1) is used to distinguish the change that was made to a data
object. Writer GUID is the identifier of the source of the Cache Change, Instance
Handle identifies the instance of the data object (in DDS the value of the key is used)
and the Sequence Number is unique identifier of the Cache Change in the History Cache
of the Endpoint. The last attribute, Data value, represents data associated to the Cache
Change.
1) Possible values are: ALIVE, NOT ALIVE DISPOSED and NOT ALIVE UNREGISTERED

6

. 3.1 Structure Module

3.1.6 Participant Proxy
Represents the information about remote Participant in the Domain. It has the follow-
ing attributes:.Protocol Version.Guid Prefix.Vendor Id.Expects Inline Qos.Available Builtin Endpoints.Metatraffic Unicast Locator List.Metatraffic Multicast Locator List.Default Multicast Locator List.Default Unicast Locator List.Manual Liveliness Count.Lease Duration

Where Protocol Version specify the version of the RTPS protocol implementation
used by remote Participant and the vendor of this implementation is represented by
the Vendor Id. Guid Prefix is the common part of the GUID for the Participant and
all of it’s Endpoints, Expects Inline Qos describes whether the Readers of the remote
Participant expects in-line Qos sent along with data and Available Builtin Endpoints
parameter specify which builtin Endpoints used for plug-and-play interoperability are
available by remote Participant.

Metatraffic Unicast Locator List and Metatraffic Multicast Locator List are IP address
and port combinations that can be used to reach the remote builtin Endpoints and
Default Unicast Locator List and Default Multicast Locator List are IP address and
port combinations that can be used to reach the remote Endpoints defined by user that
serve for user data exchange.

Manual Liveliness Count is used to implement MANUAL BY PARTICIPANT live-
liness Qos and Lease Duration specify the time period for which the remote Participant
should be considered alive.

3.1.7 Reader Proxy
Represents the information about remote Reader. It has the following attributes:.Remote Reader GUID.Unicast Locator List.Muticast Locator List.Changes for Reader.Expects Inline Qos. Is Active

Where Remote Reader GUID is unique identifier of remote Reader, Unicast Locator
List and Multicast Locator List are lists of IP address and port combinations on which
is the remote Reader listening, Changes for Reader is the list of Cache Changes that
should be sent to the remote Reader, Expects Inline Qos attribute specify if the remote
Reader expects in-line Qos to be sent along with data and attribute Is Active is set to
TRUE if the remote Reader is responsive to the local Writer.

3.1.8 Writer Proxy
Represents the information about remote Writer. It has the following attributes:

7

3. Actual RTPS protocol .
.Remote Writer GUID.Unicast Locator List.Multicast Locator List.Changes from Writer

Where Remote Writer GUID is unique identifier of remote Writer, Unicat Locator
List and Multicast Locator List are lists of IP address and port combinations on which
is the remote Writer listening and Changes from Writer is the list of Cache Changes
that are received or expected from the remote Writer.

3.2 Messages Module
For communication between Writers and Readers, RTPS messages are used. Each
message consists of Header and one or more Submessages, where each Submessage
has it’s own Submessage Header and Submessage Elements based on the kind of the
Submessage. The structure of RTPS message is shown in figure 3.2.

Figure 3.2. Structure of RTPS message (chapter 8.3.3 in [1]).

The interpretation of Submessage may depend on previously received Submessages
within the same Message, therefore information shared between these Submessages

8

. 3.2 Messages Module

must be stored. Message Receiver ensures this function by storing information about
Source Protocol Version, Source Vendor Id, Source GUID Prefix, Destination GUID
Prefix, Unicast Reply Locator List, Multicast Reply Locator List, Have Timestamp and
Timestamp. State of the Message Receiver is reset to default values each time the
Message is received.

Submesssages can be divided to Entity Submessages which target an RTPS Entity
affecting it’s behavior and Interpreter Submessages changing the state of the Message
Receiver.

3.2.1 Header
The first change in the state of Message Receiver is made by Header of the received
Message. The Header identify RTPS Message, Protocol Version used, Vendor of the
implementation and common part of GUID - GUID Prefix - used to interpret source
EntityId in the Submessage.

3.2.2 Submessage Header
Submessage Header is included in each Submessage, it has the following attributes:.Submessage Kind.Flags.Submessage Lenght

Where Submessage Kind specify the meaning of Submessage, Flags is an array of 8
bits, which identifies endianness used in the Submessage (LSB), the presence of optional
elements and possibly changes the interpretation of the Submessage. The Submessage
Length specify the length of the Submessage.

3.2.3 Interpreter Submessages
List of Submessages and their changes to the Message Receiver follows.

InfoDestination is sent from Writer to Reader to modify the Destination GUID
Prefix value of Message Receiver used to interpret Reader EntityId in the Submessage.

InfoReply is sent from Reader to Writer to explicitly define where to send a reply to
the Submessage that follow.

InfoSource modifies the source Protocol Version, Vendor Id and GUID Prefix of the
Submessages that follow.

InfoTimestamp is used to send the Timestamp that apply to the Submessages that
follow.

3.2.4 Entity Submessages
List of Submessages and their interpretation follows.

AckNack is sent by Reader to inform the Writer about which sequence numbers are
received and which are missing.

Data is sent from Writer to Reader and is used to inform about changes to a data
object. Changes may be in value or in lifecycle of the object.

DataFrag is used when the Data Submessage exceeds the MTU of lower communi-
cation layers, otherwise it has the same function as Data Submessage.

Gap sent by Writer indicates to the Reader which sequence numbers are no longer
relevant.

Heartbeat announces to Readers sequence numbers of Cache Changes that are avail-
able in Writer.

9

3. Actual RTPS protocol .
HeartbeatFrag is used when fragmentation occures and until all fragments are avail-

able. Once all fragments are available, Heartbeat Submessage is used.
NackFrag is sent by Reader to inform the Writer about which fragments are missing.
Pad is padding message used for desired alignment. It has no other meaning.

3.3 Behavior Module
The purpose of the RTPS protocol can be simplified to propagating Cache Change from
Writer to Reader. The manner of propagation in relation to properties of communica-
tion is discussed in this section. There are two main properties of communication:.Topic Kind.Reliability Level

Where Topic Kind can be either NO KEY or WITH KEY and Reliability Level can
be either BEST EFFORT or RELIABLE. Pairing of Writers with Readers must ac-
knowledge the following restrictions.

Writer and Reader can be paired up and the communication may begin when the
Topic Kind matches, because both Endpoints relate to the same DDS Topic which is
either NO KEY or WITH KEY.

The reliability depends on the Reader. If the Reader has the Reliability Level set
to RELIABLE, the corresponding Writer has to also have the Reliability Level set to
RELIABLE, while the Reader has the Reliability Level set to BEST EFFORT, the
Reliability Level of the corresponding Writer doesn’t matter.

The behavior required for interoperability between implementations is summarized in
section 3.3.1. In chapter 8.4 in [1], there are two reference implementations of Endpoints
that are summarized in section 3.3.2. In the remaining sections, these implementations
are discussed in detail.

3.3.1 Interoperability
In order to be compliant with protocol specification and interoperable with other im-
plementations, the implementation of the RTPS protocol must satisfy the following
requirements..General Requirements:

. Only RTPS messages are used for communication.. Message Receiver must be implemented.. Timing characteristics must be tunable.. Simple Participant Discovery Protocol must be implemented.. Simple Endpoint Discovery Protocol must be implemented.. Writer Liveliness Protocol must be implemented..Required Writer Behavior:

. Data must be sent in-order.. If requested, in-line Qos must be included..Additional requirements for Reliable Writer:

. Periodic HEARTBEAT messages must be sent.. Response to ACKNACK message must be eventually sent..Required Reader Behavior:

10

. 3.3 Behavior Module

. No specific behavior needed as best-effort reader is completely passive..Additional requirements for Reliable Reader:

. Response to HEARTBEAT with final flag not set must be eventually sent.. Response to HEARTBEAT indicating missing sample must be eventually sent.. Once acknowledged, always acknowledged.. ACKNACK can be only sent in response to HEARTBEAT.

Writer Liveliness Protocol is required by DDS to exchange information about the
Liveliness of Writers by Participants. Builtin Endpoints are used for sending samples at
rate faster than the smallest lease duration among Writers sharing the same liveliness
Qos.

3.3.2 State Maintenance
In [1], two reference implementations of RTPS protocol are introduced.

Stateless implementation maintains no state about remote Endpoints, which suits
for best-effort communication over multicast. While this implementation scales well in
large systems and memory usage is reduced, additional bandwidth may be required.

Stateful implementation, on the other hand maintains full state on remote Endpoints.
More memory is needed and scalability is limited, but bandwidth usage decreases.
Also, strict reliable communication and Qos based filtering on the Writer’s side may
be applied.

It’s important to mention that these are reference implementations. It means that
there is no need for two kinds of Endpoints - Stateless and Stateful, because the only
behavior needed for interoperability is introduced in 3.3.1. Reference implementations
just helps to understand and implement this behavior. Both reference implementa-
tions, Stateless as well as Stateful may be BEST EFFORT, RELIABLE, NO KEY or
WITH KEY. Exceptions are discussed and explained below.

3.3.3 Stateless Writer
To be compliant with 3.3.2, Stateless Writer must send data in order and include in-line
Qos if needed. BEST EFFORT Stateless Writer has no other requirements and data
are sent each Resend Data Period or on demand by user application.

If Stateless Writer is RELIABLE, periodic HEARTBEATs with available data are
sent. Sending of data then depend on Push Mode. If Push Mode is TRUE, data are
sent each Resend Data Period or on demand by user application, if it’s FALSE, data
are stored in History Cache of Writer and sent only in response to ACKNACK.

Readers uses ACKNACK messages to request interesting data from Reliable Writer.
DATA submessage is sent if data are still available in Writer’s History Cache or GAP
submessage indicating that data are no longer relevant.

Even the bandwidth can be reduced if the information of acknowledged Sequence
Numbers would be stored for remote Readers, it’s not interoperability issue.

3.3.4 Stateless Reader
The function of BEST EFFORT Stateless Reader is to receive and process data. How-
ever, to ensure RELIABLE communication, the problem arise, because at least sequence
numbers of announced, requested but not received Cache Changes are needed, so some
information about remote Writer has to be stored and therefore Reader can’t be State-
less.

11

3. Actual RTPS protocol .
As mentioned above, this is the only exception. Stateless Reader can’t be RELI-

ABLE.

3.3.5 Stateful Writer
For each remote Reader, Stateful Writer stores information in Reader Proxy structure.
When Cache Change is added to the History Cache of Writer, filtering can occures to
determine if Cache Change is relevant for Reader and consequently stored in Changes
for Reader of Reader Proxy.

BEST EFFORT traffic is sent on demand by user application to each Reader Proxy
whenever there are any unsent changes in Changes for Reader.

For RELIABLE Stateful Writer, periodic HEARTBEATs must be sent to each Reader
Proxy. Sending of data then depends on Push Mode - when the value is TRUE, Cache
Change pass the filter and is added to Changes for Reader, the Cache Change is marked
as unsent and will be sent as soon as the needed resources would be available. When
tha value of Push Mode is FALSE, only HEARTBEATs are sent and Reader has to
ask for data by sending ACKNACK for interested data. In response to ACKNACK,
Reliable Writer then sends DATA submessage if the data are still available or GAP
submessage when the data are no longer relevant.

It should be mentioned that in general, Reader’s Entity Id of submessages is set
to ENTITYID UNKNOWN, stating that each Reader of remote Participant should
receive the data. The only situation when Writer knows exactly the destination and
therefore may set Reader’s Entity Id properly is sending DATA submessage in response
to ACKNACK by Stateful Writer.

3.3.6 Stateful Reader
For BEST EFFORT traffic, Stateful Reader stores information about expected Se-
quence Number for each remote Writer. This information is stored in Writer Proxy
structure. Storing Sequence Number ensures that there are no duplicated nor out-of-
order data changes.

If the communication is RELIABLE and DATA submessage or GAP is received,
expected Sequence Number is set correspondingly. When HEARTBEAT is received,
databases of missing and lost changes are updated for Writer Proxy and the rest of
behavior depends on Final and Liveliness Flags. When both, Final and Liveliness
Flags are set, nothing happens. When Liveliness Flag is not set, then ACKNACK with
missing changes may be sent and when Final Flag is not set, ACKNACK must be sent.

3.4 Discovery Module
The communication as described in 3.3 between Endpoints described in 3.1 by the Mes-
sages described in 3.2 assumes that both ends of communication are known. Discovery
Module introduces two processes of probing Domain due to discovering Participants
called Simple Participant Discovery Protocol and theirs Endpoints known as Simple
Endpoint Discovery Protocol.

SPDP and SEDP are only discovery protocols described in RTPS specification and
have to be implemented in order to enable interoperability between implementations.
However vendor specific discovery protocols can be implemented in addition to overcome
some drawbacks of Simple Discovery Protocols.

The difference between Builtin and User-defined Endpoints needs to be clear. Builtin
Endpoints are predefined by RTPS specification and once a Participant is discovered,

12

. 3.5 RTPS 1.0

it can be assumed that Builtin Endpoints are present, while User-defined Endpoints are
defined by user application and it’s purpose and can’t be known in advance. Therefore
the purpose of Discovery Module can be roughly simplified to discovering User-defined
Endpoints of remote Participants with help of Builtin Endpoints. Builtin Endpoints are
used by Simple Discovery Protocols.

3.4.1 SPDP
Best-effort Writer with predefined Entity Id1) and Best-effort Reader with predefined
Entity Id2) are used to exchange SPDPdiscoveredParticipantData containing Partici-
pant Proxy information about remote Participant. This traffic is sent to predefined IP
address and port discussed in PSM in [1]. Remote Participants and their attributes are
discovered by SPDP.

3.4.2 SEDP
Reliable Writer with predefined Entity Id3) and Reliable Reader with predefined Entity
Id4) are used to exchange DiscoveredWriterData containing information about Writers
of remote Participant.

Reliable Writer with predefined Entity Id5) and Reliable Reader with predefined
Entity Id6) are used to exchange DiscoveredReaderData containing information about
Readers of remote Participant.

The last pair of Reliable Endpoints7) can be used to exchange DiscoveredTopicData,
but these Endpoints aren’t mandatory and the interoperability is not affected by them.

Endpoints of remote Participants are discovered by SEDP.

3.5 RTPS 1.0
ORTE is one of the implementations of the RTPS protocol used as proof of concept to
standardize RTPS 1.0. This section discuss the difference between version 1.0 and 2.2
of the RTPS protocol, viewed from the perspective of the version 2.2.

3.5.1 Structure Module
Important change in version 2.2 is that the GUID consists of Guid Prefix (12B) and
Entity Id (4B), while in version 1.0, GUID consists of Host Id (4B), Application Id (4B)
and Object Id (4B). Entity Id may be compared with Object Id and Guid Prefix corre-
sponds to Host Id and Application Id. The size of GUID in version 2.2 was increased
by 4B.

New Locator type is introduced in version 2.2, containing IP address, port and
kind. Locator type is introduced because of IPv6, it’s kind can be either LOCA-
TOR KIND UDPv4 or LOCATOR KIND UDPv6.

1) ENTITYID SPDP BUILTIN PARTICIPANT WRITER
2) ENTITYID SPDP BUILTIN PARTICIPANT READER
3) ENTITYID SEDP BUILTIN PUBLICATIONS WRITER
4) ENTITYID SEDP BUILTIN PUBLICATIONS READER
5) ENTITYID SEDP BUILTIN SUBSCRIPTIONS WRITER
6) ENTITYID SEDP BUILTIN SUBSCRIPTIONS READER
7) ENTITYID SEDP BUILTIN TOPIC WRITER and ENTITYID SEDP BUILTIN TOPIC READER

13

3. Actual RTPS protocol .
3.5.2 Messages Module

The structure of the RTPS Header remains same, but because of change in size of
GUID in version 2.2, size of the Header also increased. Host Id and Application Id are
replaced by Guid Prefix indeed.

The structure of the Submessage remains completely same.
Following are changes in Submessages:.VAR is deprecated. ISSUE is deprecated.ACK is renamed to ACKNACK. INFO REPLY is renamed to INFO REPLY IP4. INFO REPLY is introduced.NACK FRAG is introduced.HEARTBEAT FRAG is introduced.DATA is introduced.DATA FRAG is introduced

3.5.3 Behavior Module
Writers are divided to CSTWriters and Publications, Readers to CSTWriters and Sub-
scriptions in version 1.0.

CSTWriters and CSTReaders are builtin “endpoints” used for Composite State
Transfer protocol and the communication between them is reliable. Messages used are
VAR, GAP, HEARTBEAT and ACK. CSChanges are exchanges between CSTWriters
and CSTReadres.

Publications and Subscriptions are used for user data exchange and the communica-
tion can be either reliable or best-effort. Messages used are ISSUE, HEARTBEAT and
ACK. User data in ISSUE messages are represented in CDR format.

In version 2.2, only difference between builtin and user defined Endpoints are prede-
fined Entity Ids. Both, builtin and user defined Endpoints can be reliable or best-effort
and DATA, HEARTBEAT, GAP and ACKNACK submessages are used independently
on the purpose of the communication.

3.5.4 Discovery Module
In version 1.0, two kinds of “entities” are discussed in specification - Managers and
Managed Applications. The purpose of Managers is Managed Application discovery
and the purpose of Managed Applications is to exchange user data. Each Managed
Application needs to be registered to one of the Managers.

Discovery in version 1.0 is ensured by following protocols:. Inter-Manager Protocol allows Managers to discover each other..Manager-Discovery Protocol allows every Managed Application to discover other
Managers..Registration Protocol allows Managers to find theirs Managed Applications..Application-Discovery Protocol is used by Managed Application to discover other
Managed Applications..Services-Discovery Protocol allows to find Publications and Subscriptions in other
Managed Appliations.

In version 2.2, SPDP and SEDP are only required protocols used for discovery.

14

Chapter 4
Required changes in ORTE

In this chapter, changes required for ORTE to be compatible with the version 2.2 of
the RTPS protocol are discussed. Following is the state of work, where what is done is
blue, working is green, not finished is red and needless for interoperability is black..Structure Module

. Participant (tested). History Cache (tested). Cache Change (tested). Participant Proxy (tested). Writer Endpoint (working). Reader Endpoint (working). Reader Proxy (working). Writer Proxy (working).Messages Module

. Header (tested). Message Receiver (tested). Data (tested). InfoDestination (done). InfoReply (done). InfoSource (done). InfoTimestamp (done). Pad (done). AckNack (working). Gap (working). Heartbeat (working). DataFrag. HeartbeatFrag. NackFrag.Behavior Module

. Best-Effort Stateless Writer (tested). Best-Effort Stateless Reader (tested). Reliable Stateless Writer (not finished). Reliable Stateful Reader, Writer Proxy (not finished). Best-Effort Stateful Writer. Reliable Stateful Writer, Reader Proxy. Best-Effort Stateful Reader.Discovery Module

. SPDP (tested). SEDP (not finished)

15

4. Required changes in ORTE .
In section 4.1, specific types used in ORTE are introduced, their purpose and legacy

of the original implementation. In 4.2, 4.3, 4.4 and 4.5, implementation of each module
from chapter 3 is discussed.

4.1 ORTE specific
In RTPS 1.0 implementation, the core structure is ORTEDomain. Following are specific
types contained in ORTEDomain structure:.TaskProp.TypeEntry.ObjectEntry.PSEntry.CSTPublications.CSTSubscriptions

TaskProp maintains properties of Tasks, including own socket, thread and
MessageBuffer (used for sending and receiving data) for each Task. There
are five Tasks: taskRecvUnicastMetatraffic, taskRecvMulticastMetatraffic,
taskRecvUnicastUserdata, taskRecvMulticastUserdata and taskSend.

TypeEntry is database of Types used for data encapsulation, containing name of Type
and functions to serialize and deserialize it.

The database of all “endpoints” is stored in ObjectEntry. In ORTEDomain, variable
objectEntry of type ObjectEntry is the root of 3-layered AVL tree ([7]), where each
layer correspond to Host Id, Application Id and Object Id. Also, Application Id layer
serves as the root for Hierarchical Timer ([7]) used for timing in ORTE.

PSEntry, CSTPublications and CSTSubscriptions are databases of Publications
and Subscriptions. In context of version 1.0 of the RTPS protocol, “endpoints” used
for user data communication are stored here.

Builtin “endpoints” are defined directly in ORTEDomain structure, there are nine of
CSTWriters and CSTReaders used for CST protocol:.writerApplicationSelf.readerManagers.readerApplications.writerManagers.writerApplications.writerPublications.readerPublications.writerSubscriptions.readerSubscriptions.

Domain is abstract term involving communication of nodes that have something in
common. The core structure in implementation of version 2.2 of RTPS protocol was
therefore renamed to ORTEDomainParticipant. Following types persisted:.TaskProp.TypeEntry.ObjectEntry

TaskProp has the same purpose as in the original implementation, just some of names
changed to be more appropriate (see below).

16

. 4.2 Structure Module

TypeEntry remains completely same.
Because of substitution of Host Id and Application Id for Guid Prefix, ObjectEntry

changed from 3-layered to 2-layered AVL tree ([7]), where the first layer corresponds to
Guid Prefix and the second one to Entity Id. The root for Hierarchical Timer ([7]) is
at the Guid Prefix layer.

ORTEEndpoint structure was added to ObjectEntry at the Entity Id layer.
ORTEEndpoint can be Stateless Writer or Stateless Reader at present (see 4) and
Stateful Writer, Stateful Reader, Participant Proxy, Reader Proxy and Writer Proxy
will be added in the future. So one database containing all Endpoints in Domain
is used for each Participant and there is no need for directly defined Endpoints or
separate database of publishers and subscribers.

4.2 Structure Module
Examples of implementation of basic types used in RTPS protocol follow.

typedef uint8_t *GuidPrefix;
typedef uint32_t EntityId;
typedef struct {

GuidPrefix guidPrefix;
EntityId entityId;

} GUID_RTPS;

Because of AVL tree [7] implementation, *GuidPrefix is a pointer.

typedef struct {
int32_t kind;
uint32_t port;
uint8_t address[16];

} Locator;

typedef struct {
int32_t seconds; // time in seconds
uint32_t fraction; // time in seconds / 2ˆ32

} NtpTime;

Implementation follow Platform Specific Model (PSM) of the RTPS protocol intro-
duced in [1].

4.2.1 Participant
In the correspondence to PIM (3.1) and as mentioned above, ORTEDomain structure
changed to ORTEDomainParticipant:

struct ORTEDomainParticipant {
uint32_t domainId;
ObjectEntryEID *myself;
uint32_t participantId;

GUID_RTPS guid;
ProtocolVersion protocolVersion;
VendorId vendorId;

Locator *defaultUnicastLocatorList;

17

4. Required changes in ORTE .
uint32_t defaultUnicastNumLocators;
Locator *defaultMulticastLocatorList;
uint32_t defaultMulticastNumLocators;
Locator *sendingLocator;
uint32_t sendingNumLocators;

TaskProp taskRecvUnicastDiscoveryTraffic;
TaskProp taskRecvMulticastDiscoveryTraffic;
TaskProp taskRecvUnicastUserTraffic;
TaskProp taskRecvMulticastUserTraffic;
TaskProp taskSend;

// db of types (ORTETypeRegister)
TypeEntry typeEntry;
// db of objects (ObjectEntryGP, ObjectEntryEID)
ObjectEntry objectEntry;

};

Identifiers of ORTEDomainParticipant are domainId, participantId and guid,
where guid is generated as discussed in [8]. The version of implementation is stored in
protocolVersion and the vendor of implementation in vendorId attributes. Domains
are distinguished by domainId, only Participants in the same Domain can communi-
cate. Participants within the Domain are distinguished by unique participantId.

Pointer to Locator and the number of elements is used for Locator Lists implemen-
tation. Pointer to Locator supersedes function of array for which fixed number of
elements have to be known in advance.

For sending Task, there is no difference between Discoverry, User, Unicast nor Mul-
ticast traffic, so there is only one socket, thread and MessageBuffer for data sending.
However each kind of receiving traffic like Unicast Discovery, Multicast Discovery, Uni-
cast User or Multicast User has it’s own Task and so it’s own socket, thread and
MessageBuffer. This approach allows to process multiple kinds of traffic received on
different ports at once.

Because ORTEDomainParticipant containing database of all Entities in Domain is
shared between Tasks (and so between all threads), rwlock and mutex are used for
Endpoints and theirs related Timers stored in objectEntry in order to prevent access
from multiple threads. Attribute *myself is used to store pointer to the Participant
in the database of all Entities. The root for database of all Endpoints is objectEntry,
the root for database of Types is typeEntry.

Basic functions for ORTEDomainParticipant are:

extern ORTEDomainParticipant *
ORTEDomainParticipant_new(

uint32_t domainId,
uint32_t participantId
);

extern void
ORTEDomainParticipant_start(

ORTEDomainParticipant *dp
);

extern Boolean
ORTEDomainParticipant_destroy(

18

. 4.2 Structure Module

ORTEDomainParticipant *dp
);

Where ORTEDomainParticipant_new and ORTEDomainCreate functions can be
compared - both return core structure (ORTEDomainParticipant in version 2.2 and
ORTEDomain in version 1.0) and initialize core attributes, structures and tasks.

The ORTEDomainParticipant_start function can be compared to ORTEDomainStart
- both are used to start threads for corresponding Tasks.

The ORTEDomainParticipant_destroy and ORTEDomainDestroy functions can be
compared - both are used to release sources related to the core structure.

4.2.2 Endpoints
Because CSTWriter evolves to Stateful Writer and CSTReader to Stateful Reader, new
structures StatelessWriter and StatelessReader are introduced in correspondence
to reference implementation.

struct StatelessWriter {
// it’s Entity
GUID_RTPS guid;

// it’s Endpoint
TopicKind topicKind;
ReliabilityKind reliabilityLevel;
Locator *unicastLocatorList;

uint32_t unicastNumLocators;
Locator *multicastLocatorList;

uint32_t multicastNumLocators;

// it’s Writer
Boolean pushMode;
Duration heartbeatPeriod;

HTimFncUserNode heartbeatTimer;
Duration nackResponseDelay;

HTimFncUserNode nackResponseTimer;
Duration nackSuppressionDuration;

HTimFncUserNode nackSuppressionTimer;
SequenceNumber lastChangeSequenceNumber;

// it’s StatelessWriter
Duration resendDataPeriod;

HTimFncUserNode resendDataTimer;

// Associations
ul_list_head_t writerCache; // HistoryCache
ul_list_head_t readerLocators;

// others
gavl_node_t node; // StatelessPublications
ObjectEntryEID *objectEntryEID;
ORTETypeRegister *typeRegister;

// HistoryCache
SequenceNumber firstSN;

19

4. Required changes in ORTE .
SequenceNumber lastSN;

};

Identifier of StatelessWriter is guid. Writer is Endpoint contained in Participant,
therefore it has the same Guid Prefix and differs by Entity Id. Predefined Entity Ids
are used for Builtin Endpoints. Builtin Endpoints differs from User Endpoints by the
last octet (called entityKind) of Entity Id, see table 4.1. This description apply for each
Entity.

Kind of Entity User-defined Entity Built-in Entity
unknown 0x00 0xc0
Participant N/A 0xc1
Writer (with Key) 0x02 0xc2
Writer (no Key) 0x03 0xc3
Reader (no Key) 0x04 0xc4
Reader (with Key) 0x07 0xc7

Table 4.1. EntityKind octet of an EntityId [1].

Attributes topicKind, reliabilityLevel and pushMode are discussed in 3.3.
Locator Lists and NtpTime or Duration attributes of Writer and their purpose is

discussed in 3.1. For each NtpTime or Duration attribute, function can be inserted into
Hierarchical Timer structure and automatically launched.

The History Cache is implemented as doubly linked list [7] with the head of
writerCache.

Reader Locator wasn’t introduced yet. It is auxiliary structure used by Stateless
Writer, containing information about where to send data. However it mustn’t be con-
fused with Reader Proxy of Stateful Writer, because Reader Locator doesn’t store any
state of Endpoint. Only Locator (IP address, port, kind), if Qos should be included,
requested Cache Changes and unsent Cache Changes1) are stored. List of Reader Lo-
cators is implemented as doubly linked list [7] with the head of readerLocators.

The remaining attributes are mostly auxiliary - node is needed because of AVL
tree impementation, *objectEntryEID is pointer to Writer in database of all Enti-
ties, firstSN and lastSN are Sequence Numbers related to History Cache. Attribute
*typeRegister is pointer to Type associated with Writer, which is used to serialize and
deserialize Data Object related to Writer.

struct StatelessReader {
// it’s Entity
GUID_RTPS guid;

// it’s Endpoint
TopicKind topicKind;
ReliabilityKind reliabilityLevel;
Locator *unicastLocatorList;

uint32_t unicastNumLocators;
Locator *multicastLocatorList;

uint32_t multicastNumLocators;

// it’s Reader
Boolean expectsInlineQos;

1) Requested cache changes and unsent cache changes are used for RELIABLE implementation.

20

. 4.2 Structure Module

Duration heartbeatResponseDelay;
HTimFncUserNode heartbeatResponseTimer;

Duration heartbeatSuppressionDuration;
HTimFncUserNode heartbeatSuppressionTimer;

// it’s StatelessReader

// Associations
ul_list_head_t readerCache; // HistoryCache

// others
gavl_node_t node;
ObjectEntryEID *objectEntryEID;
ORTETypeRegister *typeRegister;

};

Attributes of Stateless Reader have the same meaning as attributes of Stateless Writer
but expectsInlineQos is added, claiming demand of DDS Reader for including Qos
along with data.

4.2.3 History Cache
The content of History Cache is made by Cache Changes - the replacement of
CSChange, which is used as “transfer unit” for all data exchanges in RTPS 2.2.
Because History Cache is implemented as doubly linked list [7], there is no special
structure for History Cache. The next is the structure of Cache Change.

struct CacheChange {
// it’s CacheChange
ChangeKind kind;
GUID_RTPS writerGuid;
InstanceHandle instanceHandle;
SequenceNumber sequenceNumber;

// Associations
uint8_t *data_value;
ul_list_head_t inlineQos;

// Backward Associations
ul_list_node_t nodeListHistoryCache; // for StatelessWriter
ul_list_node_t nodeListRequestedChanges; // for ReaderLocator
ul_list_node_t nodeListUnsentChanges; // for ReaderLocator

};

Attributes of Cache Chage are discussed in 3.1. The pointer to Data Object of user
Application is stored in *data_value attribute.

Inline Qos is sent as Parameter List, the sequence of Parameters. Each Parameter
has it’s own Id, Length and Data, following structure is used for implementation.

typedef struct {
ul_list_node_t node; // for inline Qos
int16_t id;
int16_t length;
union{

CORBA_unsigned_long ulong;

21

4. Required changes in ORTE .
CORBA_long slong;
CORBA_boolean boolean;
NtpTime time;
ProtocolVersion pv;
VendorId vid;
Locator locator;
uint32_t ipv4;
uint32_t port;
struct {

uint8_t guidPrefix[12];
EntityId entityId;

} guid;
uint32_t eid;
uint8_t keyHash[16];
uint8_t statusInfo[4];
uint8_t str[MAX_PARAMETER_LOCAL_LENGTH];

} value;
uint8_t *p_value;

} Parameter;

Inline Qos is implemented as doubly linked list [7] of Parameters. This approach
is same as in version 1.0, only ParameterSequence name changed to Parameter and
attributes of Parameter changed to correspond to version 2.2 types.

Implementation of doubly linked list [7] depends on backward associations.
The implementation of History Cache remains the same - it’s implemented as doubly

linked list [7]. This manner allows to save memory by maintaining only one Cache
Change, pointed from more structures as multiple matched Reader Proxy or Writer
Proxy.

4.2.4 Proxy Entities
While the name changed for CSTRemote Reader and CSTRemoteWriter to Reader
Proxy respective Writer Proxy, the function of this Endpoints remains the same. Partic-
ipant Proxy, Reader Proxy and Writer Proxy stores important attributes of Participant,
Reader respective Writer.

4.3 Messages Module
Generally for Submessages, name of the function responsible for processing of Submes-
sage was changed by adding Process to the name (e.g. RTPSInfoDST function name
changed to RTPSInfoDSTProcess).

4.3.1 Header
Because of substitution of Host Id and Application Id for Guid Prefix (3.5), the Header
of RTPS messages is changed appropriately - instead of 4B for Host Id and 4B for
Application Id, 12B for Guid Prefix are sent. The Header length is therefore resized to
20B.

4.3.2 Submessage Header
For Submessages, new structure SubmessageHeader is defined.

22

. 4.3 Messages Module

typedef struct {
SubmessageKind kind;
uint8_t flags;
uint16_t length;

} SubmessageHeader;

#define PUT_SHEADER(submessageHeader) \
do { \

CDR_put_octet(cdrCodec, (submessageHeader).kind); \
CDR_put_octet(cdrCodec, (submessageHeader).flags); \
CDR_put_ushort(cdrCodec, (submessageHeader).length); \

} while(0)

When Submessages are sent, predefined macro PUT_SHEADER(submessageHeader) en-
sures putting the Submessage Header “on the wire” in contrast to version 1.0 implemen-
tation, where local variables flags, len, length and global structure SubmessageId
were used.

When receiving, Submessage Header is taken “from the wire” only once in the
thread of the receiving task. The pointer to SubmessageHeader and other pointers to
MessageInterpret and CDR_Codec structures are then forwarded to the Process func-
tion of particular Submessage, preventing rewinding of CDR_Codec’s buffer and reading
Submessage Header ’s information again.

4.3.3 Message Interpret
According to Guid Prefix and Locator changes (3.5), MessageInterpret structure is
changed - Host Id and Application Id are substituted by Guid Prefix and Reply IP
Addresses are substituted by Reply Locators Lists. Also processing and updating of
Message Interpret was changed accordingly.

typedef struct {
ProtocolVersion sourceVersion;
VendorId sourceVendorId;
GuidPrefix sourceGuidPrefix;
GuidPrefix destGuidPrefix;
Locator *unicastReplyLocatorList;

uint32_t unicastReplyNumLocators;
Locator *multicastReplyLocatorList;

uint32_t multicastReplyNumLocators;
Boolean haveTimestamp;
NtpTime timestamp;

} MessageInterpret; // is Message Receiver in RTPS2.2

4.3.4 Data Submessage
New Data Submessage is introduced in version 2.2 of the RTPS protocol. Two functions
for Data Submessage are defined.

extern int
RTPSDataCreate(

CDR_Codec *cdrCodec,
CacheChange *cc,
EntityId readerId
);

23

4. Required changes in ORTE .
extern int

RTPSDataProcess(
CDR_Codec *cdrCodec,
MessageInterpret *mi,
SubmessageHeader *sh,
TaskProp *tp
);

Where RTPSDataCreate function is used to create Data Submessage based on Cache
Change and put the Submessage “on the wire”. RTPSDataCreate function is used by
sending thread represented by taskSend of ORTEDomainParticipant.

Processing of Data Submessage is ensured by RTPSDataProcess function. The Sub-
message is got “from the wire” and delivered to target Reader. All receiving threads
will use this function whenever Data Submessage is received.

4.4 Behavior Module
In order to enable communication, Writer and Reader Endpoints needs to be
added to database of all Endpoints of the Participant and initialized. The func-
tion objectEntryAdd is used for the first task, functions used for the second one are
StatelessWriter_init and StatelessReader_init.

4.4.1 Stateless Writer
When the Writer is added to database of all Endpoints and it’s attributes are initialized,
following steps shoud be performed for proper functionality of the Writer..Addition of Reader Locators to readerLocators database of the Writer..Addition of Cache Changes into writerCache database of the Writer..Launch of Resend Data Timer.

StatelessWriter_readerLocatorAdd function is used to associate Reader Locator
with the Stateless Writer. Reader Locator stores information about where to send Cache
Changes in the sense of IP address and port1).

StatelessWriter_initChange is used to initialize new Cache Change. Memory allo-
cation have to precede this initialization and pointer to CacheChange is then forwarded
to init function. The purpose of this approach is to prevent problems of storing Cache
Changes on different memory stacks. Finally, StatelessWriter_addChange is used to
associate new Cache Change with the Writer.

StatelessWriter_resendDataTimer function is used to schedule periodic sending
of Cache Changes by calling ORTESendData function and adding itself with period of
resendDataPeriod to event system of ORTE implemented as Hierarchical Timer [7].

4.4.2 Stateless Reader
Because the Stateless Reader is completely passive Endpoint, there are no special steps
necessary for proper functionality. When the Reader is added to database of all End-
points and initialized, it can be reached by each Task.

1) It shouldn’t be confused with information about where to send data in the sence of destination GUID
used in Stateful Reference Implementation.

24

. 4.5 Discovery Module

4.5 Discovery Module
In order to be interoperable with other implementations, ORTE must support SPDP
and SEDP. Because Data Submessages are used for user traffic as well as for discovery
traffic, only difference between User Application and SPDP respective SEDP would be
predefined Entity Ids denoting builtin Endpoints.

4.5.1 SPDP
The approach to implement SPDP is almost same as implementing User Application -
new Type is registered with name SPDPdiscoveredParticipantData, serialize and dese-
rialize functions are defined and new Writer and Reader are added. As an Data Object,
ORTEDomainParticipant is used.

Proper data encapsulation is the premise of interoperability between implementa-
tions. Encapsulation for SPDP traffic is discussed in [1], approach similar to transfer
of Inline Qos is used - SPDPdiscoveredParticipantData is encapsulated as Parameter
List, each attribute correspond to one Parameter.

SPDPdiscoveredParticipantData_serialize function is used to serialize informa-
tion about ORTEDomainParticipant into Parameter List and put it “on the wire”.

SPDPdiscoveredParticipantData_deserialize function is used to deserialize in-
formation about remote Participant “from the wire” and store this Participant and it’s
available Endpoints in objectEntry1) of ORTEDomainParticipant.

For SPDP, best-effort communication is required and therefore Stateless Reference
Implementation is used. Stateless Writer and Stateless Reader with SPDPdiscovered-
ParticipantData Type are initialized in RTPSSPDP_start function used to enable SPDP.

For out-of-the-box interoperability, Writer and Reader of SPDP have to send respec-
tive receive data on Default Multicast Locator address and port.

DefaultMulticastLocator = {
LOCATOR_KIND_UDPv4,
"239.255.0.1",
PB + DG * domainId + d0

}

Abbreviation Value Meaning
PB 7400 Port Base number
DG 250 Domain Gain
PG 2 Participant Gain
d0 0 Additional offset
d1 10 Additional offset
d2 1 Additional offset
d3 11 Additional offset

Table 4.2. Constants for default port number computation.

4.5.2 SEDP
For SEDP, the approach is similar to SPDP implementation, except different Types
as DiscoveredWriterData and DiscoveredReaderData are registered. Encapsulation as
Parameter List remains the same.

Also reliable communication is required for SEDP, so Statefull Reference Implemen-
tation may be used. SEDP is not implemented yet (see 4).
1) The root of database of all Endpoints.

25

4. Required changes in ORTE .
4.6 Shape Demo

For development purpose, demonstration application Shape was updated to be com-
patible with current implementation. However the implementation is still unstable and
therefore functionality of Shape Demo is limited. Following are changes in demonstra-
tion application, similar changes are required for upgrading applications using ORTE
library.

// FPublisher.h
- ORTEDomain *domain;
+ ORTEDomainParticipant *domain;

// FPublisher.cpp
- domain=ORTEDomainAppCreate(ORTE_DEFAULT_DOMAIN,NULL,NULL,ORTE_FALSE);
+ domain=ORTEDomainParticipant_new(ORTE_DEFAULT_DOMAIN, 0);

- publisher=ORTEPublicationCreate(
+ publisher=ORTEPublication_new(

- ORTEDomainAppDestroy(domain);
+ ORTEDomainParticipant_destroy(domain);

- ORTEPublicationSend(publisher);
+ ORTEPublication_send(domain, publisher);

// FSubscriber.h
- ORTEDomain *domain;
+ ORTEDomainParticipant *domain;

// FSubscriber.cpp
- ORTEDomainAppDestroy(domain);
+ ORTEDomainParticipant_destroy(domain);

- domain=ORTEDomainAppCreate(ORTE_DEFAULT_DOMAIN,NULL,NULL,ORTE_FALSE);
+ domain=ORTEDomainParticipant_new(ORTE_DEFAULT_DOMAIN, 0);

- subscriberBlue=ORTESubscriptionCreate(
+ subscriberBlue=ORTESubscription_new(

- subscriberGreen=ORTESubscriptionCreate(
+ subscriberGreen=ORTESubscription_new(

- subscriberRed=ORTESubscriptionCreate(
+ subscriberRed=ORTESubscription_new(

- subscriberBlack=ORTESubscriptionCreate(
+ subscriberBlack=ORTESubscription_new(

- subscriberYellow=ORTESubscriptionCreate(
+ subscriberYellow=ORTESubscription_new(

+ ORTEDomainParticipant_start(domain);

26

. 4.6 Shape Demo

Even that there are big differences between RTPS protocol versions and there is a lot
of changes in ORTE implementation, the update of the user application is quite simple
and it should be possible to ensure it by the header file.

27

Chapter 5
Testing of implementation

In reference to 4, only SPDP tests were performed. Interoperability was tested against
OpenDDS implementation [9] - open source implementation of OMG DDS delivered
with RTPS Discovery test and it was run between 64-bit Debian PC and 32-bit Linux
Mint PC. The main purpose of ORTE against itself test was Default Multicast Locator ’s
IP address and port availability for more Participants in same Domain on same node.
Test was performed on 64-bit Debian PC.

5.1 ORTE to OpenDDS
The following is commented “debug“ output for typical RTPS Messsage containing
SPDPdiscoveredParticipantData, encoded as Parameter List.

msg len 236
header OK
pv 2.2 vid 1.3 gp 0x0103001e 0x33862b64 0x76c10000

RTPS Header received successfully.

15 05 00 00 ; 15 = DATA; 05 = D,LE; 00 00 = till the end
00 00 10 00 ; 00 00 = extra flags; 10 00 = 16B to next header
00 00 00 00 ; Reader Id = ENTITYID_UNKNOW
00 01 00 c2 ; Writer Id = ENTITYID_SPDP_BUILTIN_PARTICIPANT_WRITER
00 00 00 00 ; SequenceNumber.high = 0
01 00 00 00 ; SequenceNumber.low = 1

RTPS Data Submessage Header received successfully.

00 03 00 00 ; 00 03 = PL_CDR_LE; 00 00 = skipped

Information in Data Submessage is encoded as Parameter List, both the Parameter List
and its Parameters are encapsulated using Little Endian.

15 00 04 00 ; 15 00 = Protocol Version; 04 00 = length 4B
02 02 00 00 ; 2.2

The protocol version of sending implementation is 2.2.

50 00 10 00 ; 50 00 = Participant GUID; 10 00 = length 16B
01 03 00 1e ; GuidPrefix
33 86 2b 64 ; GuidPrefix
76 c1 00 00 ; GuidPrefix
00 00 01 c1 ; Entity Id = ENTITYID_PARTICIPANT

The GUID of the sending Participant is received.

16 00 04 00 ; 16 00 = Vendor Id; 04 00 = length 4B
01 03 00 00 ; 1.3

The vendor id of sending implementation is 1.3.

28

. 5.1 ORTE to OpenDDS

44 00 04 00 ; 44 00 = Builtin Endpoints; 04 00 = length 4B
3f 0c 00 00 ; All required Builtin Endpoints present
58 00 04 00 ; 58 00 = Builtin Endpoint Set; 04 00 = length 4B
3f 0c 00 00 ; All required Builtin Endpoints present

Sending Participant contains all Builtin Endpoints required for interoperability.
32 00 18 00 ; 00 32 = Metatraffic Unicast Locator; 18 00 = length 24B
01 00 00 00 ; Locator.kind = LOCATOR_KIND_UDPv4
7f a9 00 00 ; Locator.port = 43391
00 00 00 00 ;
00 00 00 00 ;
00 00 00 00 ;
c0 a8 01 75 ; Locator.address = 192.168.1.117

Metatraffic Unicast Locator1) is used for communicating Discovery Traffic. It contains
IP address and port on which are sending Participants Builtin Endpoints listening.

32 00 18 00 ; 00 32 = Metatraffic Unicast Locator; length 24B
01 00 00 00 ; Locator.kind = LOCATOR_KIND_UDPv4
7f a9 00 00 ; Locator.port = 43391
00 00 00 00 ;
00 00 00 00 ;
00 00 00 00 ;
0a 01 02 04 ; Locator.address = 10.1.2.4

The second Metatraffic Unicast Locator is received, meaning that sending Participants
Builtin Endpoints are listening on multiple IP addresses (and same ports in this case).

31 00 18 00 ; 31 00 = Default Unicast Locator; 18 00 = length 24B
01 00 00 00 ; Locator.kind = LOCATOR_KIND_UDPv4
39 30 00 00 ; Locator.port = 12345
00 00 00 00 ;
00 00 00 00 ;
00 00 00 00 ;
7f 00 00 01 ; Locator.address = 127.0.0.1

Default Unicast Locator is used when IP address and port aren’t known for destination
User Endpoint. In that case, Default Unicast Locator is used for sending Unicast User
Data Traffic.

48 00 18 00 ; 48 00 = Default Multicast Locator; 18 00 = length 24B
01 00 00 00 ; Locator.kind = LOCATOR_KIND_UDPv4
39 30 00 00 ; Locator.port = 12345
00 00 00 00 ;
00 00 00 00 ;
00 00 00 00 ;
7f 00 00 01 ; Locator.address = 127.0.0.1

As well as Default Unicast Locator, also Default Multicast Locator is mandatory at-
tribute of Participant. It has the same meaning, except Multicast User Data Traffic is
considered.

34 00 04 00 ; 34 00 = Manual Liveliness Count; 04 00 = length 4B
00 00 00 00 ;

1) Attributes of Locator structure introduced in 4.2 are kind, port - both integers and address - the array
of 16B. As mentioned at start of Parameter List, Little Endian encapsulation is used in Data Submessage.
Therefore Locators kind and port are Little Endian encoded but address is sent per byte in network order.

29

5. Testing of implementation .
Manual Liveliness Count parameter is used for Writer Liveliness Protocol with manual
Qos settings.

02 00 08 00 ; 02 00 = Participant Lease Duration; 08 00 = length 8B
14 00 00 00 ; NtpTime.seconds = 20
00 00 00 00 ; NtpTime.fraction = 0

Parameter containing the time period after which the sending Participant should be
removed from objectEntry database.

01 00 00 00 ; 01 00 = Sentinel (end of Parameter List)

Sentinel determines the end of Parameter List.
The following is debug output of all Entities stored in objectEntry database of

Participant. The whole output of receiving and processing RTPS Message with SPDP
traffic is presented in appendix B.

1450639460.456 | GP: 00000000 0x0000c0a8 0x016525bc
1450639460.457 | EID: 0x00000104
1450639460.457 | EID: 0x000001c1
1450639460.457 | EID: 0x000100c2
1450639460.457 | EID: 0x000100c7
1450639460.457 | GP: 0x0103001e 0x33862b64 0x2b700000
1450639460.457 | EID: 0x000001c1
1450639460.457 | EID: 0x000003c2
1450639460.457 | EID: 0x000003c7
1450639460.457 | EID: 0x000004c2
1450639460.457 | EID: 0x000004c7
1450639460.457 | EID: 0x000100c2
1450639460.457 | EID: 0x000100c7
1450639460.457 | EID: 0x000200c2
1450639460.457 | EID: 0x000200c7

Because the objectEntry database contains remote Participant and it’s builtin End-
points, test of the SPDP was successful.

5.2 ORTE to ORTE
It was successfully tested that Default Multicast Locator ’s IP address and port can be
shared. Two Participants with different participantId and with the same domainId
was run on 64-bit Debian PC. They both fill it’s objectEntry database with remote
Participant and it’s builtin Endpoints with no problems. Packet captured by Wire-
shark1) containing RTPS Message with SPDP traffic is presented in appendix C.

1) Network protocol analyzer

30

Chapter 6
Future Development

ORTE is written to fit RTPS 1.0. In version 2.2 there is no difference between meta
traffic and user traffic, specification is divided to modules and the fashion of Participants
and Endpoints discovery is revised. These are main differences that should be considered
when upgrading ORTE. In the following sections, changes that haven’t been made yet
are discussed.

6.1 Stateful Endpoints
It’s not necessary to implement Stateful Reference Endpoints, only required behavior is
discussed in 3.3.1. However, for reliable communication desired by SEDP, at least some
state on each matched Writer must be stored in Reader. Also backward compatibility
with version 1.0 of the RTPS protocol would be easier, because approach similar to
Stateful Reference Implementation is used. Therefore, it’s advisable to add Stateful
Reference Implementation into shor-term goals.

6.2 Refactoring
Terminology changed in version 2.2 and in some cases (e.g. MessageInterpret) ORTE
implementation doesn’t correspond with specification. Clean code, suitable namespace
and documentation is fundamental for changes, upgrades and fixes.

6.3 Directory Structure
Four modules are introduced in [1] - Structure, Messages, Behavior and Discovery. It
would be easier to maintain the code if these are stored in proper directory structure.
Also additional directories for documentation can be considered.

6.4 DDS API
It’s mentioned in [4] that first version of DDS specification was introduced when it
wasn’t possible to change ORTE API. If there is an opportunity, it would be great to
change it in correspondence to DDS.

6.5 Backward compatibility
One of the long-term goals could be backward compatibility with RTPS 1.0. Ideally it
would be implemented similar to SPDP - as User Application with Builtin Endpoints.

31

6. Future Development .
6.6 Use Cases

Some use cases can be considered when the RTPS protocol is implemented in one Node
(physical device) of Network. For this purpose, Interpreter Submessages discussed in
3.2 were introduced..1 domain, 1 participant.1 domain, x participants.y domains, 1 participant.y domains, x participants

In the 1-1 case, there are no special needs. Actual development consider this use
case.

For the 1-x case, sources consumption can be reduced by sharing common parts of
Domain with other Participants.

In the y-1 case, Participants in different Domains listen on different ports. However
sending sources can be shared.

The last case y-x would benefit from the 1-x and y-1 cases.

32

Chapter 7
Shape for Android

7.1 Shape demo
With ORTE implementation of RTPS 1.0 protocol, demo application called Shape is
delivered. Shape demo demonstrates the functionality of ORTE - when the color (Blue,
Green, Red, Black, Yellow) is choosen, the Publisher is created as random shape (Circle,
Square, Triangle) moving on the screen. Then, under the topic of color name, object’s
shape, color and coordinates are published to the network. It’s possible to receive and
interpret object’s data (to see colored shapes moving on the screen) by adding the
Subscribers of specific topics (colors).

Figure 7.1. Shape demo - Publishers and Subscribers

7.2 Familiarization with ORTE
The task of the familiarization with ORTE was to create demo application for Android
compatible with Shape. Because the port of ORTE to Android has been already done
in [5] and is available as library, the main task was compatibility ensurance. The
application was designed to be as simple as possible. Publishers view allows to create
new Publisher of specific color and random shape, Subscribers view allows to set up
Subscribers of specified colors. Finally, Settings and Help views are present.

33

7. Shape for Android .
7.3 Classes

As in Shape demo, in Shape for Android the BoxType class is presented, allowing to
create, send and receive objects. BoxType consists of color (integer), shape (integer)
and rectangle (BoxRect), where BoxRect is class for storing coordinates - top_left_x
(short), top_left_y (short), bottom_right_x (short), bottom_right_y (short). The
BoxType is extension of MessageData class delivered with ORTE library for Android.
It allows to send and receive objects.

PublisherShape class stores BoxType information about Publisher, it’s properties
needed for ORTE, methods for communication with object and prepares data to send.
In Publisher view, Publisher objects are created, stored in Array List and drawed on
screen. Data objects are sent in Publisher activity each time objects are redrawn.

SubscriberElement class receives BoxType object from ORTE and stores it’s data
and methods needed for presentation. In Subscriber view, all received objects are stored
in Array List and periodically redrawn.

It’s good practice [10] to include Settings and Help in Options Menu. In Settings,
scaling needed because of various screens dimensions and the list of managers1) can be
set and Help contains information about ORTE, Shape and application usage.

7.4 Compatibility
BoxType in Shape and Shape for Android is a little bit different. The reason is just fa-
miliarization with ORTE implementation and RTPS protocol, where misunderstooding
was not fully avoided. Suggestions for improvements follows.

The first property of BoxType is color. In Shape demo, color is typed as
CORBA octet (macro for uint8 t, 1 byte) and in Shape for Android, color is of integer
type (4 bytes). The reason why this approach does not break the compatibility is
following: each data-type serialized by CORBA is aligned to 4 byte boundary. In this
case, object color is first byte and the rest until the boundary is filled by zero bytes.
This data representation corresponds to Little Endian in which the message is encoded
by default (endianness is operating system dependent), so when Shape for Android
deserialize data, Little Endian encoded integer is obtained. It also works in opposite
direction - value of the color is serialized as integer, encoded as Little Endian and on
the side of Shape demo, CORBA octet is deserialized and 3 zero bytes skipped because
of boundary alignment. The problem could arise when color would be sent as integer
with Big Endian encoding and received as CORBA octet, because the value of the first
byte would be then zero. Also, the problem wouldn’t persist in the opposite direction,
because endianness is always part of the RTPS message so even node with Big Endian
default encoding would receive Little Endian encoded message correctly.

The second property of BoxType is shape. The type in Shape demo is CORBA long
(macro for int32 t, 4 bytes) and integer (4 bytes) in Shape for Android. Therefore there
is no problem with shape property.

The last property of BoxType is BoxRect consisting of coordinates of object. Each
value of BoxRect is CORBA short type (2 bytes) in Shape demo and short type (2
bytes) in Shape for Android. Because BoxRect is presented as CORBA autonomous
data-type, the whole data-type (8 bytes) is aligned to 4 bytes boundary.
1) In RTPS 1.0 special application called manager is used for communication of available Publish-
ers/Subscribers between nodes. In RTPS 2.2 Simple Participant Discovery Protocol (SPDP) and Simple
Endpoint Discovery Protocol (SEDP) are used.

34

. 7.4 Compatibility

Figure 7.2. Shape for Android - Publishers view

The suggestion for the future improvement of Shape demo and Shape for Android is
the revision of BoxType data-type.

35

Chapter 8
Security for DDS

Nowadays, security is often considered. Technologies for securing communication dif-
fers by TCP/IP layers [11] - security at Media access layer consists of preventing de-
terioration of physical media, environmental noise and access to media. At Network
layer, IPsec (IP Security Architecture) protocol is used while Transport layer uses TLS
(Transport Layer Security) protocol. In this chapter, Application layer security for DDS
standard [12] and possibilities of implementation in RTPS protocol are considered.

8.1 Threats
From point of view of DDS standard, communication takes place in the domain consist-
ing of participants with various number of publishers and subscribers. In this context,
Application layer security threats are following:.Unauthorized1) subscription.Unauthorized publication.Tampering and replay.Unauthorized access to data

Unauthorized subscription is a situation when malicious participant receives data for
which it is not allowed to. In network infrastructure where access to media is shared,
communication runs over multicast or participants sits on one node, it’s practically
unavoidable to restrict access to data. The solution is making data unreadable for
malicious participant - in other words, applying encryption on publisher’s side and
sharing keys with authenticated subscribers only.

When malicious participant attempts to send data which it is not allowed to, it’s
called Unauthorized publication. For subscriber it’s important to receive data only
from valid publishers to avoid influence of malicious participant on data. The solution
is to include authentication information to data sent by valid publishers so subscribers
would be able to recognize data by authenticated publishers from data sent by malicious
participant. Authentication of publishers in data can be accomplished by Hash-based
message authentication code (HMAC) or by digital signature. HMAC creates authenti-
cation code using secret key shared between publisher and subscriber. Digital signature
is based on private/public key pair - authentication code is created as message digest
encrypted by private key of publisher. Each subscriber has access to public key of pub-
lisher and can use it to decrypt the authentication code to message digest and compare
it with message digest calculated by itself. The point is that these two message digests
equals if and only if the authentication code is encrypted by publisher’s private key and
decrypted by publisher’s public key. Digital signature is called asymmetric cryptogra-
phy (private/public key pair) and is much slower then symmetric cryptography (shared
key), therefore the use of HMAC is preferred because of performance reasons.
1) Difference between authentication and authorization has to be clear. Authentication is verification of
(in this context) participant - that the participant is really the one it claims to be. On the other hand,
authorization is process of allowing access to data for already authenticated participant.

36

. 8.2 Securing of messages

Valid publisher would send data to subcsriber and malicious participant (in this
case, malicious participant will be allowed to subscribe but not to publish). However if
the same key is shared between publisher, subscriber and malicious paritcipant, there
is no way how to prevent malicious participant to use this shared key for mimicking
publisher and sending data to subscriber. This threat is called Tampering and Replay
and can be solved by sharing different keys between publishers and subscribers. When
the communication is taken over multicast, multiple HMACs are needed to be included
in data, but this solution is still more powerful than using digital signatures.

In the DDS network, some participants acts as relay participants forwarding data.
These participants need to be trusted as valid publishers and subscribers, but it’s
not always desirable to let them understand data they work with. The solution for
Unauthorized Access to Data is having different keys for HMAC and data encryption
and to share keys for decrypting of data only with desired endpoints.

8.2 Securing of messages
Securing of messages is application dependent - sometimes it’s sufficient to encrypt
only user-data, in other applications, submessage’s metadata as sequence numbers or
writer/reader identifiers are needed to be secured too and in the most secure appli-
cations, the whole metatraffic submessages are considered confidential. In order to
support of different application scenarios, mechanism called Message Transformation
is introduced. It transforms one RTPS message into another RTPS message so that
the original RTPS message or it’s submessages may be encrypted into the new one and
protected by HMAC.

Because of Message Transformation, new submessages and submessage elements are
introduced and the questions about interoperability between secured and non-secured
implementations of RTPS protocol arises. In implementations of RTPS protocol, un-
known submessages should be skipped so the regular user-traffic should not be affected,
but there is Discovery also. SPDP is used by DomainParticipants to discover each
other, informations as IP address, port, vendor and version are exchanged to bootstrap
the communication. Therefore it makes no sense to protect SPDP communication, bet-
ter to use it for exchange of informations needed to bootstrap the secured system. For
both - secured and non-secured implementations of RTPS protocol, DCPSParticipants
Topic is used in SPDP and there is no new secured Topic for SPDP.

SEDP protocol is used for discovering publishers and subscribers of each DomainPar-
itcipant. The DCPSPublications and DCPSSubscriptions Topics are used for com-
munication with non-secured endpoints. However for DomainParticipants support-
ing DDS Security, DCPSPublicationsSecure and DCPSSubscriptionsSecure Topics and
associated DataWriters (SEDPbuiltinPublicationsSecureWriter, SEDPbuiltinSubscrip-
tionsSecureWriter) and DataReaders (SEDPbuiltinPublicationsSecureReader, SEDP-
builtinSubscriptionsSecureReader) are introduced. These Topics should be used for
communication that is considered sensitive.

In RTPS protocol, Writer Liveliness Protocol is specified and because data ex-
change by this protocol could be considered sensitive, DDS Security specifies alternate
protected way to exchange liveliness information. BuiltinParticipantMessageWriter
and BuiltinParticipantMessageReader are used to communicate liveliness information
with non-secured endpoints. ParticipantMessageSecure Topic is introduced with as-
sociated BuiltinParticipantMessageSecureWriter and BuiltinParticipantMessageSecur-
eReader, used to communication liveliness information with endpoints considered sen-
sitive.

37

8. Security for DDS .
Also, there are two completely new builtin Topics:.ParticipantStatelessMessage.ParticipantVolatileMessageSecure

ParticipantStatelessMessage Topic is used to perform mutual authentication between
DomainParticipants. While the mechanism for participant-to-participant communica-
tion already exists, it suffers from weakness of reliable protocol - sequence number pre-
diction. HeartBeat messages containing first available sequence number can be abused
by malicious participant to prevent other participants to communicate. Therefore
new Topic ParticipantStatelessMessage with associated BuiltinParticipantStatelessMes-
sageWriter (Best-Effort StatelessWriter) and BuiltinParticipantStatelessMessageReader
(Best-Effort StatelessReader) is introduced.

For key exchange between DomainParticipants, reliable and secure communication
is needed. On top of that, DURABILITY Qos needs to be VOLATILE to address only
DomainParticipants that are currently in the system. ParticipantStatelessMessage is
not suitable because it’s not reliable nor secured. ParticipantMessageSecure Topic is
not suitable because it’s QoS has DURABILITY kind TRANSIENT LOCAL rather
than VOLATILE (which is required). So new Topic ParticipantVolatileMessageSe-
cure with associated BuiltinParticipantVolatileMessageSecureWriter and BuitinPartic-
ipantVolatileMessageSecureReader is introduced.

8.3 Plugin architecture
There are five SPIs:.Authentication.Access-Control.Cryptographic.Logging.Data Tagging

Interactions of plugins are shown in figure 8.1.

8.3.1 Authentication plugin
Authentication is process of verifying that (in this case) DomainParticipant is really the
one it claims to be. DomainParticipant is authenticated when joining a DDS Domain,
mutual authentication is supported and shared secret is established between Domain-
Pariticpants.

8.3.2 Access Control plugin
Ensures authorization - allows or deny protectected operations of DomainPariticipant
as join domain, create Topic, publish to Topic or subscribe Topic.

8.3.3 Cryptographic plugin
Encryption, decryption, digests, MAC, HMAC, key generating and exchange, signing
and verifying of signatures is ensured by Cryptographic plugin. The plugin API has to
be general enough to allow specific requirements for cryptographic libraries, encryption
and digest algorithms, message authentication and signing users of DDS may need to
deploy.

38

. 8.3 Plugin architecture

Figure 8.1. Plugin Architecture Model (chapter 8.1 in [12]).

8.3.4 Logging plugin

This plugin logs security events of DomainParticipant. Two options of collecting log
data are logging all events to a local file and distributing log events securely over DDS.

8.3.5 Data Tagging plugin

Classification of data is performed by Data Tagging plugin. It can be used for access
control based on tag, message prioritization or even don’t have to be used by middleware
(RTPS implementation), but by application or service. There are four kinds of tagging:

.Data Writer - used in specification, data received from DataWriter has it’s tag..Data Instance - each instance of the data has a tag.. Individual sample - each sample of data instance is tagged individually..Per field - the most complex method of tagging.

39

8. Security for DDS .
8.4 Interoperability

Out-of-the-box interoperability of DDS Security implementations is ensured analogously
to RTPS implementations - while mandatory builtin endpoints ensures that each Do-
mainParticipant is able to discover other DomainParticipants, in DDS Security imple-
mentations, each DomainParticipant is able to secure data by at least mandatory builtin
plugins.

8.4.1 Requirements
This is resume of requirements for builtin plugins by out-of-the-box interoperability
as presented in chapter 9.2 of [12]. Following are essential functional requirements for
builtin plugins:.Authentication of DomainParticipants joining a domain.Access control of applications subscribing to data.Message integrity and authentication.Encryption of a data by different keys

Following are functions that should be required by builtin plugins:.Sending digitally signed data.Sending data securely over multicast.Data tagging. Integrating with open standard security plugins

Following are functions considered useful:.Access control to certain samples.Access control to certain attributes within sample.Permissions for QoS usage by DDS Entities

Non-functional requirements are:.Performance and Scalability.Robustness and Availability.Fit to DDS Data-Centric Information Model.Reuse of existing security infrastructure and technologies.Ease of use

8.4.2 Considerations
Usually DDS is deployed in systems where high performance for large number of Do-
mainParticipants is needed, therefore actions performed by plugins shouldn’t notably
degrade system performance. In practice it means that asymmetric cryptography should
be used only for discovery, authentication, session and shared-secret establishment,
symmetric cryptography shoud be used for data, use of ciphers, HMACs or digital sig-
natures should be selectable per Topic, there should be possibility of providing integrity
via HMAC without data encryption and there should be support for encrypted data
over multicast.

DDS used to be deployad in system where robustness and availability is considered
critical. It’s required from system to continue operating even if partial fail occures, so
centralized services reprezenting single point of failure have to be avoided, DomainPar-
ticipant components have to be self-contained to be able to operate securely, multi-party

40

. 8.5 Implementation

key agreement protocols should be avoided because of simplicity of discruption and to-
kens and keys should be compartmentalized as much as possible to avoid situations
where multiple applications using same key are compromised if just one of them is
compromised.

8.5 Implementation
The implementation of DDS Security into ORTE consists of changes in Modules (pre-
sented in chapter 8 of [1]). Introduction of SecureSubMsg Submessage and SecuredPay-
load Submessage Element assumes modification of Message Module, Discovery Module
is affected by Builtin Secure Endpoints - if configured to, discovery of publishers and
subscribers is secured and Behavior Module needs to be modified to include Builtin
Plugins which ensures security.

8.5.1 Builtin Endpoints
This is the list of Builtin Endpoints presented in chapter 7.4.5 of [12]. In order to
ensure out-of-the-box compatibility, following Builtin Secure Endpoints needs to be
implemented:.SEDPbuiltinPublicationsSecureWriter.SEDPbuiltinPublicationsSecureReader.SEDPbuiltinSubscriptionsSecureWriter.SEDPbuiltinSubscriptionsSecureReader.BuiltinParticipantMessageSecureWriter.BuiltinParticipantMessageSecureReader.BuiltinParticipantVolatileMessageSecureWriter.BuiltinParticipantVolatileMessageSecureReader

8.5.2 Builtin Plugins
This is resume of Builtin Plugins presented in chapter 9.1 of [12]. In order to ensure
out-of-the-box compatibility, following Builtin Plugins needs to be implemented:.DDS:Auth:PKI-RSA/DSA-DH (Authentication plugin)

. Uses PKI with pre-configured shared Certificate Authority. RSA or DSA and Diffie-Hellman for authentication and key exchange.DDS:Access:PKI-Signed-XML-Permissions (Access control plugin)

. Permissions document signed by shared Certificate Authority.DDS:Crypto:AES-CTR-HMAC-RSA/DSA-DH (Cryptographic plugin)

. AES128 for encryption (counter mode). SHA1 and SHA256 for digest. HMAC-SHA1 and HMAC-256 for HMAC.DDS:Tagging:DDS Discovery (Data Tagging plugin)

. Send Tags via Endpoint Discovery.DDS:Logging:DDS LogTopic (Logging plugin)

. Logs security events to a dedicated DDS Log Topic

41

Chapter 9
Conclusion

The aim of this thesis was upgrading Open Real-Time Ethernet implementation of
Real-Time Publish-Subscribe protocol in order to achieve compatibility with the cur-
rent protocol version. Actual protocol version was introduced and compared to im-
plemented version. Required changes were discussed, implementation of basic types,
messages and behavior was introduced and future development was outlined. Test of
participant discovery was successfully performed even though the implementation isn’t
complete. Demonstration application and possibilities of security in implementation
was presented.

The main difference between the originally implemented version and the current ver-
sion of the protocol is that traffic used for internal purposes of protocol (e.g. discovery
traffic) differs from user data traffic just in identification of endpoints. There is also
difference in behavior of endpoints, namely in storage of remote endpoints information,
because needs for best effort communication differs from needs for reliable one. The
last important difference is related to data transfer. Because discovery and user data
traffic is practically the same, only one type of message is used.

As the result, basic types were upgraded and added, messages changed and new kind
of behavior was implemented. However the second type of behavior is still missing and
discovery is implemented partially.

The testing of participant discovery was performed against OpenDDS implementation
and remote participant with its builtin endpoints was successfully discovered. ORTE
against itself test confirmed availability of IP address and port for multiple participants
in the same domain on the same node and that generated messages are accepted by
Wireshark network analyzer.

42

References
[1] Object Management Group (OMG). The Real-Time Publish-Subscribe Protocol

(RTPS) DDS Interoperability Wire Protocol Specification. 2014.
http://www.omg.org/spec/DDSI-RTPS/2.2/.

[2] Object Management Group (OMG). Data Distribution Service for Real-Time Sys-
tems. 2007.
http://www.omg.org/spec/DDS/.

[3] Object Management Group.
http://www.omg.org/index.htm.

[4] Pavel Pisa Petr Smolik. ORTE: The Open Real Time Ethernet. 2008.
[5] Martin Vajnar. ORTE communication middleware for Android OS . 2014.
[6] ORTE - Open Real-Time Ethernet.

http://orte.sourceforge.net/.
[7] Pavel Pisa. uLan Utilities Library.

http://cmp.felk.cvut.cz/˜pisa/#ulut.
[8] CTU-IIG. GUID in RTPSv2.2 .

https://github.com/CTU-IIG/orte/issues/6.
[9] OpenDDS .

http://www.opendds.org/.
[10] Android Developers - Design.

https://developer.android.com/design/index.html.
[11] Core Protocols in the Internet Protocol Suite.

http://tools.ietf.org/id/draft-baker-ietf-core-04.html.
[12] Object Management Group (OMG). DDS Security. 2014.

http://www.omg.org/spec/DDS-SECURITY/.

43

http://www.omg.org/spec/DDSI-RTPS/2.2/
http://www.omg.org/spec/DDS/
http://www.omg.org/index.htm
http://orte.sourceforge.net/
http://cmp.felk.cvut.cz/~pisa/#ulut
https://github.com/CTU-IIG/orte/issues/6
http://www.opendds.org/
https://developer.android.com/design/index.html
http://tools.ietf.org/id/draft-baker-ietf-core-04.html
http://www.omg.org/spec/DDS-SECURITY/

Appendix A
Symbols

AES . Advanced Encryption Standard
API . Application Programming Interface
CDR . Common Data Representation
CORBA . Common Object Request Broker Architecture
CST . Composite State Transfer
CTR . Counter
DCPS . Data-Centric Publish-Subscribe
DDS . Data Distribution Service
DH . Diffie-Hellman
DSA . Digital Signature Algorithm
GNU . GNU’s Not Unix!
GUID . Globally Unique Identifier
HMAC . Hash-based Message Authentication Code
IP . Internet Protocol
IPsec . IP Security
LSB . Least Significant Bit
MAC . Message Authentication Code
MSB . Most Significant Bit
MTU . Maximum Transmission Unit
OMG . Object Management Group
ORTE . Open Real-Time Ethernet
PC . Personal Computer
PDF . Portable Document Format
PIM . Platform Independent Model
PKI . Public Key Infrastructure
PSM . Platform Specific Model
RSA . Rivest Shamir Adleman
RTPS . Real-Time Publish-Subscribe
SEDP . Simple Endpoint Discovery Protocol
SHA . Secure Hash Algorithm
SPDP . Simple Participant Discovery Protocol
SPI . Service Plugin Interface
SVG . Scalable Vector Graphics
TCP . Transmission Control Protocol
TLS . Transport Layer Security
UDP . User Datagram Protocol
XML . EXtensible Markup Language

45

Appendix B
OpenDDS testing

1450639459.774 | ORTEAppRecvThread MD: waiting for message to receive
1450639460.456 | ORTEAppRecvThread MD: received message of length 208
1450639460.456 | ORTEAppRecvThread: RTPS Header OK
1450639460.456 | PV: 2.2 VID:1.3 GP: 0x0103001e 0x33862b64 0x2b700000
1450639460.456 | ...ead MD: submessage: kind 0x15, flags 0x5, length 184
1450639460.456 | RTPSDataProcess: start
1450639460.456 | RTPSDataProcess: extraFlags: 0x0
1450639460.456 | RTPSDataProcess: octetsToInlineQos: 0x10
1450639460.456 | RTPSDataProcess: reader EID: 00000000
1450639460.456 | RTPSDataProcess: writer EID: 0x000100c2
1450639460.456 | RTPSDataProcess: Sequence Number: 0.8
1450639460.456 | SPDPdiscoveredParticipantData_deserialize:
1450639460.456 | id: 0x15, len: 4
1450639460.456 | value: 2.2
1450639460.456 | id: 0x50, len: 16
1450639460.456 | objectEntryAdd: start
1450639460.456 | objectEntryAdd: GP : 0x0103001e 0x33862b64 0x2b700000
1450639460.456 | objectEntryAdd: Entity: 0x000001c1 connected to GP
1450639460.456 | objectEntryAdd: Entity: 0x000001c1 created
1450639460.456 | objectEntryAdd: finished
1450639460.456 | eventDetach: GP: 0x0103001e 0x33862b64 0x2b700000
1450639460.456 | eventDetach: finished
1450639460.456 | eventAdd: ObjectEntry_leaseDurationTimer
1450639460.456 | htimerUnicastCommon: root updated, wakeup
1450639460.456 | WakeUpSendingThread : start
1450639460.456 | WakeUpSendingThread : send wakeup signal
1450639460.456 | eventAdd: finished
1450639460.456 | value: 0x0103001e 0x33862b64 0x2b700000, 0x000001c1
1450639460.456 | id: 0x16, len: 4
1450639460.456 | value: 1.3
1450639460.456 | id: 0x44, len: 4
1450639460.456 | objectEntryAdd: start
1450639460.456 | objectEntryAdd: Entity: 0x000100c2 created
1450639460.456 | objectEntryAdd: finished
1450639460.456 | objectEntryAdd: start
1450639460.456 | objectEntryAdd: Entity: 0x000100c7 created
1450639460.456 | objectEntryAdd: finished
1450639460.456 | objectEntryAdd: start
1450639460.456 | objectEntryAdd: Entity: 0x000003c2 created
1450639460.456 | objectEntryAdd: finished
1450639460.456 | objectEntryAdd: start
1450639460.456 | objectEntryAdd: Entity: 0x000003c7 created
1450639460.456 | objectEntryAdd: finished
1450639460.456 | objectEntryAdd: start

46

. .
1450639460.456 | objectEntryAdd: Entity: 0x000004c2 created
1450639460.456 | objectEntryAdd: finished
1450639460.456 | objectEntryAdd: start
1450639460.456 | objectEntryAdd: Entity: 0x000004c7 created
1450639460.456 | objectEntryAdd: finished
1450639460.456 | objectEntryAdd: start
1450639460.456 | objectEntryAdd: Entity: 0x000200c2 created
1450639460.456 | objectEntryAdd: finished
1450639460.456 | objectEntryAdd: start
1450639460.456 | objectEntryAdd: Entity: 0x000200c7 created
1450639460.456 | objectEntryAdd: finished
1450639460.456 | value: 3135
1450639460.456 | id: 0x58, len: 4
1450639460.456 | objectEntryAdd: start
1450639460.456 | objectEntryAdd: finished
1450639460.456 | objectEntryAdd: start
1450639460.456 | objectEntryAdd: finished
1450639460.456 | objectEntryAdd: start
1450639460.456 | objectEntryAdd: finished
1450639460.456 | objectEntryAdd: start
1450639460.456 | objectEntryAdd: finished
1450639460.456 | objectEntryAdd: start
1450639460.456 | objectEntryAdd: finished
1450639460.456 | objectEntryAdd: start
1450639460.456 | objectEntryAdd: finished
1450639460.456 | objectEntryAdd: start
1450639460.456 | objectEntryAdd: finished
1450639460.456 | objectEntryAdd: start
1450639460.456 | objectEntryAdd: finished
1450639460.456 | value: 3135
1450639460.456 | id: 0x32, len: 24
1450639460.456 | value: 192.168.1.117:34681 (kind 1)
1450639460.456 | id: 0x31, len: 24
1450639460.456 | value: 127.0.0.1:12345 (kind 1)
1450639460.456 | id: 0x48, len: 24
1450639460.456 | value: 127.0.0.1:12345 (kind 1)
1450639460.456 | id: 0x34, len: 4
1450639460.456 | value: 0
1450639460.456 | id: 0x2, len: 8
1450639460.456 | eventDetach: GP: 0x0103001e 0x33862b64 0x2b700000
1450639460.456 | eventDetach: finished
1450639460.456 | eventAdd: ObjectEntry_leaseDurationTimer
1450639460.456 | htimerUnicastCommon: root updated, wakeup
1450639460.456 | WakeUpSendingThread : start
1450639460.456 | WakeUpSendingThread : send wakeup signal
1450639460.456 | eventAdd: finished
1450639460.456 | value: 20s 0f
1450639460.456 | id: 0x1, len: 0
1450639460.456 | value: sentinel
1450639460.456 | RTPSDataProcess: finished
1450639460.456 | ORTEAppRecvThread: message 0x15 processed
1450639460.456 | ORTEAppRecvThread: processing of message(s) finnished
1450639460.456 | DUMP: start

47

B OpenDDS testing .
1450639460.456 | GP: 00000000 0x0000c0a8 0x016525bc
1450639460.457 | EID: 0x00000104
1450639460.457 | EID: 0x000001c1
1450639460.457 | EID: 0x000100c2
1450639460.457 | EID: 0x000100c7
1450639460.457 | GP: 0x0103001e 0x33862b64 0x2b700000
1450639460.457 | EID: 0x000001c1
1450639460.457 | EID: 0x000003c2
1450639460.457 | EID: 0x000003c7
1450639460.457 | EID: 0x000004c2
1450639460.457 | EID: 0x000004c7
1450639460.457 | EID: 0x000100c2
1450639460.457 | EID: 0x000100c7
1450639460.457 | EID: 0x000200c2
1450639460.457 | EID: 0x000200c7
1450639460.457 | DUMP: end

48

Appendix C
ORTE testing

Figure C.1. Wireshark capture of SPDP communication

49

Appendix D
Attached Material

.Attached CD contains
. hubacek orte.pdf - The PDF version of this thesis,. documentation diagram.svg - The SVG version of Documentation Diagram..Documentation Diagram
. See folder.

50

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	Tables/Figures
	Introduction
	Technology overview
	DDS
	DCPS
	RTPS
	ORTE

	Actual RTPS protocol
	Structure Module
	Participant
	Writer Endpoint
	Reader Endpoint
	History Cache
	Cache Change
	Participant Proxy
	Reader Proxy
	Writer Proxy

	Messages Module
	Header
	Submessage Header
	Interpreter Submessages
	Entity Submessages

	Behavior Module
	Interoperability
	State Maintenance
	Stateless Writer
	Stateless Reader
	Stateful Writer
	Stateful Reader

	Discovery Module
	SPDP
	SEDP

	RTPS 1.0
	Structure Module
	Messages Module
	Behavior Module
	Discovery Module

	Required changes in ORTE
	ORTE specific
	Structure Module
	Participant
	Endpoints
	History Cache
	Proxy Entities

	Messages Module
	Header
	Submessage Header
	Message Interpret
	Data Submessage

	Behavior Module
	Stateless Writer
	Stateless Reader

	Discovery Module
	SPDP
	SEDP

	Shape Demo

	Testing of implementation
	ORTE to OpenDDS
	ORTE to ORTE

	Future Development
	Stateful Endpoints
	Refactoring
	Directory Structure
	DDS API
	Backward compatibility
	Use Cases

	Shape for Android
	Shape demo
	Familiarization with ORTE
	Classes
	Compatibility

	Security for DDS
	Threats
	Securing of messages
	Plugin architecture
	Authentication plugin
	Access Control plugin
	Cryptographic plugin
	Logging plugin
	Data Tagging plugin

	Interoperability
	Requirements
	Considerations

	Implementation
	Builtin Endpoints
	Builtin Plugins

	Conclusion
	References
	Symbols
	OpenDDS testing
	ORTE testing
	Attached Material

